
A

Search Based Software Engineering:
Trends, Techniques and Applications

Mark Harman, University College London
S. Afshin Mansouri, Brunel University
Yuanyuan Zhang, University College London

In the past five years there has been a dramatic increase in work on Search Based Software Engineering
(SBSE), an approach to Software Engineering (SE) in which Search Based Optimization (SBO) algorithms
are used to address problems in SE. SBSE has been applied to problems throughout the SE life cycle, from
requirements and project planning to maintenance and reengineering. The approach is attractive because
it offers a suite of adaptive automated and semi-automated solutions in situations typified by large complex
problem spaces with multiple competing and conflicting objectives.

This paper1 provides a review and classification of literature on SBSE. The paper identifies research
trends and relationships between the techniques applied and the applications to which they have been
applied and highlights gaps in the literature and avenues for further research.

Categories and Subject Descriptors: D.2 [Software Engineering]

Additional Key Words and Phrases: software engineering, search based techniques, survey

1. INTRODUCTION
Software Engineering (SE) often considers problems that involve finding a suitable
balance between competing and potentially conflicting goals. There is often a bewil-
deringly large set of choices and finding good solutions can be hard. For instance, the
following is an illustrative list of SE questions:

(1) What is the smallest set of test cases that covers all branches in this program?
(2) What is the best way to structure the architecture of this system to enhance its

maintainability?
(3) What is the set of requirements that balances software development cost and cus-

tomer satisfaction?
(4) What is the best allocation of resources to this software development project?
(5) What is the best sequence of refactoring steps to apply to this system?

Answers to these questions might be expected from literature on testing, design, re-
quirements engineering, SE management and refactoring respectively. It might appear
that these questions, which involve different aspects of software engineering, would be
covered by different conferences and specialized journals and would have little in com-
mon. However, all of these questions are essentially optimization questions. As such,

Mark Harman and Yuanyuan Zhang are with the Department of Computer Science, University College
London, UK {m.harman,yuanyuan.zhang}@cs.ucl.ac.uk. Afshin Mansouri is with Brunel Business School,
Brunel University, UK afshin.mansouri@brunel.ac.uk
1The paper is a (significantly) extended version of the recent ICSE ‘The Current State and Future of Search
Based Software Engineering’ paper by Harman, one of the present authors [Harman 2007b].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0360-0300/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

they are typical of the kinds of problem for which SBSE is well adapted and with
which each has been successfully formulated as a search based optimization problem.
As we shall see in this survey, SBSE has been applied to testing, design, requirements,
project management and refactoring. This survey will show that work on SBSE ap-
plied to each of these five areas addresses each of the five questions raised above. This
breadth of applicability is one of the enduring appeals of SBSE.

In SBSE, the term ‘search’ is used to refer to the metaheuristic Search Based Opti-
mization (SBO) techniques that are used. SBSE seeks to reformulate SE problems as
SBO problems (or ‘search problems’ for short). The use of the term ‘search’ should not
to be confused with ‘search’ from other contexts such as textual or hypertextual search.
Rather, for SBSE, a search problem is one in which optimal or near optimal solutions
are sought in a search space of candidate solutions, guided by a fitness function that
distinguishes between better and worse solutions.

The interest in SBO for SE has led to an increased interest in other forms of opti-
mization for SE that are not necessarily directly based on a ‘search’. In the literature
it is common to find the term ‘SBSE’ applied to any form of optimization in which the
problem domain comes from SE and the solution involves optimization according some
well-defined notion of fitness. In this paper, we therefore include classical Operations
Research (OR) techniques as well as metaheuristic ‘search based’ techniques in our
understanding of SBSE.

It has been argued that the virtual nature of software makes it well suited for SBO
[Harman 2010]. This is because fitness is computed directly in terms of the engineering
artifact, without the need for the simulation and modelling inherent in all other ap-
proaches to engineering optimization. The field of SE is also imbued with rich metrics
that can be useful initial candidates for fitness functions [Harman and Clark 2004].
This paper aims to provide a comprehensive survey of SBSE. It presents research ac-
tivity in categories drawn from the ACM subject categories within SE. For each, it lists
the papers, drawing out common themes, such as the type of search technique used,
the fitness definitions and the nature of evaluation.

A wide range of different optimization and search techniques can and have been
used. The most widely used are local search, Simulated Annealing (SA), Genetic Al-
gorithms (GAs), Genetic Programming (GP) and Hill Climbing (HC). There is also in-
creasing evidence of industrial interest in SBSE, with uptake by many software-centric
organisations including Daimler [Bühler and Wegener 2008; Harman et al. 2007; We-
gener et al. 2001; Windisch et al. 2007], Ericsson [Zhang et al. 2010], IBM [Yoo et al.
2009, 2011a], Microsoft [Lakhotia et al. 2010; Xie et al. 2008], Motorola [Baker et al.
2006], Nokia [Del Rosso 2006] and NASA [Feather et al. 2004].

As the paper reveals, 54% of the overall SBSE literature is concerned with SE appli-
cations relating to testing. There have been several important surveys in this widely
studied general area [Afzal et al. 2009; Ali et al. 2010; McMinn 2004]. For this reason,
the present survey will report overall trends in the wider SBSE literature (including
Search Based Testing), but it will defer to these other three surveys for details on the
specific sub-field of Search Based Testing. The reader is also referred to an earlier (but
considerably longer) version of this paper [Harman et al. 2009] that contains a detailed
section on testing.

There has been a considerable increase in the quantity of SBSE research over the
past few years (see Figure 1(a)). Despite the excellent work in the surveys listed above,
there remains, to date, no comprehensive survey of the whole field of study concern-
ing trends in research. It is therefore timely to review the SBSE literature, the rela-
tionships between the applications to which it has been applied, the techniques used,
trends and open problems.

The primary contributions of this survey are as follows:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

(a) Publication Numbers (b) Topic Areas

Fig. 1. The trend of publications on SBSE and Software Engineering topic area.

(1) coverage and completeness: The survey gathers publication data and trends,
covering SBSE from its early origins to a publication ‘census date’ of December
31st 2008. This census date is chosen for pragmatic reasons. As this survey reveals,
there is a notably increasing trend of publication in SBSE. The growth in activity
in this area makes a survey useful, but it also means that it may not be feasible to
conduct a detailed survey after this date.

(2) classification: The classification of SE areas allows us to identify gaps in the
literature, indicating possible areas of SE that could (but have yet to) benefit from
the application of SBSE. Similarly, the analysis of search techniques used, allows
us to identify SBO algorithms that have yet to receive significant attention. We
also apply Formal Concept Analysis (FCA) [Snelting 1998] in order to explore the
relationships between techniques and the applications to which they have been
applied.

(3) Trend analysis: The survey presents numeric data concerning trends which give
a quantitative assessment of the growth in the area and the distributions of activi-
ty among the SE domains that have received attention. We are also able to identify
recent growth areas.

2. BACKGROUND
Although interest in SBSE has witnessed a recent dramatic rise, its origins can be
traced back to early work on optimization in SE in the 1970s. The earliest currently
known attempt to apply optimization to a SE problem was reported by Miller and
Spooner [1976] in 1976 in the area of software testing. The term SBSE was first used
by Harman and Jones [2001a] in 2001. This paper acted as a ‘manifesto’ for SBSE, but
it should also be noted that much earlier, Carl Chang has also used his IEEE Software
editorial to promote the more widespread use of evolutionary computation in SE in
1994 [Chang 1994].

Figure 1(a) provides a histogram charting SBSE publication growth over time, while
Figure 1(b) shows the proportion of papers that fall into each of the different SE appli-
cation area subject categories.

Harman and Jones [Harman 2007b; Harman and Jones 2001a] identified two key
ingredients for the application of SBO to SE problems:

(1) The choice of the representation of the problem; and
(2) The definition of the fitness function.

This simplicity and ready applicability makes SBSE a very attractive option. Typi-
cally, a software engineer will have a suitable representation for their problem, because
one cannot do much engineering without a way to represent the problem in hand. Fur-
thermore, many problems in SE have a rich and varied set of software metrics associat-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Table 1: The Classification Scheme for SBSE Literature.
Classification Criteria Values

Type of activity (ACM coding)

Network Protocols (C.2.2), Require-
ments/Specifications (D.2.1), Design Tools
and Techniques (D.2.2), Coding Tools and
Techniques (D.2.3), Software/Program Ver-
ification (D.2.4), Testing and Debugging
(D.2.5), Distribution, Maintenance and
Enhancement (D.2.7), Management (D.2.9),
Distributed Artificial Intelligence (I.2.11),
Security and Protection (K.6.5)

Objectives (or fitness) Maximum Cohesion, Minimum Coupling,
. . .

Representation method Tree, Graph, String, etc.

Search techniques Greedy Search, HC, GAs, SA, Tabu Search
(TS), Other Search Techniques

Problems used for evaluation Real World Data, Synthetic Data

ed with them that naturally form good initial candidates for fitness functions [Harman
and Clark 2004]. With these two ingredients it becomes possible to implement SBO al-
gorithms.

Naturally, there is a lot more to the application of these techniques, but these two
simple ingredients are sufficient to get started with experimentation. Poulding et al.
[Poulding et al. 2007] presented a framework for experimental investigation of the dif-
ferent algorithms. An overview of search techniques is available in other surveys [Har-
man 2007b], while a more detailed treatment of search methodologies can be found in
the book edited by Burke and Kendall [Burke and Kendall 2005].

3. CLASSIFICATION SCHEME
Our classification of SE activities is taken from the Association for Computing Machin-
ery (ACM) Computing Classification System, projected onto those SE areas to which
SBSE has been applied (see Table 1). A list of query keywords was constructed for
each of the activities and each of the search techniques (see Table 2). For example,
the search term used to locate papers on Search Based Requirements/Specifications
(D.2.1) was:

((requirements OR specifications OR next release OR release planning OR require-
ments selection OR requirements analysis OR COTS OR requirements prioritisation
OR requirements triage) AND (search based OR optimization OR multiobjective opti-
mization OR search techniques))

We used the following sources from which to search: Google Scholar, IEEE Xplore
Digital Library, ACM Digital Library, SpringerLink, ScienceDirect and Wiley Inter-
Science. We also asked the researchers in the field to check the references and notify
us of the missing references.

4. REQUIREMENTS/SPECIFICATIONS
Requirements engineering is a vital part of the SE process [Cheng and Atlee 2007], to
which SBSE has also been applied in order to optimize choices among requirements,
the prioritization of requirements and the relationships between requirements and
implementations.

Bagnall et al. [Bagnall et al. 2001] suggested the term Next Release Problem (NRP)
for requirements release planning and described various metaheuristic optimization
algorithms, including greedy algorithms, branch and bound, SA and HC. The authors
did not give any value property to each requirement. They only used an associated

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Table 2: Search Terms
Publication Classification Search Terms
Network Protocols protocol OR message exchange OR communication
Requirements/Specifications requirements OR specifications OR next release OR release

planning OR requirements selection OR requirements anal-
ysis OR COTS OR requirements prioritisation OR require-
ments triage

Design Tools and Techniques software design OR design quality OR design pattern OR
software architecture OR QoS OR component integration
OR cohesion OR coupling OR synthesis OR fault tolerance
OR OO design

Coding Tools and Techniques program slices OR grammar inference
Software/Program Verifica-
tion

model checking OR verification OR synthesis

Distribution, Maintenance
and Enhancement

maintenance OR refactoring OR modularization OR evolu-
tion OR real time OR quality prediction OR legacy systems
OR migration

Management project planning OR project management OR scheduling
OR staffing OR cost estimation OR effort estimation

Distributed Artificial Intelli-
gence

agent OR multiagent

Security and Protection security OR immune system OR AIS

AND

Search Techniques Search Terms
search based OR optimization OR multiobjective optimiza-
tion OR genetic algorithms OR GAs OR genetic program-
ming OR GP OR hill climbing OR simulated annealing OR
local search OR Integer programming OR ant colony opti-
mization OR ACO OR PSO OR EDA

cost. The task of the work was to find a subset of stakeholders whose requirements are
to be satisfied. The objective was to maximize the cumulative measure of the stake-
holder’s importance to the company under resource constraints. This single objective
formulation based NRP was the first attempt on SBSE for requirements.

Feather and Menzies [Feather and Menzies 2002] built an iterative model to seek
the near-optimal attainment of requirements. The authors proposed a Defect Detec-
tion and Prevention (DDP) process based on a real-world instance: a NASA pilot study.
The DDP combined the requirements interaction model with the summarization tool
to provide and navigate the near-optimal solutions in the risk mitigation/cost trade-off
space. The paper was one of the first to use Pareto optimality in SBSE for require-
ments. The Pareto fronts were not produced using multiobjective optimization tech-
niques (as with more recent work by Jalali et al. [2008]), but were produced using the
iterative application of a weighting based single objective formulation by applying SA.
Also, with relevance to Pareto optimal formulations, Feather et al. [Feather et al. 2006,
2004] summarized the visualization techniques used to present requirements status,
including Pareto front plotted by SA.

Ruhe et al. [Greer and Ruhe 2004; Ruhe and Greer 2003; Ruhe and Ngo-The 2004]
proposed the GA based approaches known as the EVOLVE family which aimed to max-
imize the benefits of delivering requirements in an incremental software release plan-
ning process. Their approaches balance the required and available resources; assessing
and optimizing the extent to which the ordering conflicts with stakeholder priorities.
They also took requirement changes and two types of requirements interaction rela-
tionship into account and provided candidate solutions for the next release in an iter-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

ative manner. As with previous work, the authors use a single objective formulation,
taking the resource budget as a constraint.

Moreover, Carlshamre [Carlshamre 2002] took requirements interdependencies into
consideration by using Linear Programming (LP) techniques. Ruhe and Saliu [Ruhe
and Saliu 2005] also presented an Integer Linear Programming (ILP) based method
which combined computational intelligence and human negotiation to resolve their
conflicting objectives. Van den Akker et al. [Li et al. 2007; van den Akker et al. 2005]
further extended the technique and developed an optimization tool based on ILP, in-
tegrating the requirements selection and scheduling for the release planning to find
the optimal set of requirements with the maximum revenue to cater for budgetary
constraints.

Using search based techniques to choose components to include in different releases
of a system was studied by Harman et al. [Baker et al. 2006; Harman et al. 2006].
Baker et al. [2006] addressed the problem of determining the next set of releases of a
software via ranking and selection of candidate software components. They use greedy
and SA algorithms. Harman et al. [2006] also considered requirements problems as a
feature subset selection problems, presenting results on a single objective formulation
for a real world data set from Motorola.

The work of AlBourae et al. [AlBourae et al. 2006] was focused more on the re-
quirements change handling. That is, re-planning of the product release. A greedy re-
plan algorithm was adopted to reduce risks and increase the number of requirements
achieved in the search space under change.

In addition, Cortellessa et al. [Cortellessa et al. 2006, 2008] described an optimiza-
tion framework to provide decision support for Code Off The Shelf (COTS) and in-house
components selection. The ILP LINGO model solver optimization models (CODER,
DEER) were proposed to automatically satisfy the requirements while minimizing the
cost.

Like many problems in SE, such as project planning, NRP and regression testing,
there is a relationship between feature subset selection problems and feature ordering
(prioritization) problems. A comparison of approaches (both analytical and evolution-
ary) for prioritizing software requirements was proposed by Karlsson et al. [Karlsson
et al. 1998]. Greer [Greer and Ruhe 2004] also provided a method for optimally allo-
cating requirements to increments, based on:

(1) A means of assessing and optimizing the degree to which the ordering conflicts
with stakeholder priorities within technical precedence constraints.

(2) A means of balancing required and available resources for all increments.
(3) An overall method for continuous planning of incremental software development

based on a GA.

The aforementioned work on this problem has tended to treat the requirements se-
lection and optimization as a single objective problem formulation, in which the vari-
ous constraints and objectives that characterize the requirements analysis problem are
combined into a single objective fitness function. Single objective formulations have the
drawback that the maximization of one concern may be achieved at the expense of the
potential maximization of another, resulting in a bias guiding the search to a certain
part of the solution space.

Zhang et al. [2007] provided a multiobjective formulation of the NRP to optimize
value and cost. They present the results of an empirical study into the suitability of
multiobjective search techniques.

Early work on integration by Saliu and Ruhe [Saliu and Ruhe 2007] showed how
implementation objectives and requirements objectives could be simultaneously op-
timized using a multiobjective optimization approach. Like Zhang et al. [2007], this

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

work also formulated the problem as a two-objective Pareto optimal problem, but in
this case with implementation level and requirement level objectives, where as Zhang
et al. use cost and value as their two objectives.

Finkelstein et al. [2008] showed how a multiobjective optimization approach can be
used to explore fairness of outcomes in requirements assignments. There are differ-
ent definitions of fairness. For example, each customer might wish to receive equal
spend from the developers, or they might prefer that they receive an equal number of
their desired requirements compared to other customers. Finkelstein et al. show how
these different definitions of fairness can be considered to be different objectives to be
optimized.

The application of SBSE optimization techniques to requirements analysis prob-
lems provides one example of a SE application that is often regarded as inherently
imprecise, qualitative and informal. However, using SBSE it can be formalized as a
quantitative multiobjective optimization problem. A position paper on recent trends in
requirements analysis optimization was provided by Zheng et al. [Zhang et al. 2008].

5. DESIGN TOOLS AND TECHNIQUES
In other engineering disciplines SBO is widely used as a means of developing better
designs. Where there are widely accepted metrics, such as cohesion and coupling, there
has been much work on optimizing these [Doval et al. 1999; Harman et al. 2002, 2005;
Mahdavi et al. 2003b; Mancoridis et al. 1999, 1998; Mitchell and Mancoridis 2002,
2003, 2008; Mitchell et al. 2002, 2004]. However, this previous work on cohesion and
coupling, is not concerned with design per se. Rather, it is concerned with the prob-
lem of re-constructing the module boundaries of a system after implementation. As
such, this previous work is categorized as work on maintenance, rather than work on
design in this survey. Räihä [Räihä 2010] provided a recent detailed survey of SBSE
techniques for both design problems and re-design (maintenance) problems in SE.

Clearly, there is a relationship between re-design (for software maintenance) and
design (as a part of the initial design phase of the life cycle). This relationship is borne
out naturally in the literature on software design, where some of the SBSE techniques
from software maintenance also have been adapted for software design. Simons and
Parmee [2006, 2007, 2008a,b] proposed multiobjective GAs to address Object Oriented
(OO) software design. Like the previous work on cohesion and coupling for software
maintenance [Harman et al. 2002, 2005; Mancoridis et al. 1999, 1998; Mitchell and
Mancoridis 2003, 2008], the fitness function is inspired by similar SE goals. Howev-
er, the goal is upstream software design rather than more downstream maintenance.
O’Keeffe and Ó Cinnéide [2003, 2004] converted OO software design to an optimiza-
tion problem using SA. A set of metrics is used for evaluating the design quality. This
is a development of work by the same authors on refactoring OO systems according to
metrics (which is described in Section 7.2).

It would be natural to suppose that work on design patterns [Gamma et al. 1995]
could and should form a foundation for a strand of work on SBSE for design. This
possibility has recently been explored in detail by Räihä et al. [Räihä 2008a,b; Räihä
et al. 2008], who proposed a GA-based approach to automatically synthesize software
architectures consisting of several design patterns.

Other authors have proposed new SBSE approaches, specifically targeted at the de-
sign phase of the software development process. Feldt [1999] presented a model to
explore the difficulty in early software development phases by using GP and also de-
scribes a prototype of interactive software development workbench called WISE that
uses biomimetic algorithms [Feldt 2002]. Several authors have also considered SBSE
techniques for balancing Quality of Service (QoS) objectives, such as Khoshgoftaar et

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

al. [Khoshgoftaar et al. 2004a,b], who proposed an approach for calibrating a multiob-
jective Module-Order Model (MOM) using GP.

The problem of QoS aware web service composition was introduced by Canfora et al.
[2005a], who use GAs to solve QoS-aware composition optimization problems. This
problem, which lies at the heart of service oriented computing, implemented as web
based systems, has recently been taken up and studied by other authors. Jaeger and
Mühl [2007] discussed the Quality of service-based web services selection problems
using GAs. Ma and Zhang [2008] proposed a GA based method for web service compo-
sition and web service selection which takes account of QoS constraints. Zhang et al.
[Su et al. 2007; Zhang et al. 2006, 2007] applied GAs for web services selection with
global QoS constraints.

Several authors have addressed the design problem of component selection and inte-
gration. This component selection problem is closely related to the requirement assign-
ment problem. Baker et al. [2006] presented results on greedy optimization and SA for
component selection, while Yang et al. [2006] proposed an approach for the software in-
tegration problem by using GAs to reduce risk. Classical OR techniques have also been
applied to component selection problems: Desnos et al. [2008] combined backtracking
and branch-and-bound techniques for automatic component substitution problem to
optimize software reuse and evolution. Other authors have considered the component
selection problem as a selection optimization problem. For example, Cortellessa et al.
[2008] presented a framework to support the selection of COTS components. These
approaches minimize system construction cost. Vijayalakshmi et al. [2008] proposed
a GA-based approach to select an optimized combination of components and Kuper-
berg et al. [2008] proposed a GP-based platform-independent reengineered parametric
behavior model for black-box components performance prediction.

State based models of design are increasingly popular and these create opportunities
for SBSE research because of the wealth of research on synthesis of state based mod-
els from examples, using optimization techniques. Goldsby et al. [Goldsby and Cheng
2008a,b; Goldsby et al. 2008] presented an evolution-based tool for software behav-
ioral model generation to improve the quality of systems. The system, Avida-MDE,
generates a set of communicating state-based models of system behavior using model
inference techniques that allow a finite state machine model to be synthesized from
cases. A related approach was used by Lucas and Reynolds [2005], who presented an
EA for learning deterministic finite automaton to optimally assign state labels and
compare its performance with the evidence driven state merging algorithm.

Feldt, one of the early pioneers of the application of SBO to SE, showed how fault
tolerance could be designed into systems using GP to evolve multiple diverse software
variants [Feldt 1998a,b,c]. This is a novel approach to N -version computing, in which
highly fault tolerant systems are created several times, in different ways, to increase
robustness. The goal was to increase quality since the GP evolved versions would be
qualitatively different from any human-generated ‘diverse versions’.

In the traditional N -version computing approach, different teams of programmers
are deployed to develop the different (and hopefully, therefore, diverse) solutions to
the same problem. Of course, the development of different versions of a system in this
manner is a highly expensive solution to the problem of robustness and fault tolerance;
it can and has only been used in highly safety-critical situations, where the expense
might be justified. Though it was not directly the intention of the work, Feldt’s work
also showed that by using GP to evolve the required diverse solutions to the same
problem, there is the potential to use SBSE techniques to overcome the expense that
was previously inherent in N -version computing.

Work on SBSE techniques for design has grown in prevalence in the last three
years, with many new and interesting SE design problems emerging. Amoui et al.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

[2006] applied GAs to optimize OO metrics and find the best sequence of system trans-
formations in order to improve the quality of the transformed design. This approach
shares some similarities with work on refactoring using SBO to find good sequences of
refactoring steps. Barlas and El-Fakih [2008] presented a GA based method for map-
ping client-server problems to optimize the delivery of applications to multiple clients
by multiple servers. Bowman et al. [2008] applied the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) multiobjective optimization algorithm to provide decision sup-
port system for the Class Responsibility Assignment (CRA) problem. Cao et al. [Cao
et al. 2005] addressed the cost-driven web service selection problem by using GAs.
Chardigny [Chardigny et al. 2008] proposed a search based approach to the extraction
of component-based architectures of OO systems. As with other work in this section,
this work could be categorized as design or as re-design, highlighting the interplay
in SE between design, maintenance and evolution of software systems. Sharma and
Jalote [2008] proposed a heuristic approach for deploying software components that
maximizes performance.

