
An Investigation of the Synthesis and Properties 

of Nano Crystalline Y2O3:Eu3+ 

(Prepared using Micelle- based Precursors)  

 

 

A thesis submitted for the degree of Doctor of 

Philosophy 

 

 

By 

Yecheskel Kelly Saltoun 

 

 

 

 

 

Wolfson Centre for Materials Processing 

Brunel University 

September 2013 

 

 

 

 

 

 

 



 

Dedication 

To my wife Shoshi Saltoun thank you for all your help and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

 

The work described in this thesis was aimed at understanding the reactions taking 
place on heating Y2O3:Eu3+ phosphor precursors in the nano particle size regime. 

Herein combustion syntheses to prepare nanometer sized crystallites of cubic 
Y2O3:Eu3+ using precursors containing sacrificial long chain alkylammonium cations 
(the fuel) are reported.  Using this method it proved possible to produce cubic 
Y2O3:Eu3+ crystallites in the 20-70nm size range. The presence of CO2 bands in the 
infra red spectra of the surface of the cubic Y2O3:Eu3+ crystallites are also reported. 
These bands are identical in position to those found in [(Y, Eu)OHCO3.H2O], and are 
explained as arising from the spontaneous reaction of the surface of the nanometer 
sized particles of cubic Y2O3:Eu3+ with atmospheric CO2 and water vapour. This 
indicates that nanometer sized particles of cubic Y2O3:Eu3+ are thermodynamically 
unstable in the atmosphere and must be protected against such back reactions. This 
could be done with surface coatings. 

Precursors of the products were prepared from methanolic and ethanolic solutions 
and then these were fired at temperatures of 650 and 900°C.  
Products (samples) prepared at a temperature of 900°C were observed to be all white 
powders in colour. Under 254nm uv excitation the samples prepared at 650°C 
displayed a weak red luminescence which was in contrast to the strong red 
luminescence from the samples prepared at 900°C that is characteristic of the Eu3+ 
ion in cubic Y2O3. The strongest red luminescence comes from 1:3 material sample 
ratios prepared at 900°C. The understanding of the chemistry behind the reactions 
and the characterisation and properties of the products formed are the major aims of 
the work reported here. 
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Chapter One  

Introduction 

1.0    Luminescence 

It is of interest to review some historical facts about luminescence and luminescent 
materials to put the work in this thesis in context with its field of interest. Historically, 
the Chinese were the first to refer to the subject of luminescence observed in fireflies 
and glow-worms in the book “Shih Ching” (Book of Odes) written sometime in the 
period 1500-1000 BC [1].  Luminescence is also referred to in the “Vedas”, the sacred 
books of India (of similar antiquity) by the word “khadoyta” (glow-worms in Sanskrit) 
which is used frequently. However, it was Aristotle (384-322 BC), who in his treatise 
“De Coloribus” (About Colours), introduced  the idea of light of non incandescent 
origin and stated that “Some bodies, though they are not fire, nor participate in any 
way of nature of fire, yet seem to produce light” which is a very reasonable definition 
of the process of luminescence [1]. He went on to write:-“There are materials and 
substances in nature that are capable of producing light which is not obtained from 
candles or fire wood”. This statement can also be considered as a definition of 
luminescence [1].The Japanese were reported to have prepared phosphorescent paint 
from seashells in the 10th century. It is of note that the credit for the preparation of the 
first phosphor should go to the Japanese.  

At the start of the modern era a number of interesting observations [1, 2] in the field of 
phosphorescence, were reported:- 

• 1610 Vincent Cascariolo: - The first phosphor preparations were barium sulfide 
(BaS and related compounds, for their good electro luminescence. These 
phosphors were reinvestigated in the 1970s, 1980s, 1990s). 

• 1670 Henning Brandt: - Discovery of phosphorus.  (He was an alchemist). 
• 1700 F Hoffman: - Discovery of CaS. 
• 1885 W Crookes: - Luminescence of phosphors investigated. 
• 1886 Lecoq de Boisbaudran: - Activators Mn (Mn still best for EL). 
• 1886 Sidot: - ZnS phosphors (ZnS: Ag still used in blue TV phosphors). 

 
In the past 110 years the luminescence effect has been the subject of extensive 
systematic scientific research:-  

• 1904 Klatt and Lenard: -   CaS and ZnS phosphors (used fluxes still employed 
today).  

• 1928 Lenard et al.:- Systematic study of phosphors. 
• 1936 Destriau: - Electroluminescence (ZnS: Cu still best EL powder phosphor). 
• 1938 Zinc silicate, various inventors Oxide lattice phosphors. 
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• 1949 McKeag, Ranby: - Calcium halo phosphate lamp phosphors (Still used in 
some present day lamps). 

• 1964 Pallila and Levine: - YVO4: Eu for colour TV (stimulated investigation of 
rare earth activators in phosphors). 

• 1974 T Inoguchi et al.: Stable AC thin film EL. 
• 1978 A Vecht et al.:- Alkaline earth phosphors for EL. 
• 1980s Various, RGB backlit active matrix LCDs. 
• 1992 Fujitsu: - High brightness full colour plasma display. 
• 1993  Planar :- Saturated blue EL from thiogallates  

Over the past 60 years, research on phosphors and solid state luminescence has 
blossomed, coinciding with advances in solid-state physics and optical spectroscopy, it 
has led to the development of phosphors as important industrial/ technological 
materials.  They have found widespread use impacting on the lives of people all over 
the world.  They are to be found in:- 

• Cathode ray tubes (CRTs) for televisions and computer display monitors, 
• CRT in radar, 
• Plasma televisions (photoluminescent devices) 
• As colour convertors for blue light emitting diodes (LEDs) to change the 

emitted light to white or another colour. 
 

1.01    Luminescence and Fluorescence  
 

 The luminescent light that is emitted from materials can appear in three spectral 
regions of the electromagnetic spectrum [2]:  
(1) the visible region, (2) the near Infrared region and (3) Ultraviolet region. 
 Luminescence is observed in the liquid, Solid or gas phases of certain organic and 
inorganic compounds. 
 Fluorescence was the term introduced to denote the imperceptible   short after-glow of 
the mineral fluorite, CaF2, following its excitation.  This allowed it to be readily 
distinguished from phosphorescence, which denotes long-afterglow (which may 
stretch into a few hours). Light emission from a material during the time it is exposed 
to exciting radiation is referred to as fluorescence, if the after-glow is detectable 
visually after the end of the excitation, it is called phosphorescence. 

 
1.1    Definition of Phosphor   

• Phosphors (or luminophors) may be defined as solid materials showing 
luminescence.  Phosphors essentially consist of very pure inorganic materials 
doped with suitable ions called activators [2, 3]. 

• The activator is usually present in concentration levels varying from one to five 
parts per million of the host lattice.  
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Often, additional ions act as charge compensators or donors in the lattice.  These are 
termed co-activators.  Luminescence [4] is produced when activators are inserted into 
the host lattice. They create local centres that can be excited to produce Luminescence. 
See figure 1.1a - when an activator with the desired emission does not have the 
required absorption for the available excitation energy, it may be possible to 
incorporate a co-activator, which absorbs the excitation energy and then transfers it to 
the neighbouring activator, this is explain in figure 1.1b  

 

 

 

 

 

 

 

Figure 1.1 a) Shows the excitations and emission processes of the activator (A) in the host 
lattice (H). b) Shows the role of the co-activator (S) in excitation and emission processes [38]. 

Normally phosphors are made from crystalline materials that act as host crystals. They 
contain x amount of controlled impurities which are called activators, that generate the 
luminescence.  

Different methods and type of excitation gives rise to various kinds of luminescence 
[5]. Emission obtained 

a) from the absorption of photons (light) is called photoluminescence. 
b) By applying electric currents or electric fields (a.c or d.c) is called 

electroluminescence. 
c) by bombardment with an electron beam is called cathodoluminescence. 
d) from the use of pressure is called triboluminescence. 
e) by the use of heat is called thremoluminescence. 
f) from a chemical reaction is called chemiluminescence.  

Phosphors have seen wide spread use (see section 1.16) in for example televisions 
tubes, cathode ray tubes, fluorescent lighting (strips and compact light bulbs).The 
cathode ray tubes have now been almost totally replaced by flat screen 
technologies [5, 6]. Colour television technology was invented and started by 

 John.L.Baird in 1928 and was further developed in 1940 by Peter Goldmark. 
Initially the colour television was transmitted in red, blue and green [7]. 
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1.2  Stokes’ Law of Luminescence. 
 

Sir George Stokes (1852) stated the first Law of Luminescence [8]. He said that “the 
wavelength of emitted light has to be longer than that of the absorbed light,” The 
scientific world considered this statement as the first Law of Luminescence (see figure 
1.2). 

Exicited state 

 
 
 

Figure 1.2  A conventional phosphor obeying Stokes’ Law [8]. 

 
For photo Luminescence:- E excitation > E emission, λ excitation < λ emission. 
 
Other phosphors known as up -convertors do not follow Stokes’ law. These are called 
Anti–Stokes’ phosphors and can convert infrared light into visible light by using two 
or more photons for excitation [9, 10] (see section 1.8). 

 
1.3    The introduction of Activators into a Phosphor lattice 

 
Lattice defects produce luminescence. The luminescence can occur either by addition 
or subtraction as follows: 
a. Addition of atoms to the lattice to create luminescence. 
b. Subtraction of atoms from lattice to create luminescence.  
 
In both instances, a and b can be defined as activators that aim to increase 
luminescence. When an activator is introduced into any material, a new material forms 
which rearranges the crystal stoichiometry for better or worse in producing 
luminescence. This can also be achieved by rearranging the crystal or material lattice 
using chemical processes to introduce more activator to the crystal. 
There are two different methods for adding activator to a phosphor host lattice:-  

a) Adding activator to the reaction solution before precipitation of the phosphor 
precursor takes place; then precipitating the activator and host lattice 
simultaneously, this method is called co-precipitation. 



Chapter 1   INTRODUCTION  

 
 

5 
 

b)  Adding the activator solution to the dry phosphor lattice and then firing the 
dried solid. 

Luminescent emission can be presented by three general models [11], which are shown 
in Figure 1.3. The location of the activator and coactivator levels in the forbidden 
energy gap and the energy transitions that make up luminescent emission are shown. 

I. The Schon-Klasens model, (a) shows that luminescence is due to a radiative 
recombination of an electron from the conduction band with a localised 
acceptor level which lies above the valence band. 

II. The Lambe- Klick model, (b) represents the luminescent transition as a free 
hole combining with a trapped electron at a level, which lies below the 
conduction band. 

III.    The Prener- Williams model, (c) considers that a localised association of the 
activator and co-activator is necessary to give luminescent emission. 
 See below, Figure 1.3 ZnS lumicient emission as per above [12]. 

 

 

Figure 1.3 Energy models for luminescent emission ZnS :(a) Schon-Klasens; (b) Lambe- 
Klick, and (c) Prener-Williams [12]. 

A good inorganic phosphor consists of a lattice and an activator; the materials have to 
be of high purity. The activator may be introduced into the phosphor lattice in a variety 
of ways, such as: co-precipitation, e.g. by adding activator to the reaction solution, 
before precipitation takes place and precipitating the activator and host lattice 
simultaneously.  

 
 
1.4    The introduction of Sensitisers into a Phosphor lattice  

Definition of a sensitiser: - Sensitised photoluminescence is defined as a process 
whereby an impurity species (activator or acceptor) having no appreciable light 
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absorption ability in a given spectral domain, is made to emit radiation upon excitation 
as a result of absorption by and transfer from another impurity species (sensitiser, or 
donor) as shown below: - (Figure 1.4) [13]. The activator (A) is made to emit light 
after being excited via an energy transfer from the photo- excited donor (D) 

 
 

 
 

Figure 1.4 Principle of sensitised photoluminescence [13]. 
 

 
 

 
 

Figure 1.5 The energy transfer between a sensitiser and an activator [13]. 

 

The processes of excitation and emission depend on the activator being excited by 
absorbing a quantum of energy, and undergoing a transition to an excited state. 
Because the potential curves of the two states are non symmetrical, the activator ends 
up in a high vibrational state within the exited state. Initially the exited state phase 
relaxes to its lowest vibrational level. At which the system returns to its ground 
electronic state giving off the energy difference as luminescence. Note that the 
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excitation energy is higher than the emission energy. The energy transfer process is 
illustrated in Figure 1.4.and 1.5. The co activator is first excited to an upper energy 
state by the absorption of the incident radiation. This excitation energy is transferred 
by exciting a neighbouring activator, which then returns to its ground state via 
luminescent emission, the process of transfer is called non radiative energy transfer. 
For it to occur, the activator and the co-activator must have excited state levels of 
equal energy. Also they must be close enough in the host lattice. The distance may 
range from 4 to 30 Å [13]. Figure 1.4 illustrating the energy transfer between a 
sensitizer and an activator [13].  
 
1.5    The introduction of Quenchers into a Phosphor lattice                

 Metals such as cobalt, nickel and iron are called Quenchers. They are normally used in 
small quantities of 10-6 to 10-8 g atom per mol of phosphor. Using quenchers in the 
phosphor can: - increase the speed of response, shorten the phosphor afterglow and 
help the activator to increase the phosphor luminescence [13]. 

1.6  Excitation and Emission spectra 
 

The variations of response of a phosphor with wave length give rise to its excitation 
and emission spectra .The spectra show the interaction of the excitation energy with 
the activator and the host lattice. Figure 1.6 shows the excitation and emission spectra 
of the Y2O3: Eu phosphor [14]. 

 
 

Figure 1.6 Excitation and emission spectra of the red Y2O3: Eu [14]. 

      1.7     Phosphors emit light.  

• Essentially, when an ion is in an excited state it reverts to its initial unexcited 
state by either :- 

• (a) emitting photons, (or visible light), or (b) emitting phonons (or heat 
energy), e.g. lattice vibrations  
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Typical life times of activator ions in seconds are: 

 

• Mn2+ (3d→3d) ~10-2  

• Cu+ (4s→3d) ~10-3-10-4  

• Ag+ (5s→4d) ~10-6-10-5  

• Eu3+ (4f→4f) ~10-4-10-2 

• Tb3+ (4f→4f) ~10-4-10-2  

• Ce3+ (5d→4f)  ~ 3x10-7  

• Eu2+ (5d→4f)  ~ 8x10-7 

The emission of light from inorganic solids is often split into two categories which are 
related to the lifetime of the activator: -  

Phosphorescence, where the perceptible emission of light continues after 
excitation has ceased.  

Fluorescence, where the perceptible emission of light ceases with the cessation 
of excitation 

1.8    Upconversion or Anti Stokes phosphors 

• Upconversion is an anti-Stokes phenomenon whereby two or more photons of 
low energy are added together to give a photon of higher energy (see Figure 
1.7). 

Up-conversion processes [15, 16] occur when the emitted radiation is of a higher 
energy than that absorbed. Many mechanisms have been proposed for this type of 
luminescence and are dependent upon a variety of factors. In general, several photons 
are absorbed for each one emitted.  

The principle of the up-conversion process is illustrated in Figure 1.7. To understand 
the Anti-Stokes process we can consider an ion having a series of energy levels, which 
are fairly evenly spaced. As the ion absorbs a photon it enters an intermediate excited 
state, and will enter further excited states (upon each absorption) until it can absorb no 
more and the energy is released as a single photon of higher energy than those 
absorbed. Up-conversion processes occur in some trivalent rare earth activated 
phosphors which accept infrared light excitation (low energy and long wavelength) and 
emit visible light (high energy and short wavelength). Such processes occur due to 
higher lying excited states of rare earth ions being populated by two or three 
successive excitation steps with infrared quanta or by energy transfer from other 
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cations in the lattice. A downward transition to the ground level or to an intermediate 
excited level produces the visible luminescence [17]. 

Figure 1.7 shows Energy verses ground state. The 3 horizontal levels from bottom to 
top are first, second and third exited level. 

 

Figure 1.7 General mechanisms for Anti-Stokes’ process [15]. 

Anti-Stokes phosphors were developed for up-conversion of long-wave IR-radiation 
(1.5-1. 6 µm) into short-wave (0.8-1.02 µm) and radiation of IR-range 0.9-1.07 µm 
into visible light of various colours. They are useful in night viewing devices for 
spectral sensitivity broadening of electron-optical image converters (up to 1.6 µm), in 
light-emitting diodes (LED) of various types, for visualization of IR-radiation and laser 
adjustment, as well as for marking of documents and valuable papers for security. The 
Anti-Stokes phosphors are usually powders, consisting of rare earth activated 
compounds based on yttrium (and some other elements) oxides, fluorides, 
oxysulphides, and oxychlorides. Such phosphors can provide stable emission for over 
> 100000 hours and within a temperature range of -60°C +70°C [18]. 

Anti-Stokes and Stokes emissions have been observed in cubic Y2O3:Eu3+ stimulated 
by 632.8 nm ruby laser light excitation [19]. All the emission features exhibited a 
marked thermal dependence, decreasing in intensity as the temperature was lowered. 
Arrhenius plots of this thermal behaviour indicated that the Eu3+ ions were thermally 
excited to a low-lying level ca. 1300 cm-1 above the ground state; this low-lying 
excited state was assigned to the 7F2 level. Subsequent absorption of a 632.8 nm 
photon by the thermally excited Eu3+ ion promoted the electron to its 5D0 level. Anti-
Stokes emission bands at wavelengths longer than 580 nm exhibited a one photon 
dependence on the 632.8 nm exciting light and are assigned to the 5D0 → 7F0, 

5D0 → 
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7F1, and 5D0 → 7F2 transitions of the Eu3+ ion. Stokes’ emission bands also showing 
one photon dependence were assigned to the 5D0 → 7F3 and 5D0 → 7F4 transitions. 
Upconversion anti-Stokes emission bands were observed at wavelengths shorter than 
580 nm and showed a two photon dependence on the 632.8 nm exciting light. These 
emission bands were assigned to Eu3+ ions on the C2 sites of cubic Y2O3 with the only 
exception being a band at 582.2 nm. Although this emission band showed a thermal 
behaviour similar to that of the other emission bands, it was assigned to the Eu3+ ion on 
the S6 site of cubic Y2O3, in keeping with previous assignments of others [19].  

 
 

1.9    Efficiency 
 
There are several definitions of the efficiency of a phosphor. The luminous efficiency - 
Ɛ- is the ratio between luminance and the input power. Luminance is a measure of the 
total energy output of a light source emitting in the visible region of the spectrum. This 
type of energy is known as brightness. Luminance is measured by candelas per sq 
meter = cd/m2. The luminance efficiency of a phosphor under an electron beam 
excitation is measured in units of lumens per watt (lm/W).It can be measured using the 
efficiency equation Ɛ= π L x.A/ P   where π =3.14 is included since the emission of 
phosphor is measured is Lambertian, L is the luminance in (cd/m2), A is the electron 
beams spot area in m2,  P is the power of the incident  electron beam in watts, 
calculated by: P = accelerating potential in volts (V) x current in amperes (A). As a 
general rule, efficiency Ɛ is used to describe the efficiency of a phosphor excited by 
sources that produce electron – hole pairs in the host lattice for examples cathode-rays, 
X-rays, α (alpha) particles and γ (gamma)-rays. 
 
The intrinsic luminous efficiency is the efficiency of a powder phosphor sample .The 
screen luminous efficiency is the efficiency of a thin layer phosphor powder deposited 
onto substrate. Screen efficiencies are lower than intrinsic efficiencies, due to the 
presence of binders that can absorb part of the excitation and emitted energies, and 
may also chemically react with the phosphor. There are two methods to measure 
screen efficiencies, (I) in back reflection mode light emitted directly from the front of 
the phosphor screen and (II) in transmission mode light emitted through the phosphor 
layer and substrate, measured from the back of the phosphor screen. A good phosphor 
screen should have efficiency comparable to its intrinsic efficiency [20]. 

 
1.10    Operating life and stability 

 

Phosphors degrade with exposure to light, under an electric field, or when exposed to 
electron bombardment. The stability of a phosphor is often extremely sensitive to even 
traces of moisture and oxygen, the relative resistance to degradation under cathode ray. 
Excitation is rated as follows:- 
Fluorides < Sulphides < Oxysulphides <silicates < Y3 Al5 O12 (Yttrium Aluminium 
Garnet) and Aluminates.  
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In a CRT system there are four basic factors that can affect the stability of phosphor - 
(a) thermal quenching, (b) burning, (c) coloumbic ageing and (d) poisoning.  
Thermal quenching in conventional CRT if high in a conditions where the phosphor   
is unable to dissipate the heat generated, leading to an increase in temperature and 
hence a reduction in phosphor efficiency. A return to low energy conditions leads 
again to normal phosphor efficiency.  

Poisoning: - phosphors can be very sensitive to the presence of foreign ions other than 
the activators and co-activators. If the phosphor is contaminated with impurities such 
as iron, or nickel it may have a small fraction of its potential efficiency. If the 
contaminating ion is present in high concentration it can prevent the luminescence 
from occurring [9, 10, and 20]. 

 

1.11    Particle size and Morphology  

 
Particle size and morphology of the phosphor powder are critical in determining the 
actual resolution and also the minimum pixel size and uniformity of the screen 
produced. When considering different display systems, the phosphors will have to be 
designed for each specific application. Phosphors do not obey simple rules, for 
example CRT phosphors used for TV  screens may not respond in an 
electroluminescent cell and on the other hand phosphors that show good response 
under shorter wave UV excitation (254nm) may show poor response under longer 
wave  UV (365 nm). Normally phosphors are optimised efficiently for their specific 
application [9, 10]. 

 
 

1.12 Cost   

The cost of the phosphor is not critical as it represents a small fraction of the price of 
the display. The current material cost is around £750 (GBP) for a kilogram of 
phosphor. However one gram of phosphor can cover between 0.12 to 0.15 square 
meters so that one kilogram can cover approximately up to 150 m2 of display surface 
[10]. 

 

 

1.13 Reproducibility 

Production methods for a successful phosphor must produce a stable and good 
phosphor product from batch to a batch. The production must avoid the smallest traces 
of impurities, stiochometric variations or surface contamination. This requires strict 
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quality control and sophisticated instrumentation. For some phosphors the production 
process is operated at laboratory scale and cannot be scaled up for commercial use. 
Therefore it is essential to be aware of all the problems when 
synthesising/manufacturing a phosphor.  

 

1.14   How phosphors convert electrical signals into light 

            Technology                                       Method of Excitation 

            Direct     

AC or DC                    High field electrons                                                  
electroluminescence 

Here, the energy source is electrical; the conversion to light being direct or indirect. 
In direct emission, electrical energy is converted directly into light.  This is termed 
“electroluminescence”.  This term is most frequently applied to high field devices 
while low field devices are termed “light emitting diodes” (LEDs).  The high field can 
be applied under direct or alternating current conditions, hence AC and DC EL 
displays. 

Indirect    
Gas Plasma                                                       Gas plasma generates ultraviolet light  
    
LCD backlight                                 Gas plasma generates ultraviolet light 

     
 Cathodoluminescence   

         Cathode ray tubes (CRTs)                    High voltage electrons  
    (~15-17 keV) 

Field effect devices (FEDs)                  High voltage electrons                               
(~300-6000 eV) 
Vacuum fluorescence (VF)                  Low voltage electrons                              
(10-500 eV)  
        

The emission involves a cascade of events so indirectly the electricity causes other 
things to happen before the light is generated in,  for example:- cathodoluminescent 
displays, such as cathode ray tubes (CRT), field effect displays (FEDs) and vacuum 
fluorescent devices (VFDs), the mechanism sequence can be described as involving:- 

• Generation of free electrons. 

• The passage (or acceleration) of electrons through a vacuum.  

• The penetration of the electrons into the phosphor resulting in inducing 
excitation. 
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• The recombination process resulting in the generation of light. 

In the case of photo luminescent displays such as DC or AC plasma displays (PDPs) 
where the UV light is generated by gas plasma.  

The plasma can be generated under DC or AC conditions.  This, in turn, excites the 
phosphor.  

1.15    Luminescence types and display devices 

Luminescence type           Excitation                         Applications 

Cathodoluminescence,    Electron beams          CRT for TV, for display, for                            
                  (10kV-30kV)              measurement, for other.        
                  (10V-10kV)                Vacuum fluorescent display,
                                Field emission display, 
                                           large sized outdoor display. 

Radioluminescence           High energy              Fluoroscopic screen,    
(X-rays and others)           radiation                  intensifying screens, 
       (above 50 kV)             scintillator, image  
                                                      (input screen), dosimeter, 
                                           radiographic imaging plate. 
Photoluminescence         Ultraviolet rays           Plasma display, neon sign,                             

(Vacuum UV)             neon tubing,                                             
                                            (254nm)                    Fluorescent display. 

                                                   (254-400nm)      High pressure mercury lamp,
                                             luminous paint, fluorescent
                                             pigment, fluorescent marking. 

          Upconversion or            Visible infra red      IR-visible upconversion,  
  Anti-Stokes’                                solid state lasers, laser dye 
                                             material. 

          Electroluminescence         Electric fields      DC inorganic   
                                                        electroluminescence, DC 
                                                        organic electroluminescence 
                                                                                         (OLED), AC inorganic 
                                                        electroluminescence, light 
                                                        emitting diodes (LED), 
                                                        semiconductor laser. 
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1.16   Phosphor Applications 

 
Phosphors are important constituents of energy efficient fluorescent lamps, cathode ray 
tubes, high definition TVs, oscilloscopes, radar screens, low voltage field emission 
displays (FED), flat panel displays (FPD), liquid crystal displays (LCD) and plasma 
displays. The goal of all manufacturers is to produce efficient phosphors under low 
excitation energy. The importance of phosphors can be seen as industrial display 
materials for the display industry. These are employed in:-  
 

1. Cathode ray tubes (cathodoluminescent devises) (CRT) [21] (see Figure 1.8 
which presents a phosphor pattern of a striped picture tube) in which a mask 
control above whom the three different electron beams are only lit these owen 
phosphors. These used to be found commonly in televisions, computer 
monitors and radar systems. It is no longer the leading display technology-
though it dominated the market for 60 years from 1940, Y2 O3 Eu was the first 
good red phosphor widely used for colour television [22].  

2. Fluorescent lighting.  
3. Flat screen plasma televisions. 
4. Safety and military use (for further applications of phosphors) see [23]. 

Phosphors can be classified according to their excitation in terms of duration 
(time) and brightness.  

5. LED lighting sources as the colour changing elements [24] 
 and LED screen televisions. 

6. Electroluminescent displays [25, 26]. 
7. Emergency lighting systems based on electroluminescent devices. 
8. Intensifying screens for medical and industrial radiography. 
9. Infrared up-conversion phosphors.  
10. Infrared phosphors for luminous paints. 
11. For marking (security uses on currency etc.). 
12. Stamps printed with phosphor-containing inks (see Figure 1.9)  
      which shows phosphors stripes printed over the stamps. 
13. Application of near-infrared phosphors for marking. 
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Figure1.8  Simplified diagram of a CRT [21]. 

 
 

 

Figure 1.9 Stamps printed with phosphor-containing inks [19]. 
 

1.17 Chromaticity.  

Chromaticity is explained as the characterisation of colour known as CIE (Commission 
international Del ’Eclairage)-any colour can be given x, y, z chromaticity coordinates. 
The CIE chromaticity coordinates are equal to 100% so therefore the equation is 
x+y+z=1.Normally the value of x and y are given so z can be calculated  
as follows – z=1-(x +y). See figures 1.10&1.11 [27, 28] that show the CIE 
chromaticity diagram obtained from the “basic law of colour” [30]. 
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Axis Y versus X   

 

Figure 1.11 C.I.E.chromaticity diagram. [30]”. 

This tridimensionality of colour matching has a great advantage for both basic and 
applied colour work. If we define three standard primary sources for the matching light 
and define a standard observer's colour matching behaviour, then any test light can be 
described by just three numbers, the intensities of the primaries that produce a colour 
match for the standard observer. The 1931 CIE XYZ system implements this scheme. 
The CIE standard observer's colour matching was defined by averaging colour 
matching data from several human observers in several research laboratories, using 
three real light sources for the matching light. To simplify the logic and computation in 
applications, the committee decided to mathematically transform the data in such a 
way that the red, green, and blue real light sources used in the laboratory 
measurements were replaced by three theoretical light sources. In this system, then, 
any test light is characterized by three numbers ("tristimulus values"), X, Y, and Z, 
which are the amounts of each of the three primaries needed by the standard observer 
to match the test light. Y, for example, was defined to be mathematically identical to 
the luminance of the test light. For convenience in plotting colours graphically, the 
chromatic variables are characterized by a two-dimensional derivative statistic (the 
"chromaticity coordinates") which are derived from X, Y and Z by normalizing each to 
their sum: 

X

Y 



Chapter

 
 

 

X = X / (X
Y = Y / (X
Z = Z / (X

Any two o
the standa
of lights a
three dime

One of th
representa
that under
straight li
emitted in
primaries:
triangle. If
line conne
triangle w
mixtures o
on the spe
which ther

 

 

1.18   Ret

The verteb
optics of t
cascade of

r 1   INTR

X + Y + Z) 
X + Y + Z) 
X + Y + Z) =

of these (con
ard observer
are called c
ensions of c

he most u
ation of mix
rlie this syst
ne connect
n a display
 Any mixtu
f the green 
ecting that 

which is the
of any of th
ectrum locu
refore is the

tina  

Figure 1

brate retina 
the eye crea
f chemical a

RODUCTI

= 1 - (X + Y

nventionally
r's colour m
chromaticity
colour, the th

useful prope
xtures of tw
tem, the chr
ting the chr
y can be ch
ure of the 
primary is t
light to the
erefore the 
he spectrum
us. These a
e 2D range o

.12. The bas

is a light-s
ates an ima
and electric

ION  

1

Y) 

y x and y ar
match to the 
ty diagrams
third being l

erties of c
wo lights. U
romaticities
romaticities
haracterised
red and blu
then added 

e green prim
(x y) rang

m lights lie 
all lie within
of physicall

sic structure o

sensitive tis
age of the v
cal events th

18 

re used) plu
test light. G

s. Chromati
luminance.

chromaticity
Under the a
s of all mixt
s of the tw
d within th
ue primarie
to any of th

mary. These
ge of the d
on straight 
n the area b
ly realizable

of human ret

sue lining t
visual world
hat ultimate

us the lumin
Graphs of th
icity diagra

y diagrams 
assumed law
tures of any
o lights. A

he triangle 
es lies on th
hose lights, 
e mixtures t
display. By
lines interc

bounded by
e lights. 

tina and eyeb

the inner su
d on the ret
ely trigger n

nance Y, ful
he x and y co
ams show tw

is their c
ws of colou
y two lights

Any individu
connecting

the lower s
 the mixtur
together po

y the same 
connecting 
y the spectr

 
ball [18]. 

urface of the
tina, which 
nerve impul

lly capture 
oordinates 
wo of the 

convenient 
ur mixture 
 lie on the 
ual colour 

g its three 
ide of the 
e lies on a 

opulate the 
logic, all 

the points 
rum locus, 

e eye. The 
initiates a 
ses. These 



Chapter

 
 

 

are sent to
several la
directly se
the rods a
vision, wh
evidence f
33] has be
ganglion c
the rods an
the form o
optic nerv
encoding 
72% of a 
cones and
"the blind
the optic-
Temporal 
for sharp c

 In the fig
several tra
change in 
the bipola
cells (purp
layers. Fir
the nerve 
points, edg
It has thre
synapses. 
vessels tha
photorecep
must first 

r 1   INTR

o various vis
ayers of ne
ensitive to l
and cones. 
hile cones 
for a third p
een discove
cell, is impo
nd cones un
of action po

ve. Several i
and proces
sphere abo

d 75 to 150 
d spot" beca
-nerve fiber
to this disc

central visio

Figur

gure 1.13, th
ansparent n
the rods an

ar and horiz
ple layer), t
rst, the sign

layers ide
ges, and mo
ee layers o
The optic 

at open into
ptive cells l
pass throug

RODUCTI

sual centres
eurons inter
light are th
Rods funct
support da
photorecept
ered. This m
ortant for re
ndergo proc
otentials in 
important fe
sing of ligh
ut 22 mm i
million rod

ause it lacks
rs leave th
c is the mac
on is less se

re 1.13 Rods

he front (an
nerve layers
nd cones sen
ontal cells 
then to the 

nals start as 
ntify simpl
ovement [34
f nerve cel
nerve carrie

o the retina. 
lie outermo
gh and arou

ION  

1

s of the brai
rconnected 

he photorece
tion mainly
aytime visio
tor system 
much rarer
eflex respon
cessing by o

retinal gan
eatures of v
ht. In adult 
in diameter

ds. The optic
s photorece
he eye. It a
cula. At its 
ensitive to li

s, cones and n

nterior) of t
s to reach t
nds a signal
(yellow lay
optic nerve
raw output

le shapes, s
4]. In sectio
lls and two
es the gang
The gangli

ost. Because
und the gan

19 

in [31]. The
by synaps

eptor cells. 
y in dim lig
on and the 
which does

r type of ph
nses to brig
other neuron
nglion cells
visual percep

humans th
. The entire
c disc, a par

eptors, is loc
appears as 
centre is th

ight because

nerve layers 

the eye is o
the rods an
l back to the
yer), then to
e fibers. Th
ts of points
such as bri
on the retin

o of synaps
glion cell ax
on cells lie 

e of this cou
glion cells 

retina is a l
ses. The on
These are m

ght and prov
perception 

s not involv
hotorecepto

ght daylight
ns of the ret
whose axon
ption can b

he entire ret
e retina con
rt of the ret
cated at the
an oval w

he fovea, a p
e of its lack 

in the retina 

on the left. 
d cones (fa
e nerves. Th

o the anacrin
he signals ar

in the rod 
ight points 

na is no mor
es, includin
xons to the
innermost i

unter-intuitiv
and through

layered stru
nly neurons
mainly of t
vide black-

n of colour.
ve rods and 
or, the phot
. Neural sig
tina. The ou
ns merge to
e traced to 
tina is appr

ntains about
tina sometim
e optic papi
white area 
pit that is re

k of rods.  

 

[18]. 

Light passe
ar right). A
he signal go
ne cells and

are processe
and cone c
surrounded

re than 0.5 
ng the uniq
e brain and 
in the retina
ve arrangem
h the thickn

ucture with 
s that are 
two types: 
-and-white 
. Recently 
cone [32, 

tosensitive 
gnals from 
utput takes 
o form the 
the retinal 

roximately 
t 7 million 
mes called 
illa, where 
of 3mm². 

esponsible 

es through 
A chemical 
oes first to 
d ganglion 
ed in these 
cells. Then 
d by dark 
mm thick. 

que ribbon 
the blood 

a while the 
ment, light 
ness of the 



Chapter 1   INTRODUCTION  

 
 

20 
 

retina, before reaching the rods and cones. The central retina is cone-dominated and 
the peripheral retina is rod-dominated. The area directly surrounding the fovea has the 
highest density of rods converging on a single bipolar cell. Since the cones have a 
much lesser power of merging signals, the fovea allows for the sharpest vision the eye 
can attain [31].   Though the rod and cones are a mosaic of sorts, straight forward 
transmission from receptors via bipolar to ganglion cells is not the case, since there are 
about 150 million receptors and only 1 million optic nerve fibres [35], there must be 
convergence and thus mixing of signals. Moreover, the horizontal action of the 
horizontal and amacrine cells can allow one area of the retina to control another (e.g., 
one stimulus inhibiting another). This inhibition is key to the sum of messages sent to 
the higher regions of the brain. In some lower vertebrates, (e.g., the pigeon) there is a 
"centrifugal" control of messages, that is, one layer can control another, or higher 
regions of the brain can drive the retinal nerve cells, but in primates this does not occur 
[31].  

