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Abstract

In this article, the identi¯cation of instrumental variables and gener-
alised method of moment (GMM) estimators is discussed. It is common
that representations of such models are derived from the solution to lin-
ear quadratic optimisation problems. Here, it is shown that even though
the rank condition on the Jacobian and the instrument set is valid, that
the transversality condition may not be satis¯ed by the estimated model.
Further, acceptance of the transversality condition does occur when iden-
ti¯cation fails or the forward model vanishes. As a result the parameters
of such models irrespective of any correction for serial correlation may not
be identi ēd in a fundamental sense. This suggests that either forward
looking models should be estimated directly or more complex non-linear
restrictions should be imposed.

Keywords: Identi¯cation, Linear Operator Models, Order Condition,
Rank Condition, Rational Expectations, Reduced Form, Structural Form
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1 Introduction
There has been a lot of recent interest in the question of identī cation of parame-
ters in structural or quasi-structural relationships (Arellano and Hansen (1999),
Forchini and Hillier (1999)). Particular attention has focused on the GMM es-
timator either in the panel or the time series context as this has become the
dominant approach to the estimation of Euler equations from forward looking
models (West (1995), Arellano and Bond (1991), Bond andMeghir,(1994) Stock
and Wright (2000)). By and large the use of such estimators is based on the "as-
sumption" that the structural parameters are identī ed and that only consistent
estimators are required.

A number of issues arise in this context which will cast doubt on the wisdom
of such an approach. In particular, the articles by Blinder and Pesaran (1995)
and Dufour (1997) have criticised this method. Dufour's principle objection
relates to the use of the Wald Statistic applied to test rational expectations
restrictions based on unrestricted dynamic models. An other practice,that has
crept into Financial and Economic modelling is the use of di®erenced data and
the choice of somewhat arbitrary instrument sets. In time series econometrics,
the di®erenced VAR approach suggested by Sims (1980) has been superceded by
the advent of cointegration or the partial over-di®erencing of sets of persistent
series. With the exception of Blundell and Bond (1998) who accept the infor-
mational limitations imposed by using the di®erenced series, it is still common
practice in Panel studies to di®erence the data and de¯ne the dynamic Euler
equation in terms of such transformations. In the ¯eld of Financial Economet-
rics di®erencing is also prevalent, given the inter-relation between returns series
that are uncorrelated and the notion of market e±ciency.

The Euler equation is often estimated by Generalised Method of Moments
(GMM). The application of this estimator requires the imposition of non-linear
restrictions and corrections for auto-regressive or moving average error be-
haviour. In the simplest case GMM collapses to Instrumental Variables (IV),
and IV can be readily modi¯ed to incorporate some of the above characteristics
(Sargan (1983), Pesaran and Pesaran (1998)).

The question of identi¯cation in the IV and GMM cases revolves around the
testing of the over-identifying restrictions. Instrument selection is key to the
validity of these estimators Sargan(1964). In the rational expectations context
a necessary condition for identi¯cation is the acceptance of order and rank
conditions as discussed by Pesaran (1987).

A problem that arises in the context of the commonly used panel and ¯nan-
cial data series is the order of the dynamic on the exogenous processes forcing
the evolution of the dependent variable. Often, the test fails to reject pro-
vided that enough agent specī c information is incorporated, without regard to
whether the underlying rank condition is likely to be satis¯ed.

In the panel context, information is rich at the level of the agent, but poor in
terms of dynamic structure. Hence, the ability to select instruments to explain
the dynamic properties of the problem is limited especially when the agent
speci¯c information is discrete. Whereas for problems de¯ned in a time series
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framework, there is only readily available information on the persistence of
variables. In general, for identi¯cation it is imperative that the order of the
dynamic process of the forcing variables should be longer than that on the
endogenous variable. This criterion is often di±cult to meet in the context of
¯nancial data as the dynamics are often short and the information set has a
limited number of elements especially when high frequency data are used.

The above problems apply to any model estimated by limited information
methods. Additionally, a more signi¯cant issue as far as identī cation of forward
looking behaviour is concerned, is that both the IV and GMM estimators do
not bind the solution based on the minimum of the optimisation problem to the
restrictions associated with the terminal condition (Nickell (1985)).

