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Abstract

The integration of usable and flexible analysis support in modelling environments
is a key success factor in Model-Driven Development. In this paradigm, models
are the core asset from which code is automatically generated, and thus ensuring
model correctness is a fundamental quality control activity. For this purpose, a
common approach is to transform the system models into formal semantic domains
for verification. However, if the analysis results are not shown in a proper way to
the end-user (e.g. in terms of the original language) they may become useless.

In this paper we present a novel DSVL called BaVeL that facilitates the flexible
annotation of verification results obtained in semantic domains to different formats,
including the context of the original language. BaVeL is used in combination with
a consistency framework, providing support for all the verification life cycle: acqui-
sition of additional input data, transformation of the system models into semantic
domains, verification, and flexible annotation of analysis results.

The approach has been empirically validated by its implementation in the AToM3

meta-modelling tool, and tested with several DSVLs. In this paper we present a
case study for the analysis of a notation in the area of Digital Libraries, where the
analysis is performed by transformations into Petri nets and a process algebra.
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1 Introduction

Model-Driven Development [32] (MDD) seeks increasing quality and produc-
tivity in software development by considering models as the primary asset,
from which the code of the application is generated. The idea is to capital-
ize the knowledge and expertise in a certain application domain by providing
designers with a Domain-Specific Visual Language (DSVL) that describes the
main concepts of the domain, as well as code generators for part or all the
final application. Thus, designers work closer to the problem space as they use
high-level, intuitive, powerful notations for the problem to be solved.

Moreover, in order to facilitate the design of complex systems, it is frequent
splitting their specification into smaller parts that use the most appropriate
notation to deal with a specific concern. We call Multi-View DSVL [17] (MV-
DSVL) to a family of complementary, possibly overlapping DSVLs, each one
of them used to describe the system from a different perspective. UML is a
prominent example of this kind of languages, although it is general-purpose.

Since in MDD the code is automatically generated from the models, there
is a clear need to verify their syntactic and semantic correctness. In this re-
spect, a common approach is the use of hidden formal methods that provide
analysis mechanisms for the system dynamic semantics. Formal methods [3,6]
are techniques based on mathematics that help in the specification and veri-
fication of systems in order to obtain products with higher quality and fewer
errors. One of their drawbacks is their difficulty, as they usually require ex-
perts in the given verification method. Thus, for them to be useful in practice,
usable tools hiding their complexities are required. When using hidden formal
methods, systems are specified with an intuitive notation (e.g. UML, DSVLs,
etc.) and then translated into a formal semantic domain (e.g. Petri nets or
logic) where the analysis of interest is performed [16,31–33]. Typical proper-
ties amenable to study are the absence of resource blocks, the impossibility of
unwanted situations or the reachability of some system states.

In hidden formal methods, not only the input language should be intuitive to
the user, but also the analysis results. If these are not properly shown to the
users, e.g. in the notations they are experts in, they can be reluctant to the use
of verification methods. As a consequence, the analysis results may be ignored
or in the worst case misinterpreted, perhaps leading to wrong design decisions.
The back-annotation aspect has been commonly neglected in the literature.
At most one finds ad-hoc, hard-coded solutions for concrete applications, but
not general ones. In this work we try to overcome this problem by proposing
a means to facilitate the integration of hidden formal methods in modelling
environments by providing a high-level mechanism for specifying how analysis
results should be presented back to the end-user.
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This paper completes our previous work on analysis support for MV-DSVLs [16]
with the definition of a general flexible mechanism for the back-annotation of
verification results. For this purpose, we propose a novel DSVL called BaVeL
(Back-annotation of Verifications Results Language) that allows the designer
of the modelling environment to graphically specify the verification life cy-
cle. This includes defining additional data needed for the verification (which
may be requested to the user, read from files, etc.), model filtering to keep
the relevant information, transformations into semantic domains, execution of
verification methods, and mechanisms for the interpretation of results.

From the MV-DSVL specification (a meta-model) and the BaVeL model, a
modelling environment is generated with a set of integrated analysis mech-
anisms that return the verification results in the most appropriate format,
which in many occasions is in terms of the original MV-DSVL. In this way,
the complexities of the verification method are hidden to the end-user and do
not impose any additional cognitive overload. Altogether, the approach facili-
tates the definition of usable analysis techniques and produces rich modelling
environments with user-oriented verification tools, where the formal methods
are hidden behind the used MV-DSVL. Moreover, the framework is easily
customizable to any source MV-DSVL or target semantic domain.

This approach is supported by the AToM3 tool [21]. To the best of our knowl-
edge, this is the only metaCASE tool integrating high-level mechanisms for
the specification of the verification workflow. We illustrate its use by generat-
ing a modelling environment for VisMODLE [24], a MV-DSVL in the Digital
Libraries domain. The environment relies on Petri nets [26] and a process
algebra [23] as hidden formal methods in order to analize system properties
such as deadlocks, reachability of states, invariants and refinement. The results
obtained in the analysis are shown to the user in the VisMODLE notation.

Paper organization. We first give an overview of meta-modelling and model-
to-model transformation, putting stress on graph transformation [8,9]. Next,
Section 4 introduces our framework for the specification of MV-DSVLs, which
includes the transformation of the system models into semantic domains. Sec-
tion 5 presents BaVeL. Sections 6 and 7 illustrate the support of the framework
using AToM3 with a case study for the analysis of VisMODLE. Section 8 evalu-
ates the usability of BaVeL and the generated tools. Next, Section 9 compares
with related research. Finally, the paper ends with the conclusions.

2 Meta-Modelling by Example

Meta-modelling [32] is a common technique for describing DSVLs and generate
modelling environments for them [21]. A meta-model is a model that describes
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the DSVL syntax (i.e. all its valid models). It is usually built using class
diagrams plus additional restrictions expressed in constraint languages such
as OCL. We say that a model conforms to its meta-model or that it is a valid
instance of it, when it is structurally correct (i.e. the model uses types defined
in the meta-model, and respects the meta-model associations and cardinality
constraints) and fulfils the additional restrictions. In the case of a DSVL made
of several diagram types (i.e. a MV-DSVL), its definition is based on a single
meta-model that defines and relates all the diagram types’ concepts. This is
for example the approach followed by UML. The different diagram types or
viewpoints are projections or submodels of the complete meta-model, and the
same element can belong to different viewpoints.

As an example, Fig. 1 shows the meta-model of VisMODLE [24], a MV-DSVL
for the Visual MOdeling of Digital Library Environments that will be used
as running example in this paper. VisMODLE tries to alleviate the lack of
formal models for the design of user interfaces and interactions within Digital
Library (DL) systems, a kind of systems that involves a wide audience, with
prominent examples such as Google books, IEEE Explore or ACM Portal. Its
meta-model defines five different viewpoints from which only two are empha-
sized in the figure with polygons. Note that they share some concepts, that
is, there are elements that belong to the meta-models of both viewpoints. The
five viewpoints are the following:

• Collections, which defines sequences of arbitrary media types (e.g. characters
or images) corresponding to information contents interpreted as documents.

• Structural, which specifies the structure of the collections in the DL.
• Services, used to describe activities, tasks and operations defining the func-

tionality of the DL. Services can be synchronous or asynchronous, depend-
ing on whether they can handle one message invocation at a time, or an
arbitrary number of them.