An image is produced by the patterned excitation of the cones and rods in the retina. 
The retina receives via the lenses. An image then forms on 6 to 8 million light 
sensitive receptors that transfer the colour image to the brain through a nerve bundle 
which contains one million fibres [35]. The excitation is processed to form a 
representation of the external environment. The cones respond to bright light and 
mediate high-resolution colour vision during daylight illumination (also called 
photopic vision). The rods are saturated at daylight levels and don't contribute to 
pattern vision. However, rods do respond to dim light and mediate lower-resolution, 
monochromatic vision under very low levels of illumination (called scotopic vision). 
The illumination in most office settings falls between these two levels and is called 
mesopic vision. At these light levels, both the rods and cones are actively contributing 
pattern information. The response of cones to various wavelengths of light is called 
their spectral sensitivity. In normal human vision, the spectral sensitivity of a cone 
falls into one of three subgroups. These are often called blue, green, and red cones but 
more accurately are short, medium, and long wavelength sensitive cone subgroups. 
When light falls on a receptor it sends a proportional response synaptically to bipolar 
cells which in turn signal the retinal ganglion cells. The receptors are also 'cross-linked' 
by horizontal cells and amacrine cells, which modify the synaptic signal before 
reaching the ganglion cells. Rod and cone signals are intermixed and combine, 
although rods are mostly active in very poorly lit conditions and saturate in broad 
daylight, while cones function in brighter lighting because they are not sensitive 
enough to work at very low light levels. Although there are more than 130 million 
retinal receptors, there are only approximately 1.2 million fibers (axons) in the optic 
nerve; a large amount of pre-processing is performed within the retina. The fovea 
produces the most accurate information. Despite occupying about 0.01% of the visual 
field (less than 2° of visual angle), about 10% of axons in the optic nerve are devoted 
to the fovea. The resolution limit of the fovea has been determined at around 10,000 



Chapter 1   INTRODUCTION  

 
 

21 
 

points. The information capacity is estimated at 500,000 bits per second without colour 
or around 600,000 bits per second including colour [18].  

 

1.19    Human Eye response  

The eyes response to all colours is not linear and has a visual spectrum of 400 to 700 
nm. In daylight the eye is more sensitive to green at 555nm and less to blue and red. 
The rods have a maximum response at 507 nm and this causes the light sensitivity 
curve for daytime vision, to be photonic and at night scotopic. Night vision is 
explained by the rods activity [33] and can be seen in Figure 1.14 and 1.15.The 
pigments in the human eye have peak sensitivities at about 650 nm (red), 530 nm 
(green), and 425 nm (blue) ( see Figure 1.16). 

The relative sensitivity of the three receptors for the "normal" human eye, designated 
by Greek letters beta, gamma and rho (β, γ, and ρ), is illustrated by the blue, green, and 
red curves on the right in Figure 1.16. Although the beta and gamma sensors 
correspond closely to blue and green, the rho sensor (the red curve) isn't even close to 
red. An ink with the same reflectivity spectrum would appear yellow-orange. The 
eye/brain discriminates colour by processing the relative stimuli in the three sensors. 
R, G, and B are used as additive primary colours because their distribution across the 
visible spectrum produces a wide-gamut colour image, not because they match the 
eye's response. Fewer than three colours are insufficient to reproduce full spectra. 
Additional colours offer some advantage- that's why recent inkjet photo printers have 6 
to 8 colours. Combining three colours- even monochromatic (spectrally pure) colours 
produced by lasers- can produce most, though not all, of the colours the eye can see.  
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Figure 1.14 Spectral response of the human eye [36]. 

 
 

 

 

 

 

 

Figure 1.15 Difference in light sensitivity for daytime, V’ and night-time vision [37]. 
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Figure 1.16 Human eye spectral sensitivity to colour [36]. 
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Chapter Two 
 

Y, Eu, Y2O3, Y2O3: Eu and micellar material used for this thesis. 
 
 
2.0    Introduction  
 
The main aim of this thesis was to prepare nanometre sized particles of the red 
emitting phosphor yttrium oxide doped with europium. To appreciate the chemistry 
and properties of this phosphor it is useful to introduce the chemistry and properties of 
its constituent elements. In addition as the synthetic methods used involve the use of 
micelles it is useful to also discuss their properties here.  
  
 History:-Europium is a member of the group of metals known as the rare earth 
elements. Yttrium has many properties in common with these elements and is often 
found associated with them. Much of its chemistry is similar to that of the rare earth 
elements in their 3+ oxidation state. 

 

 

 

 

 

 

2.1   Yttrium [1] has the symbol Y and atomic number 39. A silvery metallic 
transition metal, yttrium occurs commonly with rare-earth minerals. Yttrium (named 
for Ytterby, a Swedish village near Vaxholm) was discovered by Finnish chemist, 
physicist and mineralogist Johan Gadolin in 1794 in a gadolinite mineral from Ytterby. 
It was isolated by Friedrich Wohler in 1828 as an impure extract of yttria through the 
reduction of yttrium anhydrous chloride (YCl3) with potassium. In 1843, the great 
Swedish chemist Carl Mosander was able to show that yttria could be divided into the 
oxides (or earths) of three different elements. "Yttria" was the name used for the most 
basic one and the others were re-named erbia and terbia. The quarry located near the 
village of Ytterby yielded many unusual minerals that contained rare earths and other 
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elements. The elements erbium, terbium, ytterbium, and yttrium have all been named 
after this same small village. 

Occurrence: This element is found in almost all rare earth minerals and in uranium 
ores but not as a free element. Yttrium is commercially recovered from monazite sand 
(3% content, [(Ce, La, etc.)PO4]) and from bastnasite (0.2% content, [(Ce, La, 
etc.)(CO3)F]). It is commercially produced by reducing yttrium fluoride with calcium 
metal but it can also be produced using other techniques. It is difficult to separate from 
other rare earths and when extracted, is a dark gray powder. Lunar samples from the 
Apollo program have relatively high yttrium content. 

Isotopes: Natural yttrium is composed of only one isotope (Y-89). 

Yttrium is a silver-metallic, lustrous rare earth metal that is relatively stable in air and 
chemically resembles the lanthanides. Shavings or turnings of the metal can ignite in 
air when they exceed 400°C.  The metal has a low neutron cross-section for nuclear 
capture. The common oxidation state of yttrium is +3. Yttrium (III) oxide is the most 
important yttrium compound and is widely used to make the red emitting YVO4:Eu3+ 
and Y2O3:Eu3+  phosphors that were used in the early  colour television picture tubes. 
Yttrium oxide has many other uses in modern technology such as in yttrium iron 
garnets which are very effective microwave filters. Yttrium iron, aluminium, and 
gadolinium garnets (e.g. Y3Fe5O12 and Y3Al5O12) have interesting magnetic properties. 
Yttrium iron garnet is very efficient as an acoustic energy transmitter and transducer. 
Yttrium aluminium garnet, yttrium lithium fluoride, and yttrium vanadate are used in 
combination with dopants such as neodymium or erbium in infrared lasers.  

2.2   Eu   [2,3] Europium 

                     Samarium ← europium → gadolinium 

- 
↑        
Eu    
↓ 
Am Periodic Table 

 

Eu has atomic number 63. It was named after the continent Europe. Europium is the 
most reactive of the rare earth elements; it instantly oxidizes in air, and resembles 
calcium in its reaction with water.  Europium metal ignites in air at about 150°C to 
180°C. Its hardness approximate to that of lead and it is ductile. The existence of 
Europium was first found by Paul Émile Lecoq de Boisbaudran in 1890, who obtained 
a basic fraction from samarium-gadolinium concentrates which had spectral lines not 
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accounted for by samarium or gadolinium. However, the discovery of europium is 
generally credited to French chemist Eugène-Antole Demarçay, who suspected  

 

samples of the recently discovered element samarium were contaminated with an 
unknown element in 1896,which isolated europium in 1901.  

Applications: There are few commercial applications for europium metal, although it 
has been used to dope some types of glass to make lasers, as well as being used for 
screening for Down's syndrome and some other genetic diseases. Due to its ability to 
absorb neutrons, it is also being studied for use in nuclear reactors. 

As discussed in chapter 1 and above Y2O3 doped with Eu3+ has been widely used as a 
red phosphor in television sets and in fluorescent lamps. Eu3+ is also used and as an 
activator for many other yttrium-based phosphors.  Eu2+ is used as an activator for a 
group of phosphors that are used to convert the colour of blue LED s to yellow green 
or red for current lighting applications., 

Europium fluorescence is used to interrogate bimolecular interactions in drug-
discovery screens. It is also used in the anti-counterfeiting phosphors in Euro 
banknotes. 

 

 Occurrence   [2, 3, and 4]: Europium is never found in nature as the free element; 
however, there are many minerals containing europium, with the most important 
sources being bastnasite and monazite. Europium has also been identified in the 
spectra of the sun and certain stars, most lanthanides form compounds with an 
oxidation state of +3.  

 

Isotopes: Naturally occurring europium is composed of 2 stable isotopes, 151-Eu and 
153-Eu, with 153-Eu being the most abundant (52.2% natural abundance).  

2. 3    Yttrium Oxide (Y2O3.). 

Y2O3 is a refractory material. It has less thermal expansion than alumina, magnesia and 

zirconium. It is soluble in acids and slightly soluble in water. It is available on the 

market in various purities between 99.9% and 99.99%.  
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Figure 2.1 Crystal shapes of Y2O3 [5]. 

Background: Yttrium oxide is mainly extracted from the mineral Xenotime (YPO4). Its 
properties include high thermal stability and good transparency to infrared radiation. It 
has an affinity for oxygen and sulphur and is used as an additive to stabilise zirconia 
and as a sintering aid in silicon nitride. As an optical ceramic, it transmits well in the 
infrared range, from 1 to 8 µm wavelength. The high infrared transmission, together 
with good resistance to erosion and thermal shock, makes it ideal for protection domes 
for infrared sensors. 
 

 

 

Figure 2.2 The crystal structure of Y2O3 [6]. 

 

The crystal structure of Y2O3
 used in phosphors application is a body-centered cube 

where each Y3+ cation is surrounded by six oxygens located at the corners of a cube. 
There are two different Y3+ cation sites in the lattice. These are shown in figure 2.3 
below. Two of the corners are vacant and can be along a body or face diagonal of the 
cube which results in two Y3+ site symmetries called S6 and C2 ,respectively it is 
believed that the activators substitute these Y3+  sites.(ref).The ratio of C2 to S6 sites is 
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3 to 1 [6].  

 

Figure 2.3   The two Y3+ crystallographic symmetry sites in cubic-Y2O3 [6]. 

2.4    Y2O3:Eu3+   

The red emitting phosphor, Y2O3:Eu3+ , is prepared by adding Eu3+ cations to the Y2O3   

lattice as activators. The emission spectra from the Eu3+ cations in the S6 sites show 
weak emission lines, whereas the spectra from the Eu3+ cations in the C2 site have 
sharp emission lines, dominated by the red emission at 611nm from the 5D0 → 7F2 
transition. The different properties are due to different crystallographic site 
symmetries.  Over the period from 1963 to 1968 studies by Mandel, Toma and 
Palumbo of Y2O3:Yb3+ and Y2O3:Bi3+ respectively showed that the Y2O3 activated 
phosphors substitute at both C2 and S6 sites [7]. The research carried out on Y2O3:Eu3+ 
phosphors by previous researchers identified it as an extremely efficient phosphor for 
use in CRT’s and fluorescent lamps and is still used at present in these devices. In 
1977 three-band fluorescent lamps were fabricated [8].These contained [Zn2SiO4:Mn2 

+], green, for red [Y2O3:Eu3+] and blue [Sr5 (PO4)3Cl:Eu2+] phosphors instead of the 
previously used calcium halo phosphate phosphors. There has been significant research 
into the development of Y2O3:Eu3+ nanometre sized-particles in the last fifteen years 
[9-12]. ≤1µm spherical phosphor powders of Y2O3:Eu3+ [9] were developed in the late 
1990’s especially for field emissive devices because thin layers of closely packed 
phosphor particles were required. In 1999 Ireland et al [10] produced Y2O3:Eu3+ 
phosphors from solution by using a sacrificial Micellar phase. These phosphorescent 
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materials had significantly smaller sized particles (approximately 0.1-1.0nm) 
compared with commercial Y2O3:Eu3+ phosphor particles. In 2000 Martinez-Rubio et 
al [11] used EDTA to control particle size during the synthesis of ultrafine Y2O3: Eu 
phosphors. Martinez- Rubio et al developed another method for producing a range of 
particle sizes in 2002; however this was via a copolymer microgel of NIPAM and 
AMPS [12].  Anti-Stokes and Stokes emission bands were assigned to the Eu3+ ions on 
the C2 and S6 sites of the Y2O3:Eu3+ phosphor under 632.8nm light excitation during 
2001 by Silver et al [13]. The early 21st century witnessed growing demands for 
innovative flat screen technology which led to the development of novel nano-
structured phosphors such as unfilled and inverse photonic crystals. Silver et al [14] 
researched this new area of phosphor technology and produced Y2O3:Eu3+ photonic 
crystal lattices for various display applications. Silver et al [15] also showed in 2004 
that whilst controlling the dopant level in cubic Y2O3: Eu3+

 phosphors the activators in 
the Y2O3:Eu3+

 phosphor, i.e. the Eu3+ ions were distributed evenly and homogeneously 
in the developed phosphor particles. Chen et al [16]. Investigated the luminescent 
properties of Sr2-xCaxMgSi2O7: Eu2+, Dy3+ where x = 0 or 1 in 2006. A VUV laser 
source (157.6 nm) was used to excite the sample and the results showed rich line 
structures in the laser-excited emission spectra which partly result from the 4f-4f 
transitions of Eu3+, indicating an efficient photon-induced process which promotes 
Eu2+ to Eu3+ [16]. 

Eu3+ has five narrow emission bands as shown in the Dieke diagram (figure-2.4). 
Corresponding to the 5D0→

7Fi transitions where i = 0, 1, 2, 3 and 4 [17]. In cubic 
Y2O3:Eu3+ bands give rise to the characteristic red emission of the phosphor. 

In research conducted by Camenzind [18] continuous, single-step synthesis of cubic, 
monocrystalline Y2O3:Eu3+ nanophosphors particles were achieved by flame spray 
pyrolysis. Synthesis of monoclinic or cubic Y2O3:Eu3+ nanoparticles were achieved by 
controlling the high temperature residence time of these particles.  

Reasons for choosing this phosphor for use in FEDs and high definition flat screens 
include :-  

1) Yoo et al [19, 20].  Predicted that as the particle size decreased so would the 
optimum CL work voltage.  

2) The decrease in phosphor particle size will also result in a higher number of 
particles per unit volume and increase the possibility of electron penetration to 
the dopant site.  

3) Additionally, a smaller phosphor size could result in a smaller screen pixel size 
and a higher degree of transparency for phosphors dispersed in other 

substances.  
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Figure 2.4 Dieke diagrams [20]. 
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2.5    Nanometre sized particles of Y2O3:Eu3+ [21]. 
Since the first reports on quantum confined effects in nano-particle zinc sulphide based 
phosphors by Bhargarva and co-workers [22-27], there has been interest in the 
properties and uses of many traditional phosphors in nano-particle (or nanocrystalline) 
form. Nanocrystalline phosphors are thought to have more perfect lattices [28] and 
therefore fewer bulk defects compared to conventional µm size phosphor particles.  
Emission studies of, for example, ZnS:Mn2+ have shown that the intrinsic 
luminescence efficiency of the doped phosphors can be improved if the particle size is 
reduced to nanodimensions; in addition, lifetime shortening of the excited state has 
been reported [22,23,25]. In this section a brief review of published literature methods 
for making nanometre sized particles of Y2O3:Eu3+ are covered. Methods of making 
nanocrystalline monoclinic Y2O3:Eu3+ and novel nano-structures containing Y2O3: 
Eu3+ are also reviewed here. 
   
2.5.1    Chemical synthesis of nanocrystalline cubic europium doped yttria 
particles. Nanocrystalline europium doped yttria particles have been synthesised using 
a wide variety of methods that have given rise to nanoparticles or nanocrystallites of 
different particle size.  There are five main methods to produce nanocrystalline 
Y2O3:Eu3+  . These are:- 
(a)  Solution methods. 
(b)  Aerosol spray methods 
(c)  Chemical vapour techniques for europium doped yttria.  
(d)  Combustion methods. 
(e) Synthesis of phosphors novel structures 
Of these five processes, solution methods, aerosol spray and combustion methods can 
be scaled up for industrial production.  

 (a)   Solution methods (suitable for industrial use). 

Homogeneous precipitation of phosphors from solution makes it possible to introduce 
the dopant into the host lattice at the atomic level without needing high temperature 
diffusion. This often involves the initial preparation of a phosphor precursor lattice 
such as in the most versatile method for preparing Y2O3:Eu3+ nanocrystalline 
phosphor, the urea precipitation method. This method has been pioneered for phosphor 
application by Matijevic et al [29] It is based on synthetic methods developed for the 
preparation of other metal oxides for a variety of uses (none phosphor uses) [29]. This 
method shows promise for industrial scaled up production. It provides more effective 
control over stoichiometry in the final product and also allows good control over 
phosphor morphology which, for example, has facilitated the generation of spherical 
particles that will pack well into small pixel areas for high definition display screens 
[30, 31]. In addition the size of the final phosphor particle can be controlled by 
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manipulating solution conditions in the precipitation process [32, 33, 34].  The 
technique which was been shown to be successful involves the addition of urea to 
metal salts in aqueous solution under conditions of pH and temperature which facilitate 
the decomposition of the urea and precipitation of metal hydroxycarbonates [31].   

 (b)    Aerosol Spray methods (suitable for industrial use). 

In the past ten years Aerosol Spray methods have become widely used in industry and 
at least one company has marketed Y2O3:Eu3+ nanoparticles and reported on their 
products. Spray pyrolysis is said to have a number of advantages in the preparation of 
metal oxide based phosphor particles for applications in displays and fluorescent lamps 
[35]. The phosphor particles prepared by this method have spherical morphologies 
uniform size and were non-aggregated [36-39]. However although these particles have 
sub-micron size and many attractions in new types of flat panel displays, they have the 
problem of poor luminescence characteristics due to many defects and scattering of 
emitted light. To overcome some of the problems several types of carbonate fluxes 
have been used to prepare Y2O3:Eu3+ nanoparticles. The fluxes tried were K2CO3 (Tm 
= 900 ºC), Na2CO3, Li2CO3, Li2CO3 + Na2CO3, and K2CO3 + Li2CO3 (Tm = 491 ºC), 
these are in the order of their melting temperatures. The amount of flux was fixed at 20 
wt% based on the Y2O3:Eu3+ product [35]. The flux materials were dissolved in the 
spray solution. The added metal carbonate flux formed a precipitate on reaction with Y 
and Eu cations. To obtain non-aggregated particles they were directly prepared by 
ultrasonic spray pyrolysis at 1300 ºC without post treatment. The particles manifested 
good PL characteristics. The alkali metal carbonate fluxes are said to have eliminated 
the surface defects of particles by partial melting of particles at high temperature. The 
best performing flux was pure Li2CO3 [35]. 

A new synthetic method to prepare spherical phosphors for emissive screen 
applications was based on dissolving the phosphor precursor’s europium chloride 
hexahydrate and yttrium nitrate in deionised water [40]. The resulting solutions were 
transformed into aerosols through a ceramic filter and passed through a furnace. Solid 
spherical particles of diameter between 500nm and 2 μm where formed at relatively 
low temperatures (900 ºC). The brightness of the particles is said to have been up to 
130% compared to commercial powders. The phosphor particle size and surface shape 
could be easily controlled [40]. In a further paper by the same group it was found that 
the surface states of the cubic Y2O3:Eu3+spherical particles influenced the photo-
luminescent properties of the particles, whereas the cathode-luminescence (under 
500V excitation) is less sensitive to the surface state [41]. That is the surface material 
act as quencher’s sites for photo-luminescence but not for the higher energy 
cathodeluminescence. 
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(c)    Chemical vapour synthesis, (CVS). 
Nanocrystalline europium doped yttria particles have been synthesized using a 
chemical vapour technique.42Y2O3:Eu3+ nanometre sized particles (NPs) were prepared 
in a tubular flow reactor by Chemical vapour synthesis using tris (tetramethyl-
heptaanedionato) yttrium Y (C11H19O2)3 as the precursor for the host lattice and tris 
(tetramethyl-heptaanedionato) europium Eu (C11H19O2)3 , for the europium doping. The 
powder was characterised using X-ray diffraction and transmission electron 
microscopy. The Y2O3:Eu3+ nanoparticles (NPs) crystallised in the cubic structure with 
an average particle size of only 10 nm. Reflection, excitation, and emission spectra 
were reported. They showed that the nanoparticles manifested blue shifted absorption 
bands with respect to coarse grained material [42].Y2O3:Eu3+. (NPs) were prepared in a 
tubular furnace by CVS [43]. This is the same method as Konrad et al [42].  

(d)    Combustion methods. General application 

One of the problems with making such sub micrometer sized particles; is that during 
annealing of the precursor particles at high temperatures (often necessary for good 
crystallite quality and hence emission properties) the particles tend to sinter. One way 
partially to alleviate this problem is to synthesise the particles as rapidly as possible at 
a high temperature. A method that has been explored for this purpose is combustion 
synthesis using an organic fuel that is ignited when a crucible or other vessel 
containing the phosphor precursors and the fuel is placed in a furnace preheated to 
9000C. The fuel ignites and raises the temperature in the vessel very quickly. The 
residence time of the vessel in the furnace is controlled by the operator and removed at 
any desired time after ignition.   

Gd2O3:Eu3+ and (Gd2Y)2O3:Eu3+ nanocrystals were prepared by the glycine assisted 
combustion method using rare earth nitrate precursors [44]. The as-prepared products 
were found to be porous networks from the HTEM and isolated NPs could be observed 
after further annealing. From the luminescence spectra and XRD patterns, the prepared 
Gd2O3:Eu3+ nanocrystals were found to be monoclinic. When the Y3+ was doped into 
the Gd2O3 to form the complex host, it was found that the structure changed from 
monoclinic to cubic at the point when Y3+/Gd3+ was 0.3. The luminescent intensity of 
the (Gd, Y)2O3:Eu3+ nanocrystals was higher than that of pure Y2O3:Eu3+ or 
Gd2O3:Eu3+ materials. It was found that along with the XRD pattern, the luminescence 
spectra was another powerful piece of evidence in deducing the crystal structure [44]. 
The effects of lithium doped yttria were investigated in an attempt to improve 
luminescent properties of nanosized Y2O3:Eu3+ phosphors synthesized by the glycine 
combustion method using rare earth element and lithium nitrate salts as precursors 
[45]. Lu2O3:Eu3+ luminescent NPs were prepared with Eu3+ concentrations of 1-13 
(m/o) via a combustion route [46], although this is not a paper on Y2O3:Eu3+ phosphors 
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it is covered here for comparison as the emission spectra is similar. The metal nitrates 
were mixed in a small amount of water with urea; the solution was dried at 130-150º 
C. The solid was then fired at 650 ºC where a vigorous reduction took place yielding 
the desired oxide. Their morphology was determined with TEM measurements. It was 
found that the sizes of nanocrystallites were around 10-13 nm. These powders were 
sintered at 1700 ºC into tablets whose grains were a few µm wide. Absorption and 
emission spectra of all materials were measured [47]. A series of Y3+ and Eu3+ 
complexes have been synthesised by taking benzoic acid, o-nitrobenzoic acid, m-
nitrobenzoic acid, p-nitrobenzoic acid and 3, 5-dinitrobenzoic acid as ligands. Based 
upon the properties of the explosive decomposition of the complexes, a number of 
Y2O3:Eu3+ nano-crystals have been prepared by solid state thermo-decomposition [47]. 
TEM, X-ray diffraction analyses show that the Y2O3:Eu3+ nano-crystallites have 
spherical structure, and the average size of the crystals is within 40 to 60 nm. 
Introduction of Eu3+ has little effect upon the crystal structure of the oxides. 
Furthermore, change in the structure of the ligands of the complexes does not affect the 
morphology and sizes of the final products significantly. Compared with the products 
from the nitro substituted benzoic acid complexes. However, the Y2O3:Eu3+ nano-
crystals obtained from benzoic acid complex aggregated severely. It is to be noted that 
annealing temperature has an obvious effect upon the sizes of the final products. The 
higher the temperature is, the larger the nano-crystals will be. Fluorescence 
measurements demonstrated clearly that all the Y2O3:Eu3+ nano-crystallites 
luminescence similarly. But, the luminescent property of the one prepared by the 
benzoic acid complex is the superior. Nanosized Y2O3:Eu3+ was synthesised [48] using 
a solution-combustion method very similar to that of Sun et al [24]. The samples were 
characterised by x-ray diffraction, extended x-ray absorption fine structure (EXAFS), 
and photoluminescence spectroscopy. The structure of nanocrystalline Y2O3:Eu3+ 
prepared by a combustion reaction was analyzed by XRD and high-resolution electron 
microscopy [49]. The combustion method involved dissolving the rare earth nitrates in 
glycine and distilled water. The water was evaporated off. The powder was then 
ignited. The reaction is given as: -  

6M(NO3)3  + 10HCOOH + 18 O2 → 3M2O3 + 20CO2 +5N2 + 25H2O  (M = Y3+, Eu3+), 

Compared with large-scale particles, 5 nm Y2O3:Eu3+ particles presented as distorted 
crystallites with rough surfaces. Luminescent and absorption properties of these 
Y2O3:Eu3+ NPs showed remarkable effects related to their size. For those Y2O3:Eu3+ 
NPs that were smaller than 10 nm some new results were observed: (a) a red shift of 
the charge-transfer-state absorption; (b) new emission bands of Eu3+ in the 5D0 → 7F7 
region; (c) luminescent decay of the energy level 5D0 of Eu3+ turning to a two-step 
exponential; and (d) a pronounced increase in the quenching concentration and much 
lower phonon density compared with those of the bulk material. All these phenomena 
were attributed to the effect of the softened lattice (caused by the loss of long range 



Chapter 2           Y, Eu, Y2O3, Y2O3: Eu and Micelles  
                                 Material used for this thesis. 

 
 

38 
 

order) and surface state of the nanomaterials. The latter was confirmed by stronger 
excitation by the host absorption after the surface modification [49]. Nanocrystalline 
Y2O3:Eu3+ (10% Eu doped) of cubic crystal structure with different particle size was 
prepared by a combustion reaction (metal nitrates and glycine) [50]. Sizes of particals 
studied range from several nanometres to 200 nm. High-resolution electron microscope 
images and extended X-ray absorption fine structure (EXAFS) analysis of the 
nanoscale samples indicated both the presence of crystalline particles showing 
evidence of many defects and the co-existence of an amorphous phase. The 
preparation, optical properties and application potential of some nanomaterials based 
on Y2O3:Eu3+,Tb3+,Er3+,Yb3+ have been reported [51]. Y2O3 nanophosphors were 
prepared by the combustion method using different dopant concentrations.  The Y2O3 

nanophosphors precursors were the basic carbonates. The size of Y2O3:Eu3+ was from 
4.4 to 72.2nm depending on the conditions used. The luminescent spectra, up-
conversion and lifetimes were measured and compared. The influence of the 
technological conditions on the luminescent properties was investigated in detail. The 
energy transfer process was studied using the luminescent spectra, the lifetimes of the 
emission bands and their temperature dependence for the samples with rare-earth 
concentrations of 5mol%, the relative concentration needed between Eu and Tb is 8:2 
for energy transfer to take place from Tb to Eu [51]. 

(e)   Synthesis of novel structures. 
Y2O3: Eu3+ nanotubes where fabricated by a surfactant assembly mechanism. The 
surfactant (sodium dodecasulfonate) was dissolved together with yttrium and europium 
chlorides (latter salts in mole ratio of 98:2), the mixture was stirred till clear and urea 
was added to adjust the pH till precipitation occurred. The resulting solids were then 
fired in stages. The resulting tubular structures were characterized by transmission 
electron microscopy. Eu nanotubes where synthesized in the same way [52]. An 
unusual Eu3+-doped-yttria-silica nanocomposite has been synthesized using a 
deposition-precipitation technique. Silica was impregnated with an aqueous solution 
containing the rare earth nitrates a few drops of HNO3 and urea. The impregnated solid 
was removed by centrifugation, dried and fired at 1000 ºC for 1h.Y2O3:Eu3+ 
nanocrystalline particles with a mean size of 12 nm, dispersed in an amorphous silica 
matrix, were characterised using XRD in a sample treated at 900 ºC. The nanoparticles 
were coated with an amorphous layer visible in the high resolution TEM micrographs. 
The authors suggest that this amorphous layer is likely to interact with the silica matrix 
through Si-O-Y bonds, which is consistent with Si-29 NMR MAS results. In contrast 
the nanocomposite treated at 1000 ºC was found to partially evolve to give an alpha-
Y2Si2O7 crystalline phase. The luminescence spectra of the nanocomposites are taken 
as evidence that the sites in which the Eu3+ ions are accommodated are disordered. The 
authors also report that the decay times of the Eu3+ ions 5D0 emissions are rather long 
in the nanocomposites indicating that multiphonon relaxation is not effective in 
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quenching the luminescence. They conclude that the reduced coupling to OH 
vibrations in the materials could be ascribed to the presence of the amorphous layer 
coating the nanoparticles and effectively shielding the Eu3+ ion from the silanol groups 
[53].Y2O3:Eu3+ (NPs) inside porous optical inert materials such as MCM-41 (a silica 
based mesopororous molecular sieve), porous silica, and porous alumina were 
synthesized and structurally and electronically characterized. Typically the precursors 
of the Y2O3:Eu3+ (NPs) Y(C11H19O2)3 and Eu(C11H19O2)3  are dissolved in a suitable 
solvent such as CH3Cl or ethanol. The substrate is dipped into the solution for a period 
of time then dried and fired in a tube furnace under flowing oxygen for the europium 
doping [54]. Y2O3:Eu3+ filled porous MCM-41, porous silica, and porous alumina with 
pore size between 2.7 to 80nm were prepared and structurally and electronically 
characterized [54]. 

2.6    Combustion methods employed for this thesis 

The work in this thesis builds on the combustion methods pioneered in 1999 in the 
paper by Ireland et al [55]. They reported a combustion synthesis to prepare nanometer 
sized crystallites of cubic Y2O3:Eu3+ using a precursor containing a sacrificial long 
chain alkylammonium cation (the fuel).  Using this method it proved possible to 
produce cubic Y2O3:Eu3+ crystallites in the 50-70nm size range. The presence of CO2 

bands in the infra red spectra of the cubic Y2O3:Eu3+ crystallites were also reported. 
These bands are identical in position to those found in [(Y, Eu)OHCO3.H2O], and are 
explained as arising from the spontaneous reaction of the surface of the nanometer 
sized particles of cubic Y2O3:Eu3+ with atmospheric CO2 and water vapour. This 
indicates that nanometer sized particles of cubic Y2O3:Eu3+ are thermodynamically 
unstable in the atmosphere and must be protected against such back reactions. This 
could be done with surface coatings. This was the first report of the facile self-
assembly of the red emitting phosphor yttrium oxide europium (Y2O3:Eu3+) from 
solution using a sacrificial micellar phase [55]. The micellar phase was assembled 
using the alkylammonium chloride salt (C12H25NH3Cl) in an ethanolic solution. The 
resulting fine powder had smaller particles, ranging in size from 0.1 to 1.0 µm, than 
the commercial cubic Y2O3:Eu3+ phosphor [55]. One of the problems with making 
such sub micrometer sized particles is that during annealing of the precursor particles 
at high temperatures (often necessary for good crystallite quality and hence emission 
properties) the particles tend to sinter.  A more sophisticated way to control the rate of 
crystallization of the phosphor particles would be to vary the ratio of phosphor 
precursor to fuel. In theory the presence of more fuel around the phosphor precursor 
should facilitate/influence the combustion process and possibly lead to more 
crystalline products. In the work on which this thesis is based  longer and shorter chain 
hydrochlorides alkylammonium are used as fuel and the effect of varying the ratio of 
these to the Y2O3:Eu3+ precursor on the cathodoluminescence (CL) and 
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photoluminescence (PL) properties of the resulting phosphors is reported herein.  

 

2.7    Micelles [19] 

A micelle can be formed when one or more of a variety of molecules such as soaps and 
detergents are added to water [19]. The molecules making up the micelles may be a 
fatty acids, a salt of a fatty acid (soap), phospholipids, or other similar molecules. The 
molecule must have a strongly polar "head" and a non-polar hydrocarbon chain "tail". 
When this type of molecule is added to water, the non-polar tails of the molecules 
clump into the centre of a ball like structure called a micelle, because they are 
hydrophobic or "water hating". The polar head of the molecule presents itself for 
interaction with the water molecules on the outside of the micelle [19].  

 

Figure 2.5 Dodecylphosphocholine [57]. 

 
To understand the structures of a micelle see Figure 2.5. It is useful to consider the 
structure of dodecylphosphocholine (DPC). The phosphoric acid group has ester bonds 
between (1) choline, (CH3)3N (CH2)2OH, and    (2) dodecyl (or lauryl) alcohol, 
CH3(CH2)11OH. The choline, which contains a quaternary amine with a positive 
charge, and the phosphate are ionic and polar. The dodecyl part is the non-polar 
hydrocarbon chain. 

Structure of a Micelle [57]: The theoretical model shows 54 molecules of 
dodecylphosphocholine (DPC) and about 1200 H2O molecules. Each lipid has a polar 
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head group (phosphocholine) and a hydrophobic tail (dodecyl = C12). 

 Figure 2.6 presents a micelle cross section The gray spheres on the interior represent 
the long hydrocarbon chains of the dodecyl groups which are massed together because 
they are non-polar. The polar head groups of the phosphate are shown as red and 
orange spheres. The amine nitrogen is shown in blue surrounded by the gray methyl 
groups. The water molecules are represented as red and white spheres surrounding the 
outside of the micelle and they penetrate all of the spaces in the head group region. The 
hydrophobic tails are shown (as space fill). H2O is excluded from this entire interior 
volume. The hydrocarbon chains vary in their individual conformations (e.g. 
Trans/gauche configuration at each carbon-carbon bond), but adapt so as to fill all of 
the interior space.  

 

Figure 2.6 Micelle cross section [57].With cations and anions on the outside. 

Single DPC and Surrounding Molecules: [56,57,58] 

The close-up of a DPC molecule (space fill) in the micelle is shown in Figure 2.7. 
Other DPC neighbour molecules are shown in thick wire form. The rest of the micelle 
is white sticks. The DPC is in contact with 10-15 H2Os (red/white spheres) that make 
favourable H-bond or ion-dipole interactions (<3.5 Å). Neighbouring DPC molecules 
that are within 4.0 Å of each DPC are thicker sticks; the atoms on each that can make 
favourable van der Waals interactions are colour yellow. This is in contrast to protein 
crystal structures where interior atoms are relatively fixed. The micelle interior is 
highly dynamic, i.e. each lipid may have 4-8 contacting neighbour lipids at any instant, 
but these partners change several times every nanosecond on average.  
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Figure 2.7   Isolated DPC molecules [57]. 

Cationic Detergents: [56] Another class of detergents have a positive ionic charge 
and are called "cationic" detergents. In addition to being good cleansing agents, they 
also possess a germicidal property which makes them useful in hospitals. Most of these 
detergents are derivatives of ammonia. A cationic detergent is most likely to be found 
in a shampoo or clothes "rinse". The purpose is to neutralize the static electrical 
charges from residual anionic (negative ions) detergent molecules. Since the negative 
charges repel each other, the positive cationic detergent neutralizes this charge [56].  

 

Figure 2.8 Cationic Detergents [57]. 

In this thesis all of the micelles prepared were of the positively charged variety. The 
positive charge resides on the alkyl ammonium nitrogen. 
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Chapter Three 

Experimental Techniques 

3.0   Introduction 

A number of different characterisation/analytical techniques were used in the work 
described in this thesis and are introduced in this chapter. These were:- 

1. Scanning electron microscopy (SEM). 
2. X-Ray powder diffraction (XRPD). 
3. Direct current Cathodoluminescence. 
4. Bentham spectrometer UV- visible spectroscopy. 
5. ATR-FTIR infra-red spectroscopy. 
6. Raman spectroscopy. 
7.  Flurorolog-3 UV-visible spectroscopy. 
8. Thermal Methods of characterisation. A. SDT-Q500 (TGA).B. SDT-Q600. 

 Each of these techniques will now be briefly described along with how they were        
used in this work. 

3.1   Scanning electron microscope (SEM) 

Scanning electron microscopy was used to investigate the morphology and particle 
sizes of the Y2O3: Eu products. The basic function of an SEM [1, 2] is to produce an 
image of three dimensional appearances derived from the action of an electron beam 
scanning across the surface of a specimen [1]. The technique revealed a wide range of 
interesting structures and nano-sized structures in the samples annealed at 650 and 
900°C. Over 200 images were obtained. 

