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Abstract 
 

This thesis is concerned with the econometric modelling of gasoline prices in US. 

The intention is to characterize the market process in this crucial and significant 

industry.  Overall we have been seeking to identify a mechanism to signal and 

measure market failure and consequently improve market performance.  

 

Firstly we examine the time series properties of gasoline prices using the criteria for 

perfect arbitrage to test market efficiency from the stationarity of price proportions. 

This is done by considering market efficiency across in different regions of the US, 

by applying a range of different stationary tests. In this analysis we collected a 

comprehensive data set of gasoline prices for all regions of the US mainland for the 

longest period available. Forni (2004), outlined reasons why the analysis of price 

proportions may be advantageous; especially when the sample is limited. Stationarity 

corresponds to a broad market, it is found here that the US gasoline market is on 

average broad. Except for the Gulf Coast and Lower Atlantic, which may be seen as 

economically and/or geographically separated, market structure in the rest of the US 

would not appear to be a problem 

 

Next we investigate possible long-run price leadership in the US gasoline market and 

the inter-relatedness of price behaviour relevant to a competitive market. Following 

Hunter & Burke (2007) and Kurita (2008) market definition is tested. This is done on 

an extended regional data set to Kurita and following the analysis in Hunter and 

Burke on a set of company data for the US. 
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We analysed long-run price leadership through the cointegrated vector auto-

regression (VAR) to identify key characteristics of long-run structure in the gasoline 

market. The analysis of the system of regional prices confirms problems with the 

Gulf Coast and Lower Atlantic, but also based on the finding that the cointegrating 

rank is less than N-1 using both types of data ( regional price data and company price 

data) and the findings on weak exogenity it is suggested that competition across the 

whole of the US is further limited. 

 

We applied further tests to company data on prices and quantity data to investigate 

further the need to regulate for potential anomalies and to capture more directly 

consumer harm. The variance screening method applied to recent weekly data 

indicates that there is too little variation in gasoline prices and this would seem to 

support the cointegration study. Furthermore we applied a dynamic disequilibrium 

analysis to attempt to identify long-run demand and supply in the gasoline market. 

Finding significant variables using the Phillips-Hansen fully modified estimation of 

the switching regression is necessary to distinguish two long-run equations (S&D). 

Moreover a comparison is made with a Markov Switching Model (MSM) of prices 

and this suggests a similar pattern of regime to the quantity information analysed in 

by our disequilibrium model. 

 

 

 

Keywords: Gasoline, Stationarity, Cointegration, ARCH, Price differential, Market 

efficiency, Arbitrage, Collusion, Law of one price, Error Correction Model, Long-run 

relationship, Weak exogeneity, Price dispersion, Supply, Demand, Variance 

screening, Disequilibrium regime switching model.  

 

JEL Classification: C13, C22, C32,C34, D4, D5, D18, D40, R11.  
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Introduction 
 

It is well known that oil price shocks are a major concern to the health of the global 

economy. Unstable oil prices have a significant negative impact on consumer 

confidence and business decision making. As a result economic recovery may be 

longer and more complicated. Controlling the global oil price may not be possible, 

but a main concern of this research relates to energy market efficiency and as to 

whether prices responds to each other in the long-run across the regions of one 

country. 

 

The gasoline price instability in the short-run and the long-run is an interesting 

challenge for econometrics modelling. This thesis investigates gasoline market 

behaviour with the primary focus being on prices to indicate the potential for 

consumer harm and evaluate the potential for the abuse of market power.  

 

The core process in the production of gasoline from the oil field to the gas station 

pump is observed in terms of four main steps: oil exploration, refining, distributing 

the refined oils to the different companies and regions, selling the product. The price 

of the gasoline at the pump includes a considerable amount of tax which is one of the 

vital revenue streams for the government. 

 

The gasoline market has generally been considered competitive, because the product 

is homogeneous, there are strict rules as to what can be added to fuel, consumers are 

less influenced by branding, there are many suppliers and consumers, and a 

significant amount of price related information is commonly available. Nevertheless 
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pump prices at the gas station do differ in terms of location, local tax levels and 

services provided by the outlet.  

 

If that information on price can be provided effectively to customers, then consumers 

can monitor retail gasoline resources. To this end government intervention and 

regulation might be required to control price discrepancy and improve market 

structure. 

 

In Chapter one the gasoline prices from different geographic areas of a country are 

analysed to see whether they belong to the same market and as a result the relative 

prices ought to be stationary. In an efficient market there is no transaction cost and all 

available information is free and accessible to all market contributors at the same time 

(Fama, 1970). This implies a price shock in one region would be reflected in all other 

prices. It is believed that if the gasoline market is sufficiently active in the US, then as 

a result of arbitrage, long-run gasoline prices by region should follow each other. 

  

To test the proposition of stationarity a range of tests are applied: the Augmented 

Dickey Fuller test (ADF), Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test and 

DF-Generalized Least Squares (GLS). This is pertinent as such tests have been 

applied in antitrust cases in Italy and the Netherlands to determine whether prices are 

responsive and help determine whether there might be market imperfection or in 

association with more heuristic information, possible collusion. 

 

In Chapter two we consider cointegration analysis to detect key features of long-run 

structure in the gasoline market. After examining the stationarity and cointegration of 
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the weekly gasoline prices in eight different regions of the US we research long-run 

price leadership and parallel pricing in the framework of the cointegrated vector auto-

regression (VAR). This extends the data applied by Kurita (2008) to 901 weekly 

gasoline prices to cover eight regions of the US and further more for seven major oil 

companies in the US. The discovery of a single common trend has been observed for 

a smaller number of regions, but when the system is estimated across the US it is 

found that the finding of a single common trend cannot be sustained. In addition to 

this failure the reject tests of exogeneity suggest that the extent to which regional and 

company gasoline prices in the long-run respond to each other is limited.  

 

In Chapter three, we report the result of the variance screening estimation to provide 

further evidence to suggest anti-competitive behaviour in the US gasoline market; this 

can also be used to compliments the cointegration study. To analyse quantities it is 

essential to gather monthly data. To this end, a demand and supply study of energy 

market is important to identify appropriate factors to determine economic policy. To 

this end a regime switching model illuminates the effect of the energy demand and 

supply on market conditions and the regulatory environment.  We specify an 

exogenous disequilibrium model to analyse the demand and supply functions in 

gasoline market. The regimes are benchmarked against a theoretical markov 

switching model of prices and it is found that the regimes selection appears to 

correspond across the two methods. 
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CHAPTER 1 

 

Cointegration and US Regional Gasoline Prices: 

Testing market efficiency from the stationarity 

of price proportions 
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1 Cointegration and US Regional Gasoline Prices: Testing 

market efficiency from the stationarity of price proportions 
 

 

1.1 Introduction 
 

“Much of ‘classical’ econometrics theory has been predicated on the assumption that 

the observed data come from a stationary process, meaning a process whose means 

and variances are constant over time. A glance at graphs of most economic time 

series, or at the historical track record of economic forecasting, suffices to reveal the 

invalidity of that assumption: economics evolve, grow, and change over time in both 

real and nominal terms, sometimes dramatically - and economic forecasts are often 

badly wrong, although that should occur relatively infrequently in a stationary 

process.” Hendry and Juselius (2000)     

 

Gasoline is the primary product that derives from the cracking process as applied to 

the refining of crude oil. Refineries obtain crude oil and break down its hydrocarbons 

into different products as refined product; including gasoline, diesel fuel, heating oil, 

jet fuel, liquefied petroleum gases, and residual fuel oil. The quality of the gasoline 

depends on the type of crude oil to which the cracking process is applied. Depending 

on the legal definition of the grade of petroleum, the refinery team as producer may 

blend a proportion of ethanol with the refined gasoline. The performance of the 

gasoline must meet industry standards and environmental regulations that depend on 

local legislation and whether it is produced for home consumption or export. 

 

Since oil price shocks are currently a particular concern for the health of the global 

economy, unstable oil prices effect are likely to harm consumer confidence and 
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business decision making. It has been suggested that oil prices have shifted from the 

control of OPEC to the global market for oil and this may not be easy to control.  

However, it may be possible to determine whether the market is efficient and as a 

result arbitrage operates to smooth out price discrepancies in the long-run in the US 

gasoline market?  

 

According to the US Energy Information Administration(EIA) report (2007), US 

refineries produced over 90% of the gasoline used in the US, but less than 40% of the 

used crude oil produced in the US with approximately 45% of gasoline produced in 

the US coming from refineries in Gulf Coast (including Texas and Louisiana).  

 

There are many factors that could cause gasoline prices variations in different region 

of a country like US, such as: 

 Taxes  

 The cost of crude oil  

 Refining costs and profits  

 Distribution and marketing costs and profits  

 Distance from supplier 

 Supply disturbances 

 Retail competition 

 environmental programs 

So where fuel is produced and how it is distributed has significantly affect the price 

of gasoline to the consumers. The focus of attention here is to evaluate energy price 
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co-movement in the US and to identify considering the price variation, whether the 

market for petroleum products is efficient in the long-run and as to why the relative 

price is different in different region of one country.  

 

Figure 1-1 shows the distribution of gasoline taxes across the United States; 

combined local, state and federal. Red areas indicate high tax levels (greater than 

47.70 cents per gallon) on gasoline, yellow areas medium tax levels (between 40 and 

47.70 cents per gallon) and blue areas signify low tax (less than 40 cents per gallon). 

The US average tax level for gasoline is 47.70 cents per gallon. Unless there is a 

trend in tax differentials then these discrepancies ought not to affect the long-run and 

short-run affects that are stable would be captured by the intercept. 

Figure 1-1- Gasoline Taxes across the US1 

 

 

To consider whether the market is efficient in the long-run tests of stationarity of 

price proportions are applied to determine whether the market for gasoline is 

competitive across different regions of the US. This research is primarily empirical 

                                                 
1
The above diagram was obtained fromwww-static.shell.com. 



 Page 20 
 

and econometric with the innovation relating to the methods applied to detect what 

was termed “a broad market” by Forni (2004) in the context of Milk Prices across 

different provinces of Italy. The study of Forni was applied to the prices of a 

homogenous product over time to determine the dimension of either the product or 

the geographic market. “A broad market” is an active market with minor fluctuation 

which suggests efficiency. There are also examples of how this type of analysis has 

been used in practice as may be seen from the review article for the UK Office of Fair 

Trade by LecG (1999) and the paper by London Economics (2002) that applies the 

approach of Forni to mobile termination prices. Price data have also been analysed in 

a similar way using panel methods, Ortero et al (2010) determine competitive 

behaviour using energy prices for the UK. 

 

An alternative way of analysing the market for gasoline is as a commodity, instead of 

viewing that as an issue of competition, we might consider the observation of 

arbitrage as a sign of informational rather than product market efficiency. When a 

market is efficient in an informational sense, then price signals that impact the market 

will give rise to price movements that will lead to the removal of mispricing. In a 

commodity market, prices adjust to eliminate mispricing and this implies that there is 

arbitrage across prices at least in the long-run or that we find long-run arbitrage 

pricing. 

 

Why should gasoline prices be dissimilar in different geographic areas in the US? 

Does this mean the energy market is not efficient and how can it be made more 

efficient? If the gasoline market is efficient, prices in different regions of a country 

should follow each other in the long-run which means any price shock in one region 



 Page 21 
 

of the US should be reflect in all the other region’s prices. No suggestion is being 

made that arbitrage applies in the short-run, though it ought to be noticed that the 

application of the unit-root tests regularly applied to determine whether real exchange 

rates are stationary impose long and short-run efficiency by the structure of the model 

used to undertake the test (Burke and Hunter, Chapter 3). One conclusion of the 

observation of inefficiency would be that there is collusion and this was made by 

London Economics (2002) in their study of the Dutch telecoms market. 

 

As a result it would be of use to identify anti-trust behaviour and possible collusion 

via an analysis of competitor prices in the US gasoline market and as a result spot the 

likely effect on the economy.  In this paper we are testing the arbitrage hypothesis. 

Following Forni (2004) the estimation imposing short-run efficiency and parallel 

pricing in short-run and long-run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

 

A better understanding of the nature of the time series properties of the gasoline price 

data may also be useful in helping to explain the short-term behaviour of the data and 

improve the forecasting of spot prices in short-term and long-term. Improved forecast 

performance and market efficiency may help to improve both performances in the 

energy sector and economy wide growth. 

1.1.1 Gasoline Market Structure and Price Analysis 

 

Gasoline price perform volatilize such as any other commodity prices and since 1869 

US and world oil prices adjusted dramatically. Knowing the highly volatile character 

of the energy market, the key question at this point is whether the gasoline price can 

be considered as one of the volatile commodity prices with the practical reasonable 
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value within different region of the energy markets. Considering the energy market as 

a competitive market, suppose that every healthy economy need to support 

competition by eliminating certain anti-competitive behaviour such as prices fixing or 

neglecting market power. As a result any agreement that considerably restricts 

competition is considered as anti-competitive agreement.  

 

In this study relating to price analysis and competitive market behaviour, we hope to 

identify why oil prices in different regions of a country do not react to each other and 

how market inefficiency and unfair competition impact consumers. 

 

To some extent any lack of symmetry in price responses illustrates why competition 

in the oil market is not fully effective, consequently consumers in some regions are 

not obtaining the full benefit of competition. Using unit-root tests it is possible to 

determine when relative prices are stationary that this indicates that a market is 

competitive in the long-run and the extent to which there is a broad market. This 

research attempts to identify aspects of market failure from competition issues to 

consumer detriment and the impact of government regulation.  

1.1.2 Market Definition and Anti-trust Legislation 

A legislative procedure needs to be: 

i. Credible – satisfy precepts of fairness be consistent with natural justice and 

the presumption of innocence. 

ii. Operational – fit with a legal definition so there is some consensus as to 

meaning of the results related to the methods applied. 

iii.  Effective – The burden of proof has to be set at an appropriate level (data) 
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In an efficient market we need to be able to define the market in terms of product and 

geographical location. The regulation of the market should not be too strict as an 

action may always appear anti-competitive and need to avoid being too loose such 

that no company is ever caught and consequently it is not effective. 

 

Regulatory bodies across the world provide precise legal definitions of anti-trust 

activity: 

• Horizontal Merger Guidelines written by the US department of Justice and 

Federal Trade Commission (1992) 

• UK Monopolies and Mergers Commission, defines mergers viewed as being 

against the public interest 

• The UK Competition Commission, rules on non-competitive pricing; this will 

now include the OFT. 

 

In practice in most of the markets the Legal guidelines do not always yield 

appropriate measures or benchmarks and each case is considered on its merit with 

qualitative and common sense definitions often being applied. In this study following 

Forni (2004) we are studying the market structure by testing whether arbitrage occurs 

in the long-run suggesting that there is adequate competition in the US gasoline 

market in the long-run. 

 

In section 1.2 we review the literature. Section 1.3 considers the data for the empirical 

analysis. Section 1.4 we reviewed the relation between methodology and literature. In 

section 1.5 we reviewed the stationarity. In part 1.6 and 1.7studied the lag selection 
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and the correlogram related to the ADF and KPSS tests. Section 1.8 tests unit-root. 

Section 1.9 analysed the stationarity tests under the alternative and the null of 

stationarity. Section 1.10 tests and analysed panel unit-root. In section 1.11 we reflect 

on the impact of ARCH on the tests applied. Finally, in Section 1.12 we conclude. 

1.2 Review of Essential Literature 

Considering the data seen in Figure 2, gasoline prices are not exactly the same across 

regions of the US, but in a hyper-efficient market
2
 where there is perfect arbitrage, 

then gasoline prices should on average appear equal across states. Gasoline is a 

relatively homogenous product and in this paper we evaluate such prices without 

considering technological differences across primary gasoline outlets across the 

states. Or rather these differences will be considered in the long-run to be small. If 

they are not small, then the results may still be indicative of market failure. 

 

The proposition that underlines the idea that the market is efficient is that all prices 

fully reflect all information across the system. One might consider the possibility of 

anomalies in the short-run, but in the long-run minor differences ought to be 

smoothed out. Hence one would anticipate prices should respond to the underlying 

stochastic behaviour that underlines prices that operate in the market and this 

behaviour is summarized by the stochastic trend. 

Some of the early literature on the nature of collusive behaviour suggested this would 

be indicated by strong correlations between prices (Maunder, 1972). Such price 

correspondence was seen as a signal of pricing decisions being made in concert and 

                                                 
2
In a hyper-efficient market all information even private information being seized which this called strong-form 

efficiency. 
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this would be suggestive of collusion especially with imperfect competition. To this 

end, an Antitrust Agency’s target is to avoid creating a new firm with the potential to 

exert market power and increase the over-all price level in the market. However, the 

market efficiency proposition implies that commodity prices ought to fully reflect all 

information and this proposition is not necessarily tested via an analysis of price 

proportions alone. Some of the earliest research on competition suggested that perfect 

correlations in prices, are a signal of collusive behaviour, and market imperfection, 

while the target of most of the competition agencies is to recognize an active 

monopoly or detect collusion between competitors.  

 

The emphasis has changed more recently as the similarity of price movements can 

also be considered as a signal of an effectively functioning market. The market 

efficiency proposition implies that commodity prices ought to fully reflect all 

information, while the associated concept of arbitrage suggests that prices of the same 

product are likely to move together. To this end Stigler and Sherwin (1985) suggested 

that products be grouped in a single market when prices move together and that gives 

support to price co-movement being linked to efficiency when a market is categorized 

by homogenous products. Buccirossi (2006) has made the observation that price 

setting being independent is not necessarily consistent with behaviour that can be 

objectively described as being collusive. Buccirossi finds that in a short-run sense 

price responses may be different from unity and in certain types of model the 

behaviour may be competitive.  

 

Empirically, regression analysis, Granger causality, and Exogeneity methods have 

been proposed to analyse the time series properties of price series to indicate anti-
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competitive behaviour for example Horowitz (1981), Slade (1986), and Uri, Howell, 

and Rifkin (1985). A review of quantitative methods applied to the analysis of 

competition cases was prepared by LecG (1999) for the United Kingdom Office of 

Fair Trading (OFT). The LecG report points out that causality and correlation may 

need to be used in concert to distinguish between competitive and non-competitive 

behaviour. Further, the need to consider the notion of non-stationarity is emphasised 

in relation to a modern analysis and as a result distinguish between the long and the 

short-run.  

 

An argument based on price responses in a short-run sense has proven difficult and 

this leads to an emphasis on arbitrage in a long-run sense. It would seem easier to 

frame a legal argument in the context of long-run behaviour as short-run pricing 

anomalies may be seen less as the result of aggressive price leadership (Markham, 

1951) and more likely to be as a result of arbitrage or at worse be indicative of 

barometric pricing (Koutsyiannis, 1975).  

 

The main types of price leadership are identified as: barometric price leadership, 

aggressive price leadership, and dominant price leadership. For barometric price 

leadership one firm will announce a price change and hopes that the other firms will 

accept the price changes. The barometric price leader is not required to be the largest 

firm and will not necessarily appear to dominate other firms. For aggressive price 

leadership pricing policies are constructed by a dominant firm and other firms are 

required to follow the leader. In the case of dominant price leadership one firm 

dominates the industry on the basis of its size, economic power or its aggressive 
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behaviour or a combination of the above. Consequently the other firms will adopt the 

price set by the leader (Jain and Khanna, 2011). 

Forni (2004) argues that if two product or geographic areas belong in the same 

market for the purposes of antitrust legislation, their relative log price ratio must be 

stationary and unit-root tests such as the Augmented Dickey-Fuller (ADF) test and 

KPSS test can be useful in describing the related nature of markets. If one considers 

the non-stationarity of the log of the price ratio, then this is indicative of the distinct 

nature of a geographic market. Testing whether price proportions are stationary can 

be seen as a technically efficient way of determining whether prices cointegrate 

where the proportionality of prices is imposed by the structure of the unit-root test. 

 

Forni (2004) in particular has emphasised this approach for analysing anti-trust cases. 

He considers it to have significant advantages to methods that on one hand consider 

the elasticity of the residual demand function and on the other cointegration. The test 

implies that each price within a well-defined product market captures a component of 

the unit-root that arises from the stochastic trend driving underlying behaviour. 

Hence, price proportions in an efficient market ought to be stationary.  

 

This analysis links strongly with the literature on testing for a unit-root in the real 

exchange rates (Beirne, Hunter and Simpson, 2007). In the exchange rate literature 

there are reasons why these responses may not be exact and this is not always seen as 

a sign of market imperfection. However, Forni defined the notion of what he termed a 

broad market definition to characterise market efficiency in relation to a highly 

homogenous product, Milk related to price behaviour across Italy where the only 

natural physical break relates to the Straits of Massena lying between Calabria/Puglia 
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and Sicily. With the exception of regulation that forces milk sales to be limited to 

four days from production and suggests some constraint on sales between the far 

north and south of the country little else ought to limit arbitrage. 

 

Hunter and Burke (2008) consider the idea of long-run equilibrium price targeting 

(LEPT) to describe the price setting behaviour of firms. They analysed competitive 

market behaviour using the properties of cointegration and this requires a single 

stochastic trend (a cointegrating rank of n-1) in an efficient market specifying that in 

the long-run prices are impelled by the shocks. The finding of a single common trend 

is consistent with long-run equilibrium price targeting (LEPT). If prices in a market 

are driven by arbitrage, then subject to the existence of an appropriate number of 

long-run relations, then arbitrage is consistent with firms LEPT. In the context of firm 

specific prices as arose in the analysis of the Dutch market for mobile termination 

charges by London Economics (2002), then it is possible to further distinguish 

between parallel pricing and aggressive price leadership. The latter arising when a 

price in the market is seen as being weakly exogenous to the parameters of interest 

(Johansen (1992)). Hunter and Burke (2007), and Kurita (2008) determined that 

parallel pricing occurs when there is a single price to which the other n-1 prices are 

responsive.  

 

If one of a sequence of prices is weakly exogenous, then this implies that one of the 

price series is not explained by a stationary cointegrating relation or this series is for 

all intents and purposes explained by a stochastic trend. In terms of the market data 

analysed here, weak exogeneity implies that the price process in the other regions 

may be driven by the weakly exogenous price. However, this price cannot be tied 
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down to one of the other companies via the ownership of refining capacity as 

compared with oil production.  

 

In the gasoline market it is suggested that the existence of refiners in a region can 

create differences in price levels. Hence, a further concern of this research is not the 

existence of such differences but the stability of price relations over time. It is 

suggested that the price of gasoline in a different geographic areas of the same 

market, should not be different from each other in long run otherwise there is an 

arbitrage opportunity. Our supporting argument is the statistical concept of 

stationarity as applied to price proportions. Given the nature of the data, our primary 

concern here is to consider market efficiency and to only indirectly consider 

competitiveness were the former proposition to fail.  

 

As was stated above testing a unit-root for price proportions is equivalent to testing 

for cointegration between log prices and when these series are stationary then the 

result is consistent with long-run arbitrage. Hence, the approach devised by Forni 

(2004) is an efficient method to both test cointegration and fix the long-run restriction 

related to parallel pricing. This may be especially pertinent when as is the case for 

Forni the time series sample is small. Here this approach is followed, but unlike Forni 

we limit ourselves to a subset of price proportions. First the upper triangle of unit-root 

tests for equations for which the lag order has been securely selected will not differ 

from the reverse calculation associated with the lower triangle. The calculations 

below show this for a fixed lag order AR(1) (as will be observed in some of the 

experiments below), then across the matrix of comparisons the ADF test should be 

the same. 
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 Assume that the ij
th

 ADF price combination is: 

 

Then the reverse equation is: 

 

 

Using the calculation below it can be shown that the coefficients are the same, where 

ji jiX X  is the moment matrix of the data that contains the intercept and the lagged 

price differential and so the OLS estimator for the reverse regression 
1( )ji ji ji jiX X X y  

 

is presented as: 

 

 

 

Following some algebraic manipulation: 

 

 

 

 

 

The intercept is the opposite in the reverse regression while the slope coefficients that 

relate to the ADF test are the same. The equation also has the same residual sum of 

squares, degrees of freedom and variance covariance matrix: 
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Where 
1( ( ) )ji ji ji ji ji jie I X X X X y    and ji ije e  . Therefore the residuals will be 

the reverse for the reverse regression and so the sum of their squares will be the same 

as will be the regression standard error scaled by the term 

2

1( ) / det( )T
t l i j t ji jip p X X  and as occurs in the calculation of the regression 

parameter this is the same whatever the dependent variable the relation is normalised 

on, the pi or pj. This implies that the DF test statistic is the same.  

 

Second, the unit-root tests impose a restriction that arbitrage is imposed on the short 

and the long-run as the variable tested is a price proportion (ADF or KPSS). The 

same restriction occurs with the ADF test applied to the residual of a cointegrating 

regression and is linked to the Generalized Least Squares (GLS) estimation of serial 

correlation (Burke and Hunter, 2005).  

 

So a sequence of dynamic models can be estimated and direct comparison with the 

unit-root tests in price proportions limited to the number of coherent price models that 

might be computed. Smith and Hunter (1985) show that a cross-arbitrage condition 

occurs in the case of exchange rates and a similar problem arises when real exchange 

rates are tested for stationarity using cross rates (Hunter and Simpson, 2004). The 

cross-arbitrage condition reflects an opportunity for a risk-free profit resulting from a 

pricing inconsistency amongst three different currencies. The first implication is that 

there is a limit to the number of dynamic price models related to a fixed number of 

single equation error correction models from which stationarity might be tested. The 

second being the risk that without such a constraint that stationarity may either be 

rejected or not rejected by chance permutation of the price pairs.  
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Subject to the above limitation, as a main focus of this research the approach of Forni 

(2004) is followed to suggest that gasoline prices be proportional across the US and 

that this would confirm a broad market or a single market definition in US gasoline 

market, and thus determine a link to long-run arbitrage and an efficient market. 

 

However according to Hosken and Taylor (2004) the unit-root test results could 

deceive the market analyst under two conditions. Firstly, where both series suffering 

from a single shock or secondly were the original price series both stationary. The 

former suggests that the analyst be aware of the impact of large shocks an indication 

of which is non-normality. The latter should be prohibited by showing that the 

univariate series are all non-stationary. 

 

In addition to testing stationarity for single series it is also analysed in a panel context 

this follows from the notion that the long-run characteristic of the series, the 

stochastic trend is common to all series in the analysis. It would seem to make sense 

to compare the univariate analysis with a panel study. It can also be observed that the 

univariate price series are likely to be volatile and that this may also be considered in 

testing for stationarity. Following the discussion in Boswijk (2001) and Rahbek et al 

(2002) that the analysis ought to obtain the asymptotic limit with the sample selected 

here. The same may not be the case were some extreme distributions to be selected to 

explain the data such as the Cauchy or a stable Paretian distribution. 

1.3 Data and Methodology 
 

In this chapter the stationarity properties of the US gasoline market is analysed using 

weekly oil price proportions across eight regions of US which should cover most of 
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the US: West Coast, Central Atlantic, East Coast, Gulf Coast, Lower Atlantic, 

Midwest, New England, Rocky Mountains. The sample starts in the first week of 

May 1993 to the first week of May 2010. The number of observations is 900. The 

data have been obtained from energy information administration website 

(www.eia.doe.gov).  

 

In a similar way to the analysis of milk by Forni (2004), gasoline is considered to be a 

homogeneous product which means that prices collected are for a similar quality and 

taken for similar types of location for the sale of the product. Hence, the expectation 

is of similar price levels and relative stability over time. Figure 2 below indicates the 

behaviour of logs of weekly spot prices for gasoline in West Coast, Central Atlantic, 

East Coast, Gulf Coast, Lower Atlantic, Midwest, New England and Rocky 

Mountains (all the prices are measured in US$). The figure shows behaviour 

dominated by the stochastic trend that can be observed with the exception of the large 

shock following the financial markets crash towards the end of 2008, as a random 

walk that seems to exhibit little sign of mean-reversion in the series.  

 

  

http://www.eia.doe.gov/
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Figure 1-2- Plot of weekly spot prices for gasoline in different regions of US 

 

The development and growth of the economy can arise from governmental changes, 

technological changes and other types of shock that will give rise to the stochastic 

trend and the unit-root. To analyse the problem it is best to transform the data to 

stationarity, by differencing and by the observation of cointegration that gives rise to 

stationary linear combinations of non-stationary series. With that finding the 

cointegrated series are only influenced by temporary shocks even when the original 

series are impacted by the full history of shocks to the market.    

 

The methods adopted in this research are ADF tests, also GLS-corrected by Elliot, 

Rothenberg, and Stock (1996) and for GARCH/ARCH by Beirne et al (2007). The 

panel methods of Hadri (2000), and Im, Pesaran and Shin (2003) are used to support 

the univariate analysis. 
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1.4 Relation between Methodology and Literature 
 

The method is applied to detect a broad market and as a result overcome any potential 

difficulties that arise from the data. To measure market definition in the US gasoline 

market stationarity tests are applied to see whether a long-run dependence exists 

between prices of different market segments. Here univariate tests are used to 

examine whether a combination of log price differentials are stationary and the 

acceptance of the stationary behaviour of the series confirms consistency with the 

appropriate market definition.   

  

The long-run is analysed, as it provides a more convincing frame of reference over 

which to observe anomalies. The existence of inefficiencies in the long-run concludes 

that these relate to market failure rather than mistakes. However the market is 

efficient when there is arbitrage and prices move to clear markets. This implies 

that firm prices should move in line or that one firm’s price responds to another. If 

one considers the time series model associated with the ADF test as a reduced form 

equation of relative price behaviour, then the residuals combine the demand and 

supply shocks associated with regional and national price movements once the 

dynamic structure of market adjustments is captured by the dynamics in the AR 

model that underlines the ADF test. The stationarity of the relative price process that 

is being tested implies that the history of these shocks can be encapsulated in the error 

correction term that is associated with the log price differential. Hence the underlying 

econometric hypothesis relates to what has been termed parallel pricing. Often 

antitrust authorities assume that parallel pricing indicates collusion (see Buccirossi, 

2006). 
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If the stationarity hypothesis is not rejected for a number of sub-markets across a 

country, then the market might be viewed as being a broad market (Forni, 2004). 