6. SOFTWARE/PROGRAM VERIFICATION AND MODEL CHECKING
Model checking is an area of research that could well benefit from more research on S-
BSE techniques, because model checking throws up enormous search spaces and there
are candidate metrics to guide a search. Software/Program Verification (ACM: D.2.4)
is given in Table 8. Godefroid was the first to apply SBO to explore the state space
used in model checking [Godefroid 1997]. Where the state space is too large to be fully
checked, search based optimization can be used to identify isomorphic subgraphs and
to seek out counter examples. Alba et al. [Alba and Chicano 2007a,b,c; Alba et al. 2008;
Chicano and Alba 2008b,b,c] also showed how Ant Colony Optimization (ACO) can be
used to explore the state space used in model checking to seek counter examples. Ma-
hanti and Banerjee [2006] also proposed an approach for model checking, using ACO
and Particle Swarm Optimization (PSO) techniques.

Other authors have also explored the relationship between SBSE and model check-
ing. For instance, Johnson [2007] used model checking to measure fitness in the evolu-
tion of finite state machines, while Katz and Peled [2008a,b] provided a model checking
based GP approach for verification and synthesis from specification. They present an
approach that combines Hoare–logic–style assertion based specifications and model
checking within a GP framework [He et al. 2008].

7. DISTRIBUTION, MAINTENANCE AND ENHANCEMENT
Software maintenance is the process of enhancing and optimizing deployed software
(software release), as well as remedying defects. It involves changes to the software in
order to correct defects and deficiencies found during field usage as well as the addition
of new functionality to improve the software’s usability and applicability.

Much of the work on the application of SBSE to these topics has tended to focus
on two strands of research, each of which has attracted a great deal of interest and
around which a body of work has been produced.

The first topic to be addressed is search based software modularization. More re-
cently, there have also been several developments in search based approaches to the
automation of refactoring. The previous work on distribution, maintenance and en-
hancement is discussed in more detail in the following two subsections, which sepa-
rately consider work on modularization and refactoring.

Other work on SBSE application in distribution, maintenance and enhancement
that does not fall into these two categories has considered the evolution of program-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

ming languages [Van Belle and Ackley 2002], real time task allocation2 [Bate and Em-
berson 2006; Emberson and Bate 2007], quality prediction based on the classification
of metrics by a GA [Vivanco and Pizzi 2004] and legacy systems migration [Sahraoui
et al. 2002]. SBSE has also been applied to the concept assignment problem. Gold
et al. [2006] applied GAs and HC to find overlapping concept assignments. Traditional
techniques (which do not use SBSE) cannot handle overlapping concept boundaries,
because the space of possible assignments grows too rapidly. The formulation of this
problem as an SBSE problem allows this large space to be tamed.

7.1. Modularization
Mancoridis et al. were the first to address the problem of software modularization
using SBSE [Mancoridis et al. 1998] in 1998. Their initial work on HC for clustering
modules to maximize cohesion and minimize coupling was developed over the period
from 1998 to 2008 [Doval et al. 1999; Mancoridis et al. 1999; Mitchell and Mancoridis
2002, 2003, 2008; Mitchell et al. 2002, 2004]. The pioneering work of Macoridis et al.
led to the development of a tool called Bunch [Mancoridis et al. 1999] that implements
software module clustering.

The problem of module clustering is similar to the problem of finding near cliques
in a graph, the nodes of which denote modules and the edges of which denote depen-
dence between modules. Mancoridis et al. [Mancoridis et al. 1999] called this graph a
module dependency graph. The Bunch tool produces a hierarchical clustering of the
graph, allowing the user to select the granularity of cluster size that best suits their
application.

Following Macoridis et al., other authors also developed the idea of module clustering
as a problem within the domain of SBSE. Harman et al. [Harman et al. 2002], studied
the effect of assigning a particular modularization granularity as part of the fitness
function, while Mahdavi et al. [Mahdavi 2005; Mahdavi et al. 2003b] showed that com-
bining the results from multiple hill climbs can improve on the results for simple HC
and GAs. Harman et al. also [Harman et al. 2005] explored the robustness of the Mod-
ularization Quality (MQ) fitness function in comparison with an alternative measure
of cohesion and coupling, EValuation Metric (EVM), used in work on clustering gene
expression data.

Other authors have also considered search based clustering problems. Bodhuin et al.
[2007] applied GAs to group together class clusters in order to reduce packaging size
and the average downloading times. Huynh and Cai [2007] applied GAs to cluster
Design Structure Matrices and check the consistency between design and source code
structures.

Despite several attempts to improve on the basic HC approach [Harman et al. 2002;
Mahdavi et al. 2003b; Mitchell and Mancoridis 2002], this simple search technique
has been found to be very effective for this problem. However, Praditwong et al. [Pra-
ditwong et al. 2010] recently demonstrated that multi-objective optimization can sig-
nificantly outperform HC in terms of modularisation quality. Mitchell and Mancoridis
recently published a survey of the Bunch project and related work [Mitchell and Man-
coridis 2006].

Clustering is a very general problem to which a number of algorithms have been
applied, not merely search based algorithms. Clustering is likely to find further appli-
cations in SE applications, beyond the original work on software modular structure.
For example, Cohen [Cohen et al. 2006] showed how search based clustering algo-

2This work could equally well be categorized as ‘real time SBSE’; a topic area which is sure to develop in
future, given the highly constrained nature of the real time environment and the many competing objectives
that have to be optimized.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

rithms could be applied to the problem of heap allocation Java program optimization.
Memory fragmentation issues have also been addressed using SBSE: Del Rosso [2006]
improved internal memory fragmentation by finding the optimal configuration of a
segregated free lists data structure using GAs.

7.2. Refactoring
In refactoring work, the goal is to change the program, altering its structure without
altering the semantics. Closely related topics have also been addressed. For example,
Reformat et al. [2003, 2007] explored applications of software clones and present a
method for automatic clone generation using GP. Clones are also a focus for attention
in the work of Di Penta et al. [Di Penta 2005; Di Penta et al. 2005], who proposed
a language-independent software renovation framework to remove unused objects,
clones and circular dependencies, and to cluster large libraries into more cohesive and
smaller ones. Cowan et al. [2004] provided a framework of automatic programming ap-
plying GP. Bouktif et al. [2006] used SBSE techniques to schedule refactoring actions
in order to remove duplicated code. Antoniol et al. [2003] proposed GA based refac-
toring process to reduce size and minimize coupling of libraries. Bodhuin et al. [2007]
introduced a tool to support refactoring decisions using a GA guided by software met-
rics.

Search based refactoring work can be partitioned according to whether the goal is to
optimize the program to a refactored version of itself [Cooper et al. 1999; O’Keeffe and
Ó Cinnéide 2006, 2007, 2008a,b; Ryan 2000; Williams 1998] or whether it is to optimize
the sequence of refactoring steps to be applied [Harman and Tratt 2007; Williams
1998]. The work can also be categorized according to whether the approach followed
is single objective (combining all metrics into a single fitness value) [O’Keeffe and Ó
Cinnéide 2006, 2007, 2008a,b; Ryan 2000; Seng et al. 2005, 2006; Williams 1998] or
multiobjective (using Pareto optimality to separately optimize each metric) [Harman
and Tratt 2007]. Bouktif et al. [2006] proposed an approach to schedule refactoring
actions under constraints and priorities in order to remove duplicated code.

This work is closely related to that on statement-level search based transformation,
which was first explored by Ryan and Williams in the context of identification of trans-
formations that improve imperative language paralellizability [Ryan 2000; Williams
1998]. Nisbet [1998] also applied a GA to determine the optimal transformation se-
quence that minimizes the execution time of FORTRAN programs for Single Program
Multiple Data (SPMD) execution on parallel architectures.

Stephenson et al. [2003] used GP to improve compiler heuristics. This approach di-
rectly evolves the heuristic deployed by the compiler. Hoste and Eeckhout [2008] and
Dubach et al. [2007] used an alternative approach to improve the performance of com-
piled code by searching the space of compiler options that control optimization levels
in gcc. There are about 60 such flags (purely for optimization behavior of the gcc),
making for a non-trivial search space of options, specifically targeted at performance
of the compiled code. The two objectives considered in the paper are compilation time
and code quality (in terms of execution time), though many other possibilities suggest
themselves, such as the many non functional properties of the program being compiled.

Refactoring seeks to restructure a program to improve some aspect of the struc-
ture without affecting the behavior of the restructured system. It is an example of
a more general approach: (source-to-source) program transformation, to which SBSE
techniques have also been applied. Fatiregun et al. [Fatiregun et al. 2003, 2005, 2004]
and Kessentini et al. [2008] applied transformations to reduce programs size and to au-
tomatically construct amorphous slices. The first author that has considered any form
of source-to-source transformation using a search based approach was Cooper [Cooper

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

et al. 1999] who applied search based transformation to find sequences of compiler op-
timizations. This work used only whole program transformations. The work of Ryan,
Williams and Fatiregun which followed, focused on the more ‘micro level’ or statement-
level transformations.

By contrast with this previous work on transformation, the work on refactoring is
more concerned with the OO paradigm, but the principles used in the refactoring work
are largely the same as those that pertain to the statement-level transformation do-
main.

8. MANAGEMENT
SE management is concerned with the management of complex activities being carried
out in different stages of the software life cycle, seeking to optimize both the process-
es of software production as well as the products produced by this process. Task and
resource allocation, scheduling and cost-effort estimation have been among the most
frequently considered problems studied in this category. Papers on SBSE for manage-
ment can be roughly categorized according to whether they concern project planning
activities or whether they create predictive models for cost estimation to provide deci-
sion support to software project managers. The following two subsections present the
work in each of these two categories.

8.1. Project Planning
Chang et al. [Chang 1994; Chang et al. 1994, 1998, 2001; Chao et al. 1993] were the
first to use SBSE on software management problems. Their early work on search based
software project management [Chang 1994; Chang et al. 1994; Chao et al. 1993] intro-
duced the Software Project Management Net (SPMNet) approach for project schedul-
ing and resource allocation, evaluating SPMNet on simulated project data. SPMNet
deals with project scheduling and resource allocation. Other early work on SBSE for
project management was presented by Aguilar-Ruiz et al. [Aguilar-Ruiz et al. 2001,
2002], who also advocated the use of a Software Project Simulator (SPS) to evaluate
fitness, guiding an evolutionary search for a set of management rules to inform and
assist the project manager.

The allocation of teams to work packages in software project planing can be thought
of as an application of a bin packing problem [Coffman et al. 1984]. Motivated by
this observation, Antoniol et al. [Antoniol et al. 2004a, 2005], Chicano and Alba [Alba
and Chicano 2005, 2007d] applied search algorithms to software projects. Antoniol
et al. applied GAs, HC and SA to the problem of staff allocation to work packages.
They also considered problems of re-working and abandonment of projects, which are
clearly important aspects of most SE projects. Antoniol et al. applied the algorithms to
real world data from a large Year 2000 (Y2K) maintenance project. Chicano and Alba
considered the multiobjective version of the problem applied to synthetic data. The
multiple objectives are combined into a single fitness function using weights for each
of the component objectives.

Bouktif et al. have used SBSE to consider the management problem of determin-
ing the expected quality of a software system as a prediction system. Bouktif et al.(a)
[Bouktif et al. 2002] presented a GA based quality model to improve software quality
prediction, while Bouktif et al.(b) [Bouktif et al. 2006] showing how the general prob-
lem of combining quality experts, modeled as Bayesian classifiers, can be tackled via
an SA algorithm customization. Bouktif et al.(c) [Bouktif et al. 2004] used a GA based
method to improve rule set based OO software quality prediction.

The application areas of software project management, scheduling and planning
have witnessed a great deal of recent interest from the research community, with re-
cent contributions from a number of authors. Alvarez-Valdés et al. [2006] used a Scat-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

ter Search (SS) algorithm for project scheduling problems to minimize project comple-
tion duration. This is one of the few applications of SS in SBSE. Barreto et al. [2008]
proposed an optimization based project staffing algorithm to solve staffing problem.
Cortellessa et al. [2008] described an optimization framework to provide decision sup-
port for software architects. Hericko et al. [2008] used a simple gradient-based opti-
mization method to optimize project team size while minimising project effort. Kapur
et al. [2008] used a GA to provide optimal staffing for product release and best quality
to customers under time constraints. Kiper et al. [2007] applied GAs and SA to select
optimal subset of Verification and Validation (V&V) activities in order to reduce risk
under budget restrictions, thereby linking the problem domains of testing and man-
agement.

It is clear that this application area will continue to draw interest and activity from
the SBSE community. Though there has been much interest in the difficulty of the
problem of software project management, there remain a number of unresolved chal-
lenges, including:

(1) Robustness. It may not be sufficient to find a project plan that leads to early
completion time. It may be more important to find plans that are robust in the
presence of changes. Such a robust plan may be sub-optimal with respect to the
completion time objective. This may be a worthwhile sacrifice for greater certain-
ty in the worst case completion time, should circumstances change. These forms
of ‘robustness trade-off ’ have been widely studied in the optimization literature
[Beyer and Sendhoff 2007].

(2) Poor Estimates. All work on software project estimation has had to contend with
the problem of notoriously poor estimates [Shepperd 2007]. Much of the work on
SBSE for project management has implicitly assumed that reliable estimates are
available at the start of the project planning phase. This is an unrealistic assump-
tion. More work is required in order to develop techniques for software project
planning that are able to handle situations in which estimates are only partly re-
liable.

(3) Integration. Software project management is a top level activity in the software
development life cycle. It draws in other activities such as design, development,
testing, and maintenance. As such, project management is ideally not an activity
that can be optimized in isolation. In order to achieve wider applicability for the
SBSE approach to software project management, it will be necessary to develop
techniques that can integrate management activities with these other engineering
activities.
Software project management also cannot be conducted in isolation from require-
ment engineering, since the choice of requirements may affect the feasibility of
plans. Therefore, though the requirements gathering and analysis phases typical-
ly precede the formulation of management planning, this is clearly not desirable
once one accepts that the planning phase can be formulated as an optimization
problem.
Early work on integration by Saliu and Ruhe [2007] showed how implementation
objectives and requirements objectives could be simultaneously optimized using
a multiobjective optimization approach. More work is required to integrate other
aspects of the software development process into an optimized software project
management activity.

Figure 2 provides a generic schematic overview of SBSE approaches to project plan-
ning. Essentially, the approach is guided by a simulation that captures in abstract
form, the conduct of the project for a given plan. A project plan is evaluated for fit-
ness using the simulation. Typically the simulation is a simple queuing simulation

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Fig. 2. A Generic Search Based Project Management Scheme

that can deterministically compute properties of the project (such as completion time),
based upon the plan. The plan involves two aspects: people and tasks. The tasks (usu-
ally called work packages) have to be completed by teams. There may be dependencies
between the work packages which mean that one cannot start until another is com-
pleted. Work packages may also require certain skills, possessed by some staff (and
not others), while staff may be assigned to teams.

These details form the basis of the different choices of formulation of the problem
studied in the literature. However, all are united by the overall approach, which is to
assess fitness of a project plan, using a model of its conduct, with the search space of
possible project plans. They all take into account different aspects of the real world
software project management problem as determined by the problem formulation.

8.2. Cost Estimation
Software project cost estimation is known to be a very demanding task [Shepperd
2007]. For all forms of project, not merely those involving software, project estimation
activities are hard problems, because of the inability to ‘predict the unpredictable’ and
the natural tendency to allocate either arbitrary (or zero) cost to unforeseen (and un-
foreseeable) necessitated activities. The problem of estimation is arguably more acute
for software projects than it is for projects in general, because of:

(1) the inherent uncertainties involved in software development;
(2) the comparative youth of the SE as a discipline; and
(3) the wide variety of disparate tasks to which SE solutions can be applied.

Dolado was the first author to attack software project estimation problems using
SBSE. He applied GP to the problem of cost estimation, using a form of ‘symbolic
regression’ [Dolado 2000, 2001; Dolado and Fernandez 1998]. The idea was to breed
simple mathematical functions that fit the observed data for project effort (measured
in function points). This has the advantage that the result is not merely a prediction
system, but also a function that explains the behavior of the prediction system.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Several authors have used GP in cost estimation and quality prediction systems.
Evett et al. [1999] used GP for quality prediction. Liu and Khoshgoftaar [2001] also
applied GP to quality prediction, presenting two case studies of the approach. This
GP approach has been extended, refined and further explored by Khoshgoftaar et al.
[Khoshgoftaar and Liu 2007; Khoshgoftaar et al. 2003, 2008; Liu and Khoshgoftaar
2004, 2003]. In all these works, GP evolved predictors are used as the basis for de-
cision support. Other authors have used a combination of GA and GP techniques for
estimation as a decision support tool for software managers. Huang et al. [2008] inte-
grated the grey relational analysis with a GA to improve the accuracy of software effort
estimation. Jarillo et al. [2001] applied GAs and GP to effort estimation for predicting
the number of defects and estimating the reliability of the system. Lokan [2005] inves-
tigated the performance of GP based software effort estimation models using a number
of fitness functions.

Burgess and Lefley also reported results from the application of GP to software
project cost estimation [Burgess and Lefley 2001; Lefley and Shepperd 2003]. Shan
et al. [2002] compared a grammar-guided GP approach with linear regression in esti-
mation of software development cost. Sheta [2006] presented two new model structures
to estimate the effort required for the development of software projects using GAs and
bench-marked them on a NASA software project data set. Shukla [2000] presented
a neuro-genetic approach using a genetically trained Neural Network (NN) predictor
trained to predict resource requirements for a software project based on historical da-
ta.

Kirsopp et al. [Kirsopp et al. 2002] also used search techniques in software project
cost estimation. Their approach predicts unknown project attributes in terms of known
project attributes by seeking a set of near neighbor projects that share similar values
for the known attributes. This approach is known as Case Based Reasoning (CBR)
and it is widely used in prediction systems. CBR works well when the existing base of
project data is of consistently good quality, but can perform badly where some projects
and/or attributes are miss-recorded. Kirsopp et al. [2002] showed that the problem of
determining a set of good predictors can be formulated as a feature subset selection
problem, to which they applied a HC algorithm. This work was also one of the few in
the SBSE literature that has evaluated the properties of the search landscape.

9. ANALYSIS OF TECHNIQUES & APPLICATIONS
Figure 1(a) showed the trend of growth in publications in SBSE, while Figure 1(b)
showed how the application areas within SE have been covered. In this section a fur-
ther and deeper analysis of the overall area is provided using bar graphs to show the
relative frequency of application of optimization techniques, together with a Formal
Concept Lattice to show the relationships between application areas and techniques
applied.

Figure 3 shows the distributions of search based optimization techniques used in
SBSE. Perhaps one striking aspect of the SBSE literature (from the optimization point
of view) is the comparatively widespread use of HC. This simple local search technique
is often derided in the optimization literature, yet it can be effective and has a number
of advantages over more sophisticated algorithms:

(1) It is efficient: both quick to implement and fast in execution.
(2) Though it may become trapped in a local optima, it can be re-stated multiple times.

As such, for problems in which a quick answer is required that is merely ‘good
enough’ – a solution which is sufficiently better than the current one so that the
effort in adopting it would offset the effort, HC often serves the purpose; the choice
of other techniques may denote something of a ‘sledge hammer to crack a nut’.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Ta
bl

e
3:

P
ub

lic
at

io
n

V
en

ue
s

N
et

w
or

k
R

eq
ui

re
-

D
es

ig
n

C
od

in
g

V
er

ifi
ca

-
M

ai
nt

en
-

M
et

ri
cs

M
an

ag
e-

A
ge

nt
s

Se
cu

ri
ty

G
en

er
al

Te
st

in
g

To
ta

l

m
en

ts
ti

on
an

ce
m

en
t

G
E

C
C

O
2

4
1

5
16

2
8

2
1

46
87

T
R

3
2

15
20

IS
T

1
2

1
1

5
2

5
17

P
hD

T
he

si
s

1
3

11
15

C
E

C
1

3
2

8
14

A
SE

14
14

SB
ST

12
12

M
Sc

T
he

si
s

1
1

8
10

IC
SM

1
1

3
2

2
9

T
SE

1
1

6
8

IS
ST

A
8

8

C
O

M
P

SA
C

1
2

1
3

7

C
O

R
2

5
7

C
SM

R
1

5
6

SE
K

E
1

1
2

2
6

JS
S

2
4

6

ST
V

R
1

5
6

B
oo

k
2

3
5

IC
SE

2
3

5

O
th

er
s

4
6

35
3

13
18

3
22

1
1

4
12

5
23

5

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Fig. 3. Numbers of papers using each of the different types of SBO techniques: EAs are split into GA,
GP, ES, SS, EDA, PSO and EAs. In this figure the stacked bar ‘EAs’ represents the general class of all
Evolutionary Algorithms, while the top portion of bar labelled ‘EAs*’ refers to the proportion of the literature
that describes itself as using an ‘evolutionary algorithm’, without further qualification or specification as to
the type of evolutionary algorithm used.

(3) It gives a sense of the landscape structure. Because HC performs a local search
and ascends the ‘nearest hill to the start point’, with multiple restarts, it can be a
quick and effective way of obtaining a first approximation to the structure of the
landscape.

These properties of HC make it well suited to new application areas of SBSE (or
indeed for any new optimization problem). The technique can be used to quickly and
reliably obtain initial results, test out a putative fitness function formulation, and to
assess the structure of the search landscape. In SBSE, where many new application
areas are still being discovered, HC denotes a useful tool: providing fast, reliable and
understandable initial results. It should be tried before more sophisticated algorithms
are deployed.

Table 3 shows the venues in which SBSE publications have appeared. In total the
papers on SBSE have appeared in 201 different publication venues, which partly ex-
plains why a survey like the present one is needed. This spread of publication venues
reveals that there are a wide range of publication outlets for SBSE work. The data also
indicate that SBSE work is achieving acceptance in the leading SE journals and con-
ferences as well as those from the SBO and OR communities. This reflects a healthy
profile of publication reaching all of the communities to which this work is relevant. It
bodes well for the development of the discipline.

Figure 4 presents a Formal Concept Lattice of the literature on SBSE. Formal Con-
cept Analysis [Snelting 1998] is a technique that can be applied to tabular data that
report objects, attributes and the binary relationships between them. A ‘concept’ is a
maximal rectangle in the adjacency matrix of objects and attributes. That is, a concept
denotes a maximal set of objects that possess a given (also maximal) set of attributes.

The results of FCA are typically displayed as a concept lattice, such as that presented
in Figure 4. The lattice exploits symmetry properties enjoyed by all concept spaces (the
details of which are beyond the scope of this paper). These properties have been shown
to hold, irrespective of the particular choice of objects and attributes, thereby imbuing
FCA with an enduring appeal. In the case of Figure 4, the objectives are application
areas and the attributes are the search based optimization techniques that have been

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Fig. 4. FCA for Techniques & Applications in the SBSE literature 1976–2008

applied to the corresponding application areas. A concept is thus a set of Software
Engineering application areas to which a set of search based optimization techniques
have been applied, such that no larger set of areas can be found for the same set of
techniques and no larger set of techniques can be found for the same areas.

The names of the SE application areas presented in Figure 4 are abbreviated due to
space limitations. That is, ‘Protocols’ is the abbreviation of ‘Network Protocols (C.2.2)’;
‘Requirements’ is the abbreviation of ‘Requirements/Specifications (D.2.1)’; ‘Design’ is
the abbreviation of ‘Design Tools and Techniques (D.2.2)’; ‘Coding’ is the abbrevia-
tion of ‘Coding Tools and Techniques (D.2.3)’; ‘Verification’ is the abbreviation of ‘Soft-
ware/Program Verification (D.2.4)’; ‘Testing’ is the abbreviation of ‘Testing and De-
bugging (D.2.5)’; ‘Maintenance’ is the abbreviation of ‘Distribution; Maintenance and
Enhancement (D.2.7)’; ‘Agents’ is the abbreviation of Distributed Artificial Intelligence
(I.2.11)’; ‘Security’ is the abbreviation of ‘Security and Protection (K.6.5)’.

In the lattice, a concept is denoted by a node. The concepts are related to one another
by edges. If a node n1 is related to a node n2 (with n2 higher up the diagram) then this
means, in the case of the SBSE lattice of Figure 4, that all the application areas present

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

at concept n1 are also present at concept n2 and that all the optimization techniques
present at n2 are also present at n1.

