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Abstract 
 

 

 

We report our investigation of how news stories influence the behaviour of tradable 

financial assets, in particular, equities. We consider the established methods of turning 

news events into a quantifiable measure and explore the models which connect these 

measures to financial decision making and risk control. 

 

The study of our thesis is built around two practical, as well as, research problems 

which are determining trading strategies and quantifying trading risk. We have 

constructed a new measure which takes into consideration (i) the volume of news and 

(ii) the decaying effect of news sentiment. In this way we derive the impact of 

aggregated news events for a given asset; we have defined this as the impact score. 

We also characterise the behaviour of assets using three parameters, which are return, 

volatility and liquidity, and construct predictive models which incorporate impact 

scores.  

 

The derivation of the impact measure and the characterisation of asset behaviour by 

introducing liquidity are two innovations reported in this thesis and are claimed to be 

contributions to knowledge. 

 

The impact of news on asset behaviour is explored using two sets of predictive 

models: the univariate models and the multivariate models. In our univariate 

predictive models, a universe of 53 assets were considered in order to justify the 

relationship of news and assets across 9 different sectors. For the multivariate case, 

we have selected 5 stocks from the financial sector only as this is relevant for the 

purpose of constructing trading strategies. We have analysed the celebrated Black-

Litterman model (1991) and constructed our Bayesian multivariate predictive models 

such that we can incorporate domain expertise to improve the predictions. Not only 

does this suggest one of the best ways to choose priors in Bayesian inference for 

financial models using news sentiment, but it also allows the use of current and 

synchronised data with market information. This is also a novel aspect of our work 

and a further contribution to knowledge. 
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Chapter 1 
 

Introduction 
 

 

1.1 Focus of the Thesis 

 

The research represented in this thesis focuses on exploring news as an event and the 

incorporation of news in prediction models to enhance the power of predictability. 

Specifically the sentiment of news is taken as a quantitative reflection of information. 

Methods of classifying news sentiment and the conversion process of machine-

readable text to a quantitative measure are considered; the main focus of our work is 

to study the applications of news sentiment in a financial context. Particular attention 

is directed towards higher frequencies of trading, i.e. minute bar, due to the greater 

profitability prospects and higher number of trading signals related to news in these 

time frequencies. Since the most popular trading instrument in high frequencies is 

also the most reported type of securities in news, we have selected this as the asset 

class of study, namely equities.  

 

1.2   News as an Event 

 

“What you see is news, what you know is background, what you feel is opinion.” 

Lester Markel, American journalist, 1894-1977 

 

News is publicly shared information that is accessible to the mass audience. In the 

domain of Finance, news is reported on companies, stocks, regulations and more. 

News usually covers an event and is dispersed as noteworthy facts to share 

information and gain knowledge about the markets. A consequence of news 

distribution is that recipients of the news form opinions and enable investors to make 

judgements, which could lead to actions being taken in their portfolio of assets. The 

subsequent reaction of the market participants due to sentiment formed from a piece 

of news is what we are interested in studying in this thesis. 
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The steps preceding the public dissemination of news are crucial in sustaining the 

validity and credibility of news stories. The process involves information gathering 

through credible sources so that journalists are able to produce a written article which 

then goes through editorial control. The scrutiny and oversight of this editorial 

process ensures that only the validated items of information are published to maintain 

readers’ confidence in the trustworthiness of news. Furthermore, this also implies that 

a process of filtering occurs to determine whether a piece of news is adequate for 

broadcasting. The reasoning can be explained as follows. The information is 

exclusively known to a small group of individuals to begin with, which is 

subsequently passed on to journalists who decide whether it is necessary to be 

publicised. Thus a selection criterion is imposed to differentiate between news that is 

suitable for distribution and those that should remain private. In other words, news is 

a class of information that is deemed noteworthy for market participants (investors, 

traders and more) to see. Naturally this raises the question of who controls such a 

selection. The intuitive answer would be journalists; upon further contemplation it 

becomes apparent that it is the source who provides the journalist with such 

information. Hence, there must be some form of motivation driving the source to 

release it and require it to be shared publicly. Manipulation of such a process occurs 

when false or misleading information is distributed with the aim of moving markets to 

produce financial gain for the person. This is known as market manipulation and is 

illegal. For journalists, their objective is to attract readers’ attention and create interest, 

which may lead to the formation of a common opinion amongst market participants. 

This is loosely formed as sentiment.  

 

Given that news stories are often repeated it follows that not all news stories may be 

novel and hence informative. If news is rapidly digested by markets then the efficient 

market hypothesis (EMH) holds meaning it is not possible to achieve returns larger 

than average market returns. Indeed this has been the foundation of finance theory for 

decades, ever since its proponent and now a Nobel Laureate (2013) Professor Eugene 

Fama developed the hypothesis in 1965 as part of his PhD thesis. The EMH claims 

that asset prices already reflect all past publicly available information, and change 

instantly to reflect new public information, even insiders’ information. There are three 

levels of EMH: weak, semi-strong and strong. The neoclassical finance axiom of all 

traders being rational is guided by utility theory. However, as with all landmark 

theories, there are many studies contesting this frame of thought such as Rosenberg, 

Reid, and Lanstein (1985) and Shiller et al. (1984). Additionally, Nicholson (1968) 
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and Basu (1977) find a group of stocks that would outperform others in the form of 

low price to earnings ratio stocks, violating EMH. By the 1990s, behavioural finance 

began to be widely accepted, bringing in the opposition – irrational markets 

(Kahneman, 2002, Shiller, 2000 and Shefrin, 2008). Postulated by prospect theory 

(see Kahneman and Tversky, 1979) the argument for irrational traders emerged. 

Evidence was compiled for over reactions and under reactions to new information, 

causing excess volatility to appear in the markets. At that time, an explanation for 

these findings was that they were simply reflecting a complex pattern of 

compensation for systematic risk, which in classical finance theory is the only 

determining factor of expected returns. The criticism of EMH is now well accepted 

and is termed “market anomalies”. Some critics blame the blind faith and pursuit of 

EMH as the underlying reason for the recent global financial crisis (Nocera 5 June 

2009). 

 

A finer investigation into the markets exposes cases where inefficient behaviour is 

prevalent. Intuitively, small stocks react to news significantly slower than large stocks, 

with respect to their market capitalisation. This can be attributed to many factors such 

as illiquidity of their stocks, due to the lack of awareness about them, in addition to a 

delay in reaction of market prices also caused by the same reason plus a lack of news 

events. Baker and Wurgler (2006) report similar findings in their work and state that 

small stocks earn particularly high returns in low sentiment periods, but when 

sentiment is high there is no size effect. On the other hand, a single news item has a 

significantly larger effect on small stocks than big companies as news is rarely 

reported therefore, any news provides more insight into such a company. Barber and 

Odean (2008) declare any unusual trading volume in large capitalisation stocks is 

unlikely to be driven by only a few investors, as is the case for smaller and more 

illiquid stocks. Baker and Wurgler (2006) argue the case for irrational markets by 

presenting evidence of investor sentiment affecting stock prices, rejecting the 

neoclassical finance theory that all markets are rational markets. In their paper, 

sentiment is measured by a proxy - closed-end fund discount (CEFD), which is 

calculated as the average difference between the net asset values of closed-end stock 

fund shares and their market prices. They suggest that this measure is inversely 

related to sentiment. Empirical results find that cross-sectional predictability patterns 

in stock returns are conditional upon proxies for beginning-of-period sentiment.  

 



4 

 

Until recently, the concept of sentiment, especially news sentiment, had still been a 

very elusive concept. The common school of thought was that sentiment offsets itself 

between the opposing opinions. However, a collection of research can be compiled to 

argue that text contained in news stories is important; they influence and move the 

market. Fisher and Statman (2000) recognise sentiment as an important component of 

the market pricing process by surveying a panel of individual investors, newsletter 

writers and Wall Street sell-side analysts. Chan (2003) investigates the difference in 

behaviour between assets that are reported in the news and assets which are not 

covered. He finds a strong drift in returns after bad news is released whereas price 

movements of assets unaccompanied by news experience annual return reversals. 

Moreover, Barber and Odean (2008) and Sinha’s (2010) perspective is that news 

releases and market price updates occur at different paces hence a causal relationship 

exists. Alternatively, investors’ sentiment can also be considered as a reflection of 

their perception on risk. For example, in periods where markets are bearish and 

confidence is low, only news with high positive sentiment would be sufficient to 

persuade traders to take drastic actions, indicating their risk adverse behaviour. 

Theory suggests that firms with certain characteristics are most volatile to shifts in 

sentiment, namely, newer, smaller, more volatile, unprofitable, non-dividend paying, 

distressed or extreme growth potential firms (Baker and Wurgler, 2006). 

 

Subsequently, research literature in this field of news sentiment analysis has grown 

dramatically over the past few decades. The main focus of work has been on 

investigating the role of sentiment in explaining the time series of returns (Kothari 

and Shanken, 1997, Neal and Wheatley, 1998, Shiller, 2000, Baker and Wurgler, 

2000). In particular, the work of DeLong, Shleifer, Summers and Waldmann (1990) 

needs to be especially highlighted as they were one of the first to claim that securities 

with more exposure to sentiment have higher unconditional expected returns. Only in 

recent years has a body of literature emerged studying the relationship and effects of 

sentiment on stock market variables other than returns, for example, volatility and 

liquidity (Gross-Klaussman and Hautsch, 2011, Smales, 2013, Riordan et al., 2013).  

 

Taken from market microstructure theory, traders can also be categorised according to 

the information they know. There exist two types of traders, where one party 

(informed traders) possesses more information about market movements than its 

counterpart (uninformed traders). Institutional traders constitute the informed party 

whereas individual traders compose the uninformed party, also known as noise traders. 
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The behaviour of informed and uninformed traders differs substantially (see Barber 

and Odean, 2008 and Tetlock, 2011). Uninformed traders, such as retail traders, have 

been proven to react to news events immediately after announcement whereas 

institutional traders do not.   

 

 

1.3   Sentiment and Its Evolution 

 

The definition of “sentiment” has evolved as research progressed. The initial 

sentiment that was of interest to researchers was the views and opinions of investors 

specifically i.e. investor sentiment (DeLong et al., 1990). Whether it is their direct 

response to an announcement or after reading a news article, there was motivation to 

suggest that stock price movements would be related to such sentiment. Often these 

opinions do not translate into instant reactions but rather evaluated over time so that 

decisions could be made for the long term. Naturally a reflection of the mass investors’ 

views is the media, which gives a summary of the general mood and consensus of the 

stock markets. Henceforth studies tried to capture the views known as media 

sentiment (Tetlock, 2007). This is derived directly from the text of news stories and 

simply analyses the number of positive and negative words to deduce the overall 

sentiment. Eventually this was refined to news sentiment (Barber and Odean, 2008, 

Sinha, 2011, Smales, 2012), which is what we study in this thesis. The classification 

methods of such sentiment are now more sophisticated and discussed in further detail 

in section 1.4. It is worth mentioning the final form of sentiment, although it is not 

reported in our review, that is, market sentiment. While lacking in a precise 

definition, this type of sentiment includes more than just news information; market 

conditions and VIX are amongst the other factors considered. It is dominated by the 

consensus of informed traders, who receive and digest extra information regarding 

future prices, and so contrasts with the underlying assumption of EMH that all 

markets efficiently reflect all information. This is particularly the case for the strong 

form of the hypothesis.    

 

“Never awake me when you have good news to announce, because with good 

news nothing presses; but when you have bad news, arouse me immediately, for 

then there is not an instant to be lost.” 

Napoleon Bonaparte, French Emperor, 1769-1821 

 



6 

 

Studies have found evidence of a similar concept to this quote in the stock markets, 

that is, stock prices react more drastically to news that contain negative sentiment as 

opposed to positive sentiment (Chen et al, 2003, Tetlock, 2007, Barber and Odean, 

2008). This effect is exhibited by increased levels of volatility, traded volume and 

absolute order imbalance in the presence of negative news. Engle and Ng (1993) find 

an impact of news shocks on the Japanese stock market and reported an asymmetric 

effect such that negative news has a substantial influence on volatility than positive 

news. They argue that these results occurr due to the leverage effect. Analysis of 

intraday data highlights a period of 30 second intervals either side of news release as 

the occurrence of this phenomenon (Smales, 2012). Likewise, the release of scheduled 

earnings also portrays this behaviour with variables increasing to above average levels 

more than 15 minutes beforehand.  

 

Sentiment Proxies 

 

Research in this field began sometime before the technology was available to collect 

and score news sentiment automatically. Proxies were used instead of sentiment 

scoring systems, such as earnings announcements, company reports and court filings. 

The earliest work dates back to 1971 where Niederhoffer determined the relative 

importance of news and its effect on stock markets according to the font size of print 

used. Progression from these methods resulted in “information” as a substitute for 

news where investor sentiment was inferred, see Berry and Howe (1994) and Engle 

and Ng (1993). In fact, it is precisely these sets of “information” upon which investors’ 

determine their perceptions of the riskiness of an asset. Future prospects of a company 

can be deduced along with additional knowledge about the company.  

 

Studies started to examine macroeconomic announcements by the 1990s with 

Ederington and Lee (1993, 1995) and Becker at al. (1996) leading the field. Cutler, 

Poterba and Summers (1989) introduce the concept of applying macroeconomic news 

to the variance of stock price returns. Surprisingly, their findings suggest that 

qualitative news stories unaccompanied by quantitative events do not explain large 

market returns. Bernanke and Kuttner (2005) and Rigobon and Sack (2004) are 

among the many papers that analyse the impact of changes in monetary policy and 

confirm a dynamic response in the markets to the release of (surprise) news. However, 

this effect quickly dissipates following news arrival. Later, work in this area advanced 

to employing news that was categorised into scheduled and non-scheduled news, or 
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anticipated and non-anticipated news. Examples of scheduled news are earning 

announcements, dividend announcements and annual reports. Non-scheduled news is 

hard to work with because of its’ noisy properties and the difficulties in quantification 

and interpretation. Lee (1992) and Li and Engle (1998) are examples of such work 

where the respective effects on stock returns and volatility are considered. Even 

earlier work on scheduled news dates back to Patell and Wolfson (1984) and 

Woodruff and Senchack (1988) where they notice that much of the market movement 

occurs in the first 30 minutes after corporate announcements. 

 

Continuation of research on news stories introduced the categorisation of firm specific 

and non-firm specific news. In these instances only news detailing the events of a 

particular company is considered. Firm specific news has been found to drive 

movements in both stock prices and volatility as Tetlock, Saar-Tsechansky and 

Macskassy (2008) discover. Their quantitative measure of language produced 

forecasts for low firm earnings for a fraction of negative words. Nevertheless, reaction 

of stock prices to negative sentiment is brief and information retrieved from firm 

specific news stories are actually already priced in daily market prices. That is to say, 

no drift of prices occurs after the day of news release. Tetlock et al. (2008) argue that 

linguistic media content is advantageous in capturing aspects of firms’ fundamentals 

that otherwise would be hard to achieve.  

 

Preceding the quantified news sentiment data, researchers had to create innovative 

proxies to reflect sentiment in the markets, adopting measures from a range of asset 

classes. Firstly, stock option prices and trading volumes were seen as a source for 

extraction of sentiment. Whaley (2000) uses the market implied volatility index (VIX), 

also commonly known as the investor fear gauge, to test for risk aversion. Dennis and 

Mayhew (2002) utilise the put-call trading volume ratio as an index for sentiment in 

the derivatives markets. Their aim is to determine explanatory factors for the 

skewness in volatility of stock option prices with market sentiment as a variable to be 

tested. The motivation behind the inclusion of sentiment as a variable is that 

pessimism in the markets induces more skewness to the risk-neutral density, where 

increased volumes of put options indicate pessimism. However, results from cross-

sectional regressions do not support such an explanation. Meanwhile, Kumar and 

Persaud (2002) employ the Risk Appetite Index (RAI) evaluated as Spearman’s rank 

correlation of stock price volatility and excess returns. By purely monitoring the 

risk/return trade-off, a specific emphasis can be directed at the market’s willingness to 
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accept risk. Similarly Bandopadhyaya and Jones (2006) develop an Equity Market 

Sentiment Index (EMSI) composed of the Spearman rank correlation between the 

rank of daily returns and the rank of historic volatility with values ranging from -100 

to 100. The advantage of such a measure is that changes to the underlying riskiness of 

the market do not directly affect the EMSI. Baker and Stein (2004) suggest liquidity 

as a type of sentiment index, in the form of share turnover, and argue that signs of 

high liquidity are a symptom of overvaluation. Baker and Wurgler (2006) also form a 

sentiment index to test their theoretical argument for irrational markets.  

 

Alternatively approaches utilising debt-based securities and cash-flow of funds have 

also been explored. Randall, Suk and Tully (2003) measure net cash flow into mutual 

funds as a proxy for stock market sentiment. Lashgari (2000) uses the Barron’s yield 

spread ratio as well as TED spreads as indicators of market confidence. TED spread is 

the difference in interest rates on interbank loans and short-term U.S. government 

debt, subsequently forming the acronym from T-Bill and ED (the ticker symbol for 

Eurodollar futures contract). Narrow spreads signal high confidence in the markets 

and it is found that both the TED spread and the yield spread ratio can only explain 6% 

of variations in stock returns. However, the dominating issue with these sentiment 

indicators and those mentioned beforehand is that they are not orthogonal to asset 

prices, which is the variable that should be explained by the sentiment index.   

 

By the turn of the century, sources of news information were flooding on to the World 

Wide Web and researcher were quick to jump on board this publicly accessible 

fountain of information. Das and Sisk (2003) utilize message posts and stock market 

discussion forums to mine for reasons explaining the impact of information on stock 

prices. Antweiler and Frank (2004) analyse internet stock message boards and 

quantify the language by categorizing the content as either “buy”, “sell” or “hold” 

recommendations. Evidence is found for an existing relationship between message 

activity, trading volume, return volatility and costs of trading.  

 

News in Prediction Models 

 

Tetlock (2007) was a pioneer in the exploration of news sentiment on stock market 

activity and was one of the first to directly use news sentiment as a factor. His source 

was a back page column of the Wall Street Journal in which he created a media 

pessimism factor. This measure is used as a proxy for market sentiment. The results 
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presented have been heavily cited by fellow academics working in the field of news 

analytics because he claims to be able to predict stock market movements. After 

carrying out many regressions on vector autoregressive (VAR) models, he reaches the 

following conclusions. Firstly, there is evidence to justify the hypothesis that high 

media pessimism is associated with low investor sentiment resulting in downward 

pressure on prices. Statistically significant results indicate that high levels of media 

pessimism robustly predict downward movement of market prices. However, such 

negative influence is only short-lived and prices are almost fully reversed later in the 

trading week, consistent with the model of Campbell, Grossman and Wang (1993). 

This model supports the argument that sentiment theory proposes reversal of short-

horizon returns in the long run, whereas information theory states that returns have 

indefinite persistence. Furthermore, the pessimism measure exerts an effect on returns 

that is an order of magnitude greater than typical bid-ask spread for Dow Jones stocks. 