A considerable range of methods exist to analyse competitiveness. One approach to 

monitor the market detects market price irregularities. The early literature considered 

the observation that prices are correlated as a sign of possible collusive behaviour. 

One such approach considers the elasticity of the residual demand curve (see Forni, 

2004), but such analysis is not very reactive and also depends on being able to 

estimate components of demand and the supply curve. Supply is often related to the 

average or marginal cost curve as is discussed in Hunter et al (2001) or linked to a 

mark-up on price. Unfortunately, the cost information is available for firms with 

published accounts from which it is possible to measure cost.  

 

One might also formulate a dynamic demand and supply system where information is 

also available on quantities; this can be used to compute price elasticity or some 

notion of consumer surplus. This idea will be looked at in the final empirical Chapter. 

However, when there is uncertainty over quality or price, then a more appropriate 

measure of loss is termed “Consumer Detriment”. Unfortunately, many of these types 

of measure associated with an analysis of competitiveness depend on some 

computation of average cost or the mark-up (Hunter et al, 2001). Further, the demand 

studies refocus on the short-run where some studies consider stationarity to test 

arbitrage or price behaviour and then seem to forget this when price is used with a 

demand curve (see the discussion in Hunter and Ioannidis, 2001). Furthermore, 

Buccirossi (2006) found in micro based theoretical models that some changes in 

assumptions could show the finding or  not finding of parallel pricing could be related 
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to competitive behaviour. The paper is not looking at the long-run or at econometric 

time series.  

  

This leads to the proposition that the observation of arbitrage gives rise to a broad 

market and the finding that log prices cointegrate or price proportions are stationary is 

consistent with this proposition. The method may also be corrected for the existence 

of ARCH. It is also intended to apply alternate methods to Forni that are robust to 

misspecification to confirm our findings. That is panel methods such as the test due to 

Hadri (2000). The Hadri test is seen as not being sensitive to non-normality and can 

be corrected for heteroscedasticity, it is also optimal when N is small, T>50 and with 

a variance ratio exceeding, 0.1. 

1.5 Stationarity 
 

From the econometrician’s point of view it is not a main target as to which fitted 

model to choose but it is important to find a model that shows a relationship which 

continues long enough to be useful (David F. Hendry and Katarina Juselius, 2000). 

Therefore forecasting based on non-stationary data using the OLS estimator is not 

reliable for long-term analysis and it can relate to spurious results.  

 

Figure1-3 shows the time series of the weekly gasoline price in eight oil regions in 

the US from the first week of May 1993 to first week of May 2010 on a log scale, and 

that suggests the series for all intents and purposes follow a random walk. Therefore 

it might be possible the non-stationarity of data can be removed via the finding of 

cointegration. If as seems possible from the figure of the series gasoline price appear 

to follow a similar pattern of behaviour which suggests that they all follow some form 
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of common trend in the gasoline market. The log of weekly spot prices for gasoline in 

West Coast, Central Atlantic, East Coast, Gulf Coast, Lower Atlantic, Midwest, New 

England, Rocky Mountains are represented by PWC, PCA,  PEC, PGC, PLA, P MW, PNE, 

and PRM, and they are computed in their natural log form. As gasoline is seen as a 

homogeneous product then gasoline driven between different geographical regions 

follows the same prices. A main concern of our study is whether these price 

differentials (the log of one price subtracted from another) are stationary and the 

relations stable over time. 

 

One problem with some of the earlier analysis is that it purely dealt with 

contemporaneous correlations and that ignores lagged relations. If weekly data are 

considered and the log price related to P1 follows a random walk, then ΔP1t is serially 

uncorrelated, but the log price P2 with the lag order of w weeks from P1 can be 

correlated. If ΔP2t = ΔP1t-k this leads to a relation between prices but not the 

contemporaneous correlation between ΔP2t and  ΔP1t. So if it is necessary to consider 

the analysis for a longer lag of w weeks, then it is better to focus on price series in the 

long-run.  
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Figure 1-3- Plot of log price in CA, EC, GC, LA and MW, NE, RM, and WC 

 
 

 

Correlation and Granger causality analysis are based on prices that are co-stationary, 

which means the correlation changes over time and so the sample correlation is not 

good enough to yield a population analysis. As a result we apply the stationarity 

analysis and if the observed data are I(1) then we apply a cointegration analysis. 

Figure 1-4 show 28 possible equations for differentials in log prices in different 

regions of the US: West Coast (WC), Central Atlantic (CA), East Coast (EC), Gulf 

Coast (GC), Lower Atlantic (LA), Midwest (MW), New England (NE), and Rocky 

Mountains (RM). 
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Figure 1-4- Plot of log price differential in CA, EC, GC, LA, MW, NE, RM, WC 

 

Note: above Figure representing the log differential in prices of gasoline in CA, EC, GC, LA, MW, 

NE, RM, WC; Y1= log (PCA)- log (PEC), Y2= log(PCA)- log (PGC ), Y3= log (PCA)- log (PLA), Y4=log 

(PCA)- log (PMW), Y5= log (PCA)- log (PNE),  Y6= log( PCA)- log (PRM), Y7= log (PCA)- log (PWC),  Y8= 

log (PEC)- log (PGC), Y9= log (PEC)- log (PLA), Y10= log (PEC)- log (PMW), Y11= log( PEC)- log (PNE), 

Y12= log (PEC)- log (PRM) , Y13= log( PEC)- log( PWC), Y14= log( PGC)- log (PLA), Y15= log (PGC) log- 

log( PMW), Y16= log( PGC)- log (PNE), Y17= log (PGC)- log (PRM) , Y18= log ( PGC)- log( PWC), Y19= log 

(PLA)- log (PMW), Y20= log( PLA)- log (PNE), Y21= log (PLA)- log (PRM), Y22= log (PLA)- log ( PWC), Y23= 

log (PMW)- log (PNE ), Y24= log (PMW)- log (PRM), Y25= log ( PMW)- log (PWC), Y26= log (PNE)- log 

(PRM), Y27= log (PNE)- log (PWC), Y28= log (PRM)- log (PWC)  ; Where PCA, PEC, PGC, PLA, PMW, PNE, 

PRM, PWC  is price of gasoline in Central Atlantic, East Coast, Gulf Coast, Lower Atlantic, Midwest, 

New England, Rocky Mountains and West Coast. 

 

1.6 Lag Selection and the Correlogram related to the ADF test 
 

Forni (2004) estimated the ADF test with 4 and 8 lags and the KPSS test uses 

truncation lags for kernels of 8 and 16 periods for all the price series. Whereas in this 

study the autocorrelation function (ACF) is investigated to determine the lag order of 

each series to best define the order of the ADF tests and the lag truncation for the 

non-parametric methods. The first differences of the price differential in the different 
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regions of the US are analysed using up to 60 lags.
3
 If the empirical analysis includes 

too many lags that will cause the estimates to be inefficient and consequently increase 

the standard errors, and if the underlying distribution is not normal that would give 

rise to larger than usual critical values. However estimation with too few lags would 

result in inconsistent coefficient estimates in the proposed model.  

 

Given the nature of the data, they are not likely to be simple IID processes. In the 

case of the same q lag order
4
 for all of price proportions: q1, q2, q3, …,qn . If q1,= q2= 

q3 =…=qn this implies the same order of the autoregressive process relates to each 

test model and a common process relates to all the series. Otherwise, it would be 

possible to consider an average of all lag orders (q
-
); this indicates that on average the 

analysis is correct and this suggests similar outcome to the t-bar test of Im et al 

(2003). Otherwise, one can consider q* as a selected lag where q*=Max(qi) for 

i=1,2,3, …, n. A key concern here is for the t statistic to be well defined and the 

efficiency of the estimator of the coefficient involved. The way in which this may 

happen and for which lag selection is also important when these series are pooled 

together; a process often seen as improving the power of these tests.  

 

The data is also non-normal and this implies any test statistic computed has a broader 

distribution with the exception of degenerate distributions, for example the Cauchy or 

Student’s t distribution with one degree of freedom as the variance does not exist and 

this is not amenable to conventional inference. Therefore one may consider the t 

statistic with for example with a tail probability of 2.5% being related to a point on 

                                                 
3
 As the data are weekly and there are 52 weeks in a year it is important to consider lags between 52 and 60. 

4
 q is a particular lag order for all of the n price differentials. 
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the distribution of 1.96 more likely having with these distortions a value of 3.5. The 

suggestion being that conventional inference applied at the 5% level may give rise to 

the inclusion of more lags than required. 

 

One process to capture this might be to set a critical value beyond what is  

Conventionally considered such as 1% with the intention of taking account of the 

possibility that inference is broader than that conceived by a strict application of the 

conventional approach. Another way of motivating this is that as our sample increases 

then the sample estimates may converge to their population values and in the limit 

this may become degenerate. Hence, with very large samples the distribution 

collapses to a point and for a fixed critical value it becomes impossible to not reject 

the null.   

 

One interpretation is that this is a trimming or truncation procedure. However, the 

problem with selecting broader than usual inference is that it may have the reverse 

effect. It could trim short ordered lags without affecting the inclusion of the extreme 

lags. To this end a flexible strategy is applied and this relates to the Bonferroni 

principle. In this context we apply the  
 

 
  critical value to a sequence of Box-Pierce 

test statistics. So the critical value may be selected to reduce the joint rejection region 

for a sequence of tests. In this context we apply this approach to a sequence of Box-

Pierce test statistics (Davidson and MacKinnon, 2004). Hence, the first lag is to be 

tested at the conventional 5% level and shorter lags will be more likely to be included 

than when simply testing all lags at the 1% level. The second lag is tested at the 2.5% 

level after 5 lags the procedure is the same as the test at the 1% level, but 
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subsequently tests will be applied at an increasingly stricter level. Hence, by the 10
th 

lag the test is applied at the 0.5% level. The procedure keeps the short order lags, but 

is increasingly likely to eliminate the longer lags and is thus less likely to be sensitive 

to the impact of non-normality or autoregressive conditional heteroscedasticity 

(ARCH). 

 

The Q-statistic
5
 is evaluated and then the sequence of tests applied to a ΔQ statistic. 

The appropriate p-values are computed for ΔQ using the tail distribution estimator in 

Ox Metrics (Doornik and Hendry, 2009). It follows that when Q follows a χ
2
 

distribution with i degrees of freedom, then:  

2

11 ~  iii QQQ  

By applying the above strategy the lag orders are selected for all the price 

differentials with an overall rejection region of 5%. In the first case  y1(i) with (i) the 

lag order so then i=14 and subsequently: y2(11), y3(9), y4(25), y5(6), y6(20), y7(9), 

y8(11), y9(11), y10(25), y11(6), y12(20), y13(9), y14(23), y15(16), y16(11), y17(1), y18(24), 

y19(16), y20(9), y21(20), y22(16), y23(25), y24(16), y25(20), y26(13), y27(10) and y28 (25).  

 

We have applied unit root tests with two criteria for the lag length: individually 

selected lag lengths on y1, y2,…, y25 and with an overall maximum lag length of q=25. 

1.7 Lag Selection for KPSS Test 
 

Stationarity is referred to as mean reversion and how reversion to mean is observed in 

response to the data depends on the number of observations. However in this study 

when considering 900 observations graphically they may appear to return to mean 

                                                 
5 The Q-statistics used for multiple significance testing across a number of means.  
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more frequently than would appear usual for a non-stationary series. Observing drift 

and a stochastic trend in the series suggests that the non-stationary null may seem 

likely and the reverse is appropriate when the data is differenced and differenced data 

frequently returns to mean. However, the performance of a parametric test such as 

the ADF test is sensitive to the model within which it is framed
6
. The ADF critical 

values are not sensitive to the lag order of the time series model in which they are 

embedded just the sample so the simplification of the model by excluding 

intermediate lags does not impact the asymptotic critical value, but may improve the 

efficiency of the estimation and alter the subsequent results.  

 

If the ADF and KPSS tests are compared, then the ADF is usually defined on a first 

differenced variable whose dynamic will be shorter than is the case for the non-

transformed data especially when it is defined by a random walk. However in 

addition to the null of the KPSS being stationarity, the numerator of the test statistic 

includes squared cumulated residuals. The statistic is consistent when scaled by an 

appropriate measure of the long-run variance and this relates to a residual that in the 

simplest form of the test simply corrects for the mean
7
. However, these residuals may 

be quite persistent as they are not differenced. Hence, the lag in the ADF test cannot 

be an indication of the lag truncation in the KPSS test and the test is likely to be 

incorrect when the lag truncation is too short
8
. This may be further complicated when 

the series exhibits near integrated volatility as may occur with financial data.  

                                                 
6The ADF test may be sensitive to initial values and Professor Robert Taylor has suggested recursive demeaning 

of the data is more appropriate than a simple mean correction. Non-normality may also be important and to this 

end there is evidence on the wild bootstrap while Beirne, Hunter and Simpson (2007) suggest that White standard 

errors may be robust to simple non-iid errors.  
7 The long-run variance need to have enough lags to include lags truncation that may reflect on autoregressive 

(AR) process or Moving Average (MA) process that in the limit is I(1).   
8 The shorter lag truncation in the KPSS test will result in inappropriate long-run variance estimation and 

consequently an inconsistent test.  
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When a comparison is made between the nature of the dependent variable used in 

the tests of stationarity, the ADF test analyses the problem in terms of differences, 

even though the model may be reframed in levels and the difference eliminates a 

primary reason for the persistence in the data. While the semi-parametric method 

captures none of the autoregression and uses the autocorrelation function as an 

alternative way to characterise the autoregression to the AR structure that 

underlies the model used by the ADF test. Implying that when the test operates on 

the levels data that even for moderately autoregressive series a longer than 

anticipated lag structure may be required to capture the autoregressive behaviour 

that the ACF is attempting to characterise. Yule (1925) showed that the random 

walk exhibits linear declining autocorrelation structure, such persistence in the 

empirical ACF is a sign of strong autoregression. The usual significance of 

individual terms relates to the standard errors and this may be associated with 

volatile and non-normal data. Ordinarily the test statistic is normally distributed, 

and one would consider around two or in large samples 1.96 times the standard 

error for significance. However, referring to the data in this study we might apply 

the effective limit of the standard normal (3 × S.E.), or in the stationary world 

almost any statistic as significant at the 3.5 times standard error (3.5 × S.E.)
9
. 

Hence the correct lag truncation ought to be derived from the last significant 

terms in the ACF. 

 

Often when semi-parametric corrections are applied as is the case with the 

Newey-West robust standard errors then the lag truncation is set at T/3. However, 

applying such a rule coherently with an evolving sample would not be consistent 

                                                 
9 This follows from the oral econometric tradition at the LSE.  
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as the truncation on the KPSS test cannot grow at a rate T. However, T/3 could be 

applied to a fixed sample and when the sample is extended, then the truncation lag 

must evolve more slowly (T/3, T/4 …). It is also useful to consider the most 

appropriate approximation method. In this study for a large and fixed T=901, T/3 

is an upper limit therefore we select lag truncation (p) less than T/3 and to see 

how the test statistic behaves we applied KPSS (p) where p= 25, 50, 75, 100, 125, 

150, 175, 200, 225, 250, 275 up to T/3.  

1.8 Test of Unit-root and Stationarity 
 

The stationarity testing procedure employed in this research relates to a cointegration 

study as the analysis is applied to log price differentials across the US gasoline 

market. Three different methods for confirming the price behaviour in the US 

gasoline market have been applied below: Augmented Dickey Fuller (ADF) test, 

Dickey-Fuller GLS (ERS) test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. 

Prior to undertaking this analysis it is shown from Table 0 in Appendix A that the 

underlying prices are all non-stationary (I(1)) so it is possible from the definition of 

cointegration that a linear combination of I(1) series may in combination be 

stationary (I(0)). Next these tests are applied to log price differentials. Cointegration 

and causality are considered in more detail in the next chapter. 

1.8.1 Augmented Dickey Fuller (ADF) test 

 

Stationarity analysis of log price differentials in the US Gasoline market by 

Augmented Dickey Fuller (ADF) test (Dickey and Fuller (1979), uses a parametric 

time series regression to eliminate the serial correlation. If one considers first a single 

variable and then this involves estimating a time series model: 

tkt
l
k kt yy   10 .   (1-1) 
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If the variable y (assumed to be in logarithmic form) is stationary, then: 

11  
l
k k . 

This test is a joint test that relies on the efficient estimation of all the parameters ρ. To 

improve the power and performance of this test we transform (1-1) into an equation 

in differences and levels form: 

tkt
l
k kt yy   


1
10 .  (1-2) 

If we test whether y is a stationary variable we are testing the proposition that: 

011  
l
k k . 

The latter test is straightforward to undertake as it turns out to be a t-test on the 

parameter  in (1-2). We make the conventional regression assumptions that the 

model is well formulated: 

E(εt) = 0. 

An auxiliary assumption to this is that the errors are uncorrelated or there is no serial 

correlation: 

E(εt εt-s) = 0 for i=1…j. 

Hence, correct specification of the models (1-1) and (1-2) is important for the correct 

formulation of the Dickey Fuller or Augmented Dickey Fuller Test, under the null of 

non-stationarity: 

H0: γ=0. 

Notice that under the null the model is a time series model purely in terms of 

differences:   

tkt
l
k kt yy   


1
10   (1-3)   
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The related null implies that the first difference of the series is stationary but the level 

of the series is non-stationary and contains a unit root. Notice that under the null 

when =0, this is an AR(l-1) model in terms of the differences, where the lag length 

of this AR model is the order of the Augmented Dickey Fuller test (ADF(l-1)). 

Notice, for the purposes of detecting the lag order of the ADF test we only need to 

“statistically identify” the time series model associated with the equation (3) or the 

model in differences. To determine the lag order of the difference model (l-1) the 

correlogram of the data in differences is investigated (that is the ACF and also the 

PACF (partial ACF). An ACF pattern that is smooth and declining or cyclical is 

likely to mean that the series are autoregressive Burke and Hunter (2005). To 

determine the lag order of an autoregressive process then we look at the most 

significant lag coefficient in the PACF, that involves looking at the significance of 

the last lag in an i
th

 order AR model for a sequence i=1,…l-1.   

The alternative hypothesis is: 

H0: γ<0 

Under the alternative when  is significant this implies yt is stationary. As long as the 

coefficient is appropriately negative, then the series is stationary and the process that 

explains the series is an AR(p) process. If the data are stationary, then equation (1-1) 

is well formulated. 

 

Starting from the proposition that the log price data is non-stationary then it is 

possible that the log price differential is stationary. Therefore, when we apply an 

ADF test to y and this is a differential in log prices, then the dependent variable 

associated with this test is in differences as the model estimated is: 
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1

0 1 1 1
( ) ( ) ( )

l

it jt it jt k it k jt k tk
p p p p p p   



   
         .  (1-4) 

Notice this model is correctly formulated whether we reject the null or the alternative 

of the test. Hence, when we test whether the price differential is stationary (y), we 

determine the lag order of equation (1-2) by analysing the correlogram of the 

difference in price differential (y) to determine the lag order of the ADF test l-1.  

By applying the ADF test on the named series we investigate, it is found that all the 

series apart from Y8 are stationary. 

1.8.2 Dickey-Fuller GLS (DFGLS) test 

 

According to Elliot, Rothenberg, and Stock (1996) the ADF regression including a 

constant, or a constant and a linear time trend can be adjusted by extracting the effect 

of these variables via a preliminary regression. This gives rise to the adjusted model:  

t
d

kt
l
k k

d
t

d
t yyy   



1
11 .   (1-5) 

Comparing this equation with (1-4) then yt has been replaced by the GLS mean 

corrected and/or de-trended variable    
 . In the DFGLS test we test the series under 

the null hypothesis of the unit root of the data and this result is presented in the table 

below. It suggested that the test is more efficient as it eliminates the nuisance 

parameters associated with the mean and intercept and also takes account of initial 

values that might impact the test (Beirne et al, 2007). 

1.8.3 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

 

In this research the observed data are regional data and the concern would be to 

estimate the problem under the null of efficiency for the gasoline market in US. The 

KPSS test is for analysing the stochastic properties of series and testing stationarity of 

the hypothesis by evaluating the problem under null of stationarity against the 
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alternative of non-stationarity. So the price differential yt is stationary under the null 

and as the test is derived under the null then it is suggested that this will make it more 

likely than under the ADF test to not reject the proposition that the series are 

stationary. This will depend on the sample selected and the nature of the data. 

 

KPSS Lagrange Multiplier statistic is based on the residuals from the following 

regression between yt and an independent variable xt: 

yt= θxt +et.  

The KPSS, LM statistic is computed using the following relation below: 

2 2

1

*2

1
T

itt
i

i

T S
LM




    

2*
i  is the variance estimated from each individual sample and each partial sum of the 

residuals is S e
it ijj

t


 .

1
To account for serial dependence a correction is applied to 

each cross section variance:  

   
i o s

T

s
x x*2 ( ) ( ) . 





2 1

1   

Where, 0 is the constant variance, x=s/l+1 is the bandwidth, l is the lag truncation 

and 
s itt s

T

it s
T

e e
  

1
1

.Here the Bartlett, Parzen and Quadratic Spectral 

functions are applied with different bandwidths. 

1.9 Analysis of the tests under the alternative and the null of 

stationarity 
 

It can be seen from Table 1-1 and1-2, the null hypothesis of the unit-root in ADF and 

DF-GLS tests on most log differential prices has been rejected, and that confirms the 

existence of stationary combinations at the 5% significance level. This is in contrast 

to the results of Forni (2004) that were much more mixed. Here the suggestion is that 
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it indicates that the US regions define a broad geographic market so shocks affecting 

the price differential in the gasoline market have an effect across almost all of the 

regions. These results suggest that the market is relatively efficient as out of 28 tests 

it can be observed from Table 1-1 that only in one case the Gulf Coast and the Lower 

Atlantic can stationarity be rejected at the 5% level.  

 

However, the rejection of stationarity occurs under the null of stationarity and the 

consistency of the KPSS test relies on the correction evaluation of the long-run 

variance, which is sensitive to the truncation lag
10

. Here when the KPSS test is 

significant, then the null of stationarity cannot be accepted. Further consideration of 

the KPSS test results leads to the observation that the null cannot be rejected at the 

5% level in the case of Central Atlantic and Mid-West, Central Atlantic and West 

Coast, East Coast and Mid-West, Gulf Coast and West Coast, Mid-West and West 

Coast, New England and the Rockies, and New England and West Coast.  

 

Concern over lag truncation was previously emphasised so to avoid the possibility 

that these test results are inconsistent the test is investigated with a range of lags.
11

 As 

we mentioned in section 1.7 the lag in the ADF test cannot be an indication of the lag 

truncation in the KPSS test. Hence, the results for the KPSS test with longer lag 

truncations
12

 are presented in Table 3 and the results identify that all price 

combinations with 275 lags (<T/3) fail to reject the null of stationarity at the 5% 

level. 

                                                 
10 KPSS test applied on same lag order as ADF and DF-GLS tests.  
11 See section 1.7.  
12KPSS (p) tests with lag truncations of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325 (T/3) 
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From the table 1-2, the finding of stationary for the ADF test is supported in all cases 

by not rejecting the null of the KPSS test except even up to the larger lag truncation 

(275) with Y14 that is the price proportion between the Gulf Coast and Lower 

Atlantic.  

 Compared with Forni (2004) the almost over whelming finding of stationarity for the 

ADF test is supported in the all of cases by not rejecting the null of the KPSS test 

with larger lag truncation.  
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Table 1-1- Summary of ADF tests, DF-GLS tests& KPSS tests on the log 

differential of gasoline prices. (With intercept and no trend) 

 PLCA PLEC PLGC PLLA PLMW PLNE PLRM PLWC 

PLCA  -3.724537** 

(-3.706698**) 

[3.452390**] 

-6.171970** 

(-1.990969*) 

[0.91515**] 

-4.989478** 

(-4.707481**) 

[4.902073**] 

-4.928462** 

(-2.335932*) 

[ 0.446911] 

-3.829677** 

(-3.747953**) 

[5.438980**] 

-4.541653** 

(-3.167151**) 

[1.165679**] 

-5.441773** 

(-5.411565**) 

[0.267441] 

PLEC   -4.080439** 

(-1.077737) 

[ 4.317563**] 

-4.648051** 

(-3.939956**) 

[2.451975**] 

-4.721538** 

(-2.055378*) 

[0.182702] 

-3.700019** 

(-3.640446**) 

[7.843325**] 

-4.011872** 

(-3.121466**) 

[2.022444**] 

-4.808598** 

(-4.800208**) 

[0.749265*] 

PLGC    -2.222776 

(-0.303123) 

[3.431025**] 

 

-3.360986* 

(-2.815583**) 

[1.681035**] 

 

-5.177154** 

(-1.868563) 

[ 0.861199**] 

 

-6.013833** 

(-5.089623**) 

[4.908352**] 

 

-3.784865** 

(-2.275466*) 

[0.378705] 

 

PLLA     -3.870944** 

(-2.352104*) 

[0.962882**] 

-3.838434** 

(-3.636543**) 

[4.868950**] 

-3.917549** 

(-3.512071**) 

[2.318920**] 

-4.068736** 

(-4.051737**) 

[ 0.921917**] 

PLMW      -3.805266** 

(-2.132938*) 

[1.493587**] 

-4.430335** 

(-4.251056**) 

[2.443409**] 

-4.741388** 

(-3.287946**) 

[0.253900] 

PLNE       -5.436560** 

(-3.795707**) 

[0.365536] 

 

-5.108161** 

(-5.030299**) 

[ 0.542706] 

PLRM        -5.814599** 

(-4.529151**) 

[1.036716**] 

PLWC         

Note: Values without the bracket presents ADF/OLS t-statistic, values in ( ) shows DF-GLS/OLS t-statistic, and 

values in [ ] indicates KPSSLM-statistic. ADF Test Critical value at 1% is -3.437483, at 5% is -2.864578. DF-

GLS test Critical value at 1% is -2.567566, at 5% is -1.941180. KPSS test Critical value at 1% is 0.739, at 5% is 

0.463. ** Significant at the 99% confidence level, and* Significant at the 95% confidence level. The bold 

number denotes that the series are stationary. 
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Table 1-2- Summary of ADF tests, DF-GLS tests and KPSS tests on the log differential of gasoline prices 

Log 

price 

differ

ential

s  

ADF DF-

GLS 

KPS

S 

(25)  

KPS

S 

(50)  

KPS

S 

(75)  

KPS

S 

(100)  

KPS

S 

(125)  

KPS

S 

(150)  

KPS

S 

(175)  

KPS

S 

(200)  

KPS

S 

(225)  

KPS

S 

(250)  

KPS

S 

(275)  

KPS

S 

(300)  

KPSS 

(325) 

Y1 -3.72** 

 

-3.71** 

 

2.35 1.41 1.00 0.81 0.67 0.59 0.52 0.47 0.44 0.41 0.39 0.37 0.36 

Y2 -6.17 -1.99* 0.63 0.47 0.37 0.34 0.30 0.28 0.25 0.23 0.224 0.219 0.217 0.216 0.215 

Y3 -4.99** 

 

-4.71** 1.98 1.21 0.86 0.70 0.59 0.51 0.46 0.42 0.39 0.37 0.35 0.34 0.33 

Y4 -4.93** 

 

-2.33* 0.45 0.38 0.31 0.30 0.28 0.27 0.259 0.258 0.261 0.27 0.28 0.30 0.31 

Y5 3.83** 

 

-3.75** 1.76 1.03 0.74 0.60 0.51 0.46 0.41 0.38 0.36 0.34 0.33 0.32 0.31 

Y6 -4.54** 

 

-3.17** 1.05 0.75 0.59 0.54 0.51 0.49 0.47 0.45 0.44 0.43 0.41 0.40 0.38 

Y7 -5.44** 

 

-5.41** 0.16 0.13 0.124 0.116 0.11 0.108 0.105 0.107 0.11 0.117 0.123 0.127 0.13 

Y8 -4.08** 

 

-1.08 2.33 0.137 0.99  0.80 0.68 0.60 0.54 0.50 0.46 0.44 0.42 0.40 0.38 

Y9 -4.65** 

 

-3.94** 1.49 0.92 0.67 0.55 0.47 0.41 0.37 0.34 0.32 0.31 0.30 0.29 0.288 

Y10 -4.72** 

 

-2.05* 0.18 0.15 0.12 0.11 0.107 0.104 0.102 0.105 0.110 0.12 0.13 0.14 0.16 

Y11 -3.70** 

 

-3.64** 2.50 1.38 0.96 0.75 0.62 0.54 0.48 0.44 0.40 0.38 0.36 0.35 0.33 

Y12 -4.01** 

 

-3.12** 1.77 1.14 0.85 0.72 0.63 0.57 0.52 0.49 0.46 0.43 0.41 0.39 0.38 

Y13 -4.81** 

 

-4.80** 0.41 0.31 0.27 0.24 0.22 0.21 0.20 0.19 0.187 0.187 0.187 0.187 0.187 

Y14 -2.22 

 

-0.30 3.19 1.74 1.21 0.95 0.79 0.69 0.61 0.56 0.51 0.48 0.45 0.43 0.41 

Y15 -3.36* 

 

-2.82** 1.23 0.77 0.58 0.47 0.40 0.35 0.32 0.30 0.29 0.28 0.27 0.27 0.27 

Y16 -5.18** 

 

-1.87 0.53 0.34 0.26 0.23 0.20 0.18 0.17 0.16  0.16 0.16 0.15 0.16 0.16 

Y17 -6.01** 

 

-5.09** 0.68 0.50 0.38 0.34 0.34 0.28 0.26 0.25 0.24 0.24 0.23 0.23 0.23 

Y18 -3.78** 

 

-2.27* 0.37 0.26 0.22 0.20 0.18 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Y19 -3.87** 

 

-2.35* 0.73 0.50 0.37 0.32 0.28 0.25 0.24 0.23 0.22 0.22 0.22 0.22 0.22 

Y20 -3.84** 

 

-3.64** 2.26 1.27 0.90 0.71 0.59 0.51 0.46 0.42 0.39 0.37 0.35 0.34 0.33 

Y21 -3.92** 

 

-3.51** 2.00 1.25 0.91 0.75 0.64 0.57 0.51 0.47 0.44 0.41 0.39 0.37 0.36 

Y22 -4.07** 

 

-4.05** 0.70 0.43 0.40 0.35 0.31 0.28 0.25 0.24  0.23 0.22 0.22 0.22 0.22 

Y23 -3.80** 

 

-2.13* 1.17 0.81 0.61 0.52 0.46 0.41 0.38 0.36 0.35 0.35 0.34 0.34 0.33 

Y24 -4.43** 

 

-4.25** 1.95 1.38 1.00 0.82 0.70 0.62 0.56 0.52 0.49 0.46 0.43 0.41 0.39 

Y25 -4.74** 

 

-3.29** 0.25 0.23 0.23 0.21 0.20 0.20 0.20 0.20 0.21 0.21 0.21 0.21 0.21 

Y26 -5.44** 

 

-3.80** 0.28 0.21 0.17 0.17 0.18 0.19 0.22 0.25 0.30 0.35 0.39 0.41 0.41 

Y27 -5.11** 

 

-5.03** 0.34  0.27 0.24  0.22 0.21 0.21 0.21 0.22 0.23 0.43 0.25 0.25 0.25 

Y28 -5.81** 

 

-4.53** 0.97 0.83 0.69 0.63 0.57 0.54 0.49 0.47 0.44 0.24 0.41 0.40 0.39 

Note:Y1= log (PCA)- log (PEC), Y2= log(PCA)- log (PGC ), Y3= log (PCA)- log (PLA), Y4=log (PCA)- log (PMW), Y5= log (PCA)- log 

(PNE),  Y6= log( PCA)- log (PRM), Y7= log (PCA)- log (PWC),  Y8= log (PEC)- log (PGC), Y9= log (PEC)- log (PLA), Y10= log (PEC)- log 

(PMW), Y11= log( PEC)- log (PNE), Y12= log (PEC)- log (PRM) , Y13= log( PEC)- log( PWC), Y14= log( PGC)- log (PLA), Y15= log (PGC) 
log- log( PMW), Y16= log( PGC)- log (PNE), Y17= log (PGC)- log (PRM) , Y18= log ( PGC)- log( PWC), Y19= log (PLA)- log (PMW), Y20= 

log( PLA)- log (PNE), Y21= log (PLA)- log (PRM), Y22= log (PLA)- log ( PWC), Y23= log (PMW)- log (PNE ), Y24= log (PMW)- log (PRM), 

Y25= log ( PMW)- log (PWC), Y26= log (PNE)- log (PRM), Y27= log (PNE)- log (PWC), Y28= log (PRM)- log (PWC)  ; Where PCA, PEC, 
PGC, PLA, PMW, PNE, PRM, PWC  is price of gasoline in Central Atlantic, East Coast, Gulf Coast, Lower Atlantic, Midwest, New 

England, Rocky Mountains and West Coast. 
ADF test critical value at 1% level is -3.437483 and at 5% level is-2.864578. DF-GLS test critical values at 1% level is -

2.567566, at 5% level is -1.941180. The KPSS test critical value at 1% level is 0.739, at 5% is 0.463. ** Significant at the 99% 

confidence level, and* at the 95% confidence level. The bold number denotes that the series are stationary. 
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Forni (2004) could not find the same consistency of results, but with many fewer 

observations observed at a lower frequency. So unlike Forni (2004) these results 

appear roughly consistent with the finding of a broad market. Though, the KPSS test 

is often considered more appropriate for this type of analysis as the null of 

stationarity assumes that the firm is assumed to be efficient and this corresponds with 

natural justice when companies are analysed. However the KPSS test performs poorly 

when the series are highly autocorrelated. Caner and Killian (2001) suggested that the 

KPSS test is not powerful especially in the light of possible moving average 

behaviour when compared with the ADF and DF-GLS tests.  