The instrument used shown in Figure 3.1 is a SEM Zeiss Supra 35 VP [3]. This was 
used to analyse the samples and the average particle size of each sample was obtained. 
The Zeiss Supra 35 VP SEM has a resolution down to 1.0 nm. Field emission scanning 
electron microscopy (FESEM) was used to study the microstructure of the samples 
using this instrument (see Figure 3.1).The powder samples were mounted on carbon 
tabs attached to aluminium pin stubs. The stub was then coated in gold using a sputter 
coater to cover the sample with a thin conducting layer of gold. The following 
technique was used: an aluminium stub covered with double sided carbon black 
conducting tape was pressed into the phosphor powder sample that was to be 
measured, any excess of material was removed by gently tapping the stub against the 
hard surface of the sample box. The stub was then coated in gold using a sputter coater 
before being placed into the SEM chamber. Only six samples at a time were placed in 
the SEM chamber. The sample material sizes were measured using the photographs of 
particles. The sizes of particles in the photographs were determined using an 
appropriate scale once the magnification factors had been established. The SEM 
chamber was evacuated to vacuum conditions to a pressure below 10-4 mbar the 
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3.2    X – RAY POWDER DIFFRACTION (XRPD) 

 XRPD can be used for qualitative and quantitative crystalline phase                    
identification, for structure determination and refinement, for microstructure 
determination.  

X-ray diffraction (XRD) [4, 5] is a versatile, non-destructive technique that reveals 
detailed information about the chemical composition and crystallographic 
structure of natural and manufactured materials. It utilises knowledge of a number 
of physical properties:- 

1) A crystal lattice is a regular three-dimensional distribution (cubic, rhombic, 
etc) of atoms or ions in space. These are arranged so that they form a series 
of parallel planes separated from one another by a distance d, which varies 
according to the nature of the material. For any crystal, planes exist in a 
number of different orientations - each with its own specific d-spacing.  

2) Bragg's Law: - By varying the angle theta, the Bragg's Law conditions are 
satisfied by different d-spacing in polycrystalline materials. Plotting the 
angular positions and intensities of the resultant diffracted peaks of 
radiation produces a pattern which is characteristic of the sample. Where a 
mixture of different phases is present, the resultant Diffractogram is formed 
by addition of the individual patterns.   

3) Constructive interference, when a monochromatic X-ray beam with 
wavelength lambda is projected onto a crystalline material at an angle 
theta(θ), diffraction occurs only when the distance travelled by the rays 
reflected from successive planes differs by a complete number n of 
wavelengths. 

 

X-ray powder diffraction studies were used to identify the phases present in the 
combusted products synthesized in this work, their degree of disorder/order and 
their crystallite sizes [6]. Diffractograms were collected using the Y2O3:Eu 
powders and other product in a conventional holder, on aluminium stubs and on a 
silicon substrate, a total of 108 Diffractograms were collected. XRPD was carried 
out on 42 samples. The crystalline phases of the products [6] were determined by 
X-ray powder diffraction (XRPD) using a Bruker D8 Advance X-ray powder 
diffractometer (AXRPD) fitted with a nickel-filtered copper source and a Lynx-
Eye™ silicon strip detector (see Figures 3.2 and 3.3).  Data were recorded from X-

ray intensity as a function of Bragg angle  to 2 and 5 to 100° at 293 K. The 
diffractometer was previously calibrated using an aluminium oxide line position 
standard from Bruker and LaB6 NIST SRM 660a line profile standard [7].  The 
emission of the nickel filtered Cu source and hence the instrumental line 
broadening was determined by fitting the NIST standard using Bruker Topas 
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version 3 [8].  Phases were indentified from the XRD patterns by peak search 
matching using the ICCD PDF-2 data files.  The identifiable phases were refined 
using Bruker Topas version 3 [8].   

The samples were put in a holder which was placed into the diffractometer, which in 
turn was linked to a computer which had an internal reference data base for comparing 
samples. Prints were taken for comparison and in some cases ASCI files, so that the 
spectra could be overlapped and compared. In each analysis six samples at a time were 
put into the AXRPD and each sample were bombard by X-ray at angles of 5 to 100 
degrees for 35 minutes. The AXRPD was connected to the computer and results were 
obtained for each sample in form of scan. Every 4 h a further set of 6 samples was 
inserted into the AXRPD till the entire 42 sample had been analysed.  

 

 
 

 
 

Figure 3.2 AXRPD 
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Figure 3.3 XRPD 

 
 
 
 

 

3.3   Direct current Cathodoluminescence measurements [9-13].  

Cathodoluminescent light intensity measurements were measured in a low-voltage 
electron gun vacuum chamber at voltages between 1000 to 5000V over a range of 
e-beam currents.  The light intensity of these samples was in some cases 
comparable with much larger particles that have been produced as bulk materials. 
Luminance measurements were carried out using Jeti Spectroradiometer Specbos 
1200 and Specbos 1200 Spectroradiometer for fast data gathering of emission 
spectrum, and luminance. The Spectroradiometer Specbos 1200 photometer is a 
self calibrating instrument [14], with automatic calibration based on every twenty 
minutes or when temperature changes by a half of a degree since the last 
calibration. The Luminance of the sample was calculated in metric-Candelas per 
square meter. For consistent results for the above samples the same measuring 
procedure was adopted for each set of measurements. The electron beam was 
focused so that the beam spot and the monitoring spot on the photometer covered 
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about 100% of the emission area. To keep the measuring angle consistent 
Luminescence was measured at the centre of each phosphor sample. One hour was 
allowed each day as a warm up period for the electron gun power supply to reduce 
the beam current drift .The emission current was regularly checked to ensure that it 
remained at desired position of 50µA. Each sample on its aluminium stub (-see 
preparation method below) was carefully aligned to ensure that the beam was in the 
centre of the phosphor sample and then a complete measurement set was taken 
before moving onto the next sample. The low voltage cathodoluminescent 
equipment used is presented in Figure 3.4. The low voltage equipment is composed 
of a cylindrical stainless steel Vacuum chamber, which has six ports at equal 
distances around its circumference, only four of these ports were used .The first 
port contained the electron gun, the second port adjacent was used for viewing the 
sample, the third port was the pressure gauge measuring system and the fourth port 
was used for electrical connections. The two remaining ports were sealed and 
blacked out to avoid any light entering the system (see Figures 3.4 & 3.5). The 
viewing port is positioned next to the electron gun port to allow reflectance 
measurements to be collected from each sample; the other ports are positioned to 
collect transmittance measurements at an angle of 180°. 42 samples were measured 
Six Y2O3: EU-C16 phosphor coated aluminium sample stubs were mounted around 
a central manipulator. Six samples each time were mounted on the central arm 
which had complete rotational freedom and limited vertical movement of the 
samples in the chamber. It can attain a vacuum of 1.33x 10-3 Pa and deliver an 
electron beam at energy of 5 kV. This allows the sample being stubbed to be 
moved in the direction of the electron beam. To maintain the vacuum in the 
chamber, two pumps were used constantly so that a suitable vacuum was obtained 
in the chamber the first pump used to maintain a pressure of 1.33x10-2  Pa in the 
chamber, and this way monitored by a Pirani gauge. The second pump used was a 
turbo-molecular pump capable of producing a pressure of 1.33µ Pa this was 
monitored by an ionisation gauge. All low voltage measurements were taken at a 
pressure below 1.33m Pa. The Cl measurement data and spectra were undertaken 
and using a high-vacuum chamber with a Kimball Physics Inc. (Walton, USA), 
model EFG-7 Flood electron gun with its matching EGPS-7 Power supply. A 
measurement was obtained over an excitation range from 1000 to 5000 Volts and 
an emission current of 8.5 µA .The Electron beam was Defocused for Spectra 
collection and tightly focused for light output measurements. The Cl luminance 
measurements were obtained by means of a Jeti spectroradiometer (Specbos 1200, 
Jeti Technische Instruments GmbH and Jena, Germany) [14].  The phosphor 
sample screens were excited with electron beam energies from 1000 to 5000V, and 
emission currents from 1.1 to 9.8µA/cm2, with an electron beam spot size of 
9.0mm for defocused measurements and 1.41 mm for the focussed measurements. 
For the above samples Cl emission and excitation spectra were collected using the 
Bentham system previously described except that the fibre optic bundle (Bentham 
TEL-600 fiberoptic connected to monochromator) was disconnected from the in-
built sealed chamber and attached to a telescope (TEL 301D). The 
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Cathodoluminescence spectra were collected, with a TFL301 photometer 
telescope, with an aperture mirror viewing system to focus precisely on the area of 
the measurement. The photometer telescope collects the light output through the 
front viewing port of the low-voltage chamber which light passes to the M300 
monochromator through the integral flexible fiberoptic for the CL luminance 
measurements and spectra of the prepared samples phosphor screens were prepared 
in the following manner.  After cleaning the aluminium pin stubs in an ultrasonic 
bath containing ethanol and drying in an oven at a temperature of 100°C, they were 
weighed.  A stub was then placed in an electrochemical cell containing an 
ultrasonically dispersed solution of the phosphor powder (0.5g), in a solution of 
magnesium nitrate (0.075g/L) in isopropanol (50mL).  The stub was positioned so 
that its flat surface was forming a meniscus with the surface of the 
phosphor/electrolyte solution and also acting as an electrode, the counter electrode 
was a strip of magnesium ribbon.  A field of 300V was applied to facilitate the 
coating of the stub by electrode position. This procedure was repeated till all the 
stubs were coated with approximately 3.0mg (±0.10mg) of phosphor.  After drying 
the stubs at 100°C they were introduced into the vacuum chamber for Cl 
measurements.  

For the 42 samples, Cl measurements were used to measure and obtain spectra. 
Cathodoluminescence from 1kV-5kV (low voltage) Cl apparatus which used for 
testing phosphor and used for other applications.  The first experiment used a 
defocused beam, carried out through a 9mm hole using a spectroradiometer 1200.  
The experiment then continued by setting the equipment at values from 1000 to 
5000V using currents from 10uA   through to 50µA. Thus for 1000Vcurrents of 10, 
20, 30, 40 and 50 µA   were used and Cl measurements were recorded using the 
spectroradiometer 1200 which is connected to the computer. The results were 
recorded using the Jeti program. Using the results a graph was plotted, in total 42 
graphs has been produced. To avoid burning the sample defocused measurements 
were always carried out first before focused measurements.  The second 
experiment (focused beam) utilised a 1.41mm hole using the spectroradiometer 
1200. The experiments than continued by setting the equipment from 1kV through 
to 5kV.  

Using the results 42 graphs were produced. The third set of experiments used a 
defocused beam followed by a focused beam to produce spectra rather than 
measurements. Again the same conditions were used as laid out above. For 
example for a series of experiments the method was to start from 1000V Vs 10µA 

and then Vs 50µA, then progressively to 5000V. 4 sets of results was obtained 2 
defocused and 2 focused for each sample and in total 168 spectra of intensity in 
arbitrary units wavelength nm were produced.  
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Figure 3.4- Direct current cathodoluminescent measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5- Direct current cathodoluminescent measurements 
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3.4   Bentham spectrometer 

The Bentham monochrome apparatus (see Figure-3.6 and 3.7) can be used for 
measuring the excitation and emission spectra of materials across the UV, Visible 
and near IR spectral regions.  Also it is possible to calculate and measure the 
luminous efficiency for the produced samples.  

The PL excitation and emission spectra were obtained using a Bentham power 
(Reading, UK) M300 programmable grating monochromator photometer system 
with computer controlled wavelength scanning and intensity data collection, using 
in the visible region a 1800 lines/mm grating.  The stepping motor and sine drive 
allows wavelength scanning to be completely controlled from a remote stepping 
drive unit (SMD3B).  Sample excitation and collection was collected inside an in-
built sealed chamber connected to the M300 monochromator via a fibre-optic 
bundle.  The Bentham spectrometer has a monochromator, which measures the 
radiation emitted by the phosphor at a single wavelength. It also has combination 
filters, which enable it to measure over a range of wavelengths. The Bentham 
spectrometer was linked to a computer, which displays the emission and excitation 
spectra and calculates the C.I.E coordinates. The set-up used for D.C 
Cathodoluminescent measurements utilised a telescope to focus on the sample in 
the low voltage chamber and as with the intensity measurements the samples were 
moved into the electron beam. 

From each sample a small amount of material was put on an aluminium stud and 
put into the Bentham spectrometer measuring chamber. Each sample was scanned 
twice, first for its emission when excited at 254 nm and collected over a range from 
300 to 800 nm (the emission scan was plotted as intensity in arbitrary units against 
wavelength (nm)); second to collect the excitation spectrum. The excitation scans 
were taken monitoring the 612 nm emission band and collecting the spectra over 
the range from 200 nm to 500 nm. The excitation scan was plotted as intensity in 
arbitrary units Vs wavelength in nm. A total of 42 scans were obtained. To achieve 
better results the above experiments were repeated in an alternative way with a 
small amount of powder placed in a 2cm x2cm x1cm black plastic holder and this 
was inserted into Bentham spectrometer measuring chamber to obtain emission and 
excitation spectra.  
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Figure 3.6    The Bentham spectrometer 
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Figure 3.8 ATR chamber for Single Reflection Diamond Attenuated Total Reflectance (ATR) 
cell used for analysis of solids, liquids, pastes, films and micro samples. 

 

 

FTIR 

Fourier transform infrared (FTIR) spectroscopy is a measurement technique that 
allows one to record infrared spectra. Infrared light is guided through an interferometer 
and then through the sample (or vice versa). A moving mirror inside the apparatus 
alters the distribution of infrared light that passes through the interferometer. The 
signal directly recorded, called an "interferogram", represents light output as a function 
of the mirror position. A data-processing technique called Fourier transform turns this 
raw data into the desired result (the sample's spectrum). Light output is recorded as a 
function of infrared wavelength (or equivalently, wave number).  

As described above, the sample's spectrum is always compared to a reference. Fourier 
Transform infrared spectroscopy (FTIR) was carried out in KBr Pellets (42 sample 
measurements were collected using the FTIR spectrometer). The 42 pellets in the KBr 
were each prepared by taking 150 mg of dry KBr and 1mg of sample mixed together 
and put into a 10,000kg pressure to form a pellet. The pellet was placed into an 
alumina desiccators to stop the pellets absorbing water. Each pellet in term was placed 
into the FTIR spectrometer to obtain an infrared spectrum. The Y axis presents 
absorbance (A) and the X axis is Wave number (cm-1). Each sample was analysed 
using a spectral resolution of 4 cm-1 with 20 scan accumulation and data were collected 
individually for each sample [15]. 
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Figure 3.9 FTIR photospectometer 

 
3.6     Raman spectroscopy 

3.6.1   Introductions 

1. Raman spectroscopy: (named after C. V. Raman) is a spectroscopic technique 
used to study vibrational, rotational, and other low-frequency modes in a 
system [16]. It relies on inelastic scattering, or Raman scattering, of 
monochromatic light, usually from a laser in the visible, near infrared, or near 
ultraviolet range. The laser light interacts with molecular vibrations, phonons 
or other excitations in the system, resulting in the energy of the laser photons 
being shifted up or down. The shift in energy gives information about the 
phonons modes in the system. The Raman effect occurs when light impinges 
upon a molecule and interacts with electron cloud and bonds of that molecule 
[17].  

2. The equipment has dual capabilities that enable more routine low/medium 
resolution Raman analysis and even broader band laser induced luminescence 
to be conducted on the same bench-top instrument.  

3. The Labram HR equipment is configured with UV, visible and NIR capability. 
Also it has an upright microscope for materials analysis for Raman analysis and 
Raman spectra scan. 

4. The Labram HR equipment is also configured with fast Raman imaging 
technologies. The Labram HR allows the collection of large area Raman 
images in the matter of seconds/minutes. The unique combination of innovative 
optics, detectors and software combine to provide true confocal Raman 
imaging with an unmatched speed of data acquisition.  



Chapter 3      Experimental Techniques 
 

61 
 

5. The Labram HR equipment is configured with the ultra low frequency (ULF) 
module allows Raman spectroscopic information in the sub-100cm-1 region, 
with measurements below <10cm-1, and measurements are obtained in just a 
few  minutes. The measurement of each sample took around five minutes each. 

The Labram HR equipment is also configured with a motorized XY sample stage for 
automated Raman Imaging, autofocus attachment for automatic z-axis imaging (depth 
profiling), Polarizing filters in excitation and scattering beam-paths, Dual laser 
excitation at (785 nm or 488 nm), Liquid Nitrogen cooled 1024x256 pixel CCD 
detector, and Cuvette and macro sample holders. The Labram infinity system has a 
spatial resolution of about 1 micron which allows for the analysis of single cells, (see 
Figure –3.10 which presents the Labram HR video –Raman spectroscopy by Horiba). 
The figure shows the confocal microscope located in the centre, with the control PC on 
the left. At the rear are a video monitor and the lasers with the cooling fan for the Ar 
ion laser above He monitor.   

3.6.2   The Labram HR Raman by Horiba equipment overview and features. 

The Labram HR equipment provides high spectroscopic resolution and a unique 
wavelength range capability that offers both great flexibility and high performance.   
Labram HR equipment is widely used for standard Raman analysis, and 
photoluminescence (PL) the equipment has the following functions:-  

6. High spectral resolution the unique high resolution mode is ideal for subtle 
band analysis such as that for phase (crystalline/amorphous); weak bonding 
forces (such as hydrogen bonding). 

7. The equipment permits precise characterization of position or shape of the 
Raman spectral features. Band analysis with a resolution in the order of  0.3 
cm-1 to 1 cm-1 is particularly suited to the high resolution mode. 

 

Figure 3.10 Labram HR video –Raman spectroscopy by Horiba 
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Raman spectra and emission spectra were obtained using a Labram Raman 
spectrometer equipped with a 1800 g/mm holographic grating, a holographic super 
notch filter and a Peltier-cooled CCD detector. Samples were excited using a helium-
neon laser with an output of 8 mW of power at the sample on the 632.8 nm line. 42 
samples were analysed individually and for each sample the emission spectra were 
collected simultaneously with the Raman spectra, both excited by the same helium-
neon laser. The greatest intensity in the photoluminescence spectra was from the 
largest particles which were the densest material encountered by the exciting laser 
beam. The samples used were laid flat ensuring good contacts, which is essential for 
photo-luminescence. In this work, small size (cubic shape) material made by the 
combustion method was established and found to have the ideal shape and size for the 
best photo-luminescence performance because of their self packing property. 

From each sample a small quantity of the material was put on a small fine glass sheet 
and put on the microscope frame on the confocal pinhole with user controlled variable 
aperture the confocal pinhole fully matches the laser spot and provides the highest 
spatial resolution with maximum signal throughput. Typically [17], a sample was 
illuminated with a laser beam. Light from the illuminated spot was collected with a 
lens and sent through a monochromator. Wavelengths close to the laser line, due to 
elastic Rayleigh scattering, are filtered out while the rest of the collected light is 
dispersed onto a detector. Than a measurement for each sample was taken, a graph 
plotted and the results transmitted into Raman spectra scan of Raman shift Vs intensity 
(nm). 42 Raman scans were obtained.  

 
3.7   Spectrophotometer Flurorolog-3 

 I H R 320 -Horiba Spectrofluorometer equipment. 

System Description: - A diagram of the optical path of the spectrometer is presented in 
Figure  3.11 and is discussed below. The spectrometer consists of:  A source of 
radiation that produces a beam of light that is filtered by an excitation spectrometer 
that allows a single wavelength of light to reach the sample. In the sample 
compartment, the sample responds to the incoming radiation. The resulting radiation is 
filtered by an emission spectrometer that feeds the signal to a photomultiplier detector.  
By stepping either or both spectrometers through a wavelength region, and recording 
the variation in intensity as a function of wavelength, a spectrum is produced.   
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to 900°C over 120 min.   The experimental technique consisted of heating at a constant 
rate until weight change occurred as determined by selecting the temperature rate 
increase of 8°C per min at each weight loss the temperature was held isothermally until 
the weight change was complete. This sequence of heating, and isothermal holding is 
repeated for each weight change encountered. The result was optimum weight loss 
resolution for the duration of 120 min. Using SDT Q500 the experimental results 
obtained for the samples included:-  

1) Weight loss as a function of temperature, 
2)  Thermal stability and heat resistance, 
3)  The moisture content of the samples. 
4)  Analyses between ambient and up to 1000°C.  

    The main features of the equipment are listed below. 

SDT Q500 (TA) Technical information 

 Temperature Range: Ambient to 1000 °C  
 Isothermal Temperature Accuracy: 1 °C  
 Isothermal Temperature Precision: 0.1 °C  
 Continuous Weighing Capacity: 1.0 g  
 Heating Rate: 0.1-100 °C /min  
 30-position auto sampler 
 Dual range microbalance (0-200 mg and 0-1 g) with auto switching 
 Vertical balance design with a horizontal gas purge 
 Automated pan loading and furnace movement 
 Software controlled, dual mass flow controllers with automated gas switching 
 Full VGA colour touch screen display for convenient operator control and 

monitoring of instrument status  
 Temperature Compensated Thermobalance Included 
 Maximum Sample Weight 1 g 
 Weighing Precision +/- 0.01% 
 Sensitivity 0.1 μg 
 Baseline Dynamic Drift* < 50 μg 
 Furnace Heating Resistance Wound. 
 Temperature Calibration Curie point. 
 Sample Pans Platinum 50, 100 μL. 
 Ceramic pan 100, 250, 500 μL. 

 
The advantage of using SDT Q500 (TGA) 
 
The advantages of this instrument stem from its inherent design and careful user use:- 
Reproducibility:- (Powders best), Sample weight,10-20mg for most applications,50-
100mg for measuring volatiles, Most TGA instruments have baseline drift of +/-
0.025mg which is 0.25% of a 10mg sample, Use brass tweezers to eliminate static 
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Introduction:   
 
The SDT Q600 instrument is an analysis instrument capable of performing both 
differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) at the 
same time. Simultaneous DSC-TGA provide a true measurement of heat flow DSC 
and  weight change TGA on the same sample from ambient temperature to 1000°C 
(see Figure 3.17). 

SDT Q600 noise is <4 microwatts and the TGA balance sensitivity is 0.1 μg. A heat 
flux DSC design with separate sample and reference pans is used, and is calibrated for 
heat flow measurements using sapphire. The SDT Q600 features automated furnace 
movement and a horizontal purge gas system with digital mass flow controllers and 
programmable gas switching capability. A separate inlet tube permits introduction of 
reactive gases into the sample chamber. The accessory kit contains platinum and 
ceramic sample pans, calibration and test materials, plus tools.    The platinum cups are 
recommended for operation up to 1000 °C, and for their general inertness and ease of 
cleaning. The ceramic cups are advised for operation to 1,500 °C, Equipment 
description from TA manufacture [19]. The TA Instruments SD Q600 provides an 
accurate simultaneous measurement of weight change (Thermo gravimetric analysis - 
TGA) and differential heat flow (Differential scanning calorimetric - DSC) on the 
same sample in a temperature range from ambient to 1000 °C. TGA applications 
include studying absorbed moisture content, level of organic and inorganic 
components, degradation temperatures, solvent residues, and estimation of corrosion 
kinetics in high temperature oxidation of materials. DSC applications include studying 
phase transitions (melting, glass transitions, and exothermic decompositions), curing 
processes, and oxidative stability of materials. Materials studied by the Q600 include 
organic and inorganic chemicals, polymers, pharmaceuticals, food/biological samples, 
etc. The SDT- Q600 features a horizontal dual beam balance design (sample capacity: 
200 mg) that supports precise TGA (balance sensitivity: 0.1 µg) and DSC (heat flow 
sensitivity: 4 μW) measurements. The dual beam design allows two TGA samples to 
be analyzed simultaneously and delivers superior weight signal measurements 
(sensitivity, accuracy, and precision). DSC heat flow data is dynamically normalized 
using the instantaneous sample weight at any given temperature. The SDT- Q600 
features a horizontal furnace. A matched Platinum/Platinum-Rhodium thermocouple 
pair within the ceramic beams provides direct sample, reference, and differential 
temperature measurements. A horizontal purge gas system with digital mass flow 
control and integral gas switching capability provides for precise metering of purge gas 
to the sample and reference pans. A separate gas inlet tube delivers reactive or inert 
gas to the sample. The SDT- Q600 also includes Advantage software for complete 
automatic experimental control and Universal Analysis 2000 software for 
comprehensive data analysis. 

 



Chapter 3      Experimental Techniques 
 

70 
 

Thus this SDT measures the heat flow and weight changes associated with transitions 
and reactions in materials over the temperature range ambient to 1000°C. The 
information provided differentiates endothermic and exothermic events, which have no 
associated weight change (e.g. melting and crystallization) from those which involve a 
weight change (e.g. degradation). In addition, performing both DSC and TGA 
measurements at the same time, on the same instrument and same sample.  
For this experiment new samples were specially prepared as follows : 3  samples of 
(Y2O3: Eu3+ )Cl3- (C16 H33NH3Cl)  methanol base with material ratio 1:1, 1:2, 1:3 and 3  
samples ( Y2O3: Eu3+ )Cl3-( C16 H33NH3Cl)  ethanol base with  material ratio 1:1, 1:2, 
1:3 . A small amount of material from each sample was taken and put into the SDT 
Q600 Chamber. The chamber was sealed and the experiment started by raising the 
temperature in the chamber from 200 C to 9000C each experiment took around 2 hr to 
complete, and each resulted in a DSC-TGA graph. The graph plotted weight loss and 
heat loss as a percentage against temperature increase from 200 C to 900° C.   
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Chapter Four  

 

 Synthetic Methods used to prepare the Phosphor Materials  
 Studied in this Thesis 
 
4.1   Introduction 

The work presented in this chapter describes the methods by which the materials studied 
were synthesized. The synthetic methods used was based on (but modified from) one that 
was previously published [1].The preparations all made use of amine hydrochlorides 
(CnH2n+1)NH3Cl (n=8,12,16) to form micellar phases (see chapter 2 section,2.6) in 
methanol or in ethanol and these were used  to self assemble yttrium and europium cations 
from YCl3:Eu+3 (Eu 2.0 Mol%).  The solution chemistry produces the precursor for the 
Y2O3:Eu3+ lattice. There follows experimental, descriptions of how a number of samples 
were prepared in alcohol of micelles containing the amine hydrochlorides and rare earth 
cations. These in turn are followed by details of the combustion methodology (the heating 
of reagents) at 650°C and 900°C. The ethanol and hydrocarbon chains with the amine 
hydrochlorides forming the micellar backbone acted as the fuel for the combustion process 
and provided the energy to synthesis the formation of the europium-doped yttrium oxide 
products  
[2, 3]. 

 
4.1.1   Chemicals 
The chemicals used in this work are as follows:- Yttrium oxide (99.99%), europium oxide 
(99.99%), yttrium nitrate (99.99%) and europium nitrate (99.99%) (all obtained from 
Aldrich Chemical Company), magnesium nitrate (AnalaR, BDH Merck), hydrochloric 
acid (37%, Fisher), ethanol (99.7-100% v/v, BDH Merck), isopropanol (AnalaR, BDH 
Merck) and methanol (AnalaR, BDH Merck). The alkyl ammonium salt C16H33NH3Cl was 
prepared from the amine see 4.3.  
 
 
4.1.2    Experiment 1. The preparation of Y2O3:Eu3+ 

A solution of 98% of Y(NO3)3 and 2% Eu(NO3)3 was made up as follows to produce 
Y0.98Eu 

0.02(NO3)3.  First Eu2O3 =152x2 +16x3 = 352 g /4 = 88 g, but as only 2% was 
required then a mother solution containing 1.76g of Eu2O3 was needed. Similarly 98% 
Y2O3 = 89x2 +16x3= 226 grams /4 =56.5 g, but as only 98% was required then the mother 
solution required 55.37 g. 
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A solution in water was prepared by taking 1.76 g of Eu2
 O3 and 55.375 g of Y2O3, adding 

nitric acid to convert the oxides to nitrates following which water was added to make 
1000mL of solution “A”. (This is now referred to as solution “A”). Then 15 g of urea 
 (CO (NH2)2) were added to 25 ml of solution” A” together with 450 ml of distilled water. 
The mixture was put on hot plate to reach 85°C. The reaction started and a white colour 
was produced that ended in a solid deposit, the heating was continued for an hour. The 
solution was heated at 100°C on hot plate for a further hour to stabilize and to evaporate 
down in volume. After an hour a clear solution was obtained. This method is dependent on 
the addition of, and hydrothermal decomposition of, urea in acid solution in the presence 
of metal salts that are soluble at acid pHs. The chemistry involved includes:-aqueous 
decomposition of urea (<85 ºC, ~ pH 3) which produced (resulting) in the following ions, 
of which, 

                                   H2NCONH2  NH4
+ + OCN- 

The cyanate ion rapidly reacted as follows: 

                       OCN- + 2H+ + 2H2O  H2CO3 + NH4
+ 

In the presence of Y3+ and Eu3+ cations which were added as acid salts the solution pH 
dropped to ~2.5. The urea was added and the resulting hydroxonium ions (H3O

+) 
promoted the decomposition of urea.  The subsequent release of carbonate ions causes 
precipitation of the metal hydroxycarbonate phosphor precursor, once the concentration of 
reactants reached supercritical saturation 

          [(Y, Eu) OH (H2O)n]
2+ + H2CO3   [(Y,Eu)OHCO3.H2O] + (n-1) H2O + 2H+

(aq) 

The precipitate was filtered and placed in a crucible in a furnace then fired to 980°C for 30 
min. The resulting white powder was Y2O3:Eu3+. 
 
4.1.3    Experiment 2. The Preparations of [(Y, Eu)OHCO3.H2O]. 
50mL of solution A was mixed with a solution of 15 g of urea (CO (NH2)2) in 450 mL 
distilled water. The solution was put on a hot plate set at 85°C. The reaction started and 
the solution turned from a clear colour to white solution (at pH = 3). The white colour 
solution started to crystallize and became a solid deposit; the heating was continued for 1 
hour. The solution was heated to 100°C on hot plate for a further hour to stabilize and to 
evaporate down in volume. After 1h the white solution changed to clear solution. The CO 
(NH2)2 had decomposed, a solid deposit and solid in suspension was left without a trace of 
(CO (NH2)2).A vacuum filter was used to remove (filter off) the water. (The precipitate 
was rinsed with 100 mL of distilled water to filter off any urea trace) .The resulting dry 
white powder was [(Y, Eu)OHCO3.H2O]. 
 
 
 
 
 



Chapter 4    Synthetic Methods 
 

75 
 

4.1.4    Experiment 3. The Preparations of more [(Y, Eu)OHCO3.H2O]. 
For 4 days on a daily basis experiment 2 was repeated to obtained a pure product in large 
quantity of [(Y,Eu)OHCO3.H2O]. The dry white powder product was used for further 
experiments/measurements. 
 
4.1.5. Experiment 4. The Preparations of a solution of Y0.98Eu0.02Cl3 
A solution of 1.76g of 2% Eu2O3 and 55.375g of 98% Y2O3.was made up in distilled 
water. The solution colour became white. Then to this solution 180 mL of HCl was added 
very slowly at the rate of 10mL per 5 min, to get the reaction going slowly and not over 
heated, to achieve a controlled reaction. At the end of the reaction the solution changed 
colour from white to clear. The result was a one liter solution of Y0.98Eu0.02Cl3. 
 
4.2     Experimental work using Micellar methods. 
 
4.2.1   Experiment 5. To prepare the amine hydrochloride CH3(CH2)nNH3Cl (where 
n = 7, 11 or 15) 
The amines were quaternised with excess dilute hydrochloric acid in a warm solution of 
ethanol. The resulting yellow masses were recrystallised from ethanol, whereby the 
alkylammonium chloride was observed to have crystallized into soft white thin salt laths. 
A typical method was: - To 50mL warm solution of ethanol, a 20g of C12H26NH3 was 
added and fully dissolved. Then 100mL of HCl at the rate of 10mL per 4 min was added 
to the solution (to get the reaction going slowly and not over heated). The solution was put 
on hot plate set at 85°C in the fume cubed; the solution was heated for a further hour to 
stabilize and to evaporate down in volume. The following equation describes the reaction 
and the chemistry:- C12H26NH3 + HCl→ (C12H25NH3Cl).A white viscose solution was 
formed. A vacuum filter was used to remove (filter off) the water from the solid produced. 
Then the precipitate was rinsed with 50mL of ethanol and filtered. Then the product was 
dried in an oven at 100°C for 1h, to obtain C12H25NH3Cl as a white powder. 
 
4.2.2    Experiment 6. To produce micelles containing phosphor precursors with 
C12H25NH3Cl 
The europium content in the phosphor prepared herein by the micellar method was 2.0 
Mol%. A solution of 1.76g of 2% Eu2O3 and 55.375g of 98% Y2O3.was made up in 
distilled water. The solution colour became white. Then to this solution 180 mL of HCl 
was added very slowly at the rate of 10mL per 5 min, to get the reaction going slowly and 
not over heated, to achieve a controlled reaction. The solution was made up to 1litre 
volume. 25 mL of this solution was added to a warm alcoholic solution (25 mL) 
containing C12H25NH3Cl (2.21g, 0.01M) and 25 mL water.  This gave a stiochometric 
ratio of 1:1 for the combined metal chloride to alkylammonium chloride present in the 
solution. In other preparations the metal chloride to alkylammonium chloride ratio was 1:2 
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or 1:3 using.  The solution was heated on a hot plate to about 100°C until it was reduced in 
volume and became viscous (some alcohol was still present. This assisted in speeding up 
ignition of alkylammonim chloride fuel).   
The following equation describes the reaction and the chemistry:- 
 EuCl3 +YCl3 + C12 H25 NH3Cl     →   [(Y,Eu)Cl3] (C12 H25-NH3Cl)n  (where n =  2). 
 
4.2.3   Experiment 7 to convert the phosphor precursor to the phosphor. 
A vacuum filter was used to filter off the water from the solid produced in section 4.2.2. 
Then the precipitate was rinsed with 100 mL of ethanol and filtered. Then the product was 
dried in an oven at 100°C for 1h. The resulting dry or almost dry white powder was 
[(Y,Eu)Cl3] - C12H25NH3Cl.This powder was divided into 6 samples. Each sample was 
placed in a crucible and then fired in the furnace at different temperatures: 500°C, 600°C, 
700°C, 800°C, 900°C and 1000°C. Each sample was fired in a crucible in a furnace for 30 
min. The XRPD data of the sample fired at 500°C is presented in Figure 4.1.This shows 
the presence of mainly amorphous material with some very broad peaks from a crystalline 
phase that could not be identified. These are most likely due to the remains of the organic 
residues and the beginning of the crystallization of some inorganic phases. In contrast the 
XRPD data from the sample fired at 900°C (Figure 4.4) shows the presence of a pure 
crystalline phase of cubic Y2O3:Eu3+. XRPD data from the 600°C sample (Figure 4.2) 
showed very little evidence of crystalline phases with broad background peaks again 
suggestive of much amorphous material with just some small amounts of an unidentified 
crystalline phase. The XRPD data of the 700°C, 800°C temperatures not presented showed 
intermediate behaviour. From this evidence firing temperatures of 650°C and 900°C were 
chosen for the studies presented in this thesis 
 
4.3    Experimental production of phosphors by using----Micelle methods  
The procedure used in this work was thus based on a method reported in the literature 
entitled “Facile self assembly of yttrium oxide and europium phosphor from solution 
using a sacrificial micelles phase [1].” This paper describes a method for preparing the red 
emitting phosphor Y2O3:Eu3+ using a self assembling micelle mechanism. The resulting 
white powder has smaller sized particles than the commercial Y2O3:Eu3+ phosphors and 
has luminescent properties comparable to commercial cathodoluminescent products at low 
exaction voltages. From the experiments set out in section 4.2.3, sets of experiments based 
on these were carried out at and fired at 650°C and 900°C. The following 36 samples were 
prepared in the synthesis of small particle yttrium oxide type phosphors from solution 
using a sacrificial micellar phase as a combustion fuel as follows where the rare earth 
metal chlorides were first formed in solution: 
1. [(Y, Eu)Cl3]  - (C16H33NH3Cl)-6 experiments in the ratio of 
        1:1, 1:2, 1:3 with ethanol (3 fired at 900°C and 3 fired at 650°C). 
2.     [(Y, Eu)Cl3] - (C16H33NH3Cl)-6 experiments in the ratio of  
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        1:1, 1:2, 1:3 with methanol (3 at 900°C and 3 at 650°C). 
3.       [(Y, Eu)Cl3] - (C12H25NH3Cl)-6 experiments in the ratio of  
         1:1, 1:2, 1:3 with ethanol (3 at 900°C and 3 at 650°C). 
4.      [(Y, Eu)Cl3] - (C12H25NH3C1)-6 experiments in the ratio of 
         1:1, 1:2, 1:3 with methanol (3 at 900°C and 3 at 650°C). 
5.      [(Y, Eu)Cl3] - (C8H17NH3Cl)-6 experiments in the ratio of 
         1:1, 1:2, 1:3 with ethanol (3 at 900°C and 3 at 650°C). 
6.      [(Y, Eu)Cl3] - (C8H17NH3Cl)-6 experiments in the ratio of  
         1:1, 1:2, 1:3 with methanol (3 at 900°C and 3 at 650°C). 
 