Moreover, he finds evidence of longer-lasting and larger impact of negative sentiment 

on small stocks, measured according to the small-minus-big factor of the Fama-

French model. Implicitly this can also be seen as a measure of individual investors’ 

views. Additional findings include the rising of media pessimism when market returns 

are low and extreme values of pessimistic sentiment (high or low) leads to 

temporarily large market trading volume but this does not directly forecast volume. 

 

A criticism of this work is the source used to construct the measure of media 

sentiment. The content of the newspaper column is in relation to the previous day’s 

market activities meaning that the derived sentiment is based on information from 

past events. Thus investors will have already acted on such information and stock 

market prices are reflective of this. Tetlock argues this matter by performing 

robustness tests on the return window.  

 

Barber and Odean (2008) investigate the trading decisions made once investors’ 

attention has been caught by news, where the Dow Jones newsfeed is used as the 

dataset. A distinction is made between individual investors and professional investors 

where individual investors are more likely to purchase shares on high-attention days. 

Professional investors are less likely to be influenced by such events. Through 

observation of imbalances in buy and sell trades, Barber and Odean report a distinctly 

different behaviour of investors on stocks that appear in the news and those that do 

not. Additionally, imbalances are found to be greater on days that have negative 
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return than positive return days implying greater trading activity during periods of 

decreasing stock prices.   

 

The prediction of stock returns using news and its quantitative measures have not 

been extremely successful or reliable yet some have found promising results. Tetlock, 

Saar-Tsechansky and Macskassy (2008) apply the Bag-of-Words scheme to quantify 

sentiment of firm-specific news text and find that negative words in these news stories 

forecast low firm earnings and low stock returns on the next trading day. Furthermore, 

evidence is shown that integration of quantified language significantly improves 

forecasts of investors’ reactions in stock markets, better than measures of market 

prices and analysts’ forecasts. Sinha (2010) uses readily processed sentiment scores to 

construct a measure of long-term qualitative information to predict returns. His 

findings reveal an under reaction of the stock market to news and momentum is 

explained as the reason for this effect. Engelberg et al. (2012) investigate the negative 

relation between short sales and future returns. A significantly stronger link is 

observed in the presence of negative news. Dzielinski et al. (2011) found the 

relationship between news and return to be the following: positive news produces 

above average returns and negative news results in below average returns. 

Furthermore, comparing the average return of no-news stocks with the effect of 

neutral news it is established that the difference is non-distinguishable. On the other 

hand, Tetlock (2011) reports that investors do in fact react to stale news where 

staleness is defined as textual similarity to the previous ten stories about the same firm. 

This result is most prominent in individual investors who tend to overreact and trade 

aggressively on stale information causing temporary movements in stock prices. Such 

findings are contrary to stale/no information theory which predicts no effect of media 

pessimism on trading volume. 

 

Most recently, Lee Smales from Curtin University, Australia has produced results 

relating news sentiment to trading activity and volatility movements, implementing 

the latest scoring system of sentiment. Smales (2012) identifies significant effects 

induced by contemporaneous news items for all variables (money value traded, 

volatility, absolute order imbalance, bid-ask spread and average trade size) apart from 

returns. Market activity, represented by money value traded and order imbalance, 

revealed a particularly significant and positive relationship with news while high-

relevance news produce an increase in market activity as well as volatility and spread. 

A particular emphasis on the global financial crisis revealed an impact of news on 
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market activity and volatility for four of the biggest banks in Australia (ANZ, CBA, 

NAB and Westpac) however this relationship was non-existent before the crisis.  

 

Smales (2013) discovers that the relationship between news sentiment and VIX is 

asymmetric and significantly negative, that is, negative news events corresponds to 

large movements in VIX with a greater shift in prices induced by negative sentiment 

than positive sentiment. Furthermore, by examining the relationship annually it is 

determined that news sentiment has an increasing strength of relation with 

fluctuations in VIX when periods of implied volatility increase. VIX is used as a 

consensus towards expected future stock market volatility where large values 

represent greater fear. This index is estimated by averaging the weighted prices of 

puts and calls based on the S&P 500 over a wide range of strike prices. Moreover, 

experiments carried out in this study produced evidence suggesting that news is not 

endogenous. In other words, the lagged changes in news sentiment do not affect 

changes in VIX, particularly in intra-day intervals.  

 

A common phenomenon detected in the latest research on news sentiment analysis is 

the reaction of prices occurring before the release of news (see Figure 1.1). 

Explanations to this phenomenon include the presence of informed traders or the 

clustering of news arrivals, with the former deeming more likely. Evidence found by 

Gross-Klaussman and Hautsch (2011) and Smales (2012) show that market makers do 

not adjust their spreads during these periods prior to news release, which according to 

Kyle (1985) reflects the presence of informed traders. Moreover, average trade size 

does not increase significantly either, suggested by Easley and O’Hara (1987) as 

another indicator of private information. An alternative possibility could be 

information leakage before the news announcement, either by a competitor within the 

industry or an individual who has obtained the information. Interestingly, this 

highlights the requirement to study social media where many influential individuals 

congregate and share what is known at that stage as rumours. The investigation into 

such a relationship could resolve this pre-news reaction in markets.    
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1.4   The Power of Unstructured Text 

 

Sources of Information 

 

With the development of different communication mediums, caution needs to be 

applied to the sources used to derive news sentiment. Only an accurate reflection of 

news content may lead to reliable and convincing research results. Using trustworthy 

sources such as Dow Jones newswire, Thomson Reuters’ newsfeed, Bloomberg 

newsfeed and the Wall Street Journal guarantees reliability of official information, 

whereas discussion forums and online blogs may be more appropriate for aggregation 

of sentiment in the general public. Modern technology has also introduced the world 

of social media; micro-blogs and Twitter are gaining popularity. To be precise, 

Twitter is in fact a micro-blogging platform. Together with newswires, these sources 

of news are considered to be a “push” of information in the sense that such sources 

aim to spread and publicise the content within. As these online communities expand, 

Figure 1.1: Firms’ cumulative standardized unexpected earnings 10 fiscal quarters 

before media coverage of an earnings announcement until 10 quarters after the 

media coverage. The figure portrays the change for both positive and negative 

news stories. Source: Tetlock, Saar-Tsechansky and Macskassy (2008). 
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the information shared is also known to impact markets. One of the earliest 

publications relating Twitter data to stock markets is Zhang, Fuehres and Gloor 

(2011). Simply collecting data for six months, emotion measures of hope and fear 

were found to be correlated with American indices Dow Jones, NASDAQ and S&P 

500. Bollen, Mao and Zeng (2011) research the predictive implications of large scale 

Twitter feeds on the closing values of the Dow Jones Industrial Average (DJIA). 

Through tracking the mood of daily Twitter feeds they find 86.7% accuracy in 

predicting the daily up and down movement of closing values, although only specific 

mood dimensions achieve this result. The sentiment derived from social media 

platforms such as Twitter is subtly different from news sentiment. An alternative term 

would be public mood, as the messages shared are more personal and reflective than 

reported news.  

 

Additionally, news sources that “pull” information also exist such as websites that 

scrape for online information. Rather than spreading first-hand information, these 

sources gather the information, analyse and investigate it before providing summaries 

of the findings. An example is Google Trend where analysis of voluminous search 

queries present information about concerns and interests of the general public. 

Research conducted by Preis, Moat and Stanley (2013) received outstanding media 

attention recently for their revealing findings that warning signs of market movements 

can be detected using Google Trends. They argue that a combination of extensive 

behavioural data and market data provides a better understanding of collective human 

behaviour.  

 

Since the validity of information from such sources cannot be guaranteed, there is 

growing research to process and filter such information stream and enhance the 

trustworthiness of the contents. But this line of investigation is outside the scope of 

this thesis.  

 

Motivations for conversion of machine-readable news to sentiment scores 

 

Theoretically, the value of a firm is equal to the expected discounted value of cash 

flows conditional on investors’ information sets and it is the source of these 

information sets that we are interested in. The analysis of quantitative information is 

very well established; in contrast the exploration of qualitative information is still at 

an early stage. However, there exist several compelling reasons to investigate the 
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unstructured text. First, unravelling the content of news brings an unlimited variety of 

events that can be examined for impacts on the stock market, without any restrictions 

like those of previous research (Ederington and Lee, 1993, Becker at al., 1996). 

Second, investors’ impressions on firms’ fundamental values are mainly judged on 

second-hand information and not through direct observation of production activities – 

one of these sources is the media. Aspects of firms’ fundamentals captured in news 

text are otherwise hard to quantify through alternative sources such as analyst 

forecasts and accounting variables. Therefore, to obtain an accurate valuation, 

including earnings and stock returns, detailed studies need to be carried out on the 

messages transmitted through the communication of the media – more specifically the 

news.    

  

As stated earlier, news stories, unexpected or anticipated, create opinions and 

sentiment among investors which in turn lead to actions taken on trades. To capture 

this interpretation of text to opinion the field of sentiment analysis is introduced. Also 

known as opinion mining, the subjective content of text materials is identified and 

extracted using techniques such as natural language processing, text analysis and 

computational linguistics. News analytics utilises many areas of mathematics and 

computer science to summarize and classify public sources of information for 

instance machine learning, collaborative filtering, information retrieval and statistical 

learning theories. Previously researchers have had to use proxies for sentiment 

because simplified quantitative data was not available but very much in demand. With 

demand comes supply and many companies are now in the business of providing 

news analytics data. The process of collection, tagging, aggregation through to 

scoring has now been fully automated so that live feeds of sentiment scores along 

with the news can be provided. Language processing algorithms are set up to handle 

intricacies of the human language within written text. Armed with this new dataset of 

sentiment scores, researchers are now equipped with a wealth of knowledge regarding 

the behaviour and beliefs of investors. If this score varies significantly over time, then 

market beliefs about the company are also changing quickly. 

 

The Content 

News items may not solely talk about a single company or be the latest article 

discussing a certain issue therefore these features need to be sorted and ranked, 

quantitatively if possible. Many data fields arise when categorising news, for example 

importance, novelty, relevance and credibility. There are plenty more descriptive 
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fields. In Chapter 3 we explain all of these in more detail. Filtering by these 

characteristics can reveal trading signals or potential risk warnings. In order to affect 

stock returns, the piece of information conveyed needs to be novel. 

 

Not only can the interpretation of words used in news articles be meaningful but also 

the tone of the author; essentially the author’s sentiment. This is reflected in the 

choice of words used and is the starting point to sentiment analysis.  

 

Sentiment analysis does not only look at the text in news articles but also considers 

the entire content and hence derives the context in which they are applied. The 

classification of positive and negative sentiment in text is a common two-class 

problem in sentiment analysis (Pang, Lee, et al., 2002, Turney, 2002). 

 

Conversion to quantitative measure for analysis 

Computer scientists have been able to transform news text into numerical values for 

analysis using linguistic pattern recognition tools. This conversion of qualitative data 

to quantitative data opens a whole new world of research allowing news sentiment to 

be a direct input into mathematical models. Newsfeeds nowadays appear on traders 

screens within a matter of milliseconds. This speed of messaging is easily linked to 

automated trading and high frequency trading. With all scoring systems set in place 

electronically, the conversion rate of machine readable news to a sentiment score is in 

line with such trading frequencies. Furthermore, it is reasonable to link news analytics 

to this form of trading, as many studies have shown, since the impact of news on asset 

prices is already incorporated at lower frequencies such as daily trading. Hence, 

naturally the obvious route is to study it at an intra-day frequency. 

 

As described in section 1.3, there are several definitions to the term sentiment and 

with this evolution brings change in the classification process of sentiment. Initial 

classification methods merely counted the number of words related to positivity and 

the words related to negativity within a short piece of text, limited to approximately 

50 words. Examples of studies that applied this process are Li (2006), Davis, Piger 

and Sedor (2006) and Tetlock (2007). At this stage only two types of sentiment were 

considered; neutral sentiment did not exist. Categorisation of positive and negative 

words was decided through predetermined databases that had already assigned 

polarity to a large selection of words, e.g. the General Inquirer (GI) of the Harvard 

Dictionary. The GI is a well-known quantitative content analysis program designed by 
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psychologists spanning 77 categories in total. Tetlock (2007) extracted media 

sentiment using this process and evades text mining by converting columns of text to 

numerical values and undertook principal component analysis. Similarly, Tetlock, 

Saar-Tsechansky and Macskassy (2008) produce document-term matrices filled with 

frequencies of word appearance relative to a full piece of text; a common scheme 

known as Bag-of-Words. Focusing on negative sentiment, they selected all words 

falling into the predetermined negative categories of the GI and considered them 

equally informative, and subsequently summed everything to determine the degree of 

negativity in a news article. However, these scoring systems cannot be completely 

relied upon. Loughran and McDonald (2011) found that three-quarters of words 

identified as negative in the Harvard Dictionary are not typically considered negative 

in a financial context. Therefore, there remains a requirement for the presence of 

human judgement alongside the large databases capable of distinguishing overall 

sentiment of news stories. 

 

However, dictionaries and databases that only assign sentiment to singular words do 

not fully interpret the content in news articles. Complete sentences and phrasing 

construction need to be considered in order to discover the exact context in which 

words are used. Only then can a more accurate reflection of the news sentiment be 

deduced. Hence, grammar practices such as negation and adverbs are introduced to 

the sentiment classification process so that scoring is applied to a string of words and 

then an average score is taken as the overall sentiment. Now, it is common practice to 

categorise this step as part of text pre-processing, with Das and Chen (2007) 

introducing the first negation tagging method.    

 

The techniques mentioned so far are language dependent i.e. domain knowledge is 

required to carry out tasks. Contrasting to these methods is a group of classifiers that 

do not require any predefined knowledge e.g. Bayes Classifier and Support Vector 

Machines. The most widely used classifier in practice is the Bayes classifier, which 

has many different versions. It uses word-based probabilities and pre-classified text to 

assign a category to new text. Specifically, a corpus of news is initially accurately 

classified to be used as training data to identify the prior probabilities, which form the 

basis for Bayesian analysis. Posterior probabilities of categories are determined by 

applying the classifier to out-of-sample data, with the assignment of the specific 

category decided by the highest probability. Alternatively, discriminant-based 
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classifiers have also been introduced, which adjust term weightings to identify the 

more emotive words. 

    

Similar to these methods and also taken from the field of computer science are 

machine learning and natural language processing, where a training set of data is 

required to initiate the algorithm. The structure of these algorithms involves creating a 

set of already classified news text by humans to form the training set, on which the 

computer detects patterns and records them. Using this information it is then able to 

classify the news through learning and updating these patterns. Finally metrics are 

applied to assess the accuracy and stability of results. Additionally, machine learning 

algorithms may also be applied to identify relevant tags for a story. These tags turn 

the unstructured stories into a basic machine readable form. The tags are often stored 

in XML format and reveal the story’s topic areas as well as other important 

properties. For example, they may include information about which company a story 

is describing. The basic idea behind these technologies is to automate human thinking 

and reasoning. 

 

Automation of the classification process provides many benefits. For example, 

excluding humans in the judgement process generates a higher degree of consistency 

in results because no emotion is involved. Pang, Lee and Vaithyanathan (2002) 

compare classification results for humans and machine learning techniques and found 

that indeed machine learning performs better. However, simply applying a singular 

technique such as naïve Bayes or support vector machines did not beat the 

performance of topic-based categorization. Hence, modern day classification 

techniques adopt a combination of new methods, such as Bayes classifier, and 

existing ones, such as text mining. 

 

Sentiment Classifiers 

 

All classifiers can be separated into two broad categories: supervised and 

unsupervised learning methods. Classification algorithms that are based on well-

defined input variables belong to supervised learning, whereas unsupervised methods 

refer to those latent variables still to be found. The former group of methods are well 

understood and deeply researched but the latter are less explored in comparison, 

although its popularity is increasing. Examples of unsupervised learning techniques 
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are cluster analysis and community detection, which is where the focus of news 

analytics is converting.    

 

Nowadays, news sentiment data sold by major data vendors such as Thomson Reuters 

and RavenPack apply a combination of tagging methodologies to achieve the most 

accurate reflection of news content. Traditional tagging algorithms plus expert 

consensus and market response methodologies guarantee a high degree of accuracy. 

The addition of manual tagging by humans, although tedious, improves results 

significantly as it constructs the foundations upon which machine learning processes 

are built. Training from a set of true reflections in sentiment minimizes errors in 

prediction. In fact, such a process was adopted from the PR/Marketing industry that 

used media tracking to compute reputations of companies.  

 

Three primary steps are involved in the transformation of qualitative text to 

quantitative scores. They are:  

 

(i) Tagging process 

(ii) Sentiment classifiers 

(iii) Score calculation  

  

The initial tagging process is very important in distinguishing the key attributes of the 

news stories and subsequently the classification of its sentiment. Some of these 

aspects include the entities to which the story is relevant, topics covered, and the 

market it applies to.   

  

Next, using story type as a preliminary step, initial judgement of sentiment polarity is 

made. RavenPack utilises two main methods in detecting sentiment – the Expert 

Consensus Method and the Traditional Method. The former is ultimately employed to 

train Bayes classifiers to imitate the tagging rules of experts by training them on 

several thousand news stories that have been manually tagged. The Traditional 

Method maps words, phrases, combinations and other word-level definitions to pre-

defined sentiment values. This technique is an advancement from the consideration of 

only singular words. Both algorithms are composed of several steps with the opening 

task of defining a Classification Base, followed by the construction of a Rule Base or 

Tagging Guide, which is then tested on a large sample for accuracy. The data series is 

only ready for publication after consistency checks of historical data and generation of 
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volume statistics. To maintain the most up-to-date language patterns in the tagging 

methodologies, RavenPack carry out re-evaluations every quarter.   

 

Finally, the sentiment score of specific companies can be generated through 

aggregation of the individually tagged stories based on various sentiment classifiers. 

Thus far, all sentiment has been specific to a news item and not been separated at the 

entity level. Hence by accounting for the relevant companies and sectors, a score is 

calculated as a weighted average of a selection of sentiment classifiers. Relying on 

purely one classifier can be too erroneous. Some classifiers may perform better in 

topic-based categorisation whereas others might be stronger in sentiment 

classification; hence an amalgamation achieves optimal results and improves the 

signal-to-noise ratio.  

 

Measures of news impact on markets 

 

Easley et al. (1996) derived a measure known as Probability of Informed Trading 

(PIN) to investigate the impact of information-based trading on liquidity spreads. A 

key empirical result is that the probability of information-based trading is lower for 

high volume stocks, tested on a selection of stocks that are commonly and 

uncommonly traded on the NYSE for the year 1990. Coincidentally, the PIN metric is 

also an indicator of how much information has been digested by the market through 

changes in the bid-ask spread. If the spread differs in size to the period before 

information release, then it can be assumed that traders have taken in and acted on 

such news. In general, a narrowing of the spread denotes upwards price movement 

and therefore good news, whereas widening of the spread represents a drop in price 

and hence bad news. To determine the effect of information on spreads only four 

parameters are required: (i) the probability of new information occurring, (ii) the 

probability of bad news appearing, (iii) the arrival rate of uninformed traders 

according to a Poisson process, (iv) and the arrival rate of informed traders also 

according to a Poisson process. The analysis is performed on groups of stocks 

according to their trading volume with differing results between stocks that are 

actively traded and those that are inactive. Furthermore, using regressions, a relation 

is established between PIN and spreads, that is, the greater the probability of informed 

trade, the larger the spread. Fluctuating bid-ask spreads can also be explained as the 

market maker’s perception of risk on information-based trading. Therefore, a larger 

spread may be priced to act against informed traders for example. Unlike Kyle (1985), 
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Easley et al. (1996) do not aggregate buy and sell trades therefore it is only the 

composition and number of trades that determine beliefs. 

