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Multi-agent knowledge integration mechanism 
using particle swarm optimization  

 
Abstract: 
 
Unstructured group decision-making is burdened with several central difficulties: unifying the 

knowledge of multiple experts in an unbiased manner and computational inefficiencies. In addition, 

a proper means of storing such unified knowledge for later use has not yet been established. 

Storage difficulties stem from of the integration of the logic underlying multiple experts’ decision-

making processes and the structured quantification of the impact of each opinion on the final 

product. To address these difficulties, this paper proposes a novel approach called the multiple 

agent-based knowledge integration mechanism (MAKIM), in which a fuzzy cognitive map (FCM) is 

used as a knowledge representation and storage vehicle. In this approach, we use particle swarm 

optimization (PSO) to adjust causal relationships and causality coefficients from the perspective of 

global optimization. Once an optimized FCM is constructed an agent based model (ABM) is applied 

to the inference of the FCM to solve real world problem. The final aggregate knowledge is stored in 

FCM form and is used to produce proper inference results for other target problems. To test the 

validity of our approach, we applied MAKIM to a real-world group decision-making problem, an IT 

project risk assessment, and found MAKIM to be statistically robust.  

Keywords: Agent-based model (ABM), Particle swarm optimization (PSO), Fuzzy cognitive map 
(FCM), Expert knowledge, Knowledge integration, IT project risk assessment 

 

 

1 Introduction 

Most group decision-making problems are difficult to automate via information systems due to their 

strategic natures. Such problems include many subjective and qualitative variables stemming from a 

large number of decision-makers (Choudhury et al., 2006; Mintzberg et al., 1976). While many 

studies have explores techniques to support strategic group decision-making such as AHP (Satty, 

2001) and DELPHI (Dalkey and Helmer, 1963), they fail to capture the subjective logic of the 

participants, which is used to judge the complex relationships between a number of variables. As a 

result, the knowledge created from past decision-making processes is lost and unavailable for use 

in future problems of a similar nature. The capture of this knowledge is extremely important in 

effective group decision-making.  

 

In recent years this topic becomes a main focal point because more and more companies are aware 

that new ideas generated in past decision-making processes are a valuable source of information 

for the company. Thus, many new software applications appear that are successfully applied in 

medium to large companies for group decision making. Examples for these tools are Innovator of 
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ARAS (http://www.ara.com), Innotour of University of Southern Denmark, EU, and Danish Ministry 

of Science, Technology and Innovation (http://www.innotour.com/), E.mind  of Procter & Gamble 

(http://www.procterandgamble.com/), Hype of Think 2 innovate (http://www.think2innovate.de), and 

HypeIMT of Hype (http://www.hypeinnovation.com/).  

 

Beside this, current literature in this field focus on agent and multi-agent based approaches 

(Ghanem et al, 2010; Wu et al. 2010), multi criteria decision analysis (Cunningham and Van der 

Leia 2009), text classification (Thorleuchter et al. 2010), database approaches (Geschka et al. 

2002), Delphi studies (Prusty et al. 2010), cross impact analysis (Thorleuchter et al. 2010), and 

knowledge supply networks (Xiwei et al. 2010). 

 

In contrast to previous work, this paper proposes a new method to integrate the knowledge of 

multiple experts, represent the knowledge in an explicit form, and employ it in strategic decision-

making. We named this method the multiple agent-based knowledge integration mechanism 

(MAKIM). Its main processes are as follows.  

 

First, a fuzzy cognitive map (FCM) is used to represent each expert’s knowledge of a target problem. 

Second, a draft FCM representing the integrated knowledge base of the target problem is 

developed by roughly summing the knowledge of multiple experts. Third, the draft FCM is optimized 

by applying a particle swarm optimization (PSO) algorithm to the training data. Fourth, a final 

integrated knowledge base is derived when the PSO reaches an optimal state. The resulting 

knowledge base is stored in a final FCM, the validity of which is tested in the final step.  

  

Section 2 provides a brief introduction on FCM, Agent-based Model, and PSO and their applications. 

Section 3 gives a schematic overview of the proposed MAKIM and section 4 the experiments used 

to test the method based on a real data set for project risk assessment. Section 5 discusses the 

implications of our results and suggests areas of future study. 

2 Background 

2.1 Fuzzy Cognitive Maps   

Cognitive maps (Axelrod, 1976) and FCMs (Kosko, 1986) have emerged to represent the implicit 

knowledge of multiple people and can be used to link a multitude of scenarios. Cognitive maps and 

FCMs share common theoretical backgrounds, as they are both a collection of nodes linked by arcs 

or edges. Like a Bayesian network, an FCM is a useful tool to model and make inference on causal 

relationships among qualitative or quantitative concepts like global warming, profits, and 

http://www.innotour.com/
http://www.procterandgamble.com/
http://www.hypeinnovation.com/
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competitiveness. Both Bayesian networks and FCMs use networks of concepts which are linked 

each other via directed arcs to represent the direction of influence, and they can represent and 

handle circular causality. However, Bayesian networks have a limitation to be applied to real world 

cases due to the difficulty of finding appropriate conditional probability models. Furthermore, it is 

difficult to represent vagueness on the relationships between concepts. Therefore, FCMs have been 

preferred to Bayesian networks for solving real world problems (Liu, 2003). 