Next the experimental details of each of the above listed experiments are presented:-   
 
4.4    Experiment 8. The materials prepared using- (C16H33NH3Cl) with ethanol. 
Preparations of [(Y, Eu)Cl3] - (C16H33NH3Cl)n (for n = 1, 2, 3) with ethanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3]  - (C16H33NH3Cl) was produced based  on using 25 mL  
of EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) +1.215 g of 
(C16H33NH3Cl). The Micelles were = [(Y, Eu)Cl3]  - (C16H33NH3Cl) present as a 
yellow soapy mass product. 

2. 1:2 solution of [(Y, Eu)Cl3] - (C16H33NH3Cl) was produced based on using 25 mL  
of  EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) + 2.430 g of 
(C16H33NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C16H33NH3Cl) results in a yellow soapy 
mass product. 

3. 1:3 solution of [(Y, Eu)Cl3]  - (C16H33NH3Cl) was produced based on using 25 mL 
of EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) + 3.645 g of 
(C16H33NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C16H33NH3Cl) results in a yellow soapy 
mass product. 

The yellow soapy mass was washed with acetone and recrystallised from ethanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution was allowed to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced till it became a viscous  
solution .3 samples with the material ratio 1:1, 1:2 and 1:3 of the viscous products were 
fired in a crucible in a furnace for 30 min at 650°C. The remaining 3 samples with the 
material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace 
for 30 min at 900°C. This allowed the combustion of the   alkylammonium chains to form 
white powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 
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4.4.1    Experiment 8a. The materials prepared using- (C16H33NH3Cl) with methanol 
Preparations of [(Y, Eu)Cl3] - (C16H33NH3Cl)n (for n = 1, 2, 3) with methanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3] - (C16H33NH3Cl) was produced based on using 25 mL 
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH) +  1.215 g of 
(C16H33NH3Cl) Micelle  = [(Y, Eu)Cl3] - (C16H33NH3Cl) results in a yellow soapy 
mass product. 

2. 1:2 solution of [(Y, Eu)Cl3] - (C16H33NH3Cl) was produced based on using 25 mL  
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH) + 2.430 g of 
(C16H33NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C16H33NH3Cl) results in a yellow soapy 
mass product. 

3. 1:3 solution of [(Y, Eu)Cl3]   - (C16H33NH3Cl) was produced based on using 25 mL 
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH)  + 3.645 g of 
(C16H33NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C16H33NH3Cl) results in a yellow soapy 
mass product. 

The yellow soapy mass was washed with methanol and recrystallised from methanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution continued to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced to a viscose solution. 
3samples with the material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a 
crucible in a furnace for 30min at 650°C. The remains 3 samples with the material ratio 
1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace for 30min at 
900°C, This allowed the combustion of the   alkylammonium chains to form white 
powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 
 
4.5    Experiment 9. The materials prepared using- (C12H25NH3Cl) with Ethanol 
Preparations of [(Y, Eu)Cl3] - (C12H25NH3Cl)n (for n = 1, 2, 3) with ethanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3]  - (C12H25NH3Cl) was produced based on using 25 mL 
of EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) + 1.215 g of 
(C12H25NH3Cl) Micelle  = [(Y, Eu)Cl3]   - (C12H25NH3Cl) results in a yellow soapy 
mass product. 

2. 1:2 solution of [(Y, Eu)Cl3]  - (C12H25NH3Cl) was produced based on using 25 mL  
of EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) + 2.430 g of 
(C12H25NH3Cl) Micelle  = [(Y, Eu)Cl3]  -(C12H25NH3Cl)  results in a yellow soapy 
mass product. 

3. 1:3 solution of [(Y, Eu)Cl3]  - (C12H25NH3Cl)  was produced based on using 25 mL  
of EuCl3 +25 mL of YCl3  +  20 mL of ethanol (C2H5OH) + 3.645 g of 
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(C12H25NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C12H25NH3Cl) results in a yellow soapy 
mass product. 

The yellow soapy mass was washed with acetone and recrystallised from ethanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution continued to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced to a viscose solution. 3 
samples with the material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a 
crucible in a furnace for 30min at 650°C. The remains 3 samples with the material ratio 
1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace for 30min at 
900°C, This allowed the combustion of the   alkylammonium chains to form white 
powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 

 
4.5.1   Experiment 9a .The materials prepared using - (C12H25NH3Cl) with          
Methanol 
Preparations of [(Y, Eu)Cl3] - (C12H25NH3Cl) n (for n = 1, 2, 3) with methanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3]  (C12H25NH3Cl) was produced based on using  25 mL 
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH) + 1.215 g of 
(C12H25NH3Cl) Micelle = [(Y, Eu)Cl3]  - (C12H25NH3Cl) results in a yellow soapy 
mass product. 

2. 1:2 solution of [(Y, Eu)Cl3]  - (C12H25NH3Cl) was produced based on using  25 mL 
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH) + 2.430 g  of 
(C12H25NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C12H25NH3Cl)  results in a yellow soapy 
mass product.  

3. 1:3 solution of [(Y, Eu)Cl3]  - (C12H25NH3Cl)  was produced based on using 25 mL  
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH)  + 3.645 g of 
(C12H25NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C12H25NH3Cl) results in  a yellow soapy 
mass product. 

The yellow soapy mass was washed with methanol and recrystallised from methanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution continued to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced to a viscose solution. 3 
samples with the material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a 
crucible in a furnace for 30 min at 650°C. The remains 3 samples with the material ratio 
1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace for 30 min at 
900°C, This allowed the combustion of the   alkylammonium chains to form white 
powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 
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4.6     Experiment 10. The materials prepared using - (C8H17NH3Cl) with Ethanol. 
Preparations of [(Y, Eu)Cl3]  - (C8H17NH3Cl)n (for n = 1, 2, 3) with ethanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3]  -(C8H17NH3Cl) was produced based on using 25 mL  
of EuCl3 +25 mL of YCl3 + 20 mL of ethanol (C2H5OH) + 1.215g of 
(C8H17NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C8H17NH3Cl) results in a yellow soapy 
mass product. 

2. 1:2 solution of [(Y, Eu)Cl3] - (C8H17NH3Cl) was produced based on using 25mL  
of EuCl3 +25 ml of YCl3 + 20 mL of ethanol (C2H5OH) + 2.430g of (C8H17NH3Cl) 
Micelle  = [(Y, Eu)Cl3] - (C8H17NH3Cl) results in a yellow soapy mass product. 

3. 1:3 solution of [(Y, Eu)Cl3]  - (C8H17NH3Cl) was produced based on using 25mL  
of EuCl3 +25 mL of YCl3 + 20 mL of ethanol (C2H5OH) + 3.645g of 
(C8H17NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C8H17NH3Cl) results in a yellow soapy 
mass product. 

The yellow soapy mass was washed with acetone and recrystallised from ethanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution continued to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced to a viscose solution. 3 
samples with the material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a 
crucible in a furnace for 30min at 650°C. The remains 3 samples with the material ratio 
1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace for 30 min at 
900°C, This allowed the combustion of the   alkylammonium chains to form white 
powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 
 
4.6.1  Experiment 10a. The materials prepared using- (C8H17NH3Cl) with Methanol. 
Preparations of [(Y, Eu)Cl3] - (C8H17NH3Cl)n (for n = 1, 2, 3) with methanol based as 
follows:- 

1. 1:1 solution of [(Y, Eu)Cl3]  - (C16H33NH3Cl) was produced based on using 25mL  
of EuCl3 +25 mL of YCl3  + 20 mL of methanol (CH3OH) + 1.215 g of 
(C8H17NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C8H17NH3Cl) results in a yellow soapy 
mass product. 

2. 1:2 solution of [(Y, Eu)Cl3]  - (C8H17NH3Cl) was produced based on using 25mL 
of EuCl3 +25 mL of YCl3+ 20 mL of methanol (CH3OH) + 2.430g of 
(C8H17NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C8H17NH3Cl) results in a yellow soapy 
mass product. 

3. 1:3 solution of [(Y, Eu)Cl3]  - (C8H17NH3Cl) was produced based on using 25mL  
of EuCl3 +25 mL of YCl3 + 20 mL of methanol (CH3OH)  + 3.645 g of 
(C8H17NH3Cl) Micelle  = [(Y, Eu)Cl3]  - (C8H17NH3Cl) results in a yellow soapy 
mass product. 
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The yellow soapy mass was washed with methanol and recrystallised from methanol. The 
alkylammonium chlorides crystallized into thin soft laths. The solution was warmed to 
85°C on a hot plate. The solution continued to boil at 100°C and then the yellow soapy 
mass changed to white solution. The solution volume was reduced to a viscose solution. 3 
samples with the material ratio 1:1, 1:2 and 1:3 of the viscous product were fired in a 
crucible in a furnace for 30min at 650°C. The remains 3 samples with the material ratio 
1:1, 1:2 and 1:3 of the viscous product were fired in a crucible in a furnace for 30 min at 
900°C. This allowed the combustion of the   alkylammonium chains to form white 
powders. These white powders were the end products and their characterization and 
properties are reported in the following chapters. 
 
 
 

 
                                  
         Figure 4.1  XRD of C12H25NH3Cl prepared from ethanol and than fired at 500°C. 
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Figure 4.2  XRD of C12H25NH3Cl prepared from ethanol and than fired at 600°C. 

 
Figure 4.3  XRD of C12H25NH3Cl prepared from ethanol and than fired at 800°C. 
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Figure 4.4  XRD of C12H25NH3Cl prepared from ethanol and than fired at 900°C. 
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 Chapter Five  

5.0 Y2O3:Eu3+ phosphors from the [(Y, Eu)Cl3] - 
(C16H33NH3Cl) precursor materials 
 

5.1   Introduction  

Over the last fifteen years there has been continual interest on the synthesis and 
properties of phosphors made up of sub micrometer sized particles [1-20]. Our group 
and others have published widely on the urea homogeneous precipitation method of 
preparing the cubic Y2O3:Eu3+ phosphor [2-18]. One of the problems with making such 
sub micrometer sized particles is that during annealing of the precursor particles at 
high temperatures (often necessary for good crystallite quality and hence emission 
properties) the particles tend to sinter. One way to partially alleviate this problem is to 
synthesise the particles as rapidly as possible at a high temperature. A method that has 
been explored for this purpose is combustion synthesis using an organic fuel that is 
ignited when a crucible or other vessel containing the phosphor precursors and the fuel 
is placed in a furnace that is already at 900°C. The fuel ignites and raises the 
temperature in the vessel very quickly. The first report [1] of facile self-assembly of 
the red emitting phosphor yttrium oxide europium (Y2O3:Eu3+) from solution using a 
sacrificial micellar phase appeared in 1999. The micellar phase was assembled using 
the alkylammonium chloride salt (C12H25NH3Cl) in an ethanolic solution. The 
resulting fine powder had smaller particles, ranging in size from 0.1 to 1.0 µm, than 
the commercial cubic Y2O3:Eu3+ phosphor [1]. The results discussed in this chapter 
were obtained using a more sophisticated way to control the rate of crystallization of 
the phosphor particles. This was to vary the ratio of phosphor precursor to fuel 
(C16H33NH3Cl). In theory the presence of more fuel around the phosphor precursor 
should facilitate/influence the combustion process and possibly lead to more 
crystalline products. In this chapter a longer chained alkylammonium hydrochloride 
(C16H33NH3Cl) was used as fuel and now the affect of varying the ratio of this to the 
[(Y, Eu)Cl3] precursor on the cathodeluminescence (CL) and photoluminescence (PL) 
properties of the resulting phosphors is discussed. 
The following systems were studied;- 
1.  [Y,Eu]Cl3 - (C16H33NH3Cl) -6 experiments in the ratio of 
        1:1, 1:2, 1:3 with ethanol (3 samples fired at 650°C and 3 fired at 900°C). 

2. [Y,Eu]Cl3 - (C16H33NH3Cl) -6 experiments in the ratio of 
        1:1, 1:2, 1:3 with methanol (3 samples fired at 650°C and 3 fired at 900°C). 
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5.2    Experimental 
 
For the experimental technique the reader is referred to chapter 4 paragraph 4.4 
experiments 8/8a. Preparations of [Y, Eu] Cl3 - (C16H33NH3Cl) n (for n = 1, 2, 3) were 
carried out with ethanol and methanol. The muffle furnaces used in the preparations 
though having chimneys for waste gases to pass through did not have air circulation 
other than the chimneys. The furnace used for the phosphor samples prepared from 
ethanol fired at 900°C samples (D, E and F) had a chimney with a diameter of 3 cm, 
whereas that used for the three repeat combustions samples 54, 55 and 56 had a 
diameter of 1 cm, and this is important in understanding the synthesis of monoclinic 
Y4O5Cl:Eu3+ which is a fairly new phosphor. Attenuated total reflectance (ATR)-
Fourier transform infrared (FTIR) spectra were obtained using a Perkin Elmer 
Spectrum One FTIR spectrometer. Raman spectroscopy was performed in order to 
probe the structure and composition of the lattices [21]. The spectra were obtained 
using a Horiba Jobin Yvon Labram HR spectrometer in conjunction with an Olympus 
BX40 microscope to facilitate the examination of particles of micrometre dimensions.  
The exciting radiation was provided by a helium-neon laser operating on the 632.8 nm 
line and the Raman scattered light was measured with a Peltier-cooled CCD detector 
after the Rayleigh line had been rejected by a notch filter (see chapter 3 paragraph 3.6). 
The crystalline phases of the products were determined by X-ray powder diffraction 
(XRPD) using a Bruker D8 Advance X-ray powder diffractometer fitted with a nickel-
filtered copper source and a LynxEye™ silicon strip detector (for details see chapter 3 

ref 32).  Data were recorded from 5 to 100 2° at 20°C. The diffractometer was 
previously calibrated using an aluminium oxide line position standard from Bruker and 
LaB6 NIST SRM 660a line profile standard.  The emission of the nickel filtered Cu 
source and hence the instrumental line broadening was determined by fitting the NIST 
standard using Bruker Topas version 3.  Phases in the combusted products were 
identified from the XRD patterns by peak search matching using the ICCD PDF-2 data 
files.  The identifiable phases were refined using Bruker Topas version 3. Their degree 
of disorder/order and their crystallite sizes were also studied [22].  Diffractograms 
were collected using the fired powders in a conventional holder, or mounted on an 
aluminium pin stub or on an aligned silicon substrate [23, 24].Field emission scanning 
electron microscopy (FESEM) was used to study the microstructure of the samples 
using a Zeiss Supra VP 35 instrument.  The samples were mounted on carbon tabs 
attached to aluminium pin stubs and sputter coated with a thin conducting layer of 
gold. The PL excitation and emission spectra were obtained using a Bentham 
(Reading, UK) M300 programmable spectrophotometer equipped with a 1800 
lines/mm grating with computer controlled wavelength scanning and  
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intensity data collection.  The stepping motor and sine drive allow wavelength 
scanning to be completely controlled from a remote stepping drive unit (SMD3B).  
Samples for excitation and emission were contained inside an in-built sealed chamber 
connected to the M300 monochromator via a fibre-optic bundle. The CL measurement 
data and spectra were undertaken using a high-vacuum (5 x 10-7 Torr) chamber with a 
Kimball Physics Inc. (Walton, USA), model EGPS-7 electron gun. The CL luminance 
measurements were obtained by means of a Jeti spectroradiometer (Specbos 1201, Jeti 
Technische Instrument GmbH, Jena, Germany).  The phosphor screens were excited 
with electron beam energies from 1000 to 5000V, and emission currents from 1.1 to 
9.8µA/cm2, with an electron beam spot size of 9 mm for defocused measurements and 
1.41 mm for the focussed measurements. For some of the samples, CL emission and 
excitation spectra were obtained using the Bentham system previously described 
except that the fibre optic bundle was disconnected from the in-built sealed chamber 
and attached to a telescope (TEL 301D).For the CL luminance measurements and 
spectra of the prepared samples phosphor screens were prepared in the following 
manner.  After cleaning the aluminium pin stubs in an ultrasonic bath containing 
ethanol, followed by drying in an oven at a temperature of 100°C they were weighed. 
A stub was then placed in an electrochemical cell containing an ultrasonically 
dispersed solution of the phosphor powder (0.5g), in an electrolyte solution of 
magnesium nitrate (0.075g/L) and isopropanol (50ml).  The stub was positioned with 
its flat surface forming a meniscus with the surface of the phosphor/electrolyte solution 
and also acting as an electrode, the counter electrode being a strip of magnesium 
ribbon.  A field of 300V was applied facilitating the coating of the stub by electrode 
position. This procedure was repeated until all the stubs were coated with 3mg 
(±0.1mg) of phosphor.  After drying the stubs at 100°C they were introduced into the 
vacuum chamber for CL measurements. 
 

5.3. Results and Discussion 

5.3.1. Appearance of Products prepared with methanol and ethanol at 
temperatures of 650°C. 
 
5.3.1.1   Sample appearance:- Products (samples) prepared with methanol and 
ethanol at a temperature of 650°C were observed to be light grey in colour, where as 
the samples prepared at 900°C were all white powders. Under 254nm excitation the 
samples prepared at 650°C displayed a weak red luminescence which was in contrast 
to the strong red luminescence from the samples prepared at 900°C that is  
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characteristic of the Eu3+ ion in cubic Y2O3. The strongest red luminescence comes 
from 1:3 material sample ratios. 
 
5.3.1.2   SEM Studies: - Firstly the samples prepared from methanol and ethanol at 
650°C.  In Figure 5.1 FESEM micrographs of Y2O3:Eu3+ phosphor  samples annealed 
at 650°C prepared from metal chloride to alkylammonium chloride ratios of 1:1 (a and 
b), 1:2 (c and d) and 1:3 (e and f) in methanol are presented.  It can be seen that a 
number of morphological forms are present, the variety of these forms increase with 
higher alkylammonium chloride (micelle) concentration.  This is evident from the 
images of the material formed from the 1:1 ratios in Figure 5.1a and b where large 
straw-like sheets are shown to be formed from intergrowths of thin needles that have 
dimensions of approximately 20 to 30nm in width by 200nm in length.  The material 
prepared from the 1:2 ratios presented in Figure 5.1 c and d have needles that have 
formed into slightly rounded structures.  Progressing to the final SEMs in Figure 5.1 of 
the material prepared from the 1:3 ratios; they show the micelles have left behind 
evidence of their existence as tubules; these structures have assembled into large 
lamellar sheets that in these images are two structural units in thickness.  The 
spherical, tubular and lamellar structures display remnant micellar morphologies, 
although they are much larger in dimensions than those that are commonly associated 
with micelles. Nevertheless it is obvious that the samples heated to 650°C retain 
morphological structures that were caused by the organic sheaths that formed around 
their inorganic precursors in the original methanolic solutions. It can be seen in Figure 
5.1(b and d) that the crystallites are all small with one or more dimensions less than 
50nm. In Figure 5.2A and 5.2B, FESEM micrographs of samples annealed at 650°C 
prepared from metal chloride to alkylammonium chloride ratios of 1:1 (a and b), 1:2 (c 
and d) and 1:3 (e and f) in ethanol are presented.  Again it can be seen that a number of 
morphological forms are present, and again the variety of these forms increase with 
higher alkylammonium chloride (micelle) concentration. This is evident from the 
images of the material formed from the 1:1 ratios in Figure 5.2a and b where large 
straw-like sheets are shown to be formed from intergrowths of thin needles that have 
dimensions of approximately 20 to 30nm in width by 200nm in length. Progressing to 
the final SEMs in Figure 5.2B of the material prepared from the 1:3 ratios; they also 
show the micelles have left behind evidence of their existence as tubules; these 
Structures have assembled into large lamellar sheets that in these images are two 
structural units in thickness similar to those observed in Figure 5.1.   
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(a)                                                                       (b) 

      
(c)                                                                        (d) 

      
 

(e)                                                                             (f) 
 

 
Figure 5.1  FESEM micrographs of phosphor samples fired at 

650°C prepared from methanol at metal ion to alkylammonium chloride ratios of (a and b) 1:1, 
(c and d) 1:2, (e and f) 1:3, In a, c and f the bar is 1µm, and in b and d it is 200nm 

and in e it is 2 µm. 
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(a) 1:1                                                         (b)  1:1 

            

                              (c) 1:1                                                     (d) 1:1 

           

(e) 1:1                                                               (f) 1:1 

Figure 5.2A  FESEM micrographs of  phosphor samples fired at 650°C prepared from ethanol 
at metal ion  to alkylammonium chloride ratios of:- (a,b,c,d,e, and f.) 1:1.In a, the bar is 

2 µm, in b and d it is1µm, in c and e it is 200nm and in f it is 100nm. 
 

Structures have assembled into large lamellar sheets that in these images are two 
structural units in thickness similar to those observed in Figure 5.1.  In many of the 
SEMs presented in Figures 5.2A and 5.2B it can be seen that there is evidence of 
structures where the surfaces appear to be smooth suggesting they neared meltdown 
this is thought to be due to the presence of ethanol rather than methanol (see Figure 
5.1) driving the surface temperature higher during the synthesis. It is only a surface 
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effect as the XRPD data (see below) show no evidence for the high temperature cubic  
Y2O3:Eu3+ phase.  
 

           

                            (g) 1:2                                                         (h) 1:2  

            

(i)1:2                                                                   (j) 1:3 

          

         (k) 1: 3                                                                            (l) 1:3  

Figure 5.2B   FESEM micrographs of  phosphor samples fired at 650°C prepared from ethanol 
at metal ion to alkylammonium chloride ratios of:- (g,h and i) 1:2 and (j, k and l) 1:3.  In h the 

bar is 1µm, in i, j and l it is 200nm. In g and k it is 2 µm. 
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5.3.2    Sample structures (from XRPD data):-  
 
The XRPD diffractograms of the samples that were produced under the 650°C 
conditions from the methanolic solutions (1:1, 1:2 and 1:3 ratios) are shown in Figures 
5.3a-c.  At first sight they point to the presence of a large amount of amorphous 
material.  However, it is clear from transmission electron microscopy that the samples 
contain a large amount of crystalline material of 1-5 nm dimensions.  Tetragonal YOCl 
was considered as a candidate material for the product; since these were carried out 
thermogravimetric analysis of YCl3 to show that it decomposes to tetragonal YOCl 
when heated in air at 650°C which is also consistent with the literature (see section 
5.4.5 Thermal methods).  However, fits of the XRPD data for the samples produced 
from metal ion to alkylammonium chloride ratios of 1:1, 1:2 and 1:3 clearly indicated 
that the products were not tetragonal YOCl [25,26], but were nanocrystalline 
rhombohedral YOCl [27] instead (see Figures 5.3a-c). The experimental XRPD 
diffractograms are shown by the grey traces, which are superimposed on the fits, 
shown by a solid black line, in each case.  The residuals of a subtraction of the fit from 
the experimental data are given below the superimposed fit/data traces in each case.  
The fits of the XRPD diffractograms for the products resulting from the 1:1 and 1:3 
metal ion to alkylammonium chloride ratios (see Figures 5.3a and 5.3c) give crystallite 
sizes of 1.0 and 0.9 nm, respectively.  It is apparent that the very broad reflections in 
these diffractograms arise from extremely small crystallite sizes of the rhombohedral 
YOCl. The diffractograms obtained from the product of the combustion of the 
precursor having a  1:2 metal ion to alkylammonium chloride ratios (see Figures 5.3b) 

also exhibits sharper reflections at 2 values of 10.3 and 35.4°.  A Pawley fit of this 
diffractograms (see Figure 5.3b) indicates the presence of rhombohedral YOCl with 
two different average nanocrystallites sizes, one (43 wt. %) having a very small 
dimension of 1.5 nm giving rise to very broad reflections and the other (57 wt. %) 
having a larger dimension of 27.9 nm giving rise to sharper reflections.  Broadening of 
lines in an XRPD diffractograms to a similar extent was reported previously for ZnS: 
Mn quantum dots and the crystallite sizes were reported to be 1.5 nm from fitting the 
XRPD data [28].  There was no evidence for cubic Y2O3:Eu3+ in these data. In the 
samples prepared from ethanol (Figure 5.4) there is evidence of different crystalline 
phases from that prepared from methanol, and again there is evidence of amorphous 
material. Again there was no evidence for cubic Y2O3:Eu3+ in these XRPD plots. The 
data in fact fit two phases of YOCl and there is evidence for a third material that is 
found in more abundance in the material fired at 900°C (see further on in this chapter) 
which is Y4O5Cl2 see Table 5.1. All of these chloride containing phases were 
unexpected and will be discussed in detail further on in this chapter.  
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Figure 5.3   XRPD diffractograms of the [Y,Eu]Cl3 - (C16H33NH3Cl) samples  annealed at 
650°C, metal ion to alkylammonium chloride ratios: (a) 1:1, (b) 1:2, and (c) 1:3 all prepared 

from methanolic solution. 
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Sample 51 

 

Sample 52 



Chapter 5    Y2O3:Eu3+ phosphors from the  
                        [(Y, Eu) Cl3]- (C16H33NH3Cl)  
 

 

95 

 

 

Sample 53 
                                                                  
 
 
Figure 5.4  XRPD diffractograms of the samples [Y,Eu]Cl3 - (C16H33NH3Cl)  annealed at 
650°C,  prepared from ethanolic solution, metal ion to alkylammonium chloride ratios; 1:1 
(red), 1:2 (blue) and 1:3 (green). 
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Table 5.1 Cell parameters for the yttrium oxy chloride phases found in the 
materials fired at 650°C prepared from ethanol.  
 

 1:1 1:2 1:3 

Yttrium oxide 
chloride YOCl 
P4/nmm 

a= 3.90533(35)(Å) 
c= 6.5983(10) (Å) 

a= 3.87830(84)(Å) 
c= 6.36665(Å) 

 

a= 3.8777069 (Å) 
c= 6.3869142 (Å) 

 

Yttrium oxide 
chloride YOCl    
R-3m        

a= 3.78237(59)(Å) 
c= 28.0580(34)(Å) 

 

a= 3.72307(Å) 
c=28.04235(Å) 

 

a= 3.7693671(Å) 
c= 28.0829709(Å) 

 

Y4O5Cl2   Phase a= 6.5148(11)(Å) 
b= 6.3856(10)(Å) 
c=14.5917(27)(Å) 
beta= 96.000(15) 

a= 6.50651(Å) 
b= 6.36498 (Å) 
c= 14.51618(Å) 
beta= 96.1856 

a= 6.5269740(Å) 
b= 6.3742656(Å) 
c=14.5525525(Å) 
beta= 96.08302 

Yttrium oxide 
chloride YOCl 
P4/nmm [25] 

a= 3.903(2)   
c= 6.597 (4) 
 

  

Yttrium oxide 
chloride YOCl  
P4/nmm [26] 

a= 3.900(2)   
c= 6.604(2)  
 

  

Yttrium oxide 
chloride YOCl  
R-3m [27] 

a= 3.7895 (5)  
c= 28.03 (1)  

  

 
 
 
5.3.3   Photoluminescent Spectra: - The PL excitation and emission spectra of the 
samples prepared at 650°C from methanolic solutions using 1:1, 1:2 and 1:3 ratio 
products are displayed in Figure 5.5.   They support the XRPD data; they have similar 
spectral features of varying intensities yet they are different to that of cubic Y2O3:Eu3+.  
The excitation spectra of all the above products have low intensity with the strong, 
broad Eu3+ - O2- charge transfer band observed around 250nm in cubic Y2O3:Eu3+ 
being particularly weak, the bands at 395 and 462nm are other prominent features in 
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these excitation spectra. In the very weak emission spectra of these samples, the 
strong, sharp emission band at 611nm in cubic Y2O3:Eu3+ due to the 5Do → 7F2 
transition is observed only in the spectrum of the 1:1 ratio sample, and is absent for the 
higher ratio samples where a broader band centred at approximately 615nm is seen.  
Also absent in all three samples are the set of emission peaks with a maximum at 
709nm due to the 5Do → 7F4 of the Eu3+ ion in cubic Y2O3. The ratio of the bands 
around 630nm and 700nm compared to those in figure 5.6 below are in agreement with 
the different crystalline phases present in Figures 5.3 and 5.4. The predominant 
emission bands in Figure 5.6B are located around 630.5 nm and are shape and more 
intense than those in Figure 5.5b. This value agrees well with literature values for 
YOCl [28, 29, 30] 
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Figure 5.5 (a) Photoluminescent excitation spectra obtained by monitoring the emission at 615 
nm, and (b) emission spectra of the 650°C samples from methanolic solution, excitation 

wavelength 254nm.  
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In Figures 5.6A and 5.6B  the  PL excitation and emission spectra of the samples 
prepared at 650°C using 1:1, 1:2 and 1:3 ratio products prepared in ethanol are 
displayed.   They support the XRPD data; their excitation spectra are all similar and 
are different to those in Figure 5.5 in addition their emission spectra manifest similar  
features with some simplification in the 1:2 and 1:3 ratio products. However in all 
cases the emission spectra in Figure 5.6 manifest much sharper lines than those in 
Figure 5.5 As these spectra originate near the surfaces of the material they may hold a 
clue to the surface phase that was seen to be present in the SEMs in Figure 5.2.  There 
are some small peaks around 611 in all three emission spectra in Figure 5.6 which may 
indicate the presence of a small amount of cubic Y2O3:Eu3+. As stated above the 
differences between Figures 5.5 and 5.6 are in agreement with the different crystalline 
phases present in Figures 5.3 and 5.4. The predominant emission bands in Figure 5.6B 
are located around 620.5 nm, and the intensities of the emissions in this area are much 
greater than those around 700nm, this is again in keeping with the presence of 
Y4O5Cl2.  
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Figure 5.6A  An overlay of the photoluminescent excitation spectra of the 650°C samples 
prepared from ethanolic solution obtained by monitoring the emission at 615 nm. Excitation 

spectra 1:1 (Black) Top, 1:2 (Red), and 1:3 (Green) (monitored at 627nm). 
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Figure 5.6B  Photoluminescent emission spectra of the 650°C samples prepared from ethanolic 
solution, emission spectra 1:1 (Top), 1:2 (Centre), 1:3 (Bottom). Excitation wavelength 

254nm. 
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5.3.4   Cathodoluminescence Spectra:-  
The CL (5000V, emission current 9.6μA) spectra of the samples prepared from 
methanolic solution at 650°C using the products produced from the 1:1, 1:2 and 1:3 
ratios, presented in figure 5.7 are shown to be different with the 1:3 products being 
closest to that of the cubic phase using defocused and focussed electron beams 
respectively. The CL data are the only data that show convincing evidence of the 
presence of cubic phase material in the samples fired at 650°C. This could be due to 
the high sensitivity of Cl to cubic Y2O3, but it is also more likely that nanoparticles of 
a precursor phase convert to cubic Y2O3 in the electron beam, (that is, the electron 
beam has sufficient energy to convert these particles into the cubic phase).  The sample 
prepared from the 1:3 reactant ratios showed almost complete conversion to the cubic 
phase, on account of this sample containing more fuel (a larger proportion of 
alkylammonium cations) and was probably close to complete conversion to the cubic 
structure even when fired at 650°C.These observations can be rationalised by a 
transformation from YCl3 to Y2O3 proceeding via mixed oxychloride species having 
an increasing O:Cl stiochometric ratio, as shown in equation (1): 
 
YCl3 → “YOCl” → “2YOCl.Y2O3” →“YOCl.Y2O3” → Y2O3                                  (1) 
 
Clearly, the higher the combustion temperature, the greater the O:Cl stoichiometry of 
the products, as the transformation shown by equation (1) proceeds.  This explains 
why the sample prepared from the 1:3 reactant ratios showed almost complete 
conversion to cubic Y2O3, since this sample contained more fuel (a larger proportion of 
alkylammonium cations) thus enabling a higher combustion temperature to be attained.  
This transformation from YCl3 to Y2O3 is consistent with literature reports of rare 
earth oxychloride species that have identical stoichiometries to the intermediates 
shown in equation (1).  In fact, the “YOCl” species has been reported as a compound 
crystallising in both PbFCl and YOF-type structures [31, 32].  Furthermore, both 
Y4O5Cl2 (≡ “2YOCl.Y2O3”) [33] and Y3O4Cl (≡“YOCl.Y2O3”) [34, 35] have also been 
reported. The Cl (5000V, emission current 9.6μA) spectra of the samples prepared 
from ethanol at 650°C using the products produced from the 1:1, 1:2 and 1:3 ratios are 
presented in Figures 5.8A and B. The spectra obtained using the focussed beam are all 
simplified compared to the defocused beam and in all three cases there is a little 
evidence of the cubic phase being formed in the beam. 
 
 



Chapter 5    Y2O3:Eu3+ phosphors from the  
                        [(Y, Eu) Cl3]- (C16H33NH3Cl)  
 

 

101 

 

300 400 500 600 700 800
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 (a)

1:3 650oC

1:2 650oC

1:1 650oC

Wavelength/ nm

In
te

ns
ity

 (
a

rb
ita

ry
 u

n
its

)

300 400 500 600 700 800
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
(b)

1:3 650oC

1:2 650oC

1:1 650oC

Wavelength/ nm

In
te

ns
ity

 (
ar

bi
ta

ry
 u

ni
ts

)

 
 

Figure 5.7 Cathodoluminescent spectra of the 650°C samples prepared from methanol: (a) 
defocused beam and (b) focused beam. 

 
This may be due to formation of some cubic Y2O3:Eu3+ in the focused electron beam. 
Again as in the methanol samples (Figure 5.7) the Cl data are the only data that show 
convincing evidence of the presence of cubic phase material in the samples fired at 
650°C. Again this may mean that the Cl is more sensitive to the cubic phase or may be 
due to the conversion of the samples to cubic in the electron beam. Again this is 
because the samples are made up of very small particles of a precursor phase to that of 
the cubic Y2O3:Eu3+ phosphor and the electron beam having sufficient energy to 
convert these particles into the cubic phase. The fact that the defocused beam results 
are similar to those of the photoluminescent emission spectra is in keeping with the 
presence of YOCl.  
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Figure 5.8A Cathodoluminescent spectra of the 650°C samples prepared from ethanolic 
solution; defocused beam, 1:1 (Top), 1:2 (Centre), 1:3(Bottom), at 5000V and 50uA. 
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Figure 5.8B  Cathodoluminescent spectra of the 650°C samples prepared from ethanolic 
solution; Focused beam, 1:1 (Top), 1:2 (Centre), 1:3 (Bottom) at 5000V and 50uA. 
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5.3.5   FTIR Spectra: - The FTIR spectral assignments of the samples prepared from 
ethanol and methanol at 650°C are summarised in Table 5.2, all show the presence of 
bands that can only be ascribed to the presence of metal hydroxycarbonate. Firstly for 
the samples prepared from methanolic solution at 650°C. Figures 5.9, 5.10A, 5.10B 
and 5.10C present FTIR spectra of these samples in the 3600 to 700 cm-1 range; the 
broad band observed in the region of 3600-3000 cm-1 is assigned to the O-H symmetric 
and antisymmetric stretching vibrations of water. The band observed at 1626 cm-1 is 
assigned to the bending vibration of water and the bands at 1515 and 1393 cm-1 are 
attributed to C-O antisymmetric stretching vibrations of CO3

2- anions [36].  
Furthermore, the weak band at 1092 cm-1 is assigned to a symmetric C-O stretching 
vibration of the CO3

2- anions [37].  The inhomogeneous broadening of the various 
vibrational bands in the spectra of these samples is due to the disorder within the 
lattices when the products are formed at 650°C.  It is not possible to identify bands due 
to Y-Cl stretching vibrations in these FTIR spectra as they are expected to appear 
below the low wavenumber cut-off at ca. 700 cm-1. The FTIR spectra of the samples 
(from the methanolic solutions) prepared at 650°C show the presence of bands that are 
ascribed to a mixture of Y0.98Eu0.02(OH)CO3 and unidentified chlorine containing 
species. The basic europium doped yttrium carbonate, Y0.98Eu0.02 (OH)CO3, could 
have been formed from the surface reaction of YCl3 with H2O and CO2 produced from 
the combustion of the alkylammonium cations, according to reactions (2) and (3). 
 