 

The stationarity and unit-root test give broadly confirmatory findings except only in 

one case, the Gulf Coast and the Lower Atlantic which cannot reject the unit-root 

hypothesis at the 5% level using ADF and DF-GLS tests contrary with KPSS results 

with 275 lags at 5% level.  

 

Hence A further extension to the Forni method might be to consider the panel tests 

due to Im et al (2003) and Hadri (2000). One reason for this might be to investigate 

the validity of the KPSS test and to this end the small sample corrected panel test due 

to Hadri (2000) is applied. It has been suggested that the panel case may yield 

improvements, because there may be benefits to pooling the data in the case where 

the series are strongly related and panel methods have also been applied by Giulietti 

et al (2010) to electricity prices for the UK. 
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1.10 Panel Tests of the Non-Stationary Null and Coherent 

Univariate Test 
 

Until here the process of Forni (2004) was followed and adapted, but this gives rise to 

twenty eight price combinations. In this section the problem is limited to a panel 

problem and a similar set of univariate tests. In the context of a system of error 

correction models then the analysis considers n price equations as a VAR or as single 

series. However, Forni (2004) has suggested that univariate tests are more appropriate 

for testing the arbitrage proposition. In particular, unit-root tests are effective as they 

impose the restriction that the intercept is zero and the slope coefficient unity. Neither 

the VAR nor the Engle-Granger procedure simultaneously tests for cointegration and 

the restrictions on the coefficients. Hence, testing long-run arbitrage and unit-root, 

cointegration can be unified.  

 

 A further issue that arises in the context of testing unit-root of real exchange rates 

relates to cross rates and triangular arbitrage (Smith and Hunter, 1985). This follows 

from selecting alternative base currencies to determine whether the real exchange rate 

is stationary. In the exchange rate case the sequence of results that arise from the 

underlying dynamic exchange rate models are dependent on each other when the 

different models are coherent (Hunter and Smith, 1982). A similar issue arises when 

testing unit-root of price proportions using equivalent dynamic models or might be 

viewed as choosing a different region to act as the base for comparison. Hence, 

½N(N-1) price proportions relate back to N underlying price equations.  When 

compared with the exchange rate where all rates are in dollars, the case of 

dependency here is less obvious. 
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Figure 1-5- Map of US regional gasoline infrastructure
13

 

 

To this end it has been decided to consider a smaller sub-set of prices, and to this end 

use further information to determine inter-linked chains of price series using the 

information associated with the map given in Figure 1-5. 

The remaining analysis is undertaken paying attention to the US regional gasoline 

infrastructure and as a result the following pairs of log price differentials are selected:  

X1=log(PNew England - PMid-West), X2=log(PMid-West - PCentral Atlantic), X3=log(PMid-West - 

PEeast-Coast), X4=log(PLower Atlantic - PGulf Coast), X5= log(PRocky Mountain - PWestCoast), 

X6=log(PMid-West - PGulf Coast), X7= log( PGulf Coast - PRocky Mountain), X8=log(PGulf Coast - 

PWest Coast), X9= log(PMid-West - PRocky Mountain).  

 

                                                 
13

The above diagram was obtained with permission of the National Association of Convenience Stores, from the 

2012 NACS Retail Fuels Report. 
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Figure 1-6 shows gasoline log price differential in different region of US based on the 

regional infrastructure. It would appear that for X1, X2, X3, X6 and X9 are mean 

reverting and seemingly stationary. While X4 and X5 seems to exhibit an upward and 

a slight downward trend and as a result from visual inspection might appear non-

stationary. X7 and X8 do not have any apparent trend, but the behaviour may again 

from visual inspection appear closer to a random walk without drift and thus are 

potentially non-stationary. However, this will need to be verified via formal tests 

under either the non-stationary or stationary null. This is augmented by panel 

methods that pool the data. 

 

Figure 1-6- Plot of gasoline log price differential in different region of US based 

on the regional infrastructure 
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To further evaluate the argument on the above section the ADF, DF-GLS and KPSS 

test are applied to the log price differentials set out above and the related results 

revealed in Table 1-3. Using the same process as was presented in the previous 

section the following lag orders have been selected via inspection of the correlogram. 

The selected lag orders or the sub set of nine price differential series are as below for 

Xi (j) where (j) is the related lag order and: 

X1(25), X2(25), X3(25), X4(23), X5(20), X6(16), X7(20), X8(24), X9(16). 

 

Table 1-3- Summary of ADF tests, DF-GLS tests and KPSS tests on the log 

differential of gasoline prices (With intercept and no trend) 

Log 

price 

differe

ntial 

ADF/ 

OLS t-

statisti

c 

DF-

GLS/ 

OLS t-

statisti

c 

KPSS 

LM-

statisti

c 

KPSS 

(25 

lags) 

KPSS 

50 

lags) 

KPSS 

(75 

lags) 

KPSS 

(100 

lags) 

KP

SS 

(12

5 

lags

) 

KPS

S 

(150  

lags) 

KPS

S 

(175 

lags) 

KPS

S 

(200 

lags) 

KPS

S 

(225 

lags) 

KPS

S 

(250 

lags) 

KPS

S 

(275 

lags) 

KPS

S 

(300 

lags) 

KPSS 

(325 

lags) 

ARCH 

(1,1) 

F- 

statistics 

(P-value) 

 

X1(25) -3.80 * -2.53 * 1.04** 1.17 0.81 0.61 0.52 0.46 0.41 0.38 0.36 0.35 0.34 0.34 0.34 0.33 16.59** 

(0.00) 

X2(25) -4.93 * -2.34 * 0.41 0.45 0.38 0.31 0.30 0.28 0.27 0.26 0.26 0.26 0.27 0.28 0.30 0.31 7.49** 

(0.01) 

X3(25) -4.72 * -2.05 * 0.17 0.18 0.15 0.12 0.11 0.11 0.10 0.10 0.10 0.11 0.12 0.13 0.14 0.16 3.14 

(0.08) 

 

 

X4(23) -2.22 -0.30 2.87 3.19 1.74 1.22 0.95 0.79 0.69 0.61 0.56 0.51 0.48 0.45 0.43 0.41 0.04 

(0.84) 

X5(20) -5.81* -4.53* 0.89 0.97 0.83 0.69 0.63 0.57 0.54 0.49 0.47 0.44 0.43 0.41 0.40 0.39 0.03 

(0.87) 

X6(16) -3.36* -2.82* 1.23 1.23 0.77 0.58 0.47 0.40 0.35 0.32 0.30 0.29 0.28 0.28 0.27 0.27 0.54 

(0.46) 

X7(20) -5.21* -3.99* 0.63 0.68 0.50 0.38 0.34 0.30 0.28 0.26 0.25 0.24 0.24 0.23 0.23 0.23 0.14 

(0.71) 

X8(24) -3.78** -2.27* 0.32 0.37 0.26 0.22 0.20 0.18 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 15.74** 

(0.00) 

X9(16) -4.43* -4.25* 2.44 1.95 1.38 1.00 0.82 0.70 0.62 0.57 0.52 0.49 0.46 0.43 0.41 0.39 0.34 

(0.56) 

Note: ADF test critical value at 1% level is -3.437483 and at 5% level is-2.864578. DF-GLS test critical values at 

1% level is -2.567566, at 5% level is -1.941180. The KPSS test critical value at 1% level is 0.739, at 5% is 0.463. 

** Significant at the 99% confidence level, and* at the 95% confidence level. The bold concludes that the series are 

stationary. 
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According to the result in the table above The ADF and DF-GLS results suggest that 

all price differentials are stationary except X4thisimplies the combination of PLA and 

PGC is non-stationary by both types of tests. However when the KPSS test is applied 

with varies lag truncation considering the null of stationarity, in all cases using 275 

lags the null hypothesis is not rejected which indicates all series are stationary. Hence 

again, after considering smaller sub-set of prices by taking account of regional 

gasoline communication, in the case X4 the results from ADF and DF-GLS tests 

differing from KPSS results. 

 

As was mentioned above the KPSS test is believed to lack power (Caner and Killian, 

2001). It has been suggested that the panel case may be considered, as in the case of 

strongly related series there may be benefits to pooling the data. The size of a typical 

autocorrelation coefficient related to coefficient in the ADF test statistic suggests that 

the data are strongly autoregressive and this might not be consistent with the test 

result
14

.For further clarification we applied Panel unit-root and stationary tests. 

It is of interest to note that were the Bartlet correction applied to a single KPSS test, 

then the conclusions of the KPSS/Hadri test would be little altered. This should not be 

surprising as the correction is a small sample correction that should not be important 

when the sample across time is large. Bearing this in mind, the simulation results in 

Hadri (2000) suggest that power should not be an issue with a sample of T=900 

observations, though the power is reduced when N is small and also in response to the 

scale of the variance ratio. It would seem likely from the scale of the test results that 

the innate size of the variance ratio is not an issue here. 

 

                                                 
14All series are stationary except X4 
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First the Hadri panel stationarity test is applied to different pairs of log price 

differentials and the related analysis considered in more detail next. 

1.10.1 Hadri Panel Unit Root Test 

 

It is suggested that the inconsistency between the ADF and DF- GLS tests as 

compared with the KPSS test in the case of the Lower Atlantic and Gulf Coast might 

be as a result of the poor performance of the latter test. A further extension to the 

Forni method is to consider the panel tests of Im et al (2003) and Hadri (2000). 

Beirne et al (2007) give empirical support to the suggestion of Hadri that his test has 

good size properties when the time series exceeds 50 observations and their findings 

would concur that the test would not seem to be impacted by non-normality. The 

Hadri test is a correction of the KPSS LM test that also operates under the null of 

stationarity.  

 

Refocusing on the US regional gasoline infrastructure map on page 25, the Hadri test 

is applied to the following pairs: 

 Series X1 and series X2 

 Series X9 and series X7 

 Series X9 and series X6 

 Series X4 and series X8 

 Series X5 and series X8 

 

The null of stationary assumes that the data moves around a deterministic level: 

yit=  rit+  it .   (1-6) 
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Where t=1…T time, i=1…N cross section units and (1-6) implies the series is 

decomposed into random walk and stationary disturbance term: 

rit=  rit-1 + uit   

ri0 is unknown, the uit are iid across both countries and time and 
u

2 0 . The test takes 

the form: 

H0: =0  against  H1: >0. 

= 
u

2 2/ and under the null 
u

2 0 . 

Each panel equation has the form: 

yi = XiBi + ei    

Where, yi = [yi1…yiT], ei = [ei1…eiT] and Xi is a Tx1 unit vector or in the trend case 

includes both the unit vector and a trend. The LM test statistic under the null is: 

  
LM

N

T S
itt

T

i

i

N

 






1 1 2 2

1

1  *2

 
  


i

*2
is the variance estimated from each individual sample and each partial sum of the 

residuals is S e
it ijj

t


 .

1
To account for serial dependence a correction is applied to 

each cross section variance. Therefore:  

   
i o s

T

s
x x*2 ( ) ( ) . 





2 1

1
  (1-7)  

Where, 0= i

*2
, x=s/l+1 is the bandwidth, l is the lag truncation and 


s itt s

T

it s
T

e e
  

1
1

. 

Following Beirne et al the Truncated kernel is: 


T

x( ) 









1 for x < 1

0 otherwise

. 

The one preferred by Hadri (2000) is the Quadratic-spectral (QS):  
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The LM statistic is not distributed chi-squared under H0, but Hadri (2000) shows that 

the following finite sample correction follows a standard normal distribution in the 

limit:  

    N  (LMu  -  u) 

Zu   =    

  u 

Hadri shows that u=1/6, u
2
 = 1/45 and for T>50, the empirical size of the test is 

approximately 0.054 and with  in the range of [0.1,] the test has maximum power. 

Tests based on the Bartlett, Parzen and Quadratic-Spectral kernels in Table 5 below. 

A number of strategies can be followed to select the optimal bandwidth: optimizing 

on the maximum lag order for each pair. Hunter and Simpson (2001) set a bandwidth 

equal to the 3 to 4 times the maximum lag order of the ADF tests applied in their 

study, but that is based on quarterly data. Further based on the direction in Eviews it 

is suggested that it may be possible to use a bandwidth equal to the total number of 

observation. 

 

However, the Hadri panel stationarity test is applied first to different pairs of log price 

differentials and then to the 9 region pairs as a full panel. The Hadri test, whether it is 

for single or multiple regions, operates under the null of stationarity.
15

 Results for the 

Hadri test based on the Bartlett, Parzen and Quadratic-Spectral kernels
16

  are 

presented in Table 1-4 and 1-5.  

                                                 
15Focusing on the US regional gasoline infrastructure map on page 25, the Hadri test is applied to the following 

pairs: series X1 and series X2, series X9 and series X7, series X9 and series X6, series X4 and series X8, series X5 and 

series X8. 
16The Bartlett Kernel (BT) and Parzen (P) are: 
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Table 1-4- Hadri panel stationary test based on different bandwidth and kernel 

with individual intercept 

 Kernel t-statistics with 

max lag 

bandwidth I 

P-value t-statistics 

with max lag 

bandwidth II 

P-value t-statistics 

with long 

bandwidth III 

P-value 

 Bartlett 7.01801 0.0000 3.39543 0.0003 3.16228 0.0008 

X1(25)and 

X2(25) 

Parzen 7.97431 0.0000 4.28954 0.0000 1.67134 0.0473 

 Quadratic 

spectral 

6.15763 0.0000 2.77395 0.0028 4.54125 0.0000 

 Bartlett 12.3978 0.0000 6.36771 0.0000 3.16228 0.0008 

X9(16)and 

X7(20) 

Parzen 14.3860 0.0000 7.83900 0.0000 1.62509 0.0521 

 Quadratic 

spectral 

10.4138 0.0000 5.17141 0.0000 4.34528 0.0000 

 Bartlett 19.0721 0.0000 9.56826 0.0000 3.16228 0.0008 

X9(16)and 

X6(16) 

Parzen 21.7708 0.0000 11.3763 0.0000 1.68960 0.0456 

 Quadratic 

spectral 

16.2368 0.0000 7.84960 0.0000 4.19906 0.0000 

 Bartlett 7.99594 0.0000 3.51012 0.0002 3.16228 0.0008 

X4(23)and 

X8(24) 

Parzen 9.86467 0.0000 4.18272 0.0000 1.59771 0.0551 

 Quadratic 

spectral 

6.55805 0.0000 2.78203 0.0027 5.00252 0.0000 

 Bartlett 4.18928 0.0000 2.09300 0.0182 3.16228 0.0008 

X5(20)and 

X8(24) 

Parzen 4.93103 0.0000 2.41350 0.0079 1.63134 0.0514 

 Quadratic 

spectral 

3.39104 0.0003 1.66684 0.0478 5.66465 0.0000 

 Bartlett 6.14625 0.0000 2.53044 0.0057 3.16228 0.0008 

X3(25)and 

X6(16) 

Parzen 7.44649 0.0000 3.28497 0.0005 1.74157 0.0408 

 Quadratic 

spectral 

5.22775 0.0000 1.94076 0.0261 5.35815 0.0000 

 

X1(25), 

X2(25),X3(25), 

X4(23), 

X5(20),X6(16), 

X7(20), X8(24), 

X9(16) 

 

Bartlett 17.4965 0.0000 8.36028 0.0000 6.70820 0.0000 

Parzen 20.3252 0.0000 10.3208 0.0000 3.53917 0.0002 

Quadratic 

spectral 

14.8680 0.0000 6.78183 0.0000 9.75988 0.0000 

Note: The bold number denotes that the series are stationary at 5% level. 
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0 otherwise
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The test is compared with a one sided critical value at the 5% level of 1.64. However, 

in Hadri panel stationary test with individual intercept only with the Parzen kernel for 

the longest bandwidth we identified that in three cases (X9- X7, X4- X8 and X5- X8) 

the null of stationarity cannot be rejected. But the result of the Hadri test with 

individual intercept and linear trend indicates that in one case of X1- X2 the null of 

stationarity cannot be rejected. 

 

Considering US gasoline prices, cross-section independence is considered a critical 

assumption for the Hadri test so this method might not hold. According to Giulietti et 

al (2009) in the case of the potential cross-section dependency even with large T and 

N the Hadri test may suffer severe size distortion, something they investigated using 

an AR-based bootstrap. However, for price differentials this may be less of a problem 

when this behaviour is common to the price pairs.  

 

The size of a typical autocorrelation coefficient related to the ADF test statistic 

suggests the data are strongly autoregressive. The strength of this correlation explains 

why their behaviour might be seen to be distinct from the constant model underlying 

the KPSS test as compared with the distance from the unit-root case that arises when 

considering the ADF test. So the poor performance of the Hadri and KPSS tests may 

be symptomatic of strong or persistent autoregression and this may not be 

inconsistent with the suggestion by Caner and Killian (2001) that the poor 

performance of the KPSS test is particularly problematic in the light of the error 

process being moving average (MA). One interpretation of the analysis of the lags 

might be that the long autoregression really relates to MA or ARMA behaviour. For 
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further clarification of the Hadri stationary test result we applied Im, Pesaran and 

Shin panel unit-root test.  

Table 1-5- panel unit root test based on different bandwidth and kernel with 

individual intercept and linear trend 

 Kernel t-statistic 

with max 

lag 

bandwidth 

I 

P-value t-statistics 

with max lag 

bandwidth II 

P-value t-statistics 

with long 

bandwidth 

III 

P-value 

 Bartlett 0.78477 0.2163 0.02422 0.4903 14.6660 0.0000 

X1(25)and X2(25) Parzen 0.95802 0.1690 0.21143 0.4163 23.6606 0.0000 

 Quadratic 

spectral 

0.54635 0.2924 -0.13551 0.5539 299.029 0.0000 

 Bartlett 4.64032 0.0000 3.06494 0.0011 14.6660 0.0000 

X9(16)and X7(20) Parzen 5.15320 0.0000 3.53599 0.0002 8.46811 0.0000 

 Quadratic 

spectral 

3.72147 0.0001 2.48390 0.0065 80.1765 0.0000 

 Bartlett 6.45363 0.0000 4.63206 0.0000 14.6660 0.0000 

X9(16)and X6(16) Parzen 6.76241 0.0000 4.66014 0.0000 8.20367 0.0000 

 Quadratic 

spectral 

5.32907 0.0000 3.87805 0.0001 77.3872 0.0000 

 Bartlett 8.64370 0.0000 4.33535 0.0000 14.6660 0.0000 

X4(23)and X8(24) Parzen 10.4473 0.0000 4.81604 0.0000 7.19414 0.0000 

 Quadratic 

spectral 

7.05987 0.0000 3.54303 0.0002 67.5618 0.0000 

 Bartlett 6.50334 0.0000 3.85241 0.0001 14.6660 0.0000 

X5(20)and X8(24) Parzen 7.44900 0.0000 4.17385 0.0000 7.34701 0.0000 

 Quadratic 

spectral 

5.32888 0.0000 3.26759 0.0005 68.9055 0.0000 

 Bartlett 7.28830 0.0000 3.36174 0.0004 14.6660 0.0000 

X3(25)and X6(16) Parzen 8.63251 0.0000 4.19913 0.0000 8.69289 0.0000 

 Quadratic 

spectral 

6.25753 0.0000 2.56110 0.0040 83.2638 0.0000 

 Bartlett 10.5440 0.0000 5.86412 0.0000 31.1112 0.0000 

X1(25),X2(25),X3(25), 

X4(23),X5(20),X6(16), 

X7(20), X8(24),X9(16) 

 

Parzen 11.8129 0.0000 6.85383 0.0000 17.7233 0.0000 

 Quadratic 

spectral 

8.85473 0.0000 4.86735 0.0000 166.431 0.0000 

Note: The bold concludes that the series are stationary at 5% level. 

 

1.10.2 Im, Pesaran, and Shin (IPS) Panel Unit root test 

 

For comparison with the panel unit root test under the null of stationarity the test due 

to Im et al (2003) is applied. The IPS panel unit root test estimates a mean adjusted 

ADF test statistic that may also be adjusted for fixed and random effects. Individual 



 Page 67 
 

ADF tests are computed for the cross section mean adjusted data and the t-tests 

computed accordingly. The t-bar test statistic is the average of the individual 

corrected ADF t-statistics and compared with the critical values derived in the tables 

in Im et al (2003).The result of the IPS test are presented in Table 1-6 below. 

Table 1-6- - Im, Pesaran and Shin Unit Root Test with individual intercept 

Log differential price IPS/ 

OLS t-statistic 

P-Value 

X1(25)and X2(25) -4.55156 0.0000 

X9(16)and X7(20) -5.62423 0.0000 

X9(16)and X6(16) -3.81476 0.0001 

X4(23)and X8(24) -2.34972 0.0094 

X5(20)and X8(24) -4.58201 0.0000 

X3(25)and X6(16) 

 

-4.01161 0.0000 

X1(25), X2(25),X3(25), 

X4(23), X5(20),X6(16), 

X7(20), X8(24), X9(16) 

-8.04934 0.0000 

Note: The selected lag number for each pair is equal to the maximum lag order within the series.  

 

In all of the IPS panel cases with the null of non-stationarity it is found that the null 

hypothesis can be rejected and that on average the series are stationary indicating that 

all 8 regions are belong to the same geographic market. Hence, the same discrepancy 

arises between the panel and univariate tests with different null hypothesis.  

1.11 ARCH Effect Analysis 

1.11.1 GLS-ADF- Test using the ARCH Estimator 

 

The energy market is affected by news and an information arrival process that causes 

shocks and volatility in associated markets. Here, we use the ARCH (Autoregressive 

Conditional Heteroskedasticity) process to model possible volatility in the series 

(Engle, 1982). However by handling the heteroskedasticity in the error we can obtain 
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more efficient estimates and this should improve the performance of the test subject 

to more usual rates of convergence for usual sample sizes
17

 (Boswijk, 2001).   

 

A relatively large dataset permits some experimentation with the methodology, but 

the observation that the Hadri test rejected may also be indicative of ARCH 

behaviour. If the variance of the price differential is increasing beyond expectation 

across the observed sample then this increase in the variance may appear to resemble 

non-stationarity in the context of what is a variance ratio test. This may especially be 

the case when the volatility is large or close to the non-stationary boundary of the 

parameter space related to the appropriate definition of the long-run variance. 

 

 Alternatively, the test due to Hadri (2000) is a finite sample correction of the KPSS 

test applied to panel data and the power of this test has been found to be sensitive to 

Autoregressive Heteroscedasticity suggesting the need to correct stationarity tests for 

volatility (Eviews, 2009).  

 

According to Beirne, Hunter, and Simpson (2007) the volatility correction makes 

some difference to the performance of the ADF test and this suggests that in 

moderately large samples the ADF test is sensitive to dynamics in the conditional 

variance (ARCH). The ADF test provides a correction for serial correlation via the 

introduction of lags of the dependent variable in the mean equation, but again in 

moderately sized samples it may be responsive to non-normality. Here, we correct the 

                                                 
17 Rahbek et al (2002) find in the context of multivariate models when the spectral radius of the multivariate 

ARCH model exceeds .85 then a sample in excess of 600 observations is required for convergence of the test 

statistic to their asymptotic values. 
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model for ARCH in the case of potential volatility. Boswijk (2001) suggests that by 

modelling the volatility the power of unit root test might be significantly improved.  

 

 In our study we can observe how the DF test has been affected by ARCH behaviour. 

This means that we use the method to better detect whether the long-run arbitrage 

exists. Using, a GLS variance correction to the Dickey Fuller model implies that we 

will transform the standard error to control for a variance moving during the time due 

to volatility or sequences of shocks. The weighted Dickey-Fuller tests are based on 

variance estimates corrected for the observed volatility. 

 

The ADF model is tested by the usual LM test for ARCH (Engle, 1982) and the 

associated estimates of the variance equation can be used as a measure of the 

conditional variance. If there is ARCH, then the squared residuals computed from (2) 

are explained by the following variance equation: 

   
  = α + δ1     

  + δ2    
  + … + δk     

 +єt 

The test for ARCH considers the following hypotheses: 

H0: δk = 0 for k=1,2,..l   against  HA : δk ≠ 0 for  k=1,2,..l 

The test is based on the R
2 

from the above regression;  

        
  (l)=TR

2 
~   

   

The result for the ADF model presented before is given in the table below. 

Accordingly, the   
   value from the table indicates that there is no ARCH effect in 

X1( log(PNew England - PMid-West) ), but there is ARCH effect for  X2, X3, X4 , X5, X6, X7, 

X8, X9.  
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Table 1-7- ADF-ARCH Test 

Log differential price ADF –ARCH  2 

X1(25) 23.11 

X2(16) 73.645* 

X3(3) 28.633* 

X4(4) 38.989* 

X5(4) 28.565* 
 

X6(3) 21.668* 

X7(4) 60.775* 
 

X8(4) 38.989 
 

X9(16) 29.497* 
 

Note:X1=log(PNew England - PMid-West), X2=log(PMid-West - PCentral Atlantic), X3=log(PMid-West - PEeast-Coast), X4=log(PLower 

Atlantic - PGulf Coast), X5= log(PRocky Mountain - PWestCoast), X6=log(PMid-West - PGulf Coast), X7= log( PGulf Coast - PRocky Mountain), 

X8=log(PGulf Coast - PWest Coast), X9= log(PMid-West - PRocky Mountain). The bold denotes that there is ARCH effect. 

 

 

An advantage of the OLS method is that these values will always be positive, while 

the full maximum likelihood method may fail to converge as parameters stray into 

regions of the parameter space inconsistent with the requirement of a variance 

estimator.  

 

The GLS estimates are now corrected for ARCH in the residuals, but based on an 

OLS estimation procedure that is corrected to yield homoscedastic errors. Capturing 

the volatility in the ADF model implies that the tests will vary relative to the OLS 

ones and the results in Table 1-8 confirm that a number of the associated series are 

non-stationary.  

Table 1-8- ADF-ARCH Correction Test 

Log differential price ADF –ARCH test statistic 

X2(16) 0.473192 
  

X3(3) -3.906158 
  

X4(4) -6.853863 
  

X5(4) 2.219102 
  

X6(3) -5.709768 
 

X7(4) 1.730302 
  

X8(4) 1.820151 
   

X9(16) -3.647897 
   

Note: ADF-GLS test Critical value at 5% is -2.89. 
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According to the above table the ARCH effect being corrected in X2, X5, X7, and 

X8,thisimplies that for the transformed data gives rise to test results that the series are 

non-stationary and this is now inconsistent with the Hadri test. So following 

correction our findings have been impacted by the nature of volatility and the 

conclusion of a broad market now seems to be less clear than would be suggested by 

the ADF tests alone. 