 

In an FCM, nodes represent concepts or variables relevant to a given problem domain, while arcs or 

edges represent the causal links between these nodes and are oriented to show the direction of 

influence between two nodes. Edges carry either a positive sign to signify a stimulating effect or a 

negative sign to signify an inhibitory effect. These maps are used to predict outcomes when 

decision-makers apply changes to several nodes of interest. The predicted outcomes are used to 

recommend strategic changes to nodes of interest. Predictions result in a set of node 

recommendations to be used as strategies in the real world.  

 

Proposed by Kosko as an extension of cognitive maps (1986, 1992), a FCM possesses the 

following characteristics: (1) causal relationships between two nodes are defined as fuzzy numbers 

ranging from -1 to +1 (Lee et al., 1992; Lee and Lee, 2003) and (2) its inference reduces to a fixed 

state or equilibrium after a limited cycle of iterations using a fixed threshold (usually 0.5) (Kosko, 

1992). Figure 1 depicts a typical FCM where the causality coefficients are between -1 and +1.  

 

** Insert Figure 1 ** 

 

Typical advantages of an FCM include (1) visual modeling of implicit knowledge about the target 

problem using nodes and edges with associated signs and causality coefficients, (2) uncertainty 

processing that improves decision-making quality, and (3) what-if/goal-seeking simulations and 

prediction capabilities. Although it is difficult to objectively quantify causality coefficients, FCMs allow 

a set of identified causality coefficients to be organized in an adjacency matrix for effective 

simulation.  

 

FCMs are especially useful for solving unstructured problems involving many variables and their 

causal relationships. One example is in the field of administrative sciences, in which many decision 

variables and uncontrollable variables are causally interrelated (Eden & Ackermann, 1989). FCMs 

have been used for geographical information systems (Liu & Satur, 1999), the design of electronic 

commerce web sites (Lee & Lee, 2003), R&D project selection (Salmeron, 2009), knowledge 

management (Noh et al., 2000), bosphorus crossing problems (Ulengin et al. 2001), wayfinding 

processes (Chen & Stanney,1999), decision analysis (Zhang et al., 1989), business process 
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redesign (Kwahk & Kim, 1999), business process analysis and reengineering (Xirogiannis and 

Glykas, 2004), complex war games (Klein & Cooper,1982), strategic planning problems 

(Ramaprasad & Poon, 1985), software operations support (Nelson et al., 2000), information retrieval 

(Johnson & Briggs ,1994), decision support systems (Stylios et al., 2008; Mateou and Andreou, 

2008), and distributed decision-process modeling (Zhang et al., 1994).  

 

Similar to our research project, FCMs have been utilized to support group decisions. For example, 

Clarke et al. (2000) integrated individual cognitive maps of retail decision-makers into a unified map 

that represented a group knowledge base of the factors influencing retail performance. Khan and 

Quaddus (2004) used an FCM to solve a group decision-making problem by integrating individual 

FCMs into one unified map representing the group knowledge base. However, this paper is different 

from existing studies in that the latter is focused on aggregating individual expert knowledge via an 

FCM (rough summing) while the former employs ABS and PSO to enhance the FCM more precisely 

so that the predictability of the model is improved.  

 

 

2.2 Agent-Based Model and MAKIM 

An agent-based model (ABM) is used to integrate the knowledge of multiple experts into a single 

FCM. ABM is useful in modeling the complexities that underlie the interrelationships among a set of 

relevant variables with respect to the target problem. ABM simulation explicitly represents the 

dynamic nature of the interrelationships among the variables under consideration (Heckbert et al., 

2010; Epstein, 2006). Therefore, ABMs have been used extensively to study social, economic, and 

organizational phenomena (Axelrod, 1997; Gilbert and Troitzsch, 1999; Ilgen and Hulin, 2000; Lomi 

and Larsen, 2001; Epstein 2006). ABM is a useful simulation to analyze complex stochastic patterns 

in the real world, particularly when the target problem is not solvable in an analytical fashion or 

when multiple possible equilibria exist (Ilgen and Hulin, 2000). 

 

The basic elements of ABM include a set of agents referring to autonomous entities such as a 

person, firm, or other type of organization. Such autonomous entities are self-contained and can 

control their own actions based on their understanding of the operating environment (Woodridge 

and Jennings, 1995; Huhns and Singh, 1998). Agents can interact with each other through a 

predefined common language and/or protocol either to pursue their tasks more effectively or to 

respond proactively to changes in the environment (Gilbert and Troitzsch, 1999). Though a single 

agent carries little weight in the vast space of feasible solutions to the target problem, solutions form 

when a network of agents affects each other's behaviors by pursuing their own individual goals. 

Schelling (1978) expertly describes this phenomenon as a close relationship between micro-

motivation and macro-behavior (1978). The strength of ABM lies in its abilities to simulate the 
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behaviors of individual agents, facilitate their interactions with each other and the environment, and 

foster emergent macro-level patterns of behavior (Schelling, 1978; Axtell, 2000). Such emergent 

macro-patterns are depicted as graphs or numbers that usually provide solutions to the target 

problem. By facilitating simple acts by individual agents, ABM models often yield unexpected 

outcomes and meaningful patterns that represent solutions with abundant strategic implications 

(Epstein and Axtell, 1996; Epstein, 2006).  

