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Abstract

In this paper, a novel methodology is provided for accurate localisation of mobile robot for an autonomous navigation

based internal sensors and external sensors. A new robust extended H∞ filter is developed to deal with nonlinear

kinematic model of the robot and nonlinear distance measurements, together with process and measurement noises.

The proposed filter relies on a two-step prediction-correction structure, which is similar to Kalman filter. Simulations

are provided to demonstrate the effectiveness of the proposed method.
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I. Introduction

Localisation is one of the fundamental problems for autonomous navigation of mobile robots. The knowledge

about the position and orientation of a robot is useful in different tasks, such as office delivery, obstacle

avoidance, for example. In the past, a variety of approaches for mobile robot localisation has been developed.

They mainly differ in the techniques used to represent the belief of the robot about its current position, and

according to the type of sensor information that is used for localisation. For the robot to be really autonomous,

only on-board sensors must be used to perform localisation. This prevents it from using direct configuration

measurements, and calls for suitable numerical processing of the data provided by the sensor equipment.

The on-board sensors allow two different kinds of localisation: relative and absolute. The former is realized

through the data provided by sensors measuring the dynamics of variables internal to the vehicle. One of the

common methods used to estimate the current position is dead reckoning using internal sensors [3], [13], such

as optical incremental encoders, which are fixed to the axis of the driving wheels or to the steering axis of the

vehicle. At each sampling instant the position is estimated on the basis of the encoder increments along the

sampling interval. A drawback of this method is that the errors of each measure are cumulative. The error

in dead reckoning increases as the robot travels. This heavily degrades the position and orientation estimates

of the vehicle, especially for long and winding trajectories [19].

Absolute localisation is performed processing the data provided by a proper set of sensors measuring some

parameters of the environment in which the vehicle is operating. External sensors device, such as laser scan-

ner,sonar, is generally used for this purpose. They are fixed to the vehicle and measure the distance with
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respect to parts of the known environment [2], [13]. They are also widely utilized for the guidance of au-

tonomous vehicles with obstacle avoidance in unknown environment [8], [18]. The main drawback of absolute

measures is their dependence on the characteristics of the environment. Possible changes to environmen-

tal parameters may give rise to erroneous interpretation of the measurements provided by the localisation

algorithm.

In order to obtain the accurate localisation for mobile robot, an efficient method is to fuse together relative

and absolute measurements using sensors of different nature. For this purpose, the localisation problem has

been extensively studied in the robotics literature (see for instance [4], [12], [10], [11], [15], and the references

therein). The mainstream approach for robot localisation is Bayesian estimation, which is based on stochastic

assumptions about the process and measurement errors, and is aimed to constructing the posterior density

of the current robot state, conditioned on all available measurements. In particular, when the process and

measurement error processes are assumed Gaussian, the Bayesian approach results in the classical extended

Kalman filtering (EKF) framework (see [1], [7], [14]). However, in robotics applications, the distribution of

the sensor and process noise is generally multimodal and imprecisely known, and the nonlinearities of the

system may seriously degrade the EKF performance. These limitations have been recognized in the literature,

and several schemes have been proposed to overcome them. Notably, an adaptive EKF approach for on-line

estimation of the noise statistics have been proposed in [10], [11]and [16], and joint Bayesian hypothesis testing

and Kalman filtering have been proposed in [17]. A probabilistic confidence set approach has been presented

in [15], which is optimal over a certain class of noise distributions. A Monte Carlo approach, where the

noise density is represented by means of a set of randomly drawn samples, is proposed in [5]. The key idea

of particle filter based method is to approximate the densities through samples (particles) according to the

posterior distribution over robot poses [5]. The particle representation therefore, can provide universal density

approximators without the assumption of Gaussian distribution and can adapt to the available computational

resources by controlling the number of samples. Markov Chain Monte Carlo based method provides a posterior

distribution estimation over robot poses [20]. The piecewise constant functions instead of Gaussians are used

to approximate the distribution. However, the computation of piecewise constant representation is very

demanding.

In this paper, an alterative to an adaptive EKF approach is proposed which is called as robust extended

H∞ filtering method that combines the data provided by internal sensors and external sensors together for

estimates of robot position. The advantage of the robust extended H∞ filtering techniques can consider the

nonlinear system with unknown process noises and measurement noises. It is suitably used to the kinematic

model of the robot and the knowledge of measure equipment. The techniques proposed here is superior to the

extended Kalman filter (EKF) techniques proposed in the literature[6], for the estimation of robot localisation

by considering the linearisation error and non-Gaussian noises in process and measurement. The main novelty

of the robust extended H∞ filtering here proposed is its capability of tolerably estimating robot localisation in

unknown environment. The computation of the robust extended H∞ filtering method is similar to the EKF.