It turns out that, for all lattices, there is a unique labeling of nodes, such that an
objective and attribute need appear only once in the labeling. In the case of the SBSE
lattice, the labels correspond to application areas in SE and optimization techniques.
An application area appearing at node n, also implicitly appears at all the nodes reach-
able from n moving up the lattice. By symmetric counterpart, an application area that
appears at a node m in the lattice also implicitly appears at all the nodes reachable
from m, traveling down the lattice. Figure 4 includes concepts relating to testing. When
these are removed and the lattice recomputed the effect is merely the disappearance of
those node labels (all of which relate only to testing) at the lowest node in the lattice.
This is merely a reflection of the fact that testing has been optimized using a superset
of all optimization techniques applied to other SE problem domains.

The lattice for the SBSE literature reveals a few interesting properties of the clus-
tering of application areas and techniques. First, it is clear that the testing application
area has had every optimization technique applied to it in the SBSE literature (be-
cause it appears at the bottom of the lattice), while no technique has been applied to
every area (indicating that there are still gaps here). Furthermore, four techniques:
TS, SQP, MA and EDA have only been applied so far in Software Testing. Of those
techniques so far explored these are the least widely applied.

It is also clear that the most widely applied techniques are SA and EAs, backing up
the findings of Figure 3. Hill climbing, though popular, has only been applied to design,
maintenance, management and testing. Only EAs have been applied to agents, while
protocols form an interesting link between PSO and SA. They are the only application
areas (apart from the ubiquitous area of testing) to which both PSO and SA have been
applied.

Figure 4 can also be read like a subsumption diagram. For example, all areas to
which IP, HC and ACO have been applied have also had SA applied to them and all
these have had EAs applied to them. Reading the relationship in the other direction,
all techniques applied to agents have also been applied to Coding and all these have
been applied to Requirements. The reader may also find other relationships in the
lattice that are of interest, depending upon the particular areas and techniques that
are of interest to them.

10. HOW SBSE REUNITES PREVIOUSLY DIVERGENT AREAS OF SE
In the early development of the field of SE the nascent field split into different topic
areas, with many different disjoint communities focusing on different aspects of the
emerging discipline. Of course, this has been a natural and necessary evolution of the
subject and it was to be expected. However, it has had the disadvantage that it has
created silos of activity with few connections between them.

Fortunately, acts as a catalyst to remove barriers between subareas, thereby combat-
ing the disadvantages of ‘silo mentality’. It is interesting to observe how SBSE creates
these linkages and relationship between areas in SE that would otherwise appear to
be completely unrelated. For instance, the problems of requirements engineering and
regression testing would appear to be entirely unrelated topics.

Indeed, these two areas of SE soon developed their own series of conferences, with
work on requirements engineering tending to appear in the conference and journal of
the same name, while work on regression testing would tend to appear at conferences
such as the ACM International Symposium on Software Testing and Analysis and the
IEEE International Conference on Software Testing.

However, using SBSE, a clear relationship can be seen between these two problem
domains. As optimization problems they are remarkably similar, although they occur

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Fig. 5. Requirements Selection & Regression Testing

at different phases of the software development process and, typically, researchers
working within each topic will form disjoint communities.

Figure 5 illustrates the SBSE-inspired relationship between requirements optimiza-
tion and regression testing. As a selection problem, the task of selecting requirements
is closely related to the problem of selecting test cases for regression testing. The dif-
ference is that test cases have to cover code in order to achieve high fitness, whereas
requirements have to cover customer expectations. In the detail, there will be differ-
ences in these two forms of coverage, but as optimization problems, the similarity is
striking: both can be viewed as subset selection problems and also as set cover prob-
lems.

When one turns to the problem of prioritization, the similarity is also most striking.
Both regression test cases and requirements need to be prioritized. In requirement
analysis, we seek an order that will ensure that, should development be interrupted,
then maximum benefit will have been achieved for the customer at the least cost to the
developer; a classic multiobjective cost/benefit problem. For test cases, the prioritiza-
tion must seek to ensure that, should testing be stopped, then maximum achievement
of test objectives is achieved with minimum test effort.

This is an appealing aspect of SBSE. It has the potential to create links and bridges
between areas of SE that have grown apart over the years, but which submit to similar
analysis from the optimization point of view. Such relationships may lead to exciting
new opportunities for cross fertilization between disjoint research communities. These
opportunities are a compelling reason for the emergence of conferences and events
that focus on Search Based SE. The approach clearly has the potential to cut across
traditional SE boundaries.

11. OVERLOOKED AND EMERGING AREAS
Some areas of SBSE activity have been considered briefly in the literature and then
appear to have been overlooked by subsequent research. This section highlights these
areas. That is, topics that have been addressed, shown promising results, but which
have attracted neither follow-on studies nor (relatively speaking) many citations. Giv-
en the initially patchy nature of work on SBSE and the recent upsurge in interest and
activity, these potentially overlooked areas may be worthy of further study.

Furthermore, this survey comes at a time when SBSE research is becoming
widespread, but before it has become mainstream. It is too soon to know whether

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

some of the areas that have apparently hitherto been overlooked, might not simply
be emerging areas in which there will be intense activity over the next few years. This
section considers both emergent and overlooked areas together; these areas denote ei-
ther SE subareas or optimization potentialities that remain to be more fully explored.

11.1. Information Theoretic Fitness
Lutz [Lutz 2001], considered the problem of hierarchical decomposition of software.
The fitness function used by Lutz is based upon an information-theoretic formulation
inspired by Shannon [Shannon 1948]. The function awards high fitness scores to hier-
archies that can be expressed most simply (in information theoretic terms), with the
aim of rewarding the more ‘understandable’ designs. The paper by Lutz is one of the
few to use information theoretic measurement as a fitness mechanism. This novel and
innovative approach to fitness may have wider SBSE applications.

More recently, Feldt et al. [2008] also used an information theoretic model, draw-
ing on the observation that the information content of an object can be assessed by
the degree to which it can be compressed (this is the so-called Kolmogorov complex-
ity). This recent work may be an indication that information theoretic fitness is not
likely to remain an ‘overlooked area’ for much longer. The authors believe that there
is tremendous potential in the use of information theory as a source of valuable fit-
ness for SE; after all, SE is an information-rich discipline, so an information theoretic
fitness function would seem to be a natural choice.

11.2. Optimization of Source Code Analysis
Only a few papers appear to concern source code based SBSE. This is likely to be a
growth area, since many source code analysis and manipulation problems are either
inherently undecidable or present scalability issues. The source code analysis commu-
nity has long been concerned with a very rigid model of analysis, in which conservative
approximation is the favored approach to coping with the underlying undecidability of
the analysis problem.

However, more recently, Ernst’s seminal work on the detection of likely invariants
[Ernst 2000], which spawned the widely-used and influential Daikon tool [Ernst et al.
2001] demonstrated that unsound analyses can yield extremely valuable results. The
full potential of this observation has yet to be realized. Through the application of
SBSE, it will be possible to search for interesting features and to provide probabal-
istic source code analyses that, like the Daikon work, may not be sound, but would
nonetheless turn out to be useful.

A summary of the papers addressing problems related to Coding Tools and Tech-
niques (ACM: D.2.3) is given in Table 7. All of these papers could be regarded as rep-
resenting an emerging area of optimization for source code analysis using SBSE. Hart
and Shepperd [2002] addressed the automatic evolution of controller programs by ap-
plying GAs to improve the quality of the output vector, while Di Penta et al. [Di Penta
et al. 2008; Di Penta and Taneja 2005] proposed a GA based approach for grammar
inference from program examples toward suitable grammars. The grammar captures
the subset of the programming language used by the programmer and can be used to
understand and reason about programming language idioms and styles.

Jiang et al. [2007, 2008] used search based algorithms to decompose the program
into slices and to search for useful dependence structures. The search problem involves
the space of subsets of program slices, seeking those that denote decomposable but
disparate elements of code using metaheuristic search and also greedy algorithms. The
results showed that, as procedures become larger, there was a statistically significant
trend for them to become also increasingly splittable.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

More recently, Zeller [Zeller 2011] argued for an iterative cycle of program analysis
and search based test data generation.

11.3. SBSE for Software Agents and Distributed Artificial Intelligence
Software agents and the general areas known by the term ‘Distributed Artificial Intel-
ligence’ in the ACM classification system, would seem to provide a rich source of prob-
lems for SBSE, particularly those approaches that use population based optimization.
A summary of the papers addressing Distributed Artificial Intelligence (ACM: I.2.11)
is given in Table 12. As can be seen, there is comparatively little work in this area,
despite there being some early work by Sinclair and Shami [Sinclair and Shami 1997],
who investigated the relative efficiency of GAs and GP to evolve a grid-based food
gathering agent. More recently, Haas et al. [2005] used a GA for parameter tuning of
multi-agent systems, while Hodjat et al. [2004] applied GAs to improve agent-oriented
natural language interpreters.

This apparent lack of other previous work is something of a surprise since the na-
ture of multi agent systems seems very closely aligned and amenable to SBSE. That
is, an agent based system consists of a population of individuals that interact and
share information, seeking to solve a common goal. A population based optimization
algorithm also consists of a set of individuals that exchange information through cross
over. Furthermore, co-evolutionary optimization seems particularly well suited to the
agent oriented paradigm; each agent could co-evolve its beliefs, desires and intention-
s in co-evolutionary co-operation with the others. Alternatively, using competitive co-
evolution, it may be possible to identify good agent designs by creating an environment
in which they are subjected to evolutionary pressure, using GP to evolve their internal
structure.

The authors believe that the potential for SBSE applications in the area of software
agents is enormous. Recent work3 [Nguyen et al. 2009] demonstrated how an agent
can be tested using SBSE techniques. We hope to further develop this model of evolu-
tionary agents.

11.4. Security and Protection
There have been very few papers on the application of SBSE to problems of security. A
summary of the papers addressing Security and Protection areas (ACM: K.6.5) is given
in Table 13. This is sure to change, given the importance of this area of application.
The challenge is often to find a way to encode a security problem as a fitness function.

Often security aspects have a decidedly boolean character to them; either a security
problem is present or it is absent. In order to fully apply SBSE techniques to find
security problems, it will be necessary to find a way to formulate fitness functions that
offer a guiding gradient toward an optimum.

Some authors have managed to do this. Dozier et al. [2004] described how the de-
sign of AIS-based Intrusion Detection Systems (IDSs) can be improved through the
use of evolutionary hackers in the form of GENERTIA red teams (GRTs) to discover
holes found in the immune system. Dozier et al. [2007] compared a hacker with 12
evolutionary hackers based on PSO that have been used as vulnerability analyzers for
AIS-based IDSs. Del Grosso et al. [Del Grosso et al. 2005, 2008] showed how SBSE
can be used to detect buffer overflow vulnerabilities, thereby helping to guard against
‘stack smash’ attacks.

3The work is not included in the tables and analysis in this survey since it is published after the census
date.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

11.5. Protocols
Protocol correctness, efficiency, security and cost are all aspects of protocol definitions
that can and have been explored using SBSE. Alba and Troya [1996] presented a first
attempt in applying a GA for checking the correctness of communication protocols (ex-
pressed as a pair of communicating FSMs). Clark and Jacob [2000] used GAs in the
design and development of Burrows, Abadi and Needham (BAN) protocols optimizing
for the trade-off between protocol security, efficiency and cost. This was subsequent-
ly extended by Clark and Jacob [2001], who applied GAs and SA approaches to the
problem addressed in Clark and Jacob [2000]. El-Fakih et al. [1999] used the 0-1 ILP
and GAs to solve the message exchange optimization problem for distributed applica-
tions in order to reduce the communication cost. Ferreira et al. [2008] proposed PSO
to detect network protocol errors in concurrent systems. A summary of the papers ad-
dressing problems in the area of Network Protocols (ACM: C.2.2) using search based
approach is given in Table 4.

11.6. Interactive Optimization
All of the fitness functions so far considered in the literature on SBSE have been ful-
ly automated. This seems to be a pre-requisite; fast fitness computation is needed for
repeated evaluation during the progress of the search. However, outside the SBSE
domain of application, there has been extensive work on fitness functions that incor-
porate human judgement [Funes et al. 2004]. This form of search is known as interac-
tive optimization and it is clearly relevant in many aspects of SE, such as capturing
inherently intuitive value judgements about design preferences [Simons and Parmee
2008b].

In SE, interactive optimization could be used in a number of ways. Many problems
may naturally benefit from human evaluation of fitness. For example, in design prob-
lems, the constraints that govern the design process may be ill-defined or subjective. It
may also be possible to use a search based approach to explore the implicit assumptions
in human assessment of solutions. For example, by identifying the building blocks that
make up a good solution according to a human fitness evaluation, it may be possible to
capture otherwise implicit design constraints and desirable features.

The key problem with any interactive approach to optimization lies in the require-
ment to repeatedly revert to the human for an assessment of fitness, thereby giving rise
to possible fatigue and learning-effect bias. If this fatigue problem can be overcome in
the SE domain (as it has in other application domains) then interactive optimization
offers great potential benefits to SBSE.

Harman [2007a] provided an overview of SBSE for problems in program comprehen-
sion, which includes ways in which interactive evolution might be applied in problems
relating to code understanding.

11.7. On Line Optimization
All applications of SBSE of which the authors are aware, concern what might be
termed ‘static’ or ‘offline’ optimization problems. That is, problems where the algo-
rithm is executed off line in order to find a solution to the problem in hand. This is to
be contrasted with ‘dynamic’ or ‘on line’ SBSE, in which the solutions are repeatedly
generated in real time and applied during the lifetime of the execution of the system
to which the solution applies.

The static nature of the search problems studied in the existing literature on SBSE
has tended to delimit the choice of algorithms and the methodology within which the
use of search is applied. PSO [Zhang et al. 2005] and ACO [Dorigo and Blum 2005]
techniques have not been widely used in the SBSE literature. These techniques work

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

well in situations where the problem is rapidly changing and the current best solution
must be continually adapted.

It seems likely that the ever changing and dynamic nature of many SE problems
would suggest possible application areas for ACO and PSO techniques. It is surpris-
ing that highly adaptive search techniques like ACO have yet to be applied widely
in SBSE. Perhaps distributed, service oriented and agent oriented SE paradigms will
provide additional candidate application areas for ACO and PSO.

11.8. SBSE for Non Functional Properties
There has been much work on stress testing [Alander et al. 1997; Briand et al. 2005,
2006; Garousi 2006, 2008; Garousi et al. 2008; Mantere 2003] and temporal testing
[Alander et al. 1997, 1998, 1997, 1996; Dillon 2005; Groß 2000, 2001; Groß et al. 2000;
Groß and Mayer 2002, 2003; Pohlheim and Wegener 1999; Tlili et al. 2006; Wegener
and Grochtmann 1998; Wegener et al. 1997; Wegener and Mueller 2001; Wegener et al.
1997], but far less on other non functional properties such as heat dissipation and
power consumption [Joshi et al. 2008; White et al. 2008] and thermal properties such
as temperature and heat dissipation [Joshi et al. 2008]. The problem of QoS introduced
by Canfora et al. [2005a], also denotes an area of non-functional optimization in SE
which has recently witnessed an upsurge in activity and interest [Jaeger and Mühl
2007; Ma and Zhang 2008; Su et al. 2007; Zhang et al. 2006, 2007].

It seems likely that the drive to ever smaller devices and to massively networked
devices will make these issues far more pressing in future, thereby engendering more
research in this area. These are important emergent SE paradigms, though perhaps
not widely regarded as current mainstream SE. Afzal et al. [Afzal et al. 2009] provided
a detailed in-depth survey of approaches to testing non-functional requirements, to
which the reader is referred for a more detailed treatment of this area.

11.9. Multiobjective Optimization
SE problems are typically multiobjective problems. The objectives that have to be met
are often competing and contradictory. For example, in project planning, seeking ear-
liest completion time at the cheapest overall cost will lead to a conflict of objectives.
However, there is no necessary simple trade-off between the two, making it desirable
to find ‘sweet spots’ that optimize both.

Suppose a problem is to be solved that has n fitness function, f1, . . . , fn that take
some vector of parameters x. One simple-minded way to optimize these multiple ob-
jectives is to combine them into a single aggregated fitness, F , according to a set of
coefficients, ci, . . . , cn: F =

∑n
i=1 cifi(x). This approach works when the values of the

coefficients determine precisely how much each element of fitness matters. For exam-
ple, if two fitness functions, f1 and f2 are combined using F = 2 · f1(x) + f2(x) then
the coefficients c1 = 2, c2 = 1 explicitly capture the belief that the property denoted
by fitness function f1 is twice as important as that denoted by fitness function f2. The
consequence is that the search may be justified in rejecting a solution that produces a
marked improvement in f2, if it also produces a smaller reduction in the value of f1.

Most work on SBSE uses software metrics in one form or another as fitness func-
tions [Harman and Clark 2004]. However, the metrics used are often those that are
measured on an ordinal scale [Shepperd 1995]. As such, it is not sensible to combine
these metrics into an aggregate fitness in the manner described above. The use of
Pareto optimality is an alternative to aggregated fitness. It is superior in many ways.
Under Pareto optimality, one solution is better than (i.e. dominates) another if it is bet-
ter according to at least one of the individual fitness functions and no worse according
to all of the others.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Fig. 6. Pareto Optimality and Pareto Fronts

When searching for solutions to a problem using Pareto optimality, the search yields
a set of solutions that are non-dominated. That is, each member of the non-dominated
set is no worse than any of the others in the set, but also cannot be said to be better. Any
set of non-dominated solutions forms a Pareto front. Consider Figure 6, which depicts
the computation of Pareto optimality for two imaginary fitness functions (objective 1
and objective 2). In the figure, points S1, S2 and S3 lie on the Pareto front, while S4
and S5 are dominated. Interested readers may refer to Collette and Siarry [2004] for
further details about multiobjective optimization and Pareto optimality.

Recently, research on SBSE has started to move from single objective formulations to
multi-objective formulations, with an increasing focus on Pareto optimal optimization
techniques. For example, Harman [Yoo and Harman 2011] recently set out a research
agenda for Multi-objective Regression Test Optimization. Recent work has produced
multiobjective formulations of problems in many application areas within SE includ-
ing requirements [Finkelstein et al. 2008; Zhang et al. 2007], testing [Del Grosso et al.
2005; Everson and Fieldsend 2006; Harman et al. 2007], quality assurance [Khosh-
goftaar et al. 2004b], refactoring [Harman and Tratt 2007] and project management
[Alba and Chicano 2007d].

11.10. Co-Evolution
In co-evolutionary computation, two or more populations of solutions evolve simultane-
ously with the fitness of each depending upon the current population of the other. The
idea, as so far applied in SBSE work, is to capture a predator-prey model of evolution,
in which both evolving populations are stimulated to evolve to better solutions.

Mantere [2003] also proposed a co-evolutionary approach to automatically generate
test images for the image processing software. Adamopoulos et al. [2004] suggested
the application of co-evolution in mutation testing, arguing that this could be used
to evolve sets of mutants and sets of test cases, where the test cases act as predators
and the mutants as their prey. Arcuri et al. [Arcuri 2008; Arcuri and Yao 2007] used co-
evolution to evolve programs and their test data from specifications using co-evolution.

Arcuri and Yao [Arcuri 2008; Arcuri and Yao 2008] also developed a co-evolutionary
model of bug fixing, in which one population essentially seeks out patches that are able
to pass test cases, while test cases can be produced from an oracle in an attempt to find
the shortcomings of a current population of proposed patches. In this way the patch is

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

the prey, while the test cases, once again, act as predators. The approach assumes the
existence of a specification to act the oracle.

Co-evolution can also be conducted in a co-operative manner, an approach not ex-
plored in SBSE until very recently [Ren et al. 2011]. It is likely to be productive in
finding ways in which aspects of a system can be co-evolved to work better togeth-
er and, like the previously studied competitive co-evolutionary paradigm, offers great
potential for further application in SBSE.

Many aspects of SE problems lend themselves to a co-evolutionary model of op-
timization because software systems are complex and rich in potential population-
s that could be productively co-evolved (using both competitive and co-operative co-
evolution). As with traditional SBSE, it is in the area of testing where the analogy
is perhaps clearest and most easily applied, which may be why this area has already
been considered in the literature.

Though all of these may not occur in the same systems, they are all the subject
of change, and should a suitable fitness function be found, can therefore be evolved.
Where two such populations are evolved in isolation, but participate in the same over-
all software system, it would seem a logical ‘next step’, to seek to evolve these popula-
tions together; the fitness of one is likely to have an impact on the fitness of another, so
evolution in isolation may not be capable of locating the best solutions. Like the move
from single to multiple objectives, the migration from evolution to co-evolution offers
the chance to bring together theory and real world reality.

12. FUTURE BENEFITS TO BE EXPECTED FROM OPTIMIZATION IN SE
This section briefly reviews some of the benefits that can be expected to accrue from
further development of the field of search based SE. These benefits are pervading,
though often implicit, themes in SBSE research. To borrow the nomenclature of as-
pect oriented software development, these are the ‘cross cutting concerns’ of the SBSE
world; advantages that can be derived from almost all applications at various points
in their use.

12.1. Generality and Applicability
One of the striking features of the SBSE research programme that emerges from this
survey is the wide variety of different SE problems to which SBSE has been applied.
Clearly, testing remains a predominant application, with 54% of all SBSE papers tar-
geting various aspects of testing. However, as the survey reveals, there are few areas
of SE activity to which SBO remains unapplied.

This generality and applicability arises from the very nature of SE. The two primary
tasks that have to be undertaken before a search based approach can be applied to a SE
problem are the definition of a representation of the problem and the fitness function
that captures the objective or objectives to be optimized. Once these two tasks are
accomplished, it is possible to begin to get results from the application of many SBO
techniques.

In other engineering disciplines, it may not be easy to represent a problem; the phys-
ical properties of the engineering artifact may mean that simulation is the only eco-
nomical option. This puts the optimization algorithm at one stage removed from the
engineering problem at hand. Furthermore, for other engineering disciplines, it may
not be obvious how to measure the properties of the engineering artifact to be opti-
mized. Even where the measurements required may be obvious, it may not be easy to
collect the readings; once again the physical properties of the engineering materials
may be a barrier to the application of optimization techniques.

However, software has no physical manifestation. Therefore, there are fewer prob-
lems with the representation of a software artifact, since almost all software artifacts

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

are, by their very nature, based on intangible ‘materials’ such as information, process-
es and logic. This intangibility has made many problems for SE. However, by contrast,
within the realm of SBSE, it is a significant advantage. There are few SE problems for
which there will be no representation, and the readily available representations are
often ready to use ‘out of the box’ for SBSE.

Furthermore, measurement is highly prevalent in Software Engineering, with a w-
hole field of research in software metrics that has spawned many conferences and jour-
nals. Therefore, it is also unlikely that the would-be search based software engineer
will find him or herself bereft of any putative fitness function.

For these reasons, it is probable that there will be a rapid growth in the breadth of
SBSE research. The growth trend revealed by Figure 1(a) is very likely to continue
and authors will continue to find ways to bring new SE subareas within the remit of
SBSE.

12.2. Scalability
One of the biggest problems facing software engineers is that of scalability of results.
Many approaches that are elegant in the laboratory, turn out to be inapplicable in the
field, because they lack scalability. Fortunately, one of the attractions of the search
based model of optimization is that it is naturally parallelizable. HC can be performed
in parallel, with each climb starting at a different point [Mahdavi et al. 2003b]. GAs,
being population based, are also naturally parallel; the fitness of each individual can
be computed in parallel, with minimal overheads [Asadi et al. 2010; Mitchell et al.
2001]. Search algorithms in general and SBSE in particular, therefore offer a ‘killer
application’ for the emergent paradigm of ubiquitous user-level parallel computing.

This trend toward greater parallelism, the need for scalable SE and the natural
parallelism of many SBSE techniques all point to a likely significant development of
parallel SBSE to address the issue of SE scalability. Recent work by Yoo et al. [2011b]
has also suggested possibilities in the use of General Purpose Graphics Processing
Units (GPGPU) for cheap and effective scalability of SBSE problems.

12.3. Robustness
In some SE applications, solution robustness may be as important as solution func-
tionality. For example, it may be better to locate an area of the search space that is
rich in fit solutions, rather than identifying an even fitter solution that is surrounded
by a set of far less fit solutions.