 

ABM has several additional advantages. In particular, ABM-based model is relevant to our study of 

the inference of an FCM to accumulate inference process knowledge for improving the result 

explanation capability of MAKIM. More precisely, each concept node of an FCM is modeled as an 

agent which communicates with other agents (concept nodes) of the FCM for the inference. The 

agent based inference has advantage in that each agent can store interim results of inference 

processes and can make decision autonomously to reduce inference time. The detail of the 

proposed ABM-based inference is described in section 3.  

 

2.3 PSO and MAKIM  

 

2.3.1 Overview of PSO   

We used PSO in our proposed MAKIM to integrate the knowledge of multiple experts in order to 

solve a poorly-structured target problem. Such a poorly-structured problem is usually difficult to 

solve if tackled as a whole. However, if the problem is tackled with a population of random candidate 

solutions conceptualized as particles, it can likely be solved in an evolutionary manner (Trelea, 

2003). The basic concept of PSO begins with the directive “divide and conquer.” In other words, the 

solution is sought by the repetitive iteration of combining a set of particles (or part-solutions) in a 

way that continually improves the solution. When an improved solution is no longer possible, the 

global solution of the target problem has been reached.  

 

This iterative concept was initiated by Kennedy and Eberhart (1995, 2001) as a metaphor for social 

behavior. In the context of PSO, a final solution is reached by following these steps. 

 

- Step 1: Initialize a population of random candidate solutions or particles. 

- Step 2: Each particle is randomly assigned a velocity and is moved iteratively through the problem 

solution space. 

- Step 3: Each particle is attracted towards the locations of best personal fitness and the best 

population fitness (global algorithm version). 

- Step 4: If the new location can be further improved by another iteration, repeat Steps 2 and 3. 
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Otherwise, stop.  

 

As these steps illustrate, PSO solution search processes can be described as exploration-

exploitation tradeoffs. Exploitation refers to the further refinement of the current solution, while 

exploration refers to study of unexplored regions of the solution space. Although exploration 

requires more energy than exploitation in the form of costs and time, successful acts of exploration 

yield an improved solution. In contrast, if exploration fails to improve the current solution, valuable 

resources were wasted. The benefits of exploitation are clear: resources are not wasted when an 

improved solution is not attained. However, restricting the process to exploitation does not 

guarantee improved solutions. In this way, PSO involves a balance between exploration and 

exploitation.  

 

We will explore a one-dimensional case to illustrate the basic PSO algorithm. At iteration k , the 

velocity 1kv  is updated based on its current value according to a momentum factor a and on a term 

which attracts the particle towards the previously identified best position (or solution) 1p , as well as 

towards the best global position 2p . The strength of attraction is represented by the coefficients 1b  

and 2b . The particle position kx  is updated using its current value and the newly computed velocity 

1kv  , which is affected by coefficients c  and d . In a one-dimensional case, c  and d  can be set 

to unity without loss of generality. Randomness-representing exploration acts are denoted by 1r  

and 2r , which usually represent uniformly-distributed random numbers in the range [0,1]. In a one-

dimensional case, the PSO algorithm is stated symbolically as follows.  

 

1 1 1 1 2 2 2( ) ( )k k k kv a v b r p x b r p x                             (Eq. 1) 

1 1k k kx c x d v                                             (Eq. 2) 

 

The one-dimensional case in equations 1 and 2 can be expanded to an n-dimensional case as 

shown below. All variables in equations 3 and 4 are n-dimensional vectors, and the symbol 

represents element-by-element vector multiplication. 

 

    k+1 k 1 1 1 k 2 2 2 kv = a v +b r (p - x )+b r (p - x )           (Eq. 3) 

   k+1 k k+1x c x d v                                     (Eq. 4) 

 

These detailed equations portray the basic concepts of PSO. These concepts can be metaphorically 
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described by the natural rules followed by a school of fish or flock of birds that enable them to move 

together without collision and synchronize as if controlled by a central commander. Each animal 

moves based on its own simple rules of activity and goal. In this way, PSO typically represents 

either swarm or collective intelligence. All individuals in a swarm can synchronize and demonstrate 

emergent patterns of holistic behavior. Similarly, when PSO is applied to a target problem, a 

population of potential solutions is searched in an evolutionary way using a balance of exploration 

and exploitation.  

 

The first step of PSO is to define the target problem as a combinatorial optimization problem 

(Parsopoulos and Vrahatis, 2002). Once the target problem is defined as a set of objective functions 

and constraints, problem solving using PSO logic is initiated. The worth of any PSO lies in 

determining proper weight matrices for the target problem through optimization of a properly defined 

objective function with constraints.  

 

2.3.2 Applying PSO 

MAKIM aims to determine an adjacency matrix that best represents the knowledge of 

multiple experts. We employed PSO to remain as rigorous as possible during this process.  

 

Preparation 

MAKIM begins with a preparation stage in which each expert’s idea of the concept nodes is defined 

and used to represent the target problem and the causality coefficients of each edge between nodes. 

We employed an open interview technique for this stage (Rossi et al., 1983), in which we asked the 

experts about the characteristics of and factors relating to the target problem (Nelson et al., 2000). 