 
2YCl3  + 3H2O → (Y0.98Eu0.02)2O3    +   6HCl                                                (2) 
 
 
(Y0.98Eu0.02)2O3    +  2CO2   +   H2O →  2Y0.98Eu0.02(OH)CO3,                    (3) 
 
 
The most reasonable explanation taking into account also the SEM and XRD evidence 
is that the reactions (2) and (3) take place only on the surface and that this basic 
carbonate forms a crust over the YOCl nanoparticles. Thus as Y0.95Eu0.05(OH)CO3 was 
reported to lose most of its hydroxide to give (Y0.95Eu0.05)2O(CO3)2 and 
(Y0.95Eu0.05)2O2CO3 when it was calcined at 550°C for 1 h in a muffle furnace [38], it 
is likely that a similar decomposition occurred, albeit incompletely only in the crust, 
under the rapid combustion conditions at a set temperature of 650°C in the present 
work.   

 



Chapter 5    Y2O3:Eu3+ phosphors from the  
                        [(Y, Eu) Cl3]- (C16H33NH3Cl)  
 

 

105 

 

Table 5.2 Materials prepared at 650°C 

Wavenumber/cm-1  
     3600-3000   (m)                          ν (O-H) 
     1626  (w)                          δ (O-H)      
     1515  (m)                          νas (CO3

2-) 
     1393  (s)                          νas (CO3

2-) 
     1092  (w)                          δ (O-H) 
      ~760  (w shoulder on cut-off) δ (CO3

2-) 
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Figure 5.9  FTIR spectra of the [Y,Eu]Cl3 - (C16H33NH3Cl)  samples prepared from methanol 
with metal ion to alkylammonium chloride ratios: (a) 1:1, (b) 1:2 and (c) 1:3. (In KBr discs) 

fired at 650°C. 
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                      (c) 

Figure 5.10A   FTIR spectra of the [Y,Eu]Cl3 - (C16H33NH3Cl)  samples prepared from 
ethanol, with metal ion to alkylammonium chloride ratios 1:1 (a), 1:2 (b) and 1:3 

(c).(In  KBr discs) fired at 650°C.   
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 (c)  

Figure 5.10B   ATR, spectra of the [Y,Eu]Cl3 - (C16H33NH3Cl)  samples prepared from ethanol 
with metal ion to alkylammonium chloride ratios 1:1 (a), 1:2 (b) and 1:3 (c). 

Fired at 650°C.   
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Figure 5.10C   FTIR spectra of the [Y,Eu]Cl3 - (C16H33NH3Cl)   samples prepared from ethanol 
with metal ion to alkylammonium chloride ratios 1:1 (a), 1:2 (b) and 1:3 (c).( (In 

a KBr discs). Fired at 650°C.   
 
 
The FTIR spectra of the materials prepared from ethanol all show bands that are 
indicative of the presence of carbonate ions. These techniques are sensitive to the 
surfaces of the materials and indicate that the particle surfaces have reacted with CO2 

to form carbonate phases.    
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5.3.6   Raman spectral studies: - Raman spectra of the samples annealed at 650 and 
900°C for the 1:1 and 1:3 ratios are shown in Figure 5.11.  In Figure 5.11 (a) and (b) 
are the 650°C spectra that show there was not any significant residual chloride ions 
present. As can be seen from the Raman spectra shown in Figure 5.11, a strong Raman 
band at 377 cm-1 (arrowed in Figure 5.11) is absent when the phosphor nanoparticles 
are fired at 650°C (see Figure 5.11 a and b), but appears when the phosphor 
nanoparticles are fired at 900°C (see Figure 5.11 c and d).  This band is due to the 
cubic phase of Y2O3: Eu [37, 39-44].   In addition, a number of other strong bands also 
appear in Figures 5.11 (c and d); these are due to the photoluminescence of the 
Y2O3:Eu phosphors under 632.8 nm excitation. 
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Figure 5.11 Raman spectra of phosphor samples prepared from methanol at metal ion to 
alkylammonium chloride ratios of:- (a) 1:1, (b) 1:3 both annealed at 650°C, (c) 1:1 and (d) 1:3 

both annealed at 900°C. The exciting wavelength was equal to 632.8 nm. 
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1:1 650°C - (a)                                               
 
 
 

  
1:2 650°C - (b) 
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1:3 650°C- (c) 

Figure 5.12A Raman spectra of phosphor samples prepared from ethanol at metal ion to 
alkylammonium chloride ratios of: - (a) 1:1, (b) 1:2 (c) 1:3, annealed at 650°C. The exciting 

wavelength was equal to 632.8 nm. 
 
 

In the Raman spectra shown in Figure 5.12A, the strong Raman band at 377 cm-1 
(arrowed in Figure 5.11) is absent when the phosphor nanoparticles prepared from 
ethanol were fired at 650°C. However there are some Raman bands in the 1:1 materials 
in common in Figures 5.11(a) and 5.12A, whereas only one of these bands is apparent 
in Figures 5.11(b), 5.12A(b) and 5.12A(c). In Figures 5.12B (a) and (c) the Raman 
spectra show features in common. Unfortunately a good Raman spectrum could not be 
obtained from Figure5.12B(c).The best of these latter three spectra is presented in 
Figure 5.12B(a). This spectrum is repeated in figure 34 and is more conveniently 
discussed there in section 5.4.8. 
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Figure 5.12B Raman spectra of phosphor samples prepared at metal ion to alkylammonium 
chloride ratios of: - (a) 1:1, (51), (b) 1:2 (-52) and (c) 1:3 (53) from ethanolic solution then 

annealed at 650°C. The exciting wavelength was equal to 1064 nm. 
 
5.3.7 Conclusions so far:- It is clear from these results so far that the presence of the 
combustion fuel in the samples prepared at 650°C was insufficient to raise the 
temperature high enough to form the cubic Y2O3:Eu3+ phase or that the furnace 
temperature was insufficient.  All the 650 °C FTIR spectra are similar, although the 
emission spectra do indicate that for the higher fuel ratios that a greater degree of order 
is found. The samples prepared from both methanol and ethanol are consistent with the 
presence of chloride containing phases; predominantly there is evidence for YOCl. 
 
5.4 Studies on the samples produced at 900°C   
 
5.4.1   Appearance of products prepared with methanol and ethanol at a 
temperature of 900°C.  
 
 5.4.1.1 SEM Studies: - The phosphor samples annealed at 900°C are now discussed.  
In Figure 5.13 SEM micrographs of phosphor samples prepared from methanol 
solutions then fired at 900°C at metal chloride to alkylammonium chloride ratios of 1:1 
(a and b), 1:2 (c and d) and 1:3 (e and f) are presented.  It is interesting to note that the 
same morphological forms and the individual crystallites of the 650°C 1:1 and 1:2 
samples are present in the 900°C 1:1 sample and the remnant micellar forms of the 
650°C 1:3 sample are present in the higher temperature 1:2 sample.  The 900°C 1:3 
sample is shown to have undergone sintering that has eliminated some of the fine 
remnant micellar structures, therefore the higher temperature and metal chloride to fuel 

Raman Wavenumber/cm‐1 



Chapter 5    Y2O3:Eu3+ phosphors from the  
                        [(Y, Eu) Cl3]- (C16H33NH3Cl)  
 

 

121 

 

ratio has been sufficient to raise the temperature significantly. However even in firing 
temperatures in excess of 900°C the samples retain morphologies that were either 
imposed on them by the original micellar environments their inorganic precursors form 
in, or that were derived from those original environments.   
 

      
                 (a)                                                                          (b) 

      
                        (c)                                                       (d) 

      
               (e)                                                              (f) 
Figure 5.13 FESEM micrographs of phosphor samples prepared from methanol solutions then 
fired at 900°C prepared at metal chloride to alkylammonium chloride ratios of (a and b) 1:1, (c 
and d ) 1:2, and (e and f) 1:3, In d and e the bar is 1µm, and in b and f it is 200nm and in a and 

c it is 2 µm. 
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            1:1-D (Bar = 2μm)                                      1:1-D (Bar = 200nm)                                           

      

       1:2-E (Bar = 2μm)                                          1:2-E (Bar = 200nm) 

      

                  1:3-F (Bar = 2μm)                                       1:3-F (Bar = 200nm) 

Figure 5.14-A     Samples D, E, F- 900°C with ethanol. FESEM micrographs of phosphor 
samples fired at 900°C prepared from ethanol solutions then fired. Metal chloride to 

alkylammonium chloride ratios of: 1:1-D, 1:2-E and 1:3-F; 
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            1:1-54 (bar = 1μm)                                              1:1-54 (bar = 200nm) 

      

             1:2-55 (bar = 1μm)                                              1:2-55 (bar = 20μm) 

       

1:3-56 (bar = 1μm)                                              1:3-56 (bar = 10μm) 

Figure 5.14-B     Samples 54, 55, 56 - 900°C with ethanol. FESEM micrographs of phosphor 
samples fired at 900°C prepared from ethanol solutions then fired at metal chloride to 

alkylammonium chloride ratios of: 1:1-54,  1:2 -55 and  1:3-56. 

In Figure 5.14A SEM micrographs of phosphor samples prepared from ethanol 
solutions then fired at 900°C at metal chloride to alkylammonium chloride ratios of 
1:1, 1:2  and 1:3 are presented. All of these three samples were prepared in a muffle 
furnace with a wide chimney 3cm diameter.  In these samples the SEMs show small 
sub micron crystals that form as two dimensional sheets suggesting that they were 
formed from the two dimensional extended micelle sheets.  
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The three samples presented in figure 5.14B were prepared in a different muffle 
furnace with a much narrower chimney (1 cm diameter). In the SEMs in figure 5.14B 
of the 1:1 sample there are many ovoid type shapes that may have originated from 
micellular interiors. In the higher ratio samples there is much evidence of crystal forms 
though they are often arranged in sheets again possibly showing their regrowth from 
micellular two and three dimensional structures. The 900°C 1:3 sample is shown to 
have undergone sintering that has eliminated some of the fine remnant micellular 
structures, therefore the higher temperature and metal chloride to fuel ratio has been 
sufficient to raise the temperature significantly compared to the 650°C samples. 
 
5.4.2  Sample structures (from XRPD data):- All the samples that were produced 
under the 900°C conditions from methanol solution showed the presence of crystalline 
material and all showed a similar XRPD (see Figure 5.15) pattern identified as cubic 
Y2O3:Eu3+. [PDF 251011], as exemplified by the diffractograms of the 1:1, 1:2 and 1:3 
samples which are shown in Figure 5.8.  The reflection lines exhibited by these 
diffractograms can be indexed to a pure cubic Y2O3 phase belonging to space group 
Ia3 (No. 206) with Z = 16 and a lattice parameter of a = 10.604 Å [45].  Samples 
prepared from the 1:1, 1:2 and 1:3 ratios all contained cubic Y2O3 with Lorentzian 
average crystallite sizes of 60 nm, 34 nm and 60 nm respectively.       
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Figure 5.15 XRD diffractograms of the samples [Y,Eu]Cl3 - (C16H33NH3Cl)  prepared from 
methanolic solution then fired/annealed at 900°C; metal ion to alkylammonium chloride ratios: 

(a) 1:1, (b) 1:2, and (c) 1:3. 
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1:1 (D on Aluminium stub),  

 

1:2 (E on Aluminium stub),  

 

1:3 (F on Aluminium stub). 

 

Figure 5.16A   XRD  diffractograms of the samples [Y,Eu]Cl3 - (C16H33NH3Cl)  prepared from 
ethanolic solution then fired/annealed at 900°C, metal ion to alkylammonium chloride 

ratios.1:1(D on Aluminium stub), 1:2 (E on Aluminium stub),1:3 (F on Aluminium stub). 
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             1:1-54 
 

 
1:2-55 

 
1:3-56 

Figure 5.16B  XRPD diffractograms of the samples  [Y,Eu]Cl3 - (C16H33NH3Cl) prepared from 
ethanol then fired/annealed at 900°C, metal ion to alkylammonium chloride ratios.1:1(54 

purple), 1:2 (55 brown ),1:3 (56 Black). 
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All the samples that were produced under the 900°C conditions from ethanol solution 
showed the presence of crystalline material and five had XRPD data that gave 
evidence for a new phosphor lattice   (see Figures 5.16 A and 5.16 B) and Table 3. 
Surprisingly the main phase (99%) was identified as monoclinic Y4O5Cl2:Eu3+ in 
Figure 5.16B. Samples prepared from the 1:1, 1:2 and 1:3 ratios all contained 
monoclinic Y4O5Cl2:Eu3+ with Lorentzian average crystallite sizes of 72nm, 72nm and 
59nm respectively. Two of the samples (the 1:1 and 1:2) that are presented in Figure 
5.16A also show the monoclinic Y4O5Cl2:Eu3+   phase but the third sample (1:3) shows 
mainly cubic Y2O3:Eu3+, though there is evidence for a cell given in table 3 but not 
further identified. The monoclinic Y4O5Cl2:Eu3+ phosphor has chloride in the lattice 
and this was verified using EDAX analysis in the scanning electron microscope. (See 
below). 
 

Table 5.3 Cell parameters for the yttrium oxychloride phase Y4O5Cl2:Eu3+ 

found in the materials fired at 900°C prepared from ethanol. 
 

 
Samples No.     a (Å)     b (Å)       c (Å)       beta (°)   

54  6.51176(37) 6.41143(43) 14.4398(12) 97.5634(59) 

55  6.51631(42) 6.41342(50) 14.4456(14) 97.5503(68) 

56        6.51991(86) 6.41543(99) 14.4620(27) 97.594(12) 

   D  6.50879(31) 6.40040(25) 14.43148(48) 97.6026(36) 

   E  6.48878(71) 6.39493(73) 14.3631(24) 97.581(13) 

   F  5.38125(29) 4.48996(39) 11.02517(72) 99.6964(65) 

         

 
 
5.4.3    EDX analysis of the samples prepared from ethanol 
The EDAX analysis traces for the samples prepared from ethanol are presented in 
figures 5.17A and 5.17B below. Chloride was detected by EDAX in sample 1:1-D in 
the powder, but not on the powder on the stub. The amount in the powder was small so 
it may have been undetectable on the stub. Samples 1:2-E and 1:3-F showed the 
presence of chloride in all locations but relatively more was detected on the powders. 
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In samples 1:1-54, 1:2-55 and 1:3-56 the amount of chloride is obviously greater in 
keeping with the finding that these samples contained much more of the monoclinic 
Y4O5Cl2:Eu3+. 
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1:1-D 
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1:2-E 
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1:3-F 

 
Figure 5.17A   Combined SEM + EDX of the samples prepared from ethanolic solution then 

fired/-annealed at 900°C, metal ion to alkylammonium chloride ratios. 1:1- D, 1:2-E and 1:3-F. 
(the red boxes show the areas that were analysed). 
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        1:1-54  (bar = 10µm)                                                       1:1 54-EDAX 
 

        
       1:2-55  (bar = 10µm)                                                         1:2 55-EDAX 
 

        
          1:3-56  (bar = 10µm)                                                       1:3 56-EDAX 
 

Figure 5.17 B Combined SEM + EDX of the samples prepared from ethanolic solution then 
fired/-annealed at 900°C, metal ion to alkylammonium chloride ratios. 1:1-54, 1:2-55 and 

 1:3-56. 
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5.4.4   Photoluminescent Spectra:- All the PL emission spectra of the samples made 
from methanol are typical of cubic Y2O3:Eu3+, as are the excitation spectra. Typical 
excitation and emission spectra are presented in Figure 18 for the 1:1, 1:2 and 1:3 
900°C samples. 

 

200 250 300 350 400 450 500

0
100
200
300
400
500
600
700

1:3 900oC

1:2 900oC

1:1 900oC

In
te

ns
ity

 (
a

rb
ita

ry
 u

ni
ts

)

Wavelength/ nm

400 500 600 700
-100

0
100
200
300
400
500
600
700
800 (b)

(a)

1:3 900OC

1:2 900OC

1:1 900OC

In
te

ns
ity

 (
ar

bi
ta

ry
 u

n
its

)

Wavelength/ nm

 
 

 

Figure 5.18 (a) Photoluminescent excitation spectra obtained by monitoring the emission at 
611nm, and 5.18 (b) emission spectra of the 900°C samples from methanolic solution, 

excitation wavelength 254nm. 
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Figure 5.19 A   Photoluminescent excitation, spectra of the samples fired at 900°C prepared 
from ethanolic solution. Excitation spectra 1:1(a-54), 1:2(b-55), 1:3 (c-56). Excitation 

monitored at 623 nm. 
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Figure 5.19B   Photoluminescent emission, spectra of the samples fired at 900°C prepared 
from ethanolic solution. Emission spectra 1:1-54 (a), 1:2-55 (b), 1:3-56 (c). Excitation 

wavelength 254nm. 
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Figure 5.19C  Photoluminescent excitation, spectra of the 900°C samples prepared from 
ethanolic solution. Excitation graphs 1:1 (D), 1:2 (E), 1:3 (F). Excitation monitored at 611 nm. 

Excitation wavelength 254nm. 
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Figure 5.19D Photoluminescent emission, spectra of the 900°C samples prepared from 
ethanolic solution. Emission graphs 1:1 (D), 1:2 (E), 1:3 (F).Excitation monitored 

at 611 nm. Excitation wavelength 254nm. 
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Typical excitation and emission spectra are presented in Figures 5.19A 5.19B 
5.19Cand5. 19D for the 1:1, 1:2 and 1:3 900°C samples prepared from ethanol 
solutions. From the above five of the samples made from ethanol contain monoclinic 
Y4O5Cl2:Eu3+. All the PL emission spectra of these samples of monoclinic 
Y4O5Cl2:Eu3+ and are clearly different from those of cubic Y2O3:Eu3+ (compare Figure 
5.18), as are the excitation spectra. In the case of the excitation spectra the relative 
intensities of the excitation bands of those prepared from the ethanolic solutions are 
very different to those prepared from the methanolic solution (see Figures 5.18 and 
5.19A). All the spectra in Figure 5.19A have a shoulder on the main band (centered 
around 255nm on). The shoulder in the spectra in Figure 5.19A is clearly a more 
intense version of the 300nm centred band in Figure 5.18. In the samples D, E and F 
Figure 5.19C only sample D shows this shoulder. The emission spectra in Figures 
5.19B and 5.19D are also very different those prepared from the methanolic solutions 
all contain more bands than those of Figure 5.18. This clearly reflects the different 
amounts of monoclinic Y4O5Cl2:Eu3+ present in the samples prepared from ethanol 
compared to the amounts of cubic Y2O3:Eu3+ present. 
 
 
 
5.4.5    Thermal Methods 
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Figure. 5.20   TGA trace of the alkyl ammonium salt, [C16H33NH3]
 + Cl- heated in air at a rate 

of 10°C per min. 
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The thermogravimetric analysis of the [C16H33NH3]
+ Cl- alkyl ammonium salt in air is 

shown in Figure 5.20 over the temperature range of room temperature to 900°C using a 
heating rate of 10°C/min. The mass loss is greater than 95% when the temperature is 
increased to 300°C and confirms that the alkyl ammonium salt has completely 
decomposed before the temperature reaches 650°C.  This is consistent with the 
samples prepared from ethanolic solution and heated to 650°C, as is made evident by 
the XRD diffractograms shown in Figures 5.16A and 5.16B, being mixed 
yttrium/europium oxychloride species without the presence of any organic residue 
from the alkyl ammonium salt. Furthermore, it has been reported that YCl3.6H2O 
decomposes to YOCl between 375 and 450°C [46], although it is possible that further 
transformation to Y4O5Cl2 (≡ “2YOCl.Y2O3”) and/or Y3O4Cl (≡ “YOCl.Y2O3”) could 
occur, according to Equation 1, when the samples are prepared at 650°C.  
 
So in figure it is apparent that the alkylammonium chains decompose into the gases 
CO2, H2O (steam) and NH3, between the temperatures of 190°C and 250°C. So this 
process can now be identified in the more complex TGA data of the phosphor 
precursor materials. 
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Figure 5.21  TGA trace of the 1:1 sample pre- fired at 650°C prepared from ethanolic solution 

(ran in air). 
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In Figure 5.21 the TGA of the 1:1 sample first fired at 650°C prepared from ethanolic 
solution (ran in air) is presented. It is apparent that there is evidence of some residual 
alkylammonium chains between 220°C and 300°C even after the combustion at 650°C. 
In fact the chains account for around 2% of the total mass of this sample. There is also 
evidence for some water from the initial wieght loss of around 5% up to 100°C.There 
is an additional weight loss of around 1.5% between 300°C and 600°C. Finally above 
600°C there is a further weight loss of 8.8% of the original weight. If the weight at 
600°C after remaining water and organics are removed is taken as 100%. Then the 
final weight loss becomes 9.56%.   This weight loss may be due to either carbonates 
decomposing to oxide and CO2 gas (see discussion in 5.3.5), or to chloride being 
replaced by oxide. As shown below it is most likely due to Cl being replaced by oxide.  
In fact if YOCl reacts with water vapour we would expect Y2O3 as:- 
 
 
                2YOCl       +        H2O    =       Y2O3          +      2HCl                equation    4 
 
With a weight loss from the solid of 13.86%. However if the reaction was:- 
 
               
               4YOCl       +        H2O    =       Y4O5Cl2         +    2HCl              equation    5 
 
Then the weight loss would be 9.39% which is closer to the observed value for 
equation 5. 
 
 
The third possibility is that shown in equation 6 
 
   Y4O5Cl2         +       H2O      =      2Y2O3          +      2HCl            equation    6 
 
 
Here the weight loss would be 10.82% which is not as close as that from equation 5 
However from this data we cannot rule out that some carbonate decomposition has 
occurred on the surface of the particles and this could be the weight loss that occurs 
from 100°C to 600°C rather than being all due to residual alkylammonium chains.  
In Figure 5.22 the TGA of the 1:2 sample first fired at 650°C prepared from ethanolic 
solution (ran in air) is presented. It is apparent that there is again evidence of either 
some residual alkylammonium chains or some carbonate decomposition. between 
100°C and 600°C In fact this  account for around 4% of the total mass of this sample 
as in Figure 5.21. 
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Figure 5.22  TGA trace of the 1:2 sample first fired at 650°C prepared from ethanolic solution 
(ran in air). 

 

 
There is also evidence for some water from the initial wieght loss of around 4% up to 
100°C. Finally above 600°C there is a further weight loss of 12% of the original 
weight. If the weight at 600°C after remaining water and organics are removed is taken 
as 100%. Then the final weight loss becomes 13.73% which is close to the value for 
equation 4.This weight loss is most likely to be due to chloride being replaced by 
oxide. In Figure 5.23 the TGA of the 1:3 sample first fired at 650°C prepared from 
ethanolic solution (ran in air) is presented. It is apparent that there is again evidence of 
some residual alkylammonium chains and or carbonate between 100°C and 600°C. In 
fact the chains again account for around 5% of the total mass of this sample as in 
Figure 5.21. There is also evidence for some water from the initial wieght loss of 
around 4% up to 100°C. Finally above 600°C there is a further weight loss of 9% of 
the original weight. If the weight at 600°C after remaining water and organics are 
removed is taken as 100%. Then the weight loss would be 9.8%. This weight loss is 
most likely to be due to chloride being replaced by oxide as in equation 6. To  sum up 
the information from Figures 5.21,5.22 and 5.23 it is apparent that even combustion 
synthesis at 650°C leaves either some alkylammonium chain residues unconsumed and 
some surface carbonate that forms on cooling and standing . 
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Figure 5.23  TGA trace of the 1:3 sample first fired at 650°C prepared from ethanolic solution 
(ran in air). 

 
 
In addition these samples have either picked up water after cooling or reacted with 
steam produced in the combustion synthesis. If the weight loses above 600 °C are 
compared to the percentage of the remaining weight before this wieght loss, but after 
the water, the alkylammonium chain and or the carbonate loss, we can derive values of 
90,44%, 86.27% and 90.2% of the final solid wieght above this temperature. Then if 
we assume the final product is Y2O3 then the values are not too far from the 89.18% 
we would have expected if the product above 600°C was predominantly Y4O5Cl2. This 
would then have reacted with air to form the Y2O3. In Figure 5.24 the TGA of the 1:1 
sample first fired at 900°C prepared from ethanolic solution (ran in air) is presented. It 
is apparent that there is again evidence of some residual alkylammonium chains or 
carbonate even after the combustion at 900°C. In fact the chains again account for 
around 2% of the total mass of this sample as in Figure 5.21. The carbonate may have 
been formed on the crystal surfaces after the samples cooled. There is also evidence for 
some water from the initial wieght loss of around 2% up to 100°C. Finally above 
600°C there is a further weight loss 8.5% of the original weight. If the weight at 600°C 
after remaining water and organics are removed is taken as 100%. Then the final 
weight loss becomes 8.94%. 
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Figure 5.24 TGA trace of the 1:1 sample first fired at 900°C prepared from ethanolic solution 
(ran in air). 

 

If the final product from the first firing was Y4O5Cl2 and this is converted to Y2O3 
then:- 
                      Y4O5Cl2    +    H2O =    2Y2O3    +    2HCl                         equation      6 
 
a weight loss of 9.39% would be expected. So the experimental weight loss is close to 
the value for equation 6. This weight loss is most likely to be due to chloride being 
replaced by oxide when heated in air. 
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Figure 5.25 .TGA trace of the 1:2 sample first fired at 900°C prepared from ethanolic solution 
(ran in air). 
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In Figure 5.25 the TGA of the 1:2 sample first fired at 900°C prepared from ethanolic 
solution (ran in air) is presented. Here there is very little evidence of some residual 
alkylammonium chains even after the combustion at 900°C. In fact here the chains 
again account for less than  1% of the total mass of this sample as in Figure 5.21. 
There is also little evidence for water from the initial wieght loss of less than 1% up to 
100°C. Finally above 600°C there is a further weight loss of 8.16% of the original 
weight. If the weight at 400°C after remaining water and organics are removed is taken 
as 100%. Then the final weight loss becomes 8.51%. If the final product from the first 
firing was Y4O5Cl2 and this is converted to Y2O3 then from equation 6 a weight loss of 
9.39% would be expected. So the experimental weight loss is less close to the value for 
equation 6, however it is not out of range completely. This weight loss is most likely to 
be due to chloride being replaced by oxide. 
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Figure 5.26  TGA trace of the 1:3 sample first fired at 900°C prepared from ethanolic solution 

(ran in air). 

In Figure 5.26 the TGA of the 1:3 sample first fired at 900°C prepared from ethanolic 
solution (ran in air) is presented. It is apparent that there is again evidence of some 
residual alkylammonium chains even after the combustion at 900°C. In fact the chains 
again account for around 1.75% of the total mass of this sample as in Figure 5.21. 
There is also evidence for some water from the initial wieght loss of around 1.75% up 
to 100°C. Finally above 600°C there is a further weight loss of around 7.00% of the 
original weight. If the weight at 600°C after remaining water and organics are removed 
is taken as 100%. Then the final weight loss becomes 7.3%. If the final product from 
the first firing was Y4O5Cl2 and this is converted to Y2O3 then from equation 6 a 
weight loss of 9.39% would be expected. So the experimental weight loss is less close 
to the value for equation 6, however it is not out of range completely. This weight loss 
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is most likely to be due to chloride being replaced by oxide. To sum up the information 
from Figures 5.24, 5.25 and 5.26 it is apparent that even combustion synthesis at 
900°C leaves some alkylammonium chain or more likely carbonate residues 
unconsumed. In addition these samples have either picked up water after cooling or 
reacted with steam produced in the combustion synthesis. If the weight loses above 
600 °C are compared to the percentage of the remaining weight before this wieght loss, 
but after the water and alkylammonium chain loss, we can derive values of 91.06%, 
91.45%,  and 93.7% of the final solid wieght above this temperature. Then again if we 
assume the final product is Y2O3 then the values are not too far from the 90.61% we 
would have expected if the product above 600°C was predominantly Y4O5Cl2. This 
would then have reacted with air to form the Y2O3. 
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Figure 5.27  DSC/TGA  traces of the (a)1:1, (b) 1:2 and (c) 1:3 samples first fired at 650°C 

prepared from methanolic solution (ran in air). 

 
The green curves in Figure 5.27 show that the loss of water and the combustion of the 
remaining alkylammonium chains and or carbon dioxide release in all three samples 
that underwent combustion at 650°Care associated with heat loss and are therefore 
exothermic process, whereas  between 400°C and 600°C there is a change over where 
the weight loss is due to an exothermic process in keeping with chloride being 
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replacedoxide as the Y2O3 forms and crystallizes.The blue curves in Figure 5.27 show 
overall wieght loss and give similar results to the TGA data presented above, but these 
curves are not as detailed as the previous TGA curves. The brown diagonal lines show 
the even regular temperature change. 
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Figure 5.28  DSC/TGA traces of the (a)1:1, (b) 1:2 and (c) 1:3 samples first fired at 900°C 

prepared from methanolic solution (ran in air). 

 
The green curves in Figure 5.28 show that the loss of water and the combustion of the 
remaining alkylammonium chains and or carbon dioxide release (carbonate conversion 
to oxide) in all three samples that underwent combustion at 900°C are associated with 
heat loss and are therefore exothermic process, whereas between  400°C and 600°C 
there is again a changeover where the weight loss is due to an exothermic process in 
keeping with chloride being replaced by oxide as the Y2O3 forms and crystallizes. 
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The blue curves in Figure 5.28 show overall wieght loss and give similar results to the 
TGA data presented above, but these curves are not as detailed as the TGA curves. The 
brown diagonal lines show the even regular temperature change. 
 
5.4.6   Discussion of results so far presented on samples prepared at 900°C 
 
At this point it is worth exploring why the samples prepared at 900°C from ethanol are 
different from those prepared from methanol. First it should be stated that all the 
preparations were performed twice so the findings are repeatable. The difference in the 
methanol and ethanol samples is only the solvent, however as the solvents were not 
totally removed as they were only left in air for 24h before firing the samples still 
contained solvent when they were fired. Hence there was more carbon content in the 
ethanol samples on firing and this would have formed extra carbon dioxide. This gas is 
heavier than air and may have displaced excess oxygen from the vicinity of the 
crucible. Hence there was not enough oxygen in the furnace to convert all the way to 
the cubic Y2O3:Eu3+ and hence only partial oxidation took place to form monoclinic 
Y4O5Cl2:Eu3+. As explained in the experimental section 5.2 the muffle furnaces used in 
the preparations though having chimneys for waste gases to pass through did not have 
air circulation other than the chimneys. The furnace used for the phosphor samples 
prepared from ethanol fired at 900°C samples (D, E and F) had a chimney with a 
diameter of 3 cm, whereas that used for the three repeat combustions samples 54, 55 
and 56 had a diameter of 1 cm. The latter fact of the narrower chimney combined with 
the extra fuel in the ethanolic samples means that the CO2 produced did not pass up the 
chimney well and deprived the reaction of oxygen thus limiting the oxidation. This is 
important in understanding the synthesis of monoclinic Y4O5Cl:Eu3+ which is a 
phosphor that has only been reported twice in the literature [33, 46]. However as the 
monoclinic Y4O5Cl2:Eu3+ was prepared as nanoparticles they proved to be very 
unstable to some experimental investigations as will be apparent in the following 
sections. 
 
5.4.7   Cathodoluminescence Spectra 
The Cl (5000V, emission current 9.6μA) defocused and focused spectra of the 
products are shown in Figures 5.29 and 5.30. Those in Figure 5.29 of the samples 
prepared from methanol are all similar and typical of cubicY2O3:Eu3+. Those prepared 
from ethanol (see Figure 5.30) are all similar to the corresponding photoluminescent 
spectra and in addition to the presence of cubic Y2O3:Eu3+ shows other material is also 
present. These spectra have similarities to those seen in Figures 5.19A, 5.19B and 
5.19D and are indicative of Y4O5Cl2.  However during the further Cl studies we 
noticed subtle changes in these spectra as a function of applied voltage and beam 
current. 
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Figure 5.29   Cathodoluminescent spectra of the 900°C samples (prepared from methanolic 
solution): (a) focused beam and (b) defocused beam. At 5000V/50uA. 
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Figure 5.30A Cathodoluminescent spectra of the 900°C samples prepared from ethanolic 
solution, Defocused beam. Samples 1:1 (D), 1:2 (E), and 1:3 (F) at 5000V/50uA. 
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Figure 5.30B Cathodoluminescent spectra of the 900°C samples prepared from ethanolic 
solution, focused beam. Samples 1:1(D), 1:2 (E) and 1:3 (F) at 5000V/50uA. 

Cl spectra for samples 54, 55, 56 Ethanol base defocused at5000V/50uA 
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Figure 5.31 Cathodoluminescent spectra of the 900°C samples prepared from ethanolic 
solution, Defocused beam. Defocused 1:1 (a-54), 1:2 (b-55), and 1:3 (c-56), at 

5000V/50uA. 
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Figure 5.32 Cathodoluminescent spectra of the 900°C samples prepared from ethanolic 
solution, Defocused beam. Defocused overlay 1:1(a-54) Black, 1:2(b-55) Red, 1:3(c-56) 

Green, bottom at 5000V/50uA. 

5.4.8   The Raman spectra of the samples prepared from methanol annealed at 900°C 
for the 1:1 and 1:3 ratios (previously shown in Figure 5.11/5.12 (c) and (d)) display the 
strong Raman band at 377 nm (arrowed) which was absent in the spectra of the low 
temperature treated samples (a and b) and  is due to  cubic Y2O3:Eu. Cubic Y2O3Eu is 
predicted to have twenty two first order Raman active modes [37, 39-44]. Raman 
spectroscopy has been previously used to determine the temperature at which 
Y2O3:Eu3+ phosphor samples crystallize from hydroxycarbonate precursors [14]. The 
intensity of the cubic Y2O3 band at 377 cm-1 is correlated to the degree of crystallinity 
of the Y2O3:Eu3+ phosphor powders. Figures 5.33 and 5.34(a) show a Raman spectrum 
of the 1:1 molar ratio prepared from ethanol after combustion at 650°C. The bands at 
107 and 167 cm-1 are assigned to a rhombohedral disordered SmSI-PbFCl type YOCl 
phase [47].  The Raman spectrum of the 1:1 molar ratio prepared from ethanol after 
combustion at 900°C is presented in Figure 5.34(b) exhibits bands at 160, 215, 260, 
375 and 526 cm-1, which can be assigned to the tetragonal form of YOCl by 
comparison to a Raman spectrum of a pure sample of this compound 
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 (see Figure 5.34(c). Additional bands in the spectrum shown in Figure 5.34(b) are due 
to other products of the combustion reaction at 900°C.  All the samples prepared from 
ethanol annealed at 900°C for the 1:1 1:2 and 1:3 ratios (see Figure 5.34 ) show  
evidence of the sharp due to the cubic phase of Y2O3: Eu3+  though only a small 
amount of this phase is present. The additional   number of other strong bands that 
appear in these spectra Figures 5.34 and 5.35 are probably due to the Y4O5Cl:Eu3+ 
phosphor. The other bands seen for these materials presented in Figure 5.36 are due to 
the photoluminescence of the Y4O5Cl:Eu3+ phosphor under 632.8 nm excitation. Thus 
 a spin off from the main thrust of this work is that nanocrystallites of tetragonal and 
rhombohedral forms of YOCl having dimensions in the range of 1-100 nm have been 
prepared by a novel templating method involving the use of alkylamine 
hydrochlorides.  This work demonstrates that the structure of the YOCl product is 
dependent on the firing conditions, the rhombohedral and tetragonal types being 
formed at nominal combustion temperatures of 650 and 900°C, respectively.   
 