Tests of over-identifying restrictions do not impose burdensome conditions
on the estimator. The satisfaction of the necessary conditions follows without
di±culty with the exception of highly non-persistent processes. This article,
shows that although the necessary and su±cient conditions for identi¯cation are
likely to be accepted in ¯nite samples, this may not be true in the limit. As a
result, the estimator may fail asymptotically. This leads to the proposition, that
limited information estimators of forward behaviour fail to identify structural
parameters. There are two substantive issues: (a) the key information about
the solution resides in the residual which is not formally modelled. (b) Such
models are observationally equivalent to backward looking processes associated
with error correction behaviour. This is intimately related to the notion of Super
Exogeneity which may negate the practical use value of the Lucas critique (Lucas
(1973), Hendry (1988) and Hendry and Favero (1992)).

In such circumstances, e±cient estimation requires a strategy that involves:
(a) the estimation of the processes driving the exogenous variables, to determine
lag order, signi¯cance of lags and derive innovations for the forcing variables.
(b) The estimation of the quasi-structural model by a restricted instrumental
variables estimator with MA errors or direct estimation of the forward looking
model.

This article is as follows. Firstly, the literature on linear quadratic ad-
justment costs models(LQAC) is summarised in section 2. In section 3, some
necessary conditions and instrument selection are discussed. The conditions for
local identi¯cation of non-linear IV/AR systems presented in Sargan (1983) are
adapted to handle the rational expectations (RE) problem in section 4. Then
the question of the transversality condition and identi¯cation is discussed in
section 5 and ¯nally conclusions are drawn in section 6.

2 LQAC Models

The Identi¯cation of RE models depends on the structure of the RE problem,
the conditions for a solution and the relationship between di®erent representa-
tions of the same system. The following non-separable, non-symmetric objective
function is used here (Kollintzas (1985)).
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E(=tj­t) =
TX

t=o

Ef¯t(¢y0tK¢yt + (yt ¡ zt)0H(yt ¡ zt))j­t)g (1)

Let (1) de¯ne a control problem (Chow (1978)), yt is a g vector of endogenous
variables and zt a g vector of unobserved targets, that can be de¯ned as a linear
function of k exogenous variables, xt , zt = Axt+wt where A is a matrix of long-
run multipliers andwt = zt¡E(ztj­t) is a g vector of white noise innovations and
¯ is the discount rate. With ¯xed initial conditions yo = ¹y, then from Kollintzas
(1985) the Lagrange-Euler ¯rst order condition after substituting out for zt is:

E(¯tQ0yt ¡ ¯t+1Q1yt+1 ¡ ¯tQ0
1yt¡1 ¡ ¯tHAxt j­t) = 0; (2)

where Qo = (1 + ¯)K + H and Q1 = K.
Consider the process when it approaches its terminal value (at T):

E(¯T Q0yT ¡ ¯T+1Q1yT+1 ¡ ¯T Q0
1yT¡1 ¡ ¯T HAxT j­t) = 0: (3)

Stationarity is one pre-condition traditionally accepted for the transversality
condition to be satis¯ed (Pesaran(1981)), but when the structure includes a
discount factor this assumption is too strong. In general all that is required is
for (3) to be bounded as T ! 1 .

The standard solution to quadratic problems is symmetric, to reveal such a
solution (3) is scaled by ¯¡ 1

2 (T+1):

E(¯¡ 1
2 (T+1)¯T Q0yT ¡ ¯¡ 1

2 (T+1)¯T+1Q1yT+1¡
¯¡ 1

2 (T+1)¯T Q0
1yT¡1 ¡ ¯¡ 1

2 (T+1)¯THAxT j­t) = 0: (4)

Simplifying (4):

E(¯¡1
2Q0¯

1
2 (T )yT ¡ ¯

1
2 (T+1)Q1yT+1 ¡ ¯

1
2 (T¡1)Q0

1yT¡1

¡¯¡ 1
2HA¯

1
2TxT j­t) = 0: (5)

Re-de¯ning (5) in terms of y¤T = ¯
1
2 (T )yT and x¤

T = ¯
1
2 (T)xT gives rise to the

symmetric form:

E(¯¡ 1
2Q0y¤T ¡Q1y¤T+1 ¡Q0

1y
¤
T¡1 ¡ ¯¡ 1

2HAx¤T j­t) = 0: (6)

In the limit (6) is bounded when the roots of the processes driving xt and yt
are of mean order less than ¯¡1

2 as:

Lim
T!1

E(y¤T+1j­t) ! 0 and Lim
T!1

E(x¤
T+1j­t) ! 0

Notice, that (6) is bounded even when y and x have univariate time series
representations that are non-stationary. Now consider the cointegration case.
Dividing (2) by ¯t and transforming, yields an error correction representation:

E(¡¯K¢yt+1 + K¢yt +H (yt ¡Axt)j­t) = 0: (7)
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It follows that (7) is bounded in the limit when:

Lim
T!1

f¡¯K¢yT+1 + K¢yT +H(yT ¡AxT )g ! 0: (8)

Decomposing (8):

Lim
T!1

f¡¯K¢yT+1 +K¢yT + H(yT ¡AxT )g

=Lim
T!1

f¡¯K¢yT+1 + K¢yT g+ Lim
T!1

fH(yT ¡AxT )g ! 0:(9)

The conditions for cointegration (Engle and Granger (1987)) are su±cient for
(9) to be satis¯ed. That is yt » I(1) and (yt ¡Axt) » I(0) or:

Lim
T!1

¢yT+1 ! 0 and Lim
T!1

H(yT ¡AxT ) ! 0;

yt and xt cointegrate.
It follows from the above discussion, that a regular solution to (6) exists,

if and only if: (a) Qo is symmetric; (b) K is non-singular; and (c) ¸ <¯¡ 1
2 .

Dividing (2) by ¯t yields the following di®erence equation:

E(Qoyt ¡ ¯Q1yt+1 ¡Q1yt¡1 ¡HAxtj­t) = 0 (10)

Rede¯ning (10) using the forward (L¡1) and backward (L) lag operators:

Q(L)E(yt j­t) = HAE(xt j­t) (11)

Now Q(L) = (QoI ¡Q1L¡1 ¡ Q0
1
L) has the following factorisation:

Q1Q(L) = (I ¡G1L
¡1)(I ¡ FL)

where G1 = ¯F , F = D¤D and ¤ is a matrix whose diagonal elements are the
stable eigen roots of the system. Substituting out for Q1Q(L) yields:

(I ¡G1L
¡1)(I ¡ F L)E(yt j­t) = K¡1HAE(xtj­t): (12)

It follows that the solution of the system can be written as:

yt ¡ Fyt¡1 =
1X

s=0

(G1)
sFE(RoAxt+s j­t) + (G1)

¡tMt + ut (13)

(Sargent(1978)). Where Ro=(¯ (F¡I)+F ¡1¡I) and Mt satis¯es the martingale
property E(Mt+1j­t) = (G1)Mt (Pesaran(1981)).

Assuming, that their are no bubbles and a forcing process £(L)xt = wt (wt

is white noise), then the backward solution comes from substituting E(xt+s j­t)
using the Wiener-Kolmogorov prediction formula, that gives rise to the reduced
form:

yt ¡ F yt¡1 = ¥(L)xt + ut; (14)
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where ¥(L) = (¥0 + ¥1L + :::¥s¡1Ls¡1) is a function of ¯;H;K; A and £(L) =
(I + £1L + :::£sLs).

When the saddle path property holds and Mt = 0, then estimators based on
(13) and (14) use all the information associated with the full solution, but such
estimators require the imposition of a number of non-linear restrictions involving
both the structural parameters (¯;H;K; A) and the matrix polynomial £(L) for
the exogenous variables. The implementation of this procedure is practicable
in a time-series framework when g is small (Hunter (1989)). Whereas, in the
Panel data context, thus far, the time dimension has not been su±ciently long
to make the approach practicable.

Otherwise, estimators based on (13) use the Errors-in-Variables method due
to Muth (1961) to replace E(yt¡1j­t) by yt¡1; E(yt+ij­t) by yt+i ¡ ut+i ¡
iHADwt+i for i = 0; 1, and E(xt j­t) by xt :

Qoyt ¡ ¯Q1yt+1 ¡Q1yt¡1 ¡ HAxt = "t+1 (15)

where "t+1= Qout ¡ ¯Q1ut+1 +HADwt is an MA(1) error with an innovation
in x. Equation (15) de¯nes a Quasi-Structural Form (Q-SF) and the following
linearisations can be estimated consistently by Instrumental Variables when an
optimal instrument set exists (Sargan (1983)):

Qoyt ¡ ¯Q1yt+1 ¡Q1yt¡1 ¡A1xt = "t+1 (16)

where Qo and Q1 are de¯ned above, A1 = HA, and an unrestricted Quasi-
Reduced Form (Q-RF) of (15) and (16) is:

yt+1 = P1yt + P2yt¡1 + P3xt + vt+1: (17)

Unstable solutions cannot be ruled out by de¯nition, but estimates of the Q-SF
parameters based on (15), (16) and (17) are not a®ected by the non-uniqueness
as the transform (I ¡ G1L) annihilates all bubble solutions. Identi¯cation of
the Q-SF parameters [¯;K;H; A] comes via comparison with those in the Q-RF
[P1;P2; P3].