In this way, the search seeks stable and fruitful areas of the landscape, such that
near neighbors of the proposed solution are also highly fit according to the fitness
function. This would have advantages where the solution needs to be not merely ‘good
enough’ but also ‘strong enough’ to withstand small changes in problem character [Bey-
er and Sendhoff 2007].

Hitherto, research on SBSE has tended to focus on the production of the fittest pos-
sible results. However, many application areas require solutions in a search space that
may be subject to change. This makes robustness a natural property to which the re-
search community could and should turn its attention.

12.4. Feedback and Insight
False intuition is often the cause of major error in software engineering, leading to
misunderstood specifications, poor communication of requirements and implicit as-
sumptions in designs. SBSE can address this problem. Unlike human-based search,
automated search techniques carry with them no bias. They automatically scour the
search space for the solutions that best fit the (stated) human assumptions in the fit-
ness function.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

This is one of the central strengths of the search based approach. It has been widely
observed that search techniques are good at producing unexpected answers. For exam-
ple, EAs have led to patented designs for digital filters [Schnier et al. 2004] and the
discovery of patented antenna designs [Linden 2002]. Automated search techniques
will effectively work in tandem with the human, in an iterative process of refinement,
leading to better fitness functions and thereby, better encapsulation of human assump-
tions and intuition.

13. SUMMARY
This paper has provided a detailed survey and review of the area of SE activity that has
come to be known as SBSE. As the survey shows, the past five years have witnessed
a particularly dramatic increase in SBSE activity, with many new applications being
addressed.

The paper has identified trends in SBSE research, providing data to highlight the
growth in papers and the predominance of software testing research. It also indicates
that other areas of activities are starting to receive significant attention: requirements,
project management, design, maintenance and reverse engineering, predominating.
The paper also provides a detailed categorization of papers, tabulating the techniques
used, the problems studied and the results presented in the literature to date. This de-
tailed analysis has allowed us to identify some missing areas of activity, some potential
techniques that have yet to be applied and emerging areas.

The future of SBSE is a bright one. There are many areas to which the techniques
associated with SBSE surely apply, but have yet to be fully considered. In existing ar-
eas of application the results are already very encouraging. Developments emanating
from the optimization community will present exciting possibilities, while new chal-
lenges from the application domains will present interesting new challenges. If we are
to regard software engineering to be truly an engineering discipline, then surely we
should accept SBSE as a natural consequence; Is not optimization the cornerstone of
all engineering?

14. ACKNOWLEDGEMENT
The authors are deeply indebted to numerous colleagues from the growing interna-
tional SBSE community who have reviewed and commented upon earlier drafts of this
paper and provided additional details regarding their work and that of others, as well
as highlighting corrections and omissions. The authors would also like to thank the
anonymous referees for their detailed, thoughtful and constructive comments on the
first draft of this paper. The authors are also very grateful for the support of the col-
laborators of the EPSRC–funded project SEBASE and the EU–funded project EvoTest.
Funding from these two large projects (EP/D050863 and IST-33472 respectively) pro-
vided part financial support for the work undertaken in the production of this paper.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

A. APPENDIX

Table 4: Papers addressing activities related to Network Protocols
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Alba and
Troya
[1996]

[1996]
Checking the cor-
rectness of commu-
nication protocols

Detect deadlock and
useless states or tran-
sitions

String GA Synthetic
& Real

Conference:
PPSN ’96

El-Fakih
et al.
[1999]

[1999]
Deriving protocol-
s for distributed
applications

Minimize communi-
cation cost (minimize
number of messages to
be exchanged)

Vector 0-1 ILP,
GA Synthetic Conference:

PDCS ’99

Clark
and Jacob
[2000]

[2000] Protocol synthesis Optimize correctness,
cost and efficiency String GA Synthetic Symposium:

S&P ’00

Clark
and Jacob
[2001]

[2001] Synthesis of secure
protocols

Optimize trade-off be-
tween security, efficien-
cy and cost

Integer ar-
ray (SA), bit
string (GA)

SA, GA Synthetic

Journal:
Informa-
tion and
Software
Technology

Ferreira
et al.
[2008]

[2008] Detecting protocol
errors

Detect deadlock viola-
tions Graph PSO Synthetic Conference:

HPCS ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

Table 5: Papers addressing activities related to Requirements/Specifications
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Bagnall
et al.
[2001]

[2001]
Requirements selec-
tion and optimiza-
tion

Maximize customers’
satisfaction Bit string GS, HC, SA Synthetic

Journal:
Informa-
tion and
Software
Technology

Feather
and Men-
zies [2002]

[2002]
Requirements selec-
tion and optimiza-
tion

Maximize benefit, min-
imize cost unknown SA Real Conference:

RE ’02

Feather
et al.
[2004]

[2004] System design opti-
mization

Maximize benefit, min-
imize cost Bit string SA Real

Symposium:
INCOSE
’04

Greer
and Ruhe
[2004]

[2004]
Requirements selec-
tion and optimiza-
tion

Minimize total penal-
ty and maximize total
benefit (weighted sum
of the two)

Bit string GA Real

Journal:
Informa-
tion and
Software
Technology

Baker
et al.
[2006]

[2006]
Requirements selec-
tion and optimiza-
tion

Maximize value Bit string SA, GS Real Conference:
ICSM ’06

Feather
et al.
[2006]

[2006]
Visualization tech-
niques to present
Requirements status

- - SA Real Workshop:
REV ’06

Harman
et al.
[2006]

[2006] Feature subset selec-
tion Maximize total value Bit string GS Real Conference:

GECCO ’06

Zhang
et al.
[2007]

[2007]
Requirement sat-
isfaction for the
NRP

Maximize value, mini-
mize cost Bit string GA Synthetic Conference:

GECCO ’07

Finkelstein
et al.
[2008]

[2008]
Fairness analysis
in requirements
assignments

Maximize each stake-
holder’s possible satis-
faction

Bit string MOOA
(NSGA-II)

Synthetic
& Real

Conference:
RE ’08

Jalali
et al.
[2008]

[2008] Requirements deci-
sions optimization

Maximize the number
of attainable require-
ments, minimize cost

Bit string GS Real
Workshop:
PROMISE
’08

Cortellessa
et al.
[2008]

[2008] Automated selection
of COTS components

Minimize the cost
while assuring the
satisfaction of the
requirements

Vector IP (LINGO
based) Synthetic Journal:

J.UCS

Zhang
et al.
[2008]

[2008]

Overview of ex-
isting work and
challenges on search
based requirements
optimization

- Bit string MOOA
(NSGA-II)

Synthetic
& Real

Conference:
REFSQ ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Table 6: Papers addressing activities related to Design Tools and Techniques
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Feldt
[1998a] [1998] Software fault toler-

ance
Develop multiple soft-
ware variants Tree GP Real Technical

Report

Feldt
[1998b] [1998] Software fault toler-

ance
Develop multiple di-
verse software versions Tree GP Real

Conference:
EUROMI-
CRO ’98

Feldt
[1998c]
N

[1998] Software fault toler-
ance

Maximize the software
program diversity Tree GP Real

Journal:
IEE Soft-
ware

Monnier
et al. [1998] [1998]

Development of
scheduling mod-
ule for a real-time
system

Finding a feasible so-
lution within the time
constraints

String GA Benchmark
problems

Conference:
EUROMI-
CRO ’98

Feldt [1999] [1999]

Knowledge ac-
quirement in early
software develop-
ment phases

Prioritize require-
ments and explore
design trade-off

Tree GP Real Workshop:
SCASE ’99

Lutz [2001] [2001]
Hierarchical archi-
tecture decomposi-
tion

Minimize complexity Tree GA Synthetic

Journal of
Systems
Architec-
ture

Feldt [2002] [2002]
Interactive software
development work-
bench

New feature and
knowledge acquire-
ment

Tree

EA
(Biomimet-
ic Algo-
rithms)

Real Technical
Report

Antoniol
and Di Pen-
ta [2003]

[2003] Library miniatur-
ization

Minimize inter-library
dependencies; min-
imize the number
of objects linked by
applications

Bit-matrix GAs
Real
(Open
Source)

Conference:
ICSM ’03

O’Keeffe
and Ó Cin-
néide [2003]
N

[2003] Automated OO de-
sign improvement

Minimize rejected,
duplicated and unused
methods and feature-
less classes, maximize
abstract classes

unknown SA unknown Conference:
PPPJ ’03

Stephenson
et al. [2003] [2003]

Automatic program-
ming, compiler opti-
mization

Minimize code execu-
tion time (the fastest
code is the fittest)

Tree GP Real Conference:
PLDI ’03

Canfora
et al. [2004] [2004] QoS-aware service

composition

Maximize QoS at-
tributes (availability,
reliability); minimize
cost and response time

Integer array GA Synthetic Conference:
ICSOC ’04

Khoshgoftaar
et al.
[2004b]

[2004]

Design and im-
plementation
(improvement of
software reliability
/ quality assurance)

Maximize MOM perfor-
mance at four cutof-
f percentiles; Minimize
tree size (bloat control
fitness function)

Tree GP, MOOA Real
Symposium:
METRICS
’04

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

TABLE 6. Papers on Design Tools and Techniques – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Khoshgoftaar
et al.
[2004a]

[2004]

Design and im-
plementation
(improvement of
software reliability
/ quality assurance)

Maximize MOM perfor-
mance at four cutof-
f percentiles; Minimize
tree size (bloat control
fitness function)

Tree GP, MOOA Real Journal:
IEEE TEC

O’Keeffe
and Ó Cin-
néide [2004]

[2004] Automated OO de-
sign improvement

Minimize rejected,
duplicated and unused
methods and feature-
less classes, maximize
abstract classes

unknown SA Synthetic
Conference:
WoDiSEE
’04

Canfora
et al.
[2005a]

[2005] QoS of composite
services

Maximize QoS at-
tributes (availability,
reliability); minimize
cost and response time

Integer array GA, IP Synthetic
Conference:
GECCO
’05

Canfora
et al.
[2005b]

[2005]
QoS-aware replan-
ning of composite
services

Maximize QoS at-
tributes (availability,
reliability); minimize
cost and response time

Integer array GA Real Conference:
ICWS ’05

Cao et al.
[2005] [2005] Web service selec-

tion

Minimize the overal-
l cost of each execution
path

Integer vec-
tor GA Synthetic Conference:

CIS ’05

Cao et al.
[2005] [2005] Web service selec-

tion
Minimize the overal-
l cost

Integer vec-
tor GA Synthetic Workshop:

WINE ’05
Lucas and
Reynolds
[2005]

[2005] Learning determin-
istic finite automata

Maximize correctness
of classification

Binary
String HC Synthetic

& Real

Journal:
IEEE
TPAMI

Amoui et al.
[2006] [2006] OO software archi-

tecture design

Optimize metrics and
find the best sequence
of transformations

unknown GA unknown Journal:
ITIC

Aversano
et al. [2006] [2006] Design of service

composition

Maximize recall for
outputs; maximize
precision

Tree GP Real Journal:
CSSE

Sheu and
Chuang
[2006]

[2006]

Development of
scheduling mod-
ule for a real-time
system

Find a feasible solution
within the time con-
straints

String GA
Synthetic
(via sim-
ulation)

Journal:
IEEE
Transac-
tions on
Computers

Simons and
Parmee
[2006]

[2006] Design comprehen-
sion

Maximize cohesion,
minimize coupling Object-based GA, EP,

NSGA-II Real
Computation:
GECCO
’06

Yang et al.
[2006] [2006] Software integra-

tion Minimize software risk Binary string GA Real

Journal:
Informa-
tion and
Software
Technolo-
gy

Zhang et al.
[2006] [2006] Web services selec-

tion Improve QoS Matrix GA Synthetic
Workshop:
DEECS
’06

Jaeger and
Mühl [2007] [2007] Web services selec-

tion Improve the QoS Vector GA Synthetic
Workshop:
SOASOC
’07

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

TABLE 6. Papers on Design Tools and Techniques – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Poulding
et al. [2007] [2007] Symposium:

HASE ’07

Simons and
Parmee
[2007]

[2007] OO conceptual soft-
ware design

Maximize Cohesive-
ness of Methods (COM)
metric and number of
class

Binary string GA MOOA
(NSGA-II) Real

Journal:
Engi-
neering
Optimiza-
tion

Su et al.
[2007] [2007] Web services selec-

tion Improve QoS Matrix GA Synthetic Conference:
DAIS ’07

Zhang et al.
[2007] [2007] Web services selec-

tion Improve QoS Matrix GA Synthetic

Journal:
Computer
Communi-
cations

Arcuri et al.
[2008] [2008]

Non functional
property optimiza-
tion

Minimize non function-
al property and error Tree GP, MOOA

(SPEA2) Synthetic Conference:
SEAL ’08

Barlas and
El-Fakih
[2008]

[2008] Distributed system
design

Optimize the delivery
to multiple clients by
multiple servers

String GA
Synthetic
(Simula-
tion)

Journal:
MTA

Bhatia et al.
[2008] [2008] Reusable software

component retrieval
Generate rules for clas-
sifying components Graph ACO - Conference:

ISEC ’08

Bowman
et al. [2008] [2008]

Class responsibility
assignment (OO de-
sign)

Maximize cohesion,
minimize coupling

Integer
string

MOGA,
RS, GA,
HC

Synthetic Technical
Report

Chardigny
et al. [2008] [2008] Architecture extrac-

tion for OO systems

Improve the quali-
ty and the semantic
correctness of the
architecture

unknown unknown - Conference:
ECSA ’08

Chardigny
et al. [2008] [2008] Architecture extrac-

tion for OO systems

Improve the quali-
ty and the semantic
correctness of the
architecture

unknown SA Real Conference:
CSMR ’08

Desnos
et al. [2008] [2008] Automatic compo-

nent substitution
Optimize software
reuse and evolution Tree BA, BBA Synthetic Journal:

JSME

Goldsby
and Cheng
[2008b]

[2008] Software behavioral
model generation

Identify multiple be-
havioral models and
satisfy functional
properties

-
Digital
evolution
(Avida-
based)

Real
Conference:
GECCO
’08

Goldsby
and Cheng
[2008a]

[2008] Software behavioral
model generation

Identify multiple be-
havioral models and
satisfy functional
properties

-
Digital
evolution
(Avida-
based)

Synthetic
Conference:
MoDELS
’08

Goldsby
et al. [2008] [2008]

Software behavioral
model generation
and satisfy func-
tional properties

Identify multiple be-
havioral models and
satisfy functional
properties

-
Digital
evolution
(Avida-
based)

Real Conference:
ICAC ’08

Ma and
Zhang
[2008]

[2008] Web service selec-
tion Improve QoS Matrix GA Synthetic

Journal:
Computer
Networks

Räihä
[2008a] [2008] Automated archi-

tecture design

Improve efficiency,
modifiability and com-
plexity

A collection
of supergenes GA Synthetic Master

Thesis

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

TABLE 6. Papers on Design Tools and Techniques – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Räihä
[2008b] [2008] Automated archi-

tecture design

Improve efficiency,
modifiability and com-
plexity

A collection
of supergenes GA Synthetic Lic. Thesis

Räihä et al.
[2008] [2008] Automated archi-

tecture design

Improve efficiency,
modifiability and com-
plexity

A collection
of supergenes GA Synthetic Conference:

SEAL ’08

Räihä et al.
[2008] [2008]

Automating CIM-
to-PIM model
transformations

Improve efficiency,
modifiability and com-
plexity

A collection
of supergenes unknown unknown Journal:

NJC

Sharma
and Jalote
[2008]

[2008] Deploying software
components Maximize performance unknown Heuristics Synthetic Symposium:

CBSE ’08

Simons and
Parmee
[2008a]

[2008] Software design
supporting

Minimize design cou-
pling, Maximize cohe-
sion of classes

String MOOA
(NSGA-II) Synthetic

Conference:
GECCO
’08

Simons and
Parmee
[2008b]

[2008] Conceptual soft-
ware design

Maximize cohesion of
classes; minimize cou-
pling between classes

Object-based MOOA
(NSGA-II) Real Congress:

CEC ’08

Vijayalakshmi
et al. [2008] [2008]

Component selec-
tion in software
development

unknown unknown GA unknown Journal:
IJISCM

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

Table 7: Papers addressing activities related to Coding Tools and Techniques
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Hart and
Shepperd
[2002]

[2002]
Automatic evolu-
tion of controller
programs

Maximize the quality of
the output vector gen-
erated

String GA Real Conference:
GECCO ’02

Jiang
et al.
[2007]

[2007] Dependence analy-
sis

Maximize code cover-
age and minimize the
degree of overlap be-
tween the slices

String HC, GA,
GS Real

Journal:
Informa-
tion and
Software
Technology

Di Pen-
ta et al.
[2008]

[2008] Grammar inference

Automatic evolu-
tion from grammar
fragments to target
grammar

String GA Real
Journal:
Soft Com-
puting

Hoste and
Eeckhout
[2008]

[2008] Compiler optimiza-
tion

Find a Pareto optimal
trade-off among metric-
s (total execution time,
compilation time, code
size, energy comsump-
tion)

unknown
MOGA
(improved
SPEA)

BenchmarksSymposium:
CGO ’08

Jiang
et al.
[2008]

[2008]
Automatic sup-
port for procedure
splitability analysis

Minimize the overlap of
slices representing pro-
cedure components

Binary Ma-
trix GS

Real
(open
source)

Conference:
WCRE ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

Table 8: Papers addressing Software/Program Verification
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Minohara
and
Tohma
[1995]

[1995]
Model checking
software reliability
growth models

Minimize the errors Bit string GA Real Symposium:
ISSRE ’95

Godefroid
[1997] [1997]

Model checking for s-
tate space of concur-
rent systems

Detect deadlocks and
assertion violations unknown

State-less
search
algorithm
(VeriSoft-
based)

Real Symposium:
POPL ’97

Alba and
Chicano
[2007b]

[2007] Model checking for
safety properties

Find optimal errors
trails in faulty concur-
rent system

Graph ACO Real
Conference:
EURO-
CAST ’07

Alba and
Chicano
[2007c]

[2007] Model checking for
safety errors

Detect errors within
low amount of memory
and CPU time

Graph ACO Real Conference:
GECCO ’07

Alba and
Chicano
[2007a]

[2007]
Model checking
(Refutation of safety
properties)

Find deadlock states Graph ACO Real Conference:
GECCO ’07

Johnson
[2007] [2007] Model checking

Maximize the number
of program statements
that are satisfied

List ES Synthetic Conference:
EuroGP ’07

Kiper
et al.
[2007]

[2007] V&V process for crit-
ical systems

Maximize the chances
of mission success unknown SA, GA - Conference:

GECCO ’07

Afzal and
Torkar
[2008b]

[2008] Software reliability
growth modeling

Measure the suitability
of GP evolved SRGM Tree GP - Symposium:

CSA ’08

Afzal and
Torkar
[2008a]

[2008] Software reliability
growth modeling

Measure the adaptabil-
ity and predictive ac-
curacy of GP evolved
model

Tree GP Real Conference:
ICSEA ’08

Afzal et al.
[2008b] [2008] Software reliability

growth modeling

Measure the adaptabil-
ity and predictive ac-
curacy of GP evolved
model

Tree GP Real Conference:
INMIC ’08

Alba et al.
[2008] [2008]

Model checking for
finding deadlock in
concurrent program

Detecting the shortest
paths that lead to dead-
locks

Graph GA Real Conference:
GECCO ’08

Chicano
and Alba
[2008b]

[2008] Model checking for
liveness property

Discover liveness er-
rors; Minimize the re-
quired resources

Graph ACO Real Congress:
WCCI ’08

Chicano
and Alba
[2008a]

[2008] Model checking for
safety property

Discover safety proper-
ty violations Graph ACO Real

Journal: In-
formation
Processing
Letters

Chicano
and Alba
[2008c]

[2008] Model checking for
Liveness property

Improve the effica-
cy and efficiency of
searching for liveness
property violations

Graph ACO Real Conference:
GECCO ’08

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

TABLE 8. Papers on Software/Program Verification – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

He et al.
[2008] [2008] Verification and gen-

eration of programs unknown
String of
verified com-
ponents

GP Synthetic Congress:
CEC ’08

Hsu et al.
[2008] [2008] Software Reliability

Growth Modeling
Maximize LSE and M-
LE

Floating-
point GA Real Symposium:

ISSRE ’08

Katz and
Peled
[2008b]

[2008] Model checking

Automatic generation
of concurrent programs
to detect the property
violations

Tree GP Synthetic Conference:
TACAS ’08

Katz and
Peled
[2008a]

[2008] Model checking

Automatic generation
of concurrent programs
to detect the property
violations

Tree GP Synthetic Symposium:
ATVA ’08

Shyang
et al.
[2008]

[2008] Model checking Detect the locating of
deadlocks Bit string GA Real Congress:

CEC ’08

Wang
et al.
[2008]

[2008] Testing resource al-
location

Maximize software re-
liability, minimize cost unknown

MOOA
(NSGA-II,
MODE)

Synthetic Congress:
CEC ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

Table 9: Papers addressing Distribution, Maintenance and Enhancement activities
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Mancoridis
et al.
[1998]

[1998] Software structure
clustering

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (low
coupling)

Array of mod-
ule identifiers HC, GA Synthetic Workshop:

IWPC ’98

Nisbet
[1998] [1998]

Compiler optimiza-
tion via determining
program transfor-
mation sequence

Minimize execution
time String GA Synthetic Conference:

HPCN ’98

Williams
[1998] N [1998] Automatic paral-

lelization unknown unknown EAs unknown PhD Thesis

Cooper
et al.
[1999]

[1999] Compiler optimiza-
tion

Find customized com-
piler optimization se-
quences; minimize the
size of the object code

String GA

Benchmark
program-
s in
FOR-
TRAN
and C

Workshop:
LCTES ’99

Doval
et al.
[1999]

[1999] Software module
clustering

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (low
coupling)

Array of mod-
ule identifiers GA Real Conference:

STEP ’99

Mancoridis
et al.
[1999]

[1999]
Automatic clus-
tering of system
structure

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (low
coupling)

Array of mod-
ule identifiers GA Synthetic Conference:

ICSM ’99

Ryan
[2000] N [2000] Automatic reengi-

neering of software unknown unknown GP Real Book

Harman
et al.
[2002]

[2002] Software module
clustering

Optimize granularity,
cohesion and coupling
metrics

Array of mod-
ule identifiers GA Synthetic Conference:

GECCO ’02

Mitchell
[2002] [2002] Software structure

clustering

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (low
coupling)

Array of mod-
ule identifiers

HC, GA,
Exhaus-
tive search

Real PhD Thesis

Mitchell
and Man-
coridis
[2002]

[2002]
Software module
clustering via im-
proved HC

Optimize MQ metric Array of mod-
ule identifiers HC Real Conference:

GECCO ’02

Mitchell
et al.
[2002]

[2002] Reverse engineering
from source code

Extract design struc-
ture

Array of mod-
ule identifiers

HC, GA,
Exhaus-
tive search

Real
(open
source)

Conference:
SEKE ’02

Sahraoui
et al.
[2002] N

[2002] Object identification
in legacy code

Minimize coupling and
maximize cohesion

Array of sets
of data repre-
senting candi-
date objects

GA Real
Conference:
COMPSAC
’02

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

TABLE 9. Papers on Distribution, Maintenance and Enhancement activities – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Van Belle
and Ack-
ley [2002]

[2002] Code factoring

Performance on a ran-
domly changing sym-
bolic regression prob-
lem

Tree GP Synthetic Conference:
GECCO ’02

Antoniol
et al.
[2003]

[2003] Libraries refactoring

Minimize the Depen-
dency Factor (DF),
Linking Factor (LF)
and Standard Devia-
tion Factor (SF)

Bit-matrix GA Real Conference:
CSMR ’03

Fatiregun
et al.
[2003]

[2003] Program transfor-
mation

Find the optimum se-
quence of transforma-
tion rules

Sequence
of trans-
formation
identifiers

HC - Conference:
GECCO ’03

Mahdavi
et al.
[2003a]

[2003] Software module
clustering

Maximize the number
of internal edges; min-
imize the number of ex-
ternal edges

Array of mod-
ule identifiers

HC, GA,
SA Real Conference:

GECCO ’03

Mahdavi
et al.
[2003b]

[2003] Software module
clustering

Maximize the number
of internal edges; min-
imize the number of ex-
ternal edges

Array of mod-
ule identifiers HC Real Conference:

ICSM ’03

Mitchell
and Man-
coridis
[2003]

[2003] Software clustering

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (low
coupling)

Array of mod-
ule identifiers

HC, GA,
Exhaus-
tive search

Real Conference:
GECCO ’03

Reformat
et al.
[2003]

[2003] Automatic genera-
tion of clones

Measure feasibility of
using GP for clone gen-
eration

Parse tree GP
Real
(open
source)

Conference:
ICTAI ’03

Stephenson
et al.
[2003]

[2003] Conference:
EuroGP ’03

Cowan
et al.
[2004] N

[2004] Evolutionary pro-
gramming unknown unknown GP unknown Book

Fatiregun
et al.
[2004]

[2004] Program transfor-
mation Minimize program size

Sequence
of trans-
formation
identifiers

GA, HC,
RS Synthetic Workshop:

SCAM ’04

Mitchell
et al.
[2004]

[2004]
Software module
clustering using
Bunch tool

Maximize inter-
connectivity (high
cohesion); minimize
intra-connectivity (Low
coupling)

Array of mod-
ule identifiers HC, SA Synthetic Conference:

GECCO ’04

Di Penta
[2005] [2005] Software system

renovation

Trade-off among De-
pendency Factor (DF),
Partitioning Ratio
(PR), Standard Devia-
tion Factor (SDF)

Bit-matrix GA Real Conference:
CSMR ’05

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

TABLE 9. Papers on Distribution, Maintenance and Enhancement activities – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Di Pen-
ta et al.
[2005]

[2005] Software system
renovation

Trade-off among De-
pendency Factor (DF),
Partitioning Ratio
(PR), Standard Devia-
tion Factor (SDF) and
Feedback Factor (FF)

Bit-matrix GA, HC Real

Journal
of Sys-
tems and
Software

Di Pen-
ta and
Taneja
[2005]

[2005] Automatic grammar
evolution

Optimize the percent-
age of positive exam-
ples and negative ex-
amples

Array of sym-
bols GA Real Conference:

CSMR ’05

Fatiregun
et al.
[2005]

[2005] Amorphous slicing
Minimize size of the
amorphous slice com-
puted

Sequence
of trans-
formation
identifiers

GA, HC
Real (6
program-
s)

Conference:
WCRE ’05

Harman
et al.
[2005]

[2005] Software module
clustering

Optimize MQ and EVM
(comparison of two fit-
ness)

Array of mod-
ule identifiers GA Synthetic

& Real
Conference:
GECCO ’05

Mahdavi
[2005] [2005] Comprehension via

module clustering

Maximize modulariza-
tion quality (maximize
cohesion and minimize
coupling)

Array of mod-
ule identifiers GA, HC Real PhD Thesis

Seng et al.
[2005] [2005] System re-

structuring

Optimize weighted
sum of: coupling, cohe-
sion, complexity, cycles,
bottlenecks

String GA Real Conference:
GECCO ’05

Sutton
et al.
[2005]

[2005] Clone detection

Minimizing number of
individuals and Max-
imizing similarity of
clones in each individu-
al

Variable-
sized vectors EA

Real
(small
case)

Conference:
GECCO ’05

Bate and
Emberson
[2006]

[2006]

Allocation and
scheduling tasks in
real-time embedded
systems

Improve the flexibility String SA Synthetic Symposium:
RTAS ’06

Bouktif
et al.
[2006]

[2006] Mutation and cover-
age testing Clone refactoring String (bina-

ry)
GA, ACO,
TS Real Conference:

GECCO ’06

Cohen
et al.
[2006]

[2006] Thread clustering Maximize modulariza-
tion quality

Array of mod-
ule identifiers HC Benchmark

example
Conference:
GECCO ’06

Del Rosso
[2006] [2006] Dynamic memory

configuration

Improve memory effi-
ciency (find the opti-
mal configuration for
the segregated free list-
s)

String GA Simulator Workshop:
WISER ’06

Gold et al.
[2006] [2006] Overlapping concept

assignment
Maximize quality of
concept binding

String (a set
of segment
pairs)

GA, HC Real Conference:
ICSM ’06

Harman
[2006] [2006]

SBSE for mainte-
nance and reengi-
neering

- - - - Conference:
CSMR ’06

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

TABLE 9. Papers on Distribution, Maintenance and Enhancement activities – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Mitchell
and Man-
coridis
[2006]

[2006] Software module
clustering

Maximize modulariza-
tion quality (maximize
cohesion and minimize
coupling)

Array of mod-
ule identifiers HC, SA Real Journal:

IEEE TSE

O’Keeffe
and Ó
Cinnéide
[2006]

[2006] Refactoring of OO
programmes

Maximize design quali-
ty metric (three metrics
were examined)

unknown HC, SA Real Conference:
CSMR ’06

Seng et al.
[2006] [2006] Refactoring

Optimize weighted
sum of: coupling, co-
hesion, complexity,
stability

String EA Real Conference:
GECCO ’06

Bodhuin
et al.
[2007]

[2007] Model refactoring Maximize cohesion and
minimize coupling Bit string GA Synthetic Workshop:

WRT ’07

Bodhuin
et al.
[2007]

[2007]

Re-packaging down-
loadable application-
s (Software cluster-
ing)

Minimize the packag-
ing size and the av-
erage of downloading
times

Integer array GA Real
Conference:
CASCON
’07

Dubach
et al.
[2007]

[2007]

Conference:
Computing
Frontiers
’07

Emberson
and Bate
[2007]

[2007]
Task allocation and
scheduling in mode
transitions

Minimize changes in
allocation unknown SA Synthetic Symposium:

RTAS ’07

Harman
and Tratt
[2007]

[2007] Refactoring

Maximize coupling be-
tween objects (CBO)
and Minimize STDV of
the number of methods
in classes

Sequence
of method
moves

HC Real Conference:
GECCO ’07

Huynh
and Cai
[2007]

[2007] Software modularity
analysis (Clustering)

Check the consisten-
cy between design and
source code

unknown GA Synthetic Workshop:
ACoM ’07

O’Keeffe
and Ó
Cinnéide
[2007]

[2007] Software refactoring QMOOD hierarchical
design quality model Binary string HC, SA,

GA

Real
(Open
source)

Conference:
GECCO ’07

Reformat
et al.
[2007]

[2007] Software cloning
Produce a system from
its external interac-
tions

Tree GP Synthetic
Journal:
Soft Com-
puting

Kessentini
et al.
[2008]

[2008] Model transforma-
tion

Maximize complete-
ness and consistency of
source model transfor-
mation

M-
dimensional
vector

PSO Synthetic
Conference:
MODELS
’08

Kuperberg
et al.
[2008]

[2008] Performance predic-
tion

Create platform-
independent para-
metric performance
models

Tree GP Synthetic Symposium:
CBSE ’08

Mitchell
and Man-
coridis
[2008]

[2008] Software clustering Improve modulariza-
tion quality

Sequence
of trans-
formation
identifiers

SA -
Journal:
Soft Com-
puting

O’Keeffe
and Ó
Cinnéide
[2008a]

[2008] Software refactoring QMOOD hierarchical
design quality model Binary string SA, GA,

HC

Real
(Open
source)

Journal:
JSME

O’Keeffe
and Ó
Cinnéide
[2008b]

[2008] Software refactoring QMOOD hierarchical
design quality model Binary string HC, SA

Real
(Open
source)

Journal
of Sys-
tems and
Software

White
et al.
[2008]

[2008] Non functional prop-
erties satisfaction

Trade-offs between
power consumption
and functionality

Binary GP, MOOA
(SPEA2) Synthetic Conference:

GECCO ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

Table 10: Papers addressing activities related to Metrics
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Harman
and Clark
[2004]

[2004]
Overview of search
based approaches
and metrics to SBSE

Guidelines to define
good fitness functions

- HC, SA,
GA

-
Symposium:
METRICS
’04

Vivanco
and Pizzi
[2004]

[2004] Software metrics
classification

Improve the prediction
of software object qual-
ity

Bit string GA Real Conference:
GECCO ’04

Lange
and Man-
coridis
[2007]

[2007]

Metrics classifi-
cation (Identify
software develop-
er based on style
metrics)

Maximize the correct
classification String GA

Real
(Open
source)

Conference:
GECCO ’07

Vivanco
and Jin
[2007]

[2007] OO source code met-
rics selection LDA classifier Bit-mask GA Real

Conference:
OOPSLA
’07

Vivanco
and Jin
[2008]

[2008] Software metrics se-
lection

Improve the prediction
of software object qual-
ity

Bit string GA Real Symposium:
ESEM ’08

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

Table 11: Papers addressing Management activities
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Chao et al.
[1993] N [1993] Software project

management unknown unknown GA unknown Conference:
IAST ’93

Chang
[1994] [1994] Software project

management
- - GA -

Journal:
IEEE Soft-
ware

Chang
et al.
[1994]

[1994] Software project
management

Determine the resource
allocation unknown GA -

Conference:
COMPSAC
’94

Chang
et al.
[1998]

[1998]
Project schedul-
ing and resource
allocation

Minimize total cost and
finishing time String GA Synthetic

Conference:
COMPSAC
’98

Dolado
and Fer-
nandez
[1998]

[1998]
Software develop-
ment effort estima-
tion

Optimize effort estima-
tion Tree GP, NN Synthetic

& Real

Conference:
INSPIRE
’98

Evett
et al.
[1999]

[1999] Software quality
modeling

Predict software quali-
ty Tree GP Real Conference:

FLAIRS ’99

Dolado
[2000] [2000] Software size esti-

mation
Optimize software size
estimation Tree GP, NN

Real?
(from lit-
erature)

Journal:
IEEE TSE

Shukla
[2000] [2000] Development effort

estimation
Maximize precision of
effort estimation String

NN and
GA (GA to
train NN)

Real

Journal:
Informa-
tion and
Software
Technology

Aguilar-
Ruiz et al.
[2001]

[2001] Project Management
Maximize classification
percentage and cover-
age of the rules

String EA Real

Journal:
Informa-
tion and
Software
Technology

Burgess
and Lefley
[2001]

[2001] Software effort esti-
mation

Maximize accuracy of
estimation Tree GP

Real
(from an
existing
database)

Journal:
Informa-
tion and
Software
Technology

Chang
et al.
[2001]

[2001]
Project schedul-
ing and resource
allocation

Minimize duration and
cost of project, Maxi-
mize quality of product

graph GA Synthetic

Journal:
Annals of
Software
Engineer-
ing

Dolado
[2001] [2001] Cost estimation Optimize cost estima-

tion Tree GP Real

Journal:
Informa-
tion and
Software
Technology

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

TABLE 11. Papers on Management activities – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Jarillo
et al.
[2001]

[2001]
Software develop-
ment effort estima-
tion

Predict the number of
defects, estimate the
reliability in terms of
time and failure

unknown GA, GP Real Conference:
OOIS ’01

Liu and
Khosh-
goftaar
[2001]

[2001] Software quality
classification model

Minimize the cost of
misclassification Tree GP Real Symposium:

HASE ’01

Aguilar-
Ruiz et al.
[2002]

[2002]

Software develop-
ment effort, time
and quality estima-
tion

Maximize accuracy of
estimation Float string EA

Real?
(from lit-
erature)

Conference:
GECCO ’02

Bouktif
et al.
[2002]

[2002] Software quality
prediction Improve correctness Binary tree GA Real Conference:

ICSM ’02

Kirsopp
et al.
[2002]

[2002] Project effort estima-
tion

Optimize effort esti-
mate precision String

HC, For-
ward
sequential
selection

Synthetic Conference:
GECCO ’02

Shan et al.
[2002] [2002]

Software develop-
ment effort estima-
tion

Determine metric set-
s and improve the pre-
diction of development
effort

Tree GP Real

Conference:
ICCC-
SWSE
’02

Bouktif
et al.
[2004]

[2004] Software quality
prediction Improve correctness Binary tree GA Real

Journal
of Object
Technology

Khoshgoftaar
et al.
[2003]

[2003] Software quality
classification

Minimize the cost mis-
classification; minimize
the size of decision tree

Tree GP Real Conference:
ICTAI ’03

Lefley and
Shepperd
[2003]

[2003]
Software develop-
ment effort estima-
tion

Maximize accuracy of
estimation Tree GP Real Conference:

GECCO ’03

Liu and
Khosh-
goftaar
[2003]

[2003] Software quality
classification

Minimize the cost of
misclassification; mini-
mize the size of deci-
sion tree

Tree GP Real Conference:
GECCO ’03

Antoniol
et al.
[2004a]

[2004] Project planning Minimize project dura-
tion String

GA, Queu-
ing theory,
Simulation

Real
Symposium:
METRICS
’04

Antoniol
et al.
[2004b]

[2004] Project planning Minimize project dura-
tion

String (two
types)

HC, SA,
GA Real Conference:

GECCO ’04

Liu and
Khosh-
goftaar
[2004]

[2004] Software quality
classification

Minimize the cost of
misclassification; mini-
mize the size of deci-
sion tree

Tree GP Real Symposium:
HASE ’04

Alba and
Chicano
[2005]

[2005]
Project managemen-
t of the whole SE ac-
tivities

Minimize project dura-
tion and cost (conflict-
ing objectives)

Bit string GA Synthetic Conference:
MIC ’05

Antoniol
et al.
[2005]

[2005] Project planning Minimize project dura-
tion String

GA, HC,
SA, Ran-
dom search

Real Conference:
ICSM ’05

Continued on next page

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:45

TABLE 11. Papers on Management activities – continued from previous page
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Lokan
[2005] [2005] Software effort esti-

mation
MSE, LAD, MRE, MER
and Z,

Symbolic ex-
pression GP Real

Symposium:
METRICS
’05

Alvarez-
Valdés
et al.
[2006]

[2006] Project scheduling Minimize finish time String SSA Synthetic Journal of
Heuristics

Bouktif
et al.
[2006]

[2006] Quality planning Maximize the predic-
tive accuracy

String or ma-
trix? SA Real Conference:

GECCO ’06

Sheta
[2006] [2006] Development effort

estimation
Maximize precision of
effort prediction unknown GA Real

Journal of
Computer
Science

Alba and
Chicano
[2007d]

[2007]
Project managemen-
t of the whole SE ac-
tivities

Minimize project dura-
tion and cost (conflict-
ing objectives)

String GA Synthetic
Journal: In-
formation
Sciences

Khoshgoftaar
and Liu
[2007]

[2007] Software quality
classification model

Minimize the modified
expected cost of mis-
classification, optimize
the number of predict-
ed fault-prone modules
and minimize the size
of the decision tree
model

Tree GP Real

Journal:
IEEE
Transac-
tions on
Reliability

Barreto
et al.
[2008]

[2008] Staffing software
project

Maximize the value
creation for project

- BB Synthetic

Journal:
Computers
& Op-
erations
Research

Chang
et al.
[2008]

[2008] Software project
scheduling

Minimize the input
(overload, project costs,
and time)

unknown GA Synthetic

Journal:
Informa-
tion and
Software
Technology

Cortellessa
et al.
[2008]

[2008]
Decision support for
software architec-
ture

Minimize cost under
delivery time and qual-
ity constraints

unknown IP (LINGO
based) Synthetic

Journal:
Computers
& Op-
erations
Research

Hericko
et al.
[2008]

[2008] Team size optimiza-
tion

Define team size with
minimal project effort

- gradient
method Real

Journal: In-
formation
Processing
Letters

Huang
et al.
[2008]

[2008] Software effort esti-
mation

Minimize the mean
magnitude relative
error (MMRE)

String GA Real

European
Journal
of Oper-
ational
Research

Kapur
et al.
[2008]

[2008] Staffing for product
release

Provide best quality to
customers under time
constraint

Binary GA Synthetic Journal:
JSME

Khoshgoftaar
et al.
[2008]

[2008]
Software quality
classification model-
ing

Minimize the cost mis-
classification; minimize
the size of decision tree

Integer or
real values
string

GA Real Conference:
SEKE ’08

Wen and
Lin [2008] [2008] Multistage human

resource allocation

Minimize the project
duration; minimize the
project cost

Improved
fixed-length
encoding

GA Synthetic Journal:
DOAJ

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46

Table 12: Papers addressing Distributed Artificial Intelligence
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Sinclair
and Sha-
mi [1997]

[1997]

Design and Imple-
mentation (evolution
of simple software a-
gents)

Maximize the number
of accumulated units String, Tree GA, GP Synthetic

Conference:
GALESIA
’97

Hodjat
et al.
[2004]

[2004]
Adaptive agent Ori-
ented Software Ar-
chitecture (AAOSA)

Improve the success
rate and quality of the
policies

unknown GA Synthetic Conference:
GECCO ’04

Haas et al.
[2005] [2005]

Parameter tuning
for multi-agent
systems

Improve the quality
of composition for
software configuration

Integer
string GA Synthetic Conference:

GECCO ’05

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:47

Table 13: Papers addressing Security and Protection
Authors
[Ref] Year Activity Objective / Fitness Representa-

tion method
Search
technique

Test
problem Venue

Dozier
et al.
[2004]

[2004]
Hole discovery in
intrusion detection
systems (IDS)

Minimize failed detec-
tions String EA, PSO

Real
(Simulat-
ed)

Conference:
GECCO ’04

Dozier
et al.
[2007]

[2007]
Hole discovery in
intrusion detection
systems (IDS)

Minimize failed detec-
tions String EA, PSO

Real
(Simulat-
ed)

Journal:
Applied
Soft Com-
puting

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48

Table 14: Papers addressing General aspects of SBSE
Authors [Ref] Year Content Venue

Clark et al. [2000] N [2000] Describing several applications of metaheuristic search tech-
niques in SE Technical Report

Harman and Jones
[2001a] 2001 Introduction of SBSE Journal: Information and

Software Technology
Harman and Jones
[2001b] 2001 SEMINAL: Software Engineering using Metaheuristic INovative

Algorithms
Journal: Information and
Software Technology

Harman and Jones
[2001c] 2001 Outlining the papers presented at the SEMINAL Workshop and

the discussions Journal: ACM SEN

Pedrycz [2002] [2002] Application of Computational Intelligence in different stages of
SE Conference: SEKE ’02

Clark [2003] [2003] Cryptography using nature-inspired search techniques Congress: CEC ’03

Clark et al. [2003] [2003] Reformulating SE as a search problem Journal: IEE Proceedings
- Software

Harman and Wegener
[2004] [2004] On application of search techniques in SE Conference: ICSE ’04

McMinn [2004] [2004] Survey of search based test data generation Journal: STVR
Rela [2004] [2004] A review of EC in all SE activities Master Thesis
Mantere and Alander
[2005] [2005] A review of Evolutionary SE Journal: Applied Soft

Computing

Jiang [2006] [2006] A review of applying GA to SE problems Conference: COMPSAC
’06

Harman [2007b] 2007 Introducing 8 specific application areas Conference: ICSE/FOSE
’07

Harman [2007a] 2007 A introduction of SBSE for program comprehension Conference: ICPC ’07

Jiang et al. [2007] [2007] A measure to predict the hardness of GAs to the optimization
problem in SE Congress: CEC ’07

Afzal et al. [2008a] 2008 A Review of the articles based on non functional search based
software testing in 1996-2007 Conference: SEKE ’08

Alander [2008] [2008] A bibliography and collection of GA papers applying to testing
problems Technical Report

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:49

REFERENCES

ADAMOPOULOS, K., HARMAN, M., AND HIERONS, R. M.
2004. How to Overcome the Equivalent Mutant Prob-
lem and Achieve Tailored Selective Mutation using
Co-Evolution. In Proceedings of the 2004 Conference
on Genetic and Evolutionary Computation (GECCO
’04). LNCS Series, vol. 3103. Springer, Seattle, USA,
1338–1349.

AFZAL, W. AND TORKAR, R. 2008a. A Comparative Eval-
uation of Using Genetic Programming for Predicting
Fault Count Data. In Proceedings of the 3rd Interna-
tional Conference on Software Engineering Advances
(ICSEA ’08). IEEE, Sliema, Malta, 407–414.

AFZAL, W. AND TORKAR, R. 2008b. Suitability of Genetic
Programming for Software Reliability Growth Mod-
eling. In Proceedings of the International Symposium
on Computer Science and its Applications (CSA ’08).
IEEE, Hobart, Australia, 114–117.

AFZAL, W., TORKAR, R., AND FELDT, R. 2008a. A Sys-
tematic Mapping Study on Non-Functional Search-
Based Software Testing. In Proceedings of the 20th
International Conference on Software Engineering
and Knowledge Engineering (SEKE ’08). Knowledge
Systems Institute Graduate School, San Francisco,
USA, 488–493.

AFZAL, W., TORKAR, R., AND FELDT, R. 2008b. Pre-
diction of Fault Count Data using Genetic Program-
ming. In Proceedings of the 12th IEEE Internation-
al Multitopic Conference (INMIC ’08). IEEE, Karachi,
Pakistan, 349–356.

AFZAL, W., TORKAR, R., AND FELDT, R. 2009. A Sys-
tematic Review of Search-Based Testing for Non-
Functional System Properties. Information and Soft-
ware Technology 51, 6, 957–976.

AGUILAR-RUIZ, J. S., RAMOS, I., RIQUELME, J. C., AND
TORO, M. 2001. An Evolutionary Approach to Esti-
mating Software Development Projects. Information
and Software Technology 43, 14, 875–882.

AGUILAR-RUIZ, J. S., RIQUELME, J. C., AND RAMOS,
I. 2002. Natural Evolutionary Coding: An Applica-
tion to Estimating Software Development Projects.
In Proceedings of the 2002 Conference on Genetic and
Evolutionary Computation (GECCO ’02). New York,
USA, 1–8.

ALANDER, J. T. 2008. An Indexed Bibliography of Ge-
netic Algorithms in Testing. Tech. Rep. 94-1-TEST,
University of Vaasa, Vaasa, Finland. May.

ALANDER, J. T., MANTERE, T., AND MOGHADAMPOUR,
G. 1997. Testing Software Response Times using a
Genetic Algorithm. In Proceedings of the 3rd Nordic
Workshop on Genetic Algorithms and their Applica-

tions (3NWGA). Finnish Artificial Intelligence Soci-
ety, Helsinki, Finland, 293–298.

ALANDER, J. T., MANTERE, T., MOGHADAMPOUR, G.,
AND MATILA, J. 1998. Searching Protection Relay
Response Time Extremes using Genetic Algorithm-
Software Quality by Optimization. Electric Power
Systems Research 46, 3, 229–233.

ALANDER, J. T., MANTERE, T., AND TURUNEN, P. 1997.
Genetic Algorithm based Software Testing. In Pro-
ceedings of the 3rd International Conference on Artifi-
cial Neural Networks and Genetic Algorithms (ICAN-
NGA ’97). Springer, Norwich, UK, 325–328.

ALANDER, J. T., MANTERE, T., TURUNEN, P., AND VIRO-
LAINEN, J. 1996. GA in Program Testing. In Pro-
ceedings of the 2nd Nordic Workshop on Genetic Algo-
rithms and their Applications (2NWGA). Vaasa, Fin-
land, 205–210.

ALBA, E. AND CHICANO, F. 2005. Management of Soft-
ware Projects with GAs. In Proceedings of the 6th
Metaheuristics International Conference (MIC ’05).
Elsevier, Vienna, Austria, 13–18.

ALBA, E. AND CHICANO, F. 2007a. ACOhg: Dealing
with Huge Graphs. In Proceedings of the 9th annual
Conference on Genetic and Evolutionary Computation
(GECCO ’07). ACM, London, UK, 10–17.

ALBA, E. AND CHICANO, F. 2007b. Ant Colony Optimiza-
tion for Model Checking. In Proceedings of the 11th
International Conference on Computer Aided System-
s Theory (EUROCAST ’07). LNCS Series, vol. 4739.
Springer, Las Palmas de Gran Canaria, Spain, 523–
530.