Figure 5.33  The Raman spectra of (a) the 1:1 molar ratio prepared from ethanol after 
combustion at 650°C,(b) the spectrum of the 1:1 molar ratio prepared from ethanol after 
combustion at 900°C; (c) a reference sample of the tetragonal form of YOCl. The exciting 
wavelength was equal to 1064 nm. 
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Figure 5.34   The Raman spectra of the 1:1 molar ratio prepared from ethanol (in black) same 
spectrum given in Figure 5.34(b) after combustion at 650°C; the spectrum of the 1:2 molar 

ratio prepared from ethanol after combustion at 900°C (in red); the spectrum of the 1:3 molar 
ratio prepared from ethanol after combustion at 900°C (in green). The exciting wavelength was 

equal to 1064 nm. 
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1:3 (F)  

Figure 5.35    The Raman spectra of the (D) 1:1 molar ratio prepared from ethanol after 
combustion at 900°C; the spectrum of the (E) 1:2 molar ratio prepared from ethanol after 
combustion at 900°C ; the spectrum of the (F) 1:3 molar ratio prepared from ethanol after 

combustion at 900°C. The exciting wavelength was equal to 632.8 nm. 
 
 

 
5.4.9   FTIR Spectra: The FTIR spectra from the samples prepared from methanolic 
solutions fired at 900°C are summarised in Table 5.4 and in Figure 5.36 and a 
comparison with the FTIR spectra of Figure 5.9 indicates that they are substantially 
different. Moreover, the positions of the basic yttrium carbonate (yttrium 
hydroxycarbonate) bands in the spectra of Figure 5.36 are in excellent agreement with 
those reported in the spectra of basic carbonates [(Y,Eu)OHCO3.H2O] precipitated by 
adding ammonium carbonate precipitating reagent to a homogeneous yttrium and 
europium chloride solution [48]. This finding will be explained below.The strong 
doublet with peaks at 1515 and 1403 cm-1 is assigned to the antisymmetric C-O 
stretching vibration of the CO3

2- anion of the hydroxycarbonate, and the broad band in 
the 3600 to 3000 cm-1 region is assigned to the O-H stretching vibration. The only 
other noteworthy feature in these spectra is a weak band at 844 cm-1, which appears at 
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the same wavenumber location as that reported in the spectra of basic carbonates 
precipitated by adding ammonium carbonate precipitating reagent to a homogeneous 
yttrium and europium chloride solution [48].  This band is assigned to the out of plane 
bending vibration of the CO3

2- anion [36].It is clear from these results that the 
combustion fuel that was present in the samples in conjunction with the higher 
annealing temperature (900°C) was sufficient to raise the combustion temperature for 
nanometer sized crystallites of the cubic Y2O3:Eu3+ phase to form in the materials 
prepared from methanol. As has been mentioned in the foregoing, the infrared spectra 
show bands which are due to the presence of yttrium hydroxycarbonate.  This can be 
formed from the reaction of the surfaces of the nanometre sized particles of Y2O3:Eu3+ 
with atmospheric CO2 and H2O at room temperature. In this work the nanometre sized 
particles of Y2O3:Eu3+ were formed from the rapid combustion of a methanolic 
precursor gel containing C16H33NH3Cl and YCl3:Eu3+ at a set temperature of 900°C 
according to reaction (1).  Y0.98Eu0.02(OH)CO3 would not have formed via reaction (2) 
under these conditions, because it is unstable at 900°C; however, it is formed on the 
surfaces of the (Y0.98Eu0.02)2O3 nanoparticles at room temperature due to reaction with 
atmospheric CO2 and H2O.In the past we have prepared larger nanometer sized 
particles of the metal oxide by the hydrothermal decomposition of urea facilitating the 
homogeneous precipitation of spherical sub-micrometre europium-doped yttrium 
hydroxycarbonate phosphor precursor particles.  It is useful to explain this latter 
method here to help to understand the infrared data obtained in this work. This method 
is dependent on the addition of, and hydrothermal decomposition of, urea in acid 
solution in the presence of metal salts that are soluble at acid pHs. The chemistry 
involved includes the following steps [18, 49- 50]. 
 
Aqueous decomposition of urea (<85 ºC, ~ pH 3) resulting in the following ions, 

                                   H2NCONH2  NH4
+ + OCN-     (7) 

The resulting cyanate ion rapidly reacts thus, 

                       OCN- + 2H+ + 2H2O  H2CO3 + NH4
+    (8)

  
In the presence of Y3+ and Eu3+ cations which are added as acid salts the solution pH 
drops to ~2.5. The urea is added and the resulting hydroxonium ions (H3O

+) promote 
urea decomposition.  The subsequent release of carbonate ions causes precipitation of 
the metal hydroxycarbonate phosphor precursor, once the concentration of reactants 
reaches supercritical saturation: 
 

 [(Y,Eu)OH(H2O)x]
2+ + H2CO3   [(Y,Eu)OHCO3.yH2O] + (x-y)H2O + 2H+  (9) 
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Careful firing of the precursor particles allows their spherical morphology to be 
partially maintained in the resulting phosphor particles. This method for the 
preparation of cubic Y2O3:Eu3+ has previously been reported for the dopant 
concentration range from 0.2 mole fraction to 1x10-3 mole fraction Eu3+ both by 
ourselves and others [3-18]. In the current work it has been shown that the surfaces of 
the Y2O3:Eu3+ nanoparticles react with atmospheric CO2 and H2O to form 
[(Y,Eu)OHCO3] at room temperature. This indicates that, although cubic Y2O3:Eu3+ 
can be formed by firing yttrium/europium hydroxycarbonate at temperatures higher 

than ca. 700C, the reverse transformation occurs on the surfaces of Y2O3:Eu3+ 
nanoparticles in air at room temperature.This shows that cubic Y2O3:Eu3+ is 
thermodynamically unstable in the presence of carbon dioxide and water vapour and 
reverts to the metal hydroxylcarbonate precursor. 
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Figure 5.36  FTIR spectra of the samples fired at 900°C prepared from methanolic solution 
with metal ion to alkylammonium chloride ratios: (a) 1:1, (b) 1:2 and (c) 1:3 in KBr discs. 
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 (c) 

Figure 5.37  FTIR spectra of the samples fired at 900°C prepared from ethanolic solution 
with metal ion to alkylammonium chloride ratios: (a) 1:1,-54 (b) 1:2 -55 and -56(c) 1:3 

in KBr discs. 
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Table 5.4   Materials prepared at 900°C  

Wavenumber/cm-1  
     3600-3000   (m)  ν (O-H) 
        (m)  νs (O-H) 
     1633  (shoulder) δ (O-H) 
     1515  (s)  νas (CO3

2-) 
     1403  (s)  νas (CO3

2-) 
     1082  (w)  δ (O-H) 
      844  (w)  δ (CO3

2-) 
 

The FTIR spectra from the samples prepared from ethanolic solutions fired at 900°C 
are summarised in Table 5.4 and in Figures 5.37 and 5.38 and a comparison with the 
FTIR spectra of Figure 5.36 indicates that they are substantially different from those 
prepared from the methanolic solutions as expected from the fact that here the 
carbonate has grown on the surface of monoclinic Y4O5Cl2:Eu3+ and not cubic 
Y2O3:Eu3+. The samples in Figure 5.38 are taken in KBr discs. It was also observed 
that bands due to metal hydroxycarbonates of some kind in the infrared spectra of the 
monoclinic Y4O5Cl2:Eu3+ nanoparticles were present. These bands are in different 
positions to those found in bulk [(Y, Eu)OHCO3.H2O], and are explained as arising 
from the spontaneous reaction of the surface of the nanometer sized particles of the 
monoclinic Y4O5Cl2:Eu3+ with atmospheric CO2 and water vapour. This indicates that 
nanometre sized particles of the monoclinic Y4O5Cl2:Eu3+ are also thermodynamically 
unstable in the atmosphere and must be protected against such back reactions.  
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Figure 5.38 FTIR spectra of the samples fired at 900°C prepared from ethanolic solution 
with metal ion to alkylammonium chloride ratios: (a) 1:1-D, (b) 1:2-E and (c) 1:3-F 

in KBr discs. 
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5.4.10    Conclusions 
 
 
A number of conclusions can be drawn from the work reported herein firstly for the 
materials prepared from the methanolic solutions:- 

1) It has been shown that nanometer sized particles of cubic Y2O3:Eu3+ can be 
prepared from metal chloride precursors formed in micelles encapsulated by 
alkylammonium chains (the fuel) by using a combustion synthetic method at 
900°C.  

2) The method produces a range of morphologies that are influenced by the initial 
alkylammonium chloride concentration; in particular remnant micellar forms 
are present such as spheres, tubules, and macrolamellar sheets of these 
aforementioned forms. 

3) Evidence of morphologies and particle size being controlled by the initial 
micellar structures was found in the materials fired at both 650°C and 900°C.   

4) It is clear from this work that the combustion fuel which was present in the 
samples prepared at 650°C was insufficient to raise the temperature over 900°C 
for a long enough time period (if at all) for the cubic Y2O3:Eu3+ phase to form. 

5) Further we have characterised the nanometre sized phosphor particles and 
demonstrated that they manifest many of the properties (CL and PL spectral 
properties) of bulk cubic Y2O3:Eu3+. 

6) It was   observed that bands due to metal hydroxycarbonate  in the infrared 
spectra of the cubic Y2O3:Eu3+ nanoparticles were present. These bands are 
similar in position to those found in bulk [(Y, Eu)OHCO3.H2O], and are 
explained as arising from the spontaneous reaction of the surface of the 
nanometer sized particles of cubic Y2O3:Eu3+ with atmospheric CO2 and water 
vapour. This indicates that nanometre sized particles of cubic Y2O3:Eu3+ are 
thermodynamically unstable in the atmosphere and must be protected against 
such back reactions. This could be achieved with surface coatings. 

7) The materials prepared from methanol at 650°C were shown to be the two 
forms of YOCl, and this was converted to cubic Y2O3:Eu3+ at the higher 
temperature (over 900°C).  

8) It should be remembered that the presence of the yttrium hydroyoxycarbonate 
layer protected the YOCl in the materials prepared at 650°C from further 
reaction with the atmosphere. 

 
A number of conclusions can be drawn from the work reported herein firstly for the 
materials prepared from the ethanolic solutions:- 
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1) It has been shown that nanometer sized particles of monoclinic Y4O5Cl2:Eu3+ 

can be prepared from metal chloride precursors formed in micelles 
encapsulated by alkylammonium chains (the fuel) by using a combustion 
synthetic method at 900°C.  

2) The method again produces a range of morphologies that are influenced by the 
initial alkylammonium chloride concentration; in particular remnant micellar 
forms are present such as spheres, tubules, and macrolamellar sheets of these 
aforementioned forms. 

3) Again evidence of morphologies and particle size being controlled by the initial 
micellar structures was found in the materials fired at both 650°C and 900°C. 

4) It is clear from this work that the combustion fuel which was present in the 
samples prepared at 650°C or indeed at 900°C was insufficient to raise the 
temperature over 900°C for a long enough time period for the cubic Y2O3:Eu3+ 
phase to form in the presence of the excess CO2 atmosphere.. 

5) It was also observed that bands due to metal hydroxycarbonate in the infrared 
spectra of the monoclinic Y4O5Cl2:Eu3+ nanoparticles were present. These 
bands are in different positions to those found in bulk [(Y, Eu)OHCO3.H2O], 
and are explained as arising from the spontaneous reaction of the surface of the 
nanometer sized particles of the monoclinic Y4O5Cl2:Eu3+ with atmospheric 
CO2 and water vapour. This indicates that nanometre sized particles of the 
monoclinic Y4O5Cl2:Eu3+ are also thermodynamically unstable in the 
atmosphere and must be protected against such back reactions. This could be 
achieved with surface coatings. 

6) The materials prepared from ethanol at 650°C were shown to be the two forms 
of YOCl, and monoclinic Y4O5Cl2:Eu3+ this was converted to a more pure form 
of monoclinic Y4O5Cl2:Eu3+ at the higher temperature (over 900°C).  

7) It should be remembered that the presence of the yttrium hydroyoxycarbonate 
type layer protected the monoclinic Y4O5Cl2:Eu3+ in the materials prepared at 
900°C from further reaction with the atmosphere. 

Finally from the findings of this work it would appear that the use of sacrificial 
organised organic structures for the incorporation of inorganic precursors offers great 
potential as a method to control the morphology and size of nanometre sized particles.   
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Figure 5.39 Chapter 5 summary 
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 Chapter Six    
 

6 .0        Y2O3:Eu3+ Materials from the [(Y, Eu) Cl3] - (C12H25NH3CL) 

6.1     Introduction   

In the last chapter the effect of looking at how  [(Y,Eu)Cl3] - (C16H33NH3Cl) precursor 
materials led to different fired phosphors depending on firing conditions, atmosphere 
and whether the precursors were prepared from methanolic or ethanolic solutions was 
reported. Instead of just cubic Y2O3:Eu3+ being formed it was found that in the reaction 
of [(Y,Eu)Cl3]-(C16H33NH3Cl) two other phases:- YOCl:Eu3+  and Y4O5Cl2:-Eu3+ were 
also formed in the case of the materials prepared from ethanol. In this chapter the 
preparation of nanoparticles phosphors from [(Y, Eu) Cl3] - (C12H25NH3Cl).Are 
reported using similar preparative methods. The first report in this system was in 1999 
[1]. Here again the aims of this work were motivated by widespread interest on the 
synthesis and properties of phosphors made up of highly crystalline sub micrometer 
sized particles. Our group and others have published widely on the urea homogeneous 
precipitation method of preparing the cubic Y2O3:Eu3+ phosphor [2-19], however until 
this work we were never in a position to compare such methods to controlled 
combustion synthesis for making phosphor nanometre sized materials. In particular we 
were interested in the influence of the alkylammonium chain length of the precursor on 
the final products in the combustion synthesis.  As stated in the introduction in chapter 
5 “one of the problems with making such sub micrometer sized particles is that during 
annealing of the precursor particles at high temperatures (often necessary for good 
crystallite quality and hence emission properties) the particles tend to sinter.” Again as 
in the previous chapter one way to partially alleviate this problem is to synthesise the 
particles as rapidly as possible at a high temperature. A method that has been explored 
for this purpose is combustion synthesis using an organic fuel that is ignited when a 
crucible or other vessel containing the phosphor precursors and the fuel is placed in a 
furnace that is already at 900°C. The fuel ignites and raises the temperature in the 
vessel very quickly.The facile self-assembly of the red emitting phosphor yttrium 
oxide europium (Y2O3:Eu3+) from solution using a sacrificial micellar phase appeared 
in 1999 [1]. The micellar phase was assembled using the alkylammonium chloride salt 
(C12H25NH3Cl) in an ethanolic solution. The resulting fine powder had smaller 
particles, ranging in size from 0.1 to 1.0 µm, than the commercial cubic Y2O3:Eu3+ 
phosphor [1]. This chapter reports a reinvestigation of the earlier work as well as 
studies on making the precursors from methanol.  
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As in chapter 5 the results discussed in this chapter were obtained using a more 
sophisticated way to control the rate of crystallization of the phosphor particles. This 
was to vary the ratio of phosphor precursor to fuel. In theory the presence of more fuel 
around the phosphor precursor should facilitate/influence the combustion process and 
possibly lead to more crystalline products. Such influences were indeed observed in 
the last chapter. So in this chapter the dodecylalkylammonium hydrochloride chain 
(C12H25NH3Cl) was used as fuel and now the affect of varying the ratio of this to the 
[(Y, Eu)OHCO3.H2O] precursor on the Cathodoluminescence (CL) and 
photoluminescence (PL) properties of the resulting phosphors is discussed. 
The following systems were studied;- 
 
1. [Y,Eu]Cl3 - (C12H25NH3Cl)-6 experiments in the ratio of 
        1:1, 1:2, 1:3with ethanol (3 fired at 650°C and 3 fired at 900°C). 

2. [Y,Eu]Cl3 - (C12H25NH3Cl)-6 experiments in the ratio of 
        1:1, 1:2, 1:3with methanol (3 fired at 650°C and 3 fired at 900°C). 

The temperatures 650°C and 900°C were chosen to be above the formation 
temperature of YOCl. 

 
 
6.2      Experimental 
 
For the experimental technique refer to chapter 4 paragraph 4.5 experiments 9/9a. 
Preparations of [(Y, Eu) Cl3] - (C12H25NH3Cl) n (for n = 1, 2, 3) were carried out with 
materials prepared from methanolic and ethanolic solutions.Attenuated total 
reflectance (ATR)-Fourier transform infrared (FTIR) spectra were obtained using a 
Perkin Elmer Spectrum One FTIR spectrometer. This technique is used to study 
vibrational, rotational, and other low-frequency modes in a system. The crystalline 
phases of the products were determined by X-ray powder diffraction (XRPD) using a 
Bruker D8 Advance X-ray powder diffractometer. (See for detail to chapter 3 ref 3.2). 
XRPD studies have been used to identify the phases present in the combusted products 
synthesized in this work, and their degree of disorder/order and their crystallite sizes 
[10, 22]. Diffractograms were collected using the fired powders in a conventional 
holder, or mounted on aluminium pin stub or on an aligned silicon substrate. [6, 7, 23, 
24] Field emission scanning electron microscopy (FESEM) was used to study the 
microstructure of the samples using a Zeiss Supra VP 35 instrument.  The samples 
were mounted on carbon tabs attached to aluminium pin stubs and sputter coated with 
a thin conducting layer of gold.  
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The PL excitation and emission spectra were obtained using a Bentham (Reading, UK) 
M300 programmable grating monochromator photometer system with computer 
controlled wavelength scanning and intensity data collection, using in the visible 
region a 1800 lines/mm grating.  The stepping motor and sine drive allows wavelength 
scanning to be completely controlled from a remote stepping drive unit (SMD3B).  
Sample excitation and collection was collected inside an in-built sealed chamber 
connected to the M300 monochromator via a fibre-optic bundle. The CL measurement 
data and spectra were undertaken using a high-vacuum chamber with a Kimball 
Physics Inc. (Walton, USA), model EGPS-7 electron gun. The CL luminance 
measurements were obtained by means of a Jeti spectroradiometer (Specbos 1201, Jeti 
Technische Instrument GmbH, and Jena, Germany).  The phosphor screens were 
excited with electron beam energies from 1000 to 5000V, and emission currents from 
1.1 to 9.8µA/cm2, with an electron beam spot size of 9 mm for defocused 
measurements and 1.41 mm for the focussed measurements. For some of the samples, 
CL emission and excitation spectra were obtained using the Bentham system 
previously described except that the fibre optic bundle was disconnected from the in-
built sealed chamber and attached to a telescope (TEL 301D).For the CL luminance 
measurements and spectra of the prepared samples phosphor screens were prepared in 
the following manner.  After cleaning the aluminium pin stubs in an ultrasonic bath 
containing ethanol, followed by drying in an oven at a temperature of 100°C they were 
weighed. A stub was then placed in an electrochemical cell containing an 
ultrasonically dispersed solution of the phosphor powder (0.5g), in an electrolyte 
solution of magnesium nitrate (0.075g/L) and isopropanol (50ml).  The stub was 
positioned with its flat surface forming a meniscus with the surface of the 
phosphor/electrolyte solution and acted as an electrode, the counter electrode being a 
strip of magnesium ribbon.  A field of 300V was applied facilitating the coating of the 
stub by electrode position. This procedure was repeated till all the stubs were coated 
with 3mg (±0.01mg) of phosphor.  After drying the stubs at 100°C they were 
introduced into the vacuum chamber for CL measurements. 
 
 
6.3        Results and Discussion 
 
6.3.1     Products prepared with methanol and ethanol at temperatures of 650°C. 
 
6.3.1.1  Sample appearance: - Products (samples) prepared from precursors 
methanolic and ethanolic solutions were fired at a temperature of 650°C and observed 
to be light grey in colour, where as the samples prepared at 900°C were all white 
powders. Under 254nm excitation the samples prepared at 650°C displayed a weak red  
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luminescence which was in contrast to the strong red luminescence from the samples 
prepared at 900°C that is characteristic of the Eu3= ion in cubic Y2O3. The strongest red 
luminescence comes from 1:3 material sample ratios and at 900°C. 
 
 
6.3.1.2    SEM Studies: Firstly the samples prepared from methanolic and ethanolic 
solutions and fired at a temperature of 650°C. In Figure 6.1 FESEM micrographs of 
samples annealed at 650°C prepared from metal chloride to alkylammonium chloride 
ratios of 1:1 (a, b, c and d), 1:2 (e and f) and 1:3 (g and h) in methanol are presented.  
It can be seen that a number of morphological forms are present, the variety of these 
forms increase with higher alkylammonium chloride (micelle) concentration in 
agreement with the findings in chapter 5.This is evident from the images of the 
material formed from the 1:1 ratios in Figure 6.1a, b, c and d where large straw-like 
sheets are shown to be formed from intergrowths of thin needles that have dimensions 
of proximately 20 to 30nm in width by 200nm in length.  Also in Figure 6.1a there is 
evidence for the crystals forming clumps that suggest they originated from 
predominantly spherical micelles. The material prepared from the 1:2 ratios presented 
in Figures 6.1e and 6.1f show needles that have formed partially fused into sheets. 
Whereas the final SEMs in Figure 6.1g of the material prepared from the 1:3 ratios 
show the micelles have left behind evidence of their existence as tubules; these 
structures have assembled into large lamellar sheets that in these images are two 
structural units in thickness Figures 6.1g and 6.1h.  The spherical, tubular and lamellar 
structures display remnant micellar morphologies, although they are much larger in 
dimensions than those that are commonly associated with micelles. It can be seen in 
Figure 6.1c that the crystallites are all small with one or more dimensions less than 
50nm. 
 
 

        

                      (a)                                                                                 (b) 
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(c)                                                                                                (d) 

        
(e)                                                                                                        (f) 

        
(g)                                                                                                            (h) 

Figure 6.1 FESEM images of phosphor samples fired at 650°C from precursors prepared from 
methanolic solutions using metal chloride to alkylammonium chloride ratios of (a,b,c and d) 
1:1, (e and f) 1:2,  (g and h) 1:3.  In (a), the bar is 1µm, in (c), (e) and (h) it is 200nm and in 

(d), (f) and (g) it is 2µm. In (b) the bar is 10µm. 
 
In Figure 6.2 FESEM micrographs of samples annealed at 650°C prepared from metal 
chloride to alkylammonium chloride ratios of 1:1 (a and b), 1:2 (c and d) and 1:3 (e 
and f) in ethanol are presented.  Again it can be seen that a number of morphological 
forms are present, and again the variety of these forms increase with higher 
alkylammonium chloride (micelle) concentration.  This is evident from the images of 
the material formed from the 1:1 ratios in Figure 6.2 where the presence of some sheet 
like structures are apparent, and these are formed from fused smaller complex forms. 
These smaller forms are formed from intergrowths of thin needles that have 
dimensions up to 200nm in length.  Progressing to the final SEMs in Figure 6.2 of the 
material prepared from the 1:3 ratios; they also show the micelles have left behind 
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evidence of their existence; these structures have assembled into large lamellar sheets 
that in these images are two structural units in thickness similar to those observed in 
Figure 6.1.  In many of the SEMs presented in Figures 6.2 it can be seen that there is 
evidence of structures where the surfaces appear to be smooth suggesting they neared 
meltdown this is thought to be due to the presence of ethanol rather than methanol (see 
Figure 6.1) driving the surface temperature higher during the synthesis. It is only a 
surface effect as the XRPD data (see below) show no evidence for the high 
temperature cubic  Y2O3:Eu3+ phase.  

         

7 (a)                                                                                                7 (b) 

         

8 (c)                                                                                        8 (d) 

         

                                9(e)                                                                                        9 (f) 

Figure 6.2 FESEM images of phosphor samples fired at 650°C from precursors prepared from  
ethanolic solutions using metal chloride to alkylammonium chloride ratios of (7a and 7b) 1:1, 
(8c and 8d) 1:2, (9e and 9f) 1:3 .  In (7a and 7b), the bar is 2µm, and in (8c, 8d) and (9e) it is 

200nm and in (9f), the bar is 10µm. 
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6.3.2         Studies on the samples produced at. 650°C   
 
6.3.2.1    Sample structures (from XRPD data):- The XRPD Diffractograms of the 
samples prepared from methanolic solutions and fired at  650°C  are shown in Figure 
6.3; they contain evidence of the presence of very broad lines that would have 
previously been interpreted to indicate the presence of amorphous material with little 
or no crystalline  material. However these results are very similar to those that were 
reported in chapter 5 for the materials made from methanolic solution and indicate the 
presence of YOCl:Eu3+.   There was no evidence for cubic Y2O3:Eu3+ in these XRPD 
plots. The XRPD data of the samples prepared from the ethanolic solutions are 
presented in Figure 6.4 there is little evidence of anything different to those prepared 
from the methanolic solutions and are unlike those found in Chapter 5 for the same 
temperature range, The reason for the differences is most likely that the samples did 
not reach as high a temperature than that of the corresponding materials prepared from 
the [(Y,Eu)Cl3] - (C16H33NH3Cl) system and that this is a result of less fuel being 
available due to the shorter alkylammonium chains.  Again there was no evidence for 
cubic Y2O3:Eu3+ in these XRPD plots. In addition there is only evidence for the 
presence of YOCl:Eu3+  unlike the findings for the  [(Y,Eu)Cl3] - (C16H33NH3Cl) 
system prepared from ethanolic solutions.   
 
 

 
 

1:1 650°C methanol powder 
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1:2 650°C methanol powder 

 

1:3 650°C methanol powders 

Figure 6.3   XRPD diffractograms of the samples annealed at 650°C prepared from 
methanolic solutions, metal ion to alkylammonium chloride ratios; 1:1, 1:2 and 1:3. 
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Table 6.1 Cell parameters for the yttrium oxy chloride phases found in the 
materials fired at 650°C prepared from methanol.           
 

 1:1 1:2 1:3 
Yttrium oxide 
chloride YOCl 
 R-3m -1 
           %  

a=  4.861(34)(Å) 
c=  28.00(81)(Å) 
 
30.3(36) 

a=  5.000(35)(Å) 
c=  28.00(22)(Å) 
 
6.13(65) 

 

a = 5.000(18)(Å) 
c=  28.00(13)(Å) 
 
13.03(71) 

 
Yttrium oxide 
chloride YOCl    
R-3m  -2   
          %    

a=  4.114(11)(Å) 
c= 20.272(80)(Å) 
 
69.7(36) 

a=  4.175(13)(Å) 
c= 20.219(64)(Å) 
 
93.87(65) 

 

a=  4.197(11) (Å) 
c= 20.499(52)(Å) 
 
86.97(71) 

 
Yttrium oxide 
chloride YOCl 
P4/nmm [20] 

a= 3.903 (2)   
c= 6.597 (4) 
   
 

  

Yttrium oxide 
chloride YOCl  
P4/nmm [21] 

a= 3.900 (2)   
c= 6.604 (2)  
 
 

  

Yttrium oxide 
chloride YOCl  
 R-3m [21a] 

a=   3.7895 (5)  
c= 28.03     (1) 
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1:1 650°C ethanol powders 

 

1:2 650°C ethanol powders 

 

1:3 650°C ethanol powders 

Figure 6.4  XRPD diffractograms of the samples annealed at 650°C prepared from ethanolic 
solutions, metal ion to alkylammonium chloride ratios: 1:1, 1:2 and 1:3. 
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Table 6.2 Cell parameters for the yttrium oxy chloride phases found in the 
materials fired at 650°C prepared from Ethanol.           
 

 1:1 1:2 1:3 
Yttrium oxide 
chloride YOCl 
 R-3m -1 
           %  

a= 4.347(20)(Å) 
c= 28.00(20)(Å) 
 
2.32(22) 

a=4.670(30)(Å) 
c=28.00(31)(Å) 
 
12.2(15) 

a =4.805(79)(Å) 
c= 28.00(60)(Å) 
 
8.7(17) 

Yttrium oxide 
chloride YOCl    
R-3m  -2   
          %    

a= 4.327(12) (Å) 
c=20.459(83)(Å) 
 
97.68(22) 

a=4.094(15)(Å) 
c= 20.81(12)(Å) 
 
87.8(15) 

a= 4.198(18) (Å) 
c=20.217(74)(Å) 
 
91.3(17) 

Yttrium oxide 
chloride YOCl 
P4/nmm [20] 

a= 3.903 (2)   
c= 6.597 (4) 
 
 

  

Yttrium oxide 
chloride YOCl  
P4/nmm [21] 

a= 3.900 (2)   
c= 6.604 (2)  
 
 

  

Yttrium oxide 
chloride YOCl   
R-3m [21a] 

a=   3.7895 (5)  
c= 28.03    (1) 
 

  

 

 
6.3.3   Photoluminescent Spectra: The PL excitation and emission spectra of the 
samples prepared at 650°C using 1:1, 1:2 and 1:3 ratio precursor products prepared 
from methanolic solutions are displayed in Figure 6.5 and 6.6.Those for the samples 
prepared from ethanolic solutions are presented in figures 6.7 and 6.8.   They support 
the XRPD data; they have similar spectral features of varying intensities yet they are 
different to that of cubic Y2O3:Eu3+.  In particular the excitation spectra of all the 
above products have peaks with weak absorption strength, an increase in the 
absorption bands intensity is seen for higher concentrations of alkylammonium 
chloride. All the emission and excitation spectra resemble those found for the 
methanolic solutions reported in chapter 5.  The strong broad band observed at 254 nm 
in cubic Y2O3:Eu3+ due to the Eu3+ - O2- charge transfer transition is absent, although 
the usual lower intensity absorption lines due to the electronic transitions within the 
 4f 6 configurations are present, some of which show a peak wavelength shift.  The 
emission spectra of these samples are very weak, the strong sharp emission peak found 
at 611nm in cubic Y2O3:Eu3+ due to the 5Do → 7F2 transition is absent or the higher 
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ratio samples where a broader peak centred at approximately 615nm is seen.  Also 
absent in all three samples are the set of emission peaks with a maximum at 709nm 
due to the 5Do → 7F4 of the Eu3+ ion in cubic Y2O3.  

 
(a) 

 
 

(b) 

 
(c) 

 
Figure 6.5  Photoluminescent excitation spectra of the samples prepared at 650°C from 

methanolic solution ( a)  1:1, (b) 1:2 and (c) 1:3 ratio samples. Excitation monitored at 612nm. 
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(a) 

 

 
(b)  

 

 
(c) 

 
Figure 6.6   Photoluminescent emission spectra of the samples prepared at 650°C from 

methanolic solution ( a)  1:1, (b) 1:2 and (c) 1:3 ratio samples (excitation wave length 254nm). 
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(a)   

    
                                            (b) 

 
(c) 

Figure 6.7   Photoluminescent excitation spectra of the samples prepared at 650°C from 
ethanolic solution ( a)  1:1, (b) 1:2 and (c) 1:3 ratio samples. Excitation monitored at 612nm. 
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(a) 

 

                                                  (b) 

              
 
 
 
 
 
 
 
 
 

(c) 
Figure 6.8A   Photoluminescent emission spectra of the samples prepared at 650°C from 

ethanolic solution (a) 1:1, (b) 1:2 and (c) 1:3 ratio samples (excitation wave length 254nm). 
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Figure 6.8B   Photoluminescent emission spectra of the 650°C samples prepared from 
ethanolic solution overlaid (as in Figure 6. 8) 1:1 (bottom), 1:2 (Centre), 1:3 (top) (excitation 

wavelength 254nm.). 

In Figure 6.7, 6.8A and 6.8B the  PL excitation and emission spectra of the samples 
prepared at 650°C using 1:1, 1:2 and 1:3 ratio products prepared in ethanolic solution 
are displayed.They support the XRPD data; their excitation spectra are all very similar 
and are similar to those in Figures 6.5 and 6.6. This is different to the results found in 
chapter 6.5 where the results for the samples prepared from ethanol and methanol were 
different. Here for the samples prepared with the shorter chain length alkylammonium 
salt they are the same. There are some small peaks around 611 in all three emission 
spectra in Figure 6.6 and 6.8 which may indicate the presence of a small amount of 
cubic Y2O3:Eu3+.  

 
6.3.4   Cathodoluminescence Spectra: - The CL (5000V, emission current 50uA) 
spectra of the samples prepared from methanolic solution at 650°C using the products 
produced from the 1:1, 1:2 and 1:3 ratios, presented in Figures 6.9 and 6.10 are shown 
to be different with the 1:3 products being least closest to that of the cubic phase using 
defocused and focussed electron beams respectively.  The CL data are the only data 
that show convincing evidence of the presence of cubic phase material in the samples 
fired at 650°C, and only for the 1:1 and 1; 2 samples the third sample the 1:3 is very 
weak. This is not because CL is more sensitive to the cubic phase but is in fact due to 
the conversion of the samples to cubic in the electron beam. This is because the 
samples are made up of very small particles of a precursor phase to that of the cubic 
Y2O3:Eu3+ phosphor and the electron beam having sufficient energy to convert these 
particles into the cubic phase.  The sample prepared from the 1:3 reactant ratios 
showed almost no conversion to the cubic phase.  
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(a)  

    
                                                        (b) 

               

                        

(c)  

Figure 6.9 Cathodoluminescent spectra of the 650°C samples prepared from methanolic 
solution defocused beam.1:1 (a), 1:2 (b), 1:3 (c) at 5000V/50uA. 
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(a)  
 

 
                                                               (b)    
                                                                          

 
(c) 

Figure 6.10   Cathodoluminescent spectra of the 650°C samples prepared from methanolic 
solution focused beam.1:1 (a), 1:2 (b), 1:3 (c) at 5000V/50uA. 
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(a) 

 

 
                                                        (b) 

 
 

(c) 
 

Figure 6.11 Cathodoluminescent spectra of the 650°C samples prepared from ethanolic 
solution defocused beam.1:1 (a), 1:2 (b), 1:3 (c) at 5000V/50uA. 
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(a)  

 
                                                       (b) 

 
(c)  

Figure 6.12 Cathodoluminescent spectra of the 650°C samples prepared from ethanolic 
solution focused beam.1:1 (a), 1:2 (b), 1:3 (c) at 5000V/50uA. 

 

 

300 400 500 600 700 800
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
te

ns
ity

 (
a
.u

)

Wavelength /nm

Focused-Ethanol 650C M12 S7 1:1 at 5000V/50uA

300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

n
si
ty

 (
a.

u)

Wavelength/nm

Focused Ethanol 650C-M12-S8-1:2 5000V/50uA

300 400 500 600 700 800
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
te

n
si
ty

 (
a
.u

)

wavelength/nm

Focused Ethanol 650c-M12-S9-1:3 5000V/50uA



Chapter 6   Y2O3:Eu3+ Materials from the  
                       [(Y, Eu) Cl3] - (C12H25NH3Cl) 
 
 

191 

 

 

The CL (5000V, emission current 50uA) spectra of the samples prepared from ethanol 
at 650°C using the products produced from the 1:1, 1:2 and 1:3 ratios are presented in 
Figure 6.11 and 6.12. The spectra obtained using the defocused beam and then1:1 and 
1:3 of the focused beam are all alike though that in Figure 6.11(a) is very weak and in 
all cases there is evidence of the cubic phase being formed in the beam. Surprisingly 
the 1:1 sample in the focused beam (see Figure 6.12(a)) shows no conversion to the 
cubic phase, although in the defocused beam some cubic was observed. This may be 
because the latter was over a much larger area of sample, and as stated before the data 
in Figure 6.11(a) are weak as seen in the curved background of the figure.  Again as in 
the samples prepared from methanolic solution (Figures 6.9 and 6.10) the CL data are 
the only data that show convincing evidence of the presence of cubic phase material in 
the samples fired at 650°C. Again this is not because CL is more sensitive to the cubic 
phase but is in fact due to the conversion of the samples to cubic in the electron beam. 
Again this is because the samples are made up of very small particles of a precursor 
phase to that of the cubic Y2O3:Eu3+ phosphor and the electron beam having sufficient 
energy to convert these particles into the cubic phase.   
 

6.3.5    ATR-FTIR Spectra 
 
 The FTIR spectral assignments of the samples prepared from ethanolic and 
methanolic solution at 650°C are summarised in Table 6.3 and 6.4, all show the 
presence of bands that can only be ascribed to the presence of metal hydroxycarbonate. 
Firstly for the samples prepared from methanol at 650°C the FTIR spectra show the 
presence of bands that are ascribed to a mixture of Y0.98Eu0.02(OH)CO3, 
(Y0.98Eu0.02)2O(CO3)2 and (Y0.98Eu0.02)2O2CO3.  The basic europium doped yttrium 
carbonate, Y0.98Eu0.02(OH)CO3, could have been formed from the surface reaction of 
YCl3 with H2O and CO2 produced from the combustion of the alkylammonium 
cations. 
 