3 Necessary Conditions and Instrument Selec-
tion

Consider the following structural representation of the forward looking model
(13), given that K is non-singular1:

Kyt ¡ KFyt¡1 =
1X

s=0

H(G1)
sFE(Axt+s j­t) +K (G1)

¡tMt +Kut (18)

1Should K be singular, then the dimension of the problem is reduced via an adding up
constraint or the endogenous variables cointegrate.
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where KRo = K(¯(F ¡ I) + F¡1 ¡ I) = H as Ro = K¡1H commutes. In the
light of this, K and H can be identi¯ed independently subject to the usual type
of restriction. Essentially, identi¯cation ofK follows from the additional restric-
tions, while identi¯cation of H follows from F , given knowledge of K and any
additional restrictions on the system. Moving on to the Q-RF parameters, their
identī cation is a pre-requisite for the identi¯cation of the Q-SF parameters.
As this determines, the instrument selection criterion. From Rothenberg (1971)
the following Theorem is su±cient to globally identify the Q-RF parameters.

T heorem 1 rank[
^yt : yt¡1 : xt ] = 2g + k is suff icient for the identif ication

of the Q¡ RF parameters ½ = vec[P1; P2; P3].

P roof. : [Rothenberg (1971)]
When Theorem 1 holds ½ is uniquely de¯ned and each equation in the system

can be estimated by Instrumental Variables. However, the local conditions for
identī cation in Pesaran (1987)2 are also of interest. Equation (15) is analogous
to the representation used by Pesaran(1987):

Qoyt ¡ ¯Kyt+1 ¡Kyt¡1 ¡ A1xt = "t+1 (19)

When Qo = (1 + ¯)K + H is non-singular, then (14) is also the RF and the
optimal predictor is yt = F yt¡1 + ¥(L)xt + ut . Hence, E(ytj­t) depends on
yt¡1 and xt¡k, for k = 0; 1; 2::s¡ 1 and by projecting (14) forward one period
and taking expectations:

E(yt+1j­t) = FE(yt j­t) + ¥(L)E(xt+1j­t):

Substituting for E(ytj­t) using (14) andE(xt+1j­t) using (I+£1L+:::£sLs)xt ,
it follows, that:

E(yt+1j­t) = F 2yt¡1 + ¨(L)xt + ut: (20)
Where ¨(L) = F¥(L). The following recursive relations can be derived from
(14), (19) and (20):

Q0F ¡K ¡ ¯KF 2 = 0
Q0¨1 +A1 + ¯K¥0 = 0

Q0¨i + ¯K¥i = 0 for i = 2; 3; :::s¡ 1

If B = [Q0;¡K;A1;¡¯K] and bi is the vector of parameters for the ith equation,
then the parameters of a Q-RF equation are identī ed when matrix Q below
has rank 3g + k ¡ 1:3

Q =

2
664

©i F ¦0 ¦1 ::: ¦S¡1
O Ig O O ::: O
O O Ik O ::: O
O F 2 ¥0 ¥1 ::: ¥S¡1

3
775

2Pesaran (1987) makes the correction to the results presented in his1981 article, suggested
by Wegge and Feldman (1981).

3Implicit in the notion of a Q-RF is the idea that either B0 = I or C= I.
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If the rank(Q) = 3g + k ¡ 1, then a necessary condition for identī cation is
s; dimensioned so that the following order condition is satis¯ed: 3g + k ¡ 1 <
r + g + ks or 2g ¡ 1 < r + k(s ¡ 1).