It can be implemented online.

The remainder of this paper is organized as follows. In Section II, the kinematics of the mobile robot

is described and the scheme of absolute measurements are provided. A novel robust extended H∞ filtering

algorithm is developed in Section III for handling nonlinear process and measurement, and unknown noises.

In Section IV a numerical simulation is provided to demonstrate the effectiveness of our algorithm. Some



REVISED: PAPER NO.: JSCE791 3

concluding remarks are provided in Section V.

Notation. The notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semi-definite (respectively, positive definite). The superscript T stands for matrix

transposition. By ‖fk‖2
R, we denote the product fT

k Rfk. We denote that Gramian matrix Rx =< x, x >,

where < x, x > stands for the inner product of x, i.e., < x, x >= xxT , and x is a vector.

II. Kinematics of the Mobile Robot and the Absolute Measurement

Consider an unicycle-like mobile robot with two driving wheels, mounted on the left and right sides of the

robot, with their common axis passing through the center of the robot (see Fig. 1). Localization of this

Fig. 1.

mobile robot in a two-dimensional space requires knowledge of the coordinates of the midpoint between the

two driving wheels and of the angle between the main axis of the robot and the direction. The kinematic

model of the unicycle robot is described by the following equations:















ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = ω(t)

(1)
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where

v(t) =
vR(t) + vL(t)

2
(2)

ω(t) =
vR(t) − vL(t)

d
(3)

where x(t) and y(t) are the coordinates of the main axis midpoint between the two driving wheels, θ(t) is the

angle between the robot forward axis and the x-direction, v(t) and ω(t) are, respectively, the displacement

and angular velocities of the robot, vR(t) and vL are, respectively, the right and left displacement velocities of

the robot, and d is the distance between the two wheels of robot. The encoders placed on the driving wheels

provide a measure of the incremental angles over a sampling period. The odometric measures are used to

obtain an estimate of the displacement and angular velocities, respectively, which are assumed to be constant

over the sampling period. If we assume zero-order hold on v(t) and ω(t), then the above system is discretized

with sample time and expressed in linear form as















xk+1 = xk + △Tvk cos θk

yk+1 = yk + △Tvk sin θk

θk+1 = θk + △Tωk

(4)

Let

zk =









xk

yk

θk









(5)

and

uk =

[

△Tvk

△Tωk

]

:=

[

u1,k

u2,k

]

(6)

we rewrite (4) as:

zk+1 = f(zk, uk) (7)

where

f(zk, uk) = zk +









u1,k cos θk

u1,k sin θk

u2,k









(8)

The distance and angle to the marker M are treated as the measurements (see Fig. 2). The azimuth ψ

with respect to the x-axis and the distance from the robot’s planar Cartesian coordinates (x, y) to the marker

(xM , ym) at a time instant k can be related to the current system state variables xk, yk, and θk as follows:

dk =
√

(xm − xk)2 + (ym − yk)2 (9)

ψk = θk − arctan(
ym − yk

xm − xk

) (10)
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Fig. 2.

Let

mk =

[

dk

ψk

]

(11)

we rewrite (4) as:

mk = g(zk) (12)

where

g(zk) =

[

√

(xm − xk)2 + (ym − yk)2

θk − arctan( ym−yk
xm−xk

)

]

(13)

To this end, we obtain the system state equation and measurement equation for mobile robot navigation

as follows:

zk+1 = f(zk, uk) (14)

mk = g(zk) (15)
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III. A Robust Extended H∞ Filter Design

Since f(zk, uk) and g(zk) are nonlinear, we expand the nonlinear functions f(zk, uk) and g(zk) in a Taylor

series about the filtered estimates ẑk as

f(zk, uk) = f(ẑk, uk) +Ak(zk − ẑk) + σ1 (16)

g(zk) = g(ẑk) + Ck(zk − ẑk) + σ2 (17)

where

Ak =









∂fx
∂xk

∂fx
∂yk

∂fx
∂θk

∂fy
∂xk

∂fy
∂yk

∂fy
∂θk

∂fθ
∂xk

∂fθ
∂yk

∂fθ
∂θk









∣

∣

zk=ẑk
=









1 0 u1,k sin θk

0 1 u1,k cos θk

0 0 1









∣

∣

zk=ẑk
(18)