 

 

1.5   News and Its Use in Fund Management and Trading 

 

Models that effectively incorporate news data for decision making in trading 

strategies and fund management are growing in interest. Fund managers are required 

to select portfolios in anticipation of profitable returns. Ideally they would like to 

foresee the price movement of each asset in a portfolio for some period in the future, 

but unfortunately for us mere humans, the best we can achieve is through prediction. 

By overcoming these uncertainties about asset behaviour, only then can one make 

reasonable judgements on trading choices. To date fund managers have market insight, 

accumulated over years of experience, and information gathered through public 

sources neither of which are solid enough to make decisions with 100% confidence. 

Applying a fusion of market data and news data to predictive models enhances 

predictability through the addition of content value. Tetlock, Saar-Tsechansky and 

Macskassy (2008) develop a fundamental factor model that incorporates news as a 

factor. Excluding consideration of transaction costs, they build a profitable trading 

strategy based on this model.  

 

An alternative application of news in the financial markets is for the surveillance of 

trading activity. Circuit breakers may be implemented according to live feeds of news 

data so that once a certain threshold is reached a trigger alerts traders of extreme 

contextual polarity, whether it’s in the sentiment score or novelty score or another 

factor. This could lead to human interference/supervision in algorithms to cancel or 

change orders due to new information which alters positions in the markets. For 

example, negative sentiment from a news item can protect the trader from being 

blindsided by an event if an aggressive purchase was planned, or conversely, 

increasing a purchase in the presence of a highly positive sentiment may reduce 

slippage and lower transaction costs. It is also possible to incorporate news sentiment 

into trading strategies, either to improve performance or find alternative trading 

signals. Schumaker et al. (2012) identify possible contrarian trading behaviour, with 

their system able to predict price decreases using articles with positive sentiment and 

price increases through negative sentiment. Furthermore, they found that subjective 
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news articles and negative sentiment are more successful in the prediction of price 

direction.  

 

The financial markets are converging towards a fully electronic trading place whereby 

all transactions of asset classes such as equities and foreign exchange are processed 

through electronic platforms. Such vital conversions have ushered traders to rally 

behind a form of trading known as automated trading, which relies heavily on 

computers from decision making to processing order executions. Since automated 

trading is growing in its adoption of news sentiment, we discuss further the 

relationship between them in Chapter 2. 

 

Additionally, systems can be implemented to exploit the volatility surrounding 

significant news items. Besides the applications of news sentiment mentioned above, 

risk managers have also seen potential in news sentiment to improve their models. 

Academic research has repeatedly proven that incorporating sentiment to volatility 

predictions significantly increase accuracy (Mitra, Mitra and diBartolomeo, 2009, 

Smales, 2013). Improving risk estimates is an outstanding objective for risk 

management departments. It is commonly known that return predictions are hard to 

model accurately and this is also the case when applying sentiment for prediction. 

However, other means of signals may be found in volatility or liquidity measures 

which are known to have better performance in prediction models (Gross-Klaussman 

and Hautsch, 2011, Smales, 2012). Being able to anticipate any unforeseen risk is an 

advantage whether it is directly from news of the company or its peers.  

 

Not only can news sentiment be considered as a variable in predictive modelling, but 

many other practical applications exist as well, for example, trading as part of an 

index. 

 

Motivations 

 

This thesis investigates the application and exploration of news metadata in high 

frequency, precisely one minute bar, in the field of news sentiment. The motivation 

for such a choice is justified in detail in Chapter 2 and based on an established result 

of the inevitable reversal of stock price returns after news release. Some have found 

this period to be a few days after the news event (Tetlock et al., 2008) whilst others 

say it is longer – around 10 days (Seasholes and Wu, 2004) to a month (Uhl, 2011). 
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However, few have explored the alternative end of the spectrum and refined analysis 

to a magnified intraday period surrounding news release, i.e. minutes before and after. 

Furthermore, a spotlight has been cast on a particular form of trading in these 

timeframes, namely, automated trading. Several events occurring on the stock markets 

have highlighted the role of these traders and brought it to the tip of everyone’s 

tongue as a hot discussion topic. One crucial event was the “flash crash” of 6 May 

2010, where the Dow Jones Industrial Average plummeted 1000 points in the space of 

minutes. Shockingly of all was the fact that most of the losses were recovered within 

minutes. Strong criticism fell on automated traders for their participation in the events 

that day and their style of aggressive trading led to the fall in stock prices. Cases such 

as this highlight the need for detailed research in automated trading to better 

understand the behaviour of markets and assets under these conditions.    

 

Researchers have studied the relationship between news sentiment with stock price 

returns and volatility, yet minimal attention has been put on liquidity. However, in 

this thesis we explore all three measures simultaneously and observe the respective 

effects of sentiment on each measure. The reason why we include liquidity in our 

work is instigated by the consequences of the global financial crisis in 2008-2009. 

With the collapse of Lehman Brothers in 2008 and the subsequent banking crisis and 

bank bail outs in the UK and other European countries, the importance of liquidity has 

become paramount and is widely acknowledged by the finance community.  

Implications of the financial crisis include regulators imposing stricter liquidity 

requirements for banks, especially those active in low latency trading activities 

(Gomber et al. 2011, AFM 2010), and triggers and restrictions being implemented in 

stock markets as a prevention for future crashes. Consequently with regards to trading 

activity, the availability of liquidity to traders and brokers have become of utmost 

importance. In this thesis we consider (i) news and its impact with liquidity and (ii) 

relevant liquidity measures (see Section 2.3). 

 

In order to understand liquidity well, the theories of market microstructure need to be 

introduced and explained. The study of market microstructure started around four 

decades ago and has attracted further attention in the past decade with the advent of 

computer-driven trading and the availability of all trade and quote data in electronic 

form, leading to a new field of research called high frequency finance. Research in 

high frequency finance demonstrates that properties derived from low frequency data 

to define the behaviour of financial markets fail to explain the market behaviour 
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observed in high frequency. Three events are cited as early triggers for the general 

interest in microstructure (Francioni et al, 2008): 

 

1. the U.S. Securities and Exchange Commission’s Institutional Investor Report 

in 1971; 

2. the passage by the U.S. Congress of the Securities Acts Amendment of 1975; 

and  

3. the stock market crash in 1987 

 

1.6   Thesis Outline and Contributions 

 

To date, prediction and modelling of stock market prices have primarily adopted 

market data as the dominant source of information retrieval, in the form of open, high, 

low and close prices, bid and ask prices and traded volume. A contribution of this 

thesis to the field of predictive analytics is the fusion of the content in news events 

into the prediction process, more concisely, news sentiment metadata. Intelligence 

garnered from newly available news metadata permits the incorporation of investors’ 

sentiment and reaction to non-anticipated events and announcements. Moreover, the 

studies presented are set in a high frequency timeframe, that is, minute bar frequency 

to provide another innovative feature of our work. Currently, research lacks literature 

that examines the effects of news sentiment on stock price returns, volatility and 

liquidity in such a magnified frequency. Additionally, we emphasize the increasing 

importance of liquidity whilst considering trading activities by including it as an asset 

behaviour variable to be modelled.  

 

In Chapter 1 we have presented the focus of the thesis in a summary form and 

introduced the concept of news as an event. We also described how the study of (news) 

sentiment has evolved, the essential aspects of analysis and classification of 

unstructured text. Finally the use of news and its applications in fund management 

and trading are discussed. 

 

The rest of the thesis is organised in the following way. 

 

Chapter 2 describes automated trading, market microstructure and liquidity. Given the 

speed of arrival of news feeds as streaming data and the computer processing ability, 

it is easily seen that automated trading and streaming news are two complementary 
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processes. Supplementary information provided by news can be incorporated into 

established strategies such as fundamental and technical analysis to improve trading 

performance. In order to understand the intricacies of trading mechanisms and the 

behaviour of market participants, a brief summary of market microstructure is given 

in section 2.2. By exploring the field of market microstructure, the requirements of 

liquidity by market participants are highlighted. An explanation of liquidity and its 

proxy measures are given in section 2.3. 

 

In Chapter 3 we first present the news metadata in a summary form and also provide 

alternative ways of assigning sentiment scores. In particular, we introduce the concept 

of “impact of news”. The related impact score is defined such that it takes into 

consideration the decay of sentiment as well as the accumulation of sentiment for 

multiple news stories. The development of the Impact score was instigated through 

the exploration of news volume, better known in this field as news flow. This measure 

is novel and is one of the major contributions of the thesis. 

 

In Chapter 4 we propose univariate prediction models for stock return, volatility and 

liquidity, as representations of asset behaviour, using the novel measure of the Impact 

score. The study is based on equities because the majority of news is directed at 

individual companies. The time frequency of our selected data is minute-bar and 

hence can be considered as high frequency. This feature along with the prediction of 

liquidity as a trading measure provides novel contributions to the field of predictive 

analytics as these are both uncommon territories lacking in research. Autoregressive 

(AR) models and Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) models are adopted to predict the independent variables (asset behaviour 

measures). Empirical results show improvement in prediction performance of 

liquidity and volatility by applying news sentiment, in the form of the impact score.  

 

Experiments of multivariate models are carried out and are explained in Chapter 5. 

Employing the approach of the Black-Litterman model (1991), we consider news 

sentiment as a prior belief and build the posterior distribution based on this. Bayesian 

inference techniques were adopted to better incorporate the effects of news sentiment 

on asset behaviour. The results obtained are analogous to those in the univariate 

setting but with less prominence.  

 

Chapter 6 concludes and presents ideas for future research. 
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Chapter 2 
 

Market Microstructure, Liquidity and 
Automated Trading 
 

 

2.1    News and Its Relationship with Trading  

 

Given the impact of news and news flow on asset prices (return and volatility), 

automated traders wish to incorporate machine-readable news into their trading 

strategies automatically. This would imply that thousands of sources of information 

can be simultaneously screened and their conclusions derived within a matter of 

minutes, freeing up time for the trader to handle more complicated tasks that would 

require the human brain. Another advantage of automating processes is their ability to 

follow instructions precisely, efficiently and emotionlessly. Much of trading is now 

occurring electronically with equity and foreign exchange markets all transacting on 

electronic platforms. Thus it is only logical to combine electronic news feeds with 

automated strategies to maximize the content of information and position themselves 

correctly in the markets. The procedure of news dissemination, collection and 

quantification are all fully automated, complying with the data processing speed of 

automated trading. Thus, it is a natural choice to combine the two procedures to 

attempt to achieve improved trading performance.  

 

Speed is a major benefit for automated traders, allowing them faster access to 

information, decisions made quickly and rapid position taking in the markets. 

According to market microstructure theory, investors have always lost to better 

informed traders (O’Hara, 1995). However, for the case of automated traders, their 

advantage is not that they are better informed but simply their speed in receiving the 

same information. This is a fact that has angered retail traders. Proposals have been 

suggested for methods to protect investors from such losses e.g. notification of 

exchanges to halt trading of equities for those companies who are about to release 

news. Similarly, many governments already follow this rule and only reveal major 

news when markets are closed or at pre-announced times (Harris, 2013). Furthermore, 

studies have found a mispricing of assets surrounding news release periods thus 

presenting opportunities for arbitrage. Gidofalvi and Elkan (2001) identify this period 
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to be around 20 minutes. If this is a true reflection of markets then there certainly 

exists an urgency to act on news. The efficiency of automated trading satisfies this 

condition. Trading activity by automated traders following news releases allow prices 

to be made more efficient by the second. However, this does not offer any economic 

benefits; the effects are on a microstructure level as discussed in more detail in section 

2.2.   

 

To facilitate the fundamental pricing of securities, computer systems are set up to 

collect news announcements and similar forms of information. With the motive of 

enhancing price movement forecasts, low latency trading firms integrate this 

information provided in news content and trade accordingly at the quickest moment.  

Harris (2013) identifies a trading strategy of automated traders that trades on 

fundamental values derived from news feeds. He explains that some traders install 

computers to monitor and interpret electronic news feeds, which in turn are able to 

identify relevant information at lightening speeds facilitating immediate determination 

of optimal trades. As a consequence, asset prices are likely to reflect fundamental 

values information faster than it otherwise would.  

 

Information portrayed through news prompts two different types of trades - those who 

“wish to trade” and those who “need to trade”. Broker-dealers are an example of 

traders who after receiving information decide that taking a trading position on such 

information would be beneficial for them. Hence, they possess a wish to trade 

triggered by the information obtained and ultimately seek excess returns (alpha). On 

the other hand, market makers are an example of traders who need to fulfil 

market/limit orders and prevent drastic changes in asset price, therefore having an 

obligation to trade. In these instances, the optimum action such traders can take is to 

execute at the best price for their positions.   

 

Moreover, a Foresight Project conducted by the UK Government Office for Science 

titled “The Future of Computer Trading in Financial Markets” also further highlights 

the concern of such issues by the government and regulators. 

 

Armed with massive databases of historical data, a selection of traders nowadays are 

able to produce quantitative models unavailable to other parties because of this rich 

resource. Programmed so that they can run algorithmically, these quantitative models 

produce fast, efficient and emotionless decisions making it a requirement in the 
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operations of the modern day speedy markets. Nevertheless this does not imply that 

traditional methods such as technical analysis and fundamental analysis are 

completely eliminated from trading models. LeBaron, Arthur and Palmer (1999) find 

from their artificial stock market of simulated traders that those who react quickly to 

new information introduced to the markets mostly apply technical strategies, whereas 

those with longer waiting times formed fundamental strategies. 

 

Not all asset classes are tradable using automated strategies so firms need to select 

markets that satisfy certain conditions, mainly associated with the market itself. One 

of these conditions is a highly liquid market so that traders are able to quickly enter 

and exit positions, which is a crucial criterion underpinning the strategies of 

automated trading. More specifically, Black (1971) pointed out the presence of 

several necessary conditions for a stock market to be liquid: 

 

(a) there are always bid and ask prices for the investor who wants to buy or sell 

small amounts of stock immediately; 

(b) the difference between the bid and ask prices (the spread) is always small; 

(c) an investor who is buying or selling a large amount of stock, in the absence of 

special information, can expect to do so over a long period of time, at a price 

not very different, on average, from the current market price; and  

(d) an investor can buy or sell a large block of stock immediately, but at a 

premium or discount that depends on the size of the block – the larger the 

block, the larger the premium or discount. 

 

Other properties include sufficient market volatility to ensure that changes in price 

exceed transaction costs thereby making it possible to earn profits, and an electronic 

market to enable the quick turnover of capital and to harness the speed of trading. 

Currently, only spot foreign exchange, equities, options and futures markets fulfil 

such conditions. 
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Figure 2.1: The trade-off between optimal trading frequency and liquidity for various trading 

instruments. 

 

Figure 2.1 illustrates the trade-off between trading frequency and liquidity for many 

asset classes, using daily trading volume as a proxy for liquidity. Asset classes closer 

to the origin of the graph are more ideal for automated trading. That is to say, these 

asset classes which trade at an optimal frequency of less than a day tend to be 

accompanied with higher levels of liquidity, satisfying market requirements. This 

becomes an optimal trade-off for investors as it allows them to trade without having to 

worry about transaction costs diminishing their profits. This explanation is justified by 

how liquidity is defined: “the ability to convert assets into cash at the lowest possible 

transaction costs”. Furthermore, it can be noted that highly liquid asset classes can 

also be executed electronically and traded on a regular basis. In the markets today, we 

acknowledge that a sweeping but steady transition has occurred with the conversion 

of over-the-counter markets into electronic markets to keep up with the trading 

strategies of investors. We discuss in more detail the three major asset classes traded 

using automated strategies. 
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Equity markets 

Equities are the most favoured asset class because of the market’s large size and 

volume; this is supported by the market’s breadth of listed stocks and its ability to be 

traded electronically. Moreover, such a breadth often presents market inefficiencies 

which are great trading opportunities. It is also popular for its diversification 

properties in portfolio investment with possibilities to hold long or short positions in 

stocks. In addition to stocks, the equity market also trades exchange-traded funds 

(ETFs), warrants, certificates and structured products. In particular, hedge funds are 

especially active in trading index futures. According to research conducted by Aite 

Group, the asset class that is executed the most algorithmically is equities; for 

instance, by 2010 an estimated 50% or more of total volume of equities traded were 

handled by algorithms.  

 

 

Figure 2.2: Progress in adoption of algorithmic execution by asset class from 2004 - 2010. 

Source: Aite Group.                             

 

Foreign exchange markets 

The foreign exchange markets lack volume measures and the rule of “one price” 

because of its decentralised and unregulated mechanism. This has beneficial 

implications for automated traders as there are substantial arbitrage opportunities that 

can be identified by their automated strategies. However, there are only a limited 

number of contracts that can be found on the exchange, restricting the variety of 
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financial instruments available for traders in the foreign exchange market. They are 

namely foreign exchange futures and select options contracts. Yet these instruments 

are traded electronically permitting them to be traded at frequencies under a minute.   

 

According to Chaboud et al. (2013), algorithmic traders in the foreign exchange 

market monitor macroeconomic news meticulously so that a reduction in supply of 

liquidity can immediately be transacted after economic news arrivals to avoid being 

adversely selected. They conclude that following information shocks more liquidity is 

provided by high frequency traders than human traders. Furthermore, they find that 

trading at low latencies does not cause an increase to volatility in the markets. 

   

Fixed income markets 

Traders can profit from the fixed income markets by building strategies to take 

advantage of short-term price deviations in the pre-specified amounts paid to their 

asset holders. This asset class includes the interest rate market and the bond market 

but transactions are still taking place over-the-counter (OTC) indicating that trading 

frequencies normally occur daily although intraday trades can take place. The bond 

market contains an advantageous breadth of products with bond futures contracts 

standardised by the exchange and are often electronic. The most liquid bond futures 

are those which are nearing their expiry dates compared to bonds with longer 

maturities. The most liquid futures contract in the interest rate market is short-term 

interest rate futures with the bid-ask spread being the most common liquidity measure.  

 

 

2.1.1 Trading Approaches Influenced by News 

 

Handing over the role of trading execution to computers removes the element of 

human error stemming from emotion and bias. Downsides of such automation are the 

lack of intuition and ability to recognise unfavourable events where trading should be 

halted. As a matter of fact, with the development of text analytics and sentiment 

analysis computers are now able to incorporate news events into their systems to 

affect trading decisions. The conversion of text to numeric data in the form of 

sentiment scores aids the processing and consideration of news into trading 

algorithms, at a pace faster than humans can process the information. In essence, there 

should be a parity of emotion and unbiased judgement.  
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Hafez and Xie (2012) create a simple sentiment based strategy and execute it for the 

sample period of 2000 – 2011. They find that the strategy generates the greatest 

annualised returns during periods when the markets are bearish, i.e. August 2007 – 

February 2009. This behaviour is explained by them as the conveyance of negative 

news exposing more credible signals. 