• Societal, which defines the relationships between the DL actors and the ser-
vices that operate on document collections. Actors represent users, hardware
and software components that use or support DL services.

• Behavioural, used to define the behaviour of individual actors and services
specified via state machines. The transitions of the state machines are fired
whenever a certain event occurs, which corresponds to the arrival of a re-
quest to the actor or service. In the transition, an action can also be speci-
fied, which is the sending of a request to another actor or service.

The meta-model of a language usually describes its abstract syntax. In the case
of DSVLs, a visualization must also be specified for their elements, which is
called their concrete syntax. Meta-modelling tools use the specification of the
abstract and concrete syntax in order to automatically generate a modelling
environment.
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Fig. 1. The VisMODLE meta-model.

For instance, Fig. 2 shows two models in concrete syntax conforming to the
VisMODLE societal and behavioural viewpoints, respectively. Both models be-
long to a simple DL example that will be used throughout the paper. The left
model involves the actors Student and Librarian (represented as ellipses in
concrete syntax), and the services FrontDesk and DoSearch (depicted as rect-
angles with two compartments). FrontDesk is responsible for managing com-
munication between students and librarians, and DoSearch executes queries
on a collection of documents named Library (shown as multiple rectangles).
Services are connected to the actors that make use of them.

(a) Societal model (b) Behavioural model

Fig. 2. Some diagrams of the example DL.

Fig. 2 (b) shows the behavioural model for the actor Librarian. His ini-
tial state is active. When receiving a borrow request event, he sends a
doc request message to service DoSearch and changes his state to borrow request.
Then, if he receives an is available response, he becomes active again and
sends the availability (documents contained in the collection matching the re-
quest) to service FrontDesk. The example DL has four behavioural models,
one for each actor and service, although only this one is shown in the paper.

Finally, an appropriate modelling environment for a (MV-)DSVL should not
only handle its abstract and concrete syntax, but should support intra- and
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inter-diagram syntactic consistency as well. The former consists in checking
that diagrams in isolation are consistent with their viewpoint meta-models.
The latter must ensure that elements are coherent throughout the different
diagrams, which includes mechanisms for change propagation. For example,
in VisMODLE, the concept of Service is used in behavioural and societal di-
agrams; therefore, changing the name of a service in one diagram should be
reflected in all the diagrams containing the service. Other inter-diagram syn-
tactic checkings for VisMODLE include, e.g., that no state machine transition
refers to non existing services, or that we cannot define a state machine for a
non-existent actor.

In addition to syntactic correctness, the environment should provide support
for dynamic semantics consistency in order to check that the behaviour ex-
pressed by the combination of the different diagrams is the intended one. For
example, in the case of VisMODLE one may wonder whether an actor or ser-
vice can reach a deadlock state, if the DL system can get blocked, or analysing
if a service can receive an unbounded number of requests that could lead to
overflow. These kinds of analysis can be achieved either defining an opera-
tional semantics for the different diagram types, or translating the models
into a semantic domain for further analysis and then showing back the results
in the original notation. In this paper we follow the second approach and rely
on model-to-model transformation to implement the translation.

3 Model-to-Model Transformation

Model-to-model transformation consists in translating a source model confor-
mant to a meta-model, into a target model conformant to a possibly differ-
ent meta-model. Many specialized languages for model transformation exist,
ranging from textual [1,29] to visual [8,29,30]; declarative [8,30] to imperative
through hybrid [1,29]; and semi-formal [1,29] to formal [8,30].

In this paper, we use graph transformation [8,9] (and more specifically triple
graph transformation) as model transformation language for translating DSVL
models into semantic domains for analysis. Graph transformation is a declara-
tive, visual and formal technique for graph manipulation. Note that, as models
and meta-models can be represented as attributed typed graphs [8], they are
also suitable to be manipulated by graph transformation. We use it because its
visual nature makes rules intuitive, as it is possible to use the concrete syntax
of the DSVL in the rules. Moreover, its formal basis makes possible to prove
interesting properties of the transformations themselves, e.g. confluence, rule
conflicts and termination (partially) [8].

Graph transformation systems are made of rules with a left and a right hand
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side (LHS and RHS) graphs. The LHS expresses pre-conditions for a rule to
be applied, whereas the RHS contains the rule’s post-conditions. In order to
apply a rule to a host graph, a morphism (an occurrence or match) of the LHS
has to be found in it. Then, the rule is applied by substituting the match by the
rule’s RHS. Such rule application is called direct derivation. In addition, rules
can be equipped with application conditions that restrict their applicability.
For instance, a Negative Application Condition (NAC) is a graph that must
not be found in the host graph for the rule to be applied. The application of
a graph grammar to a host graph consists in a non-deterministic application
of its rules until they are no longer applicable.

Graph transformation is useful for in-place transformations, such as anima-
tion or model refactorings. However, for model-to-model transformation, it is
desirable to separate the source and target models and keep mappings relating
their elements. Triple graphs [16,30] can be used for this purpose. They are
made of three separate graphs called source, target and correspondence. The
nodes in the latter can have morphisms to the nodes and edges in the other
two graphs, thus pointing out relations between the source and target graphs’s
elements. In [16] we demonstrated that we can use the theory of graph trans-
formation developed in [8] to manipulate triple graphs. In this way, similarly
to graph grammars for single graphs, Triple Graph Transformation Systems
(TGTSs) [16,30] allow rewriting triple graphs. That is, TGTS rules have triple
graphs in their LHS, RHS and NACs.

Fig. 3. Application of TGTS rule.

For example, Fig. 3 shows a TGTS
rule on top whose components are
triple graphs made of a VisMODLE
state machine (upper part), a Petri
net (lower part) and a correspon-
dence graph in between. The num-
bers indicate which elements are
the same in the rule’s components.
Thus, the rule creates a Petri net
place related to a state if the state
is not related to any place (checked
by the NAC). In the figure, the rule
is applied to the left triple graph be-
low by identifying the state in the
LHS with state student borrow in
the triple graph, which is shown in
a shaded region. The state in the
LHS cannot be matched to state
student active because this is al-
ready connected to a place through a correspondence element, and this situ-
ation is forbidden by the NAC.
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For further details, see [8,9] for the graph transformation theory, and [16,30]
for triple graph grammars and transformation systems.

4 A Consistency Framework for MV-DSVLs

Our framework for the consistency of MV-DSVLs is based on meta-modelling
for the specification of the syntax of the different system viewpoints and intra-
diagram consistency, on TGTSs for the syntactic and dynamic inter-diagram
consistency, and on BaVeL for the specification of the verification workflow.
The latter includes visual patterns for the back-annotation of analysis results
into the source notation. Fig. 4 shows the overall organization of the approach.
The left part shows the process of specifying a modelling environment for a
MV-DSVL, whereas the right part shows the use of the modelling environ-
ment that results from such specification. Next, we explain the steps in this
framework, corresponding to the different numbers shown in the figure.

Fig. 4. Scheme of the proposed consistency framework.

Step 1. First, the DSVL defines the complete MV-DSVL syntax with a sin-
gle meta-model that contains all language elements. Diagram types (DSVL
viewpoints) are defined as possibly overlapping submodels or projections of
the complete meta-model (see e.g. Fig. 1 for the case of the VisMODLE
meta-model). In this step a concrete syntax should also be provided.