1.12 Conclusion 1 
 

Forni (2004) suggests that a broad market might be determined by a confirmatory 

analysis that follows from univariate stationarity tests on the null and alternative of 

non-stationarity producing a common conclusion. In one case it is found that the 

market is narrow between the Gulf Coast and the Lower Atlantic based on the ADF 

and KPSS tests without trend. However, all other cases based on the ADF test, 

suggests all regions price differentials are stationary. Here as compared with Forni, 

the reverse relations are accepted by definition and in the case of the ADF test it can 

be shown that this follows directly from the algebra of least squares.
18

 

 

If now the Forni approach of combining ADF and KPSS tests, results at the 1% 

level is followed, then it can be concluded that the West Coast defines the broadest 

market in association with the Central Atlantic, Gulf Coast, Mid-West and New 

England; from the symmetry of the problem the reverse result also applies. Using 

this symmetry, the Mid West defines a broad market with the Central Atlantic, East 

Coast and West Coast. Similarly, the Central Atlantic defines an extended market 

                                                 
18 In the case of the Dickey Fuller test related to equation (2) it is straightforward to show that the estimate of  

that arises from the price proportion related to region 1 relative to region 2 is the same as that which arises from 

the reverse regression and the intercept (0) simply has the reverse sign. In the case of the ADF test the same 

applies when the lag order (q) is the same. 
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with the Mid West and the West Coast, and New England with the Rockies and 

West Coast. Finally, for the East Coast and Mid-West, the Gulf Coast and West 

Coast, and the Rockies and New England prices react to each other.  

 

Beirne et al (2007) concluded in their analysis of real exchange rates that  when the 

majority of univariate unit root tests and a panel stationarity tests reject the null of 

unit-root, then the conclusion to be drawn is that on average the series are 

stationary. Here, when the ADF tests are considered alone, eight out of the nine 

univariate tests reject the null of non-stationarity and so does the IPS test for the 

panel of nine price proportions. The conclusion related to Beirne et al (2007) would 

be that on average there is a broad market. The story that derives from the tests that 

follow from the non-stationary null is that prices are responding to each other in the 

long-run as the test can distinguish between the type of highly persistent behaviour 

related to a random walk and behaviour that is still related to quite strong 

autoregressive behaviour. Roots in each region that exceeds 0.85 can be seen as 

different from unity based on appropriately specified time series models that 

underline the ADF test. 

 

It is an irony that the panel tests under the null of stationarity that are orientated 

towards the notion that the market is broad are the tests that seem least disposed to 

accept that conclusion. The Hadri tests with N>1 give little support to the 

proposition that the market is broad. Only in three cases with the largest bandwidth 

and the Parzen kernel testing at the 5% level it is possible not to reject the stationary 

null.  
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The underlying data are characterized by ARCH style volatility, strong serial 

correlation and non-normality. It is possible that the Hadri test may be unable to 

distinguish between strong autoregressive behaviour and a unit root. Hlouskova and 

Wagner (2006) provide some evidence that the Hadri tests may over-reject the null 

hypothesis when there is significant serial correlation, but this result is related to a 

small sample. Hadri (2000) suggests that his test is robust to non-normality. 

Though, the Hadri test is not corrected for ARCH and strong ARCH has been 

shown to affect the rate of asymptotic convergence of the Johansen trace test even 

with samples up to a 1000 observations with powerful volatility (Rahbek et al, 

2002). 

 

The diverse conclusion of stationarity associated with the panel and univariate tests 

suggests that there is not opportunity for long-run arbitrage correction. We do not 

feel it reasonable to conclude that the market is a broad. While some less well 

connected parts of the US do seem to respond less well to price variation from other 

regions. It is surprising the extent to which the statistics suggest that the Gulf Coast 

and Lower Atlantic appears to respond less well to almost all of the other regions 

and this would appear to require further investigation. These results would indicate 

a geographic market for US gasoline where there is some inefficiency especially 

where the lines of communication are poor and with that some room for degree of 

local market power and collusion related to gasoline prices occurs. Moreover, 

concentration of ownership of gas stations or refining capacity would be advised in 

the regions where stationarity is called into question. 
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Hence, since presence of a single common trend (cointegrating rank equal to 1) 

endorses competitive pricing and a broad market definition, we determine and 

analyse cointegrating rank and weak exogeneity in next chapter to clarify further our 

finding in chapter 1. 
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CHAPTER 2 

 

Extracting Long-run Information from Energy 

Prices- The role of Exogeneity 
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2 Extracting Long-run Information from Energy Prices- The role of 

Exogeneity 
 

2.1 Introduction 
 

Gasoline is one of the products with the highest price variation in the world and the 

current dramatic changes in gasoline prices significantly affect the consumer and 

business behaviour in the market. The gasoline price is significantly influenced by 

innovation, technological progress, and political instability in the global economy.  

 

The main concern of this research is long-run price differentiation in the gasoline 

market. In the short-run there is likely to be some price differentiation related to 

regional factors, but it seems less easy for this to arise in the long-run. Observing the 

process that gives rise to equilibrium in a market can confirm the appropriateness of 

the structure and the completeness of a market. Price disequilibria in the long-run 

between neighbouring regions would affect regional activity and consumers might 

react radically towards high price differentials by moving job and/or house to reduce 

travel costs, by the purchase of more fuel efficient vehicles etc., but the persistent 

price differential suggest discrimination and identifies the possibility of some market 

power and informational inefficiency.  

 

In the preceding chapter we studied the log price differential and adapted the method 

of Forni (2004) to analyse price behaviour. In anticipation that in practice more 

limited samples would be available the panel approach was also considered. The 

approach of Forni is driven by the ready availability of price data and the suggestion 

by Forni that the time series method based on findings related to the stationarity of 

price proportions is econometrically efficient as parallel pricing can be tested in the 
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long-run in one step. We employed the KPSS and Hadri unit root tests to test market 

definition and determined that the finding of non-stationarity across the US gasoline 

market would designate separate geographic markets for gasoline and suggests a 

narrower market definition as a result of market power or possible local collusion 

related to gasoline prices in different regions of the US.  

 

The ECM approach is well motivated when the price proportions define an 

appropriate summary of the long-run (James Lothian, 2012). This occurs when the 

prices have significant common features that are extracted from the underlying series 

by analysing the price proportions. 

 The first feature is a common stochastic trend that relates to cointegration.  

 The second might be a common volatility pattern, were this to be a feature of 

the univariate series not observed in the price proportions.  

The simulations reported in Rahbek et al (2002) suggest that the Johansen 

methodology is not greatly affected by the dynamic structure in variance associated 

with ARCH and GARCH. However this is only correct for moderately large samples 

when the stochastic process associated with the variance is not very persistent.  

 

Forni (2004) suggests univariate unit-root tests of log price differentials can be used 

to determine a broad or a narrow market. However the regulation literature suggests 

that other information may be required to support an analysis based on unit-root tests 

alone to determine whether pricing is fair. In the previous chapter an amended 

version of the unit-root test process developed by Forni was applied to regional data 

by considering whether arbitrage can be observed as occurring at the regional level. 

The main concern of the chapter was whether prices follow each other in the long-run 
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and to detect any anomalies and to determine whether structural breaks can also be 

viewed as a common feature.  

 

In the preceding chapter the importance of stationarity for empirical modelling was 

considered and the nature of the null hypothesis used for testing stationarity. In the 

current study we apply in a more direct way the notion of cointegration introduced by 

Granger (1983) to investigate whether linear combinations of interrelated price data 

are stationary. Here, Johnsen (1988 & 1996) testing procedure for cointegration is 

used within the context of a vector autoregressive (VAR) model. This makes possible 

a test of the cointegrating rank to determine simultaneously the number of long-run 

relations that explain the market. Subject to the finding that there are N-1 such 

relations, it may then be possible to examine the existence of long-run price 

leadership. The former condition (N-1) is consistent with a single stochastic trend and 

this is consistent with weak exogeneity for one price in the US gasoline market.  The 

main hypothesis is to study the long-run behaviour or the long-run efficiency of the 

US gasoline market. Linking parallel pricing and causal structure. 

 

In this chapter We discover the weak exogeneity of variables for investigating the 

implication of cointegration for policy analysis and we discuss further the 

developments in the literature previously summarized in Hendry and Juselius (2001), 

Hunter and Burke (2012), Hunter and Tabaghdehi (2013) among others. That 

information on price can be provided efficiently to customers and that consumers are 

then able to monitor retail gasoline prices to enhance market efficiency and reduce 

detriment caused by imperfect information over prices (Hunter et al, 2001). The 

market efficiency hypothesis was first developed by Fama (1970) specifies that at any 
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time t prices should fully reflect all available information on the market. To this end 

government intervention and regulation may be required to control price discrepancy 

and improve market structure or limit further concentration in the industry either at 

the national or the regional level. 

 

In section 2.2 we reviewed of essential literature. Section 2.3 considers the data for 

the empirical analysis. Section 2.4 we reviewed the price analysis and cointegration. 

In section 2.5 we seek to find sufficient long-run relations that are then consistent 

with arbitrage correction and long-run equilibrium price targeting (LEPT) in gasoline 

market (Burke and Hunter, 2012). In part 2.6 we test for weak exogeneity, long-run 

exclusion, and strict exogeneity to investigate the nature of parallel pricing in the 

gasoline market. Finally, in Section 2.7 we conclude. 

2.2 Review of Essential Literature 

2.2.1 Price Dispersion and the Law of One Price 

 

“Market is the whole of any region in which buyers and sellers are in such free 

intercourse with one another that the prices of the same goods tend to equality easily 

and quickly” (Alfred Marshall, 1920). In 1987 Scheffman and Spiller construe the 

market definition as “economic market is the area and set of products within which 

prices are linked to one another by supply-side or demand-side arbitrage and in which 

those prices can be treated independently of prices of goods not in the market.” 

According to the “market” definition, in any homogeneous products industry such as 

gasoline, price will tend to equality. Maunder (1972) provides an early example 

where price correlations are interrogated to detect irregularities in pricing by 

companies.  
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The “law of one price” implies that in any market the price of identical goods must 

tend to be the same for an efficient market regardless of where they are traded. The 

law of one price can be reformulated in the case of transport and transaction cost. 

When prices at different locations differ as a result of transport and transaction cost, 

the arbitrage opportunity will still act to close the price gap after a short period of 

time. The error correction model (ECM) would appear to be an appropriate 

mechanism for analyzing the law of one price in the long-run (Johansen, 1995). 

 

The “law of one price” is a paradigm that in practice at any point of time is unlikely 

to be valid even for homogeneous goods which are often sold at different prices by 

competitors.
19

Asplund and Friberg (2001) have evidence that the law of one price 

does not hold for identical goods even when they are sold in the same location.
20

 

Further, the cost heterogeneity and tax heterogeneity could lead to minor price 

differences. 

 

However discrepancies in service or location can’t explain completely the observed 

price distinction. Goldberg and Verboven (2005) indicate that there is a convergence 

towards the absolute and the relative version of the Law of One Price, and suggest 

that institutional changes can diminish the main source of segmentation in 

international markets.   

 

                                                 
19 It is suggested that from the perspective of a shopper in one location the cost related to small variations in price 

will not cause them to shift the location of their purchase. However, supermarkets to enhance competition now 

advertise the extent to which some standardised price bundle differs from other major outlets. While some stores 

provide vouchers to make up any price disparity on the day of purchase, but these often are redeemed later on.   
20 Though care has to be taken as to the nature of the term location, Harrods and Sainsburys may be located close 

to each other, but the same product may be on sale at different prices.  



 Page 81 
 

Price dispersion arises from imperfect consumer information which is positively 

related to inflation (Van Hoomissen, 1988). In practice regular change in the gasoline 

price and highly frequent usage of gasoline makes the price-shop more difficult for 

consumers for whom the problem may be resolved by more comprehensive price 

information. Gasoline is also a derived demand and a product that is essential especial 

to local points in time and place. There may be no choice to be made. 

As Chandra and Tappata (2008) pointed out consumer search is a significant and 

important factor affecting price dispersion in the gasoline market. They identified that 

production costs and price dispersion are negatively correlated where the number of 

firms is positively related to the price dispersion.  

 

Carlson and McAfee (1983) introduced a search-theoretic model to reach the 

equilibrium price dispersion, where consumers identify suppliers’ pricing strategies 

and consequential price distribution with the exclusion of the location of specific 

prices. They recognize an equilibrium price distribution depends on consumers’ 

visiting costs heterogeneity and firm production costs heterogeneity assuming a 

limited number of sellers.  

 

The other type of search-theoretic model of the equilibrium price dispersion states 

that consumers identify sellers’ pricing strategies and the resulting price distribution, 

with the assumption of heterogeneity in consumers’ visiting costs related to informed 

and uninformed consumers 
21

(Varian, 1980, Stahl, 1989 and Guimãraes, 1996). 

                                                 
21Informed consumers are those who compensate very low costs toward the search for the additional sellers thus 

they purchase from the lowest-priced seller, but uninformed consumers are those with high search cost which 

visiting the additional suppliers is accordingly expensive for them.  



 Page 82 
 

Stiglitz (1987) specifies a similar result when the market is large and consumers’ 

search is price inelastic in a market with large number of firms
22

.  Marvel (1976), 

using city-level data found that increases in the frequency of consumer search leads to 

a decline in price and price dispersion.  

 

Png and Reitman (1994) studied station-level gasoline price as a homogeneous 

product and identified that gasoline stations distinguish themselves based on the 

offered service time and they classified that as service time competition
23

. Therefore, 

consumers on stations with higher prices face shorter queues and stations which offer 

lower price face longer queues. Therefore retail demand is responsive to service time. 

Barron, Taylor and Umbeck (2004) find using station-level data the number of 

competitors is negatively correlated to the average price levels and price dispersion, 

this indicates that large numbers of stations within a particular geographic area are 

related to lower average price and a lower level of price dispersion. 

 

While, Adams (1997) finds that the price dispersion of gasoline in stations is lower 

than for grocery items sold in the convenience stores. Giulietti and Waterson (1997) 

compare the price of several products across Italian supermarkets and they find that 

lower consumer switching costs are related with lower levels of dispersion. However 

Schmidt (2001) suggests that there is a negative correlation between the number of 

competitors and average price in the rail freight markets meaning that an increase in 

the number of competitors decreases average prices respectively. 

                                                 
22In the market with many number of the firm a change in price construct a smaller proportion of consumers to 

modify their search respectively. 

23 Service time is the time which consumers’ are willing to wait in order to buy the gasoline from the gasoline 

station.  
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In any competitive market the price differential must be equal to the cost differential 

of the firms as based on the assumption of free-entry with zero fixed cost the price is 

settled at marginal cost levels. In the multi-firm market price discrimination can be 

derived from consumer’s readiness to spend relative to the quality of the related 

product (Shepard, 1991). 

Slade (1992) identified a price war in US and Canada in the 1990s due to fuel 

tourism.  

2.2.2 Competition and Geographical Price Discrimination 

 

Considering the gasoline market as a competitive market, then the applied price for 

gasoline must be identical in the different regions of any country. Slade (1992) 

specified that the high steady-state equilibrium price in the Vancouver gasoline 

market when compared with Bertrand-Nash prices was an indication of implicit 

collusion, but she excluded the impact of the location in the analysis. Pinks, Slade and 

Brett (2002) estimate a competitive pricing model, which takes into consideration the 

location of the firm but for the differentiated product identify that competition in the 

US wholesale gasoline market is limited to a small area. 

 

Slade (1992) identified that gasoline as a homogeneous product has a different price 

(station-level price) in the different regions of Canada, because of differences in the 

type of ownership, services offered and the location. Slade developed an econometric 

model of station pricing strategy and estimated a competitive pricing model by 

identifying the petrol suppliers whose competing daily prices in each period are based 

on the previous period price, consequently the current selected price has an impact on 

the supply level at each station.  
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Hotelling(1929), Salop(1979), and Gabszewicz and Thisse(1979) distinguish between 

local competition where firms are competing only with their neighbours directly with 

global competition where all products compete with all others without symmetric 

competition. However there has been a decline in the number of refineries in the last 

decade, which can have a considerable effect on the oil price increase and 

consequently generate price discrimination.  

 

Stigler (1969) describes the geographical market as “the area within which the price 

of a commodity tends to uniformity, allowance being made for transportation costs”. 

Considering any non-homogenous goods the quality differences can be considered as 

well as the transportation cost (Stigler and Sherwin, 1985). 

 

LECG (1999) reported on much of the prior empirical work based on price series and 

found that a distinction had to be drawn in relation to the earlier literature on 

correlation and the more recent analysis considering non-stationarity in the estimation 

of and causal relations in a dynamic model. Vanya and Walls (1999) and La Cour and 

Møllgaard (2002) identified that cointegration analysis can be a practical mechanism 

for measuring competition in markets. 

 

As was considered in the previous chapter, Forni (2004) viewed the unit-root test of 

the log price differential as a more effective way to analyse price relations and 

determine a broad (stationary) as compared with a narrow (non-stationary) market. A 

broad market identifies that the market is competitive
24

. To this end Giulietti et al 

(2010), and Hunter and Tabaghdehi (2013) have also applied univariate and panel 

                                                 
24 A broad market is a terminology identified in Forni (2004) for a competitive market and the otherwise is narrow 

market as indicative of non-competitive market.  
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stationarity as compared with non-stationarity tests to study gasoline market 

competitiveness. We have applied a range of time series methods to test whether log 

price differentials were stationary as a monitoring procedure to examine the potential 

for an anti-trust case in the gasoline market, and investigate the structure of the 

gasoline market without any need to normalize on a specific price in the long-run or 

condition the problem relative to a price seen as exogenous. The Forni (2004) 

approach may be seen as relevant to the limited context of the data set used to analyse 

milk prices, but there were limitations with the nature of the analysis.  

 

In this Chapter we address the issue of exogeneity and the interrelatedness of prices 

when we consider the VAR in error correction form. 

An unanticipated gain from analysing price properties may be effective in testing for 

“market definition” when the persistence of the volatility is reduced by this 

transformation of the data. If volatility is quite persistent (the largest eigen value – 

spectral radius of the ARCH
25

 polynomial exceeds .85) then the Johansen test may 

only converge to the asymptotic distribution for sample sizes in the range 600-1000 

26
depending on the specific Data Generation Process (DGP) selected (See the 

simulations in Rahbek et al (2002)). 

 

The approach in this studyis appropriate for more extensive data sets of the variety 

we have here. It is hoped that it will be possible to verify the competitive behaviour in 

the market from the long-run decomposition of prices. Consequently we use the 

conditional ECM and VAR approach for testing cointegration, to develop the long-

                                                 
25The notion of Autoregressive Conditional Heteroscedasticity (ARCH) relates to Engle (1982) and was first 

applied to price data for the UK. 
26The interested reader is directed to the simulation results obtained by Rahbek et al (2002). 
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run relationships and consider the potential for arbitrage correction in the gasoline 

market.  

2.2.3 Cointegration, Arbitrage and the Efficient Markets 

Hypothesis (EMH) 

Since the last decade world oil consumption has been growing considerably which is 

one of the important factors driving the oil price boost and generates significant gains 

for the oil companies. However the key investigation of this study is why the gasoline 

price segregates in the different regions of one country at a specific time and this is 

contrary to market efficiency and may breach antitrust laws
27

. Price differentiation in 

different regions of a country identifies that prices are not fully reflecting all available 

information at any point in time.  

In the gasoline market economists are concerned over market efficiency. 

Consequently any information spreads rapidly throughout all participants (Fama, 

1970). Since all participants have identical information there is an invisible 

agreement which causes unremitting price differentiation without facing an arbitrage 

opportunity. 

According to Fama (1979) there are three types of market efficiency as below:  

I. Weak form efficiency  

II. Semi-strong form efficiency 

III. Strong form efficiency 

                                                 
27  The Antitrust law it is a competition law that supports market competition by regulating anti-competitive 

performance of firms.  
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The difference between these three forms of market efficiency is based on the nature 

of the available information. In weak form efficiency the available information is 

historical prices and future prices can be predicted from historical prices signifying 

no chance of profit creation. Semi-strong form of efficiency reflects all public 

information in price movements, and finally strong form efficiency indicates that all 

types of information is reflected in the price movements which signifies no 

opportunity of profit making from that information (Fama, 1970).  

Any specific patterns of pricing behaviour in the market that can give rise to 

profitable opportunities from arbitrage cannot survive for long and over time they 

will dissipate as others seek them out (Fama, 1998). However, in the US gasoline 

market the specific pattern of regional price differentiation may be constantly 

affecting market efficiency. Hence we employ the cointegration methodology of 

Johansen (1995) to test empirically the definition of the efficient market and the 

nature of the integration and cointegration of the price series.  

 

However energy storability makes it suitable for price arbitrage and hedging. When 

considering the price of gasoline in the different regions of the US it is possible to 

observe opportunities for location arbitrage. Consequently to tackle arbitrage 

opportunities in a market-oriented industry to address market power there needs to be 

some form of regulation (Küpper and Willems, 2010). However, it is often argued 

that poor regulation in the gasoline market would distort competition. 
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2.2.4 Location Arbitrage 

 

Energy storability makes it suitable for price arbitrage and hedging. When 

considering the dissimilar price of gasoline in different regions of the US it is 

possible to observe opportunities for location arbitrage.  

 

An arbitrage opportunity in the gasoline market will increase energy transfer from the 

high-price regions to the low-price regions where the market size changes in both 

regions respectively. Therefore arbitrage opportunities should direct the market price 

towards a stable equilibrium price. In the short-run, arbitrage decreases the 

production efficiency in high-price regions since the production level increases, but in 

long-run it moderates the regional price discrepancy and all this informs the positive 

welfare effect of arbitrage in the economy as a result of “allocative efficiency”. 

However, increases in the production level for the high-price region, indicates a 

decrease in “productive efficiency”. Therefore there could be a negative impact from 

the arbitrage opportunity to welfare assuming the regions produce or refine their own 

fuel. By comparison in the electricity market there are three factors affecting the 

welfare effect of arbitrage: allocative, output and productive efficiency (Kupper and 

Willems, 2007). 

 

In the 80s the retail gasoline price segregation in North America caused major 

demand shifts and consequently “fuel tourism” between the USA and Canada 

resulting in significant price war and market disruption (Slade 1992). 

 

Dreher and Krieger (2008) investigated the weaker notion of consumer price arbitrage 

as compared to producer price arbitrage related to commodities such as diesel, 
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gasoline and fuel oils analysed here in EU countries. Serletis and Herberst (1999) 

specified cointegration relations between natural gas and fuel oil and an effective 

arbitrage mechanism between markets. To tackle arbitrage opportunities in a market-

oriented industry to address market power there needs to be some form of regulation 

(Willems and Küpper, 2010). However imperfect regulation in the gasoline market 

would distort perfect competition (Arrow, 1962 showed that imperfect information 

gives rise to a limit in the market place and this leads to downward sloping demand 

curves). The classical model is not applicable in the gasoline market as there are 

different production costs across disparate regions in the gasoline market.  

 

Graphical price dissimilarities are the most damaging factor for society when it gives 

rise to the greatest profit for the monopolist (Layson, 1988).  

Giulietti, Price and Waterson, (2005) identified that in order to increase welfare 

through the competitive process there is a need to reduce switching cost by 

subsidising information for consumers to reduce search costs. 

2.3 Time-series Properties of the Data 
 

The following series were simulated by Burke and Hunter (2012) for comparison 

with the data analysed by Kurita (2008). It is tempting to find that there is a structural 

break, but these three series follow a common stochastic trend and cointegrate. The 

period used for calibration of these series did not include 2008 so the large 

movements arise purely as a result of the logarithmic random walk.  
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Figure 2-0- weekly gasoline prices across eight different regions in the US 

 
 

Now consider the actual time series properties of a data set consisting of weekly gasoline 

prices across eight different regions in the US (West Coast (WC), Central Atlantic (CA), East 

Coast (EC), Gulf Coast (GC), Lower Atlantic (LA), Midwest (MW), New England (NE), 

Rocky Mountains (RM)) from May 1993 to May 2010.
28

 

 

Considering regional gasoline infrastructure across the US we test cointegration on eight 

different regions. The data in (log) levels and (log) differences are graphed in Figure 2-1 and 

the frequency distributions of the data are graphed in Figure 2-2. From figure 2-1, the price 

level drifts upwards, whereas the price differences appear to move randomly around a fixed 

mean.  While, the frequency distributions of the price level in figure 2 suggests non-

stationarity and the frequency distribution of the differences suggest the series are 

closer to normality.  

 

It is also of note that the data are volatile and that there are some large movements. It 

might be considered that the largest shocks relate to the financial markets crisis in 

2008, but that is not the case. As can be observed from the time series plots and the 

                                                 
28The data have been obtained from the energy information administration website (www.eia.doe.gov).  

 

http://www.eia.doe.gov/
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findings in Kurita (2008) log gasoline prices are clearly difference stationary. Hunter 

and Tabaghdehi (2013) have applied a broad range of stationarity test on the log levels  

and log differentials of the data analysed here and they are also unable to reject the 

notion that these series are difference stationary (I(1)). As the largest movements relate 

to the earlier sample excluding the recent crisis, then it is anticipated the strongly 

persistent autoregressive behaviour during 2008 is indicative of the powerful 

movements that can be observed with series following stochastic trends. Burke and 

Hunter (2012) show that similar data can be readily calibrated and simulated as 

random walks. It should be noted that in the latter case the simulated data do not have 

any structural break, but vary in the same way as the actual data for the shorter sample 

used by Kurita. 
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Figure 2-1- Gasoline price at eight US locations in (log) levels and (log) 

differences 
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Figure 2-2- Frequency distribution of Gasoline price at eight US locations in 

(log) levels and (log) differences 
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2.4 Price Analysis, Cointegration and Arbitrage Correction in 

Gasoline Market 
 

Time series might be non-stationary as a result of technological progress, economic 

evolution, crises, changes in the consumers’ preference and behaviour, policy or 

regime changes, and organizational or institutional improvement. However, 

regressions based on stochastic non-stationary series simply as a result of cumulating 

the events or shocks of the past may give rise to ‘nonsense regression’, and this can 

cause significant problems in forecasting and inference (Hendry and Juselius, 2000). 

 

The notion of cointegration is very important in the context of non-stationary 

variables. Cointegration implies that there is a linear combination of integrated 

variables which are stationary (Engle and Granger, 1987). In contrast to the previous 

chapter where stationarity is investigated in terms of price proportions, the coefficient 

does not have to be unity. Unit coefficients relate to an older literature on error 

correction models (Davidson et al, 1978). When a linear combination of two or more 

non-stationary variables is stationary and the coefficients differ from unity, then 

cointegration relates to what has come to be called equilibrium correction and this 

defines a long-run relation. If a long-run relation exists, then economic variables may 

drift away from equilibrium in the short-run but economic forces will eventually 

drive the variables back to the equilibrium relation.  

 

Cointegration indicates the existence of a long-run correlation among variables when 

compared with the possibility that these relations are spurious (Granger and Newbold, 

1974) implying that the regression obtained from non-stationary data many not be 

truly related. If the residuals of a regression between two variables have a pattern this 
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signifies that proposed regression is miss-specified, but if the residuals are stationary, 

identifying that two series are cointegrated, then there is a long-run equilibrium 

relation between the two variables. 
29

 

 

Following Hosken and Taylor (2004), and Kurita (2008) we analysed the 

cointegration and exogeneity properties of regional gasoline prices in the US using 

regional data across the US mainland, this excludes Alaska that has a significant 

physical border, Canada. 

 

De Vany and Walls (1999), Hendry and Juselius (2001), and Forni (2004) 

suggest that finding cointegration between two prices is indicative of an efficient 

market. Forni (2004) analyses all possible price combinations to determine 

whether the market is efficient basing the conclusion on a typology of the 

findings on stationarity tests under both the null of stationarity and non-

stationarity. However this is a single equation approach that is not able to bind 

the findings to a test of all market segments.  

 

                                                 
29It has been known for some time that on-stationary data become stationary by linear transformation and 

differencing, ∆xt = xt - xt-1, is one such transformation when ∆xt  is stationary. In the bivariate case when xt and yt 

are both non-stationary, there might be a linear combination of xt  and yt which is stationary such as; 

ηt = yt - μ0 - β xt            (4.1) 

Engle and Granger (1987) showed that this relation could be found from estimation using linear least squares 

regression (cointegrating regressions): 

                           yt = μ0+ β xt  + ut                                                                                                                     (4.2) 

and ηt does not equal μ0+ ut  for that only occurs when yt =0 and xt =0. Granger (1986) identified (4.1) as a long-run 

equilibrium relation. Consequently cointegration is a restriction on a dynamic model (Hendry and Juselius, 2000). 

The cointegrating vector is usually normalized on one of the variables such as in the cointegrating combination of 

yt- βxt it has been normalized on yt where the [   ] is relative cointegrating vector. Hence: 

[   ] [
   
   

] = ηt ~ I(0). 

If there are more than two variables there can be more than one cointegrating vector.  
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Following Hunter and Burke (2007) it is suggested that arbitrage implies that 

there are (N-1) cointegrating relations derived from N price series and this is 

consistent with a broad market. While a narrow market implies fewer than (N-1) 

cointegrating relations. However, the finding of (N-1) long-run relations does not 

negate the possibility that the market is segmented in the sense that some prices 

do not respond to the other prices in the market. This may arise when the form 

of long-run causality related to cointegrating exogeneity (Hunter (1990))  is 

observed  or detect that one or more prices is weakly exogenous (WE) for all the 

cointegrating vectors (Johansen, 1992). 

 

Forni (2004) suggests that when comparison is made between the prices of two 

regions then competitive behaviour is consistent with parallel pricing when in 

testing price proportions it is found that they are stationary. However, such an 

approach has merit when the data is limited by the extent of the time series. 

Hunter and Burke (2007) suggest that univariate time series analysis does not 

provide a formal mechanism by which it may be confirmed that there are N-1 

such relations. They show that this may be better tested in a multivariate context 

and that it is possible to distinguish between a case where arbitrage holds and 

all the series follow a common stochastic trend and the case where there is 

aggressive price leadership or a single variable is WE for the matrix of 

cointegrating vectors (). 