 

As previously mentioned, automated trading is not applicable to all asset classes as 

there are a set of criterion that needs to be fulfilled in order to implement a profitable 

strategy. Hence, there are trading strategies developed to manipulate these conditions 

and gain excess returns. 

 

The trading strategies employed by automated traders can be distinguished as two 

groups: passive strategies and aggressive strategies. They can be defined by the types 

of orders utilized. Passive strategies exclusively place limit orders whereas aggressive 

strategies use market orders only (Kearns, Kulesza and Nevmyvaka, 2010). The 

difference in strategy implementation also affects the profiting technique, with 

aggressive traders carrying the burden of transaction costs and passive traders acting 

the role of liquidity provider thus taking on more risk.  

 

Often, simple arbitrage algorithms are adopted which can also be performed at low 

frequencies. It is the speed of execution that offers the competitive advantage. 

Furthermore, trading approaches can be categorised into the following five types: 

  

(i)   Algorithmic Executions 

(ii)  Statistical Arbitrage 

(iii)  Event Arbitrage 

(iv)  Electronic Liquidity Provision 

(v)  Predatory Trading 

  

Algorithmic executions refer to the process whereby a large order of stocks is broken 

into many smaller orders to be executed separately over several hours or even several 

days. This type of trading exists because of two reasons. Firstly, it would be almost 

impossible to find a counterparty that was willing to trade the exact same large order. 

Secondly, the breakdown of large orders into smaller chunks will significantly 

decrease the impact on the market, in terms of asset price and market conditions. For 

example, if a trader wishes to buy five million shares of a particular equity, the 
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optimal strategy determined by the algorithm might be to purchase the shares over 

three trading days, breaking the large order into many small orders (i.e. 200 shares on 

average). An alternative way of executing this would be a principle bid trade with an 

investment bank, but such liquidity provision often comes at a high price. Not only do 

the analytical algorithms ascertain the size of orders but also the timing between small 

orders to reflect changes in the asset price, general market conditions, or the 

underlying investment strategy.  Note that algorithmic executions only decide how 

best to execute an order and does not govern the nature of the trade (total number of 

shares or date and timing). Moreover, this class of algorithmic execution can benefit 

from the inclusion of news analytics and predictive analysis of liquidity. 

 

Unlike algorithmic executions, statistical arbitrage trading automates the whole 

investment decision process and calculates deviations from equilibrium. A simple 

example of statistical arbitrage is “pairs trading”.  Let us assume we identify the 

relationship that “Shares of stock X trade at twice the price of shares of stock Z, plus 

or minus ten percent”.  If the price relation between X and Z goes outside the ten 

percent band, we would automatically buy one security and short sell the other 

accordingly.  If we expand the set of assets that are eligible for trading to dozens or 

hundreds, and simultaneously increase the complexity of the decision rules, and 

update our metrics of market conditions on a real time basis, we have a statistical 

arbitrage strategy of the modern day. The most obvious next step in improving our 

hypothetical pairs trade would be to insert a step in the process that automatically 

checks for news reports. The system would be alerted when an indication of possible 

change in the monitored price relationship might occur as a result of a clear 

fundamental cause, as opposed to random price movements such that we would 

expect the price relationship to revert to historic norms. Pairs trading may also benefit 

by taking into consideration market sentiment as determined by news. 

 

Event arbitrage is an automated trading strategy that manipulates the reaction of the 

stock markets to information events, i.e. macroeconomic announcement or news 

release. Event arbitrage strategies follow a three-stage development process: 

 

(i)  identification of the dates and times of  past events in historical data 

(ii) computation of historical price changes at desired frequencies pertaining to 

securities of interest and the events identified in the step above 
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(iii) estimation of expected price responses based on historical price behaviour 

surrounding the past events. 

 

Therefore, by observing recurring events high frequency numerologists are able to 

take advantage of predictable short-term responses in the markets and generate short-

term profits. 

 

Electronic liquidity provision is a direct descendent of traditional over-the-counter 

market making, where a financial entity has no particular views on which securities 

are overpriced or under-priced. This renewed competition amongst liquidity 

providers, which previously was only supplied by specialist firms, means reduced 

effective market spreads (see Section 2.3) and hence reduced indirect market costs for 

final investors. Quantitative algorithms are programmed by high frequency firms to 

optimally price securities and execute market making positions. In order to do so, a 

thorough understanding and precise modelling of the target market microstructure is 

required. Typical holding periods only last one minute or less. The trader (liquidity 

provider) is automatically willing to buy or sell any security within its eligible 

universe at some spread away from the current market price upon counterparty 

request. Electronic liquidity providers differ from traditional market makers in that 

they often do not openly identify the set of assets in which they will trade. In addition, 

they will often place limit orders away from the market price for many thousands of 

securities simultaneously, and engage in millions of small transactions per trading 

day.  Under the regulatory schemes of most countries such liquidity providers are 

treated as normal market participants, and hence are not subject to regulations or 

exchange rules that often govern market making activities.  Many institutional 

investors believe that due to the lack of regulation automated liquidity providers may 

simply withdraw from the market during crises, reducing liquidity at critical 

moments.  

 

Finally, predatory trading refers to activities where a financial entity typically places 

thousands of simultaneous orders into a market while expecting to actually execute 

only a tiny fraction of the orders.  Also known as market microstructure trading, this 

“place and cancel” process has two purposes. The first is an information gathering 

process. By observing which orders execute, the predatory trader expects to gain 

knowledge of the trading intentions of larger market participants such as institutional 

asset managers.  Such asymmetric information can then be used advantageously in the 
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placement of subsequent trades.  A second and even more ambitious form of 

predatory trading is to place orders so as to artificially create abnormal trading 

volume or price trends in a particular security. The purpose is to intentionally mislead 

other traders and thereby gain advantage.  Under the regulatory schemes of many 

countries there are general prohibitions against “market manipulation”, but little if any 

action has been taken against predatory trading on this basis.  

 

Therefore, algorithms implemented for high frequency trading have many uses and 

aim to profit from the markets using different approaches. Each of the trading types 

described above has a purpose and role to play in the financial markets, from market 

making, order routing to short term trend following and spotting arbitrage. Thus, 

although some strategies may seem unprofitable or place the trader in a 

disadvantageous position, there are motives and rewards behind such decisions.    

 

Some practitioners believe automated trading puts the manual trading of retail 

investors, as well as institutional investors, in considerable disadvantage from a 

perspective of price discovery and liquidity (Arnuk and Saluzzi, 2008). A number of 

financial analytics/consulting companies including Quantitative Services Group LLC, 

Greenwich Associates and Themis Trading LLC have produced useful white papers 

on this topic.  

 

 

2.2   Market Microstructure 

 

Market microstructure, an expression coined by Garman (1976), is the study of how 

specific trading mechanisms affect the price formulation process. It covers the asset 

exchange process from placement and handling of orders to the translation into trades 

and transaction prices. Every market has procedures for matching buyers to sellers for 

trades to take place. In quote-driven markets dealers participate in every trade, 

whereas no intermediation is needed in order-driven markets where buyers and sellers 

directly trade with each other. One of the most critical questions in market 

microstructure concerns the process by which new information is assimilated and 

price formation takes place. Madhavan (2000) relates market microstructure to the 

study of how various frictions and departures from symmetric information affect the 

trading process. The following issues are studied in market microstructure theory: 
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 Market structure and design 

 Price formation and price discovery 

 Transaction and timing cost 

 Information and disclosure 

 Market marker and investor behaviour 

 

The knowledge of market systems and structure is essential for a trader to decide in 

which market to trade and when to trade. Such knowledge also facilitates a trader in 

assessing the relative efficiency of the market and hence the arbitrage opportunities. 

In fact, the trading behaviour and trading costs are affected by market microstructure. 

This phenomena contests the theoretical predictions of classic arbitrage arguments 

that prices follow a random walk with drift (Samuelson, 1965), much like the beliefs 

of news analytics. In fact, these fields have parallel streams of thought where efficient 

markets and rational expectations are unproven in their theories. Our main focus is on 

“Information and disclosure” and “market maker and investor behaviour”. More 

precisely, our interests lie in how markets react to information disclosed to traders, 

when and how this information is priced into assets, and how investors can benefit 

from these situations.  

 

The models created to trade on market microstructure opportunities can be sorted into 

two types – inventory and information models. Similar to high frequency trading, 

transaction costs are a vital factor in profiting from market microstructure trading, 

which is why this is a trading strategy commonly adopted by HFTs. Profits earned are 

marginal with gross average gain for a position held for only a few seconds being a 

few basis points (1bp=0.01%). However, this varies according to different types of 

traders for example, traders on a proprietary trading desk face 1bp or less of 

transaction costs whereas other institutional players such as hedge funds can expect to 

be charged from 3bps to 30bps. 

 

Inventory models are in fact the liquidity provision models previously mentioned. By 

satisfying dealer book imbalances price changes are induced through order flow, 

giving this type of trading another name known as market making. Liquidity traders 

craft order submission strategies by following short-term price momentum and aim to 

profit from providing liquidity. Although they have little proprietary information 

about the true value of the security, the shape of the order book can show impending 
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changes in market price. Hence with such predictive indications market making 

traders actively exploit this. 

 

Information models address the intent and future actions of various market 

participants by trading on information flow and possible informational asymmetries 

arising during the dissemination of said information. Different types of market 

participants receive news through different resources, for example market makers 

obtain their information from what is conveyed through order flow and changes in the 

bid-ask spread is the supply for other market participants. Asymmetric information 

flow does exist with institutional traders being positioned disadvantageously. Their 

lack of information regarding time-varying market liquidity erodes their speculative 

profits (Hong and Rady, 2002). The main outcome of such models is that bid-ask 

spreads still persist even when the market maker has unlimited inventory and any 

trading request is instantaneously absorbed. Brennan and Subrahmanyam (1996) 

specify a vector autoregressive (VAR) model for estimation of an information-based 

impact measure.  

 

Harris (1998) identifies three types of traders:  

 

(i) Informed investors 

(ii) Uninformed investors (Liquidity traders) 

(iii) Value-motivated traders 

 

Informed investors are those who possess material about an impending market move 

and consequently can influence the order flow of stocks in a biased manner. High 

frequency money managers often fill this role and tend to execute their orders close to 

or at market prices, utilising limit orders more than liquidity traders (Bloomfield, 

O’Hara and Saar, 2005). They are able to assimilate all available information about a 

given stock and thereby reach some certainty about the market price of the stock. 

Such information may be acquired by subscription to (or purchased from) news 

sources; typically FT, Bloomberg, Dow Jones, or Thomson Reuters. They might have 

access to superior predictive analysis which enhances their information base. 

Inversely, uninformed investors are those who are not aware of any information 

affecting prices besides order volume. Therefore, in order to earn excess returns, 

uninformed traders follow a strategy of providing liquidity and tracking short-term 

price momentums thus acquiring the alternative names of liquidity traders or 
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inventory traders (O’Hara, 1995). In fact, this form of liquidity provision is 

instrumental to the markets. By simply keeping an inventory of stocks, liquidity 

traders are market making and causing less friction in the trading of stocks whilst 

realising marginal gains through the use of limit orders, often many times intraday. 

Individual traders and retail traders are uninformed investors, also known as noise 

traders. The third form of traders are those who wait for security prices to become 

cheap relative to their valuations based on fundamental indicators, known as value-

motivated traders. They apply predictive analytic models and use information to 

identify trading opportunities by spotting inefficiencies and mispricing of stocks. 

Although uninformed investors and value-motivated traders do not have access to 

exogenous information, what they are able to exploit is the value of such information, 

often extracted from anticipated announcements and then applied in predictive pricing 

models. Bloomfield, O’Hara and Saar (2005) investigate the evolution of liquidity in 

an electronic limit order market where informed traders, liquidity traders and salient 

features of electronic limit order markets exist. Their main result concludes that 

liquidity provision shifts as trading progresses, with informed traders increasingly 

providing liquidity in markets.  In quote-driven markets, limit orders are the major 

provider in liquidity. 

 

An additional role that especially needs to be mentioned is that of the market maker. 

Their responsibility is to set the price for the bid quote and ask quote and stand 

willing to buy or sell securities on demand. Thus these market participants control the 

liquidity of securities, particularly in the case of order-driven markets. In order to 

meet the supply and demand of traders, market makers need information with regards 

to market conditions to offset any suboptimal positions and information asymmetry. 

The objective is to achieve a rapid inventory turnover and not accumulate significant 

positions on one side of the market. The bid-ask spread is the profit that is gained. 

According to Bagehot (1971), market makers compensate themselves for bad trades 

due to the adverse selection of insiders by making the market less liquid. 

 

 

2.3    Liquidity: Measures and Implications 

 

Traditionally literature has focused on the estimation of stock price return and 

volatility in a trading context and to a certain extent fund management. In the field of 

news sentiment, this is also the case with the majority of studies researching the 
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relationship between news and return or volatility. However, after several incidents on 

the stock market in recent years (e.g. Flash crash of 6 May 2010), the importance of 

liquidity and the risks entailed to trading has come to light. The availability of 

liquidity to traders and brokers is now so crucial that regulators have sanctioned new 

rules forcing stricter requirements on institutions. Henceforth, research on news 

sentiment and its implications on liquidity have been explored (Gross-Klaussman and 

Hautsch, 2011; Smales, 2013; Riordan et al., 2013). 

 

Liquidity has many definitions depending on which perspective it is being observed 

and measured. Generally, liquidity refers to the readiness by which an asset can be 

converted into cash (or vice versa) at the lowest possible transaction cost. Transaction 

costs include both explicit costs, e.g. brokerage, taxes, and implicit costs, e.g. bid-ask 

spreads or market impact costs. A market is termed liquid when traders can trade 

without significant adverse effect on price (Harris, 2002). Measures of liquidity can 

initially be separated into two broad categories: trade-based measures and order-based 

measures (Aitken and Comerton-Forde, 2003). Trade-based measures include trading 

value, trading volume, trading frequency, and the turnover ratio. These measures are 

mostly ex-post measures. DeLong et al. (1990) predict an increase in trading volume 

when absolute values of sentiment are high due to the behaviour of liquidity traders. 

High absolute values of sentiment induce high trading volume due to increased 

trading activity from liquidity traders and market makers trying to maintain 

equilibrium in the markets. Theory suggests that informed trading after information 

events should increase (Kim and Verrecchia, 1994).  

 

Order-based measures have many forms and are more commonly used due to their 

more informative nature. They are classified into the following three groups: 

 

1. Tightness measures: the ability to buy and sell a stock immediately. 

2. Depth measures: the ability of the market to process large volumes of trade 

without affecting the current market price. 

3. Resiliency: the ability of the market to return to its “normal” level after 

absorbing a large order. 

 

Tightness, also known as spread, measures provide a clear indication of the costs 

associated with transacting and are represented by the bid-ask spread and its many 
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variations. A decrease in spread measures indicates an increase in liquidity. The bid-

ask spread is calculated as: 

 

𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
𝑝𝑡

𝐴−𝑝𝑡
𝐵

𝑝𝑡
𝑀                                           [2.1] 

 

where 𝑝𝑡
𝐴 is the ask price at time t, 𝑝𝑡

𝐵 is the bid price at time t, and 𝑝𝑡
𝑀 is the mid-

price between the bid and ask price at time t. In fact, this measure is more accurately 

known as the relative spread because it allows direct comparison of spreads for 

different assets. Variations of this include using log prices or the last paid price of the 

most recent trade. 

  

A signal of incoming news is the widening of bid-ask spreads. Liquidity suppliers 

react to news by reducing order aggressiveness in revising quotes to avoid the costs 

incurred by trading with informed traders. Similar to stock price returns, news 

sentiment has been found to have an asymmetric impact on spread measures but a 

consistent increase around news arrival for market depth (Riordan et al., 2013). In the 

presence of (extreme) sentiment, liquidity should also increase for highly traded 

stocks i.e. spreads decrease, as theory suggests that sentiment leads to increased 

trading activity. The adverse selection component of the bid-ask spread can be 

interpreted as private information that is impounded into prices through trading.  

 

Effective spread is a trade process based measure of liquidity that is calculated as the 

spread paid when an incoming market order trades against a limit order. The equation 

for it is: 

 

                                           𝐸𝑓𝑓𝑆𝑝𝑡 = |𝑝𝑡 − 𝑝𝑡
𝑀|                                  [2.2] 

 

where 𝑝𝑡 denotes the last traded price before time t and 𝑝𝑡
𝑀 is the mid-price calculated 

as above. A general rule of thumb is taken to be: if the effective spread is smaller than 

half the absolute spread, then this reflects trading within the quotes (see Chordia, Roll 

and Subrahmanyam, 2000 or Hasbrouck and Seppi, 2001). Several manipulations are 

added to this measure to enhance its comparability with other spread measures, i.e. 

multiplying by two or weighting with the number of trades.  
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Depth measures are a sign of illiquidity indicating an adverse market impact for 

investors. Moreover, these measures regard the volume at the best bid and ask prices. 

A commonly used measure of market depth is called Kyle’s Lambda (Kyle, 1985): 

 

                                                𝜆 =
𝑟𝑡

𝑁𝑂𝐹𝑡
                                             [2.3] 

 

where rt  is the asset return and NOFt  is the net order flow over time. The parameter λ 

can be obtained by regressing asset return on net order flow over some time window. 

When time t is chosen to be very short, such as tick trades, λ reduces to the simple 

equation above. A highly liquid stock would incur small changes in price i.e. little 

return, for a given level of trading volume. This measure can also be used to calculate 

market impact. Kyle (1985) states that the prices determined by market makers are 

assumed to equal the expectation of the liquidation values of the commodity, 

conditional on the market makers’ information sets at the dates the prices are 

determined. 

 

 

 

 

 

 

 

 

Figure 2.3: Kyle’s λ values calculated for all trades on Barclays and AIG in the day 1 June 

2010.   
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Another measure of market depth is Hui-Heubel (HH) liquidity ratio (Hui and Heubel, 

1984). This model was used to study asset liquidity on several major U.S equity 

markets, and relates trading volume to the change of asset price. Given the market 

activities observed over N unit time windows, the maximum price 𝑃𝑚𝑎𝑥, minimum 

price 𝑃𝑚𝑖𝑛 , average unit closing price 𝑃̅ , total dollar trading volume V, and total 

number of outstanding quotes Q, the Hui-Heubel 𝐿𝐻𝐻   liquidity ratio is given as 

follows: 

 

                                       𝐿𝐻𝐻 =
(𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛)

𝑉

𝑄
∗𝑃̅

                                [2.4] 

 

 

A higher HH ratio indicates higher price to volume sensitivity. Additional measures 

include market depth, trading volume and more. 