Step 2. Once the syntax is defined, the DSVL designer specifies the prop-
erties of interest to be verified in the notation. In general, these can be
classified as security (“something bad never happens”) and liveness prop-
erties (“something good eventually happens”) [25]. The former represent
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system invariants, while the latter are requirements that may not hold con-
tinuously though the system should guarantee their eventual realization. In
the case of VisMODLE, absence of system deadlocks, or buffer overflows are
example of security properties. Reachability of states or delivery of a given
request are examples of liveness properties. In order to verify such prop-
erties, an appropriate formalism or semantic domain has to be selected.
For this purpose, a meta-model of the semantic domain has to be built, or
reused if already exists. Note that several semantic domains may be used
if all properties cannot be verified with the same formalism. For example,
next section will show the use of Petri nets an a process algebra as semantic
domains for VisMODLE.

Step 3. Next, a model-to-model transformation has to be provided to trans-
form the MV-DSVL (i.e. from one of its diagrams or a combination of them)
into the semantic domain. If several semantic domains are present, a trans-
formation must be given for each one of them. We specify the transformation
by means of a TGTS that creates the target model as well as correspon-
dence elements (mappings) relating the source and target models. In the
case of VisMODLE, one of the semantic domains (process algebra) is a tex-
tual formalism. However such transformation can be built by providing a
meta-model for its abstract syntax.

Step 4. This is the last step in the specification of the environment. Here, for
each transformation, a model is given specifying the verification workflow
for the properties to be verified in the semantic domain. For this purpose
we have designed a DSVL called BaVeL. The language allows selecting in-
put data, filtering the system models, performing the verification by calling
external or internal analysis tools, and selecting the output format of the
verification. The latter includes back-annotation visual patterns specifying
how the verification results should be reflected in the source model. As the
back-annotation process is one of the main contributions of this paper, we
dedicate Section 5 to present the BaVeL notation.

Step 5. Once the previous steps have been performed, a customized mod-
elling environment for the MV-DSVL is automatically generated. Such en-
vironment allows the final user to build models conforming to the different
diagram types, as well as verifying the properties that the designer made
available. Syntactic and static semantics consistency between diagrams is
achieved by means of TGTSs automatically generated from the meta-model
information. These build a repository made of the gluing of all the system
views [16] and propagate changes to the other diagrams if necessary. This
behaviour, illustrated in Fig. 5, is an implementation of the model-view-
controller pattern: when the user modifies or creates a view (step 1), the
changes are propagated to the repository (step 2) and from there to the other
views (steps 3a and 3b). Note that this syntactic consistency mechanism is
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hidden to the end user of the final environment. For the case of VisMODLE,
the user builds models like those in Fig. 2 and the tool internally constructs
a repository like the one in Fig. 13.

Fig. 5. Working scheme of generated environment: Syntactic consistency.

The verification of the dynamic semantics includes transformations into
semantic domains. This process is transparent to the end user who just
selects the property to analyze, and the verification results are returned
as defined by the DSVL designer through a BaVeL specification in step 4.
Such working scheme is shown in Fig. 6. In this way, performing an analysis
includes internally executing the associated TGTS into a semantic domain
(step 2), invoking the analysis algorithm (step 3), and then performing the
back-annotation (step 4) using the BaVeL information and the traces left
by the transformation.

Fig. 6. Working scheme of generated environment: Dynamic semantics consistency.

5 BaVeL: Back-annotation of Verification Results Language

In the transformation into a semantic domain, a set of mappings is created re-
lating elements in the source and target models. As triple graph grammars [30]
allow bidirectional transformation, one could think of back-annotating the re-
sults obtained in the semantic domain by executing the inverse of the trans-
formation system. However, this does not work in general because it restricts
the approach to 1-to-1 annotations, that is, at most one element of the source
model is annotated for each element of the target model. In other words, one
is limited by the mappings created by the transformation into the semantic
domain. On the contrary, sometimes, a result in the semantic domain must
be reflected in several source elements and not only in the one that is related
through a correspondence element. Some other times, the result derived from
the analysis is not an element of the semantic model, but can be a boolean
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value, a number or a matrix. In all these cases, the back-annotation cannot
be achieved by simply following the mappings given by the correspondence
graph. Finally, a semantic analysis can return several solutions that should be
reflected in the source model one at a time, and not simultaneously.

For all these reasons, we use uni-directional TGTSs to perform the model
transformation, and provide a separate high-level description of the different
properties to be analyzed together with their respective back-annotation mech-
anisms. For this purpose we have defined a DSVL called BaVeL that allows to
graphically specify different ways of back-annotating the verification results.
Moreover, it includes primitives to configure the whole verification process:
from input gathering to showing the analysis results.

The BaVeL meta-model is shown in Fig. 7. In this notation, a property to be
verified is specified by giving its name, its description, and an action consisting
on a call to the specific, probably external, analysis method and tool. Each
property can be assigned a high-level description of the previous data input
process necessary for the analysis (abstract class Input), as well as the sub-
sequent output mechanisms used to reflect each specific analysis result using
the most appropriate representation (abstract class Output).

Input Output

Property

+name:String
+description:String
+action:Text

0..1 *flow2 * 0..1flow3
0..1

*

flow1

0..1

*

flow4

InputGraphElement

+varname:String
+message:String
+elemtype:String

InputData

+varname:String
+message:String

Preprocessing

+preaction:Text

InputFilter

+varname:String
+query:QueryPattern

InputFile

+varname:String
+message:String

OutputBackannotation

+annpattern:TriplePattern

Postprocessing

+postaction:Text

OutputDialog

OutputApplicationOutputFile

OutputPrinter

Branch *

1..*

condition

+condition:Text

*

0..1

branch_in1

*

0..1

branch_in2

Fig. 7. BaVeL meta-model.

We have identified four typical input types that can be combined in a sequen-
tial way to specify composite data input processes. The identified types are the
interactive selection of a model element of certain type (class InputGraphEle-
ment) or an input file (InputFile) by the user, the input of a numerical or
textual value (InputData), and the filtering of the model under study by a
graph query pattern that extracts relevant information or reduces the parts
of the model to be analyzed (InputFilter). A graph query pattern [16] is a
declarative graphical query language, useful to extract information from a
base model. In the extraction process, a set of mappings between the base
and the resulting model is created that enables their synchronization. Briefly,
a query pattern is made of a meta-model with the elements to be obtained
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as result of the query, and optionally a set of positive and negative graph re-
strictions on these meta-model elements. We use this query notation to define
filters on models due to its declarative visual nature, which uses the DSVL
concrete syntax, although other languages could be used for the same purpose.
An example is shown in Fig. 16(a).

Each input data is stored in the specified variable name, so that its content is
available to be used in the property action as well as in subsequent filter’s query
patterns. In addition, the designer can specify a message to request the data
to the user. Finally, a class named Preprocessing allows defining additional
data requests or manipulations by using procedural code, which is given in its
attribute preaction. Such code will be executed before the property action.