For instance, the interviewer may ask, “What characteristics or factors come to your mind when you 

hear ‘project risk’?” Their answers helped to define an appropriate number of concept nodes and 

related causality coefficients. Next, we established consensus among experts with regard to the 

attributes (or concept nodes) extracted from the interviews. In this step, each expert viewed the 

complete list of attributes gathered from the interview and selected the concept nodes with which 

they agree. We then surveyed experts regarding the relationships between all concepts extracted in 

the previous step and asked them to draw arrows between the concepts and to designate each as a 

positive or negative relationship. These causal relationships were then quantified. In other words, 

the semantic expression ‘A has a positive effect on B’ was expressed as a value from  0,1abr . 

Similarly, ‘C has a negative effect on D’ was expressed as a value from  1,0cdr  . The quantified 

causality coefficient  ,  indicates a causality value greater than or equal to  and less than or 

equal to  . When all causal relationships were quantified with proper causality values by an 
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individual expert i , his or her knowledge was defined as an adjacent matrix 
iE : 

11 12 13 1

21 22 23 2

1 2 3

( ) ( ) ( ) . . . . . ( )

( ) ( ) ( ) . . . . . ( )

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

( ) ( ) ( ) . . . . . ( )

k

k

i

j j j jk

r i r i r i r i

r i r i r i r i

E

r i r i r i r i

 
 
 
 

  
 
 
 
 
 

 

 

where j=k = the number of concept node in the FCM. 

 

Therefore, the mathematically integrated knowledge of n  experts can be developed by aggregating 

n  expert adjacency matrices. If the aggregated adjacency matrix is denoted by TE , then it is 

expressed as  

 

1

n

T i

i

E E



 

 

The operation ‘ ’ between the relation matrix of different experts is defined as follows: 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

( ) ( ) ( ) ( ) . . . . . . ( ) ( )

( ) ( ) ( ) ( ) . . . . . . ( ) ( )

. . . . . . . . . . . . . . . . . . . .    .   .   .   .

. . . . . . . . . . . . . . . . . . . .    .   .   .   .

( ) ( ) ( ) ( ) . .    .

k k

k k

j j j j

r r r r r r

r r r r r r

E E

r r r r

 

     

     

   

  

  

 

     .   .   . ( ) ( )jk jkr r 

 
 
 
 
 
 
  

 

Where the ‘ ’ operation between the quantified relation ir  and jr  is defined as follows: 

 1 1 ,  ,   , i j j jr r         

small value between  and ,  large value between  and  i j i j i jr r          

Because of this ‘  ’ operation, if there is differece between experts’ knowledge on the causal 

relations, then the quantified relationship range increases. That is, the uncertainty of the causal 

relation values increases.  

 

Objective Function and Constraints  

MAKIM produces final aggregate knowledge (i.e., mathematically integrated knowledge) TE
 
by 

applying PSO to the objective function and constraints according to the training data which is 

obtained from experts. For the training data, experts are asked to enter values for an output node 



10 

for different combinations of input node values.  

Assume a D–dimensional search space S and a swarm of n  particles or experts. The i -th particle 

 iE
 
is a possible relation in TE , which is the total set of possible relations. The PSO algorithm 

described in section 2.3.1 is applied using below objective function. 

 

 
2

1

. ,   
n

i outi i i out

i

Min e e A A 



   

 

where 

  i out i iA C E  
                             (Eq. 5)

 

Āi-out = Average [A1i, A2i, …, Aki]            (Eq. 6) 

Ci = [C1i, C2i, …, Cki]                     (Eq. 7) 

where k is the total number of concept nodes in the Adjacency matrix. 

 

The objective function is to minimize the summation of errors of each particle  ie  between the 

training data value (the average output node value estimated by the expert i, Eq. 5)
 
and the 

calculated inference value (Eq. 6). Therefore, the objective function determines TE , the optimally 

aggregated knowledge of n  experts. That is, the objective function is used to calculate the best 

position of each particle ( 1p ) and best global position ( 2p ) in Eq. 1). From the perspective of PSO, 

TE
 
is the optimal adjacency matrix that satisfies the given training data.  

 

3 Methodology 

 

In the previous section, we discussed two major mechanisms used in MAKIM: ABM and PSO. We 

now consider how our proposed MAKIM can be used to extract a reliable and robust knowledge 

base from multiple experts when applied to a complex problem domain.  

 

3.1 MAKIM Steps  

MAKIM can be summarized in four steps: (1) determination of nodes and causal relationships (draft 

FCM), (2) determination of fuzzy values for input nodes, (3) preparation of training data, and (4) 

application of ABM and PSO to the draft FCM and training data set to calculate the final causal 

relationships and causality coefficients. To assess the validity of MAKIM, we applied it to an IT 

project risk assessment. System integration companies must predict IT project risk before 

submitting proposals and entering the bidding stage. Proposals are usually reviewed by a risk 
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manager with experience as the project manager (PM) of many IT projects. The risk manager 

comments on the project’s risk factors based on a bidding document that includes financial 

information, a resource plan, the contract type, client status, and the proposed solution. 

Subsequently, the bid manager, who becomes the PM when the bid is won, adjusts bidding 

strategies according to the recommendations of the risk manager. Prediction of the project’s 

potential risks is difficult, as much of the knowledge held by the risk manager is tacit and based on 

experience. For this reason, it is highly important to devise a more reliable and objective mechanism 

of risk assessment.  