 

In a bivariate case using gas prices conditioned on a WE oil price, Hendry and 

Juselius (2001) find that competition implies a common trend driving prices across 
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markets and this idea is generalized by Hunter and Burke (2007) to a multi-price 

framework. We pay particular attention to the role of the common trend and 

exogeneity in explaining the competitive structure. Here there is a large time series 

sample and this is useful as the series are volatile. 

 

In this study to determine potential long-run equilibrium relations in US 

gasoline prices in different regions, first for comparison with the stationarity 

testing methods applied by Forni (2004) we utilise the single equation 

cointegration analysis based on a bivariate model: 

pat = μ0+ bpbt + ut,                                                                                                    (2-1) 

where pat and pbt are prices of gasoline in two different regions of the US, and ut 

is a random disturbance term. Here μ0 represents the log of the proportionality 

coefficient 

 

Now μ0 =0 when the prices in different regions are identical, and μ0≠0 if there is 

a fixed transportation and other characteristics related to different regions. 

However with a perfectly integrated market the price reflects all available 

information and traders ought not to benefit consistently from arbitrage 

opportunities. Equation [2-1] is a cointegrating regression where b explains the 

nature of the relation between the regional prices. The hypothesis related to 

parallel pricing implies that b=1 is the key hypothesis to be tested as when b=1, 

regional prices respond in proportion to each other and this conforms with the 

law of one price. Though the observed value may differ from 1 by an arbitrary 

constant(c) where | b -1|≤ c.  In the case of perfect integration c is close to zero. 
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In contrast with the tests of stationarity of price proportions, the linear 

combination of two non-stationary series pat and pbt can be transformed to 

stationarity (Engle and Granger (1987)) when: 

ηt   = pat - bpbt    ~I(0).                                                                                                      (2-2) 

This embodies the notion of cointegration that two (or more) I(1) series, here pat 

and pbt, give rise to a relation that is stationary. Therefore when ηt represents a 

residual from a regression, then when this combination is stationary there is a 

long-run relation between pat and pbt otherwise the relation is nonsense. 

Consequently for the price of any homogeneous good in an identical market a 

cointegrating relation is required as arbitrage should remove mispricing in the 

long-run. 

 

One difficulty with the Engle and Granger (1987) test is the nonstandard nature 

of the statistical inference and that it does not provide a direct test of the law of 

one price (Forni, 2004). However, the methodology developed by Johansen 

(1995) can be applied to test the law of one price in a VAR and the potential for 

price leadership. When the gasoline prices of different regions in the US are 

identical, then the associated market will be in equilibrium, otherwise there 

would arbitrage opportunities across regions.  

 

Here, the ECM provides one method to investigate the nature of adjustment 

across prices to determine long-run equilibrium, see Patterson (2000). We 

investigate long-run equilibrium in the US gasoline market using the error 

correction model. This case in particular is termed arbitrage correction by Burke 
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and Hunter (2012). The hypothesis underlying this argument relates to the 

possibility that a sequence of regional gasoline prices that deviate from 

equilibrium give rise to an arbitrage opportunity that is correcting in the long-

run. If there are N-1 arbitrage correction terms across N markets, then this also 

relates to LEPT (Burke and Hunter, 2011). 

 

According to Kremers, Ericsson, and Dolado (1992) the ECM is a good model to 

detect long-run behaviour. The single equation ECM is a starting point for 

modelling, which binds the cointegration relations in the long-run and as a result 

of super consistency (Ericson and MacKinnon, 2002) the approach is robust to 

specific lag lengths and model dynamics.  

 

To further investigate the short-run dynamics of the relations in gasoline prices 

of different regions in the US we employ a vector error correction model 

(VECM). For example, Bachmeier and Griffin (2006) found that the prices of 

crude oil in different geographical regions of the world are cointegrated. While 

De Vany and Walls (1999) using a VECM, identified cointegration between 

eleven regions of the US in relation to electricity prices.  

 

The first step of the Engle and Granger (1987) method identifies equilibrium 

relations from a cointegrating regression that gives rise to an error correction 

term estimated from the OLS residual:  

t t at o bt
ˆˆ ˆ=e =p –   bp .                                                            (2-3)  
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 We may test whether these series are stationary by applying the Dickey-Fuller 

test to these residuals and this relates to the following dynamic model: 

∆η t =   η t-1 + vt                                                                    (2-4) 

∆η t =  0 ∆pbt     η  t-1   єt                                               (2-5) 

where: 

          bt                                 

It is also possible to have cointegration as a result of   < 0, but this may not be 

consistent with efficiency as μo≠0 and b≠1. In the long-run when the prices are 

set to their long-run average values pat =  ̌at ,  pbt =  ̌bt, then: 

 ̌at = μ0 + b ̌bt 

where the μ0 and b are long-run parameters. For efficiency in the market, to 

avoid persistent long-run profit being exploited from arbitrage possibilities we 

require μ0=0, β=1. Therefore: 

pat = pbt   ηt   or   ηt = pat - pbt   η t = ηt 

It follows that the ECM gives rise to a long-run relation restricted to the same 

form as the Dickey-Fuller model used to test stationarity (Dickey and Fuller, 

1979). It is shown in Kremers et al (1992) that the Dickey Fuller (DF) test that is 

applied by Forni (2004) is a special case of a pure ECM (see Davidson et al, 1978). 

Therefore: 

             ∆ (pat - pbt) =   (pat -1 - pbt-1) + vt.                                          (2-6) 

Equation (2-6) is a restricted version of the model applied at the second step of 

the Engle-Granger approach where the lagged equilibrium error is defined by 

Hendry (1995) in this more general case as an equilibrium correction term. Here 

we follow the pure ECM approach where (pat -1 - pbt-1)= ηt ~ I(0) indicates that the 
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ECM defines the equilibrium error or when ηt ~ I(1) this is not an equilibrium 

error. The   in equation (2-6) is a short-run parameter and specifies how quickly 

the disequilibrium will be removed from the system or the speed at which 

arbitrage occurs.30 Therefore the larger the absolute value of   the more quickly 

any disequilibrium or mispricing will be removed. The null hypothesis H0:   =0 

tests the significance of the error correction coefficient, when compared with the 

one sided alternative of HA:   <0.31 The rejection of H0 is evidence supporting 

cointegration and market efficiency. 

 

The error correction representation exists if pat and pbt are cointegrated. 

Furthermore, with N price variables, adapting the results in Smith and Hunter 

(1985) to the non-stationary case, there are 1/2N(N-1) non-trivial combinations 

of error or cross arbitrage correction terms between all the prices. Such 

relations are termed coherent by Smith and Hunter (1985) when the slope 

coefficients are the same and for pure arbitrage that is unity. The zero intercept 

restriction is not critical to the argument though it gives rise to the same error 

correction applying in the long-run for all these combinations.  It follows from 

Smith and Hunter (1985) in relation to the cross arbitrage for exchange rates 

that in the coherent case when N-1 stationary relations are found, then by simple 

algebraic manipulation and the stationarity of the primary relations the 

remaining ½(N-1)(N-2) should also be stationary.  Non-coherence implies that 

different stationary or some non-stationary combinations may arise and as a 

result some of the long-run relations may include all the prices.  

                                                 
30  γ % of the disequilibrium at time t-1 is removed in period t. 
31 γ >0 implies that variables are moving in the wrong direction to correct for disequilibrium.  
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The results for the augmented Dickey Fuller (ADF) test on differentials and ECM 

estimations are presented in Table 1.32 Acceptance of the alternative hypothesis 

underlining the ADF tests implies that the price proportions related to eight 

combinations are stationary based on a one sided test at the 5% level. Significant 

results indicate that the series move in proportion to each other in the long-run, 

but any rejection of the alternative may arise as a result of the bivariate analysis 

of the problem.  

Table 2-1- Summary of ADF test, ECM test of regional price proportion. (With 

intercept and no trend) 

Log price differential (q)33 ADF (q)/ OLS t-statistic ECM (q)/ OLS t-statistic 

PNE-MW (25) -3.81** -14.48 **| PMW 

PMW-CA (25) -4.93 ** -8.70 **| PCA 

PMW-EC (25) -4.72 ** -10.15 **| PEC 

PLA-GC (23) -2.22 -5.63 **| PGC 

PRM-WC (16) -5.81 ** -6.62**| PWC 

PMW-GC (20) -3.36* -8.46 **| PGC 

PGC-RM (16) -5.21** -1.22 | PRM 

PGC-WC (20) -3.78** -2.65 | PWC 

PMW-RM (24) -4.43** -3.76 **| PRM 

 Note: Critical value at 1% is -3.44, at 5% is -2.87 computed in Oxmetrics Professional (Doornik and Hendry, 

2009). * Significant at the 95% confidence level and ** significant at the 99% confidence level 
 

In the case of the ECM, testing for cointegration follows from an analysis of each 

single equation in turn via individual significance of the error correction term. In 

all but one case the error correction terms are significant, this one exception 

may arise due to a lack of cointegration, weak exogeneity,34 or that the 

cointegrating relation cannot be identified from a single error correction term in 

                                                 
32

 All estimations are undertaken using Oxmetrics Professional (Doornik and Hendry, 2009). 
33  q is the lag order of each series which had been selected by using same process as the previous study via 

inspection of the correlogram.  
34 I a single equation context one may observe more WE variables than can arise when the rank restriction is 

applied across the system.  
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a single equation dynamic model. In the case of the ADF test this may arise, 

because this model imposes efficiency on both the short-run and the long-run 

relations. This is given support by the observation that this coefficient is 

significant in the error correction model for the GC and LA.  

 

Based on Dickey Fuller inference (Patterson, 2000) the coefficient on the error 

correction term is not significant in two cases that relate to the RM and the WC 

relative to the GC. However, according to Kremers, Ericsson and Dolado (1992), 

the error correction test is asymptotically normal, but converges at a slower rate 

than is usual with conventional inference (Ericsson and MacKinnon, 2002). 

Assuming such convergence and normal inference the only insignificant case 

would relate to the WC.  The latter may arise for three reasons, the most obvious 

when comparison is made with the ADF tests, would be that the model is over-

parameterised or the test inefficient as a result of the number of lag terms 

included in the model. This relation may arise as a result of inefficiency or the 

RM model may not contain an error correction term as this price is WE for the 

long-run relation. In the latter case it forces, but is not forced by the rest of the 

US market. The rejection of cointegration may also be a function of the bivariate 

nature of these models.  

 

In further investigating the system we follow Boswijk (1992), Hunter and 

Simpson (1996), and Bauwens and Hunter (2000) and apply restrictions on α, β 

(dimensioned Nr), and α as well as β to study the exogeneity structure of the 

data and identify potentially WE variables. 
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The following equation is the VECM parameterisation of the VAR:    

    ) ∆ pt = Πpt-1 + μ + εt          (2-7) 

Where (L) =(I - 1 L - …  -k-1 Lk-1 ), i  are NN matrices and I an N 

dimensioned identity matrix. The hypothesis that relates to the cointegrating 

rank is:  

H1(r): Π = αβ΄. 

Using the Johansen trace test we identify the number of cointegrating vectors (r) 

and the number of common trends. The results on the Johansen trace test for 

eight regional gasoline prices in the US are presented in Table 2-2. We find that 

it is possible to accept the null hypothesis that there are r=5 cointegrating 

vectors for a test applied at the 5% level, the alternative is rejected as the test is 

not significant so r>5 cannot be accepted. This also implies that there are N-r=3 

stochastic trends. This does not correspond with the results that arise when 

cointegration is tested based on the single equation methods.  If r<N-1 there are 

more stochastic trends than might be anticipated by a single competitive market 

implying that LEPT cannot hold and the market is partitioned.  

Table 2-2- Johansen trace test for cointegration  

H0 : rank ≤ Trace test P-value 

rank =0 226.673 [0.0000] ** 

rank =1 159.485 [0.0001] ** 

rank =2 115.337 [0.0012] ** 

rank =3 76.017 [0.0147] * 

rank =4 48.471 [0.0437] * 

rank =5 28.207 [0.0754] 

rank =6 11.631 [0.1755] 

rank =7 1.1499 [0.2836] 

Note: * significant at the 5% level and ** significant at the 1% level. 

 

Further analysis is required to interrogate the nature of the inter-relations that 

may impact price behaviour. Each long-run relation will be forced by up to three 
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trends so there may be up to three different prices driving the system in the 

long-run. There may also be the type of separation in the market place related to 

cointegrating exogeneity and quasi-diagonality (Hunter, 1992) or weak 

exogeneity (Johansen, 1992). In the first instance gas prices in different parts of 

the US may respond to a different stochastic trend or in some parts of the US 

there may be relations linked to all the trends and in others to a subset of trends. 

Up to three variables may also be WE implying that they are not affected by the 

long-run price behaviour in the other segments of the market.35 Such 

segmentation may be consistent with price differentiation and these anomalies 

are indicative of collusive agreements or when long-run causality can be 

detected there is potential for leadership by some of the major gasoline  

suppliers’.  

 

Exogeneity and Causality Analysis- Test of Weak Erogeneity and Parallel Pricing 

 

Granger (1969) devised a means to test for causality in the context of stationary 

series, while the concept of cointegrating exogeneity was developed by Hunter 

(1990) to handle causality between non-stationary variables in the long-run. 

Giannini and Mosconi (1992) tested Granger Causality subject to CE. Testing for 

causality has been found useful by Horowitz (1981), Ravallion (1986), Slade 

(1986), and Gordon, Hobbs, and Kerr (1993) in defining market boundaries.  

Here, subject to the finding on rank, the focus will be on exogeneity restrictions 

and long-run exclusion. 

                                                 
35

 See Chapter 5 of Burke and Hunter (2005) for further discussion of weak exogeneity related to sub-

blocks of the cointegrating vectors. 
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The most general test for cointegration is the multivariate test based on the vector 

autoregressive model (Johansen, 1988). Following the VAR analysis we verify the 

interrelationships between variables and model the ECM in a multivariate context by 

first identifying r cointegrating combinations with a set of N variables. As a result of 

the VECM structure we are able to further investigate: 

 long-run exogeneity 

  short-run causality  

 The nature of causality in the variance and the mean equation 

 

The adjustment parameters in the VAR system clarify the potential causality and 

weak exogeneity in the market and provide information on price leadership and the 

extent to which one region may be important in relation to setting price.  

 

Table 2-3 indicates some descriptive statistics for the log gasoline price, differences, 

and for the residuals of the VAR model. Noticeably the gasoline price changes (price 

differences seems to be stationary around a constant mean of approximately zero. 

Using the Jarque-Bera test normality is tested under the null that the series are normal 

and this is strongly rejected in most of the price changes series. The significant 

rejection of the null hypothesis could be explained by the excess kurtosis or 

skewness. 
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Table 2-2- Descriptive statistics 

1993 – 2010           Skew  Kurt  Jarq.Bera  Min  Max 

PCA 5.123 0.374 0.56 2.10 77.27 4.58 6.04 

PEC 5.095 0.384 0.57 2.10 78.50 4.54 6.03 

PGC 5.063 0.375 0.64 2.21 84.41 4.52 6.00 

PLA 5.072 0.393 0.58 2.10 81.11 4.51 6.02 

PMW 5.076 0.383 0.58 2.14 77.32 4.49 6.02 

PNE 5.127 0.366 0.56 2.16 74.02 4.60 6.04 

PRM 5.117 0.361 0.65 2.24 84.15 4.60 6.03 

PWC 5.194 0.370 0.52 2.03 75.51 4.70 6.11 

∆PCA 0.001068 0.018 2.14 33.25 35004.83 -0.08 0.23 

∆PEC 0.001078 0.019 1.17 20.94 12274.99 -0.09 0.21 

∆PGC 0.001008 0.020 0.12 10.43 2070.90 -0.14 0.14 

∆PLA 0.001074 0.021 0.60 13.96 4554.93 -0.11 0.19 

∆PMW 0.001042 0.028 0.01 5.42 219.65 -0.12 0.15 

∆PNE 0.001073 0.018 1.59 25.64 19599.10 -0.09 0.21 

∆PRM 0.001046 0.021 0.11 7.35 712.90 -0.10 0.14 

∆PWC 0.0011 0.020 0.61 9.82 1799.24 -0.11 0.14 

 

Considering Figure 2-3, there are some outlier observations in the residuals and the 

largest outlier is at end of 2004 and beginning of 2006 which needs to be effectively 

explained in the specification of the VAR model. These observed outliers could be 

caused by extreme demand and supply shocks in regions. 
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Figure 2-3- Graph of residuals from a VAR (20) of US regional gasoline price 

and 99% confidence bands 

 

 

In Figure 2-4, the density of 8 VAR residuals is reported. The kernel density should 

not deviate excessively from the normal density; whereas residuals need to be 

homoskedastic with constant variance over time. However having longer tails in a 

kernel density comparing with normal density indicates the existence of the outliers 

and confirms the non-normality, finding from Jarque-Bera test in Table 2-3.  
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Figure 2-4- Normal Density of 8 VAR residuals of US regional gasoline price 
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causing the arbitrage restriction to be imposed on the short-run parameters. 

Hence by estimating the VAR the short-run restriction does not bind and relating 

this to the ECM, we can determine whether there is market segmentation and 

the nature of arbitrage across the system. Following Hendry and Juselius (2001) 

we consider the conventional VECM, but with eight potentially inter-related market 

prices. 

 

The VECM model (2-7) applied here is based on a VAR(k) where ∆pt is stationary 

the error term is stationary and based on the previous analysis there are r=N-3 

long-run relations.  However, a generous or more careful interpretation of the 

results derived from the single equation approach might suggest N-1 stationary 

relations subject to finding of a WE variable. A stricter reading of the ADF tests 

might also suggest r=N-2, the error correction models somewhere between N-2 

and N-3 when compared with the Johansen test where it is N-3.  

 

Following De Vany and Walls (1999) we consider cointegration as a system and that 

may relate to the more general case of LEPT (Burke and Hunter, 2011). Cointegration 

across the system gives rise to a set of long-run relations that are tested jointly. 

Furthermore, the finding of weak exogeneity can distinguish between parallel pricing 

and aggressive price leadership (Hunter and Burke, 2007 and Kurita, 2008). 

 

Irrespective of r, when the series are cointegrated there is a restricted long-run 

parameter matrix: 

П= αβ΄. 
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These can be identified in turn by setting α’=[A Ir ] or β΄=[ Ir B] and then we 

either find the β specifying the long-run relations, or we identify all the elements 

of α that gives rise to adjustment to each cointegrating relation in the short-run. 

Let the ith column vector of β be denoted β.i. Subject to a normalisation on the ith 

element, then    = 

[         ] . The existence of cointegration in a VAR system implies 

that the stochastic trends are combined as r stationary linear combinations; 

there are N-r of these trends and this may give rise to no more than N-r weakly 

exogenous variables (Johansen (1995)). In this study there are eight price series 

and r=N-3 the corresponding unrestricted model is specified as follows:

 

1 1,1 1,5 7,1 8,1 1 1 1,1 1,8 1 1 1

8 8,1 8,5 1,5 7,5 8,5 8 1 8,1 8,8 8 1 8

1 ( ) ( )

.

( ) ( )

t t t t

t t t t

p p L L p

p p L L p

      

       

 

 

             
            

              
                         

L L L

M M O M M O M M M M O M M M

L L L

 

Where , ( ) for , 1, ,8i j L i j  K is a univariate polynomial of lag order k. Hence for 

studying the gasoline market structure and identifying the number of long-run 

relations, it is necessary to impose further restrictions on the VAR model.  

 

Following, Johansen (1992), Hunter and Simpson (1995), Bauwens and Hunter 

(2000), and Burke and Hunter (2012) weak exogeneity in the long-run has been 

identified by imposing a restriction on a each row vector α i.=[0, 0, 0, 0, 0] from α 

in turn (for i=1, … ,8) and that excludes the long-run from each equation in the 

system. While long-run exclusion (Juselius, 1995) can be tested by imposing 

restrictions in βi.=[0, 0, 0, 0, 0] on each row vector of β in turn for i=1, ... , 8 and 
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that excludes a variable from all the cointegrating vectors. Weak exogeneity and 

long-run exclusion impose r restrictions on α and β for the variable excluded. 

Strict exogeneity combines the weak exogeneity and long run exclusion 

restrictions for the ith variable and imposes 2r restrictions for each variable 

excluded from α and β. The restrictions are tested by further likelihood ratio test 

statistics, which conditional on r are distributed χ2(i) with i=r and 2r 

respectively. 

 

A further component of the process used to identify is to select the most 

appropriate normalisation of the data by imposing the restriction below:  

β ii=1, for i=1, …, 5 

β ij= 0 , for {
         
         
                

 

Bauwens and Hunter (2000) suggest it is important not to normalise on a 

variable that is weakly exogenous and Boswijk (1996) suggests the same for 

long-run exclusion. For parallel pricing let the first column of β be tested by 

imposing restrictions of the form β.1 =  1 0 1L     and subsequently for β.i  

the ith term is set to unity and all the other up to Nth can be set to zero to confirm 

a long-run correspondence between the price series.  

 

In Table (2-4), tests of cointegration are derived from the VAR model and the 

results related to the imposed restrictions on α or β or both α and β are 

presented accordingly. The sample includes 901 observation and the results 

relate to tests of weak exogeneity, long-run exclusion and strict exogeneity. 
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There are k=21 lags in the VAR estimations. The first block of results in Table (2-

4) relate to a weak exogeneity test conditional on r=5 and from the p-values it 

can be determined that the log price of the GC, the LA and the MW are potentially 

WE for β. The joint test that all the N-r=3 variables are WE for  giving rise to 15 

restriction is clearly rejected at the 5% level as the test, 38.227 has a p-value = 

[0.0008]. However, the null hypothesis cannot be rejected that the GC and the 

MW price series are WE for  as the test is 14.273 [0.1609], and similarly for the 

LA and the MW prices as the test is 15.280 [0.1222]. However, this does not hold 

for the GC and the LA prices. There are good reasons to order the system based 

on these tests as when the system is normalised this can be seen as a 

conditioning on the series most likely to be exogenous (Hunter and Simpson 

(1995)). 
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Table 2-3- -Test of cointegration, WE, LE, SE and Parallel Pricing of US 

Gasoline Price (1993-2010) 

Hypothesis   Null (r≤5) Statistics [p-value] 

(WE)| r=5  PCA  
PEC 

PGC 

PLA 

PMW 

PNE 

PRM 

PWC 

α 1i= 0, for i=1, …, 5 
α 2i= 0, for i=1, …, 5 
α 3i= 0, for i=1, …, 5 
α 4i= 0, for i=1, …, 5 
α 5i= 0, for i=1, …, 5 
α 6i= 0, for i=1, …, 5 
α 7i= 0, for i=1, …, 5 
α 8i= 0, for i=1, …, 5 

χ2(5) = 18.872 [0.0020]** 
χ2(5) = 11.359 [0.0447]* 
χ2(5) = 5.1254 [0.4008] 
χ2(5) = 6.2379 [0.2838] 
χ2(5) =8.9639 [0.1105] 
χ2(5) =13.569 [0.0186]* 
χ2(5) = 32.671 [0.0000]** 
χ2(5) = 19.753 [0.0014]** 

 (LE)| r=5 PCA  
PEC 

PGC 

PLA 

PMW 

PNE 

PRM 

PWC 

β j1= 0, for j=1, …, 5 
β j2= 0, for j=1, …, 5 
β j3= 0, for j=1, …, 5 
β j4= 0, for j=1, …, 5 
β j5= 0, for j=1, …, 5 
β j6= 0, for j=1, …, 5 
β j7= 0, for j=1, …, 5 
β j8= 0, for j=1, …, 5 

χ2(5) = 21.249 [0.0007]** 
χ2(5) = 12.304 [0.0308]* 
χ2(5) = 17.971 [0.0030]** 
χ2(5) = 10.782 [0.0559] 
χ2(5) = 26.335 [0.0001]** 
χ2(5) = 1.0869 [0.9553] 
χ2(5) = 40.178 [0.0000]** 
χ2(5) = 29.493 [0.0000]** 

Normalization (N) +  
(WE) PGC, PMW | r=5 
 

 

 β ii=1, for i=1, …, 5 

β ij= 0 , for {
         
        
                

 

α 3i= 0, for i=1, …, 5 

 
 
χ2(10) = 14.273 [0.1609] 

SE = (LE) + (WE)| r=5 PCA  
 
 
PEC 

 
 
PGC 

 
 
PLA 

 
 
PMW 

 
 
PNE 

 
 
PRM 

 
 
PWC 

α 1i= 0, for i=1, …, 5 
β j1= 0, for j=1, …, 5 
 
α 2i= 0, for i=1, …, 5 
β j2= 0, for j=1, …, 5 
 
α 3i= 0, for i=1, …, 5 
β j3= 0, for j=1, …, 5 
 
α 4i= 0, for i=1, …, 5 
β j4= 0, for j=1, …, 5 
 
α 5i= 0, for i=1, …, 5 
β j5= 0, for j=1, …, 5 
 
α 6i= 0, for i=1, …, 5 
β j6= 0, for j=1, …, 5 
 
α 7i= 0, for i=1, …, 5 
β j7= 0, for j=1, …, 5 
 
α 8i= 0, for i=1, …, 5 
β j8= 0, for j=1, …, 5 

χ2(10) = 35.633 [0.0001]** 
 
 
χ2(10) = 20.717 [0.0232]* 
 
 
χ2(10) =22.520 [0.0127]* 
 
 
χ2(10) =30.611 [0.0063] ** 
 
 
χ2(10) =32.287 [0.0004]** 
 
 
χ2(10) =19.658 [0.0327]* 
 
 
χ2(10) =49.721 [0.0000]** 
 
 
χ2(10) = 46.086 [0.0000]** 

Note: Weak Exogeneity (WE), Long-run Exclusion (LE), and Strict Exogeneity (SE). * significant at the 5% 
level and ** significant at the 1% level.  
  

Prior to further investigation of  , following Juselius (1995) the next section of 

Table (2-4) presents tests of long-run exclusion. These test results are significant 

for all regions except the NE (χ2(5) = 1.0869 [0.9553]) and GC (χ2(5) = 5.1254 

[0.4008]).  When there are long-run excluded variables, then it would be 
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appropriate to order the system using this test prior to normalisation, because it 

is not appropriate to normalise on a variable that may be the long-run excluded 

(LE) and this can be viewed as one of the criteria devised by Boswijk (1996) to 

identify the long-run. The final section in Table (2-4) relates to strict exogeneity 

and that combines the weak exogeneity with the long-run exclusion restriction. 

However, this will not be considered further as none of the price series appear to 

be strictly exogenous.  

 

Next in Table (2-4) the system is normalised and conditioned in turn on the two 

price series that satisfy most readily the joint weak exogeneity tests that is for 

GC and MW. If the GC and MW prices are viewed as weakly exogenous for , then 

the test subject to the normalisation restriction is still 14.273. Based on the SE 

tests once MW and GC are conditioned it is not possible to impose the restriction 

on these prices for LE even though GC might be long-run excluded in isolation. 

This would suggest the ordering by the WE tests so that the long-run equations 

are conditioned on the GC and MW prices and this representation gives rise to a 

long-run reduced form. 

 

It makes sense not to normalise on the variables for which the weak exogeneity 

joint test is accepted that is GC and MW and from the normalisation rule 

(Boswijk (1996)) each long-run equation can be viewed as explaining variables 

that are not exogenous. The normalisation imposes r-1 restrictions that 

generically identify each cointegrating vector in  exactly. However, this does 
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not test identification as the likelihood is unaltered as the restrictions are not 

binding.   In the case of GC it would also not make sense to normalise on this 

price as the single variable tests would also not have precluded long-run 

exclusion.  

 

So this would suggest that it makes sense not to normalise on a variable that is 

LE and this is a criterion used by Boswijk (1996) to empirically identify the long-

run parameters. However, there is a further long-run excluded and weakly 

exogenous variable. The former requires further testing to confirm that it make 

sense to normalise on that variable, the latter does not give rise to a unique long-

run relation as the test of weak exogeneity is rejected for this additional variable. 

In terms of the indication of anti-competitive behaviour finding a variable that is 

not LE implies that it may interact with all the other variables in the long-run as 

that variable must be present in at least one cointegrating vector.  

 

The last variable in the revised system is the GC price and   is restricted to 

impose weak exogeneity and this price will condition the long-run. Then based 

on subsequent investigation a further 21 restrictions are imposed on   and 

then, and this gives rise to the matrices based on restricted coefficients:  
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0.252   .222   0.0 0.03   0.025

0.189     0.223      0.0  0.018    0.021

 0.0    0.182 0.025    0.198    0.077

0.109 0.0      0.0     0.045    0.028

0.187  0.314  0.0    0.0 0.014

0.0 0.0 0.038     0.0 0.0

  0.0    0.0 0.

 

 

 

 

 






 and 

014 0.0   0.053 

0.0  0.0  0.0  0.0 0.0

 
 
 
 
 
 
 
 
 
 
 
  

 

 

.1

.5

1 0 0 0 0 0 .371 .638

.0 1 0 0 0 0 .429 .611

  =  . .0 0 1 0 0 0.933 0 0

.0 0 0 1 0 2.707 .66 1.134

0 0 0 0 1 0 .39 .671







   
  

    
    
  
  
        

 

The system is ordered such that  1 1t CA EC RM NE LA WC MW GC t
x p p p p p p p p 
  . 

These restrictions gives rise to a likelihood ratio test of 20.936 and from the 

p.value=[.7453] it is not possible to reject them. In addition, the likelihood ratio 

test statistic related to further 21 over-identifying restrictions is computed as 

15.8106 and as the p.value is [0.7802] then these are also not significant.  