 

The resilience dimension of liquidity refers to the speed at which the price 

fluctuations resulting from trades are dissipated. Market-efficient coefficient (MEC) 

(Hasbrouck and Schwartz, 1988) uses the second moment of price movement to 

explain the effect of information impact on the market. If an asset is resilient, the asset 

price should have a more continuous movement and thus low volatility caused by 

trading. Market-efficient coefficient compares the short term volatility with its long 

term counterpart. Formally: 

 

                                       𝑀𝐸𝐶 =
𝑉𝑎𝑟(𝑅𝑙𝑜𝑛𝑔)

𝑇∗𝑉𝑎𝑟(𝑅𝑠ℎ𝑜𝑟𝑡)
                             [2.5] 

 

where T is the number of short periods in each long period. A resilient asset should 

have a MEC ratio close to 1. Calculating the MEC for a handful of assets from the US 

and UK stock markets it can be shown that US assets are more resilient than UK 

assets (Figure 2.4).   
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Figure 2.4: The market-efficient coefficient (MEC) calculated for a handful of US and UK 

stocks. 

 

Alternative measures for resilience include intraday returns, the variance ratio and the 

liquidity ratio.   

 

Literature also has precedence for another aspect of liquidity: immediacy - the speed 

at which trades can be arranged at a given cost. Illiquidity can be measured by the 

cost of immediate execution (Amihud and Mendelson, 1986). Thus, a natural measure 

of illiquidity is the spread between the bid and the ask prices. Later, Amihud (2002) 

modified the definition of illiquidity. The now-famous illiquidity measure is the daily 

ratio of absolute stock return to its dollar volume averaged over some period: 

 

                              𝐼𝐿𝐿𝐼𝑄𝑖𝑦 =
1

𝐷𝑖𝑦
∑

|𝑅𝑖𝑦𝑑|

𝑉𝑂𝐿𝐷𝑖𝑦𝑑

𝐷𝑖𝑦

𝑑=1                         [2.6] 

 

where 𝑅𝑖𝑦𝑑 is the return on stock i on day d of year y and 𝑉𝑂𝐿𝐷𝑖𝑦𝑑 is the respective 

daily volume in dollars. 𝐷𝑖𝑦 is the number of days for which data are available for 

stock i in year y.  

 

The vast literature on liquidity studies the relationships of liquidity and the cost of 

liquidity with various stock performance measures, trading mechanisms, order-trader 

types and asset pricing. Acharya and Pederson (2005) present a simple theoretical 

model (liquidity-adjusted capital asset pricing model- LCAPM) that helps to explain 
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how liquidity risk and commonality in liquidity affect asset prices. The concept of 

commonality of liquidity was highlighted by Chordia et al. (2000) when the authors 

stated that liquidity is not just a stock-specific attribute given the evidence that the 

individual liquidity measures (quoted spreads, quoted depth and effective spreads) co-

move with each other. Later Hasbrouck and Seppi (2001) examine the extent and role 

of cross-firm common factors in returns, order flows, and market liquidity, using the 

analysis for 30 Dow Jones stocks. According to Hasbrouck (2006), the Amihud 

illiquidity measure is most strongly correlated with the TAQ-based price impact 

coefficient among the daily proxies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Illiquidity ratios for a handful of US and UK stocks. 

 

A recent study of news sentiment on intraday price discovery, liquidity and trading 

intensity by Riordan et al. (2013) confirm the increase of adverse selection costs, 

liquidity and trading intensity around news. Furthermore, an asymmetric effect was 

found between negative news and positive news (neutral news caused similar 

reactions as positive news), with the former being associated more with higher 

adverse selection costs and lower liquidity. This is further amplified in periods before 

release of negative news.  

 

Many studies have found significant relationships between news events and liquidity, 

with Krinsky and Lee (1996) leading the field by analysing the change in spread 

around scheduled earnings announcements. Their results show an increase in the 
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adverse selection component of the spread during announcements, which they 

attribute to information advantages of informed traders and faster news processing 

capabilities of public information processors. Ranaldo (2008) examines firm specific 

unstructured news at the Paris Bourse and finds an increase in liquidity as well as 

higher adverse selection costs around news release. Furthermore, Chordia, Roll and 

Subrahmanyam (2001) find that daily changes in market averages of liquidity are 

highly volatile and there are strong days-of-the-week effects. Also, in down markets, 

liquidity tends to plummet. Baker and Stein (2004) even suggest liquidity as a type of 

sentiment index, in the form of share turnover, and argue that signs of high liquidity 

are a symptom of overvaluation. 

 

To the extent that a broad market or a particular security becomes more volatile, it can 

be expected that liquidity providers will demand greater compensation for risk by 

widening bid-ask spreads.  This is confirmed in recent research reported by Gross-

Klussmann and Hautsch (2011) who conclude that by capturing dynamics and cross-

dependencies in the vector autoregressive modelling framework they find the 

strongest effect in volatility and cumulative trading volumes. 
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Chapter 3 
 

News Sentiment and Its Market Impact 
 

 

3.1 News Metadata 

 

News in some sense is not an exact term; thus news can be associated with many 

different types of information. We provide below Leinweber’s (2009) broad 

classifications to distinguish the different forms.    

 

1. News  This refers to mainstream media and comprises the news stories produced by 

reputable sources. These are broadcast via newspapers, radio and television. They are 

also delivered to traders’ desks on newswire services. Online versions of newspapers 

are also growing in volume and number. News may be separated into two categories: 

scheduled and unscheduled. Macroeconomic announcements are an example of 

scheduled news where the time factor is known yet the content is unknown. On the 

other hand, unscheduled news possesses undetermined factors for both time and 

content. 

 

2. Pre-news  This refers to the data source that reporters research before they write 

news articles. It comes from primary information sources such as Securities and 

Exchange Commission reports and filings, court documents and government agencies. 

It also includes scheduled announcements such as macroeconomic news, industry 

statistics, company earnings reports and other corporate news. 

 

3. Web 2.0 and social media  These are blogs and websites that broadcast ‘‘news’’ 

and are less reputable than news and pre-news sources. The quality of these varies 

significantly. Some may be blogs associated with highly reputable news providers and 

reporters (for example, the blog of BBC’s Robert Peston). On the other hand, some 

blogs may lack substance and be fuelled entirely by rumours. Social media websites 

fall at the lowest end of the reputation scale. Barriers to entry are extremely low and 

the ability to publish ‘‘information’’ is easy. These can be dangerously inaccurate 

sources of information.  At a minimum they may help us to identify future volatility. 

Individual investors pay relatively more attention to the previous two sources of news 
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than institutional investors. Information from the web may be less reliable than 

mainstream news. However, there may be ‘‘collective intelligence’’ information to be 

gleaned. That is, if a large group of people have no ulterior motives, then their 

collective opinion may be useful (Leinweber, 2009, Ch. 10, Preis, Moat and Stanley, 

2013).  

 

The news metadata that we study is compiled from the first category of news. News 

content vendors collect news from a range of sources worldwide such as electronic 

newswires, newspapers and magazines. Real time newsfeeds are predominantly 

supplied by newswires. They employ journalists from all over the world whose 

reports are then distributed to other organizations in the industry. In order to expand 

their coverage on a global scale, translation of headlines and text is obligatory. 

Several complications may occur during this process that will deter the accuracy of 

sentiment scoring later on, which is why the current coverage of news in data does not 

span outside the English language. Progress however is being made in this area to 

guarantee the availability of first-hand information.      

 

News analytics data is presented in a metadata format, which is a term promoted by 

the increasing popular field of Big Data. Metadata refers to information that describes 

a set of data and is highly applicable in understanding the material stored in data 

warehouses. Essentially it is “data about data”, incorporating details of how, when 

and by whom the data was collected and how the data is formatted. Furthermore, its 

importance in XML-based web applications cannot be overlooked as webpage content 

is commonly described using meta tags, which consequently is how search engines 

determine their search index. Applying a similar technique, data vendors have also 

constructed machine learning algorithms to identify relevant tags for a news story. 

These tags turn the unstructured stories into a basic machine readable form and are 

often stored in XML format. They reveal the story’s topic areas and other important 

metadata, such as a list of companies the story includes in its writing. With the 

majority of news available electronically and online, it is appropriate that the 

processing of news is in metadata format. The characteristics given as data fields to 

news metadata include (i) relevance, (ii) novelty and (iii) sentiment scores based on 

an individual asset (but this is not an exhaustive list). Thus the analytical process of 

producing such scores is fully automated from collection, extraction, aggregation, to 

categorisation and scoring. The result is an individual score assigned to each news 

article for each characteristic using scales from 0-100 or probabilities.  
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For our research investigations, news metadata from both RavenPack and Thomson 

Reuters were available at our disposal. Experiments were carried out on both sets of 

data but we do not set out to make any comparisons. Some of the descriptions and 

knowledge of data fields explained below were taken from their respective manuals 

for news analytics data (RavenPack, 2010 and Thomson Reuters News Analytics, 

2010). Both sets of data are similar in structure (see Appendix A and B). In our study, 

we have used only Thomson Reuters news metadata.   

 

A news metadata record may relate to one or more companies (assets). Thus one news 

article may produce a set of attributes (scores) for more than one company. Similarly, 

an individual asset may be linked to a repeated series of news (events) on a given 

theme. This leads to the concept of novelty of “news items” in the series. Therefore, 

metrics that can distinguish between this information is required, namely, the data 

fields known as relevance, novelty, volume and headline classification to name a few.  

 

The primary metadata fields, as with all data, are date and time (including time zone). 

The general format used is “DD MM YYY hh:mm:ss:sss” where time-stamps are 

accurate to the nearest millisecond.  These fields are necessary for archive purposes. 

Next on the list is company ID, where it may be presented as the universal ticker 

symbol or the data vendor’s unique coding.  

 

Relevance is defined as the significance of one news article on a particular asset. It is 

normally measured as a score between 0 and 100. This is an important factor in the 

filtering of news metadata as the difference between a news event’s key role and the 

name of a passing by competitor is rated by relevance. Setting a high benchmark for 

relevance score guarantees a significant linkage between the news item and the 

selected company.    

 

Novelty measures the originality of a news article. Also scored between the range 0-

100, it is calculated through comparison with previous news items containing the 

same asset name. Linguistic comparison programs are employed to identify similarity 

counts between articles and complete novelty is reached once a particular threshold is 

surpassed. Novelty scores are provided for a number of time periods depending on the 

frequency that is needed, i.e. 12 hours, 24 hours, 3 days etc. Moreover, a linked count 

is also provided, relating that particular news item to the original article. Therefore, if 



48 

 

the item scores lower than 100 in the novelty field then it will have a linked count 

greater than zero, with larger numbers representing slower updates. 

 

Headline category is an exhaustive list of possible topics that the news item could be 

regarding. This data field is useful for segregation of news types, e.g. scheduled news, 

macroeconomic announcements.   

 

The news metadata therefore can be effectively filtered (extracted) by specifying 

limits on many of these attributes. The focus of our work is concentrated on non-

scheduled news and the surprise effect on markets. Hence, any social media and data 

from the web are not considered. The attributes of news stories used in our study are 

Relevance and Sentiment, where a benchmark score of 70 was chosen for relevance. 

The scores used to denote sentiment are described below in section 3.2. Although we 

use intraday news metadata, for a given asset the number of news stories, hence data 

points are variable and do not match with the time frequencies of market data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: An outline of information flow and modelling architecture of news metadata.   
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3.2    Sentiment score 

 

A news sentiment score measures the emotional tone within a news item and varies 

between positive and negative. A sentiment score can be defined as follows: a value 

falling within a range consisting of a minimum and maximum depicting the overall 

tone of a news article. Depending on the measurement of scale, the exact polarity of 

sentiment in the news can be deduced, i.e. Thomson Reuters assign probabilities to 

the moods “Positive”, “Neutral” and “Negative” to infer an overall sentiment that is 

the average of all 3 scores, whereas RavenPack directly produce a sentiment score 

belonging to the range 0-100 that then allows a conclusion of positivity or negativity. 

How these scores are derived is a process known as sentiment classification and is 

described fully in section 1.4. 

 

By automating the judgement process, the human decision maker can act on a larger, 

hence more diversified, collection of assets. These decisions are also taken more 

promptly thus reducing the latency of trades. The intuition is that somewhere within 

these series of news sentiment metadata lies indicative signals waiting to be 

discovered and revealed. Through experimentation with Reuters’ sentiment data, Uhl 

(2011) concludes that there is a clear advantage in disregarding neutral sentiment as 

such ambiguous text blurs the overall mood. This conclusion was based on a better 

performance by trading strategies that only considered positive or negative scores and 

not the whole population. Similarly with the same set of data, Sinha (2010) tests the 

predictability of asset returns using a qualitative information measure that is based on 

news sentiment scores. The measure is able to predict weekly returns and mitigates 

short-term reversal in the weekly momentum strategy. Another important result 

concluded by researchers on the sentiment of news events is that more emotive news 

(highly positive and highly negative) can better predict volume and volatility 

increases, more so by the negative extremes. Thus, the points raised above 

demonstrate an encouraging effect to be explored between news sentiment and asset 

behavioural characteristics, and also provides motivation for our study into the 

connection of news sentiment and return, volatility and liquidity. 

 

Thomson Reuters’ news sentiment engine analyses and processes each news story that 

arrives as a machine readable text. Through text analysis and other classification 

schemes the engine then computes values for the attributes described in section 3.1. 
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As already explained, a news event sentiment can be positive, neutral and negative 

and the classifier assigns probabilities such that 

 

             𝑃𝑟𝑜𝑏(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) +  𝑃𝑟𝑜𝑏(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) + 𝑃𝑟𝑜𝑏(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1.0              [3.1] 

 

We turn these three probabilities into a single sentiment score in the range 0-100 

using the following equation:  

 

                   𝑆̂𝑆𝑒𝑛𝑡 = 100 ∗ (𝑃𝑟𝑜𝑏(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + 
1

2
𝑃𝑟𝑜𝑏(𝑛𝑒𝑢𝑡𝑟𝑎𝑙))                [3.2] 

 

where 𝑆̂𝑆𝑒𝑛𝑡 denotes a single transformed sentiment score. Although the probability 

of negative sentiment cannot be seen in equation 3.2, it is however implied from 

equation 3.1 and thus is considered in the calculation of 𝑆̂𝑆𝑒𝑛𝑡. Some examples of 

this numerical conversion are provided below.  

 

 

 

 

 

 

 

Table 3.1: Examples of how the sentiment score 𝑆̂𝑆𝑒𝑛𝑡 is constructed. 

 

We find that such a derived single score provides a relatively better interpretation of 

the mood of the news item. Thus the news sentiment score is a relative number which 

describes the degree of positivity and negativity in a piece of news. We further shift 

the sentiment score by subtracting 50 (the value corresponding to the neutral 

sentiment score = 0) to compute 

 

                                             𝑆𝐸𝑁𝑇 = 𝑆̂𝑆𝑒𝑛𝑡 − 50                                          [3.3] 

 

Thus the score SENT lies between -50 and +50. During the trading day, as news 

arrives it is given a sentiment value.  

 

To test for the existence of a relationship between news sentiment scores and 

respective asset prices, a 𝜒2 test is carried out. Due to the arrival of news at different 

POSITIVE NEUTRAL NEGATIVE 𝑺̂𝑺𝒆𝒏𝒕 

1 0 0 100 

0 0 1 0 

0.1 0.05 0.85 12.5 

0.9 0 0.1 90 
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times asynchronously, it is not possible to construct a corresponding time series of 

asset price data. Therefore, a method is taken to test for independence between 

sentiment scores and the change in prices, specifically the direction of change in 

prices. Our interest lies in whether negative (positive) news sentiment correspond to 

price movement downwards (upwards) in the next time period, thereby focusing on 

the reaction of asset prices to news sentiment. Preliminary observations can be made 

from the contingency table where both variables are sorted into quintiles (see Table 

3.1). A clear observation is that the majority of data points fall within the third 

quintile (i.e. median) of price change and the upper and lower quintiles of sentiment 

scores. In other words, both highly positive and highly negative news sentiment 

frequently correspond to little or no movement in stock prices, as the third quintile 

bounds zero. Taking the null hypothesis to be that the two variables are independent, 

we calculate a test statistic of 40.77. Testing at the 1% level we reject the null 

hypothesis and conclude that causality between these two variables could exist. 

However, it should be noted that this test statistic is only slightly larger than the 

critical value of 39.25 and produces a p-value of 5.98𝑒−4. As a consequence, it has 

been established that these two variables are not independent whilst at the same time, 

causality cannot be confirmed. It is well known to practitioners that news flow affects 

prices, we have therefore derived a new measure, the impact score, which takes into 

account news volume (see section 3.4). 

 

 

 

I1 I2 I3 I4 I5 

C1 37 16 8 59 16 

C2 54 23 10 41 17 

C3 1031 586 184 906 577 

C4 64 18 10 44 18 

C5 33 21 7 53 25 

 

Table 3.2: Contingency table for price change of AIG in 2008 and its respective sentiment 

score, split into quintiles. I1-I5 represent the sentiment score quintiles and C1-C5 represent 

the quintiles of price change.     
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3.3    News flow  

 

A characteristic of news events not included in the metadata is the volume of news for 

a particular asset. In literature this is commonly referred to as news flow, embodying 

the rise and fall of news counts over a specific period. As a consequence, initial start 

dates must be stated in order to consider news flow in a comparable manner. 

Intuitively such a factor would influence the degree of impact of news sentiment on 

stock markets. Consider the case of a single news item that reports of faulty products 

being distributed by a particular company, and compare it to an instance where all 

major newswires are reporting delays in meeting customer demand by another 

company. For both cases, the news is bad with possible damaging implications on the 

companies, and so the sentiment can easily be deduced to be negative. However, an 

evident difference exists, that is, the magnitude of the negative sentiment, which 

consequently will affect the subsequent reaction by the markets. The single news 

report will portray negativity as an overall sentiment; however the impact will be 

small in comparison to bad information that is broadcasted by many news sources.  

   

Stock prices can be impacted purely by the frequency of news events (news flow) as 

research by Tetlock (2011) proves. He discovers a reaction by investors to news that 

is already considered stale, causing temporary movements in stock prices. Thus, 

information which is no longer novel and has been reported several times can still 

affect investors’ trading decisions, implying that volume of news can enhance the 

longevity of information and emphasize sentiment polarity. Similarly, Dzielinski, 

Rieger and Talsepp (2011) relate a high concentration of news to volatility asymmetry. 

The reasoning is as follows: bad news is typically prevalent in times of high news 

concentration, and private investors are known to react nervously to bad news 

(Talsepp and Rieger, 2009), hence the overreaction of private investors to bad news 

will likely lead to the observed asymmetry in volatility.  

 

Other features found to be linked to news flow include size of companies. Larger 

companies (with more liquid stock) tend to have higher news coverage/news flow. 

Moniz, Brar, and Davis (2009) observe that the top quintile of company sizes 

accounts for 40% of all news articles and the bottom quintile for only 5%. Cahan, 

Jussa, and Luo (2009) also find news coverage is higher for larger market 

capitalisation companies as well as determining a correlation around 55% between 

news flow and market capitalisation.  
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The justification for aggregation of news sentiment is related to news flow. The 

influential power of many articles on one news story exceeds that of a single article. 