Following Pesaran (1987) consider the matrix T

T =

2
664

Q0 ¡K A1 ¯K
O Ig O O
O O Ik O
O O O Ig

3
775

pre-multiplying Q by T :

TQ =

2
664

©B O O ::: O
O Ig O ::: O
O O Ik ::: O
O F 2 ¥0 ::: ¥S¡1

3
775

where © = [©i : O] and rank(TQ) = g + k + rank(TQ¤):

TQ¤ =
·
©B O ::: O
O ¥1 ::: ¥S¡1

¸

Now rank(TQ¤) = 2g ¡ 1, which is valid only when there are su±cient
restrictions r or su±cient lags in the VAR generating xt . As long as there is
a valid set of instruments and appropriate restrictions then the parameters are
identī ed. In the usual type of system, identi¯cation depends on the existence of
g ¡ 1 restrictions per equation. When the parameters of interest are associated
with the forward looking model ( [̄ ;F; A]), that is equivalent to assuming that
©B contains g¡1 restrictions. This case revolves around the rank of the matrix
associated with the instruments. Hence:

rank
£
¥1 ::: ¥S¡1

¤
= g¡ 1;

which follows when there is su±cient information on the exogenous variables and
enough lags. As a result, s > 1 and g · k. An analogous condition associated
with models not dependent on the structure of an optimised objective function
are considered in Pesaran (1981,1987).

As (16) is linear the local conditions associated with Pesaran (1987) globally
identify the Q-RF parameters. From the rank condition and the dimension of
TQ¤ , follows an order condition, that is necessary for local identi¯cation:

g+ (s¡ 1)k > 2g or s >
g
k
+ 1:

This order condition implies, that for a given number of equations in the system
(g), the lag length of the forcing variables depends on their number (k). The
greater the number of such variables the shorter the lag length required to a
lower limit of two.
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When direct maximum likelihood is applied to (13) and the exogenous vari-
able process is su±ciently long, then the rank condition (rank(TQ¤) = g + k)
is likely to hold. Notice, that under the relatively weak criterion on the roots
discussed in section 2, the transversality condition is also satis¯ed by this estima-
tor. However, IV or GMM estimators applied to (19), even when the non-linear
parameter restrictions are imposed are not likely to satisfy the transversality
condition. Failure to satisfy this condition will result in loss of identi¯cation
even though the rank condition is satis¯ed.

The following section develops the argument for the use of non-linear IV
estimators instead of the more conventional GMM and linear IV estimators.

4 Local Conditions for Identi¯cation
A necessary and su±cient condition for local identī cation can be derived using
the Jacobian matrix and the moment matrix of the data. Rothenberg(1971)
deals with conditions for local identi¯cation of quite general models and we can
extended those conditions when there are enough appropriate instruments for
the endogenous variables and the future exogenous variables. In this section
conditions for identi¯cation are derived for the IV estimator and it is shown
that such conditions fail when certain moment conditions hold.

Consider the usual form of the ¯rst order condition associated with the
symmetric quadratic loss function discussed in the previous section:

E(Q0yt ¡ ¯Q1yt+1 + 1 ¡Q0
1yt¡1 ¡ HAxt j­t) = 0; (21)

where Qo = (1+ ¯)K + H and Q1 = K. Substituting out for expectations and
by actual values:

Qoyt ¡ ¯Q1yt+1 ¡Q1yt¡1 ¡ HAxt = "t+1 (22)

where "t+1= Qout¡¯Q1ut+1 +HADwt is an MA(1) error with a surprise in the
x's. Equation (22) can be estimated consistently by minimising the following
criterion when optimal instruments exist (Sargan (1983)) or the rank condition
discussed above is satis¯ed.

V (µ)
plim(X¤0Z)

N
= 0 (23)

where X¤ = [Y X Y+1 Y¡1 ] ; Z =
h
Ŷ X Ŷ+1Y¡1

i
and V (µ) = [(1 + ¯)K +H :

¡HA : ¡¯K : ¡K]:
The criterion is made operational by replacing Ŷ , Ŷ+1and X̂+1 in Z and then

using Z+ =[Y¡1; X;X¡1; X¡2; :::X¡s ] Vectorising (23) and letting plim(X
¤0Z
N ) =

M 0 a matrix of constants:

vec(V (µ)plim(
X¤0Z
N

)) = (M ­ Ig )vec(V (µ)) = 0: (24)
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Sargan(1983) shows for a generalised instrumental variables system that a nec-
essary and su±cient condition for local identi¯cation is given by looking at the
¯rst derivative of the probability limit speci¯ed above. Di®erentiating (24):

dvec(V (µ)plim(X
¤0Z
N ))

dµ
= (M ­ Ig)

dvec(V (µ))
dµ

; (25)

gives rise to the rank condition:

rankf(M ­ Ig)
dvec(V (µ))

dµ
g = m = gk + 2g2: (26)