 

Following the imposition of the normalization rule the first r columns of Π 

reflect   and as a result of this it can be observed that on top of the WE 

restriction there is a block triangular section that is zero and this is consistent 

with the MW and the WC prices being CE for .1 and .2 (the first two 

cointegrating vectors).36 The former is consistent with the joint test of WE that 

implies the prices for the MW and the GC might be considered WE for . This 

                                                 
36

 More strictly a row from   annihilates a column from  or ij= .i j. =0 (Hunter and Simpson (1995)) 

or more generally the necessary condition for cointegrating exogeneity is Π21 =0, an N2 N1 sub-block of Π 
(Hunter (1990)). 
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would imply a system that could be conditioned on both these prices; implying 

two stochastic trends relating to the GC and the MW price. However, it was 

decided from inspection of   that as the MW price seemed to depend on .3 and 

.5 it was better to consider this as a CE for these two vectors. This seems 

pertinent as the MW price has a very similar coefficient in .1, .2 and .5. The 

long-run non-causality related with CE, seems to extend to .4. Similarly the 

block triangularity of Π implicit in the structure of the restricted   and  implies 

that the WC price is cointegrating exogenous for .1 and .2. However, in this case 

this is trivial as the terms related to the WC prices are excluded from these 

equations, but it can be observed from   that .2 is the only vector that appears 

in the dynamic equation for the WC price and this implies that it is also CE for .4.  

 

Considering the cointegrating vectors in turn, it follows from the restriction on 

.1 and .2 that the CA and EC price are driven by the same CE and WE variables 

the GC and the MW prices. These prices for all intents and purposes have similar 

coefficients  and the two prices would appear to define a sub-block variant of 

LEPT (Burke and Hunter (2011)) that relates to .1 .2 and .5. Here we will focus 

on the equations explaining the prices for the CA and the EC that are being 

forced and as a result the GC and MW prices do not reflect the price related to 

these regions.   

The form of .3 appears very close to what has been termed parallel pricing. It 

should be recalled that this only relates to LEPT when there are N-1 similar 

vectors. Here this defines a partitioned market so the RM and WC prices are 
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reflected in each other and none of the other prices are forcing this long-run 

relation so they share a common stochastic trend. 

 

The cointegrating vector .4  relates to the NE price and this is driven by the GC, 

MW and WC prices. This appears to indicate that the NE price reflects 

information from across the US. This is given further support as the dynamic 

equation from the VAR is also impacted by the correction related to .1 that 

explains the CA price in the long-run and .5 that explains the LA price in the 

long-run. Based on the normalisation this may be viewed as the own vector, but 

the form of .4 seems less easy to understand given that it is anticipated that we 

observe parallel pricing and LEPT. However, this vector can be seen as a 

combination of three parity relations between the NE and WC price, the WC and 

MW price, and the WC and GC price. These are combinations that would arise 

from the tests of stationarity, but are rejected as stationary when it comes to the 

system. Furthermore, the NE prices are not being reflected in prices for the GC, 

MW and WC. 

 

The long-run equation explained by .5 relates the LA to the MW and the GC 

prices. The GC price is again the driver and is not impacted by the LA price in the 

long-run. This is consistent with the investigation of the trivariate system results 

in Burke and Hunter (2012) and Kurita (2008), but over a shorter time frame 

that excludes the 2008 financial markets crisis as is the observation that the GC 

price is WE. However, as the MW price is dependent on .1 and .5, then it is 
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appropriate to say that a linear relation between the LA and MW price is forced 

by the GC price and so in this case the MW and the LA are interdependent.  

 

Hence, the exogenous variables appear to force the long-run equations, but in 

the case of the cointegrating exogenous variables the causality does not run the 

other way and for the weakly exogenous variable this is essentially a random 

walk. In the latter case the GC price is only impacted by shocks that impact this 

segment of the market and thus the history of demand and supply shocks that 

impact the price. Thus contrary to a competitive market, it is partitioned in the 

long-run. 

 

To this end regional gasoline pricing may not be consistent with a fully 

functioning gasoline market in the US. There may be geographical or structural 

reasons for this to occur, but the reactivity of NE prices would suggest that this is 

not the case. To further investigate market structure it would be useful to study 

US company gasoline prices and search for WE price series with such data 

(Burke and Hunter, 2011). A difficulty associated with analysing company price 

series, is that they are volatile and that a similar historical data set does not 

seem to exist.37  

 

 

                                                 
37

 Company data were analysed, but these results are preliminary. The findings suggest r=N-2, but with a smaller 

sample and volatile price data they are viewed as tentative and for reasons of space and consistency with the above 

discussion they are not reported here as a compelling story still relates to the regional data. 
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2.5 Cointegration and Exogeneity Analysis of Gasoline Market 

Using Company Data 
 

Next the gasoline market structure is explored using company data as competitive and 

collusive behavior can be better inferred from such data. Following Hendry and 

Juselius (2001), and Hunter and Burke (2012), we consider the cointegrating 

relationship and the dynamic model using companies data across the US to determine 

whether there is a market leader. The main concern of this part of our study is to 

focus on exogeneity by applying the cointegration and WE test to explain the gasoline 

market structure and price behaviour in the market using company data. 

 

The data is weekly gasoline companies prices in the US.  The data are for seven 

major gasoline producing companies in the US for the period of May 2009 - 

November 2012 (187 observations). Here seven companies are selected, Citgo, 

Sunoco, BP, TransMontaigne, Marathone. Gulf Oil, and Hess Corporation. Figure 2-5 

shows the log company prices, Citgo (C), Sunoco Logistic Partners (SLP), BP, 

TransMontaigne (TM), Marathon Petroleum Corporation (MPC). Gulf Oil (GO), and 

Hess Corporation (HC). Figure 2-6, 2-7 and 2-8 below shows the US log companies’ 

price differentials. 

 

 

 

  



 Page 122 
 

Figure 2-5-  The log of gasoline price for Citgo (C), Sunoco Logistic Partners 

(SLP), BP, TransMontaigne (TM), Marathon Petroleum Corporation (MPC). 

Gulf Oil (GO), and Hess Corporation (HC) 
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Figure 2-6- The log of gasoline price differential
38

 within seven different 

companies 

 
 

 

                                                 
38D1=C and SLP, D2=C and BP, D3=C and TM, D4=C and MPC, D5=C and GO, D6=C and H, D7=SLP and BP, 

D8=SLP and TM, D9=SLP and MPC, D10=SLP and GO, D11=SLP and H, D12=BP and TM, D13=BP and MPC, 

D14=BP and GO, D15=BP and H, D16=TM and MPC, D17=TM and GO, D18=TM and H, D19=MPC and GO, 

D20=MPC and H, D21=GO and H 
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Figure 2-7- The log of gasoline price differential within seven different 

companies 
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Figure 2-8- Frequency distribution of the gasoline log price differential within 

seven different companies 
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The test of unit-root on company data is obtained from a single equation using a 

sample of T=187 weekly observations and the results of the ADF tests and ECMs 

with q lags are presented in the table below.   

 

The ADF test results show out of 21 company price proportions, that 19 of those are 

significantly different from the one sided critical value which implies those 19 price 

proportions are stationary at 5%. Stationarity of the company price proportions 

indicates that in the long-run the series move in proportion to each other and as a 

result it might be imputed that they follow the same stochastic trend; the stationarity 

suggests that arbitrage is correcting in the long-run.  Furthermore we applied the 

ECM to determine whether prices move in proportion in both the long-run and short-

run. This can be used to test whether in the long and short-run the market is efficient. 

The result of tests of such restrictions are presented in Table 2-5 indicating that many 

of q lagged log price differentials (ΔlogP(q)) are significant are significant and this 

implies that mostly market is efficient in the short-run and for further study we 

applied the system analysis. However in the case of 4 price proportions,
39

 there is a 

discrepancy between the results for the ADF tests and ECM tests. Next, using weekly 

company
40

 data we defined the cointegration rank and present the results in Table 2-

6. The Johansen trace test results indicate that there are 4 (N-3) cointegrating 

relations when the test is applied at the 5% level.  

 

  

                                                 
39PC and BP, PC and TM, PBP and TM, PTM and MPC 
40Citgo (C), Sunoco Logistic Partners (SLP), BP, Transmontaigne (TM), Marathon Petroleum Corporation (MPC). 

Gulf Oil (GO), and Hess Corporation (HC) 
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Table 2-4- Summary of ADF tests, ECM test of company price proportion (with 

intercept and no trend) 

Log price differential ADF (q)/ OLS t-statistic ECM (q)/ OLS t-statistic 

P C and SLP -3.68** (2) -5.14 ** |PSLP 

PC and BP -3.43* (2) 5.63 ** | PBP 

PC and TM -2.90* (2) -3.93 ** | PTM 

PC and MPC -4.83** (2) -6.22 ** | PMPC 

PC and GO -4.24** (2) -5.03 ** | PGO 

PC and H -3.79** (2) -5.72 ** | PH 

PSLP and BP -3.51** (2) -5.19 ** | PBP 

PSLP and TM -3.86** (2) -5.30 ** | PTM 

PSLP and MPC -3.91** (2) -5.56 ** | PMPC 

PSLP and GO -4.34** (2) -6.29 ** | PGO 

PSLP and H -3.66** (2) -5.23 ** | PH 

PBP and TM -2.08 (2) -2.24  | PTM 

PBP and MPC -4.29** (2) -5.00 ** | PMPC 

PBP and GO -3.88** (2) -4.35 ** | PGO 

PBP and H -4.22** (2) -5.31 ** | PH 

PTM and MPC -2.98* (2) -3.72 ** | PMPC 

PTM and GO -3.88** (2) -4.06 ** | PGO 

PTM and H -2.47 (2) -2.79 | PH 

PMPC and GO -4.34** (2) -4.77 ** | PGO 

PMPC and H -4.74** (2) -5.23 ** | PH 

PGO and H -4.00** (2) -4.75 ** | PH 

Note:ADF Critical value at 1% is -3.44, at 5% is -2.87 computed in Oxmetrics Professional (Doornik and Hendry, 

2009). * Significant at the 95% confidence level and ** significant at the 99% confidence level. The bold number 

denotes that the series are non-stationary. 
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Table 2-5- Unrestricted Cointegration Rank Test – Trace of US Gasoline 

company Price 2009-2012 

H0 : rank ≤ Trace test P-value 

rank ≤0 218.63    [0.000] ** 

rank ≤1 1140.46 [0.000] ** 

rank ≤2 81.25    [0.004] ** 

rank ≤3 49.60 [0.032] * 

rank ≤4 22.73 [0.268]  

rank ≤5 8.28 [0.443] 

rank ≤6 0.005 [0.943] 

Note: * significant at the 5% level and ** significant at the 1% level. Computed in Oxmetrics Professional 

(Doornik and Hendry, 2009). 

 

In Table (2-7), tests of cointegration are derived from the VAR model and the 

results related to the imposed restrictions on α or β or both α and β are 

presented accordingly. The sample includes 127 observation and the results 

relate to tests of weak exogeneity, long-run exclusion and strict exogeneity. 

There are k=15 lags in the VAR estimations. The first block of results in Table (2-

7) relate to a weak exogeneity test conditional on r=4 and from the p-values it 

can be determined that none of the log company prices are WE for β.  In the 

second part of Table 2-7 the significant p-values shows that none of the prices could 

be long-run excluded. In terms of the indication of competitive behaviour finding 

all the variables that are neither WE nor LE implies that the company prices may 

interact with each other in the long-run. 
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Table 2-6- Test of WE, LE and SE of US Gasoline company Price 2009-2012 

Hypothesis   Null 

r=5 

Statistics [p-value] 

(WE)| r=4  PBP 

PCITG 

PGO 

PH 

PMPC 

PSLP 

PTM 

α 1i= 0, for i=1, …, 4 

α 2i= 0, for i=1, …, 4 

α 3i= 0, for i=1, …, 4 

α 4i= 0, for i=1, …, 4 

α 5i= 0, for i=1, …, 4 

α 6i= 0, for i=1, …, 4 

α 7i= 0, for i=1, …, 4 

χ
2
(4) = 16.875 [0.0020]** 

χ
2
(4) = 17.799 [0.0014]**  

χ
2
(4) = 28.131[0.0000]**  

χ
2
(4) =16.383 [0.0025]** 

χ
2
(4) =20.384 [0.0004]** 

χ
2
(4) =19.637 [0.0006]** 

χ
2
(4) =18.309 [0.0011]**  

 

(LE)| r=4 PBP 

PCITG 

PGO 

PH 

PMPC 

PSLP 

PTM 

β 1i= 0, for i=1, …, 4 

β 2i= 0, for i=1, …, 4 

β 3i= 0, for i=1, …, 4 

β 4i= 0, for i=1, …, 4 

β 5i= 0, for i=1, …, 4 

β 6i= 0, for i=1, …, 4 

β 7i= 0, for i=1, …, 4 

χ
2
(4) = 37.688 [0.0000]**  

χ
2
(4) =  23.828 [0.0001]** 

χ
2
(4) =44.171 [0.0001]** 

χ
2
(4) =43.502 [0.0000]** 

χ
2
(4) = 27.064 [0.0000]** 

χ
2
(4) =27.031 [0.0000]**  

χ
2
(4) = 41.501 [0.0000]** 

 

SE = (LE) + (WE)| r=4  PBP 

 

 

PCITG 

 

 

PGO 

 

 

PH 

 

 

PMPC 

 

 

PSLP 

 

 

PTM 

 

α 1i= 0, for i=1, …, 4 

β j1= 0, for j=1, …, 4 

 

α 2i= 0, for i=1, …, 4 

β j2= 0, for j=1, …, 4 

 

α 3i= 0, for i=1, …, 4 

β j3= 0, for j=1, …, 4 

 

α 4i= 0, for i=1, …, 4 

β j4= 0, for j=1, …, 4 

 

α 5i= 0, for i=1, …, 4 

β j5= 0, for j=1, …, 4 

 

α 6i= 0, for i=1, …, 4 

β j6= 0, for j=1, …, 4 

 

α 7i= 0, for i=1, …, 4 

β j7= 0, for j=1, …, 4 

χ
2
(8) = 54.157[0.0000] ** 

 

 

χ
2
(8) = 38.288 [0.0000] ** 

 

 

χ
2
(8) =57.479 [0.0000] **  

 

 

χ
2
(8) =60.631 [0.0000] ** 

 

 

χ
2
(8) =44.638 [0.0000] ** 

 

 

χ
2
(8) =46.130 [0.0000] * 

 

 

χ
2
(8) =44.689 [0.0000] * 

 

Note: Weak Exogeneity (WE), Long-run Exclusion(LE), and Strict Exogeniety (SE). * significant at the 5% level 

and ** significant at the 1% level.  

 

 

The final section in Table (2-7) relates to strict exogeneity the combination of 

the weak exogeneity with the long-run exclusion restriction. However, this will 

not be considered further as none of the price series appear to be strictly 

exogenous. 

  



 Page 130 
 

2.6 Conclusion 2 
 

For non-stationary variables, the Johansen methodology of cointegration and 

exogeneity testing appears an appropriate approach to investigate market 

performance. The empirical findings indicate that gasoline prices for different 

regions are cointegrated and this suggests  that market segments may not be 

distinct. Forni (2004) found with a very modest regional data set for Italian milk 

prices that stationarity tests such as that of Dickey and Fuller (1979) can provide 

an effective way of defining the dimensions of a market, especially when there is 

a limit to the number of time series observations. 

 

One problem with that approach is that the long-run restrictions are also 

binding on the short-run, this provides one reason why the test based on the 

ECM may be preferred. Furthermore, the ECM as part of an N dimensioned 

system with N error correction terms can be coherently defined (Boswijk, 1992). 

While Kremers, Ericsson and Dolado (1992) have shown that tests based on the 

error correction term in a dynamic model should be more powerful than the 

ADF test. 

 

However, the single equation methods do not bind the reduced rank restriction 

across the whole set of prices. This suggests that when there is a large data set 

available that the VECM is to be preferred. In particular in the presence of 

relatively strong ARCH behaviour the simulations presented in Rahbek et al 

(2002) imply that testing may only be reliable with data sets in the range 600-

1000 observations. Here even though there is some evidence of ARCH we feel 
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confident in an analysis based on a sample of 901 observations with a clear 

finding that the cointegrating rank (r) is less than N-1. This is also not 

inconsistent with a strict analysis of the single equation results.  

 

The single equation findings based on the ECM combined with the results on 

long-run exclusion call into question the existence of long-run arbitrage pricing 

across the eight US regions investigated here. Hunter and Burke (2007), and 

Kurita (2008) suggest that even where there are N-1 cointegrating relations that 

the results may be inconsistent with an efficient market when one of the prices 

is weakly exogenous. In that case a single variable drives the stochastic trend 

and as a result the long-run can be appropriately conditioned on that price.  

 

The preferred model reveals that possibly three regional prices can be 

considered weakly exogenous. The preferred model is derived here conditioned 

on the GC and this price does not react to other prices when it is WE for . If the 

long-run structure is further investigated it is suggested that the MW and the WC 

prices are CE for .1, .2 and .4 this implies that these prices are not responding 

to the other prices in the long-run.   

 

The observed market behaviour in the long-run could be due to the geographical 

conditions or may be a reflection of the ownership of regional refinery capacity 

and their location across the US.  Considering the empirical results we are 

suggesting a change in the regulation of the gasoline market to enhance 
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competition. This could relate to tax breaks to extend the refinery and 

distribution capacity of smaller firms.  

 

Similar conclusions to Forni (2004) arise as the failure to find a “Broad Market” 

in the long-run suggests that the anti-trust authorities resist further 

concentration in the industry via merger or acquisition. The availability and 

accessibility of market information to the consumer could also affect price 

responsiveness in this market. Similar conclusions may also be pertinent to 

countries such as the UK where concentration in refinery ownership has been 

criticised especially following the consumer and corporate driver strike actions 

in 2000/2001.  

 

Considering company data could be a better indicator of competitive and collusive 

behaviour in relation to gasoline prices of seven major oil companies in the US. It is 

found on the system that there are no more than 4 long-run relation and this is not 

consistent with parallel pricing. However, it was determined that none of the 

company prices could be WE or LE meaning  that they do seem to react with each 

other.  
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CHAPTER 3 

 

Pricing asymmetry and switching in the market 

for gasoline in the US 
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3 Pricing asymmetry and switching in the market for gasoline in the 

US 
 

 

3.1 Introduction 
 

Gasoline demand, supply and price volatility: 

Since 2003 the gasoline price increased sharply and gasoline turned into a profitable 

and tradable commodity, this in part probably relates to extreme shocks that have 

affected demand and supply for both oil importing and exporting countries. In a 

similar way to any other identical product gasoline production and price formation 

are driven by supply and demand. 

 

In 2004, according to the IMF the demand for oil increased significantly in 2003-

2004. This was influenced by the continued fast growth of the Indian and Chinese 

economies whose populations now exceed a billion people. India spent $15 billion, 

equivalent to 3% of its GDP on oil imports in 2003 which was 16% greater than its 

oil-import in 2001. 

 

However, political instability in the Middle-East and Oil producing countries, and 

consequent international events caused further interruptions in the global demand and 

supply of oil. The problem of energy scarcity and a potential gasoline crisis lead for 

the need to better regulate and monitor the energy sector. In the market under 

equilibrium conditions supply should equal demand and this implies that in the long-

run the market price is equivalent to the equilibrium price confirming the efficient 

allocation of the resources. In the energy market the relationship between energy 

supply and demand has important implications for economist and policy makers as it 
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is a scarce resource with the high global demand. In an efficient market, arbitrage 

between the spot and the forward market should lead prices to move together in the 

long-run, but US gasoline market price differentials confirm the “law of one price” 

cannot be fully operational across all regions of the US. 

 

It is possible that such price discrepancies may depend upon regional demand and 

supply conditions. To this end the key question is whether overall gasoline prices 

tend to converge or market inefficiencies prevent the “law of one price” to hold  

across the US.  

 

Gasoline retail price volatility caused consumers to become more concerned with the 

gasoline companies’ price setting behaviour and the harm or detriment that this may 

cause to the consumer. Hunter, Ioannidis, Iossa, and Skerratt (2001) determined how 

to measure detriment subject to uncertainty either over quality or price. With a 

homogenous product that is controlled as is the case for gasoline in developed 

economies quality should not be at issue so it is the extent to which harm may be as a 

result of imperfect information over prices that is an issue.  

 

In the previous chapters price setting of firms was seen as a mechanism by which 

inefficiency might be detected and monitored. However, to measure detriment 

requires information on cost and market structure. Hunter, Ioannidis, Iossa, and 

Skerratt (2001) show that such analyses given similar quality requires measures of 

cost that permit an analysis of the mark-up. Such data is extracted from annula 

company accounts and this limits our capacity to develop a significant time series. 
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Furthermore, the number of firms on which such information is available on a reliable 

basis is limited.  

 

The general conclusion from the univariate analysis of regional price proportions in 

Chapter One indicates that long-run prices are responsive to each other. The only 

evidence that might be contrary relates to the data corrected for volatility.  

 

The further analysis of regional data related to cointegration and exogeneity in 

Chapter Two emphasises the limitations of the univariate analysis as when the VAR 

system is considered then finding of parallel pricing cannot be confirmed as only 5 

long-run relations from 8 can be found so there are insufficient long-run relations for 

this proposition to be sustained. If there are fewer than N-1 such relations, then this is 

not consistent with LEPT (Burke and Hunter, 2011)
41

. The finding of up to four WE 

variables indicates that certain regions are not responding appropriately to the prices 

in the other regions and this indicates that competition may be an issue. 

 

Similar findings based on company price series are closer to meeting the requirement 

for LEPT as there are 4 from 7 long-run relations
42

, but with the smaller sample and 

price processes that appear volatile further analysis is required controlling for ARCH 

in variance to confirm the rank condition finding of r=4.  This is for further study and 

both data sets confirm the nature of the reduced rank problem.  

 

                                                 
41 For more detail of LEPT see page 30.  
42 LEPT explained in page 30.  
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Here competitiveness is analysed in terms of short-run and long-run asymmetry of 

price responses. This means that the market may have more than one regime. This 

may reflect agent behaviour or the importance of the demand and supply side of the 

market place. The methods used in this chapter will involve different regimes. 

 

The first method that has been reviewed in the literature on competition and 

regulation and applied here is the variance screening method. Following this 

methodology the differences in price reaction can be detected through the variance 

and this leads to asymmetry in price reaction where significant asymmetry will 

indicate different regimes.  

 

Further, imperfect price adjustment due to imperfect competition could cause short-

run or long-run disequilibria. To further investigate this proposition price and 

quantity data are obtained to study the market. The market data on quantity is only 

available at the aggregate level and on monthly basis. The approach is intended to 

observe regime shift and identify demand and supply phenomena in the long-run and 

also potentially in the short-run
43

.  

 

Therefore in this chapter we study the gasoline market to investigate the response of 

gasoline demand to changes in relative prices detecting potential gasoline market 

disequilibrium via the behaviour of relative changes in prices calculated from Δlp Retail 

Price – Δlp Consumer Price Index. The disequilibrium approach does not mean that prices do 

not adjust, but that the long-run quantity response is faster than that of price. The 

main contribution is to investigate the structure of the energy market and identify 

                                                 
43 This approach is to decide whether price shift is due to shift in demand or supply.  
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long-run demand and supply at the aggregate level. A significant concern of this 

study is to investigate whether prices are sufficiently flexible to clear markets in 

terms of supply and demand. The method leads to a dynamic model that incorporates 

a single non-linear error correction term via a switching long-run regression model. 

 

Since Fair and Jaffee (1972) there is significant literature studying the econometric 

problem of demand and supply estimation under disequilibrium. Most of the studies 

followed the maximum likelihood methodology to handle endogenous switching to 

estimate disequilibrium in the market.  Maximum likelihood is required to compute 

endogenous switching as the method of Fair and Jaffee was considered inconsistent 

when the price is endogenous. Here, the problem does not arise as a result of super 

consistency (Davidson and MacKinnon, 2004). 

 

The other method applied here is the exogenous switching regression method 

following Fair and Jaffee (1972) to analyse market disequilibrium. The method 

attempts to identify different demand and supply regimes by observation of a switch 

via relative price changes, this will then be compared with the other regime switching 

methods. The approach undertaken here is different from the majority of procedures 

used to identify demand and supply in a dynamic long-run context. For further 

comparison regimes are determined using a Markov switching model made 

operational on the key switch variable relative price in the endogenous switching 

case. 

 

To summarize, in this chapter we use three different methodologies to study the 

gasoline market: the variance screening method, the disequilibrium regime switching 
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model and the Markov switching model. In Section 3.2 we introduce asymmetric 

price analysis. In Section 3.3 we review market competition using the variance 

screening analysis. Section 3.4 we carry out the estimation of disequilibrium regime 

switching models in the gasoline market. In section 3.5 the Markov regime switching 

model is applied. Finally, in Section 3.5 we conclude.  

3.2 Asymmetric price analysis 
 

In gasoline pricing, the transaction price of selling oil from the oil field to refiners is 

called the producer price. The wholesale price is the value charged by refiners or 

jobbers to the retail gasoline station. Finally the price that the consumer pays to the 

gasoline stations is recognized as the retail price. The price disparity at different 

levels is a measure of the margin. Here there are three different margins: wholesale 

price margin, producer price margin, and producer-retail price margin.  

 

In the gasoline market it is noticeable that price increases incorporate the cost 

increase and this follows a symmetric pattern whereas the price changes due to the 

cost decrease are more likely to be asymmetric. Gasoline cost and price asymmetry 

can have a considerable effect on consumer’s perceptions, because of the high level 

of gasoline consumption compared to other regular commodity purchases. These 

asymmetries could indicate uncompetitive behaviour and potential collusion in the 

gasoline market. However this analysis is highly sensitive to the quality and quantity 

of data, the estimator, and the model used in the estimation.    

 

There are three types of price asymmetries mentioned below: 
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 Price asymmetry based on time: where wholesale price increases pass through 

more rapidly to the retail level than price decrease.  

 Price asymmetry based on the order of pass through from wholesale to the 

consumer prices. For example a $1.00 increase in the wholesale price may 

lead to $0.90 increase in the retail price while $1.00 decrease in the wholesale 

price may only produce a $0.50 decrease in the retail price.  

 Price asymmetry based on the time and order of the price change. The retail 

price response may differ in relation to the wholesale price.  

 

Price asymmetry has been studied by many researchers based on a number of aspects 

such as the location and the time of the experiment, the type of the experimental 

variables (wholesale level, retail level, etc.), the applied econometric methodology 

used for empirical investigation, and the effect of the price asymmetry on economic 

activity and the potential for consumer detriment. In this part of the research we 

applied different econometric methodologies to identify the regime then we compared 

these methods to analyse their effectiveness in practice.  

 

Karrenbrock (1991) applied tests of timing and order symmetry to different grades of 

gasoline from 1983-1990 using the OLS estimator. He analysed the price asymmetry 

in the gasoline market focusing on the wholesale–retail margin to observe the 

influence of retailer behaviour on price asymmetry as well as the wholesalers’ 

behaviour.  Karrenbrock found in terms of timing and extent that retail gasoline price 

changes respond fully and symmetrically to wholesale price changes, which is 

contrary to consumers’ belief. This result was not found for leaded regular gasoline 

prices when timing symmetry was investigated. In contrast, Borenstein et al. (1997) 
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found some evidence that price responses were asymmetric in the US gasoline 

market.    

 

Bettendorf et al. (2003) concluded that price behaviour depends on the day of the 

week on which data on prices were collected and consequently the results may be 

different. In support of the studies of asymmetric price response for commodity 

prices, Frey and Manera (2007) reviewed the causes and estimation of symmetric 

price transmission in the food, agriculture and gasoline industries and they found that 

asymmetry is possible to arise in most of the markets and econometrics models. 

Deltas (2008) specified that retail gasoline prices are significantly responsive to 

wholesale price rises as compared with wholesale price falls. Borenstein et al. (1997) 

indicated an asymmetric relation between the US retail price and spot price 

adjustment, and they indicated that collusion in the retail gasoline market could be the 

cause of the asymmetric responsiveness of retail prices. This indicates that 

economists are concern to evaluate the asymmetry in gasoline pricing and clarify the 

main cause of this asymmetry. Likewise Borenstein and Shepard (2002) used a VAR 

model and specified a price asymmetry model for wholesale gasoline and crude oil 

prices and they found that competitive firms adjust prices faster than do firms with 

market power. 

 

Fafaliou and Polemis (2011) studied market power in the oil industry and indicated 

that the oil market is not coherent globally and the degree of competition is different 

between countries or within one country, and this generates price volatility and 

gasoline price asymmetry.  Galeotti, et al. (2003) computed cointegrating relations 

and estimated an asymmetric error correction model to examine price asymmetries 
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between crude oil prices and retail gasoline prices. Likewise, Clerides (2010) applied 

the error correction methodology on local and international oil price in EU countries, 

but couldn’t provide enough evidence of asymmetric price adjustment in most of the 

EU countries and it was observed for some countries that oil prices fall faster than 

they increase. Furthermore Angelopoulou and Gibson (2010) found no significant 

price asymmetry in the Greek diesel market. However, they considered that the 

market structure was uncompetitive due to the impact of tax changes and market 

power in the regional diesel market. More specifically, Polemis (2012) applied an 

error correction model to the Greek gasoline market and identified that in long-run 

and short-run the retail gasoline price responded asymmetrically to cost increases and 

decreases. While Fotis and Polemis (2013) using the Generalized Method of 

Moments (GMM) and ECM methodology, determined that retail and wholesale 

gasoline prices in eleven euro zone countries responded asymmetrically to cost 

increases and decreases.  

 

Figure 3-1 shows the average monthly retail and wholesale gasoline prices from 

January 1983 to February 2011,
44

 (337 observations). The graph indicates continuous 

fluctuations in gasoline retail- and wholesale prices and shows significant volatility 

since January 2000. Furthermore, retail price changes suggest similar parallel 

movement with wholesale price deviations and suggest a contemporaneous 

correlation between retail- and wholesale price. To consider the asymmetry, in the 

next section the variance screening methodology is used with US wholesale and retail 

gasoline prices to examine the degree of competition in the market.  