ALBA, E. AND CHICANO, F. 2007c. Finding Safety Er-
rors with ACO. In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation
(GECCO ’07). ACM, London, UK, 1066–1073.

ALBA, E. AND CHICANO, F. 2007d. Software Project Man-
agement with GAs. Information Sciences 177, 11,
2380–2401.

ALBA, E., CHICANO, F., FERREIRA, M., AND GÓMEZ-
PULIDO, J. A. 2008. Finding Deadlocks in Large Con-
current Java Programs using Genetic Algorithms. In
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08). ACM,
Atlanta, USA, 1735–1742.

ALBA, E. AND TROYA, J. M. 1996. Genetic Algorithms
for Protocol Validation. In Proceedings of the 4th In-
ternational Conference on Parallel Problem Solving
from Nature (PPSN ’96). Springer, Berlin, Germany,
870–879.

ALBOURAE, T., RUHE, G., AND MOUSSAVI, M. 2006.
Lightweight Replanning of Software Product Releas-
es. In Proceedings of the 1st International Work-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50

shop on Software Product Management (IWSPM ’06).
IEEE, Minneapolis, USA, 27–34.

ALI, S., BRIAND, L. C., HEMMATI, H., AND PANESAR-
WALAWEGE, R. K. 2010. A Systematic Review of the
Application and Empirical Investigation of Search-
Based Test-Case Generation. IEEE Transactions on
Software Engineering. To appear.

ALVAREZ-VALDÉS, R., CRESPO, E., TAMARIT, J. M., AND
VILLA, F. 2006. A Scatter Search Algorithm for
Project Scheduling under Partially Renewable Re-
sources. Journal of Heuristics 12, 1-2, 95–113.

AMOUI, M., MIRARAB, S., ANSARI, S., AND LUCAS, C.
2006. A Genetic Algorithm Approach to Design Evo-
lution using Design Pattern Transformation. Inter-
national Journal of Information Technology and In-
telligent Computing 1, 2, 235–244.

ANTONIOL, G. AND DI PENTA, M. 2003. Library Minia-
turization using Static and Dynamic Information. In
Proceedings of the 19th International Conference on
Software Maintenance (ICSM ’03). IEEE, Amster-
dam, The Netherlands, 235–244.

ANTONIOL, G., DI PENTA, M., AND HARMAN, M. 2004a.
A Robust Search-based Approach to Project Manage-
ment in the Presence of Abandonment, Rework, Error
and Uncertainty. In Proceedings of the 10th Interna-
tional Symposium on the Software Metrics (METRIC-
S ’04). IEEE, Chicago, USA, 172–183.

ANTONIOL, G., DI PENTA, M., AND HARMAN, M. 2004b.
Search-based Techniques for Optimizing Software
Project Resource Allocation. In Proceedings of the
2004 Conference on Genetic and Evolutionary Com-
putation (GECCO ’04). LNCS Series, vol. 3103.
Springer, Seattle, USA, 1425–1426.

ANTONIOL, G., DI PENTA, M., AND HARMAN, M. 2005.
Search-based Techniques Applied to Optimization of
Project Planning for a Massive Maintenance Project.
In Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance (ICSM ’05) (Budapest,
Hungary, September 30th-October 1st 2005). IEEE,
Los Alamitos, USA, 240–249.

ANTONIOL, G., DI PENTA, M., AND NETELER, M. 2003.
Moving to Smaller Libraries via Clustering and Ge-
netic Algorithms. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineer-
ing (CSMR ’03). IEEE, Benevento, Italy, 307–316.

ARCURI, A. 2008. On the Automation of Fixing Software
Bugs. In Proceedings of the Doctoral Symposium of
the IEEE International Conference on Software En-
gineering (ICSE ’08). ACM, Leipzig, Germany, 1003–
1006.

ARCURI, A., WHITE, D. R., , AND YAO, X. 2008.
Multi-Objective Improvement of Software using Co-

Evolution and Smart Seeding. In Proceedings of the
7th International Conference on Simulated Evolution
And Learning (SEAL ’08). Springer, Melbourne, Aus-
tralia, 61–70.

ARCURI, A. AND YAO, X. 2007. Coevolving Programs and
Unit Tests from their Specification. In Proceedings of
the 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE ’07). ACM, At-
lanta, USA, 397–400.

ARCURI, A. AND YAO, X. 2008. A Novel Co-evolutionary
Approach to Automatic Software Bug Fixing. In Pro-
ceedings of the IEEE Congress on Evolutionary Com-
putation (CEC ’08). IEEE, Hongkong, China, 162–
168.

ASADI, F., ANTONIOL, G., AND GUÉHÉNEUC, Y.-G. 2010.
Concept Locations with Genetic Algorithms: A Com-
parison of Four Distributed Architectures. In Pro-
ceedings of the 2nd International Symposium on
Search Based Software Engineering (SSBSE ’10).
IEEE, Benevento, Italy, 153–162.

AVERSANO, L., DI PENTA, M., AND TANEJA, K. 2006. A
Genetic Programming Approach to Support the De-
sign Of Service Compositions. Computer Systems Sci-
ence & Engineering 21, 4, 247–254.

BAGNALL, A. J., RAYWARD-SMITH, V. J., AND WHITT-
LEY, I. M. 2001. The Next Release Problem. Infor-
mation and Software Technology 43, 14, 883–890.

BAKER, P., HARMAN, M., STEINHÖFEL, K., AND SKALI-
OTIS, A. 2006. Search Based Approaches to Com-
ponent Selection and Prioritization for the Next Re-
lease Problem. In Proceedings of the 22nd IEEE Inter-
national Conference on Software Maintenance (ICSM
’06). IEEE, Philadelphia, USA, 176–185.

BARLAS, G. AND EL-FAKIH, K. 2008. A GA-based Movie-
On-Demand Platform using Multiple Distributed
Servers. Multimedia Tools and Applications 40, 3,
361–383.

BARRETO, A., DE O. BARROS, M., AND WERNER, C. M.
2008. Staffing a Software Project: a Constraint Satis-
faction and Optimization-based Approach. Comput-
ers & Operations Research 35, 10, 3073–3089.

BATE, I. AND EMBERSON, P. 2006. Incorporating Sce-
narios And Heuristics To Improve Flexibility In Real-
Time Embedded Systems. In Proceedings of the 12th
IEEE Real-Time And Embedded Technology And Ap-
plications Symposium (RTAS ’06). IEEE, San Jose,
USA, 221–230.

BEYER, H. G. AND SENDHOFF, B. 2007. Robustness Op-
timization — A Comprehensive Survey. Computer
Methods in Applied Mechanics and Engineering 196,
3190–3218.

BHATIA, R. K., DAVE, M., AND JOSHI, R. C. 2008. An-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:51

t Colony based Rule Generation for Reusable Soft-
ware Component Retrieval. In Proceedings of the 1st
Conference on India Software Engineering Conference
(ISEC ’08). ACM, Hyderabad, India, 129–130.

BODHUIN, T., CANFORA, G., AND TROIANO, L. 2007.
SORMASA: A Tool for Suggesting Model Refactor-
ing Actions by Metrics-Led Genetic Algorithm. In
Proceedings of the 1st Workshop on Refactoring Tool-
s (WRT ’07) - in conjunction with ECOOP’07. TU
Berlin, Berlin, Germany, 23–24.

BODHUIN, T., DI PENTA, M., AND TROIANO, L. 2007.
A Search-based Approach for Dynamically Re-
packaging Downloadable Applications. In Proceed-
ings of the 2007 Conference of the IBM Center for Ad-
vanced Studies on Collaborative Research (CASCON
’07). ACM, Richmond Hill, Canada, 27–41.

BOUKTIF, S., ANTONIOL, G., MERLO, E., AND NETEL-
ER, M. 2006. A Novel Approach to Optimize Clone
Refactoring Activity. In Proceedings of the 8th Annu-
al Conference on Genetic and Evolutionary Computa-
tion (GECCO ’06). ACM, Seattle, USA, 1885–1892.

BOUKTIF, S., AZAR, D., PRECUP, D., SAHRAOUI, H., AND
KÉGL, B. 2004. Improving Rule Set Based Software
Quality Prediction: A Genetic Algorithm-based Ap-
proach. Journal of Object Technology 3, 4, 227–241.

BOUKTIF, S., KÉGL, B., AND SAHRAOUI, H. 2002. Com-
bining Software Quality Predictive Models: An Evo-
lutionary Approach. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM
’02). IEEE, Montréal, Canada, 385–392.

BOUKTIF, S., SAHRAOUI, H., AND ANTONIOL, G. 2006.
Simulated Annealing for Improving Software Qual-
ity Prediction. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation
(GECCO ’06). ACM, Seattle, USA, 1893–1900.

BOWMAN, M., BRIAND, L. C., AND LABICHE, Y. 2008.
Solving the Class Responsibility Assignment Prob-
lem in Object-Oriented Analysis with Multi-Objective
Genetic Algorithms. Tech. Rep. SCE-07-02, Carleton
University, Canada. August.

BRIAND, L. C., LABICHE, Y., AND SHOUSHA, M. 2005.
Stress Testing Real-Time Systems with Genetic Al-
gorithms. In Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation (GECCO ’05).
ACM, Washington, USA, 1021–1028.

BRIAND, L. C., LABICHE, Y., AND SHOUSHA, M. 2006.
Using Genetic Algorithms for Early Schedulability
Analysis and Stress Testing in Real-Time Systems.
Genetic Programming and Evolvable Machines 7, 2,
145–170.

BÜHLER, O. AND WEGENER, J. 2008. Evolutionary
Functional Testing. Computers & Operations Re-

search 35, 10, 3144–3160.
BURGESS, C. J. AND LEFLEY, M. 2001. Can Genetic

Programming Improve Software Effort Estimation?
A Comparative Evaluation. Information and Soft-
ware Technology 43, 14, 863–873.

BURKE, E. AND KENDALL, G. 2005. Search Methodolo-
gies. Introductory Tutorials in Optimization and Deci-
sion Support Techniques. Springer, Berlin, Germany.

CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VIL-
LANI, M. L. 2004. A Lightweight Approach for
QoS-Aware Service Composition. In Proceedings of
the 2nd International Conference on Service Oriented
Computing (ICSOC ’04). ACM, New York, USA.

CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VIL-
LANI, M. L. 2005a. An Approach for QoS-aware
Service Composition based on Genetic Algorithms.
In Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation (GECCO ’05). ACM,
Washington, USA, 1069–1075.

CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VIL-
LANI, M. L. 2005b. QoS-Aware Replanning of Com-
posite Web Services. In Proceedings of 2005 IEEE
International Conference on Web Services (ICWS ’05).
IEEE, Orlando, USA, 121–129.

CAO, L., CAO, J., AND LI, M. 2005. Genetic Algorithm
Utilized in Cost-Reduction Driven Web Service Selec-
tion. In Proceedings of the International Conference
on Computational Intelligence and Security (CIS ’05).
Springer, Xi’an, China, 679–686.

CAO, L., LI, M., AND CAO, J. 2005. Cost-Driven Web
Service Selection Using Genetic Algorithm. In Pro-
ceedings of the 1st International Workshop on Internet
and Network Economics (WINE ’05). Springer, Hong
Kong, China, 906–915.

CARLSHAMRE, P. 2002. Release Planning in Market-
Driven Software Product Development: Provoking an
Understanding. Requirements Engineering 7, 3, 139–
151.

CHANG, C. K. 1994. Changing Face of Software Engi-
neering. IEEE Software 11, 1, 4–5.

CHANG, C. K., CHAO, C., HSIEH, S.-Y., AND ALSALQAN,
Y. 1994. SPMNet: a Formal Methodology for Soft-
ware Management. In Proceedings of the 18th Annu-
al International Computer Software and Application-
s Conference (COMPSAC ’94). IEEE, Taipei, Taiwan,
57–57.

CHANG, C. K., CHAO, C., NGUYEN, T. T., AND CHRIS-
TENSEN, M. 1998. Software Project Management
Net: a new Methodology on Software Managemen-
t. In Proceedings of the 22nd Annual Internation-
al Computer Software and Applications Conference
(COMPSAC ’98). IEEE, Vienna, Austria, 534–539.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52

CHANG, C. K., CHRISTENSEN, M. J., AND ZHANG, T.
2001. Genetic Algorithms for Project Management.
Annals of Software Engineering 11, 1, 107–139.

CHANG, C. K., JIANG, H., DI, Y., ZHU, D., AND GE, Y.
2008. Time-Line based Model for Software Project
Scheduling with Genetic Algorithms. Information
and Software Technology 50, 11, 1142–1154.

CHAO, C., KOMADA, J., LIU, Q., MUTEJA, M., AL-
SALQAN, Y., AND CHANG, C. 1993. An Application of
Genetic Algorithms to Software Project Managemen-
t. In Proceedings of the 9th International Advanced
Science and Technology. Chicago, USA, 247–252.

CHARDIGNY, S., SERIAI, A., OUSSALAH, M., AND
TAMZALIT, D. 2008. Search-based Extraction
of Component-Based Architecture from Object-
Oriented Systems. In Proceedings of the 2nd Euro-
pean Conference on Software Architecture (ECSA ’08).
LNCS Series, vol. 5292. Springer, Paphos, Cyprus,
322–325.

CHARDIGNY, S., SERIAI, A., TAMZALIT, D., AND OUS-
SALAH, M. 2008. Quality-Driven Extraction of
a Component-based Architecture from an Object-
Oriented System. In Proceedings of the 12th Eu-
ropean Conference on Software Maintenance and
Reengineering (CSMR ’08). IEEE, Athens, Greece,
269–273.

CHENG, B. AND ATLEE, J. 2007. From State of the Art to
the Future of Requirements Engineering. In Future
of Software Engineering 2007, L. Briand and A. Wolf,
Eds. IEEE Computer Society, Los Alamitos, USA.

CHICANO, F. AND ALBA, E. 2008a. Ant Colony Opti-
mization with Partial Order Reduction for Discover-
ing Safety Property Violations in Concurrent Models.
Information Processing Letters 106, 6, 221–231.

CHICANO, F. AND ALBA, E. 2008b. Finding Liveness Er-
rors with ACO. In Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI ’08).
IEEE, Hong Kong, China, 3002–3009.

CHICANO, F. AND ALBA, E. 2008c. Searching for Live-
ness Property Violations in Concurrent Systems with
ACO. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation (GECCO
’08). ACM, Atlanta, USA, 1727–1734.

CLARK, J. A. 2003. Nature-Inspired Cryptography: Past,
Present and Future. In Proceedings of the 2003
Congress on Evolutionary Computation (CEC ’03).
Vol. 3. IEEE, Canberra, Australia, 1647–1654.

CLARK, J. A., DOLADO, J. J., HARMAN, M., HIERON-
S, R. M., JONES, B., LUMKIN, M., MITCHELL, B.,
MANCORIDIS, S., REES, K., ROPER, M., AND SHEP-
PERD, M. J. 2003. Reformulating Software Engineer-
ing as A Search Problem. IEE Proceedings - Soft-

ware 150, 3, 161–175.
CLARK, J. A., HARMAN, M., HIERONS, R. M., JONES,

B., LUMKIN, M., REES, K., ROPER, M., AND SHEP-
PERD, M. J. 2000. The Application of Metaheuris-
tic Search Techniques to Problems in Software Engi-
neering. Tech. Rep. TR-01-2000, University of York,
Brunel University, University of Glamorgan, British
Telecom, Strathclyde University, Bournemouth Uni-
versity. August.

CLARK, J. A. AND JACOB, J. L. 2000. Searching for a
Solution: Engineering Tradeoffs and the Evolution of
Provably Secure Protocols. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (S&P ’00).
IEEE, Berkeley, USA, 82–95.

CLARK, J. A. AND JACOB, J. L. 2001. Protocols are
Programs too: the Meta-Heuristic Search for Secu-
rity Protocols. Information and Software Technolo-
gy 43, 14, 891–904.

COFFMAN, E. J., GAREY, M., AND JOHNSON, D. 1984.
Approximation Algorithms for Bin-Packing. In Algo-
rithm Design for Computer System Design. Springer.

COHEN, M. B., KOOI, S. B., AND SRISA-AN, W. 2006.
Clustering the Heap in Multi-Threaded Applications
for Improved Garbage Collection. In Proceedings of
the 8th Annual Conference on Genetic and Evolution-
ary Computation (GECCO ’06). ACM, Seattle, USA,
1901–1908.

COLLETTE, Y. AND SIARRY, P. 2004. Multiobjective Opti-
misation: Principles and Case Studies. Springer.

COOPER, K. D., SCHIELKE, P. J., AND SUBRAMANIAN, D.
1999. Optimizing for Reduced Code Space using Ge-
netic Algorithms. In Proceedings of the ACM Sigplan
1999 Workshop on Languages, Compilers and Tools
for Embedded Systems (LCTES ’99). ACM, Atlanta,
USA, 1–9.

CORTELLESSA, V., CRNKOVIC, I., MARINELLI, F., AND
POTENA, P. 2008. Experimenting the Automated Se-
lection of COTS Components Based on Cost and Sys-
tem Requirements. Journal of Universal Computer
Science 14, 8, 1228–1255.

CORTELLESSA, V., MARINELLI, F., AND POTENA, P.
2006. Automated Selection of Software Components
Based on Cost/Reliability Tradeoff. In Proceedings
of the 3rd European Workshop on Software Architec-
ture (EWSA ’06). LNCS Series, vol. 4344. Springer,
Nantes, France, 66–81.

CORTELLESSA, V., MARINELLI, F., AND POTENA, P.
2008. An Optimization Framework for “Build-or-
Buy” Decisions in Software Architecture. Computers
& Operations Research 35, 10, 3090–3106.

COWAN, G. S., REYNOLDS, R. G., AND COWAN, G. J.
2004. Acquisition of Software Engineering Knowledge

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:53

SWEEP: An Automatic Programming System Based
on Genetic Programming and Cultural Algorithms.
Software Engineering and Knowledge Engineering
Series, vol. 14. World Scientific.

DEL GROSSO, C., ANTONIOL, G., DI PENTA, M., GALIN-
IER, P., AND MERLO, E. 2005. Improving Network
Applications Security: A New Heuristic to Gener-
ate Stress Testing Data. In Proceedings of the 2005
Conference on Genetic and Evolutionary Computation
(GECCO ’05). ACM, Washington, USA, 1037–1043.

DEL GROSSO, C., ANTONIOL, G., MERLO, E., AND
GALINIER, P. 2008. Detecting Buffer Overflow via
Automatic Test Input Data Generation. Computers
and Operations Research 35, 10, 3125–3143.

DEL ROSSO, C. 2006. Reducing Internal Fragmentation
in Segregated Free Lists using Genetic Algorithms.
In Proceedings of the 2006 International Workshop
on Interdisciplinary Software Engineering Research
(WISER ’06). ACM, Shanghai, China, 57–60.

DESNOS, N., HUCHARD, M., TREMBLAY, G., URTADO, C.,
AND VAUTTIER, S. 2008. Search-based Many-to-One
Component Substitution. Journal of Software Main-
tenance and Evolution: Research and Practice 20, 5,
321–344.

DI PENTA, M. 2005. Evolution Doctor: A Framework to
Control Software System Evolution. In Proceedings
of the 9th European Conference on Software Mainte-
nance and Reengineering (CSMR ’05). IEEE, Manch-
ester, UK, 280–283.

DI PENTA, M., LOMBARDI, P., TANEJA, K., AND
TROIANO, L. 2008. Search-based Inference of Dialect
Grammars. Soft Computing - A Fusion of Founda-
tions, Methodologies and Applications 12, 1, 51–66.

DI PENTA, M., NETELER, M., ANTONIOL, G., AND MER-
LO, E. 2005. A Language-Independent Software Ren-
ovation Framework. Journal of Systems and Soft-
ware 77, 3, 225–240.

DI PENTA, M. AND TANEJA, K. 2005. Towards the Au-
tomatic Evolution of Reengineering Tools. In Pro-
ceedings of the 9th European Conference on Software
Maintenance and Reengineering (CSMR ’05). IEEE,
Manchester, UK, 241–244.

DILLON, E. 2005. Hybrid Approach for the Automatic
Determination of Worst Case Execution Time for Em-
bedded Systems Written in C. M.S. thesis, Institute
of Technology, Carlow, Ireland.

DOLADO, J. J. 2000. A Validation of the Component-based
Method for Software Size Estimation. IEEE Transac-
tions on Software Engineering 26, 10, 1006–1021.

DOLADO, J. J. 2001. On the Problem of the Software
Cost Function. Information and Software Technolo-
gy 43, 1, 61–72.

DOLADO, J. J. AND FERNANDEZ, L. 1998. Genetic Pro-
gramming, Neural Networks and Linear Regression
in Software Project Estimation. In Proceedings of In-
ternational Conference on Software Process Improve-
ment, Research, Education and Training (INSPIRE
III). British Computer Society, London, UK, 157–171.

DORIGO, M. AND BLUM, C. 2005. Ant colony optimiza-
tion theory: A survey. Theoretical Computer Sci-
ence 344, 2-3, 243–278.

DOVAL, D., MANCORIDIS, S., AND MITCHELL, B. S. 1999.
Automatic Clustering of Software Systems using a
Genetic Algorithm. In Proceedings of International
Conference on Software Tools and Engineering Prac-
tice (STEP ’99). IEEE, Pittsburgh, USA, 73–81.

DOZIER, G., BROWN, D., HOU, H., AND HURLEY, J. 2007.
Vulnerability Analysis of Immunity-based Intrusion
Detection Systems using Evolutionary Hackers. Ap-
plied Soft Computing 7, 2, 547–553.

DOZIER, G., BROWN, D., HURLEY, J., AND CAIN, K. 2004.
Vulnerability Analysis of Immunity-based Intrusion
Detection Systems using Evolutionary Hackers. In
Proceedings of the 2004 Conference on Genetic and
Evolutionary Computation (GECCO ’04). LNCS Se-
ries, vol. 3102. Springer, Seattle, USA, 263–274.

DUBACH, C., CAVAZOS, J., FRANKE, B., O’BOYLE, M.,
FURSIN, G., AND TEMAM, O. 2007. Fast Compiler
Optimisation Evaluation Using Code-Feature Based
Performance Prediction. In Proceedings of the 4th In-
ternational Conference on Computing frontiers. ACM,
Ischia, Italy, 131–142.

EL-FAKIH, K., YAMAGUCHI, H., AND V. BOCHMANN, G.
1999. A Method and a Genetic Algorithm for Deriv-
ing Protocols for Distributed Applications with Mini-
mum Communication Cost. In Proceedings of the 11th
International Conference on Parallel and Distributed
Computing and Systems (PDCS ’99). Boston, USA.

EMBERSON, P. AND BATE, I. 2007. Minimising Task Mi-
gration and Priority Changes In Mode Transitions. In
Proceedings of the 13th IEEE Real-Time And Embed-
ded Technology And Applications Symposium (RTAS
’07). IEEE, Bellevue, USA, 158–167.

ERNST, M. D. 2000. Dynamically Discovering Likely Pro-
gram Invariants. Ph.D. thesis, University of Wash-
ington.

ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND
NOTKIN, D. 2001. Dynamically Discovering Likely
Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering 27, 2, 1–
25.

EVERSON, R. M. AND FIELDSEND, J. E. 2006. Mul-
tiobjective Optimization of Safety Related Systems:
An Application to Short-Term Conflict Alert. IEEE

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:54

Transactions on Evolutionary Computation 10, 2,
187–198.

EVETT, M. P., KHOSHGOFTAAR, T. M., DER CHIEN, P.,
AND ALLEN, E. B. 1999. Using Genetic Programming
to Determine Software Quality. In Proceedings of the
12th International Florida Artificial Intelligence Re-
search Society Conference (FLAIRS ’99). Florida Re-
search Society, Orlando, USA, 113–117.

FATIREGUN, D., HARMAN, M., AND HIERONS, R. 2003.
Search Based Transformations. In Proceedings of the
2003 Conference on Genetic and Evolutionary Com-
putation (GECCO ’03) (Chicago). LNCS Series, vol.
2724. Springer, Chicago, USA, 2511–2512.