Ck =

[

∂gd
∂xk

∂gd
∂yk

∂gd
∂θk

∂gψ
∂xk

∂gψ
∂yk

∂gψ
∂θk

]

∣

∣

zk=ẑk
=





− (xm−xk)√
(xm−xk)2+(ym−yk)2

− (ym−yk)√
(xm−xk)2+(ym−yk)2

0

(ym−yk)
(xm−xk)2+(ym−yk)2

− (xm−xk)
(xm−xk)2+(ym−yk)2

−1





∣

∣

zk=ẑk
(19)

and σ1 and σ2 represent the higher order terms of the Taylor series expansions.

Therefore, (11)-(12) can be written as:

zk+1 = Akzk + wk (20)

mk = Ckzk + vk (21)

where

wk = f(ẑk, uk) −Akẑk + σ1 (22)

vk = g(ẑk) − Ckẑk + σ2 (23)

A typical approach applied to the linearized model (20)-(21) is the extended Kalman filtering, where the

nonlinear errors wk and vk are considered as Gaussian white noises. However, in mobile robot navigation,

these assumptions are unpractical. They may seriously degrade the navigation accuracy (the extended Kalman

filtering performance). Therefore, our objective of this paper is to find a robust filter for the system (20)-(21)

such that the filtering error system satisfies H∞ robustness performance constraint without the assumptions

of that the nonlinear errors wk and vk are Gaussian white noises. More specifically, we want to find a filter

such that the filtering error system satisfies the following requirement:

∑N
k=0 ‖z̃k‖2

‖z0 − ẑ0|−1‖2
P−1

0|−1

+
∑N−1

k=0 ‖wk‖2
Q−1

k

+
∑N

k=0 ‖vk‖2
R−1

k

< γ2, (24)

for all nonzero wk and vk, where γ > 0 is a prescribed scalar and z̃k = zk − ẑk.

The design problem stated above will be referred to as the robust extended H∞ filtering problem.

Theorem 1: (finite horizon extended H∞ filter) For a given scalar γ > 0, if the
[

Ak Bk

]

has full

rank, the there exists a filter which achieves the performance (24) if and only if the filtered error covariance

matrix Pk|k satisfies

P−1
k|k = P−1

k|k−1 + CT
k R

−1
k Ck − γ−2I > 0, 0 ≤ k ≤ N, (25)
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where the predicted error covariance matrix Pk|k−1 satisfies the Riccati recursion:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1, (26)

The filtered estimates ẑk|k are recursively computed as

ẑk|k = ẑk|k−1 +Kk(yk − g(ẑk)) (27)

where

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1 (28)

and the predicted estimates ẑk|k−1 are

ẑk|k−1 = f(ẑk, uk) (29)

Proof: The proof of Theorem 1 is presented in the appendix.

IV. Simulation Results

In order to demonstrate the advantages of our proposed filter, we compare the performances of the robust

extended H∞ filter with the traditional extended Kalman filter. The filters are used to estimate the mobile

robot state (position and orientation in planar motion) by the odometry and the information from the absolute

marker detection. The algorithms are run on the simulated data. For comparison purposes, we have performed

numerical simulations in three different situations.

In the first simulation, the process and measurement errors wk and vk are assumed to be Gaussian random

sequences. The process error covariance matrix is chosen to be diagonal and time-invariant. The standard

deviation of the system position for x and y coordinates is taken to be ex = ey = 0.01m (variances δ2x = δ2y =

10−4m2, and the orientation standard deviation eθ = 0.5o (variance δ2θ = 7.62 · 10−4rad2). The measurement

error covariance matrix is also chosen to be diagonal and time-invariant. The measurement standard deviation

for the distance to the absolute marker is taken to be ed = 0.01m (variances δ2d = 10−4m2, and the azimuth

standard deviation eθ = 0.5o (variance δ2θ = 7.62 · 10−4rad2). The simulation results are depicted in Figs. 3-6.