In order to provide the verification results obtained by a property to the final
user, BaVeL defines five general output mechanisms. In particular, results can
be printed out (class OutputPrinter), stored in a file selected by the user (Out-
putFile), shown in a dialog window (OutputDialog), expressed in terms of the
original notation (OutputBackannotation), or in case the result is a file, it can
be loaded in the default application for the file type, which for example allows
showing a counterexample returned by a model checker (OutputApplication).
Note that it is possible to define several sequential output mechanisms to pro-
vide different representations for the same results. In addition, class Branch
allows selecting different annotation mechanisms depending on certain con-
ditions of the result, following the style of decision branching in flowcharts.
Other more specific output mechanisms, different from the presented ones, can
be procedurally specified by using class Postprocessing.

The OutputBackannotation mechanism mentioned before includes the defi-
nition of a Triple Graphical Pattern (TGP) that states how a result in the
semantic domain must be shown in the original model. A TGP consists of a
triple graph called positive plus a number of application conditions made of a
premise and a set of consequence triple graphs. The application of a TGP to a
triple host graph results in all the subgraphs of the triple graph that fulfil the
pattern. For this purpose, first all occurrences of the positive graph are sought
in the host graph. Then, for each application condition whose premise is found
in the graph, some of its consequences have to be found as well for the occur-
rence to be valid. There are two special application conditions called Negative
and Positive Application Condition (NAC/PAC). A NAC has a premise but
no consequence, and finding an occurrence of the premise makes invalid the
occurrence of the positive graph. A PAC has no premise but only consequence
graphs. In that case at least one occurrence of some of the consequences has
to be found as well.

In addition, a TGP can be initialized with a partial match whose elements are
given as arguments, and the output can be filtered according to the elements
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identified by output. In our case, the arguments of the TGP are the elements in
the semantic domain that we want to back-annotate (if any), and the output
are the elements in the original domain resulting from the back-annotation.

Fig. 8 shows on the left a sample TGP. Its positive triple graph relates a
VisMODLE state machine (upper part) and a Petri net in the semantic do-
main (lower part) through a correspondence graph. The pattern seeks two
connected states belonging to the same state machine, and the related Petri
net transition. The argument of the pattern is the element labelled 1 (the
Petri net transition), and the output are the elements labelled 2 through 5.
Thus, the pattern specifies that if some analysis returns a Petri net transition,
then it is passed to the pattern as a parameter, and the related state machine
transition, together with its adjacent states and the container state machine
are the equivalent result in terms of the original notation.

Fig. 8. Back-annotation triple graphical pattern and instantiation.

To the right of the same figure, the TGP is instantiated in a triple graph
with two different state machines. In step (i) the match is initialized with the
transition TR received as argument. In step (ii) the match is extended to the
complete positive graph. In this case, two instances of the pattern are found.
Note that both matches do not have to be disjoint, but they must be different.
On the contrary, there is not a match containing the transition from S13 to S23

because its source and target states belong to different state machines. Finally,
in step (iii) the matchings are filtered so that only the elements specified as
output in the pattern are returned as result. In this way, we obtain the part of
the state machine that should be returned as a result of the back-annotation.
Should the analysis method returns more than one transition, the process is
repeated for each one of them.

Note how TGPs overcome the 1-to-1 restriction for the back-annotation, since
they provide the required flexibility to express arbitrary relations (even nega-
tive ones) among the elements in the source and target models. Moreover, by
using TGPs we decouple the transformation into the semantic domain from
the back-annotation process. In this way we can use the same transformation
but several TGPs in order to back-annotate analysis results in different ways,
depending on the particular property being verified.
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5.1 BaVeL’s Concrete Syntax

Fig. 9. BaVeL model example.

BaVeL has been provided with the
visual concrete syntax illustrated
in Fig. 9. In this way, the prop-
erties to be analyzed in a seman-
tic domain, together with the data
input and output mechanisms, are
gathered in a single diagram us-
ing an intuitive representation. In
this syntax, properties are repre-
sented as black boxes. Pre- and
post-processing actions are shown
as clouds. The rest of inputs and
outputs are visualized as icons sim-
ilar to the elements or actions they
represent: a graph where an element is being selected, a file, a text field, a fun-
nel to represent the filtering action, a printer, a dialog window, a graph where
an element is being highlighted to denote back-annotation, and an application-
like window. Finally, decision points are represented as a diamond shape,
where the different outgoing branches show the associated conditions to be
evaluated.

The BaVeL model example shown in Fig. 9 contains the definition of three
properties named property1, property2 and property3 respectively. The
first one requires the user to select a graph element before performing the
analysis. If the analysis result is different from false, then it is annotated
to the original model by a back-annotation TGP (left branch of the condi-
tional point); otherwise, the result is summarized in a dialog window (right
conditional branch). The second property requires the user to input two tex-
tual values, and defines the same annotation mechanism as the first property.
Note that it is possible to reuse input and output elements so as to facilitate
the definition and maintenance of a BaVeL specification. Finally, the third
property requires the user to select a file and performs certain internal data
pre-processing. In this case, the obtained result is printed.

6 Implementation of the Framework

The presented consistency framework has been implemented in the meta-
modelling tool AToM3 [21]. This tool allows the description of DSVLs by
means of a meta-model, and their manipulation with graph transformation.
In order to support the definition of MV-DSVLs and provide consistency of
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system views [17], we extended the tool by using its meta-modelling and code-
generation capabilities. In particular, we defined the meta-model shown in
Fig. 10 with AToM3, and this automatically generated a new modelling envi-
ronment that allows defining viewpoints, semantic views and analysis method
calls. The new environment was completed with hand-written code and inte-
grated into AToM3 itself.

Viewpoint

+ViewMetaModel:MetaModel
+properties:Attribute[*]
+ViewAppearance:Appearance
+minCardinality:String
+maxCardinality:String

View

+name:String {keyword}

SemanticView

+ViewMetaModel:MetaModel UNION String

analysis

+name:String

+grammar:TGTS

+properties:BaVeL model

1..* *

view_consistency

+name:String

+grammar:TGTS

*

*

Fig. 10. Meta-model for multi-view domain specific visual languages.

As shown in Fig. 10, the meta-model for the new tool defines two kinds of
views: viewpoints (class Viewpoint) and semantic views (class SemanticView).
A viewpoint has a meta-model, a list of attributes (e.g. author, descrip-
tion, etc.), a visual appearance and a cardinality. The cardinality attributes
are useful, for example, in order to specify that a certain diagram type is
mandatory for a particular MV-DSVL. Viewpoints define consistency relations
(view consistency association) that contain the necessary TGTSs to provide
syntactic consistency, as explained in Section 4.

Semantic views are used to specify a semantic domain by means of either its
explicit meta-model, or by giving the name of an existing one. Viewpoints and
semantic views are related through analysis relations with a name, a TGTS
that transforms the former to the latter, and a BaVeL model that contains
the set of properties to be analyzed together with the annotation mechanisms
that will be used to show the obtained results in the most appropriate way.

A screenshot of the tool generated from this meta-model, being used to specify
a MV-DSVL, is shown in Fig. 11.

7 Case Study: VisMODLE, MDD Approach for Digital Libraries

In this section we illustrate the previous concepts by generating an environ-
ment for VisMODLE, the notation presented in Section 2, by using AToM3. In
this tool, the MV-DSVL designer starts by giving the meta-model of the whole
language. As an example, window “1” in Fig. 11 contains the full meta-model
of VisMODLE. Next, the designer declares the diagram types. For example,
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window “2” shows the definition of the five VisMODLE viewpoints in the
newly developed tool. For each viewpoint, the portion of the complete meta-
model that belongs to it has to be specified, as window “3” shows for the
structural viewpoint. In order to ensure that the viewpoint meta-model is
actually a submodel of the complete meta-model, the tool first presents the
complete meta-model and the designer is allowed to delete classes, associations
and attributes. Moreover, he is allowed to add extra constraints and change
the visualization of classes and associations. As each viewpoint has its own
meta-model, intra-diagram syntactic consistency is achieved as in the case of
environments for single-view DSVLs.