FATIREGUN, D., HARMAN, M., AND HIERONS, R. 2005.
Search-based Amorphous Slicing. In Proceedings of
the 12th International Working Conference on Reverse
Engineering (WCRE ’05). IEEE, Pittsburgh, USA, 3–
12.

FATIREGUN, D., HARMAN, M., AND HIERONS, R. M.
2004. Evolving Transformation Sequences using Ge-
netic Algorithms. In Proceedings of the 4th IEEE
International Workshopthe on Source Code Analysis
and Manipulation (SCAM ’04). IEEE, Chicago, USA,
65–74.

FEATHER, M. S., CORNFORD, S. L., KIPER, J. D., AND
MENZIES, T. 2006. Experiences using Visualization
Techniques to Present Requirements, Risks to Them,
and Options for Risk Mitigation. In Proceedings of the
International Workshop on Requirements Engineer-
ing Visualization (REV ’06). IEEE, Minnesota, USA,
10–10.

FEATHER, M. S., KIPER, J. D., AND KALAFAT, S. 2004.
Combining Heuristic Search, Visualization and Da-
ta Mining for Exploration of System Design Space.
In The International Council on Systems Engineering
(INCOSE ’04) - Proceedings of the 14th Annual Inter-
national Symposium. Toulouse, France.

FEATHER, M. S. AND MENZIES, T. 2002. Converging on
the Optimal Attainment of Requirements. In Pro-
ceedings of the 10th IEEE International Conference
on Requirements Engineering (RE ’02). IEEE, Essen,
Germany, 263–270.

FELDT, R. 1998a. An Experiment on using Genetic
Programming to Develop Multiple Diverse Software
Variants. Tech. Rep. 98-13, Chalmers University of
Technology, Gothenburg, Sweden. September.

FELDT, R. 1998b. Generating Multiple Diverse Software
Versions with Genetic Programming. In Proceedings
of the 24th EUROMICRO Conference (EUROMICRO
’98). Vol. 1. IEEE, Västerås, Sweden, 387–394.

FELDT, R. 1998c. Generating Multiple Diverse Software
Versions with Genetic Programming - an Experimen-

tal Study. IEE Proceedings - Software 145, 6, 228–
236.

FELDT, R. 1999. Genetic Programming as an Explorative
Tool in Early Software Development Phases. In Pro-
ceedings of the 1st International Workshop on Soft
Computing Applied to Software Engineering (SCASE
’99), C. Ryan and J. Buckley, Eds. Limerick Universi-
ty Press, University of Limerick, Ireland, 11–20.

FELDT, R. 2002. An Interactive Software Develop-
ment Workbench based on Biomimetic Algorithms.
Tech. Rep. 02-16, Chalmers University of Technology,
Gothenburg, Sweden. November.

FELDT, R., TORKAR, R., GORSCHEK, T., AND AFZAL, W.
2008. Searching for Cognitively Diverse Tests: Test
Variability and Test Diversity Metrics. In Proceed-
ings of 1st International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST
2008. IEEE, Lillehammer, Norway, 178–186.

FERREIRA, M., CHICANO, F., ALBA, E., AND GÓMEZ-
PULIDO, J. A. 2008. Detecting Protocol Errors using
Particle Swarm Optimization with Java Pathfinder.
In Proceedings of the High Performance Computing
& Simulation Conference (HPCS ’08), W. W. Smari,
Ed. Nicosia, Cyprus, 319–325.

FINKELSTEIN, A., HARMAN, M., MANSOURI, S. A., REN,
J., AND ZHANG, Y. 2008. “Fairness Analysis” in Re-
quirements Assignments. In Proceedings of the 16th
IEEE International Requirements Engineering Con-
ference (RE ’08). IEEE, Barcelona, Spain, 115–124.

FUNES, P., BONABEAU, E., HERVE, J., AND MORIEUX, Y.
2004. Interactive Multi-Participant Task Allocation.
In Proceedings of the 2004 IEEE Congress on Evo-
lutionary Computation. IEEE, Portland, USA, 1699–
1705.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J.
1995. Design Patterns. Addison-Wesley.

GAROUSI, V. 2006. Traffic-aware Stress Testing of Dis-
tributed Real-Time Systems based on UML Models
using Genetic Algorithms. Ph.D. thesis, Carleton U-
niversity, Canada.

GAROUSI, V. 2008. Empirical Analysis of a Genetic
Algorithm-based Stress Test Technique. In Proceed-
ings of the 10th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’08). ACM, At-
lanta, USA, 1743–1750.

GAROUSI, V., BRIAND, L. C., AND LABICHE, Y. 2008.
Traffic-aware Stress Testing of Distributed Real-
Time Systems based on UML Models using Genetic
Algorithms. Journal of Systems and Software 81, 2,
161–185.

GODEFROID, P. 1997. Model Checking for Programming
Languages using Verisoft. In Proceedings of the 24th

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:55

ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’97). ACM, Paris,
France, 174–186.

GOLD, N., HARMAN, M., LI, Z., AND MAHDAVI, K. 2006.
Allowing Overlapping Boundaries in Source Code us-
ing a Search Based Approach to Concept Binding.
In Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance (ICSM ’06). IEEE,
Philadelphia, USA, 310–319.

GOLDSBY, H. J. AND CHENG, B. H. 2008a. Automatically
Generating Behavioral Models of Adaptive Systems
to Address Uncertainty. In Proceedings of the 11th
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS ’08). Springer,
Toulouse, France, 568–583.

GOLDSBY, H. J. AND CHENG, B. H. 2008b. Avida-MDE:
a digital evolution approach to generating models of
adaptive software behavior. In Proceedings of the
10th Annual Conference on Genetic and Evolution-
ary Computation (GECCO ’08). ACM, Atlanta, USA,
1751–1758.

GOLDSBY, H. J., CHENG, B. H., MCKINLEY, P. K., K-
NOESTER, D. B., AND OFRIA, C. A. 2008. Digital
Evolution of Behavioral Models for Autonomic Sys-
tems. In Proceedings of the 2008 International Con-
ference on Autonomic Computing (ICAC ’08). IEEE,
Chicago, USA, 87–96.

GREER, D. AND RUHE, G. 2004. Software Release Plan-
ning: An Evolutionary and Iterative Approach. Infor-
mation & Software Technology 46, 4, 243–253.

GROSS, H.-G. 2000. Measuring Evolutionary Testability
of Real-Time Software. Ph.D. thesis, University of
Glamorgan, UK.

GROSS, H.-G. 2001. A Prediction System for Evolu-
tionary Testability applied to Dynamic Execution
Time Analysis. Information and Software Technol-
ogy 43, 14, 855–862.

GROSS, H.-G., JONES, B. F., AND EYRES, D. E. 2000.
Structural Performance Measure of Evolutionary
Testing applied to Worst-Case Timing of Real-Time
Systems. IEE Proceedings - Software 147, 2, 25–30.

GROSS, H.-G. AND MAYER, N. 2002. Evolutionary
Testing in Component-based Real-Time System Con-
struction. In Proceedings of the 2002 Conference on
Genetic and Evolutionary Computation (GECCO ’02).
Morgan Kaufmann, New York, USA, 207–214.

GROSS, H.-G. AND MAYER, N. 2003. Search-based
Execution-Time Verification in Object-Oriented and
Component-Based Real-Time System Development.
In Proceedings of the 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS ’03). IEEE, Guadalajara, Mexico, 113–

120.
HAAS, J., PEYSAKHOV, M., AND MANCORIDIS, S. 2005.

GA-based Parameter Tuning for Multi-Agent Sys-
tems. In Proceedings of the 2005 Conference on Ge-
netic and Evolutionary Computation (GECCO ’05).
ACM, Washington, USA, 1085–1086.

HARMAN, M. 2006. Search-based Software Engineering
for Maintenance and Reengineering. In Proceedings
of the 10th European Conference on Software Main-
tenance and Reengineering (CSMR ’06). IEEE, Bari,
Italy, 311.

HARMAN, M. 2007a. Search Based Software Engineer-
ing for Program Comprehension. In Proceedings of
the 15th IEEE International Conference on Program
Comprehension (ICPC ’07). IEEE, Banff, Canada, 3–
13.

HARMAN, M. 2007b. The Current State and Future of
Search Based Software Engineering. In Proceedings
of International Conference on Software Engineering
/ Future of Software Engineering 2007 (ICSE/FOSE
’07). IEEE, Minneapolis, USA, 342–357.

HARMAN, M. 2010. Why the Virtual Nature of Soft-
ware Makes it Ideal for Search Based Optimization.
In Proceedings of the 13th International Conference
on Fundamental Approaches to Software Engineering
(FASE ’10). Springer, Paphos, Cyprus, 1–12.

HARMAN, M. AND CLARK, J. A. 2004. Metrics Are Fit-
ness Functions Too. In Proceedings of the 10th IEEE
International Symposium on Software Metrics (MET-
RICS ’04). IEEE, Chicago, USA, 58–69.

HARMAN, M., HASSOUN, Y., LAKHOTIA, K., MCMINN,
P., AND WEGENER, J. 2007. The Impact of Input Do-
main Reduction on Search-based Test Data Genera-
tion. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations
of Software Engineering. ACM, Dubrovnik, Croatia,
155–164.

HARMAN, M., HIERONS, R., AND PROCTOR, M. 2002.
A New Representation and Crossover Operator for
Search-based Optimization of Software Modulariza-
tion. In Proceedings of the 2002 Conference on Genet-
ic and Evolutionary Computation (GECCO ’02). Mor-
gan Kaufmann, New York, USA, 1351–1358.

HARMAN, M. AND JONES, B. F. 2001a. Search-based
Software Engineering. Information and Software
Technology 43, 14, 833–839.

HARMAN, M. AND JONES, B. F. 2001b. Software Engi-
neering using Metaheuristic Innovative Algorithms:
Workshop Report. Information and Software Tech-
nology 43, 14, 762–763.

HARMAN, M. AND JONES, B. F. 2001c. The SEMINAL

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:56

Workshop: Reformulating Software Engineering as a
Metaheuristic Search Problem. ACM SIGSOFT Soft-
ware Engineering Notes 26, 6, 62–66.

HARMAN, M., LAKHOTIA, K., AND MCMINN, P. 2007. A
Multi-Objective Approach to Search-based Test Da-
ta Generation. In Proceedings of the 9th annual
Conference on Genetic and Evolutionary Computation
(GECCO ’07). ACM, London, UK, 1098–1105.

HARMAN, M., MANSOURI, A., AND ZHANG, Y. 2009.
Search Based Software Engineering: A Comprehen-
sive Analysis and Review of Trends Techniques and
Applications. Tech. Rep. TR-09-03, Department of
Computer Science, King’s College London. April.

HARMAN, M., SKALIOTIS, A., AND STEINHÖFEL, K.
2006. Search-based Approaches to the Component S-
election and Prioritization Problem. In Proceedings of
the 8th annual Conference on Genetic and Evolution-
ary Computation (GECCO ’06). ACM, Seattle, USA,
1951–1952.

HARMAN, M., SWIFT, S., AND MAHDAVI, K. 2005. An
Empirical Study of the Robustness of Two Module
Clustering Fitness Functions. In Proceedings of the
2005 Conference on Genetic and Evolutionary Com-
putation (GECCO ’05). Vol. 1. ACM, Washington, US-
A, 1029–1036.

HARMAN, M. AND TRATT, L. 2007. Pareto Optimal
Search Based Refactoring at the Design Level. In
Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07). ACM,
London, UK, 1106–1113.

HARMAN, M. AND WEGENER, J. 2004. Getting Result-
s from Search-Based Approaches to Software Engi-
neering. In Proceedings of the 26th International Con-
ference on Software Engineering (ICSE ’04). IEEE,
Edinburgh, UK, 728–729.

HART, J. AND SHEPPERD, M. J. 2002. Evolving Soft-
ware with Multiple Outputs and Multiple Popula-
tions. In Proceedings of the 2002 Conference on Genet-
ic and Evolutionary Computation (GECCO ’02). Mor-
gan Kaufmann, New York, USA, 223–227.

HE, P., KANG, L., AND FU, M. 2008. Formality Based
Genetic Programming. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’08)
(IEEE World Congress on Computational Intelli-
gence). IEEE, Hong Kong, China, 4080–4087.

HERICKO, M., ZIVKOVIC, A., AND ROZMAN, I. 2008. An
Approach to Optimizing Software Development Team
Size. Information Processing Letters 108, 3, 101–106.

HODJAT, B., ITO, J., AND AMAMIYA, M. 2004. A Ge-
netic Algorithm to Improve Agent-Oriented Natural
Language Interpreters. In Proceedings of the 2004
Conference on Genetic and Evolutionary Computation

(GECCO ’04). LNCS Series, vol. 3103. Springer, Seat-
tle, USA, 1307–1309.

HOSTE, K. AND EECKHOUT, L. 2008. COLE: Compiler
Optimization Level Exploration. In Proceedings of the
6th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’08). ACM,
Boston, USA, 165–174.

HSU, C.-J., HUANG, C.-Y., AND CHEN, T.-Y. 2008. A Mod-
ified Genetic Algorithm for Parameter Estimation of
Software Reliability Growth Models. In Proceedings
of the 19th International Symposium on Software Re-
liability Engineering (ISSRE ’08). IEEE, Seattle, US-
A, 281–282.

HUANG, S.-J., CHIU, N.-H., AND CHEN, L.-W. 2008. Inte-
gration of the Grey Relational Analysis with Genetic
Algorithm for Software Effort Estimation. European
Journal of Operational Research 188, 3, 898–909.

HUYNH, S. AND CAI, Y. 2007. An Evolutionary Ap-
proach to Software Modularity Analysis. In Pro-
ceedings of the 1st International Workshop on Assess-
ment of Contemporary Modularization Techniques (A-
CoM’07). ACM, Minneapolis, USA, 1–6.

JAEGER, M. C. AND MÜHL, G. 2007. QoS-based Se-
lection of Services: The Implementation of a Genet-
ic Algorithm. In Proceedings of Kommunikation in
Verteilten Systemen (KiVS) 2007 Workshop: Service-
Oriented Architectures and Service-Oriented Comput-
ing.

JALALI, O., MENZIES, T., AND FEATHER, M. 2008. Opti-
mizing Requirements Decisions With KEYS. In Pro-
ceedings of the 4th International Workshop on Predic-
tor Models in Software Engineering (PROMISE ’08).
ACM, Leipzig, Germany, 79–86.

JARILLO, G., SUCCI, G., PEDRYCZ, W., AND REFORMAT,
M. 2001. Analysis of Software Engineering Data us-
ing Computational Intelligence Techniques. In Pro-
ceedings of the 7th International Conference on Objec-
t Oriented Information Systems (OOIS ’01). Springer,
Calgary, Canada, 133–142.

JIANG, H. 2006. Can the Genetic Algorithm Be a Good
Tool for Software Engineering Searching Problems?
In Proceedings of the 30th Annual International Com-
puter Software and Applications Conference (COMP-
SAC ’06). IEEE, Chicago, USA, 362–366.

JIANG, H., CHANG, C. K., ZHU, D., AND CHENG, S. 2007.
A Foundational Study on the Applicability of Genet-
ic Algorithm to Software Engineering Problems. In
Proceedings of IEEE Congress on Evolutionary Com-
putation (CEC ’07). IEEE, Singapore, 2210–2219.

JIANG, T., GOLD, N., HARMAN, M., AND LI, Z. 2007. Lo-
cating Dependence Structures using Search-based S-
licing. Information and Software Technology 50, 12,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:57

1189–1209.
JIANG, T., HARMAN, M., AND HASSOUN, Y. 2008. Anal-

ysis of Procedure Splitability. In Proceedings of
the 15th Working Conference on Reverse Engineering
(WCRE ’08). IEEE, Antwerp, Belgium, 247–256.

JOHNSON, C. 2007. Genetic Programming with Fitness
based on Model Checking. In Proceedings of the 10th
European Conference on Genetic Programming (Eu-
roGP ’07). LNCS Series, vol. 4445. Springer, Valencia,
Spain, 114–124.

JOSHI, A. M., EECKHOUT, L., JOHN, L. K., AND ISEN, C.
2008. Automated Microprocessor Stressmark Gener-
ation. In Proceedings of the 14th IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA ’08). IEEE, Salt Lake City, USA, 229–
239.

KAPUR, P., NGO-THE, A., RUHE, G., AND SMITH, A.
2008. Optimized Staffing for Product Releases and
its Application at Chartwell Technology. Journal of
Software Maintenance and Evolution: Research and
Practice 20, 5, 365–386.

KARLSSON, J., WOHLIN, C., AND REGNELL, B. 1998.
An Evaluation of Methods for Priorizing Software
Requirements. Information and Software Technolo-
gy 39, 939–947.

KATZ, G. AND PELED, D. 2008a. Genetic Programming
and Model Checking: Synthesizing New Mutual Ex-
clusion Algorithms. In Proceedings of the 6th Interna-
tional Symposium on Automated Technology for Ver-
ification and Analysis (ATVA ’08). LNCS Series, vol.
5311. Springer, Seoul, Korea, 33–47.

KATZ, G. AND PELED, D. 2008b. Model Checking-Based
Genetic Programming with an Application to Mutual
Exclusion. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’08). Springer,
Budapest, Hungary, 141–156.

KESSENTINI, M., SAHRAOUI, H., AND BOUKADOUM, M.
2008. Model Transformation as an Optimization
Problem. In Proceedings of the ACM/IEEE 11th In-
ternational Conference on Model Driven Engineering
Languages and Systems (MODELS ’08). LNCS Se-
ries, vol. 5301. Springer, Toulouse, France, 159–173.

KHOSHGOFTAAR, T. M. AND LIU, Y. 2007. A Multi-
Objective Software Quality Classification Model Us-
ing Genetic Programming. IEEE Transactions on Re-
liability 56, 2, 237–245.

KHOSHGOFTAAR, T. M., LIU, Y., AND SELIYA, N. 2003.
Genetic Programming-based Decision Trees for Soft-
ware Quality Classification. In Proceedings of the
15th International Conference on Tools with Artifi-
cial Intelligence (ICTAI ’03). IEEE, Sacramento, US-

A, 374–383.
KHOSHGOFTAAR, T. M., LIU, Y., AND SELIYA, N. 2004a.

A Multiobjective Module-Order Model for Software
Quality Enhancement. IEEE Transactions on Evo-
lutionary Computation 8, 6, 593–608.

KHOSHGOFTAAR, T. M., LIU, Y., AND SELIYA, N.
2004b. Module-Order Modeling using an Evolution-
ary Multi-Objective Optimization Approach. In Pro-
ceedings of the 10th IEEE International Symposium
on Software Metrics (METRICS ’04). IEEE, Chicago,
USA, 159–169.

KHOSHGOFTAAR, T. M., SELIYA, N., AND DROWN, D. J.
2008. On the Rarity of Fault-prone Modules in
Knowledge-based Software Quality Modeling. In
Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering
(SEKE ’08). Knowledge Systems Institute Graduate
School, San Francisco, USA, 279–284.

KIPER, J. D., FEATHER, M. S., AND RICHARDSON, J.
2007. Optimizing the V&V Process for Critical Sys-
tems. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’07).
ACM, London, UK, 1139–1139.

KIRSOPP, C., SHEPPERD, M. J., AND HART, J. 2002.
Search Heuristics, Case-based Reasoning And Soft-
ware Project Effort Prediction. In Proceedings of the
2002 Conference on Genetic and Evolutionary Com-
putation (GECCO ’02). Morgan Kaufmann, New Y-
ork, USA, 1367–1374.

KUPERBERG, M., KROGMANN, K., AND REUSSNER, R.
2008. Performance Prediction for Black-Box Com-
ponents Using Reengineered Parametric Behaviour
Models. In Proceedings of the 11th International Sym-
posium on Component-Based Software Engineering
(CBSE ’08). LNCS Series, vol. 5282. Springer, Karl-
sruhe, Germany, 48–63.

LAKHOTIA, K., TILLMANN, N., HARMAN, M., AND DE
HALLEUX, J. 2010. FloPSy - Search-Based Floating
Point Constraint Solving for Symbolic Execution. In
Proceedings of the 22nd IFIP International Confer-
ence on Testing Software and Systems (ICTSS ’10).
LNCS Series, vol. 6435. Springer, Natal, Brazil, 142–
157.

LANGE, R. AND MANCORIDIS, S. 2007. Using Code Met-
ric Histograms and Genetic Algorithms to Perform
Author Identification for Software Forensics. In Pro-
ceedings of the 9th annual Conference on Genetic and
Evolutionary Computation (GECCO ’07). ACM, Lon-
don, UK, 2082–2089.

LEFLEY, M. AND SHEPPERD, M. J. 2003. Using Genet-
ic Programming to Improve Software Effort Estima-
tion Based on General Data Sets. In Proceedings

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:58

of the 2003 Conference on Genetic and Evolutionary
Computation (GECCO ’03). LNCS Series, vol. 2724.
Springer, Chicago, USA, 2477–2487.

LI, C., VAN DEN AKKER, M., BRINKKEMPER, S., AND
DIEPEN, G. 2007. Integrated Requirement Selection
and Scheduling for the Release Planning of a Soft-
ware Product. In Proceedings of the 13th Internation-
al Working Conference on Requirements Engineering:
Foundation for Software Quality (RefsQ ’07). LNCS
Series, vol. 4542. Springer, Trondheim, Norway, 93–
108.

LINDEN, D. S. 2002. Innovative Antenna Design Using
Genetic Algorithms. In Creative Evolutionary Sys-
tems, D. W. Corne and P. J. Bentley, Eds. Elsevier,
Chapter 20.

LIU, Y. AND KHOSHGOFTAAR, T. 2004. Reducing Over-
fitting in Genetic Programming Models for Software
Quality Classification. In Proceedings of the 8th IEEE
International Symposium on High Assurance System-
s Engineering (HASE ’04). IEEE, Tampa, USA, 56–
65.

LIU, Y. AND KHOSHGOFTAAR, T. M. 2001. Genetic Pro-
gramming Model for Software Quality Classification.
In Proceedings of the 6th IEEE International Sympo-
sium on High-Assurance Systems Engineering: Spe-
cial Topic: Impact of Networking (HASE ’01). IEEE,
Boco Raton, USA, 127–136.

LIU, Y. AND KHOSHGOFTAAR, T. M. 2003. Building
Decision Tree Software Quality Classification Mod-
els Using Genetic Programming. In Proccedings of
the Genetic and Evolutionary Computation Confer-
ence (GECCO ’03). LNCS Series, vol. 2724. Springer,
Chicago, USA, 1808–1809.

LOKAN, C. 2005. What Should You Optimize When
Building an Estimation Model? In Proceedings of
the 11th IEEE International Software Metrics Sym-
posium (METRICS ’05). IEEE, Como, Italy, 34–44.

LUCAS, S. M. AND REYNOLDS, T. J. 2005. Learning De-
terministic Finite Automata with a Smart State La-
beling Evolutionary Algorithm. IEEE Transactions
on Pattern Analysis and Machine Intelligence 27, 7,
1063–1074.

LUTZ, R. 2001. Evolving Good Hierarchical Decomposi-
tions of Complex Systems. Journal of Systems Archi-
tecture 47, 7, 613–634.

MA, Y. AND ZHANG, C. 2008. Quick Convergence of Ge-
netic Algorithm for QoS-driven Web Service Selec-
tion. Computer Networks 52, 5, 1093–1104.

MAHANTI, P. K. AND BANERJEE, S. 2006. Automated
Testing in Software Engineering: using Ant Colony
and Self-Regulated Swarms. In Proceedings of the
17th IASTED International Conference on Modelling

and Simulation (MS ’06). ACTA, Montréal, Canada,
443–448.

MAHDAVI, K. 2005. Ph.D. thesis. Ph.D. thesis, Brunel
University West London, UK.

MAHDAVI, K., HARMAN, M., AND HIERONS, R. 2003a.
Finding Building Blocks for Software Clustering. In
Proceedings of the 2003 Conference on Genetic and
Evolutionary Computation (GECCO ’03) (Chicago). L-
NCS Series, vol. 2724. Springer, Chicago, USA, 2513–
2514.