The moment matrix of the data can be written as:

M = plim
·
Z+0Y
N

:
Z+0X
N

:
Z+0Y+1

N
:
Z+0Y¡1

N

¸

= [M0 : M1 : M2 : M3]

If µ = [¯ : vec(A)0 : vec(H)0 : vec(K)0] , then:

dvec(V (µ))
dµ

=

2
664

vec(K ) 0 Ig2 (1 + ¯ )Ig2
0 ¡(Ig ­H) ¡(A0 ­ Ig) 0

¡vec(K ) 0 0 ¡¯Ig2

0 0 0 ¡Ig2

3
775 :4 (27)

That the Jacobian matrix above has full rank is a necessary condition for global
identī cation in its own right (Sargan(1983)). However, this condition is not
su±cient. If one transforms the Jacobian by elementary row manipulation,
then the following equivalent matrix is obtained:

dvec(V (µ))¤

dµ
=

2
664

vec(K ) 0 Ig2 (1 + ¯ )Ig2
0 ¡(Ig ­H) ¡(A0 ­ Ig) 0
0 0 Ig2 Ig2
0 0 0 ¡Ig2

3
775 : (28)

However, it follows that this transformation implies a re-ordering of elements
in M ­ I . Therefore

dvec(V (µ)¤plim(X
¤0Z
N )¤)

dµ
= (M ¤ ­ Ig)

dvec(V (µ))¤

dµ

where M¤ = [M0 ¡M2 : M1 : M2 : M3]. Notice, that the transformed Jacobian
is dimensioned, gk + 3g2 by 1 + gk + 2g2: The maximum rank is therefore
1 + gk + 2g2. Given the quasi diagonal structure of the new matrix, then

4It is useful to remember that:

¡(A0 ­ I)(vec(H)) = ¡(I ­H)vec(A)
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independence of the last 2g2 columns follows from the reordering. Any rank
de¯ciency of the upper two blocks is simply due to the nullity of the ¯rst two
blocks which either require K to be nilpotent or H to be rank de¯cient.

If as is common in the literature the data has been di®erenced, then inherent
stationarity of y negates the possibility that H is rank de¯cient. For identī ca-
tion of ¯ (the discount rate), all that is required is a single column of K to be
non null.

The su±cient condition for identi¯cation depends on the rank of M (the
matrix of second moments). One way of testing this is via the well known
Bassman-Sargan tests of over-identifying restrictions. Again, it is common prac-
tice to simply extend the matrix of instruments to the point at which the test
fails to reject the null.5 As a consequence, this condition may always be sat-
is¯ed. However, the necessary and su±cient condition for local identi¯cation
require:

rankf(M¤ ­ Ig)
dvec(V (µ))¤

dµ
g · min[rank((M¤ ­ Ig)); rank

µ
dvec(V (µ))¤

dµ

¶
]

(29)
Satisfaction of either the Jacobian or the rank condition on the moments is only
necessary for identi¯cation as it is possible for either of them to hold and yet
the model fails the rank condition. Consider:

(M¤ ­ I)
dvec(V (µ))¤

dµ
= [(Mo ¡M2)­ Ig)vec(K) : ¡(M1 ­ H) :

((Mo¡M2)­Ig)¡(A0M1­Ig)+(M2­Ig )) : (1+¯)((Mo¡M2)­Ig)+(M2­Ig)¡(M3­Ig)]

= [((Mo ¡ M2)­ Ig)vec(K) : ¡(M1 ­H) : ((Mo ¡A0M2) ­ Ig) :

¯((Mo ¡M2)­ Ig ) + ((Mo ¡M3)­ Ig )]: (30)

The rank condition is violated when any of the following moment conditions
hold:

I)rank [((Mo ¡ M2) ­ Ig)vec(K) : (M1 ­H)] · g2

II)Mo ¡A0M1 = 0
III)¯(Mo ¡M2) + (Mo ¡ M3) = 0

At this juncture, it is assumed, that the instruments are adequate.6 Having
assumed that the simple reason for failure of identi¯cation is rejected, which is

5In particular, the simulation evidence presented by Hall et al (1996) suggests that selecting
instrument sets may exacerbate the poor small sample properties of the test. While Stock
and Wright (2000) impute for monthly data, that the asymptotic properties of test statistics
are only likely to hold when a Century of data is amassed.