Fig. 3 and Fig. 4 show the robot position and its estimate, and the robot angle and its estimate, respectively,

using the EKF algorithm. Fig. 5 and Fig. 6 show the robot position and its estimate, and the robot angle

and its estimate, respectively, using the robust extended H∞ filter. It is seen from the simulation results that

the robust extended H∞ filter is not better than the EKF. This is not surprising since its Gaussian noise

hypotheses are exactly satisfied. The maximum distance between the actual trajectory and its estimate is

0.0228 by using the EKF and 0.0244 using the robust extended H∞ filter. The maximum angle error between

the actual angle and its estimate is 0.4075 by using the EKF and 0.3930 using the robust extended H∞ filter.

In the second simulation, the process and measurement errors wk and vk have been generated as sinusoid

disturbance signals. The process error signals are chosen to be diagonal and time-varying sinusoid sin(100t),

all of which amplitudes are 0.002. The measurement error signals are chosen to be diagonal and time-varying

sinusoid as sin(100t), for all of which the amplitudes are 0.001. The simulation results are depicted in

Figs. 7-10. Fig. 7 and Fig. 8 show the robot position and its estimate, and the robot angle and its estimate,

respectively, using the EKF algorithm. Fig. 9 and Fig. 10 show the robot position and its estimate, and the

robot angle and its estimate, respectively, using the robust extended H∞ filter. It is seen from the simulation
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results that the robust extended H∞ filter yields much better performance than the EKF. The maximum

distance between the actual trajectory and its estimate is 0.0391 by using the EKF and 0.0257 using the

robust extended H∞ filter. The maximum angle error between the actual angle and its estimate is 0.4594 by

using the EKF and 0.4467 using the robust extended H∞ filter.

In the third simulation, the process and measurement errors wk and vk are assumed as outlier disturbances.

The outliers occur at the 2nd second and 3rd second, each of which lasts for 0.05 second. The process error

signals are chosen to be diagonal and outliers, for all of which the amplitudes are 0.5. Also, the measurement

error signals are chosen to be diagonal and outliers, for all of which the amplitudes are 0.1. The simulation

results are depicted in Figs. 11-14. Fig. 11 and Fig. 12 show the robot position and its estimate, and the robot

angle and its estimate, respectively, using the EKF algorithm. Fig. 13 and Fig. 14 show the robot position

and its estimate, and the robot angle and its estimate, respectively, using the robust extended H∞ filter.

It is seen from the simulation results that the robust extended H∞ filter yields a better performance than

the EKF. The maximum distance between the actual trajectory and its estimate is 0.0601 by using the EKF

and 0.0548 using the robust extended H∞ filter. The maximum angle error between the actual angle and its

estimate is 1.0182 by using the EKF and 0.9689 using the robust extended H∞ filter.

V. Conclusions

In this paper, we have provided a novel methodology for accurate localisation of mobile robot for an

autonomous navigation based internal sensors and external sensors. A new robust extended H∞ filter has

been developed to deal with nonlinear kinematic model of the robot and nonlinear distance measurements,

together with process and measurement noises. The proposed filter relies on a two-step prediction-correction

structure, which is similar to Kalman filter. On the simulated experiments, the robust filter has provided

superior performance with respect to the EKF approach for the practical situations, where the system is

subject to polarization, misalignments, and offsets, that cannot be effectively modeled as Gaussian noise.

References

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.

[2] M. Betke and L. Gurvits, Mobile robot localization using landmarks, IEEE Trans. Robot. Autom., vol. 13, no. 2, pp. 251263,

Apr. 1997.

[3] J. Borenstein and L. Feng, Measurement and correction of systematic odometry errors in mobile robots, IEEE Trans. Robot.

Autom., vol. 12, no. 6, pp. 869-880, Dec. 1996.

[4] G. Calafiore, Reliable localization using set-valued nonlinear filters, IEEE Trans. Systems, Man and Cybernetics-Part A,

vol. 35, no. 2, pp. 189-197, March 2005.

[5] F. Dellaert, D. Fox,W. Burgard and S. Thrun, Monte Carlo localization for mobile robots, in Proc. IEEE Int. Conf. Robot.

Autom., Detroit, MI, May 1999, pp. 1322-1328.

[6] G. A. Einicke and B. White, Robust extended Kalman filtering, IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2596-2599,

Sep. 1999.

[7] E. Fabrizi, G. Oriolo, S. Panzieri and G. Ulivi, A KF-based localization algorithm for nonholonomic mobile robots, in Proc.

6th IEEE Mediterranean Conf., Alghero, Italy, Jun. 1998, pp. 130-135.