Hence the combined sentiment will indicate to investors that this is more trustworthy 

information which could impact the markets due to a stronger score. The differing 

number of news covering a story is known as news intensity.  

 

In consideration of the arguments provided above and through results produced in the 

existing literature, we believe that it is necessary to incorporate the news flow factor 

into the study of news sentiment effects on asset behaviour. Thus, we extract the 

necessary metadata and calculate the news flow. Therefore, using this as a motivation 

we construct a novel measure called the Impact score. As we will show in the next 

section, this additional feature of the sentiment score will enhance the relationship 

between news sentiment and asset prices as well as offering a more realistic 

interpretation of news events.  

 

 

3.4    Impact score 

 

In this thesis we have considered two measures of news sentiment. The first is 

sentiment score, which is explained in section 3.2. To date all the studies that report 

on news and asset behaviour only consider sentiment (see section 3.2). We construct a 

new measure called impact score which we find more relevant and useful in 

predicting such asset characteristics. The sentiment score only quantifies the mood of 

a typical investor in respect of a news event. The impact score, on the other hand, 

takes into consideration the decay of the sentiment of one or more news events and 

how after aggregation these impact the asset price behaviour. 

 

It is well known from research studies that news flow affects asset behaviour (Patton 

and Verardo, 2012, Mitra, Mitra and diBartolomeo, 2009). Therefore, accumulation of 

news items as they arrive is important. Patton and Verardo (2012) noticed decay in 

the impact of news on asset prices and their betas on a daily timescale and further 

determine the complete disappearance of news effects within 2-5 days. A similar 

effect was also observed in Arbex-Valle et al. (2013). Mitra, Mitra and diBartolomeo 

(2009) created a composite sentiment score in their volatility models and after initial 

experiments saw no effects to volatility predictions with sentiment alone. Their decay 

period was over 7 days. 
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So as recent literature suggests, not only does it produce better results but it is also 

more realistic to extend the influencing duration of news on assets, lasting longer than 

the brief period of news release. Bearing this in mind, we form a new measure of 

news sentiment which better incorporates the impact of news events by amalgamating 

the attenuation and decay of sentiment scores for a particular asset. This is named the 

Impact score.    

 

A component within the news sentiment metadata provided by RavenPack is called 

News Impact Projection (NIP). It takes into account the price impact of stocks 

mentioned in a news story headline. The formation of this impact score utilises 

several advanced machine learning techniques with the common objective of 

identifying the probability of a particular stock’s volatility to be higher or lower than 

the volatility of the market.   

 

In order to compute the impact of news events over time we first find an expression 

that describes the attenuation of the news sentiment score. The impact of a news item 

does not solely have an effect on the markets at the time of release but also over finite 

periods of time that follow. To account for this prolonged impact, we have applied an 

attenuation technique to reflect the instantaneous impact of news releases and the 

decay of impact over a subsequent period of time. The technique combines 

exponential decay and accumulation of the sentiment score over the time buckets 

under observation. We take into consideration the attenuation of positive sentiment to 

the neutral value and the rise of negative sentiment also to the neutral value and 

accumulate (sum) these sentiment scores separately (see equation 3.4 and 3.5). By 

separating the decay process between positive and negative sentiment scores we avoid 

an exact cancellation to zero, which may be interpreted as no news.  
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Figure 3.2: A representation of news sentiment decay. 

 

Figure 3.2 shows the decay rate of news sentiment. The parameter 𝜆90 specifies that 

the news sentiment decays exponentially to half of its initial value over a 90 minute 

period and is the chosen value for our experiments. For the rest of this thesis, 𝜆90 will 

be expressed as λ. 
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Figure 3.3: The bid price and cumulated (positive + negative) sentiment scores for AIG for 

August 2008. 

 

The sum of the sentiments for different news arrivals in a given time bucket of one 

minute duration (that is, 630 buckets during the trading day) gives the overall 

sentiment in that time bucket. Therefore, if no news arrives within a certain time 

bucket then no sentiment is added on, leaving the further decayed value from the 

previous time bucket as the sentiment score. In Figure 3.3 we plot the overall 

sentiment for the asset AIG over one month of data in which the vertical axis on the 

left is the sentiment score, the vertical axis on the right is the bid price and the 

horizontal axis is 630 x 21 = 13230 minute-bar time buckets. 

 

The work of Leinweber and Sisk (2011) and also earlier work by Mitra, Mitra and 

diBartolomeo (2009) as well as the present study indicate that accumulation of 

sentiment leads to a fairly good fit with asset price in general and with asset price 

volatility in particular.  

 

Data Granularity:  

 

Recall from section 2.1 that our interests lie in studying the effects of news sentiment 

intraday. Uses for such work include establishing trading strategies or quantifying risk. 

Therefore, our data granularity is set to be minute bar.  
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The trading day starts at 08:00 hours and ends at 18:30 hours thus in a trading day 

the total number of buckets is 630. 

 

Any news arriving overnight or during the weekend is bucketed into the next morning 

or the day’s first minute, where the size of a bucket is 1 minute. Hence, the 

assumption is taken that the impact of such overnight and weekend news is 

incorporated into prices the following day.  

 

Although news arrives asynchronously we work out the aggregated impact of all news 

in the following way. 

 

Let 

 

POS  denote the set of news with positive sentiment value 𝑆𝐸𝑁𝑇>0; 

NEG  denote the set of news with negative sentiment value 𝑆𝐸𝑁𝑇<0; 

 

and 

 

𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) denotes the sentiment value of the 𝑘𝑡ℎ positive news arriving at time 

bucket 𝑡𝑘, 1≤ 𝑡𝑘 ≤630 and 𝑘 ∈ 𝑃𝑂𝑆; 𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) > 0. 

𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) denotes the sentiment value of the 𝑘𝑡ℎ negative news arriving at time 

bucket 𝑡𝑘, 1≤ 𝑡𝑘 ≤630 and 𝑘 ∈ 𝑁𝐸𝐺; 𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) < 0. 

 

Let λ denote the exponent which determines the decay rate. We have chosen λ such 

that the sentiment value decays to half the initial value in a 90 minute time span. The 

justification for these values is as follows. Firstly, it should be clarified that there are 

two variables to be determined – the rate of decay (speed) and the decay duration 

(how long the decay for one piece of news lasts). Next, each variable was determined 

through several variations.  To establish the appropriate value for the decay duration, 

a default value for the decay rate was initially taken to be a half. In consideration of 

the fact that the market data is of minute-bar frequency, an adequate timeframe of 15 

minutes was chosen as the starting point for testing. Continuing in this manner, 

durations were extended to test at 30 minutes, 60 minutes and 90 minutes (see Figure 

3.4).  
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Figure 3.4: The half-life decay of sentiment scores for AIG over the month of September 

2008 combined with different decay durations of 15 minutes, 30 minutes and 60 minutes 

respectively. The red line depicts the bid price. 

 

With regards to the decay rate, half-life decay was taken as the starting point to 

construct the impact score. As a robustness check, other decay rates were also 

considered such as two-thirds and three-quarters, however, results concluded that the 

decay rate of half is most suitable. The justification of such conclusions can be seen 

from Figure 3.5, which plots the different combination of decay rates with the bid 

price (decay duration is held constant at 90 minutes). It can be observed that the 

movement of cumulated sentiment scores is most synchronised with the bid price 

movement for the decay rate of one half. This is most prominent in the drop of 

sentiment and prices during the days 10-16 August 2008, where the trough of the 

cumulated sentiment score corresponds to the lowest price. For the other larger decay 

rates, there is a mismatch in this movement, although it is small for the case of decay 

rate three-quarters.  
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Thus, the cumulated positive and negative sentiment scores for one day are given by 

equations 3.4 and 3.5. 

 

 

             𝑃𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) = ∑  𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘)𝑘 ∈𝑃𝑂𝑆
𝑡𝑘≤𝑡

𝑒−𝜆(𝑡−𝑡𝑘),     t=1,…,630              [3.4] 

 

 

             𝑁𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) = ∑  𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘)𝑘 ∈𝑁𝐸𝐺
𝑡𝑘≤𝑡

𝑒−𝜆(𝑡−𝑡𝑘),   t=1,…,630             [3.5] 

 

The arrival of more news items lead to higher values of accumulation; this therefore 

takes into account the news intensity, that is, the news flow. More importantly, the 

impact scores from previous news items are also included in the calculation of impact 

score at time t. Generally after 90 minutes the impact of a news story will have 

diminished to nothing. The impact is illustrated in Figure 3.7 which shows the impact 

score (with attenuation and accumulation) for the asset JP Morgan during the month 

of August 2008, with positive and negative sentiment represented separately.  
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Figure 3.5: The decay of sentiment scores every 90 minutes for AIG over the month of 

September 2008 combined with different decay rates of a half, two-thirds and three-quarters 

respectively. The red line depicts the bid price. 
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Figure 3.6: JP Morgan August 2008: News impact score (accumulated and aggregated) for 

positive (blue line) and negative (red line) sentiment respectively. 

 

In order to compute the aggregated impact of all the news items which arrive during 

the day, we sum the positive and negative sentiments in each time bucket for the 

duration of the entire trading day. This gives us the impact score as set out in equation 

3.6. 

  

                  𝐼𝑚𝑝𝑎𝑐𝑡𝑡 = 𝑃𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) + 𝑁𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) ,   t = 1,…,630      [3.6] 

 

For convenience, we express Impact(t) also as 𝐼𝑚𝑝𝑎𝑐𝑡𝑡. Should there be no relevant 

news to appear throughout a day, then the impact score for the day equates to zero. 

Similarly, if in a time bucket no relevant news items are published, then 𝐼𝑚𝑝𝑎𝑐𝑡𝑡 is 

the total decayed value of previous news or zero if it is the first time bucket of the day. 

 

Depending on the objectives of the researcher, it is also viable to consider the impact 

of news sentiment as two separate variables i.e. PImpact(t) and NImpact(t), through 

logistic regression or the introduction of dummy variables. More noticeably, if the 

volume of news is a significant factor to be investigated then this is an appropriate 

approach. 

 

In order to deduce whether causality exists between the impact score that we created 

and asset prices, once again a 𝜒2  test is performed. However, the setup of the 

experiment is simpler in this case as both prices and impact scores are presented in the 

same frequency – minute bar. Initial observation of the contingency table shows a 
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strong relationship between the two random variables indicated by the largest 

numbers falling within the highlighted areas (see Table 3.2). The area highlighted in 

red constitutes the lowest prices with the lowest impact scores (values belonging to 

the smallest quintile). Conversely, the area highlighted in green represents the highest 

asset prices and the highest impact scores. That is to say low prices are reflected by 

low impact scores and high prices are reflected by high impact scores. Furthermore, 

this test is conducted between the asset price and lagged impact scores therefore, it 

can be perceived that such impact scores may possess predictability properties on 

asset prices. The yellow cross-section highlights the median values.  

 

 

 

I1 I2 I3 I4 I5 

C1 6895 4934 24394 14227 267 

C2 992 2013 5113 8092 0 

C3 843 810 7440 15970 0 

C4 835 1705 8747 16556 178 

C5 1374 1911 9248 38285 84 

 

Table 3.1: Contingency table for close price of AIG in 2008 and its respective impact score, 

split into quintiles. I1-I5 represent the impact score quintiles and C1-C5 represent the close 

price quintiles.   

 

The null hypothesis for the 𝜒2  test is that the impact score and assets prices are 

independent. Testing at the 1% level with a test statistic of 27274.82 we reject the null 

hypothesis. Taking into consideration the observations made above, it is concluded 

that a casual effect between the factors of asset price and impact score could possibly 

exist. Therefore, with this evidence we proceed to investigate the relationship further 

and for subsequent chapters of this thesis all referral of sentiment is interpreted as the 

impact score. 
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Chapter 4 
 

Univariate Predictive Model for Asset 
Behaviour 
 

4.1       Introduction 

 

In Chapter 1 we had given an overview of why sentiment analysis based on news has 

an important bearing on financial decision making. In this section we develop this 

theme further and introduce a univariate predictive model which connects news 

sentiment to asset dynamics. The univariate model uses return, volatility and liquidity 

to characterize asset behaviour. In this chapter, therefore, we adopt the impact score to 

construct the model which connects news sentiment with asset dynamics. 

 

 A major plank in the development and application of behavioural finance is the 

consideration of bounded rationality as introduced by Nobel laureate Herbert Simon 

(Simon, 1964). It follows from the theme of bounded rationality and later works of 

behavioural theorists/economists, Kahneman and Tverskey, Sheffrin, Shiller that 

human beings in general, and retail investors in particular, are influenced by various 

psychological imperatives of ‘fear, greed and exuberance’. This is in sharp contrast 

with the postulates of neoclassical theories of rational behaviour and scrupulous 

application of logic in decision making. Thus behavioural finance in many ways 

determines the risk attitudes and the investment goals of (high net worth) individuals: 

so called HNIs who account for the majority of the invested wealth. Furthermore, this 

field also reinforces the importance of sentiment and investor psychology in market 

behaviour. Examples of such work include Shiller (2000) and Hais (2010) where the 

irrational contrarian and herd behaviour of investors are discussed.  

 

Today the availability of sophisticated computer systems facilitating high frequency 

trading (Goodhart and O’Hara, 1997) as well as access to automated analysis of news 

feeds (Tetlock, 2007, Mitra and Mitra, 2011) set the backdrop for computer 

automated trading which is enhanced by news. How investment strategies may 

harness sentiment of news events and also that of the market continue to be actively 

studied and reported by researchers in the investment community (Peterson, 2007, 
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Kahn, 2013, Dion, 2013, and Hafez, 2013). In this study we investigate how 

predictive models of asset behaviour can be used as a precursor to developing trading 

strategies. 

 

Characterising Asset Behaviour 

 

The majority of research on asset behaviour has focused on analysing historical 

market data and constructing models that best represent the information held in such 

datasets. The key features studied in these models are return and volatility of stock 

price, which are considered in the decision making stage of trading. In our study we 

introduce liquidity with a view to enhance these classical methods. Thus our model 

looks at three characteristics of an asset, namely return, volatility, and liquidity. The 

consideration of the additional parameter, liquidity, provides knowledge on the 

condition of markets and more importantly indicates whether a profitable signal can 

be successfully executed or not. Simply being able to determine a profitable position 

in the markets, through observation of stock price return and volatility, is not 

sufficient if in fact the actual trade is not available.  

 

Asset price parameters have been traditionally represented by two methods: predictive 

modelling and explanatory modelling. One of the most well-known explanatory 

models is the factor model (Fama and French, 1992). They capture return by 

extending the Capital Asset Pricing Model (CAPM), which was independently 

proposed by Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966), to 

include market capitalisation size and book-to-market ratio as explanatory factors. 

Such types of models can be categorised under three groups, that is macroeconomic, 

fundamental and statistical factor models depending on the choice and nature of these 

factors and how the respective models are calibrated. Although factor models have 

dominated this field of finance, a weakness is in their failure to quickly update 

changes in market conditions. The structure of these models is only single period 

inhibiting the incorporation of relevant past information at a sufficient speed. 

Parameters are updated through calibration but only at a slow pace where the model 

adapts. Mitra, Mitra and diBartolomeo (2009) have shown how the incorporation of 

news enhances the results of factor models and leads to an early prediction of changes 

in volatility. We believe that news sentiment should also be considered as an 

explanatory factor in the pricing of assets and therefore return. However, our 

approach turns to another class of models that better predict volatility in a time-



65 

 

varying framework – generalised autoregressive conditional heteroskedasticity 

(GARCH) models.  

 

Researchers in this domain (Ho, Shi and Zhang, 2013) have shown that by 

incorporating the additional factor of news sentiment in GARCH models, the near 

term volatility can be estimated using past news events over many periods. This near 

term estimation may be obtained using a number of alternative predictive models. 

Established models in this class are linear regression models (Stambaugh, 1999, 

Robertson and Wright, 2009), autoregressive (AR) models, moving average (MA) 

models and generalised autoregressive conditional heteroskedasticity (GARCH) 

(Bollerslev, 1986) models for volatility in particular. Our work utilises the family of 

AR and GARCH models within which news impact is introduced as an exogenous 

variable. We recall that news impact is a derived measure which takes into 

consideration (i) news sentiment and (ii) news flow, that is, volume of news (see 

section 3.4). The predictive models of asset behaviour are used as scenario generators. 

Scenarios are discrete realizations of an asset’s characteristics (return, volatility and 

liquidity, in our case) which are used ex-ante for asset allocation in the face of 

uncertainty and ex-post for the simulation/evaluation of risk and other performance 

statistics. 

 

 

Role of Liquidity in Asset Behaviour 

 

It is important for traders to observe the liquidity of assets as it allows them to 

monitor the financial markets and assess the costs involved in a transaction. Moreover, 

the availability of liquidity is crucial to traders and brokers in their trading activities. 

Thus many recent studies have considered the implications of news on liquidity. For 

instance, Gross-Klaussman and Hautsch (2011) use the bid-ask spread, trading 

volume and market depth as proxies for liquidity with results showing greater increase 

of bid-ask spreads during news releases as opposed to market depth which does not 

differ much. Furthermore, Riordan et al. (2013) find that liquidity increases with news 

releases that have positive or neutral sentiment whereas negative news sentiment 

gives a corresponding decrease in liquidity. 

  

The topic of alternative and relevant measures of liquidity is presented earlier in 

section 2.3; here we consider it again briefly to explain its context in the predictive 

model. 
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It is well accepted in the trading community that liquidity has the role of monitoring 

market conditions and assessing the viability of orders decided by trading algorithms 

by taking into consideration the spread and the depth of the market. Given that margin 

requirement is an important and defining aspect of trading, it can be argued that 

liquidity is an important determinant in deriving trading strategies and should be 

introduced as a parameter in predictive models. There are a variety of definitions 

which explain the role and measure of liquidity mainly in the context of trading. 

Spread measures view liquidity from the point of the cost that one has to bear for 

immediate trade, in other words the viability of orders, with typical measures being 

the effective spread and the bid-ask spread. Depth measures consider liquidity as the 

effect of large orders on a particular asset hence looking at market conditions, and are 

often measured using traded volume, order volume or Kyle’s λ (Kyle, 1985). 

 

 

Modelling Architecture and Choice of Assets 

 

For the empirical study reported in this chapter we have considered 53 highly traded 

stocks taken from two exchanges, namely London Stock Exchange (FTSE) and New 

York Stock Exchange (Dow Jones); these stocks belong to nine industry sectors. Our 

aim is to find out whether taking into consideration news flow and news sentiment in 

addition to the market data leads to superior prediction of asset behaviour. We study 

the behaviour of equities as these are the most actively traded assets in the high 

frequency world and our aim is to ultimately derive models that can predict asset 

behaviour in high frequencies. This framework is highly applicable and relevant to the 

trading world as it supports decision-making models that is, strategies, which select 

trading portfolios with multiple assets. 