Fig. 11. Definition of the environment for VisMODLE.

A special viewpoint called repository DigitalLibrary is automatically cre-
ated and managed by AToM3 (i.e. the designer is not allowed to change its
meta-model or any of its properties). It contains the whole meta-model and is
used for ensuring inter-diagram syntactic consistency as shown in Fig. 5. Con-
sistency relations, shown as arrows between the repository and the viewpoints
in window “2”, contain the TGTSs that specify how the view elements will
be copied into the repository of the generated environment and will be kept
consistent [17]. These rules are automatically generated from the meta-model
information, but can be modified by the MV-DSVL designer.

In order to provide dynamic semantics consistency and analysis techniques to
an environment, the new tool allows defining semantic views for the viewpoints
and the repository. In the case of VisMODLE, we are interested in verifying
certain properties such as: checking if an actor or service reaches a deadlock
state (in the case of services, we normally want them always available, so
they should not define final states); verifying that the DL is never blocked;
detecting whether a given actor or service accomplishes a certain activity or
sequence of tasks that make it reach a certain state, as well as which activities
are never completed preventing the actor or service to reach a certain state
(which can be considered a design error); checking which requests are made in
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any possible execution flow; analysing if a service can receive an unbounded
number of requests that could lead to overflow; or checking if the message
exchange specified by the societal models allows the execution of the behaviour
of the state machines.

Petri nets [26] provide analysis techniques that allow investigating system
properties such as deadlocks, reachability of states and invariants. For this
reason we have enriched the definition of VisMODLE with a semantic view
called PetriNets SV for its repository, as it is shown in window “2” of Fig. 11.
The arrow from the repository to the semantic view contains the TGTS de-
fined by the MV-DSVL designer for building the latter from the former, as
well as the BaVeL model specifying the workflow of the verification process.
In addition, we have defined a second semantic view called FSPA SV for the
analysis of the repository by using a finite state process algebra (FSPA) [23].
This formalism allows verifying additional properties such as refinement of
processes, and is used to check if the society specification is consistent with
the behaviour of the state machines.

The next two subsections describe the transformations from VisMODLE to
Petri Nets and FSPA, the definition of the property analysis to be verified in
each domain, and the BaVeL models with the mechanisms used to return the
verification results. Recall that this information is provided by the MV-DSVL
designer, but is completely transparent to the end user. It is worth emphasizing
that the first case with Petri nets is an example of visual semantic domain,
where the analysis is performed internally in AToM3. On the contrary, FSPA
is textual and we use an external analysis tool [20].

7.1 Analysis of VisMODLE by Petri Nets: An Example of Visual Semantic
Domain and Internal Analysis Tool

Fig. 12 shows some triple rules to transform the VisMODLE repository into
Petri nets. The transformation translates the state machines of each actor
and service into what we call Petri net modules. For this purpose, the rule
State2Place translates states into places labelled with the state’s name. The
rule Transition2Transition translates transitions between states into Petri net
transitions labelled with a composition of the states’s names and the event
of the state machine transition 1 . The labelling is specified in the “action”
section of the rules, which allows assigning attribute values.

The TGTS contains other triple rules, not shown in the paper, which complete
the transformation as follows. Places associated to initial states are given one

1 This heterogeneous mapping between a Petri net transition (a node) with a state
machine transition (an edge) is allowed due to the theory we developed in [16].
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Fig. 12. Some triple rules for the transformation from VisMODLE to Petri nets.

token, zero otherwise. Besides, a place is created for each message an actor
or service can invoke. These places are the interface of the Petri net module
for the actor or service. In the case of synchronous services, one extra place is
created for constraining the capacity of the interface place and thus ensuring
at most one available message.

If a state machine transition needs an event for its execution, then a Petri net
arc is created from the place corresponding to the event message to the Petri
net transition corresponding to the state machine transition. For synchronous
services, an arc is created from the associated constraining place to the tran-
sition as well. Similarly, if the execution of an event produces some action,
an arc is created from the Petri net transition to the corresponding place of
the behavioural element’s interface specified in the action. Again, a capacity
constraint place is generated for the synchronous case.

One of the advantages of using TGTSs is that it allows verifying properties
of the transformation itself, such as termination or confluence. Studying the
structure of the rules can prove termination [8]. For instance, our TGTS is
terminating as the elements created by each rule are also NAC of these rules,
therefore they will be only applied once for each initial match. Confluence
can be studied by using critical pair analysis [8], which obtains the minimum
graphs such that applying one rule disables another rule in the same gram-
mar. The confluence of a graph grammar can be demonstrated by proving the
confluence of all its critical pairs. In our TGTS we only detected conflicts of
some rules with themselves (necessary, as we wanted the transformation to be
terminating), which do not have a negative impact on the overall confluent
behaviour of the transformation. Finally, syntactic correctness of the resulting
model is guaranteed, as it has to be a valid instance of the target meta-model.

Fig. 13 shows the repository of the example university DL, and Fig. 14 depicts
the resulting Petri after its transformation. Although not shown, both models
are related through a correspondence graph created by the TGTS and used to
back-annotate the analysis results. This resulting Petri net model is not usually
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Fig. 13. Repository model for the DL example.

shown to the end-user, but used as an intermediate step for the verification
of properties. Note also that the only synchronous communication is the one
between the actor Librarian and the service DoSearch. This is reflected in
the two places DoSearch.doc request and DoSearch.doc request’ which
ensure that at most one doc request message is received by the service at a
time.

Fig. 14. Petri net resulting from the transformation.

Together with the previous TGTS, we specified a BaVeL model defining a
set of properties for the verification of VisMODLE designs using Petri nets.
The analysis is performed by calculating the coverability graph of the Petri
net resulting from the transformation, and then applying model checking [6]
on such graph to verify the system properties. These properties are expressed
using Computational Tree Logic (CTL) [6]. The result of checking a property
on a model is the set of states satisfying the given property.
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name Behaviour Inaction (deadlock)

description A behavioural element be (actor or service) reaches a state that cannot be left.

action evalExpression states(
∨

i
A G (si) ), where si are the states of be.

name State Reachability

description A behavioural element can reach a state s as result of performing certain activity

made of a sequence of tasks.

action evalExpression path(s).

name Unreachable States

description A behavioural element does not define unreachable states. This property allows

detecting unnecessary states for an actor or service, as well as design errors.

action evalExpression states(be.si), where si are the states defined by the element.

name Request Submission

description A request r is submitted to a behavioural element be in every possible execution

flow. This allows testing whether a certain task is always performed.

action evalExpression states( A True U be.r ). If the initial state does not belong to the

result, a counterexample is generated with evalExpression path( ¬ (E True U be.r) ).

name DL Availability

description The DL is always available, its execution is never blocked.

action evalExpression states(E True U deadlock).