[8] F. Figueroa and A. Mahajan, A robust navigation system for autonomous vehicles using ultrasonics, Control Engineering

Practice, vol. 2, no. 1, pp. 49-59, 1994.

[9] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite Quadratic Estimation and Control: A Unified Approach to H2 and H∞

Theories, Philadelphia, PA: SIAM, 1999.

[10] L. Jetto, S. Longhi and G. Venturini, Development and experimental validation of an adaptive extended Kalman filter for

the localization of mobile robots, IEEE Trans. Robot. Autom., vol. 15, no. 2, pp. 219-229, Apr. 1999.



REVISED: PAPER NO.: JSCE791 9

[11] L. Jetto, S. Longhi and D. Vitali, Localization of a wheeled mobile robot by sensor data fusion based on a fuzzy logic adaptive

Kalman filter, Control Engineering Practice, vol. 7, no. 6, pp. 763-771, June 1999.

[12] M. Kieffer, L. Jaulin, E. Walter and D. Meizel, Robust autonomous robot localization using interval analysis, Reliable

Comput., vol. 6, no. 3, pp. 337-362, 2000.

[13] E. Kiriy and M. Buehler, Three-state Extended Kalman Filter for Mobile Robot Localization, Technical Report, McGill

University, 2002.

[14] J. J. Leonard and H. F. Durrant-Whyte, Directed Sonar Sensing for Mobile Robot Navigation. Boston, MA: Kluwer, 1992.

[15] R. Mandelbaum and M. Mintz, A confidence set approach to mobile robot localization, in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., Osaka, Japan, 1996, pp. 481-488.

[16] Q. H. Meng, Y. C. Sun and Z. L. Cao, Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar,

Robotica, vol. 18, no. 5, pp. 459-473, 2000.

[17] S. I. Roumeliotis and G. A. Bekey,Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization,

in Proc. IEEE Int. Conf. Robot Autom., San Francisco, CA, Apr. 2000, pp. 2985-2992.

[18] K. T. Sutherland and W. B. Thompson, Localizing in unstructured environments: dealing with the errors, IEEE Trans.

Robot. Autom., vol. 10, no. 6, pp. 740-754, Jun. 1994.

[19] C. M. Wang, Localization estimation and uncertainty analysis for mobile robots, in Proc. Int. Conf. Robot. Automat.,

pp. 1230-1235, 1988.

[20] D. Fox, W. Burgard, and S. Thrun, Markov localization for mobile robots in dynamic environments, Journal of Artificial

Intelligence Research, vol. 11, pp.391C427, 1999.

APPENDIX

The proof of Theorem 1.

Before the proof of Theorem 1, we provide the following lemma.

Lemma 1: (Krein space Kalman filter)[9]( Given a Krein space discrete-time system:

xk+1 = Akxk +Bkwk (30)

yk = Ckxk + vk (31)

with the Gramian matrix

〈









x0

wj

vj









,









x0

wk

vk









=









P0|−1 0 0

0 Qkδjk 0

0 0 Rkδjk









〉 (32)

both of which can be obtained from Krein space mapping corresponding to the indefinite quadratic function:

J = ‖x0 − x̂0|−1‖2
P−1

0|−1

+

N−1
∑

k=0

‖wk‖2
Q−1

k

+

N
∑

k=0

‖(yk − Ckxk)‖2
R−1

k

(33)

If P0|−1 > 0, Qk > 0, Rk is invertible, and
[

Ak Bk

]

has full rank for all k, the existence condition for the

Krein space Kalman filter is given by:

P−1
k|k = P−1

k|k−1 + CT
k R

−1
k Ck > 0 (34)

In addition, if this existence condition is satisfied, then the Krein space Kalman filtering equations is governed

by: (Measurement update):

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (35)

Pk|k = Pk|k−1 − Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1CkPk|k−1 (36)
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where the gain matrix Kk is defined by:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1 (37)

(Time update):

x̂k+1|k = Akx̂k|k (38)

Pk+1|k = AkPk|kA
T
k +BkQkB

T
k (39)

and the minimum point of the indefinite quadratic function J is provided by:

minJ(x0, w, y) =

N
∑

k=0

‖ek‖2
(CkPk|k−1CT

k
+Rk)−1 (40)

where the innovations ek are defined by

ek = yk − ŷk|k−1 = yk − Ckx̂k|k−1 (41)