 

 

4.2       Data 

 

Our modelling architecture uses two streams of time series data: (i) The market data 

which is given at the minute bar level and includes bid price, ask price and the 

execution price, (ii) News metadata as supplied by Thomson Reuters. The structure 

and nature of the news metadata follows the description provided in section 3.1. 
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Market Data  

 

The high frequency intraday market data is compiled on a minute-bar scale for 53 

assets and covers nine sectors from banking, retail, oil to technology and 

communication. The data fields of the market data are set out in Table 4.1. 

 

Data 

Field 

Field Name Description 

1 #RIC Reuters instrument code individually 

assigned to each company. 

2 Date In the format DD-MM-YYYY. 

3 Time In the format hh:mm:ss, given to the 

nearest minute. 

4 GMT Offset Difference from Greenwich Mean Time.  

5 Type Type of market data – in this case 

“Intraday 1 min” 

6 - 9 Open; High; Low; Last Open, high, low and last prices for the 

corresponding minute 

10 Volume Volume of trades in one minute 

11 Ave. Price Average price  

12 VWAP Volume weighted average price 

calculated for the corresponding minute 

13 No. Trades Number of trades in one minute 

14 - 17 Open Bid; High Bid; Low 

Bid; Close Bid 

Open, high, low and close bid prices for 

the corresponding minute 

18 No. Bids Number of bid orders placed 

19 – 22 Open Ask; High Ask; Low 

Ask; Close Ask 

Open, high, low and close ask prices for 

the corresponding minute 

23 No. Asks Number of ask orders placed  

 

Table 4.1: Description of all the data fields for a company in the market data. 

 

For those minutes that are missing in the data, the last price from the previous minute 

is used. Such situations occurred in the data as a reflection of no bid or ask prices 

during that time.     

 

The Chosen Data set 

     

A selection of 53 assets from FTSE100 and Dow Jones 30 across 9 different sectors is 

chosen for our empirical study. Table 4.2 lists these sectors and states the number of 

companies chosen within each sector. Summary statistics of the selected assets are 

given in Table 4.3. Companies with large market capitalisation were picked for their 
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wide coverage of news; this consequently guarantees a sufficient number of data 

points in the time series of news metadata. In addition, the total market capitalisation 

of all selected assets is $4.36trillion (US stocks: $3.34trillion, UK stocks: 

$1.01trillion). This is a good representation of the entire stock market in the US and 

the UK as a large proportion of the market has been taken into account.  

 

 

Sector Description No. of companies  

chosen 

1 Banking 8 

2 Insurance 6 

3 Pharmaceuticals 6 

4 Oil & Gas 7 

5 Manufacturing 3 

6 Retail 9 

7 Telecommunications 4 

8 IT & Technology 6 

9 Media 4 

  Total: 53 

 

Table 4.2: Break down of the chosen assets by their respective sectors. 

 

From the data fields described in Table 4.1, only close price, bid price and ask price 

are used. The exact period selected for model fitting is 2 January to 31 December 

2008. From the minute bar data, we extract the prices from 08:00-18:30 each day to 

make up a trading day such that pre-trade and post-trade hours are included. The 

reason for this extension of hours is so that any news sentiment captured outside of 

trading hours can still be incorporated into our predictive models to avoid any loss of 

information (impact of news). Close prices are used to calculate log-return and 

volatility.  

 

The general trend in asset prices for 2008 can be seen from Figure 4.1; since this was 

a period of negative (worsening) sentiment all prices are found moving downward. 

Simultaneously on a secondary Y-axis, the number of news for the same period is 

plotted showing the impact of news on asset prices.  

 

The news metadata for the chosen assets were selected under the filter of relevance 

score, that is, any news item that had a relevance score under the value of 70 was 

ignored and not included in the data set. This ensured with a high degree of certainty 



69 

 

that the sentiment scores to be used are indeed focused on the chosen asset and is not 

just a mention in the news for comparison purposes for example. In Table 4.3, it is 

observed from the column of relevant news that the number of news items for each 

asset is considerably reduced, even halved in some cases, once the filter of relevance 

is applied. Thus indicating that news sentiment of low relevance will definitely not be 

included in the chosen dataset.  

 

 

Figure 4.1: Closes prices (blue) plotted with number of news items (red) for AIG, BP, BT 

Group, Coca Cola, General Motors and Microsoft in the year 2008. 
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In Figure 4.2, we display the logarithmic return against the logarithmic number of 

news; a negative relationship is clearly evident. That is to say, a company with a large 

amount of news will have lower average annualised return than those with less news. 

It is not surprising to observe this effect for the year 2008, which is the sample used 

for testing; this was a period of global financial turmoil and so often news regarding a 

company would be portraying negative sentiment which is reflected in low returns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Graph showing the relationship between log return and log number of news. 

 

Final preparation for the data is to align the frequency of sentiment scores to the 

trading hours of 08:00-18:30. Any news item released before or after these trading 

times were summed and bucketed in the next time period, which may be the following 

day. As a consequence, there is no discarding of news sentiment which could be 

influencing the price and return thus, not a single piece of news data is ignored.     

 

Preliminary statistical tests are carried out on the chosen data set to determine if the 

asset price returns time series are stationary. To do this we implement the augmented 

Dickey-Fuller (ADF) test to see if a unit root exists in the autoregressive process. If it 

is present then the model is deemed non-stationary. The test is carried out under a 

hypothesis testing procedure with the ADF statistic being a negative number and the 

null hypothesis states that the coefficient of the first lag 𝛾 = 0. The ADF test is an 

expanded version of the Dickey-Fuller test developed in 1979 by statisticians David 

Dickey and Wayne Fuller, where only the AR(1) model is considered. The choice of 
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adopting the ADF test is because the time series model we need to test is of a large 

size. Running ADF tests on the return series for all 53 assets, we obtain consistent 

negative values for the test statistic throughout (ranging from -44.205 to -64.567). 

This leads to the interpretation that all series are stationary because the null 

hypothesis is rejected at the 1% significance level. 
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Company Name Sector Market Cap. 

($billions) 

No. of 

News 

Relevant 

News 

Sentiment 

AIG Banking 81.36 7648 3870 -69.47 

American Express Banking 54.04 2261 1110 -9.90 

AT&T Telecommunication 207.08 4338 2430 16.53 

Bank of America Banking 475.94 9361 3283 -59.31 

Chevron Oil and Gas 161.51 3936 1519 -15.98 

Coca Cola Retail 262.55 1981 860 1.25 

Disney Media 54.1 2331 1080 3.76 

Exxon Mobil Oil and Gas 381.37 5900 2219 -21.80 

General Electric IT & Techonology 0.37 7680 3738 10.01 

General Motors Manufacturing 8.8 12176 6282 -102.32 

Hewlett-Packard IT & Techonology 84.40 3115 1536 4.24 

Home Depot Retail 44.73 1574 767 -6.79 

IBM IT & Techonology 118.89 3537 1911 20.77 

Johnson & 

Johnson 

Pharmaceuticals 177.42 1994 780 -3.51 

JP Morgan Banking 179.65 10971 4808 -5.45 

Merck Pharmaceuticals 139.22 3187 1535 -16.69 

Microsoft IT & Techonology 272.21 7245 3615 29.70 

Pfizer Pharmaceuticals 165.62 3091 1639 -5.47 

Procter & Gamble Retail 179.25 1995 887 3.48 

Travelers Insurance 18.11 972 612 -0.43 

Verizon Telecommunication 111.05 4536 3183 45.14 

Wal-Mart Retail 166.42 4633 1663 -13.85 

Admiral Group Insurance 3.86 474 344 1.30 

ARM Holdings IT & Techonology 1.97 1089 963 3.71 

AstraZeneca Pharmaceuticals 54.22 2135 1286 -6.27 

Aviva Insurance 22.01 5916 4800 22.47 

Barclays Banking 38.75 8987 5594 -47.25 

BG Group Oil and Gas 60.31 1700 1124 9.68 

BP Group Oil and Gas 161.80 5536 3436 -7.13 

BskyB Media 13.71 832 381 1.04 

BT Group Telecommunication 23.46 1957 1325 5.02 

Burberry Retail 2.73 525 410 0.23 

GKN Manufacturing 2.43 443 332 1.12 

GlaxoSmithKleine Pharmaceuticals 99.64 3259 1869 -0.53 

ITV Media 3.14 1092 678 -4.21 

Kingfisher Retail 4.819 827 545 -1.58 

Legal & General Insurance 10.15 4292 3623 6.01 

Llodys Banking Banking 28.70 8282 5476 29.00 

Next Retail 3.576 943 708 -5.33 

Old Mutual  Insurance 8.064 1205 1057 2.59 

Petrofac Oil and Gas 3.025 503 418 2.24 

Rolls Royce Manufacturing 11.81 860 393 2.81 

Royal Bank of 

Scotland 

Banking 
48.03 

6409 2629 -1.82 

Royal Dutch Shell Oil and Gas 185.09 4137 2184 -15.55 

RSA Insurance Insurance 7.19 403 318 1.48 

Sage Group IT & Techonology 4.06 340 274 0.17 

Shire Pharmaceuticals 8.09 563 380 2.37 

Standard 

Chartered 

Banking 
33.54 

2289 1333 -0.10 

Unilever Retail 32.32 1317 1015 8.42 

Vodafone Telecommunication 122.37 4712 1788 15.71 

Whitbread Retail 3.141 730 625 5.72 

Wood Group Oil and Gas 3.109 295 223 0.76 

WPP Media 9.79 3572 2113 18.00 

 

Table 4.3: Summary table of descriptive data for chosen assets within the period of 

02/01/2008 – 31/12/2008.  
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4.3       The Predictive Model     

 

 

The measures used in the model 

 

We describe the bucket size, stock price return, volatility, liquidity and impact score 

below. With the raw market data that is provided to us, we are able to calculate asset 

behaviour measures using close prices, bid prices and ask prices. 

 

Bucket Size 

 

Bucket Size = 1 minute; Data Frequency = Minute Bar.  

 

A bucket is equivalent to one period of time t and so lags are also at the same time 

frequencies. 

 

The trading day starts at 08:00 hours and ends at 18:30 hours thus in a trading day 

the total number of buckets is 630. 

 

Any news and sentiment retrieved overnight (between 18:31 – 07:59 the following 

day) is put in the first time bucket of the following day i.e. 08:00. The same applies to 

weekend news, which is aggregated over both days and considered in the first minute 

when trading is resumed. This method of categorisation reflects our belief that 

reactions to news are reflected in stock price movements hours (or even days) after 

release.   

 

Return 

 

The return measure that we use in the model is the log-return calculated by the 

following equation 

 

                                      𝐿𝑜𝑔(𝑅𝑡) = 𝐿𝑜𝑔(𝑃𝑡) − 𝐿𝑜𝑔(𝑃𝑡−1)                                 [4.1] 

 

where 𝑃𝑡  is the close price at time t. For convenience, 𝐿𝑜𝑔(𝑅𝑡) is denoted by 𝑅𝑡 

throughout the rest of this thesis. 
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Volatility 

 

The volatility measure used in the model is calculated as a rolling standard deviation 

of log returns for one trading day leading to 630 data points.  

 

Liquidity 

 

Liquidity is represented by the spread of the bid and ask prices, which measures the 

cost one has to bear for immediate trade. Equation 4.2 gives the expression for bid-ask 

spread. 

 

                                                     𝑆𝑝𝑟𝑒𝑎𝑑𝑡 =
𝑝𝑡

𝐴−𝑝𝑡
𝐵

𝑝𝑡
𝑀                                          [4.2] 

 

where 𝑝𝑡
𝐴 is the ask price at time t, 𝑝𝑡

𝐵 is the bid price at time t, and 𝑝𝑡
𝑀 is the mid-

price between the bid and ask price at time t. Thereafter, the bid-ask spread will be 

denoted by 𝑆𝑡 for convenience. 

 

Impact Score 

 

In our prediction models we use the impact score described in section 3.4 as the 

variable which measures (quantifies) the impact of news. A series of scores is 

calculated for each asset. A fundamental importance of this manipulation in sentiment 

score is that it produces a series of data accounting for every minute in a trading day. 

Therefore, this perfectly permits a fusion of market and news sentiment data to take 

place as both data series are matched in frequency. Here we reiterate the equation for 

impact score as: 

 

              𝐼𝑚𝑝𝑎𝑐𝑡𝑡 = 𝑃𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) + 𝑁𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) ,   t = 1,…,630       [4.3] 

 

where positive and negative impact are calculated separately using the following 

equations, 

 

             𝑃𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) = ∑  𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘)𝑘 ∈𝑃𝑂𝑆
𝑡𝑘≤𝑡

𝑒−𝜆(𝑡−1),    t=1,…,630          [4.4] 

 

            𝑁𝐼𝑚𝑝𝑎𝑐𝑡(𝑡) = ∑  𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘)𝑘 ∈𝑁𝐸𝐺
𝑡𝑘≤𝑡

𝑒−𝜆(𝑡−1),   t=1,…,630         [4.5] 
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and let 𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) denote the sentiment value of the 𝑘𝑡ℎ positive news arriving at 

time bucket 𝑡𝑘  and 𝑘  belongs to the set of news with sentiment value 𝑆𝐸𝑁𝑇>0; 

𝑃𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) > 0 , and let 𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘)  denote the sentiment value of the 𝑘𝑡ℎ 

negative news arriving at time bucket 𝑡𝑘  and 𝑘  belonging to the set of news with 

sentiment value 𝑆𝐸𝑁𝑇 <0; 𝑁𝑁𝑒𝑤𝑠(𝑘, 𝑡𝑘) < 0;  1 ≤  𝑡𝑘  ≤  630.  For convenience, 

we express Impact(t) also as 𝐼𝑚𝑝𝑎𝑐𝑡𝑡.  

 

 

The Predictive Model 

 

Predictive analytical models for stock price return and volatility, such as the 

Autoregressive Conditional Heteroskedasticity (ARCH) model (Engle, 1982) and 

Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model 

(Bollerslev, 1986), are well understood and applied extensively. These models exploit 

the techniques of time series analysis (Chatfield, 2009, Harvey, 1990) and are able to 

account for the correlation between each of the individual points in the time series of 

stock price returns by fitting them to models which are of an autoregressive (AR) 

nature. We have adopted this approach in the construction of our models for 

predicting return, volatility, and liquidity. However, our method differs from typical 

ARCH/GARCH models in the sense that it deals with two time series: (i) the first 

time series is market data, (ii) the second time series is the news metadata. This 

approach can be seen as an extension of GARCH and AR models with the variable 

impact score being the innovative addition. The conditions of the markets and 

feasibility of trades is reflected through liquidity, which can be determined from two 

perspectives: (i) the spread of the market, evaluated by the bid-ask spread, and (ii) the 

depth of the market, computed by the total volume of bids and asks. We set out below 

a detailed description of the models.   

 

Lag Selection Process 

 

The decision of how many lags to incorporate in the two AR models for return and 

liquidity were based upon several selection methods. The two most common and 

basic methods for lag order selection are the Akaike Information Criterion (AIC) 

(Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978). Through 

observation of these values for our asset return and liquidity series, it is not possible to 

make any conclusions in the choice of lag orders. Thus, other options have to be 

explored. Nowadays, more advanced methods are available such as the Lasso variable 
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selection technique (Tibshirani, 1996). Lasso is a shrinkage and selection method for 

linear regression and is beginning to find its way into financial applications (Mahler, 

2009). The process minimises the sum of squared errors, subject to a bound, by a 

tuning parameter on the sum of the absolute values of the coefficients. It is exactly 

this tuning parameter that controls the amount of shrinkage applied to the estimates 

and in some case coefficients become equal to zero. Hence, we adopt this method to 

determine the number of lags to include in our autoregressive models. The results 

presented a best choice of lag two for the return model and lag three for the liquidity 

model.   

 

Asset Return 

Taking into consideration the inclusion of two time series, we construct an AR(2) 

predictive model for return with the enhancement of a news impact score. 

 

Let,  𝑅𝑡 be the log return of stock prices at time period t  

        𝑅𝑡−𝑖 be the log return of stock prices by lag i 

        𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 be the news impact score of the previous time interval 

        𝜃𝑖 be the weighting coefficients to be estimated for lag i 

        𝑒𝑡 be the error term at time t. 

 

Therefore, the log-return 𝑅𝑡 is given by the expression, 

 

      𝑅𝑡 = 𝜃0 + 𝜃1𝑅𝑡−1 + 𝜃2𝑅𝑡−2 + 𝜃3𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 + 𝑒𝑡               [4.6] 

 

 

Asset Volatility 

The prediction model for volatility is an extended GARCH(1,1) model, as before with 

the addition of the impact score. The choice of implementing the GARCH(1,1) model 

is because we feel it is the best for characterising and modelling volatility.  

 

Let,  𝜎𝑡
2 be the volatility at time t  

        𝜖𝑡−1
2  be the lagged log-return residuals 

        𝜎𝑡−1
2  be the lagged volatility  

        𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 be the impact score of the previous time interval 

        𝛼𝑖, 𝛽1, 𝜔1 be the weighting coefficients to be estimated 

        𝑢𝑡 be the error term at time t.       



77 

 

 

Therefore, the volatility 𝜎𝑡
2 is given by the expression,        

 

           𝜎𝑡
2 = 𝛼𝑜 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2 + 𝜔1𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 + 𝑢𝑡                      [4.7] 

 

 

Asset Liquidity 

We measure the liquidity of the chosen asset by the bid-ask spread and construct an 

AR(3) model with the addition of the impact score.  

 

Let,  𝑆𝑡 be the bid-ask spread at time t  

        𝑆𝑡−𝑖 be the bid-ask spreads at lag i 

       𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 be the impact score of the previous time interval 

       𝛾𝑖 be the weighting coefficients to be estimated for lag i 

       𝜂𝑡 be the error term at time t.     

 

Therefore, the model for 𝑆𝑡 is as follows: 

 

        𝑆𝑡 = 𝛾𝑜 + 𝛾1𝑆𝑡−1 + 𝛾2𝑆𝑡−2 + 𝛾3𝑆𝑡−3 + 𝛾4𝐼𝑚𝑝𝑎𝑐𝑡𝑡−1 + 𝜂𝑡          [4.8] 

 

 

4.4       Computational Results and Validation 

 

In Sample Results 

 

The estimates for each weighting coefficient of the return, volatility and liquidity 

predictive models for the univariate case are presented in Figure 4.3, Figure 4.4 and 

Figure 4.5 respectively for all 53 assets. The estimates are displayed according to the 

colour scheme detailed in Table 4.5. From the fitting of the models it can be seen that 

news sentiment does indeed have an effect on the prediction of return, volatility and 

liquidity as all coefficient estimates are non-zero.  
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Model Parameter Colour 

Return 𝜃0 – Intercept Dark Blue 

 𝜃1 – 1st lag of return Green 

 𝜃2 – 2nd lag of return Red 

 𝜃3 – 1st lag of Impact score Purple 

Volatility 𝛼𝑜- Intercept Orange 

 𝛼1 – 1st lag of return residuals Gold 

 𝛽1 – 1st lag of volatility Turquoise 

 𝜔1 – 1st lag of Impact score Violet 

Liquidity 𝛾𝑜- Intercept Light Blue 

 𝛾1 – 1st lag of spread Pink 

 𝛾2 – 2nd lag of spread Yellow 

 𝛾3- 3rd lag of spread Light Green 

 𝛾4 – 1st lag of Impact score Grey 

 

Table 4.4: Colour scheme applied in Figures 4.3, 4.4 and 4.5 to represent the coefficient 

estimates. 