(Predicate deadlock is True in states with no successor)

name Request Overflow

description A service se can receive an unbounded number of requests leading to overflow.

action evalExpression states(
∨

i
(se.ri[w] ) ), where ri are the requests that se can

receive. (Our coverability graph algorithm labels a place in a given state with

“[w]” if it can receive an unbounded number of tokens).

Table 1
Property analysis for VisMODLE.

In general, we have identified four possibilities in order to show the result of a
specific analysis from the Petri nets semantic domain. The first one is showing
the resulting states in the original model by using the correspondence nodes
created during the transformation, and making use of TGPs that specify which
elements should be highlighted. Showing the result of an analysis may imply
applying the pattern several times or applying several patterns. In addition,
a means to navigate through the different analysis solutions is needed. The
second possibility is testing whether a certain state, typically the initial state,
belongs to this set in order to answer true or false. The third is reporting the
result (e.g. a string, a matrix) in a window. Finally, we may want to show
the execution flow from the initial state to a certain state satisfying a given
property.

For VisMODLE, we defined a BaVeL model with the six properties of Table 1.
The functions evalExpression states and evalExpression path return the set
of net states that satisfy a CTL expression and the sequence of transitions that
leads to a state satisfying it, using a model-checker implemented in AToM3.
The BaVeL model that defines all these properties is shown in Fig. 15.
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Fig. 15. BaVeL model for VisMODLE and Petri nets.

For example, property Behaviour Inaction in this model (the first one to
the left) requires the user to select the actor or service be to analyze, thus an
element of type InputGraphElement is specified as input. Then, as the CTL
expression evaluated by the property uses the name of the element’s states,
an InputFilter node is included in order to obtain them. The filter contains
the graph query pattern of Fig. 16(a), which obtains all states (given by the
left meta-model) connected to the selected behavioural element (given by the
positive restriction to the right). The restriction makes use of variable be,
which was assigned to the previous input graph element in the model, and
seeks all states from the state machine connected to the behavioural element
with be’s name. Note that the same input elements are reused by property
Unreachable States in the BaVeL model, being defined just once.

(a) Graph query pattern (b) TGP 1 (c) TGP 2

Fig. 16. (a) Filter and (b) back-annotation TGP for property Behaviour Inaction.
(c) TGP for properties State Reachability and Request Submission.

The analysis of this property obtains partial deadlocks, i.e. all Petri net con-
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figurations in which the given actor or service gets blocked. If some configura-
tion is found, then it is reflected in the VisMODLE model (left branch of the
decision point attached to the property in Fig. 15). The back-annotation is
performed through the TGP of Fig. 16(b). If no block is detected, a dialog box
is shown stating that the property is false (right branch of the same decision
point).

For the annotation of analysis results of other VisMODLE properties we have
used other back-annotation TGPs. In particular, properties State Reachability

and Request Submission perform the annotation of analysis results by using
the TGP shown in Fig. 16 (c), while property Request Overflow uses the
same TGP but with single element 2 as output.

7.2 Analysis of VisMODLE by FSPA: An Example of Textual Semantic Do-
main and External Analysis Tool

As second semantic domain for the analysis of VisMODLE we have used the
FSPA process algebra [23]. This algebra provides tools for analysing process
refinement, which we have used in order to verify that societal diagrams are
compatible with the aggregate behaviour of the state machines. Even though
FSPA is a textual formalism, our framework can deal with it by providing a
meta-model for its abstract syntax. In this way it is possible to define a TGTS
to perform the transformation as in the previous case. In addition we had to
build a code generator to synthesize the textual language.

Fig. 17 shows the meta-model we have designed for FSPA. It does not cover
all the language, but only the fragment we needed to capture the VisMODLE
semantics. FSPA is a notation for specifying concurrent systems through the
aggregate behaviour of processes. A process has a definition of its behaviour
(class ProcessDefinition), and is defined by the actions it engages in. Processes
can be defined as a choice of several processes (class Choice), as well as be
composed in a sequential or parallel way. In the latter case, processes must
synchronize through their common actions. Moreover, we can specify renaming
and hiding of actions, as well as arrays of processes (class Range).

For the analysis of VisMODLE, we have provided a TGTS that translates
each state machine into a set of processes. Each state is mapped into a pro-
cess, while each event and action in a state machine transition is transformed
into an action prefix. If an asynchronous service or an actor owns the state
machine, then a process emulating a buffer is created for each one of its pos-
sible incoming messages. The concurrent behaviour of the system is modelled
by creating a process made of the parallel composition of each state machine.
Then, the TGTS uses the connectivity and allowed input/output messages of
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Process

+name:string
+deterministic:bool
+minimal:bool

ActionPrefix

+label:string

ActionDefinition

0..1

next+ Choice

ProcessDefinition
has+

EndState

+name:string="END"

Composition

ParallelSequential

MessageName

+name:string

substitution+ * hides+*

tgt+

src+subst

Constant

+name:string
+ivalue:int

Range

+name:string
+min:int
+max:int

range+

*

index

+expression:string

subindex+

*

max+

seq+ 1..*
{ordered}

0..1

operands+

1..*

Condition

+expr:string

Fig. 17. Meta-model for a fragment of FSPA.

each service specified in the societal diagrams, to produce another set of con-
current processes. These processes are similar to a rudimentary web-service
choreography description language [11].

From the FSPA model we generate code in a file and call the LTSA [20] tool by
directly using its API. With this tool we check whether the parallel composi-
tion of the state machines and the choreography yields a process equivalent to
the state machines. If this is so, the societal diagrams are compatible with the
state machines. The tool can return either that the processes are equivalent,
or a trace showing a failure (i.e. a sequence of prefix actions). In the latter
case we highlight the state machine transitions and channels in the societal
model that produced the conflict.

(a) BaVeL Model (b) 1st TGP in (a) (c) 2nd TGP in (a)

Fig. 18. Annotation of verification results in the semantic domain FSP.

Fig. 18(a) shows the BaVeL model for the verification using FSPA. It includes
one property called orchestration, which uses four back-annotation TGPs
to highlight the state machine transition, the channels from actors to ser-
vices, and the two different kinds of connections between services. Two of the
patterns are shown in Fig. 18(b) and (c). The first one highlights the state
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machine transition associated with an action prefix, together with its source
and target states. The second one signals the channel, the source actor and
the target service associated with an action prefix.

7.3 Generated Modelling Environment for VisMODLE

Fig. 19 shows the automatically generated environment for VisMODLE. The
window in the background shows several system views created by the end-
user. The window on top contains a structural view with the structure of the
collection of documents for the example DL. The tool automatically guaran-
tees intra- and inter-diagram syntactic consistency as previously explained.
Moreover, we built a code generator that synthesizes the user interface for the
DL system from the VisMODLE specifications [24].

Fig. 19. Generated environment for VisMODLE.

The environment also provides the user with the analysis capabilities defined
by the MV-DSVL designer. In the interface of the source viewpoint, a button is
generated for each property specified in the BaVeL models. Thus, performing
an analysis just implies clicking on the generated button, and the verification
proceeds as specified in the BaVeL model, hiding the internals of the anal-
ysis process. If the annotation is specified by a TGP, the output elements
obtained from its application are highlighted in the original model, as well
as summarized in a dialog window. If an analysis returns several solutions, a
navigator allows browsing through them. In addition, a button is generated
that allows showing the result of executing the transformation. This can be
used for debugging or simulation purposes.