 

Step 1: Determination of nodes and causal relationships  

 

To organize a draft FCM, we interviewed ten experts each with over a decade of experience as an 

IT PM. After two rounds of interviews, 24 concept nodes were selected as factors deemed to affect 

project risk. We categorized these concept nodes as input or output nodes, where input nodes were 

those specified before beginning the project and output nodes were those subsequently computed. 

Based on the interview data, we then determined the draft causal relationships between the 24 

concept nodes. Table 1 shows 24 concept nodes and draft relationships among them.  

 

** Insert Table 1 ** 

 

Step 2: Determination of fuzzy values for input nodes   

As described in Table 1, concept nodes must be used with caution in actual risk assessment. The 

possible values of these nodes should be fuzzified to trigger the FCM, which is the core of MAKIM. 

Fuzzy values were determined by interviewing a focus group composed of five additional PMs. 

Table 2 summarizes the fuzzy values for each concept node.  

 

** Insert Table 2 ** 

Step 3: Preparation of the training data  

We used the training data set to refine the draft FCM using PSO. For training purposes, ten training 

samples were collected and their risks were evaluated by experts. Table 3 summarizes the training 

data which were used during PSO to refine draft causal relationships and their related causality 

coefficients.  

** Insert Table 3 ** 

 

Step 4: Application of PSO to the training data set in order to produce a final FCM 

PSO was applied to the draft FCM and training data to determine an appropriate knowledge base in 
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FCM form. In this way, the knowledge of ten experts regarding project risk assessment were 

integrated seamlessly, as is described in step one. PSO worked to identify a set of causal 

relationships and optimal causality coefficients by reducing errors over 1243 iterations. The 

minimum error in this study was 0.645. Figure 2 depicts the error curve and a MAKIM snapshot. The 

aggregate knowledge represented in an FCM is extracted by PSO using the training data set (refer 

to Figure 3)  

** Insert Figure 2 ** 

** Insert Figure 3 ** 

 

Step 5: Application of ABM to solve target problem 

In the last step, we applied ABM to the inference of the FCM constructed in the previous step to 

solve problems. A fuzzy conversion table developed in the step 3 was used in this step. Inference 

based on FCM is a key functionality to provide end users with a solution for a given problem. A 

traditional FCM inference algorithm is limited for explaining inference results. Providing explanations 

for recommended actions is considered one of the most important capabilities of expert systems. In 

this paper, a multi-agent-based causal map inference algorithm, which can explain the inference 

process, was developed for knowledge inference by using an FCM. The main concept is that each 

node in the FCM is represented by an intelligent agent who, depending on the situation, can change 

the direction of its connected arcs and weight on the arcs autonomously. This can overcome the 

drawbacks of traditional FCMs with regard to recording the inference process knowledge for later 

use for explanation functionality. Furthermore, the time concept can be addressed in the inference 

process. Agents recognize time automatically and timely react to the actions of related neighbor 

agents or other changes. Let us assume a simple FCM example that has only four nodes A, B, C, 

and D with ( ) (  Lag)i iW T Weight Time in Figure 4. The weight on the arc between A and D can 

vary between 0.2 and 0.8. The life of this FCM model consists of periods because there are time 

lags between node A and C and between C and D. ‘A→C→D’ is the longest time path. 

 

** Figure 4 ** 

 In the proposed inference algorithm, each change in the node values is defined as a new event. 

Every event has a time value. The events are processed at specific time. In this example, at the 

time period zero  0Time  , the initial node values of (0.5)A , (0.6)B are considered given events by 

the coordination agent. The coordination agent checks the time to determine if the events should be 

processed in the time period. Table 4 shows the calculation steps for each node at each time period. 

The time lag between B and C is 0, so the node agent ‘C’ reacts to the event ‘ 0.6B  ’ at time 

period 0. Node ‘D’ is not affected by any event at time period 0, and Node ‘D’ therefore does not 

have any value at time period 0. At time period 1, Node ‘C’ is affected by the event ‘ 0.5A  ’. 
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Therefore, the value of node ‘C’ at time period 1 becomes (0.5*0.8)f . ‘ ( )f x ’ is an inference 

function, and 0.8 is the weight on the arc between A and C. At the same time node ‘D’ is affected by 

the event ‘ 0.5A  ’ and the event generated from node ‘C ‘ (B→C→D) simultaneously. When the 

event goes through the arc between ‘A’ and ‘C’, Node agent ‘D’ selects a weight value between 0.2 

and 0.8. At time period 2, there is only one event given to node ‘D’ (A→C→D).  

 

** Table 4 ** 

  

Summary of the proposed Algorithm 

 

Step 1: Check initial input. 

Step 2: Generate initial event.  

Step 3: Each node agent collects the event sent to them and records the event processing history. 

Step 4: Generate new event.  

Step 5: If there are no more events to be generated, then stop. Otherwise, go to Step 3. 

Step 6: 1Time Time  . 

Step 7: If Time > the longest time path in the FCM and no more events exist, then stop. Otherwise, 

go to Step 1. 

 

In the inference algorithm, all event-processing histories are recorded as described in step 3 of the 

algorithm. An event has following structure: , evti = (target node, value) where i is event index. This 

provides users with an explanation of the inference output through an analysis of the records.  

 

4 Experiment and Discussion 

We used a test data set comprised of 32 items to validate MAKIM. We applied the aggregate FCM 

knowledge to the test data set and obtained results as summarized in Table 5. Testing yielded a risk 

assessment accuracy rate of 94%, impressively high compared to practical accuracy rates (50-60%). 