                                                 
44The data have been obtained from energy information administration website (www.eia.doe.gov), Bureau of 

Labour Statistics website (www.bls.gov), and from the Brunel University subscription to Bloomberg.  

http://www.eia.doe.gov/
http://www.bls.gov/
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Figure 3-1- Average Monthly Retail and Wholesale Gasoline Prices, 1983 - 2011 

 

3.3 Analysis of Market Competition Using Variance Screening 
 

In the preceding chapter using the VECM, we identified the potential collusive 

behaviour and localized non-competitiveness related to the Lower Atlantic (LA) and 

Gulf Coast (GC). Here we investigate the potential for antitrust behaviour using the 

variance screening methodology applied to prices. Abrantes-Mets et al. (2005) 

estimated the coefficient of variation (CV) for retail gasoline prices in Louisville and 

found that firms with the lower price volatility and high prices may be in a cartel and 

indicated a market conspiracy might generate an effective price above their measure 

of the competitive equilibrium level. It is very difficult to determine the form of the 

conspiracy as they can take different forms and the conspirators do not flag up who 

they are and what they are doing.  

 

It is useful to consider the structure of the market prior to any analysis. There are 
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 Company-owned-and –operated stations: branded gasoline stations which are 

owned and operated by the major oil companies. 

 Lessee-dealer-stations: branded gasoline stations which are owned by a major 

oil company but are leased to an individual.  

 Jobber-supplied-stations: branded gasoline stations which are owned by 

individuals who contract with major oil companies to sell their brand of 

gasoline.  

 

Here the variance screening methodology has been applied to the retail gasoline 

industry to investigate the potential for collusion in the market. It has been suggested 

that pricing differences across gasoline stations are more significantly affected by 

closeness to major routes and the brand characteristics rather than the price of the 

neighbouring stations and as a result stations with low normalized standard deviation 

of price are potentially in collusive regimes.  

 

Following Abrantes-Mets et al. (2005) here we consider weekly gasoline prices 

across different oil companies in the US from May 2009 to November 2012.
45

 The 

data have been obtained from Bloomberg. The sample includes seven major gasoline 

producing companies in different regions of the US: Citgo (C), Sunoco Logistic 

Partners (SLP), BP, Transmontaigne (TM), Marathon Petroleum Corporation (MPC). 

Gulf Oil (GO), and Hess Corporation (HC). We use gasoline prices as they are widely 

available and the gasoline market is regularly suspected of anti-competitive 

                                                 
45 The short period of 3 years has been selected as it is believed that local cartels may be short-term and likely to 

disappear in the long-term. 
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behaviour. The Federal Trade Commission screens daily gasoline prices to identify 

anomalous pricing (Froeb et al, 2005). 

 

We compute the mean ( ̅), standard deviation (SD), and coefficient of variation (CV) 

of each gasoline station and present this information in Table 3-1 and as figures 

below in Figure 3-2, 3-3 and 3-4.  

 

To identify outliers consider the scatter plot of the standard deviation against the 

mean for gasoline stations prices. Outliers are identified as those stations with high 

means and low standard deviations these are indicated as red dots in the Figure 3-2. 

This figure indicates that Citgo in South Portland (Maine), Gulf in South Portland 

(Maine), Gulf in Williamsport (Pennsylvania) and Sunoco in Rochester (New York) 

are the outliers. From 3-2 we can sense that there is considerable variation in the 

standard deviations. Furthermore we construct a bar chart for the data and based on 

the entries in the bars identify stations with high mean and low standard deviations or 

low coefficient of variation: Citgo in Maine, Gulf Oil in Maine and Pennsylvania, and 

Sunoco in New York have high mean whereas the BP in South Carolina and Citgo in 

North Carolina have a low standard deviation while Sunoco in New York, Citgo in 

North Carolina and BP in South Carolina have low coefficients of variation.  
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Figure 3-2- Means and standard 

deviations

 

Figure 3-3- Mean, standard deviation and coefficient variation of seven major 

gasoline companies in different regions of the US 

 
 

 
Note:BP-FL is BP in Tampa (Florida), BP-SC1 is BP in North Augusta (South Carolina), BP-SC2 is BP in North 

Augusta (South Carolina), BP-SC3 is BP in Spartanburg (South Carolina), CT-FL is Citgo in Tampa (Florida), CT-ME 

is Citgo in South Portland (Maine) , CT-NC is Citgo in Selma (North Carolina)  , GU-ME is Gulf Oil in South Portland 

(Maine), GU-PA1 is Gulf Oil in Mechanicsburg (Pennsylvania), GU-PA2 is Gulf  Oil in Scranton(Pennsylvania), GU-

PA3 is Gulf Oil in Whitehall (Pennsylvania), GU-PA4 is Gulf Oil in Williamsport (Pennsylvania), HS-NC is Hess in 

Wilmington (North Carolina), HS-SC is Hess in North Charleston (South Carolina), MT-FL is Marathon Petroleum 

Corporation in Tampa (Florida), MT-GA is Marathon Petroleum Corporation in Columbus (Georgina), MT-NC is 

Marathon Petroleum Corporation in Charlotte (North Carolina), MT-OH is Marathon Petroleum Corporation in 

Steubenville (Ohio), MT-VA is Marathon Petroleum Corporation in Roanoke (Virginia), SU-NY1 is Sunoco in 

Rochester (New York), SU-NY2 is Sunoco in Tonawanda (New York) , SU-PA1 is Sunoco in Altoona (Pennsylvania), 

SU-PA2 is Sunoco in Fullerton (Pennsylvania), SU-PA3 is Sunoco in Kingston (Pennsylvania) , SU-PA4 is Sunoco in 

Northumberland ((Pennsylvania), TR-GA1 is TransMontaigne in Athens (Georgina), TR-GA2 is TransMontaigne in 

Rome (Georgina), TR-NC is TransMontaigne Charlotte (North Carolina).  
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Figure 3-4- Mean, standard deviation and coefficient variation of seven major 

gasoline companies in US 
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Table 3-1- Mean, standard deviations and Coefficient Variation of the US 

Gasoline company 

 Coefficient Variation  STD-DEV Mean 
BP-SC3 0.181831177 0.443925 2.441413 

BP-FL1 0.183533065 0.452282 2.464308 

BP-SC1 0.180047217 0.439281 2.43981 

BP-SC2 0.18093806 0.443293 2.449971 

CT-FL 0.183944524 0.45256 2.460307 

CT-ME 0.182592001 0.461263 2.526195 

CT-NC 0.179166505 0.437848 2.443805 

GU-ME 0.182405441 0.460824 2.526372 

GU-PA1 0.189412696 0.475012 2.507815 

GU-PA2 0.183184937 0.458818 2.504671 

GU-PA3 0.184036856 0.461272 2.506411 

GU-PA4 0.182340163 0.461901 2.533183 

HS-NC 0.180138629 0.4476 2.484753 

HS-SC 0.181171955 0.450171 2.484772 

MT-FL 0.186807375 0.456365 2.442971 

MT-GA 0.182295572 0.442713 2.428545 

MT-NC 0.182005016 0.443682 2.437746 

MT-OH 0.185786586 0.462023 2.486848 

MT-VA 0.182400335 0.445826 2.444217 

SU-NY1 0.178622505 0.451881 2.52981 

SU-NY2 0.185189002 0.465447 2.513362 

SU-PA1 0.188012347 0.472281 2.511968 

SU-PA2 0.184182458 0.461578 2.506091 

SU-PA3 0.183405415 0.458882 2.502009 

SU-PA4 0.183716101 0.459961 2.503651 

TR-GA1 0.181609849 0.446484 2.458479 

TR-GA2 0.197899908 0.490563 2.478844 

TR-NC 0.198751599 0.493185 2.481414 

Note:BP-FL is BP in Tampa (Florida), BP-SC1 is BP in North Augusta (South Carolina), BP-SC2 is BP in North 

Augusta (South Carolina), BP-SC3 is BP in Spartanburg (South Carolina), CT-FL is Citgo in Tampa (Florida), 

CT-ME is Citgo in South Portland (Maine) , CT-NC is Citgo in Selma (North Carolina)  , GU-ME is Gulf Oil in 

South Portland (Maine), GU-PA1 is Gulf Oil in Mechanicsburg (Pennsylvania), GU-PA2 is Gulf  Oil in 

Scranton(Pennsylvania), GU-PA3 is Gulf Oil in Whitehall (Pennsylvania), GU-PA4 is Gulf Oil in Williamsport 

(Pennsylvania), HS-NC is Hess in Wilmington (North Carolina), HS-SC is Hess in North Charleston (South 

Carolina), MT-FL is Marathon Petroleum Corporation in Tampa (Florida), MT-GA is Marathon Petroleum 

Corporation in Columbus (Georgina), MT-NC is Marathon Petroleum Corporation in Charlotte (North Carolina), 

MT-OH is Marathon Petroleum Corporation in Steubenville (Ohio), MT-VA is Marathon Petroleum Corporation 

in Roanoke (Virginia), SU-NY1 is Sunoco in Rochester (New York), SU-NY2 is Sunoco in Tonawanda (New 

York) , SU-PA1 is Sunoco in Altoona (Pennsylvania), SU-PA2 is Sunoco in Fullerton (Pennsylvania), SU-PA3 is 

Sunoco in Kingston (Pennsylvania) , SU-PA4 is Sunoco in Northumberland ((Pennsylvania), TR-GA1 is 

TransMontaigne in Athens (Georgina), TR-GA2 is TransMontaigne in Rome (Georgina), TR-NC is 

TransMontaigne Charlotte (North Carolina).  
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In view of the gasoline retail market behaviour, the highest value of coefficient of 

variation is 1.11 times higher than the lowest value of the coefficient variation and as 

such changes are insignificant this suggests anti-competitive behaviour in the US 

gasoline market.  Furthermore in the next section via the regime switching model we 

detect the potential disequilibrium in the long-run. 

3.4 Disequilibrium Regime Switching Model 
 

Global demand for gasoline is affected by technological change, global population 

growth, motor vehicle ownership and heating oil consumption. Since the last decade 

we can clearly observe that gasoline prices are highly volatile and this makes price 

modelling and forecasting, and risk management very challenging. Global warming 

and greenhouse gas emissions interact with the demand for gasoline. However 

political instability in the oil producing countries caused a remarkable disruption in 

energy supply, market equilibrium and prices since the 1990s.  Gasoline demand 

modelling, following Ramsey et al (1975), Dhal (1977), and Yang and Hu (1984) 

considers supply and demand to emphasize supply along with demand in the gasoline 

market, and also the level of supply-side intervention and policy in the gasoline 

market. 

 

For a product such as gasoline there is little quality uncertainty as the quality of the 

product is regulated for reasons of safety and the manufacturer needs to meet a 

standard for the product to avoid litigation from the public, corporate employees and 

the motor vehicle manufacturers who might engage in a class action where such 

failure to impact their reputation and affect sales.  
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Price uncertainty is an important issue and it might reflect the potential for 

disequilibrium (Arrow, 1962) in the energy market. Hence using different regime 

switching models we identify potential market disequilibrium caused by imperfect 

competition or price leadership. Subsequently we investigated this disequilibrium as 

characterized by excess demand or excess supply. Yang and Hu (1984) used this 

approach to formulate an endogenous switching model to examine a gasoline market. 

However, the analysis paid no attention to non-stationarity.  

 

In the following section we analysed disequilibrium switching model using the 

regular gasoline sales level(Q),  regular retail gasoline real price (RP), WTI crude oil 

price (PW), consumer price index(CPI), producer price index(PPI), gasoline unleaded 

regular cost of insurance and freight(Cost),  total energy consumption(EXP), city-gate 

gas real price(PGAS), disposable income(Y), automobile sales (Auto), price of the 

residual fuel oil(PRes), price of the distillate fuel oil(Pdst), and refineries net input of 

crude oil(RI)  from 1992:1 to 2012:9 in the US.
46

 The data in log levels and their 

differences are graphed in Figure 3-5 and 3-7, and the frequency distributions of both 

datasets are plotted in Figure 3-6 and 3-8. 

 

From the 3-5 and 3-7, the price level has drift whereas the differenced series appear 

to move randomly around the fixed mean. Furthermore figure 3-5 suggests LEXPN, 

LRI, LCPI, LAUT, and LQ are seasonal. Considering Figure 3-6 and 3-8, the 

frequency distributions of all the log data (Fig. 3-6) suggests the series do not revert 

                                                 
46The data set have been obtained from energy information administration website (www.eia.gov), and Bureau of 

Labour Statistics website (www.bls.gov). 

http://www.eia.gov/
http://www.bls.gov/
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to mean and overall might suggest two regimes, while the frequency distribution of 

data in their log differences (Fig. 3-8) seems to be closer to normality.   

 

Figure 3-5- Plot of LExpn, LRP, LRPGas, LPRes, LPdst, LPW, LY, LRI, LPPI, 

LCPI, LCost, LAUT and LQ in the US 
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Figure 3-6- Frequency distributionsof LExpn, LRP, LRPGas, LPRes, LPdst, 

LPW, LY, LRI, LPPI, LCPI, LCost, LAUT and LQ in the US 
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Figure 3-7- Plot of DLEXP, DLRP, DLRPGAS, DLPRES, DLPDST, DLPW, 

DLY, DLRI, DLPPI, DLCPI, DLCOST, DLAUT and DLQ in the US 
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Figure 3-8- Frequency distributions of DLEXP, DLRP, DLRPGAS, DLPRES, 

DLPDST, DLPW, DLY, DLRI, DLPPI, DLCPI, DLCOST, DLAUT and DLQ in 

the US 
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Classical economic theory suggests that market forces move supply and demand 

towards the equilibrium as a result of prices moving. A market is in equilibrium when 

the sum of agent demands and the aggregate level of supply by corporations intersect. 

It is often suggested that firms in the short to medium term fix a price as a mark-up 

but in the long-run they supply what the market demands.  

 

In the gasoline market the equilibrium price is set at the intersection point of market 

aggregated demand and supply. In the preceding chapters we examined gasoline price 

behaviour across different regions in the long-run and the short-run, specifying that 

the market structures and price dynamics may differ across regions. In this section we 

formulate two different switching models and examine their behaviour and the nature 

of the different regimes. 

 

Fair and Jaffee (1972) used the maximum likelihood method to examine the 

econometric problems related to estimating demand and supply in disequilibrium 

markets.
47

 The main assumption of their model was the presence of excess demand or 

supply in the market. Hence market disequilibrium is observed when quantity 

demanded and supplied are not equal to each other. The notion that the economy or a 

market is not in full equilibrium was investigated by Hicks (1936), the notion of 

adjustment along a demand curve was based on the idea that prices might be taken as 

                                                 
47Fair and Jaffee (1972) indicated supply and demand equations as following: 

Dt = αPt + β X´dt +εdt       (*1) 

St = α’Pt + β’ X´st +εst       (*2) 

Where Dt is unobserved quantity demanded and St is unobserved quantity supplied during the period t, Pt is the 

exogenous price of the gasoline, X´dt , X´st are other factors or vectors of exogenous variables that impact Dt and St, 

β and β’ are vectors of parameters, and εdt and εst are the residuals that are assumed independently distributed.  

Fair-Jaffee (1972) model solved equation (*1) and (*2) simultaneously and identified that the market equilibrium 

is where: 

Qt = Dt = St       (*3) 

Where Qt is the observed traded quantity of the good at time t. Equation (*3) identifies that in an equilibrium the 

quantity transacted is equal to quantity demanded and supplied in the market.  
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fixed within a neighbourhood and that movements in price do not lead to income 

effects. Then consumers make their decisions subject to these prices to give rise to a 

temporary equilibrium. Arrow (1962) suggests that uncertainty over prices gives rise 

to Demand curves that slope downwards and as a result there is a limit to the market 

even when there is no explicit barrier to entry into the market place. The 

disequilibrium model follows from the dual decision hypothesis of Clower (1968) and 

this implies that demands are made effective when money is available to purchase 

goods. It is the latter process that places a limit on the market and leads prices to 

respond more slowly than quantities. The min condition below follows from the 

notion that the consumer and producer cannot be forced to consume or produce more 

than they might wish at any price. There are some exceptions in relation to the 

consumption of public goods, but when products are supplied in a market where 

forced trading is not possible, the following equation applies: 

Qt=min (Dt, St) {
                                               
                                                   

(3-1) 

Equation (3-1) follows from the disequilibrium hypothesis which implies that only 

one regime can be observed at the time.
48

 When       then quantity transacted in 

the market is equal to quantity supplied and in the opposite situation when there is 

excess supply in economy (     ) then quantity transacted in the market is equal to 

quantity demanded. 

 

Maddala and Nelson (1974) examined the maximum likelihood estimation method of 

Fair and Jaffee under four different conditions. They specified that the challenges 

with the model are related to the model specification and the data rather than the 

                                                 
48Muellbauer (1983) suggested at the aggregate level the switch would be smoothed that gave rise to continuous 

switching. 
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methods applied. However Rosen and Quandt (1978) argued that if there is monopoly 

power in the demand side or supply side then the Qt may lie somewhere between Dt 

and St. 

 

More specifically, Robinson (1994) summarise the literature and adapts the method to 

provide an autoregressive correction that attempted to transfer the disequilibrium 

method to the dynamic context. Andrews and Nickell (1985) in analysing 

unemployment at the economy level derived a dynamic switching model where the 

disequilibrium is smoothed via aggregation over markets using the cumulative normal 

distribution as the aggregation device. This is an extension of the model of 

Muellbauer (1983), which simplified the problem by selecting a uniform distribution.  

 

Although this method is well motivated in the context of the cointegration and non-

stationarity, the switching method was overtaken by the notion that disequilibrium at 

the aggregate level was overtaken by rational expectations as applied to prices and 

not quantities. In econometrics the notion of disequilibrium became embedded in the 

error correction model and cointegration, this is considered in Maddala (1983).  

 

Here a static switching structure is devised and the switching is handled in the long-

run by the switching regression.
49

 In this section we identify demand and simply via 

the min condition using an exogenous switching model to measure long-run market 

failure. We analyse demand and supply equations and in a similar way to Engle and 

Granger (1987) the errors are stacked to form the error correction term. The error 

                                                 
49 Endogeneity is no longer an issue as long as the data are all I(1) as a result of super-consistency (see Burke and 

Hunter (2005)). 
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correction model can also include a dynamic switch where the correction to the 

demand and supply disequilibrium is not symmetric. As a result of this excess 

demands in the long-run may correct in a different way to excess supply. 

 

Yang and Hu (1984) formulated a gasoline market model testing disequilibrium that 

may have been caused by either imperfect price adjustment by both potential buyers 

and sellers or institutional price restrictions. In Yang and Hu (1984) they take no 

account of non-stationarity or the potential that the estimations may need to handle an 

autoregressive unit root.  In their estimation using the errors are serially correlated 

and the test statistics are non-standard.  

 

Here we analysed a similar model, but applied the Phillips-Hansen fully modified 

regression to estimate the parameter of the long-run relation. Phillips and Hansen 

(1990) developed a semi parametric method of estimation to take account of moving 

average or autoregressive errors. The Phillips-Hansen method estimates the 

parameters of a single cointegration relation by fully modified regression. Consider 

the OLS regression below: 

yt= α0 + α1 xt + εt.      (3-2) 

Where yt is an I(1) variable, xt is a k×1 vector of I(1) regressors and the first-

difference of xt is stationary: 

Δxt = μ + υt. 

The distribution of the OLS estimator in equation (3-2) with non-stationary series is 

non-standard the parameters are super consistent when there is cointegration, but the 

t-tests are not well defined.  The Phillips and Hansen fully-modified OLS estimator 

computes an estimate of the long-run variance that corrects the regression to takes 
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account of the serial correlation associated with the potential unit root in the error. 

With the exception of the conventional least squares regression result that applies 

with truly exogenous variables such as indicators, dummies and time, according to 

Kitamura and Phillips (1995) the estimations and inference are valid as long as the 

dependent variable and any potentially endogenous regressors are I(1).  

 

Hence using same variables as Yang and Hu (1984) and Phillips-Hansen modified 

method we identified following switching disequilibrium equation: 

Qt = γ0+ γ1 Dd + γ2d
d 

Pt + γ3d
d 

Yt+ γ4d
d 

Autt + ωdt +γ5d
s
Pt + γ6d

s
 Pres t + γ7d

s
 Pdst t + γ8 d

s
 

Pw t + γ9 d
s
RIt + ωst.        (3-3) 

 

In equation 3-3 Dt and St are aggregated gasoline demand and aggregated gasoline 

supply, Pt is the regular retail gasoline real price, Yt is disposal income, and Autt is 

automobile sales, and ωdt include explanatory variables not clarified in the demand 

function. Similarly in the supply equation the Pw is the WTI crude oil price
50

, Pres is 

price of residual fuel oil, and Pdst is price of distillate fuel oil to analyse the 

substitution effect in the production process,
51

 RI is refineries net input of crude oil, 

d
d 

is dummy demand and d
s 

is dummy supply, and ωst comprise unexplained 

explanatory variables. 

 

To identify the dummy for demand (d
d
) and supply (d

s
) we evaluated relative price 

from the following equations, where if Δlp Retail Price – Δlp Consumer Price Index> 0 indicates 

                                                 
50 Hotelling (1932) determined that profit-maximising price-taking firms based their prices on selection of their 

input and output levels. Thus the crude oil price plays an important role in the supply function for the gasoline 

market. 
51 No.2 distillate fuel oil is used in high-speed diesel engines, such as those in railroad locomotives, trucks, and 

automobiles. 
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that the relative price is increasing and D>S which classifies d
s
, otherwise (Δlp Retail 

Price – Δlp Consumer Price Index < 0) there is a decrease in the relative price identifying that 

D<S and that indicates d
d
.  Descriptive statistics of the above key variables are 

presented in Appendix B. All the above are in logarithms and regime dependent. The 

results for the above disequilibrium switching estimations are presented as demand 

and supply equations in Table 3-2. In the demand-side equation all estimated 

parameters are statistically significant with their expected sign. A 1% increase in the 

retail gasoline price will reduce the demand for gasoline by 3.43% and this implies 

that consumers are sensitive to gasoline price changes in changing their gasoline 

consumption level. A significant positive income coefficient indicates that an increase 

in consumer income and automobile sales level may increase gasoline demand in the 

market. This result indicates that a 1% increase in the consumer income will increase 

the gasoline demand by 2.87% and it shows consumers are responsive to their income 

changes in changing gasoline demand.  

 

The positive sign of γ5 indicates that the price of gasoline affect a gasoline supply 

positively that is consistent with economic theory. Its significance with a t value of 

3.07 identifies that refiners are sensitive to gasoline price changes in changing output 

level. However the negative sign of γ6 and γ7 indicates that residual fuel oil and 

distillate fuel oil price rises will reduce the supply of gasoline so the refiner produces 

for these markets where possible and substitute away from gasoline. While 

insignificant coefficients γ6 and γ7 identify that changes in gasoline production cannot 

be attributed to fluctuations in price of residuals and distillate fuel oil. The crude oil 

price which explains the effect of the input price on gasoline supply has an expected 

negative sign but statistically insignificant identifying that change in gasoline 
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production cannot be impacted by input price fluctuations. Finally, the refineries net 

input of crude oil, explains the scale effect in the supply equation, has a negative sign 

and is statistically insignificant indicating that it appears not to affect gasoline supply.  

 

As we see in table (3-2) the supply equation mostly contains insignificant coefficients 

and to further investigate this relation we estimate the model below. However, from 

economics theory gasoline consumption might be highly dependent on other factors 

such as: consumer price index, total energy expenditure, and the city-gate real gas 

price as a substitute good that affects consumer’s gasoline consumption behaviour. 

Similarly the firm supply equation may be effected by other factors such as the crude 

oil price, cost and producer price index. Hence we developed a new approach to 

estimate the demand and supply model by including different variables.  The 

proposed demand function incorporates the global price level. Again we estimated the 

following disequilibrium switching equations using Phillips and Hansen modified 

method:  

Qt = φ0+ φ1 Dd + φ2 d
d 

Pt + φ3 d
d 

CPIt + φ4 d
d 

EXPt + φ5 d
d 

PGas+ φ6 d
d 

Yt+ νdt +φ7 d
s 
Pt + 

φ8 d
s 
Ct + φ9 d

s 
PPI + φ10 d

s 
PW t+ νst       (3-4) 

 

where Pt is the price of the gasoline, CPI is consumer price index, and EXP is total 

energy expenditure, and PGas is city-gate gas real price, Yt is disposal income, and νdi 

includes explanatory variables not clarified in the demand function. Also in the 

supply equation PW is the WTI crude oil price
52

, PPI is the producer price index, and 

Ct  is unleaded regular gasoline costs (insurance and freight), and νst comprise 

                                                 
52 Hotelling (1932) identified that profit-maximising price-taking firms based to their prices they determine their 

input and output level. Thus crude oil price plays an important role in the supply function of the gasoline market.   
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unexplained explanatory variables in the supply equation. Descriptive statistics of the 

above key variables are presented in Appendix C.  

 

The results for the estimation of equation (3-4) are presented in the Table 3-3. For the 

demand-side equation all estimated parameters are significant with expected sign 

except φ3 that could be due to the high usage of the other energy sources in 

comparison with gasoline. The φ2 indicates that a 1% increase in the retail gasoline 

price will reduce the demand for gasoline by 11.19%, this implies that consumers are 

highly sensitive to gasoline price in changing their gasoline consumption level. The 

income coefficient (φ6) suggests that a 1% increase in consumer income will increase 

the gasoline demand by 6.26% and it shows consumers are responsive to income in 

changing their gasoline demand level. In the supply-side of the equation only φ10 has 

the expected sign that is also statistically insignificant. This implies that gasoline 

supply is not be strongly affected by other factors.  

  

Comparing above estimation of 3-3 and 3-4 via the regression that imposes the 

switch, the variables used in equation 3-4 seem to explain the model more 

appropriately as most of the variables are statistically significant. The significant 

coefficient subject to all series being I(1) implies that this is a long-run relation. This 

suggests that models based on the supply and demand regimes give rise to meaningful 

long-run equations.  
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Table 3-2- Static Disequilibrium Switching Estimation 1 

 Variable Parameter  Bartlett Weighs, 

truncation lag=64  

 

 

 

 

Demand-side Equation  

 

 γ 0 14.16** [0.00] 

(0.89) 

Dd γ 1 -3.78** [0.00] 

(0.94) 

Pt γ 2 -3.43** [0.00] 

(0.03) 

Yt γ3 2.87** [0.00] 

(0.04) 

 Autt γ4 10.21** [0.00] 

(0.03) 

 

 

 

Supply-side Equation 

Pt γ5 3.07** [0.00] 

(0.05) 

Pres t γ6 -1.005 [0.92]  

(0.03) 

Pdst t γ7 -3.26 [0.74] 

(0.05) 

Pw t γ8 -0.02 [0.98]  

(0.05) 

RIt γ9 

 

 

-0.34 [0.73]  

(0.07) 

 

Note: Qt = γ0+ γ1 Dd + γ2d
d 

Pt + γ3d
d 

Yt+ γ4d
d 

Autt + ωdt+ γ5d
s
Pt + γ6d

s
 Pres t + γ7d

s
 Pdst t 

+ γ8 d
s
 Pw t + γ9 d

s
RIt + ωst. All variables are in log scales and all prices are real price 

data. Values without the brackets presents Fully Modified Phillips-Hansen t-statistic, 

values in ( ) shows standard errors, and values in [ ] displays p-values. **is significant 

at the 1% and*is significant at the 5%.  
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Table 3-3- Static Disequilibrium Switching Estimation 2 

 Variable Parameter  Bartlett Weighs, truncation 

lag=64 

 

Demand-side  Equation  

 

 φ0  24.17** [0.00] 

(0.62) 

Dd φ 1  -8.91** [0.00] 

(1.19) 

Pt φ 2 -11.19** [0.00] 

(0.06) 

CPIt φ 3 9.71** [0.00] 

(0.09) 

 EXPt φ 4 7.15** [0.00] 

(0.13) 

 PGas φ 5 -3.21** [0.00] 

(0.06) 

 Yt φ6  6.26** [0.00] 

(0.00) 

 

 

 

 

Supply-side  Equation 

Pt φ7 -0.82 [0.41] 

(0.09) 

Ct φ8 4.31** [0.00] 

(0.09) 

PPI φ9 -5.31** [0.00] 

(0.15) 

PW t φ10  -1.18 [0.24] 

(0.08) 

 

Note: Qt = φ0+ φ1 Dd + φ2d
d 

Pt + φ3d
d 

CPIt + φ4d
d 

EXPt + φ5d
d 

PGas+ φ6 d
d
Yt+ νdt +φ7 

d
s 
Pt +φ8d

s 
Ct + φ9d

s 
PPI + φ10 d

s 
PW t+ νst. All variables are in log scales and all prices 

are real price data. Values without the brackets presents Fully Modified Phillips-

Hansen t-statistic, values in ( ) shows standard errors, and values in [ ] displays p-

values**is significant at the 1% and*is significant at the 5%.  
 

3.5 Markov Regime Switching Model (MRSM) 
 

In this section we analyse a Markov Regime Switching (MRS) model to capture 

different regimes in the energy markets. In the previous two chapters we found 

evidence that markets may not be efficient either across regions or within local 

markets. There is also evidence in financial markets of asymmetry in price reactions 
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as upward price corrections are more often smaller than downward movements. 

Further in energy markets there is evidence that market prices react more quickly to 

increases in wholesale prices while when wholesale prices fall the market price 

reaction is much slower. The Markov model may also be used as a benchmark to 

make comparison with other methods.  

 

As mentioned above, there are a number of reasons why behaviour could change over 

time, which may give rise to different regimes and different dynamic adjustments to 

disequilibrium. The Markov switching method generates different regimes between 

which the relation being analysed might adjust. The variable modelled in this way is 

the real price change and this is used as a result of the asymmetries discussed in the 

previous paragraph. Further, finding switching in terms of the Markov model may be 

consistent with finding switching in terms of other types of model. So the Markov 

method can be compared with the dependent variable being used to define exogenous 

disequilibrium switching process to define the disequilibrium model in terms of 

separate regimes related to demand and supply in the long-run.  

 

Here, the intention is to use this as a mechanism to identify supply and demand in the 

long-run. Each regime is characterized by a different parameterisation. Here the 

Markov regime switching error-correction model (MRSECM) is used to determine 

regimes that are latent in the data. We focus on modelling the gasoline market as a 

single market and to observe both sides of the market. The primary method to 

estimate disequilibrium models was investigated in a static context by Fair and Jaffee 

(1972), Fair and Kelejian (1974), and Maddala and Nelson (1974). Maddala (1983) 

provides a useful summary of this early literature and compares this with the same 
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latent effects captured by error correction models. Here the error correction model is 

also embedded in a Markov switching equation.  