2(Y,Eu)Cl3 + 3H2O → (Y0.98Eu0.02)2O3 + 6HCl    (6.1) 
(Y0.98Eu0.02)2O3 + 2CO2 + H2O → 2Y0.98Eu0.02(OH)CO3                (6.2) 
 
As Y0.95Eu0.05(OH)CO3 was reported to lose most of its hydroxide to give 
(Y0.95Eu0.05)2O(CO3)2 and (Y0.95Eu0.05)2O2CO3 when it was calcined at 550°C for 1 hr 
in a muffle furnace [25], it is likely that a similar decomposition occurred, albeit 
incompletely, under the rapid combustion conditions at a set temperature of 650°C in 
the present work. 
Figures 6.13 and 6.14 present ATR-FTIR spectra of these samples in the 3600 – 700 
cm-1 range; the broad band observed in the region of 3600-2400 cm-1 is assigned to the 
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O-H stretching vibration of the hydroxycarbonate. The triplet of bands observed at 
1633 cm-1, 1522 and 1403 cm-1 is attributed to C-O stretching vibrations of CO3

2- 
anions; the first component having some C=O character and the last two most likely 
being due to antisymmetric C-O stretching modes of CO3

2- anions [26].  Furthermore, 
the weak band at 1092 cm-1 is assigned to a symmetric C-O stretching vibration of the 
CO3

2- anions [27].  The inhomogeneous broadening of the various vibrational bands in 
the spectra of these samples is due to the disorder within the lattices when the products 
are formed at 650°C. It is not possible to identify bands due to Y-Cl stretching 
vibrations in these ATR-FTIR spectra as they are expected to appear below the low 
wavenumber cut-off at ca. 700 cm-1 of the ATR diamond crystal which was used for 
collecting the ATR-FTIR spectra (bands due to Y-Cl stretching vibrations would be 
expected to occur at lower wavenumber).   
 
 

Table 6.3 Materials prepared from methanolic solutions at 650°C. 

Wavenumber/cm-1  
     3600-2400   (m)                         ν (O-H) 
     1633  (w)                         δ (O-H)      
     1522  (m)                         νas (CO3

2-) 
     1403  (s)                         νas (CO3

2-) 
     1090  (w)                         δ (O-H) 
      ~759  (w shoulder on cut-off) δ (CO3

2-) 
      
 

Table 6.4 Materials prepared from ethanolic solutions at 650°C. 

Wavenumber/cm-1  
     3600-2200   (m)  ν (O-H) 
        (m)  νs (O-H) 
     1622  (shoulder) δ (O-H) 
     1520  (s)  νas (CO3

2-) 
     1422  (s)  νas (CO3

2-) 
     1092  (w)  δ (O-H) 
      725  (w)  δ (CO3

2-) 
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                                                                     (c) 
Figure 6.13 ATR spectra of the 650°C, samples a, b; c prepared from methanolic solution with 

metal ion to alkylammonium chloride ratios 1:1 (a), 1:2 (b) and 1:3 (c). 
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8 

 
 
 

 

 

 

                                                                 
9 
 

Figure 6.14 FTIR spectra of the 650°C, samples 7, 8, 9 prepared from ethanolic solution with 
Metal ion to alkylammonium chloride ratios 1:1 (7), 1:2 (8) and 1:3 (9) in KBr discs. 
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9 

Figure 6.14A ATR spectra of the 650°C, samples 7, 8, 9 prepared from ethanolic solution with 
metal ion to alkylammonium chloride ratios 1:1 (7), 1:2 (8) and 1:3 (9). 

 
 
 
6.3.6    Conclusions so far:- It is clear from these results so far that the presence of the 
combustion fuel in the samples prepared at 650°C was insufficient to raise the 
temperature high enough to form the cubic Y2O3:Eu3+ phase or that the furnace 
temperature was insufficient. All the 650°C ATR-FTIR spectra are similar, although 
the emission spectra do indicate that for the higher fuel ratios that a greater degree of 
order is found. It is interesting that there is evidence for yttrium oxychloride doped 
with europium containing phases for the samples prepared from both methanolic and 
ethanolic solutions where the shorter chained alkylammonium salt has been used 
unlike the findings in Chapter 5. 
 
 
6.4          Studies on the samples produced at. 900°C   
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900°C that is characteristic of the Eu3+ ion in cubic Y2O3. The strongest red 
luminescence comes from 1:3 material sample ratios and at 900°C. 
 
 6.4.2    SEM Studies: - The phosphor samples annealed at 900°C are now discussed.  
In Figure 6.15 and 6.16  SEM micrographs of phosphor samples prepared from 
methanolic  solutions then fired at 900°C at metal chloride to alkylammonium chloride 
ratios of  Figure 6.15, 1:1 (a,b,c,k, and l), Figure 6.16, 1:2 (e,f and m) and Figure 
6.17,1:3 (g,h,i,j,n,o and p) are presented.   
 

       
                       (a)                                                                         (b)   

   
                              (c)                                                                                                         

      
 
(k-4) 1:1                                                                        (l-4) 1:1    
 
  

Figure 6.15  FESEM images of phosphor samples prepared from methanolic solutions then 
fired at 900°C using a metal chloride to alkylammonium chloride ratio of 1:1,a,b,c,k,l. In (a) 

the bar is 10 µm, in (b) the bar is 2µm, in (c and k) it is 1 µm, and in (l) it is 200 nm. 
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                 (e)                                                              (f) 

 
(g) 1:2 
 

Figure 6.16   FESEM images of phosphor samples prepared from methanolic solutions then 
fired at 900°C using a metal chloride to alkylammonium chloride ratio of 1:2, e, f, and m. In 

(e) the bar is 1 µm, and in (f and g ) it is 200 nm. 

 
 

It is interesting to note that the same morphological forms and the individual 
crystallites of the 650°C 1:1 and 1:2 samples are present in the 900°C 1:1 sample and 
the remnant micellar forms of the 650°C 1:3 sample are present in the higher 
temperature 1:2 sample.  The 900°C 1:3 sample is shown to have underg`one sintering 
that has eliminated some of the fine remnant micellar structures, therefore the higher 
temperature and metal chloride to fuel ratio has been sufficient to raise the temperature 
significantly. 

 
 

 

      
                      (g)                                                                       (h) 
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                         (i )                                                                 (j)                                                 

       
                         (k)                                                                 (l)                                     

    
                          (m)1:3 

 
Figure 6.17  FESEM images of phosphor samples prepared from methanolic solutions then 

fired at 900°C using a metal chloride to alkylammonium chloride ratio of 1:3, g,h,i,j,k,l,m. In 
(j) the bar is 10 µm, in (k) the bar is 2µm, in (g, h and l) it is 1 µm, and in (i and m) it is 200 

nm. 
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1:1-10-a                                                            1:1-10-b                                                                        

      

        1:1-10 –c                                                                      1:1 10-d  

              

        1:2 -11-e                                                                         1:2 -11-f                                              

      

       1:2-11-g                                                                          1:2 -11-h 
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            1:3- 12-i                                                             1:3-12-j 

Figure 6.18  FESEM images of phosphor samples prepared from ethanolic solutions then fired 
at 900°C prepared at metal chloride to alkylammonium chloride ratios of (10-a, b, c and d) 1:1. 
(11-e,f,g and h ) 1:2 and (12-j and i) 1:3, In (b,d,f and i) the bar is 2µm, and in ( a,c,e,g,h and j) 

it is 200nm. 
 

In Figure 6.18 SEM micrographs of phosphor samples prepared from ethanolic 
solutions then fired at 900°C at metal chloride to alkylammonium chloride ratios of 1:1 
(10-a,b,c and d), 1:2 (11-e,f,g and h) and 1:3 (12-j and i) are presented . All of these 
three samples were prepared in a muffle furnace with a wide chimney.  In these 
samples the SEMs show small sub micron crystals that form as two dimensional sheets 
suggesting that they were formed from the two dimensional extended micelle sheets. 
Therefore the higher temperature and metal chloride to fuel ratio has been sufficient to 
raise the temperature significantly compared to the 650°C samples. 
 
6.4.3     Sample structures (from XRPD data) 
 
 All the samples that were produced under the 900°C conditions from methanolic 
solution showed the presence of crystalline material and all showed a similar XRPD 
(see Figure 6.19) pattern identified as cubic Y2O3:Eu3+. Samples prepared from the 1:1, 
1:2 and 1:3 ratios all contained cubic Y2O3 with Lorentzian average crystallite sizes of 
30.8 nm, 32.8 nm and 44.8 nm respectively. There were a few sharp lines in the 1:3 
ratios that do not fit the cubic Y2O3:Eu3+ and have not been fitted. 
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 (a)  

 

(b) 

 

(c)  

Figure 6.19 XRPD diffractograms of the samples prepared from methanolic solution 
then fired/annealed at 900°C, metal ion to alkylammonium chloride ratios: 

1:1 (a), 1:2 (b) and 1:3 (c). 
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 (a)  

 

 (b) 

 

(c)  

Figure 6.20  XRPD diffractograms of the samples prepared from ethanolic solution then fired/ 
Annealed at 900°C, metal ion to alkylammonium chloride ratios: 1:1 (a), 1:2 (b), 1:3 (c). 
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The samples that were produced under the 900°C conditions from ethanolic solution 
showed differing behaviour. The 1:1 sample had an XRPD pattern (see Figure 6.20 (a) 
that is typical of the presence of the material YOCl that found at 650°C. This must 
mean the temperature did not get high enough to change it to the cubic forn; this 
observation is in keeping with the glasslike structures observed in the SEM of this 
sample (see Figure 6.18 (a) to (d)). The 1:2 and 1:3 samples (see Figure 6.20 (b) and 
(c)) both showed the presence of crystalline material and in both cases the XRPD 
pattern was identified as cubic Y2O3:Eu3+. However whereas for the 1:3 sample (figure 
20(c) only cubic Y2O3:Eu3+   was present in the case of the 1:2 sample a second 
crystalline phase was found. This phase was minor and not identified. The main phase 
was the cubic Y2O3:Eu3+

.These phases had Lorentzian average crystallite sizes of 
60.59(20) nm1:3 and 58.50(14) nm 1:2 respectively.   

 
Table 6.5 
Cell parameters for the yttrium oxychloride phase Y2O3:Eu3+ found  
in the materials fired at 900°C prepared from methanol and ethanol.  
 
Methanol     a  (Å)  a  (Å) c  (Å) Phase  % 

4     1:1 10.61210(40)   100 
5     1:2 10.62168(27)   100 
6     1:3 10.62231(35)   100 

     
Ethanol     
10     1;1 phase 
1* 

R- 3m -1  5.000(26) 
 

28.000(26) 11.78(97) 

10     1:1phase  
2* 

R- 3m -2 34.185(15) 
 

20.567(80) 88.22(97) 

11     1;2 10.61901(89)   100 
12     1:3 10.62109(11)   100 
 
* These phases had very small crystallite sizes that were both less than 1nm. This is 
typical of this material (YOCl) 
 
6.4.4. Photoluminescent Spectra 
 
 All the PL emission spectra of the samples made from methanolic solution  are typical 
of cubic Y2O3:Eu3+, as are the excitation spectra. Typical excitation and emission 
spectra are presented in Figures 6.21, 6.22, 6.23 and 6.24 for the 1:1, 1:2 and 1:3 
900°C samples. 
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 (a)  

 
(b) 

 
(c)  

Figure 6.21   Photoluminescent excitation spectra of the 900°C samples prepared from 
methanolic solution.  Excitation spectra (a) 1:1-4, (b)1:2-5, (c)1:3-6. Excitation monitored at 

612 nm. 
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Figure 6.22 Overlay photoluminescent excitation spectra of the 900°C samples C-12 prepared 
from methanolic solution. Overlay excitation graphs 1:1-4-black-top, 1:2-5, red (mid), 1:3-6, 

green. Excitation monitored at 612 nm. 
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(c)  

Figure 6.23   Photoluminescent emission spectra of the 900°C samples prepared from 
methanolic solution.  Emission spectra (a)1:1-4,(b) 1:2-5, (c)1:3-6. Excitation wavelength 

254nm. 

 

Figure 6.24   Overlay photoluminescent emission spectra of the 900°C samples C-12 prepared 
from methanolic solution. Overlay emission graphs 1:1-4, 1:2-5, 1:3-6 green. Excitation 

wavelength 254nm. 
 
The PL emission spectra (Figure 6.25) of the samples made from ethanolic solution are 
not the same as those of those prepared from methanolic solution The 1:1 and 1:2 
ratios are different from each other and differ from those in Figures 6.21 and 6.22  
(those made from  methanolic solution) where as that of the 1:3 ratio is much more 
typical of cubic Y2O3:Eu3+, The PL excitation spectra (Figure 26) show a similar 
behaviour, with the 1:1 being the most out of line and very like the spectra of the same 
sample heated to 650°C, the 1:2 shows some changeover towards the cubic phase of 
Y2O3:Eu3+ and the 1:3 material has an emission spectrum very like cubic Y2O3:Eu3+. 
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at the temperature long enough to fully convert to the cubic phase, This was confirmed 
by refiring a portion of a 1:2 sample for sixty minutes at 900°C its emission spectrum 
is presented in Figure 6.27 it is clearly change compared to Figure 6.26 and is now 
fully cubic Y2O3:Eu3+. 

 

(a) 

 

(b) 

 

(c) 
 

Figure 6.25   Photoluminescent excitation spectra of the 900°C samples prepared from 
ethanolic solution.  Excitation spectra (top) (a) 1:1-10, (b) 1:2-11, (c) 1:3-12. Excitation 

monitored at 612 nm. 
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(a) 

 

(b) 

 

(c) 

Figure 6.26   Photoluminescent emission spectra of the 900°C samples prepared from ethanolic 
solution.  Emission spectra (a)1:1-10, (b)1:2-11, (c)1:3-12 . Excitation wavelength 254nm. 
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Figure 6.27   Photoluminescent emission spectrum of the (b) 1:2 -11 sample 

refired at 900°C for 60 min. Excitation wavelength 254nm. 
 
At this point it is worth exploring why the samples prepared at 900°C from ethanolic 
solution are different from those prepared from methanolic solution. First it should be 
stated that all the preparations were performed twice so the findings are repeatable. 
The difference in the preparation of the samples is only the solvent. However as the 
solvents were not totally removed as they were only left in air for 24 h before firing the 
samples still contained solvent when they were fired. Hence there was more carbon 
content in the ethanolic samples on firing and this would have formed extra carbon 
dioxide. This gas is heavier than air and may have displaced excess oxygen from the 
vicinity of the crucible. Hence there was not enough oxygen in the furnace to convert 
all the way to the cubic Y2O3:Eu3+ and hence only partial oxidation took place to form 
monoclinic Y4O5Cl2:Eu3+. Moreover as seen in the preceding chapter this excess 
carbon dioxide could react with the surface of the fired samples forming a carbonate 
rich layer and partially protecting the inner materials from full oxidation, So though 
the monoclinic Y4O5Cl2:Eu3+ was prepared as nanoparticles they proved to be stable 
only when the outer carbonate layer was intact and longer firing converted the material 
to cubic Y2O3:Eu3+. 

 
 
6.4.5.  Cathodoluminescence Spectra The CL (5000V, emission current 9.6μA) 
defocused and focused spectra of the products prepared from the precursors originating 
in the methanolic solutions are shown in Figures 6.28, 6.29, 6.30 and 6.31; they are all 
similar and typical of cubicY2O3:Eu3+.  
 
 

300 400 500 600 700 800

0

100

200

300

400

500

600

In
te
ns

ity
 (
a.
u
)

Wavelength nm

1to2-11-material fired for 60minutes-emission-
ethanol-900c



Chapter 6   Y2O3:Eu3+ Materials from the  
                       [(Y, Eu) Cl3] - (C12H25NH3Cl) 
 
 

212 

 

 
(a) 

 
 

(b) 

 

(c)  
 
Figure 6.28 The CL defocused beam emission spectra for samples (a) 4-1:1, (b)  5-1:2 and (c) 
6-1:3 prepared from methanolic solutions and fired/annealed at 900°C all three samples were 

excited using 5000V/50uA 
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Figure 6.29   Overlay of the CL defocused beam emission spectra presented in Figure 6.28. 
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(c) 

Figure 6.30 The CL focused beam emission spectra for samples (a) 4-1:1, (b)  5-1:2 and (c) 6-
1:3 prepared from methanolic solutions and fired/annealed at 900°C all three samples were 

excited using 5000V/50uA 
 

 

Figure 6.31  Overlay of the CL focused beam emission spectra presented in Figure 30. 
 

The CL (5000V, emission current 9.6μA) defocused and focused spectra of the 
products prepared from the precursors originating in the ethanolic solutions are shown 
in Figures 6.32 and 6.33.  They are all more simplified than those found for their 
respective PL emission spectra and those for the 1:2 and 1:3 samples typical of 
cubicY2O3:Eu3+. Even the 1:1 sample showed evidence of a spectrum that though very 
weak was dominated by the 612nm emission of the cubicY2O3:Eu3+. Either the cubic 
material is more sensitive to Cathodoluminescence and hence this is all that is seen or 
the energy of the X-rays was enough to allow oxidation of the monoclinic 
Y4O5Cl2:Eu3+ to the cubic Y2O3:Eu3+ and hence further oxidation took place during the 
Cathodoluminescence experiments for these materials. The latter explanation is 
probably less likely to be true. 
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(a) 

 
(b) 

 

 

(c) 
Figure 6.32  The CL defocused beam emission spectra for samples (a) 10-1:1, (b)  11-1:2 and 

(c) 12-1:3 prepared from ethanolic solutions and fired/annealed at 900°C all three samples 
were excited using 5000V/50uA 
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(a) 

 

 
(b) 

 
(c) 

 
Figure 6.33  The CL focused beam emission spectra for samples (a) 10-1:1, (b) 11-1:2 and (c) 
12-1:3 prepared from ethanolic solutions and fired/annealed at 900°C all three samples were 

excited using 5000V/50uA 
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6.4.6. ATR-FTIR Spectra 
 
The ATR- spectra from the samples prepared at 900°C are summarised in Table 6.6 
and 6.7.  The spectra presented in Figure 6.21 show the presence of bands that can be 
ascribed to the presence of carbon dioxide and some OH groups in this respect there 
are some similarities to the 650°C spectra.  The O-H deformation mode of H2O is 
observed to be present as a weak shoulder at approximately 1636 cm-1 to the high 
frequency side of the strong CO3

2- ν3 asymmetric stretch doublet at 1523 and1403 cm-1.  
Although, there is still the wide absorption band between 3600 to 3000 cm-1 that 
appears to be split into two weak peaks.   The lower frequency CO3

2- ν3 asymmetric 
stretch peak of the doublet at 1400 cm-1 has shifted in wavelength compared to the 
650°C samples.  Also the CO3

2- deformation has resolved as a weak peak at 850 cm-1. 
The position of the CO2 bands in these samples are similar to those found in 
[(Y,Eu)OHCO3.H2O]. This finding was explained in chapter 5 in section 5.47 and is 
summarised below. It is clear from these results that the combustion fuel that was 
present in the samples in conjunction with the higher annealing temperature (900°C) 
was sufficient to raise the temperature for nanometer sized crystallites of the cubic 
Y2O3:Eu3+ phase to form. The infrared spectra show the presence of bands due to the 
existence of CO2 in the lattice. This is we believe due to the reaction of the surface of 
the nanometer sized particles with the atmosphere. In this work the Y2O3:Eu3+ was 
formed from firing a precursor containing the long chained alkylammonium chloride 
and YCl3:Eu3+. The precursor itself was formed by reducing an alcoholic solution 
containing both of these components as starting materials. So the metal oxide was 
prepared by firing the metal chloride.  This was to prepare nanometer sized particles of 
the metal oxide. In the past we have prepared larger nanometer sized particles of the 
metal oxide that were prepared by the hydrothermal decomposition of urea that 
facilitated the homogeneous precipitation of spherical submicron europium-doped 
hydroxycarbonate phosphor precursor particles.  It is useful to explain this latter 
method here to help to understand the infrared data obtained in this work.This method 
is dependent on the addition of, and hydrothermal decomposition of, urea in acid 
solution in the presence of metal salts that are soluble at acid pH’s. The chemistry 
involved includes:- 
Aqueous decomposition of urea (<85 ºC, ~ pH 3) resulting in the following ions, 

   6.3.             H2NCONH2  NH4
+ + OCN- 

The cyanate ion rapidly reacting thus, 
 

   6.4.       OCN- + 2H+ + 2H2O  H2CO3 + NH4
+   

 

In the presence of Y3+ and Eu3+ cations which are added as acid salts the solution pH 
drops to ~2.5. The urea is added and the resulting hydroxonium ions (H3O

+) promote 
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urea decomposition.  The subsequent release of carbonate ions causes precipitation of 
the metal hydroxycarbonate phosphor precursor, once the concentration of reactants 
reaches supercritical saturation 
 

6.5.      [(Y,Eu)OH(H2O)n]
2+ + H2CO3   [(Y,Eu)OHCO3.H2O] + (n-1) H2O + 2H+

(aq) 

Careful firing of the precursor particles allows their spherical morphology to be 
partially maintained in the resulting phosphor particles. This method for the 
preparation of cubic Y2O3:Eu3+ has previously been reported for the dopant 
concentration range from 0.2 mole fraction to 1x10-3 mole fraction Eu3+. Both by 
ourselves and others [3-19]. In the current work the presence of the surface of the very 
small particles of Y2O3:Eu3+ reacts with the atmosphere adsorbing CO2 and H2O to 
form [(Y, Eu)OHCO3.H2O]  reversing the above reaction. This shows that cubic 
Y2O3:Eu3+ is thermodynamically unstable in the presence of carbon dioxide and water 
vapour and reverts to the metal hydroxyl-carbonate precursor. 
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Sample-5, 1 to 2 

 

 

 

 

Sample-6, 1 to 3 

Figure 6.34   ATR spectra of the 900°C samples 4, 5, 6 prepared from methanolic solution 
with metal ion to alkylammonium chloride ratios 1:1 (4), 1:2 (5) and 1:3(6). 
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Sample 10, 1 to 1 

 

 

 

 

Sample 11, 1 to 2 
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Sample 12, 1 to 3  

Figure 6.35   ATR spectra of the 900°C (samples 10, 11, 12), prepared from ethanolic solution 
with metal ion to alkylammonium chloride ratios 1:1 (10), 1:2 (11) and 1:3 (12) in KBr discs. 

 

 

Wavenumber (cm-1) 

 

Figure 6.36  FTIR spectrum of  KBr pure material-blank. 
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Table 6.6 

 Materials prepared from methanolic solution and fired at 900°C 

Wavenumber/cm-1  

     3600-3000 (m)             νas (O-H) 

     2852  (m)  νs (O-H) 

     1636  (w)  δ (O-H)      

     1515  (m)  νas (CO3
2-) 

     1402  (s)  νas (CO3
2-) 

     1082  (w)  νs (CO3
2-) 

     844    (w shoulder) δ (CO3
2-) 

      

Table 6.7 

 Materials prepared from ethanolic solution and fired at 900°C 

Wavenumber/cm-1  

     3600-3000 (m)            νas (O-H) 

    2251  (m)  νs (O-H) 

     1636  (shoulder) δ (O-H 

     1523  (s)  νas (CO3
2-) 

     1404  (s)  νas (CO3
2-) 

     1086  (w)  δ (O-H) 

      851  (w)  δ (CO3
2-) 
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6.5. Conclusions 
 
It was shown that nanometer sized crystallite particles of cubic Y2O3:Eu3+ can be 
prepared from metal chloride precursors formed in micelles encapsulated by 
alkylammonium chains (the fuel) using a combustion synthetic method at 900°C. This 
is in keeping with the previous work [1] but in this experiment 900°C was the 
maximum temperature used and not 1350°C. The method produced a range of 
morphologies influenced by the alkylammonium chloride concentration, in particular 
including residual remnant micellar forms as spheres, tubules, and macro- lamellar 
sheets (of these aforementioned forms).It was clear from this work that the combustion 
fuel that was present in the samples prepared at 650°C was insufficient to raise the 
temperature above 900°C for long enough time period (if at all) for the cubic 
Y2O3:Eu3+ phase to form. For both the samples prepared from methanol and ethanol 
the dominated phases found at 650°C were two forms of YOCl. Further we have 
characterised the nano-particles and demonstrated that they manifest many of the 
properties (CL and PL spectral properties) of bulk cubic Y2O3:Eu3+ for the samples 
fired at 900°C.However we have also detected the presence of CO2 bands in the infra 
red spectra of the cubic Y2O3:Eu3+ crystallites. These bands are similar in position to 
those found in [(Y, Eu)OHCO3.H2O], and are explained as arising from the 
spontaneous reaction of the surface of the nanometer sized particles of cubic 
Y2O3:Eu3+ with atmospheric CO2 and water vapour. This indicates that nanometer 
sized particles of cubic Y2O3:Eu3+ are thermodynamically unstable in the atmosphere 
and must be protected against such back reactions. This could be achieved with surface 
coatings. A number of conclusions can be drawn from the work reported in this chapter 
many in common with the conclusions of chapter 5. 

1) We have shown that nanometer sized particles of cubic Y2O3:Eu3+ can be 
prepared from metal chloride precursors formed in micelles encapsulated by 
alkylammonium chains (the fuel) by using a combustion synthetic method at 
900°C. This finding is in keeping with the earlier report [1] but the 
understanding of the reactions and the chemistry is now proving to be much 
better. 

2) The method produces a range of morphologies that are influenced by the initial 
alkylammonium chloride concentration, in particular remnant micellar forms 
are present such as spheres, tubules, and macrolamellar sheets of these 
aforementioned forms. 

3) Evidence of morphologies and particle size being controlled by the initial 
micellar structures was found in the materials fired at both 650°C and 900°C.   

4) It is clear from this work that the combustion fuel which was present in the 
samples prepared at 650°C was insufficient to raise the temperature over 900°C 
for a long enough time period (if at all) for the cubic Y2O3:Eu3+ phase to form. 
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5) Further at 900°C we have characterised the nanometre sized phosphor particles 
and demonstrated that they manifest the properties (CL and PL spectral 
properties) of bulk cubic Y2O3:Eu3+. Through the 1:1 material made from 
ethanol did not convert.  

6) We have also observed bands due to metal hydroxycarbonate in the infrared 
spectra of the cubic Y2O3:Eu3+ nanoparticles. These bands are similar in 
position to those found in bulk [(Y,Eu)OHCO3.H2O], and are explained as 
arising from the spontaneous reaction of the surface of the nanometer sized 
particles of  cubic Y2O3:Eu3+ with atmospheric CO2 and water vapour. This 
indicates that nanometre sized particles of cubic Y2O3:Eu3+ are 
thermodynamically unstable in the atmosphere and must be protected against 
such back reactions. This could be achieved with surface coatings. 

Finally confirming the finding in chapter 5 from the findings of this chapter it would 
appear that the use of sacrificial organised organic structures for the incorporation of 
inorganic precursors offers great potential as a method to control the morphology and 
size of nanometre sized particles. However during the CL studies we noticed subtle 
changes in these spectra as a function of applied voltage and beam current, when these 
changes are understood they will be published elsewhere. 
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  Chapter Seven           
 
 
7.0.     Y2O3:Eu3+ Materials from the [(Y, Eu) Cl3] - (C8H17NH3Cl) 

7.1    Introduction  

In chapter 5, the effect of looking at how  [(Y,Eu)Cl3] - (C16H33NH3Cl) precursor 
materials led to different fired phosphors depending on firing conditions, atmosphere 
and whether the precursors were prepared from methanolic or ethanolic solutions was 
reported. Instead of just cubic Y2O3:Eu3+ being formed it was found that in the reaction 
of [(Y, Eu)Cl3]-(C8H17NH3Cl) two other phases:- YOCl:Eu3+  and Y4O5Cl2:-Eu3+ were 
also formed in the case of the materials prepared from ethanol. In chapter 6 the 
preparation of nanoparticles phosphors from [(Y, Eu) Cl3] - (C12H25NH3Cl) are 
reported using similar preparative methods. In chapter 6 the main finding was similar 
to chapter 5 but YOCl: Eu2+ was more dominant at 650 °C. In this chapter the 
preparation of nanoparticles phosphors from  [(Y, Eu) Cl3] - (C8H17NH3Cl) are 
reported using similar preparative methods to those in chapters 5 and 6.As stated 
earlier the aims of this thesis were motivated by widespread interest on the synthesis 
and properties of phosphors made up of highly crystalline sub micrometer sized 
particles. The studies presented in this chapter again add/supplement the work of our 
group and others on methods of preparing the cubic Y2O3:Eu3+ phosphor [2-19]. In 
particular we were interested in the influence of the alkylammonium chain length of 
the precursor on the final products in the combustion synthesis; we extend this interest 
in this chapter to the study of yet smaller chain lengths.  As stated in the introduction in 
chapter 5 “one of the problems with making such sub micrometer sized particles; is 
that during annealing of the precursor particles at high temperatures (often necessary 
for good crystallite quality and hence emission properties) the particles tend to sinter”. 
In the chapter 5 and 6 we demonstrated that one way to partially alleviate this problem 
is to synthesise the particles as rapidly as possible at a high temperature. Combustion 
synthesis has been shown in those chapters to be an ideal method to do this. However 
we have shown that the use of the method depends on the nature of the fuel and the 
amount present as well as the amount of oxygen present. The first report [1] of facile 
self-assembly of the red emitting phosphor yttrium oxide europium (Y2O3:Eu3+) from 
solution using a sacrificial micellar phase appeared in 1999. The micellar phase was 
assembled using the alkylammonium chloride salt (C12H25NH3Cl) in an ethanolic 
solution. The resulting fine powder had smaller particles, ranging in size from 0.1 to 
1.0 µm, than the commercial cubic Y2O3:Eu3+ phosphor [1]. This chapter reports a 
study where the chain length is smaller (C8H17NH3Cl). So in this case there is less 
combustion fuel. As in Chapters 5 and 6 the results discussed in this chapter were 
obtained using a more sophisticated way to control the rate of crystallization of the 
phosphor particles. This was to vary the ratio of phosphor precursor to fuel. In the 
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previous chapters the presence of more fuel around the phosphor precursors was found 
to facilitate/influence the combustion process and the products formed. Here the 
overall amounts of fuel are less so the effect of reduced fuel could be studied. So in 
this chapter the dodecylalkylammonium hydrochloride chain (C8H17NH3Cl) was used 
as fuel and now the affect of varying the ratio of this to the [(Y, Eu)OHCO3.H2O] 
precursor on the Cathodoluminescence (Cl) and photoluminescence (PL) properties of 
the resulting phosphors is discussed. The following systems were studied;- 
 
1. [Y,Eu]Cl3 - (C8H17NH3Cl)-6 experiments in the ratio of 
        1:1, 1:2, 1:3with ethanol (3 fired at 650°C and 3 fired at 900°C). 

2. [Y,Eu]Cl3 - (C8H17NH3Cl)-2 experiments in the ratio of 
        1:1, with methanol (1 fired at 650°C and 1 fired at 900°C). 

The temperatures 650°C and 900°C were chosen to be above the formation 
temperature of YOCl. 

 
 
7.2      Experimental 
 
For the experimental technique refer to chapter 4 paragraph 4.6 experiments 10/10a. 
Preparations of [(Y, Eu) Cl3] - (C8H17NH3Cl) n (for n = 1, 2, 3) were carried out with 
materials prepared from methanolic and ethanolic solutions. Attenuated total 
reflectance (ATR)-Fourier transform infrared (FTIR) spectra were obtained using a 
Perkin Elmer Spectrum One FTIR spectrometer. This technique is used to study 
vibrational, rotational, and other low-frequency modes in a system [13, 21]. The 
crystalline phases of the products were determined by X-ray powder diffraction 
(XRPD) using a Bruker D8 Advance X-ray powder diffractometer. (See for detail to 
chapter 3 ref 3.2). XRPD studies have been used to identify the phases present in the 
combusted products synthesized in this work, and their degree of disorder/order and 
their crystallite sizes [10, 22]. Diffractograms were collected using the fired powders 
in a conventional holder, or mounted on aluminium pin stub or on an aligned silicon 
substrate [6, 7, 23, 24].Field emission scanning electron microscopy (FESEM) was 
used to study the microstructure of the samples using a Zeiss Supra VP 35 instrument.  
The samples were mounted on carbon tabs attached to aluminium pin stubs and sputter 
coated with a thin conducting layer of gold. The PL excitation and emission spectra 
were obtained using a Bentham (Reading, UK) M300 programmable grating 
monochromator photometer system with computer controlled wavelength scanning and 
intensity data collection, using in the visible region a 1800 lines/mm grating.  The 
stepping motor and sine drive allows wavelength scanning to be completely controlled 
from a remote stepping drive unit (SMD3B).  Sample excitation and collection was 
collected inside an in-built sealed chamber connected to the M300 monochromator via 
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a fibre-optic bundle. The Cl measurement data and spectra were undertaken using a 
high-vacuum chamber with a Kimball Physics Inc. (Walton, USA), model EGPS-7 
electron gun. The Cl luminance measurements were obtained by means of a Jeti 
spectroradiometer (Specbos 1201, Jeti Technische Instrument GmbH, and Jena, 
Germany).  The phosphor screens were excited with electron beam energies from 1000 
to 5000V, and emission currents from 1.1 to 9.8µA/cm2, with an electron beam spot 
size of 9 mm for defocused measurements and 1.41 mm for the focussed 
measurements. For some of the samples, Cl emission and excitation spectra were 
obtained using the Bentham system previously described except that the fibre optic 
bundle was disconnected from the in-built sealed chamber and attached to a telescope 
(TEL 301D).For the Cl luminance measurements and spectra of the prepared samples 
phosphor screens were prepared in the following manner.  After cleaning the 
aluminium pin stubs in an ultrasonic bath containing ethanol, followed by drying in an 
oven at a temperature of 100°C they were weighed. A stub was then placed in an 
electrochemical cell containing an ultrasonically dispersed solution of the phosphor 
powder (0.5g), in an electrolyte solution of magnesium nitrate (0.075g/L) and 
isopropanol (50ml).  The stub was positioned with its flat surface forming a meniscus 
with the surface of the phosphor/electrolyte solution and acted as an electrode, the 
counter electrode being a strip of magnesium ribbon.  A field of 300V was applied 
facilitating the coating of the stub by electrode position. This procedure was repeated 
till all the stubs were coated with 3mg (±0.1mg) of phosphor.  After drying the stubs at 
100°C they were introduced into the vacuum chamber for CL measurements. 
 

7.3        Results and Discussion 

7.3.1     Products prepared with methanol and ethanol at temperatures of 650°C. 
 
7.3.1.1 Sample appearance: - Products (samples) prepared from precursors 
methanolic and ethanolic solutions were fired at a temperature of 650°C and observed 
to be light grey in colour, where as the samples prepared at 900°C were all white 
powders. Under 254nm excitation the samples prepared at 650°C displayed a weak red 
luminescence which was in contrast to the strong red luminescence from the samples 
prepared at 900°C that is characteristic of the Eu3= ion in cubic Y2O3. The strongest red 
luminescence comes from 1:3 material sample ratios and at 900°C. As stated above 
only four samples were studied at 650°C they are:- 
 

3. [Y,Eu]Cl3 - (C8H17NH3Cl) -          1:1, with methanol.  
 

4. [Y,Eu]Cl3 - (C8H17NH3Cl) - 1:1, 1:2, 1:3 with ethanol. 
 
7.3.1.2. SEM Studies: - Firstly the samples prepared from methanolic and ethanolic 
solutions that were fired at a temperature of 650°C.  In Figure 7.1 FESEM micrographs 
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                              (p)         

Figure 7.2   FESEM images of phosphor samples fired at 650°C  from precursors prepared 
from ethanolic solutions using metal chloride to alkylammonium chloride ratios of 1:1 

 (a,b,c and d),1:2 (e,f,g,h,i,j and k),1:3  (m,n,o  and  p). In (c and h), the bar is 1µm.  
 In (a.b,e.f.g, ,m,n and  o), the bar is 2µm. In ( i ) the bar is 100nm. 