Testing showed that MAKIM can provide a robust knowledge base derived from multiple experts, 

and that the aggregate knowledge can easily be applied to real-world problems.  

 

** Insert Table 5 ** 

The major contributions of MAKIM to this field of research are its ability to (1) synthesize the 

knowledge of multiple experts using ABM and PSO, (2) produce objective aggregate knowledge, (3) 

store the knowledge in FCMs for use in similar future problems, and (4) provide robust inference 

capability to solve the target problem via an agent based inference. Implications of MAKIM are 

therefore as follows.  
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First, MAKIM illustrates the use of FCM methodology powered by both ABM and PSO to synthesize 

the knowledge of multiple experts in a specific problem domain. The method can provide robust 

decision support for poorly-structured problems such as IT project risk assessment, where multiple 

experts must cooperate to produce a unified solution.  

Second, from an academic perspective, MAKIM can effectively support a group decision-making 

process by integrating ABM and PSO, and applying to FCM. MAKIM’s contribution like this is unique, 

which can be compared with some studies in literature. For example, Carlsson and Walden (1996) 

used a cognitive map to develop a system to support strategic management decisions at the 

individual, group, and corporate levels. Several years later, Clarke et al. (2000) showed how 

individual cognitive maps of retail decision makers can be unified to represent group knowledge 

about the factors that influence retail performance. Furthermore, Khan and Quaddus (2004) applied 

FCM to a group decision-making problem by integrating individual decision-maker FCMs into a 

unified FCM that represented their aggregate knowledge. Rodriguez-Repiso et al. (2007) also 

proposed FCM methodology to model IT project success. However, their contribution was focused 

on modeling the relationships between success factors, leaving the FCM-based learning algorithm 

for future study. Most recently, Bueno and Salmeron (2009) compared FCM activation functions for 

a group decision-making problem similar to the project risk assessment presented in this paper. As 

is discussed so far, previous studies lack the rigor that MAKIM provides.  

 

5 Concluding Remarks 

As real-world problems increase in sophistication and market competition becomes fierce, the need 

has emerged for effective decision support to solve poorly-structured problems. This need is 

especially pertinent when the target problem requires the coordination of knowledge between 

experts. Until now, no successful mechanisms have been developed to produce aggregate 

knowledge based on multiple experts to solve a target problem. In MAKIM, ABM and PSO are used 

to produce a unified FCM as an aggregate knowledge base to solve the target problem.  

 

The major contributions of the proposed mechanism are as follows. First, experts are usually 

adamant about their position on a target problem. In problems with high stakes, the group must 

reach agreement despite the difficulties inherent in synthesizing their positions. An objective 

mechanism for knowledge integration is useful to resolve disagreements and offers computational 

efficiency. We found this proposed MAKIM to be both effective and stable in solving such tasks. 

Second, the synthesis of ABM and PSO was incredibly helpful to integrate the knowledge of multiple 

experts. ABM provides a platform in which a set of concept nodes and causal relationships are 

represented by agents. Multiple agents work together to produce the most reliable and robust FCM 

for the given target problem. PSO supplies a computing powerhouse through which complicated 

causality coefficients can be computed from the training data set.  
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There still remain areas of future research. We believe that MAKIM could be incorporated into an 

ABM-based expert system as the knowledge base as well as the inference engine. If such a system 

is successfully developed, it can be applied extensively to a range of decision-making problems. 

Finally, we suggest that a combination of ABM and PSO be applied to other types of problems to 

develop novel and useful solutions. 
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Figure 1. Fuzzy Cognitive Map 

 
  

Economic 

Growth 

Balance of 
Current 

Account 

Inflation 

Interest Rate 

Export 

Import 
- 0.5 

- 0.6 

+0.7 

+0.3 

+0.4 

- 0.8 

+0.6 



19 

 
 

 
 

(a) Error curve of PSO with training data set 

 

 
(b) User interface of MAKIM 

 
Figure 2. MAKIM-based PSO simulation to obtain a final FCM  
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Figure 3. Final knowledge is presented in FCM form as suggested by MAKIM 

 
  



21 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. An example FCM 
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Number Concept Node Description Input / Output 

1 Consultant Skill Average experience of consultants Input 

2 Customer IT Infra H/W, N/W, S/W, IT training Input 

3 Customer Satisfaction Customer satisfaction with the project Output 

4 Customer Participation Customer involvement in the project Input 

5 Top Management Sponsorship Top management support for the project Input 

6 PM Experience Project Manager’s experience Input 

7 Customer Change Adoption 
Customer’s flexibility to adopt proposed 
changes 

Input 

8 Customer Requirements Additional customer requirements  Input 

9 Extension Volume Expected extension or customization volume  Input 

10 Clear R&R Definition Level of clarity of roles and responsibilities Input 

11 Customer Relationship Historical relationship with this client Input 

12 Project Risk Anticipated project risk Output 

13 Contingency Contingency for this project Output 

14 Solution Mapping Ratio 
Functional mapping ratio between S/W and 
requirements 

Input 

15 Customer Project Experience Customer experience with IT projects Input 

16 Contractual Risk 
Contractual risk that could result in legal 
problems 

Input 

17 Profit Total profit margin of the project Output 

18 Financial Risk 
Financial risks including revenue recognition 
and collection problems 

Input 

19 Project Duration Total project duration Input 

20 Contract Type Time & Material or Fixed Price Input 

21 Terms & Conditions Favorable attributes of T&Cs  Input 

22 Bidding Margin Calculated bidding margin  Input 

23 Competition in Bidding Number of competitors involved in the deal Input 

24 Reference Reference sites for similar projects Input 

(a) Draft concept nodes  
 

 
(b) Draft causal relationships between concept nodes 

 
Table 1. Concept nodes and causal relationships 
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Number Concept Node Actual Value Fuzzy Value 