Fig. 20 shows the repository interface of the generated VisMODLE environ-
ment. It includes one button for each defined property verification. In order to
check a property, the end-user has to open the repository and click on one of
these buttons. Internally, the tool performs the transformation to the semantic
domain (Petri nets or FSPA), executes the analysis and returns the results.
Fig. 20 shows the result obtained after executing the analysis called state
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reachability for state do search doc request. Such state was selected by
the user by clicking on it (i.e. the input to the analysis was modelled as a
graph element). If this state is reachable, it means that student requests can
reach the search engine (DoSearch service). As in this case the selected state
is reachable, the TGP shown in Fig. 18(c) is internally used to reflect the
analysis results on the repository model elements. In the figure, the window
to the right allows navigating through the different solutions (i.e. the different
path executions) that lead to such state. The elements conforming a single
solution are shown in the navigator and highlighted in the model. In this way,
the analysis result is shown in terms of the original notation to the user, who
does not need to have knowledge about any formal method.

Fig. 20. Result of testing the reachability of state do search doc request. The
sequence of transitions leading to the state are shown highlighted and summarized
in a dialog window.

For the example DL, the verification methods proved to be very useful in
finding potential problems. The properties verified with Petri nets showed
reachability of all states in every state machine, no global or partial dead-
lock (i.e. inaction of all or some behavioural element) and buffer overflow of
the FrontDesk service. The latter is produced because students can send an
arbitrary number of borrow messages to the FrontDesk service before ob-
taining a reply. On the other hand, changing the FrontDesk service to be
synchronous produces a global deadlock. Interestingly, the fact that DoSearch
is synchronous or not is irrelevant for deadlocks.

The analysis with FSPA showed that the aggregate behaviour of the state ma-
chines was not compatible with the societal model. This is because the latter
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assumes that the student has to produce a borrow message before obtaining
an availability response, while in the state machine this is not so. Thus,
the system returned a trace made of just one action prefix, availability,
pointing out an error in the behaviour of the student. After modifying it we
obtained that the models were compatible.

8 Evaluation

Next we evaluate the presented approach from three different perspectives:
the usability of the BaVeL notation, its expresiveness, and the usability of the
generated environments.

Usability of BaVeL. We have tested it by using the Cognitive Dimensions
framework [13]. The significant results are as follows.

Abstraction gradient. An abstraction is a grouping of elements to be treated
as one entity. In this sense, BaVeL is abstraction-tolerant. It provides twelve
high level abstractions of input and output processes. These abstractions are
intuitive as they are visualized as the process they represent, and easy to learn
as their configuration implies few simple attributes. Although BaVeL does not
allow building new abstractions from scratch, new input and output ways can
be coded in Preprocessing and Postprocessing elements.

Closeness of mapping. BaVeL elements have been assigned icons that resem-
ble what they represent (e.g. printing is associated to a printer icon and a
file is represented by a paper sheet). The elements that do not have a corre-
spondence with a physical object in the real world have icons borrowed from
well-known notations (e.g. conditionals are represented as diamonds, like in
UML activities).

Consistency. A notation is consistent if a user knowing some of its structure
can infer most of the rest. In BaVeL, when two elements represent the same en-
tity but can be used either as input or as output, then their shape is equal but
incorporates an incoming or an outgoing arrow in order to differentiate them.
See e.g. the icons for input/output files, or those for graph nodes representing
either a data input selection or the highlighting of an output result.

Diffuseness/Terseness. A notation is diffuse when many elements are needed
to express one concept. BaVeL is terse and not diffuse, as each entity expresses
a meaning on its own.

Error-proneness. Data flow visualization reduces the chance of errors at a first
level of the specification. On the other hand, some mistakes can be unadvert-
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edly introduced when specifying triple patterns, since it is possible to express
relations between source and target models which are not created by the as-
sociated TGTS. However, these mistakes should be considered programming
errors more than “slips”, and may be detected through progressive evaluation.

Hidden dependencies. A hidden dependency is a relation between two elements
that is not fully visible. In BaVeL, every dependency that matters to the user
is visually represented as a data flow by means of directed arrows.

Progressive evaluation. Each analysis property can be tested once it is defined,
it is not necessary to wait until the whole BaVeL model is finished. The evalu-
ation is done by generating the visual environment for the DSVL (just clicking
a button), which will include a widget to execute each analysis property.

Viscosity. BaVeL has a low viscosity because making small changes in a part of
a specification does not imply lots of readjustments in the rest of it. Properties
as well as input and output elements are encapsulated in separate objects.
The only local changes that could imply performing further changes by hand
are deleting input elements or changing its name; however this would imply
minimal changes (just removing or updating references to them) and would
only affect a small set of subsequent elements in the same data flow.

If the TGTS changes, no modification of the BaVeL specification is neces-
sary, as far as the target domain remains the same. If the DSVL meta-model
changes, we should update most TGPs, but this cannot be considered a small
change.

Visibility. A BaVeL specification consists of a single diagram. Empirically, we
have observed that this model usually involves no more than six or seven prop-
erties, which results in small models. Different, independent BaVeL models can
be simultaneously shown in different windows.

Expressiveness of BaVeL. This paper has illustrated the expresiveness of
BaVeL by defining different property analyses with different input and out-
put requisites. For this purpose two different semantic domains have been
considered, being one textual and the other one visual, and in addition we
have shown the use of both built-in and external tools for the analysis. More-
over, our framework is general enough to be used with other DSVLs or even
general-purpose languages such as UML [17], since it provides tools to specify
languages and analysis rules in a formal way that does not depend on the
features of the language. Indeed, we have applied this framework to a rather
different MV-DSVL to analyze the specification of access policies for web
systems [19] and thus verifying, at design time, some properties concerning
security and web-content accessibility (e.g. that a specific web page is never
shown to an unauthorized role).
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Usability of the Generated Tools. The environments for single-view lan-
guages generated with AToM3 have been extensively used, mostly in an aca-
demic setting, in different areas like software and web engineering, modelling
and simulation, urban planning, etc. Concerning the multi-view and analysis
support, the generated tools incorporate extra functionality which is accessible
by clicking one button. However, depending on the kind of analysis, generating
the results may take some time. For instance, the state reachability analysis
in the DL example takes a few minutes. In general, from the application expe-
rience, we note the general agreement that automated syntactical consistency
support greatly simplifies the design of complex systems. Finally, some users
pointed out some technical limitations of the current implementation, such as
the fact that it is not possible to open several views at a time.

Altogether, we believe this work contributes to make more efficient and less
tedious the definition and maintenance of environments for MV-DSVLs. The
analysis techniques embedded in the environments allow detecting errors at
design time and fix them before they become more costly. Our meta-modelling-
centric approach contrasts to the programming-centric approach of most CASE
tools, where the language and the analysis tools are hard-coded so that when-
ever a modification has to be done (whether on the language or on the seman-
tic domain) developers have to dive into the code. A meta-modelling-centric
approach is more efficient since maintenance is at the model level, so that
MV-DSVL designers do not need to be experts in the programming language
in which the tool is implemented. Moreover, the intrinsic complexity of the
formal specification of rules is hidden to the MV-DSVLs users. This efficiency
of the MV-DSVL maintenance process is a key factor in immature domains
where technology is still being developed, such as the web modelling domain.
Since web implementation technologies are constantly evolving, modelling lan-
guages must be increased on a regular basis too.