In (d,j.k and p) the bar is 200nm . 
 
7.3.2         Studies on the samples produced at. 650°C   
 
7.3.2.1   Sample structures (from XRPD data) 
 The XRPD Diffractograms of the 1:1 sample prepared from the methanolic solutions 
and fired at 650°C showed evidence for a large amount of nanocrystalline material.  
There was no evidence for cubic Y2O3:Eu3+ in the XRPD data. The XRPD data of the 
samples prepared from ethanolic solutions and fired at 650°C are presented in Figure 
7.3 for the 1:1 , 1:2 and 1:3 ratios,. There was little evidence of anything different to 
that prepared from methanol, and again there is evidence of nanocrystalline material in 
Figure 7.3. Again there was no evidence for cubic Y2O3:Eu3+ in these XRPD plots.  
From the fitting to the data presented in Figure 7.3 it was found that the 1:1 and 1:2 
ratios continued YOCl in nanocrystalline form (two phases of YOCl were found to be 
present see Table 7.1) for 1:3 data the material was studies on a Silica stub ( see sharp 
S1 peaks in figure 7.3(c) ). For the 1.3 ratio the XRD data was difficult to fit. The best 
fitting gave four materials as follows: 1.The main material was around 50% was for 
TriYttrium Tetra oxide chloride phase. 2. The second material was around 23% with 
large error with a reacted Yttrium chloride phase. 3. The third material found to be a 
cubic phase with larger cell size like Y2O3 but was identified as a rare earth oxide 
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phase. 4. The last phase was identified as Yttrium oxide chloride with a different cell 
to those found in the 1:1 and 1:2 ratios. 
 

 

 

 

 (a)  

 

 

(b) 
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(c)  

 

Figure 7.3   XRPD diffractograms of the samples annealed at 650°C prepared from ethanolic 
solution, metal ion to alkylammonium chloride ratios; a, b and c. 
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Table 7.1  Cell parameters for the yttrium oxy chloride phases found in the 
materials fired at 650°C prepared from ethanol.           
 

 1:1 1:2 1:3 
Yttrium oxide 
chloride YOCl 
 R-3m -1 
           %  

a= 4.999(25)(Å) 
c= 28.00(23)(Å) 
 
8.93(79) 

a=5.000(31)(Å) 
c=28.00(21)(Å) 
 
13.7(11) 

a =5.7806 (24) (Å) 
c= 26.791(19) (Å) 
 
23(14) 

Yttrium oxide 
chloride YOCl    
R-3m  -2   
          %    

a= 4.178(14) (Å) 
c=20.463(71)(Å) 
 
91.07(79) 

a=4.187(18)(Å) 
c= 20.371(73)(Å) 
 
86.3(11) 

 

Yttrium oxide 
chloride YOCl 
P4/nmm [20] 

a= 3.903 (2)   
c= 6.597 (4) 
 
 

 a= 3.995 (51)   
c= 6.758 (12) 

12.8 (33) % 

Yttrium oxide 
chloride YOCl  
P4/nmm [20a] 

a= 3.900 (2)   
c= 6.604 (2)  
 
 

  

Yttrium oxide 
chloride YOCl   
R-3m [20b] 

a=  3.7895 (5)  
c= 28.03    (1) 
 

  

Tri Yttrium 
 Tetra oxide 
Chloride 
% 
 

  a=4.0414 (17)  (Å) 
b= 13.6516(89)(Å)  
c= 11.1531(44)(Å) 
51.10 (91) 

Yttrium  oxide 
( Cubic Y2O3 ) 
% 

  a =11.3274 (44) (Å) 
c= 13.30(24) (Å) 

48.90 (91) 
 

7.3.3   Photoluminescent Spectra: The PL excitation and emission spectra of the 
samples prepared at 650°C using 1:1, 1:2 and 1:3 ratio precursor products as prepared 
from ethanolic solutions are displayed in Figure 7.4 and 7.5. Those for the 1:1 and 1:2 
support the XRPD data in that they have similar spectral features of varying intensities 
yet they are different to that of cubic Y2O3:Eu3+.  In addition the excitation spectra of 
the above products have peaks with weak absorption strength, an increase in the 
absorption bands intensity is seen for the 1:2 sample that contained higher 
concentrations of alkylammonium chloride originally. The emission and excitation 
spectra resemble those found for the ethanolic solutions reported in Chapters 5 and 6.  
The strong broad band observed at 254nm in cubic Y2O3:Eu3+ due to the Eu3+ - O2- 
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charge transfer transition is absent, although the usual lower intensity absorption lines 
due to the electronic transitions within the 4f 6 configurations are present, some of 
which show a peak wavelength shift.  The emission spectra of these samples are very 
weak, the strong sharp emission peak found at 611nm in cubic Y2O3:Eu3+ due to the 
5Do → 7F2 transition is absent for the higher ratio samples where a broader peak 
centred at approximately 615nm is seen.  Also absent in all three samples are the set of 
emission peaks with a maximum at 709nm due to the 5Do → 7F4 of the Eu3+ ion in 
cubic Y2O3.  The very weak spectra of the 1:3 samples showed nothing in both the 
emission and excitation spectra, possibly because so little sample was left, or because 
the material identified in the XRPD was very different from the 1:1 and 1:2 materials.       
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Emission (c)-1to 3 ethanol at 650°C 

Figure 7.4   Photoluminescent emission spectra of the samples prepared at 650°C from 
ethanolic solution a-1:1, b-1:2 and c-1:3 ratio samples (excitation wave length 254nm). 
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Excitation c-1to 3 ethanol at 650°C 

Figure 7.5 Photoluminescent excitation spectra of the samples prepared at 650°C from 
ethanolic solution:   a- 1:1, b- 1:2 and c- 1:3 ratio samples. Excitation monitored at 612 nm. 

 
 
 
 
 
 

7.3.4 Cathodoluminescence Spectra  
 
The CL (5000V, emission current 50μA) spectra of the samples prepared from ethanol 
at 650°C using the products produced from the 1:1, 1:2 ratios are presented in figures 
7.6 and 7.7. The spectra obtained using the defocused beam and of the focused beam 
are all alike though for the 1:1 and 1:2 ratios though that in figure 7.6(a) is very weak 
and in all cases there is evidence of the cubic phase being formed in the beam. 
Surprisingly the sample in the focused beam (see figures 7.6 a,b,c,) show less 
conversion to the cubic phase, although in the defocused beam (figures 7.7 a,b) some 
cubic was observed. Again this is not because CL is more sensitive to the cubic phase 
but is in fact due to the conversion of the samples to cubic in the electron beam. Again 
this is because the samples are made up of very small particles of a precursor phase to 
that of the cubic Y2O3:Eu3+ phosphor and the electron beam having sufficient energy to 
convert these particles into the cubic phase.   
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Focused (a)-1to1 at 650°C ethanol 5000V at 50uA 

 

Focused (b)-1to 2 at 650°C ethanol 5000V at 50uA 

Figure 7.6 Cathodoluminescent spectra of the 650°C samples prepared from ethanol. 
Focused beam. (a)-1:1, (b)- 1:2, at 5000V/50uA. 
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                                   Defocused (b) -1 to 2 at 650°C ethanol 5000V at 50uA 

Figure 7.7 Cathodoluminescent spectra of the 650°C samples prepared from ethanol. 
Defocused beam: (a)-1:1, (b)-1:2, at 5000V/50uA. 

 

7.3.5    FTIR Spectra: - The FTIR spectral assignments of the samples prepared  
from ethanol at 650°C are summarised in Table 7.2, all show the presence of bands 
that can only be ascribed to the presence of metal hydroxycarbonate. Firstly for the 
samples prepared from ethanol at 650°C the FTIR spectra show the presence of bands 
that are ascribed to a mixture of Y0.98Eu0.02(OH)CO3, (Y0.98Eu0.02)2O(CO3)2 and 
(Y0.98Eu0.02)2O2CO3, although the possibility that some chloride ions are present in 
some of the species cannot be ruled out.  The basic europium doped yttrium carbonate, 
Y0.98Eu0.02(OH)CO3, could have been formed from the surface reaction of YCl3 with 
H2O and CO2 produced from the combustion of the alkylammonium cations. 
 
2(Y,Eu)Cl3 + 3H2O → (Y0.98Eu0.02)2O3 + 6HCl    (7.1) 

(Y0.98Eu0.02)2O3 + 2CO2 + H2O → 2Y0.98Eu0.02(OH)CO3                (7.2) 

As Y0.95Eu0.05(OH)CO3 was reported to lose most of its hydroxide to give 
(Y0.95Eu0.05)2O(CO3)2 and (Y0.95Eu0.05)2O2CO3 when it was calcined at 550°C for 1 h in 
a muffle furnace [25], it is likely that a similar decomposition occurred, albeit 
incompletely, under the rapid combustion conditions at a set temperature of 650°C in 
the present work. Figure 7.8 present FTIR spectra of these samples in the 3600 – 700 
cm-1 range; the broad band observed in the region of 3600-3000 cm-1 is assigned to the 
O-H stretching vibration of the hydroxycarbonate. The triplet of bands observed at 
1626 cm-1, 1553 and 1346 cm-1 is attributed to C-O stretching vibrations of CO3

2- 
anions; the first component having some C=O character and the last two most likely 
being due to antisymmetric C-O stretching modes of CO3

2- anions [26].  Furthermore, 
the weak band at 1093 cm-1 is assigned to a symmetric C-O stretching vibration of the 
CO3

2- anions [27].  The inhomogeneous broadening of the various vibrational bands in 
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the spectra of these samples is due to the disorder within the lattices when the products 
are formed at 650°C. It is not possible to identify bands due to Y-Cl stretching 
vibrations in these FTIR spectra as they are expected to appear below the low 
wavenumber cut-off at ca. 749 cm-1.  
      
Table 7.2   Materials prepared from ethanolic solutions and fired at 650°C 

Wavenumber/cm-1  
     3600-3000   (m)  ν (O-H) 
        (m)  νs (O-H) 
     1626  (shoulder) δ (O-H) 
     1553  (s)  νas (CO3

2-) 
     1446  (s)  νas (CO3

2-) 
     1093  (w)  δ (O-H) 
      749  (w)  δ (CO3

2-) 
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(b)  

Figure 7.8  FTIR spectra of the 650°C, samples (a), (b) prepared from ethanolic solution with 
Metal ion to alkylammonium chloride ratios 1:1 (a), 1:2 (b) in  KBr discs. 

 
 
7.3.6. Conclusions so far 
It is clear from these results so far that the presence of the combustion fuel in the 
samples prepared at 650°C was insufficient to raise the temperature high enough to 
form the cubic Y2O3:Eu3+ phase or that the furnace temperature was insufficient. In 
addition no evidence of the material Y4O5Cl2 phase that was found in Chapters 5 and 6 
were present in chapter 7 this was showing that the temperature in chapter 7 did not 
got high enough to form this phase of Y4O5Cl2. All the 650°C FTIR spectra are similar, 
although the emission spectra do indicate that for the higher fuel ratios that a greater 
degree of order is found. It is interesting that there is no evidence for chloride 
containing phases for the samples prepared from either ethanol or methanol where the 
shorter chained alkylammonium salt has been used unlike the findings in chapter 5. 
 
 
7.4         Studies on the samples produced at 900°C   
 
7.4.1      Products prepared with methanol and ethanol at a temperature of 900°C.  
Products (samples) prepared from precursors methanolic and ethanolic solutions were 
fired at a temperature of 900°C and observed to be all white powders in colour. Under 
254nm excitation the samples prepared at 650°C displayed a weak red luminescence 
which was in contrast to the strong red luminescence from the samples prepared at 
900°C that is characteristic of the Eu3= ion in cubic Y2O3. The strongest red 
luminescence comes from 1:3 material sample ratios prepared at 900°C. 
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                     (e)                                                           (f) 
 

       
                    (g)                                                             (h) 

 
Figure 7.11   FESEM images of phosphor samples prepared from ethanolic solutions then fired 
at 900°C using a metal chloride to alkylammonium chloride ratios of 1to2 (a, b, c, d,e,f,g. and 

h).In a, and b the bar  is 2 µm. c, d,  and e the bar  is 1 µm and in f, g, h. it is 200nm. 
 
In Figure 7.11 (a-h) for the 1:2 ratio there is also evidence of much more melting than 
in Figure 7.2; again the structures seen are much less delicate but there are remnant of 
the presence of thin films of material with spaces between the structures (see figures 
7.11(a-d). In figures 7.11(e and f) there is evidence of spherical/oval shaped structures 
that could be of micellar origin which were not seen in figure 7.10. In figures 7.11(g ) 
there is evidence of crystals melted together, whereas in figure 7.11(h) there are similar 
structures found for the same material fired at 650°C (see Figure 7.2 (g and h).  Again 
in agreement to the results of the methanol SEMs (figure 7.9), it can be seen in figure 
7.11 that for this ratio there is evidence for sheet like structures.  
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pattern similar to those reported in the last two chapters 5 and 6. The 1:1 sample 
prepared from the methanolic solution had XRPD data that showed the presence of 
both cubic Y2O3:Eu3+ (16.1%) and mono clinic Y2O3:Eu3+  (83.89 % this is the first 
time evidence for monoclinic Y2O3:Eu3+ was found in this experimental work. 
Powdered methanol sample 38 was used for the XRD experiment. 

 

38 1to 1 

 

Figure 7.13  XRPD diffractograms of the sample prepared from  methanolic solution then 
fired/annealed at 900°C, metal ion to alkylammonium chloride ratios.1:1(38) 

from the powder. 
 
 

 

32- 1 to 1 ethanol from the powder 
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34- 1 to 2 ethanol from the powder 

 

 

34-1 to 2 ethanol on Silicon 
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36 -1 to 3 ethanol from the powder  

 

36-1 to 3 ethanol on silicon 

Figure 7.14  XRPD diffractograms of the samples prepared from ethanolic solution then fired/annealed 
at 900°C, metal ion to alkylammonium chloride ratios.1:1(32), 1:2 (34),1:3 (36). 

 
 
The samples that were produced under the 900°C conditions from ethanolic solution 
showed differing behaviour. The 1:1 sample had an XRPD pattern (see figure 7.14 
(32)) that is typical of the presence of two forms of YOCl:Eu3+  and both cubic and 
monoclinic Y2O3:Eu3+ . The 1:2 sample showed very similar results but the results of 
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each is different. The 1:3 sample had XRPD data that only showed the presence of 
cubic and monoclinic Y2O3:Eu3+ forms.  
 
 

 Table 7.3 
 Cell parameters for the yttrium oxychloride phase Y2O3:Eu3+ found 
 in the materials fired at 900°C prepared from methanol and ethanol.  
 
 
Methanol     a (Å)  b (Å) c (Å) Beta Phase  % 

38     1:1      

Cubic 
Y2O3:Eu3+ 

10.6216*    16.101* 

Monoclinic 
Y2O3:Eu3+ 

14.9998* 3.5737* 8.9863* 99* 83.899* 

      
Ethanol      
32     1;1       
YOCl:Eu3+ 

R-3m-1 
4.804(13)  28.14(18)  5.101(48) 

YOCl:Eu3+ 

R-3m-2 
4.115(140  20.751(94)  88.12(83) 

Cubic 
Y2O3:Eu3+ 

10.581(64)    2.23(13) 

Monoclinic 
Y2O3:Eu3+ 

13.970 (12) 3.4989 (26) 8.7002(70) 99.909(52) 4.55(89) 

          

34     1:2          

YOCl:Eu3+ 

R-3m-1 
4.74(11)  28.0(12)   6.592(54) 

YOCl:Eu3+ 

R-3m-2 
4.132(40)  20.08 (23)   86.50(71) 

Cubic 
Y2O3:Eu3+ 

10.6230(15)        2.908(89) 

Monoclinic 
Y2O3:Eu3+ 

13.9681(99) 3.5389(16) 8.3870(71) 98.288(12) 4.00(78) 

36      1:3          

Cubic 
Y2O3:Eu3+ 

10.62102 (26)    49.4(47) 

Monoclinic 
Y2O3:Eu3+ 

13.885(43) 3.6119(78) 8.038(23) 98.66(23) 50.6(47) 

*The fit is not good enough for errors to be meaningful. 
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The fact that all four samples contained monoclinic Y2O3:Eu3+ forms was not expected 
as this is a high temperature phase and was not found in the methods studied in 
Chapters 5 and 6 .her the alkylammonium chain length was smaller so it might have 
expected that the materials would not reach such a high temperature with a shorter chain, 
clearly this was clearly this was wrong assumption and this will be discussed later in this 
chapter. 

7.4.4. Photoluminescent Spectra: - The PL excitation spectrum1:1 of the sample 
made from methanolic solution was not typical of cubic Y2O3:Eu3+, as were the 
emission spectrum butt the spectrum had excitation bands. The excitation and emission 
spectra are presented in Figure 7.15 for the 1:1, 900°C sample. A comparison of Figure 
7.15 with Figure 6.21 shows accurately small band between 250 and 300nm and 
between 420 and 450nm. In the Figure 6.5 Photoluminescent Excitation spectra of the 
YOCl material are shown these are very weak. The stronger spectra in Figure 7.15 is 
dominated by the presence of cubic emission spectrum this is amassing that as only 
2.3% of the cubic material was present. The emission spectrum in Figure 7.16 is much 
stronger than those of the YOCl shown in Figure 6.7and is dominated by the wave 
length bands due to cubic and monoclinic material Y2O3:Eu3+. Hence the 
photoluminescent spectra also confirmed the presence of cubic and monoclinic 
material Y2O3:Eu3+. 
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Figure 7.15 Photoluminescent excitation spectra of the 900°C sample prepared from 
methanolic solution.  Excitation spectra 1:1-38. Excitation monitored at 612 nm.  

 

 

Emission spectra, 38-1 to 1 methanol 

Figure 7.16   Photoluminescent emission spectra of the 900°C sample prepared from 
methanolic solution.  Emission spectra 1:1-38. Excitation wavelength 254nm. 
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(c) 

Figure 7.17   Photoluminescent excitation spectra of the 900°C samples prepared from 
ethanolic solution for (a) 1:1-32, (b) 1:2-34, (c) 1:3-36. Excitation monitored at 612 nm. 
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Figure 7.18   Photoluminescent excitation spectra of the 900°C samples prepared from 
ethanolic solution. Overlay excitation graphs 1:1-32-black-bottom, 1:2-34,red (mid), 1:3-

36,green,top. Excitation monitored at 612 nm.  
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(b) 

 

(c) 

Figure 7.19   Photoluminescent emission spectra of the 900°C samples prepared from ethanolic 
solution.  Emission spectra (a)1:1-32,(b) 1:2-34,(c) 1:3-36 . 

 Excitation wavelength 254nm. 
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Figure 7.20   Photoluminescent emission spectra of the 900°C samples  prepared from 
ethanolic solution. Overlay of the emission graphs 1:1-32 black, 1:2-34 red, 1:3-36 green. 

Excitation wavelength 254nm. 
 
The Photoluminescent spectra of the samples made Ethanolic solution are presented in 
Figure 7.17 and 7.18. The excitation spectra are similar to that in Figure 7.15 and can 
be explained in the same way as that of the sample prepared from methanolic solution. 
The spectrum of the 1.3 sample Figure 7.17(c) it is much more in a sense and it is 
clearer in the light of the above discussion, 1s due to the presence of only and 
monoclinic material Y2O3:Eu3+. The samples 1:1 and 1:2 are much weaker but still 
only show evidence for the latter two compounds.  The Photoluminescent Emission 
spectra of these three materials are presented in Figure 7.18.The strongest spectrum is 
in Figure 7.18(c) for the 1:3 compound and is typical of the cubic Y2O3:Eu3+.Figures 
7.18(a) and 7.18(b) both show evidence of cubic Y2O3:Eu3+. But in addition we can 
observe in Figure 7.18(b) also shows the presence of some monoclinic material 
Y2O3:Eu3+. 
 
7.4.5 Cathodoluminescence Spectra:- The CL (5000V, emission current 9.6μA) 
defocused and focused spectra of the products prepared from the precursors originating 
in the methanolic solutions are shown in Figures 7.21, and 7.22; they are all similar 
and typical of cubicY2O3:Eu3+. So here again the cubic material dominates the Cl 
emission. 
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Figure 7.21 The Cl defocused beam emission spectra for samples 38-1:1 prepared from 
methanolic solutions and fired/annealed at 900°C the samples was excited using 5000V/50uA. 

 

 
 

Figure 7.22 The Cl focused beam emission spectra for samples 38-1:1 prepared from 
methanolic solutions and fired/annealed at 900°C. The sample was excited using 5000V/50uA. 

 
The CL (5000V, emission current 9.6μA) defocused and focused spectra of the 
products prepared from the precursors originating in the ethanolic solutions are shown 
in Figures 7.23 and 7.24.  They are all more simplified than those found for their 
respective PL emission spectra and those for the 1:2 and 1:3 samples typical of 
cubicY2O3:Eu3+. Even the 1:1 sample showed evidence of a spectrum that though very 
weak was dominated by the 612nm emission of the cubicY2O3:Eu3+.  
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(a) 

   

 
(b) 

 

 
(c) 

 
Figure 7.23  The Cl defocused beam emission spectra for samples (a) -1:1, (b) -1:2 and (c) -1:3 
prepared from ethanolic solutions and fired/annealed at 900°C. All three samples were excited 

using 5000V/50uA. 
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Figure 7.24   The Cl defocused beam emission spectra overlay for samples (a) -1:1black, (b) -
1:2 red  and (c) -1:3 green prepared from ethanolic solutions and fired/annealed at 900°C all 

three samples were excited using 5000V/50uA. 
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(b) 
 

 
 

(c) 
Figure 7.25  The Cl focused beam emission spectra for samples (a) -1:1, (b) -1:2  and (c) -1:3 
prepared from ethanolic solutions and fired/annealed at 900°C all three samples were excited 

using 5000V/50uA. 
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Figure 7.26  The Cl focused beam emission spectra overlay for samples (a) -1:1black, (b) -1:2 
red  and (c) -1:3 green prepared from ethanolic solutions and fired/annealed at 900°C all three 

samples were excited using 5000V/50uA. 

 

 
7.4.6 FTIR Spectra 
  
The data found for the 1:1material from methanol and the 1:1, 1:2 and 1:3materilas 
from ethanol, all the four materials gave similar Infra Red Data to those found for the 
900°C materials in Chapters 5 and 6. The explanation of the Infra Red spectrum 
reported in paragraph 7.4.7 is the same. This is because we are looking at surface of 
the material sample with this special technique. The FTIR spectra from the samples 
prepared at 900°C are summarised in Table 7.4 the spectra presented in Figure 7.27, 
7.28, show the presence of bands that can be ascribed to the presence of carbon dioxide 
and some OH groups in this respect there are some similarities to the 650°C spectra.  
The O-H deformation mode of H2O is observed to be present as a weak shoulder at 
approximately 1626 cm-1 to the high frequency side of the strong CO3

2- ν3 asymmetric 
stretch doublet at 1553and 1446 cm-1.  Although, there is still the wide absorption band 
between 3600 to 3000 cm-1 that appears to be split into two weak peaks.   The lower 
frequency CO3

2- ν3 asymmetric stretch peak of the doublet at 1446 cm-1 has shifted in 
wavelength compared to the 650°C samples. Also the CO3

2- deformation has resolved 
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as a weak peak at 749 cm-1.The positions of the CO2 bands in these samples are similar 
to those found in  
[(Y, Eu)OHCO3.H2O]. This finding will be explained below. It is clear from these 
results that the combustion fuel that was present in the samples in conjunction with the 
higher annealing temperature (900°C) was sufficient to raise the temperature for 
nanometer sized crystallites of the cubic Y2O3:Eu3+ phase to form. The infrared spectra 
show the presence of bands due to the existence of CO2 in the lattice. This is we 
believe due to the reaction of the surface of the nanometer sized particles with the 
atmosphere. In this work the Y2O3:Eu3+ was formed from firing a precursor containing 
the long chained alkylammonium chloride and YCl3:Eu3+. The precursor itself was 
formed by reducing an alcoholic solution containing both of these components as 
starting materials. So the metal oxide was prepared by firing the metal chloride.  This 
was to prepare nanometer sized particles of the metal oxide. In the past we have 
prepared larger nanometer sized particles of the metal oxide that were prepared by the 
hydrothermal decomposition of urea that facilitated the homogeneous precipitation of 
spherical submicron europium-doped hydroxycarbonate phosphor precursor particles.  
It is useful to explain this latter method here to help to understand the infrared data 
obtained in this work. This method is dependent on the addition of, and hydrothermal 
decomposition of, urea in acid solution in the presence of metal salts that are soluble at 
acid pH’s. The chemistry involved includes:- 
aqueous decomposition of urea (<85 ºC, ~ pH 3) resulting in the following ions, 

                                   H2NCONH2  NH4
+ + OCN-                    (7.3 

the cyanate ion rapidly reacting  

                       OCN- + 2H+ + 2H2O  H2CO3 + NH4
+                (7.4 

 
In the presence of Y3+ and Eu3+ cations which are added as acid salts the solution pH 
drops to ~2.5. The urea is added and the resulting hydroxonium ions (H3O

+) promote 
urea decomposition.  The subsequent release of carbonate ions causes precipitation of 
the metal hydroxycarbonate phosphor precursor, once the concentration of reactants 
reaches supercritical saturation. 
 

[(Y, Eu)OH(H2O)n]
2+ + H2CO3   [(Y,Eu)OHCO3.H2O] + (n-1) H2O + 2H+

(aq)     (7.5 
 
Careful firing of the precursor particles allows their spherical morphology to be 
partially maintained in the resulting phosphor particles. This method for the 
preparation of cubic Y2O3:Eu3+ has previously been reported for the dopant 
concentration range from 0.2 mole fraction to 1mmole fraction Eu3+. Both by ourselves 
and others [3-19].In the current work the presence of the surface of the very small 
particles of Y2O3:Eu3+ reacts with the atmosphere adsorbing CO2 and H2O to form [(Y, 
Eu)OHCO3.H2O]  reversing the above reaction. This shows that cubic Y2O3:Eu3+ is 
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thermodynamically unstable in the presence of carbon dioxide and water vapour and 
reverts to the metal hydroxyl-carbonate precursor. 

 

 

 

 

 

Figure 7.27  FTIR spectra of the 900°C, sample 38 prepared from methanolic solution with 
metal ion to alkylammonium chloride ratios 1:1 (in KBr discs). 
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Sample 32, 1 to 1 

 

 

Sample 34, 1 to 2 
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Sample 36, 1 to 3 

Figure 7.28  FTIR spectra of the 900°C (samples 32, 34, 36), prepared from ethanolic solution 
with metal ion to alkylammonium chloride ratios 1:1 (32), 1:2 (34) and 1:3 (36) (in  KBr discs) 

 

 

Figure 7.29 FTIR spectrum of KBr pure material-blank. 
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Table 7.4 Materials prepared from methanolic solutions and fired at 900°C 

Wavenumber/cm-1  
     3600-3000   (m)                         ν (O-H) 
     1627  (w)                         δ (O-H)      
     1539  (m)                         νas (CO3

2-) 
     1403  (s)                         νas (CO3

2-) 
     1093  (w)                         δ (O-H) 
     ~756  (w shoulder on cut-off) δ (CO3

2-) 
 
 
      
Table 7.5 Materials prepared from ethanolic solutions and fired at 900°C 

Wavenumber/cm-1  
     3600-3000   (m)  ν (O-H) 
        (m)  νs (O-H) 
     1619  (shoulder) δ (O-H) 
     1542  (s)  νas (CO3

2-) 
     1403  (s)  νas (CO3

2-) 
     1094  (w)  δ (O-H) 
      742  (w)  δ (CO3

2-) 
 

7.5. Conclusions 
 
A number of conclusions can be drawn from the work reported in this chapter that 
differ from those reported in chapters 5 and 6:- 

1) Some nanometre sized particles of cubic Y2O3:Eu3+ were prepared in all four 
materials reported in this chapter, but the only material where a significant 
quantity was found was in the 1:3 sample prepared from ethanolic solution and 
fired at 900°C.   the other three samples were found to contain much less of the 
cubic material though they were all prepared from metal chloride precursors 
formed in micelles encapsulated by alkylammonium chains (the fuel) by using 
a combustion synthetic method at 900°C. This finding indicates that the shorter 
alkylammonium chain used in this chapter provided insufficient fuel to convert 
the majority of each sample to the cubic phase except for when it was present 
in a larger ratio than 1:2. 

2) The surprising finding was that unlike the findings in chapters 5 when the   
shorter alkylammonium chain was used evidence for the presence of the high 
temperature monoclinic Y2O3:Eu3+ phase was found. This surprising finding is 
not fully understood as this phase usually forms at temperatures well above 
1000°C. The most likely explanation is that the structure of the very small 
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nanoparticles was dominated by the surface and surface energy allowed the 
phase to form at lower temperature, as the shorter alkylammonium chains burnt 
faster and exposed the small inorganic particles to oxygen. 

3) In keeping with the results of chapters 5 and 6 the method still produces a 
range of morphologies that are influenced by the initial alkylammonium 
chloride concentration, in particular remnant micellar forms are present such as 
spheres, tubules, and macrolamellar sheets of these aforementioned forms. 

4) Evidence of morphologies and particle size being controlled by the initial 
micellar structures was found in the materials fired at both 650°C and 900°C in 
keeping with the work in the earlier chapters.   

5) It is clear from this work that the combustion fuel which was present in the 
samples prepared at 650°C was insufficient to raise the temperature over 900°C 
for a long enough time period (if at all) for the cubic Y2O3:Eu3+ phase to form. 

6) In fact at 650°C only evidence for YOCl and a Y3O4Cl present. 
7) Further we have characterised the nanometre sized phosphor particles fired at 

both 650°C and demonstrated that they only manifest some CL spectral 
properties of bulk cubic Y2O3:Eu3+ , and these are not related to structural 
evidence. 

8) In keeping with the findings in chapters 5 and 6 infra-red bands due to metal 
hydroxycarbonate in the infrared spectra of the cubic Y2O3:Eu3+ nanoparticles 
were observed. These bands are similar in position to those found in bulk 
[(Y,Eu)OHCO3.H2O], and are explained as arising from the spontaneous 
reaction of the surface of the nanometre sized particles of  cubic Y2O3:Eu3+ 
with atmospheric CO2 and water vapour. This indicates that nanometre sized 
particles of cubic Y2O3:Eu3+ are thermodynamically unstable in the atmosphere 
and must be protected against such back reactions. This could be achieved with 
surface coatings. 

9) In fact all the samples fired at both 650°C and 900°C irrespective of formula or 
phase showed the presence of infra-red bands due to metal hydroxycarbonate 
and these are explained as in 8 above. 

Finally from the findings of the work reported in this chapter it would appear that 
though the use of sacrificial organised organic structures for the incorporation of 
inorganic precursors offers great potential as a method to control the morphology and 
size of nanometre sized particles the exact size and amount of the structures has a 
profound effect on the chemistry of the resulting particles.   
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Chapter Eight     

 
Conclusions 
 
The work presented in chapters 5, 6, 7 describes the methods by which the materials 
studied were synthesized. The synthetic methods used was based on (but modified 
from) one that was previously published by our group [1].The preparations all made 
use of amine hydrochlorides (CnH2n+1)NH3Cl (n = 8, 12, 16) to form micellar phases 
(see chapter 2 section,2.6) in methanol or in ethanol and these were used  to self 
assemble yttrium and europium cations from YCl3:Eu+3 (Eu 2.0 Mol%). In this work 
studies on the synthesis of cubic Y2O3:Eu3+ from [(Y, Eu)Cl3] - (C16H33NH3Cl)n (for n 
= 1, 2, 3) materials, gave evidence for a number of different intermediate compounds 
reported in chapters  5, 6, 7 . The resulting fine powders all had smaller particles sizes, 
(ranging in size from 0.1 to 1.0 µm), than the commercial cubic Y2O3:Eu3+ phosphor 
evidence for:- 

1. YOCl 
2. Y4O5Cl2 
3. Y3O4Cl 

Was found. In fact, the “YOCl” species has been reported as a compound crystallising 
in both PbFCl and YOF-type structures [2, 3].  Furthermore, both Y4O5Cl2 (≡ 
“2YOCl.Y2O3”) [4] and Y3O4Cl (≡“YOCl.Y2O3”) [5, 6] have also been reported. A 
number of conclusions can be drawn from the work reported herein for the materials 
prepared from the ethanolic solutions:-The materials prepared from ethanol at 650°C 
were shown to be the two forms of YOCl, and monoclinic Y4O5Cl2:Eu3+ this was 
converted to a more pure form of monoclinic Y4O5Cl2:Eu3+ at the higher temperature 
(over 900°C). It should be remembered that the presence of the yttrium 
hydroyoxycarbonate type layer protected the monoclinic Y4O5Cl2:Eu3+ in the materials 
prepared at 900°C from further reaction with the atmosphere. Finally from the findings 
of this work it would appear that the use of sacrificial organized organic structures for 
the incorporation of inorganic precursors offers great potential as a method to control 
the morphology and size of nanometre sized particles.  Future work that is needed to 
follow that reported in this thesis would include a systematic investigation of what 
other yttrium oxide based phosphors could be prepared by composition of micellar 
precursors. Obvious candidates include Y2O3 precursors doped with Tb3+ and Gd2O3 

doped with Tb 3+ to produce green phosphors. The work could also extended by used 
such micellar based precursors in conjunction with sulfur to form Y2O2S lattices doped 
with Eu3+ or Tb3+ . Up- converting phosphors based on Y2O3 precursors doped with 
Er3+  Er3+ and Yb3+, Th3+  and Er3+ could also be made based on the methods described. 
Many of these suggested phosphors are used commercially at the present time, but no 
one has exploited nano particles of these materials for industrial applications yet. 
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It should be remembered that cubic Y2O3:Eu3+ is still used in fluorescent lighting as 
the red phosphor, and hence nano-particles of this phosphor could have applications in 
lighting as less phosphor would be used to form layers two or three particles thick 
compared with µm sized particles. In this regard it would also be worth studying the 
stability of the Photoluminescent properties of the nanoparticles over time. In the 
conditions found in fluorescent tubes.  
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Appendices  
 
A number of papers have already been published on this work and of course more will 
be forthcoming. These include:- 
Conference Papers 
“A Study of Small Particle Yttrium Oxide Type Phosphors prepared from 
Solution using a Sacrificial Micellar Phase as a Combustion Fuel”  
K. Saltoun, T. G. Ireland, G. R. Fern, R.Withnall and J. Silver. 
22nd International Conference on Raman Spectroscopy, Date: AUG 08-13, 2010 
Boston MA (paper) 
 
“Surface Studies of Y2O3:Eu, YAG:Ce, Y2O2S:Pr and Gd2O2S:M (M = Pr or Tb) 
Phosphors”   
Jack Silver, Robert Withnall, Terry G. Ireland Xiao Yan, Kelly Saltoun and Jesus J. on 
18th International Display Workshop, Nagoya, Japan, 8th December, 2011 (paper). 
 
Publications (listed below and included in the next pages). 
 
Surface Studies of Y2O3:Eu, YAG:Ce, Y2O2S:Pr and Gd2O2S:M (M = Pr or Tb) 
Phosphors,                                                                                                                             
Jack Silver, Robert Withnall, Terry G. Ireland, Xiao Yan, Kelly Saltoun and Jesus J. 
Ojeda,                                                                                                   Proc. IDW, 731-
734 (2011). 
A Study of Small Particle Yttrium Oxide Type Phosphors prepared from Solution 
using a Sacrificial Micellar Phase as a Combustion Fuel 
 K. Saltoun, TG. Ireland, TG; Fern, R.Withnall and J. Silver. 
22nd International Conference on Raman Spectroscopy, Date: AUG 08-13, 2010 
Boston MA XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY 
  Volume: 1267 Pages: 609-610, (2010). 
 

Paper almost ready to be submitted 
 
Templated Combustion Synthesis of Europium Doped Yttrium Oxychloride and 

Yttrium Oxide Nanoparticle Phosphors 

Kelly Saltoun,a Terry G. Ireland,a George R. Fern,a Robert Withnalla(the late) and Jack 
Silver. 
 
Raman spectra of nanocrystalline yttrium oxychlorides prepared by a novel 

templating method 

R. Withnall*, J. Silver, T.G. Ireland, K. Saltoun and G.R. Fern	
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