1 Consultant Skill 
Average level 6 
Average level 5 
Average level 4 

1 
0.5 

0 

2 Customer IT Infra 
Excellent  
Average 
Needs improvement 

1 
0.5 

0 

3 Customer Satisfaction 

Very satisfied 
Satisfied 
No complaints 
Not satisfied 
Many complaints 

1 
0.5 

0 
-0.5 

-1 

4 Customer Participation 
Aggressive 
Average 
Passive 

1 
0 

-1 

5 
Top Management 

Sponsorship 

High interest in project 
Moderate interest in project 
Little interest in project 
No top management involvement  

1 
0.7 
0.4 

0 

6 PM Experience 

≥12 years 
7-11 years 
5-6 years 
Less than 5 years 

1 
0.7 
0.4 
0.1 

7 
Customer’s Willingness 

to Adopt Change  

Highly flexible 
Moderately flexible 
Slightly flexible 
Inflexible 

1 
0.5 

0 
-0.5 

8 Customer’s Requirement 

Unreasonable requirement that cannot be 
honored 
Unreasonable requirement that can be 
honored 
Reasonable requirement 

1 
0.5 

-0.5 

9 Extension Volume 
More than 50% of standard functionality 
Approximately 30% 
Approximately 10% 

1 
0.6 
0.2 

10 Clear R&R Definition 
Very clearly defined 
Somewhat clearly defined 
Unclear 

1 
0.5 

0 

11 Customer Relationship 

Excellent 
Good 
Average 
Unsatisfactory 
Very unsatisfactory 

1 
0.6 
0.2 

-0.6 
-1 

12 Project Risk 
Green 
Yellow 
Red 

Risk<= 0.2 
0.2<= Risk < 

0.4 
0.4<= Risk 

13 Contingency 
N/A due to mediation attributes between 
input attribute and result 

N/A 

14 Solution Mapping Ratio 

Approximately 80% 
Approximately 60% 
Approximately 40% 
Less than 30% 

1 
0.7 
0.4 
0.1 

15 
Customer Project 

Experience 

Experience with a similar-sized project  
Experience with a smaller project  
No experience 

1 
0.5 

0 
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16 Contractual Risk 

Very high 
High 
Medium 
Low 
Very Low 

1 
0.5 

0 
-0.5 

-1 

17 Profit 
N/A due to mediation attributes between 
input attribute and result 

N/A 

18 Financial Risk 
Collection risk 
Rev Rec issue 
No problems anticipated 

1 
0.7 

0 

19 Project Duration 

≥ 2 years 
Approximately 1 year 
Approximately 6 months 
Approximately 3 months 

1 
0.7 
0.4 
0.1 

20 Contract Type 
T&M 
Fixed price 

1 
0.5 

21 Terms & Conditions 

Agrees with our policies 
Do not agree with our policies, but we have 
experience with such a case 
Critical items do not agree with our policies 

1 
-0.5 

-1 

22 Bidding Margin 

Greater than 40% 
Approximately 30% 
Approximately 20% 
Approximately 10% 
Less than 10% 

1 
0.7 
0.4 
0.1 

0 

23 Competition in Bidding 
High 
Medium 
Negligible  

1 
0.5 

0 

24 Reference 
Reference exists in the same industry 
Reference exists in another industry 
No known reference 

1 
0.5 

0 

 
Table 2. Fuzzy values for concept nodes 
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Table 3. Training Data
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       Node 
Time 

A B C D 

0 0.5 0.6 F(0.6*0.3) N/A 

1 0.5 0.6 C0=f(0.5*0.8) D0 + f(0.5*(0.2~0.8)+(C0)*0.6) 

2 0.5 0.6 C0+f(0.5*0.8) D1 + f((C1)*0.6) 

 
Table 4 Node value changes in different time period in the agent based inference of the example 
FCM (f(): inference function) 
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Table 5. Validation test results 
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7 1.0 0.7 0.7 1.0 1.0 0.8 -0.5 0.2 1.0 1.0 1.0 1.0 -1.0 0.0 0.6 1.0 1.0 0.4 0.2 1.0 -1.00 Green Green

8 0.7 0.8 0.5 0.0 0.7 0.0 -0.5 0.6 1.0 0.0 0.8 0.5 -0.5 0.0 0.6 0.5 1.0 0.4 0.7 1.0 -0.99 Green Green

9 0.7 0.8 0.2 0.5 0.7 -0.2 1.0 1.0 0.4 -0.2 0.5 1.0 1.0 0.7 0.7 0.5 -0.5 0.4 1.0 0.0 -0.17 Yellow Yellow