MAHDAVI, K., HARMAN, M., AND HIERONS, R. M. 2003b.
A Multiple Hill Climbing Approach to Software Mod-
ule Clustering. In Proceedings of the Internation-
al Conference on Software Maintenance (ICSM ’03).
IEEE, Amsterdam, The Netherlands, 315–324.

MANCORIDIS, S., MITCHELL, B. S., CHEN, Y., AND
GANSNER, E. R. 1999. Bunch: A Clustering Tool for
the Recovery and Maintenance of Software System
Structures. In Proceedings of the IEEE Internation-
al Conference on Software Maintenance (ICSM ’99).
IEEE, Oxford, UK, 50–59.

MANCORIDIS, S., MITCHELL, B. S., RORRES, C., CHEN,
Y., AND GANSNER, E. R. 1998. Using Automatic
Clustering to Produce High-Level System Organiza-
tions of Source Code. In Proceedings of the 6th Inter-
national Workshop on Program Comprehension (IW-
PC ’98). IEEE, Ischia, Italy, 45–52.

MANTERE, T. 2003. Automatic Software Testing by Ge-
netic Algorithms. Ph.D. thesis, University of Vaasa,
Finland.

MANTERE, T. AND ALANDER, J. T. 2005. Evolutionary
Software Engineering, A Review. Applied Soft Com-
puting 5, 3, 315–331.

MCMINN, P. 2004. Search-based Software Test Data Gen-
eration: A Survey. Software Testing, Verification and
Reliability 14, 2, 105–156.

MILLER, W. AND SPOONER, D. L. 1976. Automatic Gen-
eration of Floating-Point Test Data. IEEE Transac-
tions on Software Engineering 2, 3, 223–226.

MINOHARA, T. AND TOHMA, Y. 1995. Parameter Es-
timation of Hyper-Geometric Distribution Software
Reliability Growth Model by Genetic Algorithms. In
Proceedings of the 6th International Symposium on
Software Reliability Engineering (ISSRE ’95). IEEE,
Toulouse, France, 324–329.

MITCHELL, B. S. 2002. Ph.D. thesis. Ph.D. thesis, Drexel
University, USA.

MITCHELL, B. S. AND MANCORIDIS, S. 2002. Using
Heuristic Search Techniques to Extract Design Ab-
stractions from Source Code. In Proceedings of the
2002 Conference on Genetic and Evolutionary Com-
putation (GECCO ’02) (New York). Morgan Kaufman-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:59

n, New York, USA, 1375–1382.
MITCHELL, B. S. AND MANCORIDIS, S. 2003. Model-

ing the Search Landscape of Metaheuristic Software
Clustering Algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO
’03). Springer, Chicago, USA, 2499–2510.

MITCHELL, B. S. AND MANCORIDIS, S. 2006. On the
Automatic Modularization of Software Systems using
the Bunch Tool. IEEE Transactions on Software En-
gineering 32, 3, 193–208.

MITCHELL, B. S. AND MANCORIDIS, S. 2008. On the E-
valuation of the Bunch Search-based Software Mod-
ularization Algorithm. Soft Computing - A Fusion of
Foundations, Methodologies and Applications 12, 1,
77–93.

MITCHELL, B. S., MANCORIDIS, S., AND TRAVERSO, M.
2002. Search Based Reverse Engineering. In Proceed-
ings of the 14th International Conference on Software
Engineering and Knowledge Engineering (SEKE ’02).
ACM, Ischia, Italy, 431–438.

MITCHELL, B. S., MANCORIDIS, S., AND TRAVERSO, M.
2004. Using Interconnection Style Rules to Infer
Software Architecture Relations. In Proceedings of
the 2004 Conference on Genetic and Evolutionary
Computation (GECCO ’04). LNCS Series, vol. 3103.
Springer, Seattle, USA, 1375–1387.

MITCHELL, B. S., TRAVERSO, M., AND MANCORIDIS, S.
2001. An Architecture for Distributing the Com-
putation of Software Clustering Algorithms. In
IEEE/IFIP Proceedings of the Working Conference on
Software Architecture (WICSA ’01). IEEE Computer
Society, Amsterdam, Netherlands, 181–190.

MONNIER, Y., BEAUVAIS, J.-P., AND DÉPLANCHE, A.-M.
1998. A Genetic Algorithm for Scheduling Tasks in a
Real-Time Distributed System. In Proceedings of the
24th EUROMICRO Conference (EUROMICRO ’98).
Vol. 2. IEEE, Västerås, Sweden, 20708–20714.

NGUYEN, C., MILES, S., PERINI, A., TONELLA, P., HAR-
MAN, M., AND LUCK, M. 2009. Evolutionary Testing
of Autonomous Software Agents. In Proceedings of
the 8th International Conference on Autonomous A-
gents and Multiagent Systems (AAMAS ’09). Interna-
tional Foundation for Autonomous Agents and Multi-
agent Systems, Budapest, Hungary, 521–528.

NISBET, A. 1998. GAPS: A Compiler Framework for Ge-
netic Algorithm (GA) Optimised Parallelisation. In
Proceedings of the International Conference and Exhi-
bition on High-Performance Computing and Network-
ing (HPCN ’98). LNCS Series, vol. 1401. Springer,
Amsterdam, The Netherlands, 987–989.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2003. A Stochas-

tic Approach to Automated Design Improvement. In
Proceedings of the 2nd International Conference on
Principles and Practice of Programming in Java (PP-
PJ ’03). Computer Science Press, Kilkenny City, Ire-
land, 59–62.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2004. Towards Au-
tomated Design Improvement Through Combinatori-
al Optimisation. In Proceedings of the 26th Interna-
tional Conference on Software Engineering and Work-
shop on Directions in Software Engineering Environ-
ments (WoDiSEE ’04). ACM, Edinburgh, UK, 75–82.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2006. Search-based
Software Maintenance. In Proceedings of the Confer-
ence on Software Maintenance and Reengineering (C-
SMR ’06). IEEE, Bari, Italy, 249–260.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2007. Getting the
Most from Search-based Refactoring. In Proceedings
of the 9th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO ’07). ACM, London,
UK, 1114–1120.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2008a. Search-
based Refactoring: An Empirical Study. Journal of
Software Maintenance and Evolution: Research and
Practice (Special Issue Search Based Software Engi-
neering) 20, 5, 345–364.

O’KEEFFE, M. AND Ó CINNÉIDE, M. 2008b. Search-
based Refactoring for Software Maintenance. Jour-
nal of Systems and Software 81, 4, 502–516.

PEDRYCZ, W. 2002. Computational Intelligence as an
Emerging Paradigm of Software Engineering. In
Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering
(SEKE ’02). ACM, Ischia, Italy, 7–14.

POHLHEIM, H. AND WEGENER, J. 1999. Testing the Tem-
poral Behavior of Real-Time Software Modules using
Extended Evolutionary Algorithms. In Proceedings
of the Genetic and Evolutionary Computation Con-
ference (GECCO ’99) (Orlando, Florida, USA). Vol. 2.
Morgan Kaufmann, Orlando, USA, 1795.

POULDING, S., EMBERSON, P., BATE, I., AND CLARK,
J. A. 2007. An Efficient Experimental Methodolo-
gy for Configuring Search-Based Design Algorithm-
s. In Proceedings of the 10th IEEE High Assurance
Systems Engineering Symposium (HASE ’07). IEEE,
Dallas, USA, 53–62.

PRADITWONG, K., HARMAN, M., AND YAO, X. 2010. Soft-
ware Module Clustering as a Multi-Objective Search
Problem. IEEE Transactions on Software Engineer-
ing 37, 2, 264–282.

RÄIHÄ, O. 2008a. Applying Genetic Algorithms in Soft-
ware Architecture Design. M.S. thesis, University of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:60

Tampere, Finland.
RÄIHÄ, O. 2008b. Phil. Lic. thesis. Ph.D. thesis, Univer-

sity of Tampere, Finland.
RÄIHÄ, O. 2010. A Survey on Search-based Software De-

signs. Computer Science Review 4, 4, 203–249.
RÄIHÄ, O., KOSKIMIES, K., AND MÄKINEN, E. 2008. Ge-

netic Synthesis of Software Architecture. In Proceed-
ings of the 7th International Conference on Simulat-
ed Evolution and Learning (SEAL ’08). LNCS Series,
vol. 5361. Springer, Melbourne, Australia, 565–574.

RÄIHÄ, O., KOSKIMIES, K., MÄKINEN, E., AND SYSTÄ,
T. 2008. Pattern-Based Genetic Model Refinements
in MDA. Nordic Journal of Computing 14, 4, 338–
355.

REFORMAT, M., CHAI, X., AND MILLER, J. 2003. Exper-
iments in Automatic Programming for General Pur-
poses. In Proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence (IC-
TAI ’03). IEEE, Sacramento, USA, 366–373.

REFORMAT, M., CHAI, X., AND MILLER, J. 2007. On the
Possibilities of (Pseudo-) Software Cloning from Ex-
ternal Interactions. Soft Computing - A Fusion of
Foundations, Methodologies and Applications 12, 1,
29–49.

RELA, L. 2004. Evolutionary Computing in Search-based
Software Engineering. M.S. thesis, Lappeenranta U-
niversity of Technology, Finland.

REN, J., HARMAN, M., AND DI PENTA, M. 2011. Co-
operative Co-evolutionary Optimization of Software
Project Staff Assignments and Job Scheduling. In
Proceedings of the 3rd International Symposium on
Search Based Software Engineering (SSBSE ’11). L-
NCS. Springer, Szeged, Hungary. to appear.

RUHE, G. AND GREER, D. 2003. Quantitative Studies in
Software Release Planning under Risk and Resource
Constraints. In Proceedings of the International Sym-
posium on Empirical Software Engineering (ISESE
’03). IEEE, Rome, Italy, 262–270.

RUHE, G. AND NGO-THE, A. 2004. Hybrid Intelligence
in Software Release Planning. International Journal
of Hybrid Intelligent Systems 1, 1-2, 99–110.

RUHE, G. AND SALIU, M. O. 2005. The Art and Science
of Software Release Planning. IEEE Software 22, 6,
47–53.

RYAN, C. 2000. Automatic Re-Engineering of Software
using Genetic Programming. Vol. 2. Kluwer Academic
Publishers.

SAHRAOUI, H. A., VALTCHEV, P., KONKOBO, I., AND
SHEN, S. 2002. Object Identification in Legacy Code
as a Grouping Problem. In Proceedings of the 26th
International Computer Software and Applications
Conference on Prolonging Software Life: Developmen-

t and Redevelopment (COMPSAC ’02). IEEE, Oxford,
UK, 689–696.

SALIU, M. O. AND RUHE, G. 2007. Bi-Objective Release
Planning for Evolving Software Systems. In Proceed-
ings of the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineer-
ing. ACM, Dubrovnik, Croatia, 105–114.

SCHNIER, T., YAO, X., AND LIU, P. 2004. Digital Filter
Design using Multiple Pareto Fronts. Soft Comput-
ing 8, 5, 332–343.

SENG, O., BAUER, M., BIEHL, M., AND PACHE, G. 2005.
Search-based Improvement of Subsystem Decompo-
sitions. In Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation (GECCO ’05).
ACM, Washington, USA, 1045–1051.

SENG, O., STAMMEL, J., AND BURKHART, D. 2006.
Search-based Determination of Refactorings for Im-
proving the Class Structure of Object-Oriented Sys-
tems. In Proceedings of the 8th annual Conference on
Genetic and Evolutionary Computation (GECCO ’06).
ACM, Seattle, USA, 1909–1916.

SHAN, Y., MCKAY, R. I., LOKAN, C. J., AND ESSAM,
D. L. 2002. Software Project Effort Estimation Us-
ing Genetic Programming. In Proceedings of the 2002
IEEE International Conference on Communications,
Circuits and Systems and West Sino Expositions (IC-
CCSWSE ’02). Vol. 2. IEEE, Chengdu, China, 1108–
1112.

SHANNON, C. E. 1948. A Mathematical Theory of Com-
munication. Bell System Technical Journal 27, 379–
423 and 623–656.

SHARMA, V. S. AND JALOTE, P. 2008. Deploying Soft-
ware Components for Performance. In Proceedings
of the 11th International Symposium on Component-
Based Software Engineering (CBSE ’08). Springer,
Karlsruhe, Germany, 32–47.

SHEPPERD, M. 2007. Software Economics. In Future of
Software Engineering 2007, L. Briand and A. Wolf,
Eds. IEEE Computer Society, Los Alamitos, USA.

SHEPPERD, M. J. 1995. Foundations of Software Mea-
surement. Prentice Hall PTR, USA.

SHETA, A. F. 2006. Estimation of the COCOMO Mod-
el Parameters Using Genetic Algorithms for NASA
Software Projects. Journal of Computer Science 2, 2,
118–123.

SHEU, S.-T. AND CHUANG, Y.-R. 2006. A Pipeline-based
Genetic Algorithm Accelerator for Time-Critical Pro-
cesses in Real-Time Systems. IEEE Transactions on
Computers 55, 11, 1435–1448.

SHUKLA, K. K. 2000. Neuro-Genetic Prediction of Soft-
ware Development Effort. Information and Software

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:61

Technology 42, 10, 701–713.
SHYANG, W., LAKOS, C., MICHALEWICZ, Z., AND SCHEL-

LENBERG, S. 2008. Experiments in Applying Evolu-
tionary Algorithms to Software Verification. In Pro-
ceedings of IEEE Congress on Evolutionary Computa-
tion (CEC ’08). IEEE, Hong Kong, China, 3531–3536.

SIMONS, C. L. AND PARMEE, I. C. 2006. Single and
Multi-objective Genetic Operators in Object-oriented
Conceptual Software Design. In Proceedings of the
8th annual Conference on Genetic and Evolution-
ary Computation (GECCO ’06). ACM, Seattle, USA,
1957–1958.

SIMONS, C. L. AND PARMEE, I. C. 2007. A Cross-
Disciplinary Technology Transfer for Search-based
Evolutionary Computing: from Engineering Design
to Software Engineering Design. Engineering Opti-
mization 39, 5, 631–648.

SIMONS, C. L. AND PARMEE, I. C. 2008a. Agent-based
Support for Interactive Search in Conceptual Soft-
ware Engineering Design. In Proceedings of the
10th Annual Conference on Genetic and Evolution-
ary Computation (GECCO ’08). ACM, Atlanta, USA,
1785–1786.

SIMONS, C. L. AND PARMEE, I. C. 2008b. User-centered,
Evolutionary Search in Conceptual Software Design.
In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’08) (World Congress on Compu-
tational Inteligence). IEEE, Hong Kong, China, 869–
876.

SINCLAIR, M. C. AND SHAMI, S. H. 1997. Evolving Sim-
ple Software Agents: Comparing Genetic Algorithm
and Genetic Programming Performance. In Proceed-
ings of the Second International Conference on Genet-
ic Algorithms in Engineering Systems: Innovations
and Applications (GALESIA ’97). IEE, Glasgow, UK,
421–426.

SNELTING, G. 1998. Concept Analysis — A New
Framework for Program Understanding. In ACM
SIGPLAN–SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’98)
(Montreal, Canada). SIGPLAN Notices Series,
vol. 33. 1–10.

STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND
O’REILLY, U.-M. 2003. Meta Optimization: Improv-
ing Compiler Heuristics with Machine Learning. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementa-
tion (PLDI ’03). ACM, San Diego, USA, 77–90.

STEPHENSON, M., O’REILLY, U.-M., MARTIN, M. C.,
AND AMARASINGHE, S. 2003. Genetic Programming
Applied to Compiler Heuristic Optimization. In Pro-
ceedings of the 6th European Conference on Genetic

Programming (EuroGP ’03). LNCS Series, vol. 2610.
Springer, Essex, UK, 238–253.

SU, S., ZHANG, C., AND CHEN, J. 2007. An Improved Ge-
netic Algorithm for Web Services Selection. In Pro-
ceedings of the 7th IFIP WG 6.1 International Con-
ference on Distributed Applications and Interoperable
Systems (DAIS ’07). LNCS Series, vol. 4531. Springer,
Paphos, Cyprus, 284–295.

SUTTON, A., KAGDI, H., MALETIC, J. I., AND VOLK-
ERT, L. G. 2005. Hybridizing Evolutionary Algo-
rithms and Clustering Algorithms to Find Source-
Code Clones. In Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation (GECCO
’05). ACM, Washington, USA, 1079–1080.

TLILI, M., WAPPLER, S., AND STHAMER, H. 2006. Im-
proving Evolutionary Real-Time Testing. In Proceed-
ings of the 8th annual Conference on Genetic and Evo-
lutionary Computation (GECCO ’06). ACM, Seattle,
USA, 1917–1924.

VAN BELLE, T. AND ACKLEY, D. H. 2002. Code Factor-
ing and the Evolution of Evolvability. In Proceedings
of the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02) (New York). Morgan Kauf-
mann, New York, USA, 1383–1390.

VAN DEN AKKER, M., BRINKKEMPER, S., DIEPEN, G.,
AND VERSENDAAL, J. 2005. Flexible Release Plan-
ning using Integer Linear Programming. In Proceed-
ings of the 11th International Workshop on Require-
ments Engineering for Software Quality (RefsQ ’05).
Essener Informatik Beitrage, Porto, Portugal, 247–
262.

VIJAYALAKSHMI, K., RAMARAJ, N., AND AMUTHAKKAN-
NAN, R. 2008. Improvement of Component Selec-
tion Process using Genetic Algorithm for Component-
Based Software Development. International Jour-
nal of Information Systems and Change Managemen-
t 3, 1, 63–80.

VIVANCO, R. AND JIN, D. 2008. Enhancing Predic-
tive Models using Principal Component Analysis and
Search Based Metric Selection: A Comparative Study.
In Proceedings of the Second ACM-IEEE Internation-
al Symposium on Empirical Software Engineering
and Measurement (ESEM ’08). ACM, Kaiserslautern,
Germany, 273–275.

VIVANCO, R. AND PIZZI, N. 2004. Finding Effective Soft-
ware Metrics to Classify Maintainability Using a Par-
allel Genetic Algorithm. In Proceedings of the 2004
Conference on Genetic and Evolutionary Computation
(GECCO ’04). LNCS Series, vol. 3103. Springer, Seat-
tle, USA, 1388–1399.

VIVANCO, R. A. AND JIN, D. 2007. Selecting Object-
Oriented Source Code Metrics to Improve Predictive

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:62

Models using a Parallel Genetic Algorithm. In Pro-
ceedings of Conference on Object Oriented Program-
ming Systems Languages and Applications Compan-
ion to the 22nd ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications
Companion (OOPSLA ’07). ACM, Montreal, Canada,
769–770.

WANG, Z., TANG, K., AND YAO, X. 2008. A Multi-
Objective Approach to Testing Resource Allocation in
Modular Software Systems. In Proceedings of the
2008 IEEE Congress on Evolutionary Computation
(CEC ’08). IEEE, Hong Kong, China, 1148–1153.

WEGENER, J., BARESEL, A., AND STHAMER, H. 2001.
Evolutionary Test Environment for Automatic Struc-
tural Testing. Information and Software Technology
Special Issue on Software Engineering using Meta-
heuristic Innovative Algorithms 43, 14, 841–854.

WEGENER, J. AND GROCHTMANN, M. 1998. Verifying
Timing Constraints of Real-Time Systems by Means
of Evolutionary Testing. Real-Time Systems 15, 3,
275–298.

WEGENER, J., GROCHTMANN, M., AND JONES, B. 1997.
Testing Temporal Correctness of Real-Time System-
s by Means of Genetic Algorithms. In Proceedings
of the 10th International Software Quality Week (QW
’97). San Francisco, USA.

WEGENER, J. AND MUELLER, F. 2001. A Comparison of
Static Analysis and Evolutionary Testing for the Ver-
ification of Timing Constraints. Real-Time System-
s 21, 3, 241–268.

WEGENER, J., STHAMER, H., JONES, B. F., AND EYRES,
D. E. 1997. Testing Real-Time Systems Using Genet-
ic Algorithms. Software Quality Journal 6, 2, 127–
135.

WEN, F. AND LIN, C.-M. 2008. Multistage Human Re-
source Allocation for Software Development by Multi-
objective Genetic Algorithm. The Open Applied Math-
ematics Journal 2, 95–103.

WHITE, D. R., CLARK, J. A., JACOB, J., AND POULDING,
S. M. 2008. Searching for Resource-Efficient Pro-
grams: Low-Power Pseudorandom Number Genera-
tors. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation (GECCO
’08), M. Keijzer, Ed. ACM, Atlanta, USA, 1775–1782.

WILLIAMS, K. P. 1998. Evolutionary Algorithms for Au-
tomatic Parallelization. Ph.D. thesis, University of
Reading, UK.

WINDISCH, A., WAPPLER, S., AND WEGENER, J. 2007.
Applying Particle Swarm Optimization to Software
Testing. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO
’07). ACM, London, England, 1121–1128.

XIE, T., TILLMANN, N., DE HALLEUX, P., AND SCHULTE,
W. 2008. Fitness-Guided Path Exploration in Dy-
namic Symbolic Execution. Tech. Rep. MSR-TR-2008-
123, Microsoft Research. September.

YANG, L., JONES, B. F., AND YANG, S.-H. 2006. Genet-
ic Algorithm based Software Integration with Mini-
mum Software Risk. Information and Software Tech-
nology 48, 3, 133–141.

YOO, S. AND HARMAN, M. 2011. Regression Testing
Minimisation, Selection and Prioritisation: A Survey.
Journal of Software Testing, Verification and Relia-
bility. To appear.

YOO, S., HARMAN, M., AND UR, S. 2009. Measuring and
Improving Latency to Avoid Test Suite Wear Out. In
Proceedings of the IEEE International Conference on
Software Testing, Verification, and Validation Work-
shops (ICSTW ’09). IEEE, Denver, Colorado, USA,
101–110 (Best Paper Award).

YOO, S., HARMAN, M., AND UR, S. 2011a. Highly Scal-
able Multi-Objective Test Suite Minimisation Using
Graphics Card. Tech. Rep. RN/11/07, University Col-
lege London. Jannuary.

YOO, S., HARMAN, M., AND UR, S. 2011b. Highly Scal-
able Multi-Objective Test Suite Minimisation Using
Graphics Cards. In Proceedings of the 3rd Interna-
tional Symposium on Search Based Software Engi-
neering (SSBSE ’11). LNCS. Springer, Szeged, Hun-
gary. to appear.

ZELLER, A. 2011. Search-Based Program Analysis. In
Proceedings of the 3rd International Symposium on
Search Based Software Engineering (SSBSE ’11).
Springer, Szeged, Hungary, 1–4. Keynote.

ZHANG, C., SU, S., AND CHEN, J. 2006. A Novel Genet-
ic Algorithm for QoS-Aware Web Services Selection.
In Proceedings of the 2nd International Workshop on
Data Engineering Issues in E-Commerce and Services
(DEECS ’06). LNCS Series, vol. 4055. Springer, San
Francisco, USA, 224–235.

ZHANG, C., SU, S., AND CHEN, J. 2007. DiGA: Population
Diversity Handling Genetic Algorithm for QoS-aware
Web Services Selection. Computer Communication-
s 30, 5, 1082–1090.

ZHANG, X., MENG, H., AND JIAO, L. 2005. Intelligent
Particle Swarm Optimization in Multiobjective Opti-
mization. In Proceedings of the 2005 IEEE Congress
on Evolutionary Computation. Vol. 1. IEEE, Edin-
burgh, UK, 714–719.

ZHANG, Y., ALBA, E., DURILLO, J. J., ELDH, S., AND
HARMAN, M. 2010. Today/Future Importance Analy-
sis. In Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’10).
ACM, Portland, USA, 1357–1364.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:63

ZHANG, Y., FINKELSTEIN, A., AND HARMAN, M. 2008.
Search Based Requirements Optimisation: Existing
Work & Challenges. In Proceedings of the 14th In-
ternational Working Conference, Requirements En-
gineering: Foundation for Software Quality (RefsQ
’08). LNCS Series, vol. 5025. Springer, Montpellier,
France, 88–94.

ZHANG, Y., HARMAN, M., AND MANSOURI, S. A. 2007.
The Multi-Objective Next Release Problem. In Pro-
ceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’07). ACM, Lon-
don, UK, 1129–1137.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