Proof: In order to apply the approach of Krein space kalman filtering to the robust H∞ extended

filtering problem, we will adopt a mapping from the Hilbert space to the Krein space to solve the deterministic

minimisation problem. In Krein space, the minimisation problem of a quadratic function can be cast into the

Krein space Kalman filtering problem. We now recast the H∞ performance (24) into the form of (33). We

define

J∞ = ‖z0 − ẑ0|−1‖2
P−1

0|−1

+
N−1
∑

k=0

‖wk‖2
Q−1

k

+
N

∑

k=0

‖vk‖2
R−1

k

− γ−2
N

∑

k=0

‖z̃k‖2

= ‖z0 − ẑ0|−1‖2
P−1

0|−1

+

N−1
∑

k=0

‖wk‖2
Q−1

k

+

N
∑

k=0

‖mk − Ckzk‖2
R−1

k

− γ−2
N

∑

k=0

‖zk − ẑk|k‖2

= ‖z0 − ẑ0|−1‖2
P−1

0|−1

+

N−1
∑

k=0

‖wk‖2
Q−1

k

+

N
∑

k=0

‖m̃k − C̃kzk‖2
R̃−1

k

(42)

where

m̃k =

[

mk

ẑk|k

]

, C̃k =

[

Ck

I

]

, R̃k =

[

Rk 0

0 −γ2I

]

(43)

Then by Lemma 1, we can introduce the following Krein space system:

zk+1 = Akzk + wk (44)

m̃k = C̃kzk + vk (45)

with the Gramian matrix

〈









z0

wj

vj









,









z0

wk

vk









=









P0|−1 0 0

0 Qkδjk 0

0 0 R̃kδjk









〉 (46)

Now we are in a position to apply Lemma 1 to the robust H∞ extended filtering problem. Note that

there exist the following correspondences between the weighting matrices in the cost function (33) of Kalman
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filtering and that of H∞ extended filtering in (43):

Qk 7−→ Qk, Rk 7−→ R̃k. (47)

In addition to the following correspondences between the system matrices of Kalman filtering and and that

of H∞ extended filtering:

Ak 7−→ Ak, Bk 7−→ I, Ck 7−→ C̃k. (48)

From the above correspondences, we can check that

P−1
k|k = P−1

k|k−1 + C̃T
k R̃

−1
k C̃k

= P−1
k|k−1 + CT

k R
−1
k Ck − γ−2I (49)

which is identical to (25). On the other hand, we, by using Lemma 1, have

ẑk|k = ẑk|k−1 + Pk|k−1C̃
T
k (C̃kPk|k−1C̃

T
k + R̃k)

−1(m̃k − C̃kẑk|k−1)

= ẑk|k−1 + Pk|k−1

[

CT
k I

]

[

I −R̂−1
k CkPk|k−1

0 I

]

·
[

R̂k 0

0 −γ−2I + (P−1
k|k−1 + CT

k Ck)
−1

]−1 [

I 0

−Pk|k−1C
T
k R̂

−1
k I

][

mk − Ckẑk|k−1

ẑk|k − ẑk|k−1

]

(50)

where

R̂k = Rk + CkPk|k−1C
T
k (51)

By tedious but direct matrix inverse manipulation, we get

ẑk|k = ẑk|k−1 + Pk|k−1C
T
k R̂

−1
k (mk − Ckẑk|k−1) (52)

which is same as (27). This completes the proof.
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Fig. 3. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using EKF.
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Fig. 4. Actual robot angle (dashed line) and its estimate (solid line) by using EKF.
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Fig. 5. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using our method.
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Fig. 6. Actual robot angle (dashed line) and its estimate (solid line) by using our method.
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Fig. 7. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using EKF.
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Fig. 8. Actual robot angle (dashed line) and its estimate (solid line) by using EKF.
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Fig. 9. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using our method.
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Fig. 10. Actual robot angle (dashed line) and its estimate (solid line) by using our method.
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Fig. 11. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using EKF.
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Fig. 12. Actual robot angle (dashed line) and its estimate (solid line) by using EKF.



REVISED: PAPER NO.: JSCE791 17

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x (m)

y 
(m

)

Robot position

Fig. 13. Actual robot trajectory (dashed line) in the x-y plane and its estimate (solid line) by using our method.
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Fig. 14. Actual robot angle (dashed line) and its estimate (solid line) by using our method.