10 0.5 1.0 1.0 1.0 1.0 1.0 -0.5 0.2 1.0 1.0 1.0 1.0 -1.0 0.0 0.7 1.0 1.0 0.4 0.5 1.0 -0.99 Green Green

11 0.7 0.0 -1.0 1.0 0.5 -0.1 1.0 1.0 0.0 0.0 0.5 0.0 1.0 1.0 0.7 0.5 -1.0 0.0 1.0 0.0 0.90 Red Red

12 0.7 1.0 1.0 1.0 1.0 1.0 0.5 0.2 1.0 1.0 0.6 1.0 0.5 0.0 0.6 1.0 1.0 0.4 0.0 1.0 -1.00 Green Green

13 0.6 0.5 -0.5 0.5 0.7 -0.5 1.0 1.0 0.0 0.0 0.5 0.5 1.0 0.0 0.7 0.5 -0.5 0.0 1.0 0.0 -0.11 Yellow Red

14 0.7 1.0 1.0 1.0 1.0 1.0 0.5 0.6 1.0 1.0 0.6 1.0 -1.0 0.0 0.7 1.0 1.0 0.7 0.2 1.0 -1.00 Green Green

15 0.6 0.0 -1.0 0.7 0.7 -0.5 1.0 0.6 0.2 0.0 0.7 0.0 0.5 0.7 0.7 0.5 -0.5 0.0 1.0 0.0 0.10 Red Red

16 0.7 0.5 1.0 1.0 1.0 0.5 -0.5 0.2 0.9 0.0 0.8 0.5 -0.5 0.0 0.7 0.5 1.0 0.4 0.6 1.0 -0.99 Green Green

17 0.6 0.7 1.0 0.0 0.5 0.5 -0.5 0.0 1.0 0.0 1.0 1.0 -1.0 0.0 0.3 1.0 1.0 0.7 0.0 1.0 -1.00 Green Green

18 0.5 0.8 0.7 1.0 0.7 1.0 -0.5 0.2 1.0 1.0 0.8 1.0 -1.0 0.0 0.7 1.0 1.0 0.4 0.0 1.0 -1.00 Green Green

19 0.5 0.8 0.7 0.8 0.5 0.7 -0.5 0.0 1.0 1.0 1.0 1.0 -1.0 0.0 0.5 1.0 1.0 0.4 0.6 0.0 -0.99 Green Green

20 0.6 1.0 -1.0 7.0 0.7 -1.0 1.0 1.0 0.0 0.0 0.6 1.0 1.0 0.7 0.7 0.5 -1.0 0.0 1.0 0.0 0.65 Red Red

21 0.6 0.8 0.7 0.9 1.0 0.0 0.5 0.6 0.5 0.0 0.8 0.5 -0.5 0.0 0.7 0.5 1.0 0.1 1.0 0.0 -0.97 Green Green

22 0.6 0.0 0.0 0.5 0.7 0.0 1.0 0.2 0.5 0.0 0.7 0.5 0.0 0.0 0.6 0.5 1.0 0.4 0.6 1.0 -0.98 Green Green

23 0.6 0.5 0.0 0.0 0.7 -0.2 1.0 1.0 0.5 0.0 0.4 0.5 0.0 0.0 0.7 1.0 1.0 0.4 0.6 0.0 -0.97 Green Green

24 0.7 0.7 0.5 0.7 0.8 0.3 0.5 0.4 0.5 0.0 0.7 0.5 0.0 0.0 0.7 0.5 1.0 0.4 0.7 0.0 -0.99 Green Green

25 0.7 1.0 1.0 1.0 0.9 1.0 -0.5 0.0 1.0 1.0 1.0 1.0 -1.0 0.0 0.7 1.0 1.0 0.7 0.0 1.0 -1.00 Green Green

26 0.7 1.0 1.0 1.0 0.7 1.0 -0.5 0.2 1.0 1.0 0.9 1.0 -0.5 0.0 0.7 1.0 1.0 0.7 0.7 1.0 -0.99 Green Green

27 0.6 0.5 0.5 0.7 1.0 -0.2 0.5 1.0 1.0 1.0 0.6 0.5 0.5 0.0 1.0 0.5 1.0 0.1 0.5 0.0 -0.99 Green Green

28 0.7 0.7 0.5 0.7 0.8 0.3 0.5 0.4 0.5 0.0 0.7 0.5 0.0 0.0 0.7 0.5 1.0 0.4 0.7 1.0 -0.99 Green Green

29 0.6 0.0 -0.2 0.5 0.7 0.0 1.0 0.2 0.5 0.0 0.7 0.5 0.0 0.0 0.7 0.5 1.0 0.1 0.7 1.0 -0.96 Green Green

30 0.7 0.6 0.0 0.3 0.8 0.3 0.5 0.4 0.5 0.0 0.8 0.5 0.5 0.0 0.6 0.5 -0.5 0.4 0.6 1.0 -0.99 Green Green

31 0.7 0.7 0.0 0.7 0.8 0.0 1.0 0.6 0.5 -0.5 0.6 1.0 0.5 0.7 0.7 0.5 1.0 0.1 1.0 0.0 -0.44 Yellow Yellow

32 0.6 1.0 0.0 0.0 0.8 0.0 0.5 0.4 1.0 -0.5 0.7 1.0 1.0 0.0 0.4 0.5 1.0 0.1 0.7 1.0 -0.90 Green Green
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