 

Let us assume that the linear regression model is: 

yt= βXti  + ut . 

Where yt denotes the dependent variable, Xti denotes the matrix of independent 

variables. The above regression model is separated into two relations for: 

Regime (1):  yi= β1'X1i + u1i               if γ' Zi ≥ ui  (3-5)  

Regime (2): yi= β2' X2i + u2i               if γ' Zi<ui  (3-6) 

Where Zi determines the i
th

 observation that is generated for each regime, based on 

the unknown coefficient vector γ' that defines the switch and u1i and u2i, are assumed 

normally distributed with mean zero and variance-covariance matrix:  

 σ = [

  
       

     
    

        

] 

where    is the variance of the first regime and    indicates the variance of the 

second regime. If   ≠    and β1≠ β2, then the regression relation switches between the 

two regimes.
53

  

A problem with the previously discussed models is that they were static in nature 

implying that the models would usually be poorly specified, especially in relation to 

serial correlation. A number of corrections were applied to take account of this and 

these are explained in Robinson (1994). Further, the econometric methods went hand 

in hand with an economic literature (Barro and Grossman (1978)) that seemed to be 

                                                 
53 By knowing which observation of the dependent variable of y was generated by which regime a Chow test can 

examine whether   =    and β1’= β2’. However if this is unknown and it is not clear which of the dependent 

variable (y) was generated by, then Goldfeld and Quandt’s D-method for switching regression might clarify this 

problem. 
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outdated by the development of rational expectations, while the notion of 

disequilibrium in dynamic equations was embedded in error correction models 

(Davidson et al (1978)). Furthermore, Muellbauer (1983), and Nickell and Andrew 

(1983) developed at the macro level continuous switching when markets are 

aggregated. Maddala (1983) discussed disequilibrium where the latent variable 

equilibrium term is determined by switching and this is embedded in an error 

correction term. 

 

The regime switching ECM can be explained as an expanded linear error correction 

model by allowing the short-run parameters to switch in different regimes. Hence a 

Markov switching error correction model (MSECM) can be used to describe the 

short-run variation in gasoline sales. MSECM signifies that when the system is in a 

stable state then the error correction takes place and in the unstable state there are 

deviations from the long-run equilibrium that cannot be corrected through the ECM. 

In terms of the disequilibrium model these would be the same when there is 

correction to another equilibrium state. 

 

We defined the Markov regime switching error correction model using the logarithms 

of the following data: gasoline retail price (Pg), gas retail real price (PGAS) to analyse 

the substitute effect in the demand process, consumer price index (CPI), producer 

price index (PPI), unleaded regular gasoline costs -insurance and freight (COST), 

WTI spot price (PWTI), residual fuel oil price (Pres) and distillate fuel oil price (Pdst) to 

analyse the substitute effect in the production process.  

 



 Page 168 
 

The MRSEC model that might be a single equation from the VECM, with two 

regimes, is defined on the first-differenced monthly relative gasoline price: 

 (ΔLPg- ΔLCPI)t= 

         –          +∑     (     –       )
   

   
   +    (     –      )

   
+

∑     (      –       )
   

   
   +∑                

   
    

+∑                 
   
   +∑                

   
   +∑                

   
   + 

∑                
   
   +εt       (3-7) 

where       ,     ,      ,    ,     ,     , and     are the short-run dynamics of price data 

which is allowed to change within the regimes, s identifies the regime at time t, and εt 

is the vector of error terms. Using the Markov regime switching model we describe 

the equilibrium correction via a non-linear algorithm that computes and maximises 

the empirical likelihood here in a two-regime model. With a Markov process at each 

period (t), the probability of the switch from regime i to j can be calculated using 

the equation below:  

pij= Pr (st+1 =j│ st =i) 

Where the probability of remaining in a given regime i is signified as pii, consequently 

pij= 1- pii signifies the probability of switching from regime i to the other regime, j. 

Similarly pjj is the probability of remaining in the regime j and pji =1-pjj is probability 

of switching to regime i.  

Figure 3-9 provides a graphical illustration of smoothed regime probability of US 

gasoline relative price. This figure reflects the model that indicates the existence of 

two regimes and the switch among them. First figure in Fig. 3-9 indicates the real 

price information that we used to identify the regimes of demand and supply for the 

switching model. 
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Correspondingly Table 3-4 shows that parameters used in switching equation 3-7 are 

affected by the regimes and we identified that regimes are persistent and the 

probability of staying in regime 0 is 0.502 and the probability of staying in regime 1 

is 0.465. By comparing the demand and supply dummies (d
d
 and d

s
 used in equation 

3-3 and 3-4) with the regimes we identified that regime 0 is demand and regime 1 is 

supply regime. This implies that regular gasoline costs (insurance and freight), gas 

retail real price, residual fuel oil price, and distillate fuel oil price significantly affect 

the relative real gasoline price. While roughly half the observations relate to one as 

compared with the other regime. It is of interest to note that this would seem to lend 

support to the notion of switching and that equilibrium may not just be captured by 

the disequilibrium term related to error correction behaviour. 

Assuming stationarity of price proportion based on conventional inference the two 

correction terms in table 3-4 are significant and this implies negative reaction of 

gasoline market prices to CPI which it is indicative of demand responds, and positive 

reaction of gasoline market price to PPI indicative of supply responds.   
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Figure 3-9- Smoothed regime-probability estimates for two-regime MRS EC 

model of US gasoline relative prices 
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Table 3-4- Dynamic Disequilibrium Switching  

 

 

 
Variables in eq. 3-7 coefficient t-Statistics  

DPCPI_2         

DPCPI_3         

DPCPI_5         

DPCPI_6         

DPCPI_7         

DPCPI_8         

DPCPI_9         

DPCPI_10       

DPCPI_12       

DPCPI_14       

DPCPI_15       

DPCPI_16       

LPCPI_1          

LCPIPPI_1       

DCPIPPI_1       

DCPIPPI_3             

DCPIPPI_5            

DCPIPPI_6            

DCPIPPI_7            

DCPIPPI_8            

DCPIPPI_9            

DCPIPPI_10          

DCPIPPI_12          

DLCOST_1           

DLCOST_2           

DLCOST_3           

DLCOST_4           

DLCOST_6           

DLCOST_7           

DLCOST_8           

DLCOST_9              

DLCOST_10            

DLCOST_11            

DLPW_1                

DLPW_2               

DLPW_3              

DLPW_4              

DLPW_5              

DLPW_6              

DLPW_7              

DLPW_8              

DLPW_11            

DLPW_12            

DLPW_13            

DLRPGAS_1       

DLRPGAS_2       

DLRPGAS_3       

DLRPGAS_6       

DLRPGAS_8       

DLRPGAS_9       

DLRPGAS_10     

DLRPGAS_11     

DLPDST_2           

DLPDST_4           

DLPDST_5           

DLPDST_7          

DLPDST_8         

DLPDST_9         

DLPDST_11       

DLPDST_13       

DLPRES_1          

DLPRES_3          

DLPRES_5          

DLPRES_6          

DLPRES_7          

Constant(0)          

Constant(1)          

-0.668**     

-0.425**     

-0.359**     

-0.295**     

-0.338**     

0.150**     

-0.570**     

0.226**     

-0.184**     

0.092**     

-0.171**     

0.338**     

-0.011**    

0.058**   

-0.333**     

0.186**     

-0.869**     

-0.956**     

-0.491**     

0.314**     

-0.228**     

0.520**     

-0.874**     

0.097**     

0.157**     

0.241**     

0.063**     

0.164**     

0.225**     

0.135**     

0.155**     

0.065**     

0.162**     

0.137**     

0.074**     

0.203**     

-0.199**     

0.181**      

-0.088**     

0.075**     

0.105**     

-0.157**     

-0.080**     

-0.060**     

0.020     

0.043**   

0.064**     

-0.100**    

0.091**     

-0.070**     

-0.049**     

-0.072**     

0.070*    

0.240**     

-0.411**     

-0.188**     

-0.421**     

0.198**     

0.086**     

-0.050     

0.070**    

-0.071**     

0.069**     

0.074**     

-0.113**     

0.417**      

0.489**      

-16.7    

-8.86    

-7.79    

-5.91    

-6.67    

2.76    

-11.0    

4.48    

-4.38    

3.65    

-6.64    

14.2    

-2.00    

1.95    

-4.82    

2.34    

-10.8    

-12.1    

-5.99    

3.95    

-2.64    

6.54    

-12.6    

5.46    

7.20    

10.3    

3.19    

7.61    

8.94    

5.55    

6.60    

2.96    

8.54    

6.16    

2.78    

8.55    

-7.22    

6.68    

-3.54    

2.68    

4.02    

-5.95    

-3.64    

-2.43    

1.51    

3.26    

4.83    

-7.13    

6.37    

-4.93    

-3.35    

-5.50    

1.80    

6.37    

-9.94    

-4.78    

-11.4    

5.92    

2.19    

-1.52    

3.50    

-3.32    

3.32    

3.87    

-5.56    

2.04    

2.39    

P11 

P22 

Log-likelihood 

0.502 

0.465 

502.20 
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3-6 Conclusion 3 

 

 
In this chapter a number of methods have been used to identify and analyse regimes 

in gasoline market. The first method is variance screening that has been used in the 

regulatory literature to determine whether the market is competitive or open to 

collusion.  

 

The disequilibrium approach derived initially to estimate demand and supply 

equation in a static context was not developed to handle non-stationary series. 

However, when the series are all I(1) it possible to estimate these equations in one go 

via regression as when a regression is estimated and all the series are I(1) then 

irrespective of endogeneity the regression estimates satisfy the super consistency 

result of Stock (1987) as the estimates converge at a rate of 1/T (see Chapter  3 of 

Burke and Hunter (2005)). 

 

Here it has been shown that the switch model can be estimated by a single regression 

with the series being scaled by a dummy variable DS and DD. The dummy DS is 1 

when the change in the relative price exceeds zero while DD is 1 when the change in 

the relative price is less than zero. With sufficient data it should be possible to utilise 

the two step regression method of Engle and Granger (1987) to test whether the 

regression residuals are stationary. Unfortunately, the switch increases the number of 

parameters as the demand and supply equations are being computed simultaneously 

so with more than two hundred observations the critical value for the Dickey Fuller 

test cannot be computed by the available software. To determine the importance of 

the parameters in the cointegrating regression they are computed using the fully 
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modified estimation procedure of Phillips and Hansen (1990). The semi-parametric 

method corrects the estimator for both autoregressive and moving average errors and 

this implies that it is possible to determine the significance of these parameters via 

conventional inference as long as the regressors are I(1) except for series that are 

truly exogenous. 

 

The data are then separated using the relative as compared with absolute price 

changes. This separation is applied to the static model of Yang and Hu (1984) on a 

more recent data set. However, the static model only has a long-run interpretation. 

Based on the estimation results, the demand curve seems well defined, while it is less 

easy to interpret the second relation as a supply equation. A more recent approach to 

demand has also been used to define this equation and compared with a new supply 

equation, but this worked less well than the model of Yang and Hu (1984). Another 

interpretation of the supply equations is that the long-run supply function is flat 

implying firms set price as a mark-up of cost. 

 

The final analysis relates to a dynamic model for real gasoline prices in the US from 

1993 to 2012. This approach is based on an error correction model where the 

adjustment coefficients switch between regimes. Disequilibrium is captured by the 

correction, but this may be unstable or relate to a further equilibrium. Estimation of 

the Markov Switching ECM indicates that deviations from long-run equilibrium have 

an effect on gasoline price dynamics and that there are two different regimes. 
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Conclusion 
 

The search for structure in the energy market has recently become an attractive field 

of research for economist and policy makers. This thesis explores different methods 

of analysing the gasoline market structure. The goal of this thesis is to test the 

market efficiency using various methodologies to identify whether the gasoline 

market reflects all available information in prices.  

 

In Chapter one, we evaluated the methodology developed by Forni (2004) to define 

the market definition. Forni (2004) used unit-root tests under the non-stationary and 

stationary null. Forni (2004) also defined an ordering based on a combination of 

both forms of the test and categorise market definition based on accepting these 

tests at the 1%, 5% and 10% levels. This led to the conclusion that policy should be 

defined to stem further concentration in the Italian market for milk and resist any 

attempt for the major milk suppliers to merge. Here the US gasoline market is 

analysed using weekly gasoline price relatives across eight regions of the US (WC, 

CA, EC, GC, LA, MW, NE, RM)
54

. The ADF and KPSS results indicate that the 

market definition is narrow between GC and LA and suggests a broad market for all 

other regions price differentials. While Beirne et al (2007) suggest that their finding 

that on average the real exchange rate is stationary for a panel of 12 countries based 

on their corrected univariate ADF tests is valid as at least eight of the twelve series 

are found stationary and this is given further support by all, but one of the panel 

results derived under either the non-stationary or the stationary null. A similar 

conclusion arises here that on average the price differentials are stationary in eight 

out of nine cases and following Forni(2004) this supports the proposition that there 

                                                 
54West Coast, Central Atlantic, East Coast, Gulf Coast, Lower Atlantic, Midwest, New England, Rocky Mountains 
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is a broad market. In addition, the panel test results for the t-bar test of Im et al 

(2003) provides further support for this. 

 

The finding that GC and CA prices are not as responsive to the market may indicate 

that further investigation is required. Though given the number of tests used 

especially following the multiple testing that Forni (2004) suggested, it would seem 

unlikely that all the tests are going to lead to one conclusion. It also has to be 

recalled that in our analysis some adjustments were made to the Forni approach, in 

particular eliminating the upper triangle of tests as they can be directly imputed 

from the reverse regressions. The advantage of the Forni (2004) method and the 

application of panel tests arise when the sample is not large as it simply requires 

price proportions to be stationary and does not assume the series are of the same 

order of integration. Furthermore, the stationarity test simultaneously imposes a 

slope coefficient of unity and an intercept of zero. However, this is bought at the 

cost of assuming that these restrictions apply in the short and the long-run. 

 

In Chapter Two for comparison the same data is used, but in this case the weekly 

gasoline prices are applied to an error correction equation. Data is also obtained for 

seven major gasoline producing companies.
55

 Given some of the difficulties presented 

by the Forni approach in terms of the most appropriate relative prices to be analysed, 

support is given to the error correction approach mentioned in Kremers, Ericsson and 

Dolado (1992) when the sample is small. The single equation or panel error-

correction dynamic model approach only requires that the error correction defines a 

                                                 
55Citgo (C), Sunoco Logistic Partners (SLP), BP, Transmontaigne (TM), Marathon Petroleum Corporation (MPC), 

Gulf Oil (GO), and Hess Corporation (HC) 
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stationary variable, as with the ADF test on price proportions, but it does not impose 

the same restriction on the short-run. The results indicate that the gasoline prices of 

different regions are cointegrated. 

 

With a large data set though it would seem best to use a VECM as this will relate to N 

price equations, and also does not impose any short-run restriction. The VECM 

jointly tests the number of cointegrating vectors and allows one to determine whether 

there are N-1 of these relations as is suggested by Hunter and Burke (2008). It is also 

possible to test cointegrating and weak exogeneity, the former being the key long-run 

causality condition when r>2. 

 

For the system based on the regional we find r=5<N-1 cointegrating relations and as 

a result it is not possible to find sufficient parallel pricing relations. The tests of weak 

exogeneity imply that the long-run equilibrium relations can be conditioned on the 

GC and either the MW and LA prices. However, the most appealing model arises 

with the long-run conditioned on the GC while the MW price is cointegrating 

exogenous. Then the long-run relations can be further restricted so that three equation 

satisfy LEPT (Burke and Hunter (2011)). Only one relation is consistent with parallel 

pricing that is the error correction terms that arise when the stationarity tests are 

applied, though when the system is complete (r=N-1), LEPT and parallel pricing are 

equivalent. The final relation requires a linear combination of two proportional price 

or error corrections for the long-run to be stationary in the VAR. Hence, the VAR 

gives rise to more complicated long-run models than arise with the single equation 

stationarity tests.  
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A similar, investigation of seven company prices implies that r=4 and this is also not 

consistent with long-run arbitrage. Care must be taken as unlike the results that arise 

in the case of the regional prices where there are 900 observations, the company 

sample may be sensitive to the impact of volatility on the Johansen test statistic that 

may not be innocuous with a sample of 192 observations. This implies that the market 

may be segmented, but for the company prices no single company price can be used 

to condition the long-run as non of these series are WE for the cointegrating vectors.  

This suggests the need for further investigation either correcting the volatility and 

investigating further the price relations when the cointegrating rank might be seen as 

being reliable. 

 

Considering the empirical results we are suggesting a change in the regulation of the 

regional gasoline market in the US to enhance competition. This could relate to tax 

breaks to extend the refinery and distribution capacity of smaller firms. A similar 

conclusion to Forni (2004) arises as the failure to find a “Broad Market” in the long-

run suggests that the anti-trust authorities resist further concentration in the industry 

via merger or acquisition. The availability and accessibility of market information to 

the consumer could also affect price responsiveness in this market. Similar 

conclusions may also be pertinent to other countries such as the UK. 

 

In Chapter Three we analysed energy demand and supply as an appropriate approach 

to represent consumers and suppliers in a competitive market. In the gasoline market 

potential price leadership may arise as a result of quantity adjustment being faster 

than price adjustment. First, the analysis is based on weekly gasoline prices for 

companies’ based on the variance screening approach. Anti-competitive behaviour is 
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detected in the US gasoline market as a result of low variability in prices and the 

results presented here suggest that may be the case. To further investigate this issue 

at the level of the market we applied different regime switching models (RSM)
56

 to 

identify any potential disequilibrium in the long-run. 

 

The observation of disequilibrium in the long-run in energy markets indicates the need 

to consider the demand and supply to improve energy market efficiency and stability. 

The first finding for disequilibrium based on an endogenous switching model, implies 

that even in the long-run gasoline price dynamics may not clear the market. This may 

arise as a result of non-competitive behaviour by companies. Though the switching 

approach subject to the min condition allows the demand and supply equation to be 

detected. 

 

Whereas the Markov regime switching model implies that price correction is not 

symmetric in the long-run. Hence, the capacity to correct mispricing depends on the 

nature of the different regimes. That the two regimes are significant gives some 

support to the disequilibrium method as that is driven by the behaviour of the price 

series. However, the switching method identifies two separate long-run equations. The 

demand equation implies that in the demand equation regular gasoline costs, the real 

retail gas price, the residual fuel oil price, and distillate fuel oil price on retail gasoline 

prices affect the demand for gasoline in the US. That the own price is elastic and the 

supply curve does not respond to prices suggests a system that is stable and self 

correcting in the long-run.   

                                                 
56regular gasoline sales level(Q),  regular retail gasoline real price (RP), WTI crude oil price (PW), consumer price 

index(CPI), producer price index(PPI), gasoline unleaded regular cost of insurance and freight(Cost),  total energy 

consumption(EXP), city-gate gas real price(PGAS),disposal income(Y), automobile sales (Auto), Price of the 

residual fuel oil(PRes), price of the distillate fuel oil (Pdst), and refineries net input of crude oil(RI). 
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Considering the results presented in this thesis, then further study into the methods 

applied in Chapter Two and Three may benefit from more appropriate corrections for 

ARCH especially in the VAR model and to correct the cointegration test. The 

disequilibrium regime switching analysis gives rise to too many variables to simulate 

the EG test. Either more data is required or a non-linear VAR may better handle the 

problem. 
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Appendix 
 

Appendix A- Summary of ADF tests, DF-GLS tests & KPSS tests on the log 

gasoline prices. (With intercept and no trend) 
Log gasoline price ADF/ 

OLS t-statistic 

DF-GLS/ 

OLS t-statistic 

KPSS 

LM-statistic 

LCA(0) 

LCA(1) 

LCA(2) 

-0.587625 

-1.531763 

-1.514424 

0.935263 

-0.233328 

-0.414377 

76.17527 

38.14503 

25.46772 

LEC(0) 

LEC(1) 

LEC(2) 

-0.594370 

-1.362423 

-1.497411 

0.843922 

-0.293232 

-0.443477 

76.27340 

38.19435 

25.50107 

LGC(0) 

LGC(1) 

LGC(2) 

-0.587120 

-1.468286 

-1.604339 

0.615377 

-0.530520 

-0.677296 

73.95684 

37.03674 

24.73113 

LLA(0) 

LLA(1) 

LLA(2) 

-0.649083 

-1.402584 

-1.518582 

0.658324 

-0.387962 

-0.514502 

75.91653 

38.01797 

25.38538 

LMW(0) 

LMW(1) 

LMW(2) 

-0.918373 

-1.505961 

-1.748858 

0.142988 

-0.554558 

-0.772669 

75.67162 

37.91779 

25.33272 

LNE(0) 

LNE(1) 

LNE(2) 

-0.619944 

-1.418776 

-1.621628 

0.918439 

-0.268809 

-0.472785 

75.15725 

37.63891 

25.13233 

LRM(0) 

LRM(1) 

LRM(2) 

-0.681506 

-1.227909 

-1.647491 

0.631150 

-0.170134 

-0.594555 

74.28679 

37.21110 

24.85048 

LWC(0) 

LWC(1) 

LWC(2) 

-0.575360 

-1.956408 

-1.850433 

0.878637 

-0.811769 

-0.712189 

 77.66324 

38.89792 

25.97839 

Note: ADF Test Critical value at 1% is -3.4374, at 5% is -2.8645.  

DF-GLS test Critical value at 1% is -2.5675, at 5% is -1.9412. 

KPSS test Critical value at 1% is 0.7390, at 5% is0.4630. 

** Significant at the 99% confidence level, and* Significant at the 95% confidence level 
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Appendix B- Descriptive statistics of equation 8 

Variables  Mean  Std. Dev. Minimum Maximum 

DDP 1.254644 1.424912 0 3.455429 

DY 3.963073 4.452339 0 9.380775 

DAUT 4.802026 5.391770 0 11.16832 

SP 1.563088 1.415824 0 3.412161 

SPRES -0.210711 0.550565 -1.518684 1.019569 

SPDIS 0.059302 0.468357 -0.894040 1.272846 

SPW 1.991498 1.842046 0 4.759349 

SRI 7.235501 6.473106 0 13.12318 
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Appendix C- Descriptive statistics of equation 9 

Variables  Mean  Std. Dev. Minimum Maximum 

DDP 1.259723 1.425553 0 3.455429 

DY 3.979118 4.454189 0 9.380775 

DCPI -1.024980 1.150464 -2.476933 0 

DEXP 3.994286 4.466937 0 9.154450 

DLRPGAS 0.000497 0.091348 -0.331544 0.295131 

SP 1.559348 1.417471 0 3.412161 

SCOST 3.227208 2.936155 0 7.046647 

SPPI 2.764297 2.485357 0 5.319100 

SPW 1.987685 1.844805 0 4.759349 
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Appendix D- Regime classification based on smoothed probabilities 

Regime 0  Regime 1  
1993(6) - 1993(6) 

1993(9) - 1993(9) 

1993(12) - 1993(12) 

1994(2) - 1994(3) 

1994(5) - 1994(5) 

1994(7) - 1994(7) 

1994(10) - 1994(10) 

1995(1) - 1995(1) 

1995(3) - 1995(4) 

1995(6) - 1995(6) 

1995(8) - 1995(10) 

1995(12) - 1995(12) 

1996(2) - 1996(2) 

1996(4) - 1996(5) 

1996(9) - 1996(10) 

1996(12) - 1996(12) 

1997(2) - 1997(2) 

1997(4) - 1997(5) 

1997(7) - 1997(8) 

1997(11) - 1997(11) 

1998(1) - 1998(3) 

1998(5) - 1998(7) 

1998(9) - 1998(9) 

1998(11) - 1998(11) 

1999(1) - 1999(2) 

1999(4) - 1999(4) 

1999(7) - 1999(7) 

1999(9) - 1999(9) 

1999(11) - 1999(11) 

2000(1) - 2000(1) 

2000(4) - 2000(4) 

2000(6) - 2000(8) 

2000(11) - 2000(11) 

2001(1) - 2001(3) 

2001(5) - 2001(5) 

2001(7) - 2001(7) 

2001(9) - 2001(11) 

2002(2) - 2002(4) 

2002(7) - 2002(8) 

2002(12) - 2002(12) 

2003(4) - 2003(4) 

2003(6) - 2003(6) 

2003(8) - 2003(8) 

2003(11) - 2003(11) 

2004(3) - 2004(3) 

2004(6) - 2004(7) 

2004(10) - 2004(10) 

2004(12) - 2004(12) 

2005(3) - 2005(4) 

2005(7) - 2005(9) 

2005(12) - 2005(12) 

2006(2) - 2006(2) 

2006(4) - 2006(4) 

2006(6) - 2006(6) 

2006(8) - 2006(8) 

2006(10) - 2006(12) 

2007(2) - 2007(2) 

2007(4) - 2007(4) 

2007(8) - 2007(9) 

2007(12) - 2007(12) 

2008(3) - 2008(3) 

2008(5) - 2008(5) 

2008(7) - 2008(9) 

2009(1) - 2009(2) 

2009(4) - 2009(5) 

2009(8) - 2009(8) 

2009(10) - 2009(11) 

2010(2) - 2010(2) 

2010(5) - 2010(5) 

2010(7) - 2010(7) 

2010(11) - 2010(11) 

2011(1) - 2011(1) 

2011(3) - 2011(3) 

2011(7) - 2011(7) 

2011(10) - 2011(10) 

2012(1) - 2012(2) 

2012(4) - 2012(6) 

2012(9) - 2012(9) 

 

1.000 

0.983 
1.000 

1.000 

1.000 
1.000 
1.000 
0.998 
0.917 
0.952 
0.998 
1.000 
0.972 
0.999 
0.997 
1.000 
0.995 
0.990 
1.000 
1.000 
0.966 
0.991 
0.999 
0.998 
1.000 
1.000 
0.995 
0.956 
1.000 
1.000 
1.000 
0.998 
0.998 
0.998 
1.000 
0.998 
0.999 
1.000 
1.000 
0.996 
0.999 
0.999 
0.999 
1.000 
0.997 
1.000 
0.640 
1.000 
0.998 
0.991 
1.000 
1.000 
1.000 
1.000 
1.000 
0.966 
0.985 
0.994 
0.999 
1.000 
0.988 
1.000 
1.000 
0.998 
0.987 
1.000 
0.996 
1.000 
0.974 
0.997 
1.000 
0.987 
1.000 
1.000 
0.995 
0.840 
0.955 
0.997 
 

1993(7) - 1993(8) 

1993(10) - 1993(11) 

1994(1) - 1994(1) 

1994(4) - 1994(4) 

1994(6) - 1994(6) 

1994(8) - 1994(9) 

1994(11) - 1994(12) 

1995(2) - 1995(2) 

1995(5) - 1995(5) 

1995(7) - 1995(7) 

1995(11) - 1995(11) 

1996(1) - 1996(1) 

1996(3) - 1996(3) 

1996(6) - 1996(8) 

1996(11) - 1996(11) 

1997(1) - 1997(1) 

1997(3) - 1997(3) 

1997(6) - 1997(6) 

1997(9) - 1997(10) 

1997(12) - 1997(12) 

1998(4) - 1998(4) 

1998(8) - 1998(8) 

1998(10) - 1998(10) 

1998(12) - 1998(12) 

1999(3) - 1999(3) 

1999(5) - 1999(6) 

1999(8) - 1999(8) 

1999(10) - 1999(10) 

1999(12) - 1999(12) 

2000(2) - 2000(3) 

2000(5) - 2000(5) 

2000(9) - 2000(10) 

2000(12) - 2000(12) 

2001(4) - 2001(4) 

2001(6) - 2001(6) 

2001(8) - 2001(8) 

2001(12) - 2002(1) 

2002(5) - 2002(6) 

2002(9) - 2002(11) 

2003(1) - 2003(3) 

2003(5) - 2003(5) 

2003(7) - 2003(7) 

2003(9) - 2003(10) 

2003(12) - 2004(2) 

2004(4) - 2004(5) 

2004(8) - 2004(9) 

2004(11) - 2004(11) 

2005(1) - 2005(2) 

2005(5) - 2005(6) 

2005(10) - 2005(11) 

2006(1) - 2006(1) 

2006(3) - 2006(3) 

2006(5) - 2006(5) 

2006(7) - 2006(7) 

2006(9) - 2006(9) 

2007(1) - 2007(1) 

2007(3) - 2007(3) 

2007(5) - 2007(7) 

2007(10) - 2007(11) 

2008(1) - 2008(2) 

2008(4) - 2008(4) 

2008(6) - 2008(6) 

2008(10) - 2008(12) 

2009(3) - 2009(3) 

2009(6) - 2009(7) 

2009(9) - 2009(9) 

2009(12) - 2010(1) 

2010(3) - 2010(4) 

2010(6) - 2010(6) 

2010(8) - 2010(10) 

2010(12) - 2010(12) 

2011(2) - 2011(2) 

2011(4) - 2011(6) 

2011(8) - 2011(9) 

2011(11) - 2011(12) 

2012(3) - 2012(3) 

2012(7) - 2012(8) 

 

0.999 
0.999 
1.000 
0.997 
1.000 
0.640 
1.000 
0.998 
0.991 
1.000 
1.000 
1.000 
1.000 
1.000 
0.966 
0.985 
0.994 
0.999 
1.000 
0.988 
1.000 
1.000 
0.998 
0.987 
1.000 
0.996 
1.000 
0.974 
0.997 
1.000 
0.987 
1.000 
1.000 
0.995 
0.840 
0.955 
0.997 
0.903 
0.999 
0.993 
0.990 
1.000 
0.956 
0.999 
0.997 
0.994 
1.000 
0.998 
0.999 
1.000 
1.000 
0.997 
0.997 
1.000 
0.999 
1.000 
0.999 
0.854 
0.999 
0.993 
1.000 
0.959 
0.937 
0.991 

0.999 
1.000 
1.000 
0.998 
0.999 

0.99 
0.546 
1.000 

0.867 
0.993 
1.000 
0.998 
0.983 
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