9 Related Work

Approaches to model transformation for the analysis of systems by its transla-
tion into a semantic domain are frequent [8,16,31–33], but general approaches
to back-annotate the results to the original notation are not so common. In [31]
reference models are used to interrelate source and target models in a sin-
gle graph. Reference models resemble our correspondence graphs, although
the latter maintain the two graphs separated so that no additional structure
is needed to maintain the mappings. Moreover, in [31] the back-annotation
mechanism is not explicit, allowing only 1-to-1 back-annotations. This is not
enough if a semantic element has to be annotated in several elements in the
source graph, if the analysis returns a set of results to be consecutively shown
to the user, or if the result cannot be presented in the source model (e.g. it is
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a boolean value or it must be shown in an external tool).

Similarly, we can find different DSVLs targeted to the specification and gen-
eration of mappings between source and target concrete languages. Examples
of such DSVLs are VML-G [14] for the bidirectional transformations between
schemas, and FBM [14] for business integration. Our framework could even be
implemented by using the standard model transformation language QVT [29]
instead of TGTSs, as QVT creates traces between the source and target mod-
els as well. In any case, all these languages are useful for synchronization and
change propagation, but lack a flexible mechanism (e.g. the BaVeL notation)
in order to annotate target information when it cannot be reflected in the
source model. We opted for TGTSs for several reasons: they have a formal
basis, we can use concrete syntax in the rules which make them more intu-
itive (e.g. QVT rules use abstract syntax), it allows an explicit control of the
mappings that is useful for complex transformations, and in the case of QVT,
nowadays there are no tools that completely support its visual syntax.

There are some proposals to the simulation of DSVLs based on the operational
semantics of a semantic domain. The approach in [10] supports animation,
but no further analysis techniques are provided. The work in [2] couples the
creation graph grammar rules of the source and target notations, and the
simulation steps in the semantic domain are translated back to the original
notation using a textual language. It is mentioned that results of more complex
analysis (e.g. a path to a deadlock) can be shown in the original notation by
firing the animation rules corresponding to the transition rules. Our back-
annotation mechanism is easier to specify, as we rely on graphical, declarative
patterns, and not in programming languages. We are also more flexible as: (i)
we allow having more than one semantic domain, and use the most appropriate
one to analyze different properties; (ii) the result of an analysis may be a set
of objects, which are appropriately shown (e.g. if they are a set of states, we
can navigate through the set) and (iii) we have a full-fledged DSVL for the
specification of the verification workflow. In previous work [17], we also used
animation in the repository for the visual validation of systems.

Regarding tools, many efforts can be found in integrating analysis methods
in modelling tools. However, these are usually hard-coded, oriented to a spe-
cific source language, and based on the analysis in a specific semantic do-
main. The scarce tools that mention back-annotation either do not explain
how it is performed, or the mechanism is hard-coded and only permits 1-to-
1 back-annotation. For instance, HIDE [4] is an environment for the design
and transformation-based validation of systems that, however, does not in-
clude an explicit mechanism for annotation of results. Another example is
DEGAS [5], a framework for the analysis of UML models with annotation
of results to UML. The design platform supporting the methodology interop-
erates with state-of-the-art UML modelling tools, playing the role of bridge
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between these CASE tools and additional ones for the analysis. However, UML
models must follow certain criteria in order to allow the analysis, and the trans-
formation and annotation mechanisms are hard-coded with no possibility of
extension. Xlinkit [27], a framework for checking static semantic consistency
relations of distributed DOM trees, provides several tools for the visualiza-
tion of hyperlinks between inconsistent elements in different documents (e.g.
HTML reports, SVG graphics and stylesheets), and suggests to use the script-
ing languages provided by the CASE tools to annotate results to the very
tools where the models were specified. The analysis of dynamic properties is
not considered, and the visualization mechanisms are fixed. On the contrary,
we have presented a flexible, general framework that includes explicit support
for back-annotation. Moreover we allow the MV-DSVL designer to choose the
most appropriate semantic domain for analysis, and provide easy-to-define,
visual back-annotation mechanisms that generate usable analysis tools for the
final user.

Much effort is being recently spent on tools and techniques that simplify the
specification and generation of richer modelling tools for DSVLs. Though there
are many approaches for the generation of tools, most of them are merely visual
editors. However, the MDD approach needs more functional tools integrating
quality control aspects such as formal verification. Tools like OpenArchitec-
tureWare [32] are moving in this direction by integrating a number of addi-
tional tools helping in common MDD tasks, such as code generation, model
transformation and reporting. Nonetheless, OpenArchitectureWare does not
provide support for DSVLs or formal verification. The fact that some of these
tools are integrated in the Eclipse framework [7] may facilitate the interoper-
ability with further tools. However, it is our view that all these related tools
have to be customized and tightly integrated for the given domain. Thus, we
have proposed a meta-model centric approach where the environment is gen-
erated from the DSVL meta-model, together with additional domain-specific
models for the functionalities to be generated. In this paper we have shown
BaVeL for the specification of the verification workflow, but in previous work
we developed another DSVL for the specification of metrics and redesigns [18].

Regarding meta-CASE tools, just a handful of them are able to guarantee the
syntactic consistency between different models of the same system, usually
through a common repository where these models are related. These rela-
tions are frequently expressed using textual notations (e.g. the GMF [12],
MetaEdit+ [28] or Pounamu [34]), as well as partially graphical notations
(e.g. GME [22] or JComposer [15]). Our approach is also based on the use of
a repository, but we use high level, graphical, formal consistency mechanisms.
To the best of our knowledge, there are no other tools providing high-level
support to generate environments integrating hidden formal methods.
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10 Conclusions and Future Work

In this paper we have described an approach that provides MV-DSVL design-
ers with tools to visually specify rules for the syntactic and semantic vali-
dation of the different models making up a system, including the process of
back-annotating the analysis results into the original notation. Verification of
dynamic semantic properties is achieved by transforming the original model
(the repository or a system view) to a semantic domain, and executing a set
of analysis methods on it. In order to model the workflow of the verification
process, as well as how the results of analyses should be shown back to the
user, we have designed a DSVL called BaVeL. Among other back-annotation
options, BaVeL allows defining how a verification result should be reflected
in terms of the original notation, which is done by means of triple graphical
patterns. We also presented the implementation of these concepts in AToM3,
and illustrated its use by building an environment for VisMODLE, a language
for MDD in the area of Digital Libraries.

We are currently implementing additional analysis techniques based on Petri
nets, such as algebraic and structural methods. We also plan to build a cata-
logue with the kind of properties that are frequently subject of investigation,
so that the DSVL designers can easily reuse them for their integration in the
environments under development. In this direction, it is also worth studying
the use of DSVLs for letting the end-users in a certain domain specifying the
properties to be verified. This contrasts with our current approach, where the
DSVL designer fixes the verification properties.

In the short term, we are planning to improve the framework with the support
of nesting when showing the back-annotation results (i.e. showing step-by-
step all elements in each single solution). BaVeL could also be extended, for
example, by adding special output nodes that allow transforming the results
into other languages. This could be useful, e.g., to show error traces in the
form of sequence diagrams. Finally, other interesting issue is to use the analysis
results in order to guide the semi-automatic application of redesigns.
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