6Hence, the Bassman Sargan criterion is satis¯ed for the linearised case or equivalently
the rank condition in the previous section is accepted. Should this not be the case, then the
moment matrices will be null and the estimator will fail as a result.
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often the case when su±cient lagged information is included, then conditions
(I)-(III) may be viewed in two ways.

Firstly, (I)-(III) provide a set of distinct rank and moment conditions, which
should they hold will lead to the model parameters being unidenti¯ed. Notice,
that these conditions are di®erent from the conditions developed by Pesaran
(1987) and the more usual over-identifying restrictions. As a result, (I) and the
conditions, which lie at the heart of (III) hold when Mo = M2 and Mo = M3
as contemporaneous and future correlations tend in the limit to the same value.
In such circumstances, it will not be possible to identify ¯ and K7. It follows
that (II) holds when Mo = A0M1 and identi¯cation fails when the data are
cointegrated or a super-consistency result holds. As a result H is not identī ed.
Identī cation of A fails when rank(M1 ­ H) < g2 and either elements of M1
are dependent, H is not identi¯ed or (II) holds.

In this section it has been shown that local identi¯cation requires the impo-
sition of additional restrictions on the behaviour of the moments of the data to
satisfy the necessary and su±cient conditions. It should be noticed that some of
these distinctions may become ¯ne when the data is highly persistent and has a
short order dynamic as their may be little to distinguish between Mo, M2 and
M3. Hence, identi¯cation may be lost when long time series of ¯nancial data
are considered (Stock and Wright (2000)).

In the next section, a further issue arrises, that relates to the imposition
of the transversality condition. It is shown, that when some of the conditions
discussed above hold, this will lead to a loss of asymptotic identi¯cation.

5 Local identi¯cation and the transversality con-
dition

Conditions (I)-(III) are related to the transversality condition, which also needs
to hold for the estimator to be distinguished as a forward looking representation
of the data as compared with being backward looking.

Consider the ¯rst order condition (22), stacked across the sample:

((1 + ¯)K + H)Y 0 ¡ ¯KY 0
+1 ¡KY 0

¡1 ¡ HAX 0 = E 0 (31)

Post multiplying by the instrument matrix (Z+); gives rise to:

((1 + ¯)K +H)Y 0Z+ ¡ ¯KY 0
+1Z

+ ¡KY 0
¡1Z

+ ¡HAX 0Z+ = E0Z+ : (32)

7Sargan (1992) and Gregory et al (1993) address the question of identi¯cation of the dis-
count rate. If g = 1, then ¯ and the single coe±cient in K¡1H are indistinguishable without
further restriction. When there is more than one equation, then this is simply the requirement
to normalise everything with respect to one parameter. Recall, that identi¯cation of K usually
requires additional restrictions, when systems of equations of the form described by (18) are
considered. It follows from the global condition discussed in Hunter (1989, 1992), that failure
of identi¯cation of ¯ follows when K is nilpotent or vec(K) = 0. Furthermore, nilpotency is
less a condition of the data than the parameters of the objective function.
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It is well known that the IV estimator minimises the distance between the error
vector and instruments, and for linear models this condition is exactly zero
when the number of instruments matches the number of endogenous variables.
Otherwise, the test in Sargan (1964) determines whether the instrument set is
valid or whether E0Z+ is signī cantly di®erent from zero:

Dividing (32) by N and taking limits:

((1 + ¯)K + H)p lim Y 0Z+

N ¡ ¯Kp lim Y 0
+1Z

+

N

¡Kp lim Y 0
¡1Z

+

N ¡HAp lim X0Z+

N = p lim E0Z+

N
(33)

Re-ordering the elements of (33) above and replacing the probability limits by
the appropriate elements of M :

¯K(M 0
o ¡M 0

2) + K(M 0
o ¡M 0

3) +H(M 0
o ¡ AM 0

1) = p lim
E 0Z+

N
(34)

In the limit an estimator, which satis¯es a Sargan type criterion will satisfy
the condition associated with the Euler condition as p lim Z+0E

N will not be
statistically di®erent from zero. Across the sample, any estimator satisfying the
test of over-identifying restrictions will be bound to satisfy the transversality
condition. However, this presents a number of di±culties, (i) satisfying the
transversality condition is technically consistent with a failure of identi¯cation,
(ii) it is only in the limit when the sample is large that acceptance of the over-
identifying restrictions test is consistent with acceptance of the transversality
condition.

Consider (34) and substitute out conditions (II) and (III). Then the left
hand side of (34) is always zero irrespective of the satisfaction of the Sargan
condition. The same result obtains when instead of (II), eitherH is nilpotent or
instead of (III), K is nilpotent. Otherwise, both H and K might be nilpotent
and by implication, from the structure of the objective function the forward
looking explanation cannot underlie (22) as K¡1 does not exist. A similar
conclusion can be drawn when the discount rate is not well de¯ned.

Secondly, in ¯nite samples, satisfying the test of over-identifying restrictions
is necessary, but not su±cient for accepting the transversality condition. It is
not su±cient for the instruments to minimise the error variance within sample
as the transversality condition must hold beyond the estimation sample.8

If the right hand side of (34) is set to zero, then subject to (I)-(III) being
accepted:

K[¯(Mo ¡M2)0 + (Mo ¡M3)0] = ¡H(Mo ¡M1A0) 0 (35)

8In practice, the prediction tests or parameter stability tests discussed by Hendry (1980)
and Hendry and Richard (1982) are required for the satisfaction of the transversality condition.
In line with the argument suggested by Ericsson et al (1999), this would appear to yield
a contradiction. The parameter estimates need to be stable when the process forcing the
exogenous variables may well not be.
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If the discount rate is ignored or ¯ ¼ 1, then the following condition is relevant
for the existence of well de¯ned parameters in the objective function:

K¡1H = ¡(Mo ¡M1A0)0[(Mo ¡ M2) 0 + (Mo ¡M3)0]¡1 (36)

From (36) it follows that (Mo ¡M2)0 + (Mo ¡M3)0 cannot converge at a faster
rate than (Mo ¡M1A0).

Recall that K¡1H = (¯ (F ¡ I) + F ¡1 ¡ I) directly relates to the roots of
the process driving yt: In the case where there are unit roots, it will not be
possible to identify all the elements of H as (¯(F ¡ I) + F¡1 ¡ I) has some
zero roots. In this case there is a loss of identi¯cation. However, reduced form
estimation is possible provided that parameter estimation fully accounts for
any non-stationarity amongst the y variables. Subject to estimation under this
restriction the solution still exists when there is a discount factor.

6 Conclusions
Estimation of the structural parameters of optimising models has become enor-
mously popular. It is legitimate to question the validity of the two approaches
to the problem. The full information procedure is computationally burdensome,
requires additional models for the exogenous processes and as with all likelihood
based procedures is often viewed as being non-robust. However, it permits
the restrictions associated with both the forward looking solution and ratio-
nal expectations to be imposed. Limited information procedures (IV/GMM)
as typically applied, yield Quasi-Structural Forms, but they do not ordinarily
permit testing of the rational expectations restrictions or the imposition of the
transversality condition.

The practice, that persistence in the error term can be ¯ltered confounds
the issue further as the power of the tests of over-identifying restrictions is then
called into question. Any ¯lter is implicitly re-using the instruments. Limited
information estimators have no procedure for imposing the restrictions associ-
ated with the transversality condition, hence they are not identī ed.

Should long time series be available for the investigation, then the above
results suggest direct estimation of the forward model in combination with the
exogenous variable processes. This is sub ject to the restriction implied by the
transversality condition and a su±ciently long lag order for the driving pro-
cesses. In the case where panel data is used and time series observations are
short, then further moment conditions should be imposed, even though the
transversality condition might still not be satis¯ed by the estimated model pa-
rameters. Notice, that such practice takes us beyond standard linear estimation
and requires the imposition of additional restrictions. However, the imposition
of such restrictions will guarantee that the necessary conditions are fully satis-
¯ed. Even so, there is no guarantee that such models provide reliable estimates
of the Q-SF parameters. It was shown in section 4 that the necessary condi-
tions are technically violated when either certain moments are zero or matrices
H and K from the objective function are null. In the latter case, failure of
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identī cation stems from the failure of the forward looking optimising model
to provide a legitimate explanation of the estimated Q-SF. Such problems will
surface when it is possible to show that the transversality condition has been
violated. One sign of such a violation is parameter instability. Hence, holding
back a sub-sample of time series observations would permit tests of parameter
stability, while the observation that estimated parameters were stable would
provide additional support for the proposition that the Q-SF parameters are
identī ed.

In line with the concluding remarks made by Stock and Wright (2000), this
article has extended the results presented in Sargan (1983) for the Identi¯cation
of non-linear IV estimators to the Euler equation case.
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