 

Furthermore, our statistical hypothesis tests highlight the significance of the news 

variable in the predictive models. In particular, the following test was set up to 

investigate the significance of news effect on the volatility model: 

                                      

            H0: 𝜔1 = 0  vs   𝐻1: 𝜔1 ≠ 0 . 

 

This deemed to be highly significant at the 5% significance level for all 53 assets      

(p-value = <2 𝑒−16 ) and so the null hypothesis is rejected, concluding that the 

estimator for the coefficient of impact score is not equal to zero and therefore has an 

influence on the prediction of volatility. 

 

All intercepts of return are estimated to be negative apart from a handful of assets. 

The results of Microsoft showed to be the most extreme with values far greater than 

the average estimate of -1.75𝑒−6. In fact, the performance of Microsoft consistently 

stood out in the regressions of all three measures. 
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Figure 4.3: Distribution of 53 assets’ estimated coefficients for the lagged returns and impact 

score in the news enhanced return model.  
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Figure 4.4: Distribution of 53 assets’ estimated coefficients for the GARCH and impact score 

in the news enhanced volatility model. 
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Figure 4.5:  Distribution of 53 assets’ estimated coefficients for the lagged spread and impact 

score variables in the news enhanced spread model. 
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Out-of-Sample Results 

 

To understand the extent to which news impact enhances the results of these models, 

we use the fitted model to predict out-of-sample values. To analyse the performance 

of these news enhanced models, we take the benchmark to be predictive models that 

only consider market data (referred to as a market only model from here onwards). 

Specifically, the models described in section 4.3 with the exogenous variable of the 

impact score removed, which would simply be AR and GARCH models. Direct 

comparison is made between the two sets of models to discover whether the news 

enhanced models perform better and hence whether news impact has a positive 

influence on the prediction of return, liquidity and volatility. The out-of-sample 

period is taken as January – March 2009. The conclusions interpreted are that news 

enhanced predictive models do better predict future values of liquidity and volatility 

but not for stock returns. Furthermore, the inclusion of news sentiment to a predictive 

model, in the form of an impact score, does increase accuracy of predictions of 

liquidity and volatility.  

 

The predictive power of the fitted models is represented as the difference between the 

residuals from the market only model and the market with news model, i.e. prediction 

error. Prediction performance of the return model produces inconclusive results as 

there is a variation of positive and negative residuals across the assets. The prediction 

in the direction of return, and therefore price, is accurate however the magnitude of 

the return can be erroneous. This applies to both the market only model and the news 

enhanced model with little difference between them, as can be seen from Figure 4.6 

where errors range from 6𝑒−6  to -6𝑒−6  . However, there are instances where the 

added news sentiment impacts the prediction of return in a more positive manner than 

the benchmark model, for example the Banking sector (see Figure 4.9). Figure 4.6 

plots the average difference in prediction errors for each asset from the chosen 

universe of assets.  
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Table 4.5: Average prediction errors of return for all 53 assets from the news enhanced 

predictive model and the market data only model. 

Company Average Return Prediction Error 

of News Enhanced Model 

Average Return Prediction 

Error of Market only model 

AIG -1.7067𝑒−5 -1.3280𝑒−5 

AT&T -1.8239𝑒−6 -1.3818𝑒−6 

American Express -3.6277𝑒−6 -2.7099𝑒−6 

Bank of America -5.0896𝑒−6 -3.9985𝑒−6 

Chevron -1.2698𝑒−6 -9.2752𝑒−7 

Coca Cola -1.3013𝑒−6 -1.1237𝑒−6 

Disney -2.8490𝑒−6 -2.1118𝑒−6 

Exxon Mobil -9.5528𝑒−7 -6.4897𝑒−7 

General Motors -1.2052𝑒−5 -7.2911𝑒−6 

General Electric -3.4138𝑒−6 -3.16011𝑒−6 

Hewlett-Packard -1.4318𝑒−6 -1.1466𝑒−6 

The Home Depot -3.4235𝑒−7 -3.5743𝑒−7 

IBM -1.2500𝑒−6 -7.6193𝑒−7 

Johnson & Johnson -3.8503𝑒−7 -4.0296𝑒−7 

JP Morgan -1.3918𝑒−6 -1.3114𝑒−6 

Merck -2.3682𝑒−6 -2.4504𝑒−6 

Microsoft -8.8786𝑒−5 -1.9044𝑒−6 

Pfzier -9.6822𝑒−7 -9.8333𝑒−7 

Procter & Gamble -5.1619𝑒−7 -6.6652𝑒−7 

Travelers -6.0209𝑒−7 -6.6273𝑒−7 

Verizon -9.5462𝑒−7 -9.3701𝑒−7 

Wal-Mart 8.8896𝑒−7 5.6024𝑒−7 

Admiral Group -1.1982𝑒−6 -5.9244𝑒−7 

ARM Holdings -9.6706𝑒−7 -1.0896𝑒−6 

AstraZeneca 8.0655𝑒−7 7.1590𝑒−7 

Aviva -2.2480𝑒−6 -1.3181𝑒−6 

Barclays -4.7188𝑒−7 -1.6756𝑒−6 

BG Group -4.6441𝑒−7 -4.5952𝑒−7 

BP Group -5.1270𝑒−7 -5.0008𝑒−7 

BskyB -1.1601𝑒−6 -6.7193𝑒−7 

BT Group 3.3406𝑒−7 -1.9840𝑒−6 

Burberry -2.3389𝑒−6 -2.8959𝑒−6 

GKN -4.0280𝑒−6 -3.7416𝑒−6 

GlaxoSmithKline -2.1747𝑒−6 2.4036𝑒−8 

ITV -2.0867𝑒−6 -2.0659𝑒−6 

Kingfisher -6.8699𝑒−8 -7.9559𝑒−8 

Legal & General -1.3537𝑒−6 -1.4074𝑒−6 

Llodys Banking -2.8758𝑒−6 -3.4989𝑒−6 

Next -1.2381𝑒−6 -1.0460𝑒−6 

Old Mutual -3.0012𝑒−6 -2.9140𝑒−6 

Petrofac -1.0774𝑒−6 -9.5803𝑒−7 

Rolls Royce -1.4019𝑒−6 -1.3850𝑒−6 

Royal Bank of Scotland -2.0462𝑒−7 -6.2298𝑒−6 

Royal Dutch Shell -2.7725𝑒−7 -3.2273𝑒−7 

RSA Insurance -2.8436𝑒−7 -1.5840𝑒−7 

Sage Group -6.3643𝑒−7 -8.1228𝑒−7 

Shire -4.4896𝑒−7 -5.1144𝑒−7 

Standard Chartered -2.0220𝑒−6 -2.0871𝑒−6 

Unilever -3.7355𝑒−7 -5.2755𝑒−7 

Vodafone -7.4097𝑒−7 -8.0920𝑒−7 

Whitbread -6.5725𝑒−7 -1.0460𝑒−6 

Wood Group -2.3476𝑒−6 -2.3480𝑒−6 

WPP -1.1461𝑒−6 -1.2901𝑒−6 
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Figure 4.6: Average difference in prediction error between market only (E(m)) and news 

enhanced models (E(mn)) for log-return for all assets in the period January-March 2009.  

 

For the case of volatility, all assets performed better in the news enhanced GARCH 

model as indicated by a positive difference in prediction errors throughout (see Figure 

4.7). In other words, the residuals produced from the market only model were far 

greater than those from the news enhanced model, almost consistently by a factor of 

ten. Moreover, the plain market only model has a tendency to over predict the values 

of volatility. Therefore, the inclusion of news sentiment as an exogenous variable to 

the univariate GARCH model significantly reduces prediction errors and produces 

estimates far closer to the true values of volatility. This is illustrated in Figure 4.7 

which plots the difference in prediction errors for all assets. 
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Figure 4.7: Average difference in prediction error between market only (E(m)) and news 

enhanced models (E(mn)) for volatility for all assets in the period January-March 2009. 



86 

 

 

Table 4.6: Average prediction errors of liquidity (bid-ask spread) for all 53 assets from the 

news enhanced predictive model and the market data only model. 

Company Average Volatility Prediction 

Error of News Enhanced Model 

Average Volatility  Prediction 

Error of Market only model 

AIG 6.4036𝑒−6 1.2457 

AT&T 2.7483𝑒−7 0.0903 

American Express 1.4115𝑒−6 0.2071 

Bank of America 5.9190𝑒−6 0.1685 

Chevron 2.3695𝑒−7 0.0797 

Coca Cola 1.2501𝑒−7 0.0242 

Disney 5.9238𝑒−7 0.4963 

Exxon Mobil 1.8712𝑒−7 0.0693 

General Motors 4.5241𝑒−6 0.4072 

General Electric 1.0043𝑒−6 0.1112 

Hewlett-Packard 3.2316𝑒−7 0.0582 

The Home Depot 3.4888𝑒−7 0.0969 

IBM 1.9280𝑒−7 0.0516 

Johnson & Johnson 1.1121𝑒−7 0.0190 

JP Morgan 0.0606 0.2024 

Merck 4.1994𝑒−7 0.0836 

Microsoft 0.0148 117.0103 

Pfzier 2.6102𝑒−7 0.0533 

Procter & Gamble 0.0215 0.0215 

Travelers 5.5253𝑒−7 0.1190 

Verizon 2.0731𝑒−7 0.0550 

Wal-Mart 2.0420𝑒−7 0.0323 

Admiral Group 2.2579𝑒−6 0.6276 

ARM Holdings 2.7135𝑒−6 0.4298 

AstraZeneca 3.7780𝑒−5 0.6536 

Aviva 6.1802𝑒−5 1.0757 

Barclays 0.0003 4.2774 

BG Group 4.3482𝑒−6 0.8180 

BP Group 1.2957𝑒−5 1.0923 

BskyB 1.8036𝑒−6 0.9958 

BT Group 8.2825𝑒−5 1.5400 

Burberry 3.0501𝑒−6 0.3065 

GKN 3.9367𝑒−6 0.3130 

GlaxoSmithKline 1.3452𝑒−5 0.9310 

ITV 4.7490𝑒−6 1.2772 

Kingfisher -1.2436𝑒−6 0.9679 

Legal & General 7.4016𝑒−6 1.2680 

Llodys Banking 0.0004 1.2641 

Next 4.5398𝑒−5 0.7806 

Old Mutual 3.8272𝑒−6 0.7821 

Petrofac 6.4614𝑒−6 1.0737 

Rolls Royce 5.7371𝑒−6 1.6029 

Royal Bank of Scotland 0.0009 2.4976 

Royal Dutch Shell 9.5086𝑒−6 1.0253 

RSA Insurance 1.6118𝑒−6 0.8367 

Sage Group 2.8322𝑒−6 0.8084 

Shire -2.4374𝑒−5 0.6839 

Standard Chartered 2.7873𝑒−6 1.34446 

Unilever -1.7670𝑒−5 0.7890 

Vodafone 5.8874𝑒−6 1.1222 

Whitbread 2.7631𝑒−6 0.8245 

Wood Group 1.6346𝑒−5 0.8695 

WPP 2.3758𝑒−5 27.0141 
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The difference in errors for liquidity (bid-ask spread) is relatively smaller than those 

seen for volatility, with the majority of values falling within 3 decimal points (see 

Figure 4.8). It can be observed that positive values dominate in the plot of errors 

between the two models and an overestimation by the market only model. Negative 

values do appear but only for major falls in spread. One explanation is that periods of 

low spread indicate a high volume of trading activity and such active trading periods 

are no longer instigated purely by the release of news. Another influential factor could 

be bearish market conditions which cannot be accounted for in a news enhanced 

model.  

 

 

Figure 4.8: Average difference in prediction error between market only (E(m)) and news 

enhanced models (E(mn)) for bid-ask spread for all assets in the period January-March 2009. 
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Table 4.7: Average prediction errors of all 53 assets from the news enhanced predictive 

model and the market data only model. 

 

Company Average Spread Prediction Error 

of News Enhanced Model 

Average Spread Prediction 

Error of Market only model 

AIG 0.1618 0.1622 

AT&T 0.0872 0.0892 

American Express 0.1914 0.1915 

Bank of America 0.2742 0.2747 

Chevron 0.0970 0.0990 

Coca Cola 0.0649 0.0665 

Disney 0.1040 0.1063 

Exxon Mobil 0.0822 0.0841 

General Motors 0.1897 0.1879 

General Electric 0.1469 0.1504 

Hewlett-Packard 0.0935 0.0956 

The Home Depot 0.1125 0.1152 

IBM 0.0822 0.0842 

Johnson & Johnson 0.0610 0.0624 

Merck 0.0938 0.0960 

Microsoft -0.9557 -0.8836 

Pfzier 0.0749 0.0768 

Procter & Gamble 0.0727 0.0727 

Travelers 0.1401 0.1432 

Verizon 0.0823 0.0847 

Wal-Mart 0.0735 0.0747 

Admiral Group 0.2560 0.2630 

ARM Holdings 0.1371 0.1412 

AstraZeneca 0.4862 0.4957 

Aviva 0.4805 0.4898 

Barclays 1.3435 1.3435 

BG Group 0.5347 0.5461 

BP Group 0.5080 0.5183 

BskyB 0.4563 0.4655 

BT Group 0.6583 0.6714 

Burberry 0.2144 0.2191 

GKN 0.1683 0.1723 

GlaxoSmithKline 0.4742 0.4841 

ITV 0.1536 0.1581 

Kingfisher 0.5065 0.5169 

Legal & General 0.3794 0.3884 

Llodys Banking 0.7773 0.7769 

Next 0.6263 0.6384 

Old Mutual 0.2690 0.2759 

Petrofac 0.1669 0.1728 

Rolls Royce 0.4637 0.4749 

Royal Bank of Scotland 0.7064 0.7053 

Royal Dutch Shell 0.5745 0.5854 

RSA Insurance 0.2817 0.2893 

Sage Group 0.3838 0.3923 

Shire 0.2885 0.2959 

Standard Chartered 0.3456 0.3455 

Unilever 0.3965 0.4063 

Vodafone 0.6103 0.6235 

Whitbread 0.3881 0.3963 

Wood Group 0.2358 0.2420 

WPP 0.3722 0.3811 
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Figure 4.9 shows the performance of predictions for log-return, liquidity and volatility 

by sector. Each value is the average difference in prediction error between the market 

only model and the news enhanced model across all assets within that sector. Not only 

does it clarify the superiority of prediction power by the news enhanced model for 

liquidity and volatility, but it also shows the best performing sectors within each 

measure. Banking and telecommunications ranked top for return predictions and 

manufacturing was worst. By contrast, the best performing sector for liquidity 

predictions was manufacturing as it had the highest positive error with a value of 

0.0017 compared with insurance that had the most negative value of -0.0072. All 

sectors returned a positive error for volatility predictions, but the media industry 

distinctively outperformed the rest with an average error of 7.45, which is wildly 

distant from the true values of volatility that lie between 0-0.01. 

 

Statistical measures such as root mean squared error (RMSE) and mean absolute error 

(MAE) were also calculated to compare prediction accuracy between the models. The 

results exhibit a very strong indication of superior performance in the prediction of 

volatility with the news enhanced model. Table 4.5 lists the rankings of prediction 

performance for each asset according to return, volatility and liquidity. Through 

ranking the forecasting performance of each asset with respect to their RMSE, an 

obvious pattern emerges between return and volatility prediction performances. From 

Table 4.5 it can be seen that there is a reversal in rankings for return and volatility, 

particularly in the highest and lowest ranks, with Microsoft showing the largest 

contrast in performance ranking last place for return prediction but first place for 

volatility prediction.   
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Figure 4.9: Average differences between out-of-sample prediction errors for market only and 

news enhanced model for log-return, bid-ask spread and volatility during the period January-

March 2009.  
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Table 4.8: Forecasting performance ranking for each asset based on the root mean squared 

error for return, spread and volatility. Smallest errors receive the highest rank. 

Asset Return Prediction 

Rank 

Liquidity Prediction 

Rank 

Volatility Prediction 

Rank 

American Express 1 39 36 

Aviva 2 29 15 

Disney 3 9 31 

Chevron 4 42 44 

Hewlett-Packard 5 25 46 

JP Morgan 6 53 39 

Legal & General 7 11 9 

General Electric 8 41 40 

ARM Holdings 9 15 32 

Bank of America 10 49 37 

Burberry 11 46 35 

The Home Depot 12 24 41 

Travelers 13 36 38 

Whitbread 14 38 22 

ITV 15 14 8 

Verizon 16 12 47 

BT Group 17 45 6 

Vodafone 18 1 12 

Rolls Royce 19 30 5 

Sage Group 20 21 24 

Pfzier 21 26 48 

BP Group 22 31 13 

Royal Dutch Shell 23 22 16 

Wood Group 24 20 20 

Next 25 28 27 

Kingfisher 26 37 18 

BG Group 27 32 23 

Standard Chartered 28 5 7 

WPP 29 40 2 

Coca Cola 30 8 51 

GKN 31 2 34 

Johnson & Johnson 32 23 53 

Merck 33 10 43 

Petrofac 34 13 14 

Llodys Banking 35 4 10 

AstraZeneca 36 3 29 

AT&T 37 33 42 

Old Mutual 38 17 26 

Wal-Mart 39 51 50 

Shire 40 48 28 

Admiral Group 41 34 30 

BSkyB 42 7 17 

IBM 43 19 49 

Procter & Gamble 44 16 52 

Unilever 45 35 25 

RSA Insurance 46 47 21 

General Motors 47 52 33 

Royal Bank of Scotland 48 43 4 

Barclays 49 27 3 

Exxon Mobil 50 18 45 

AIG 51 44 11 

GlaxoSmithKline 52 6 19 

Microsoft 53 50 1 
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4.5       Summary 

 

Behavioural models and sentiment analysis are gaining momentum and acceptance 

within the investment community. Our study sets out to consider news sentiment and 

its impact on asset behaviour. We have introduced a novel concept of news impact 

which takes into consideration (i) the volume of news and (ii) the decay of the effect 

of news sentiment over time. We are interested in the predictive analysis of asset 

behaviour: return, volatility and liquidity, so that this can be applied to construct 

trading strategies in an intraday setting. The findings are as follows. Enhancement of 

predictions of liquidity and volatility by inclusion of news metadata is found with 

supporting arguments for the representative data set. In particular the improvement of 

volatility predictions is substantial; this is in line with earlier studies as well as 

reported results by other investigators. Liquidity prediction is also improved but not 

as much as that of volatility. Price prediction does not show any improvement at all 

and this is commensurate with results reported by other researchers. One explanation 

could be that market participants react quickly which leads to revision of price in 

response to news; however, volatility and liquidity lack this behaviour and hence are 

better predicted by the incorporation of news. 
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Chapter 5 
 

Multivariate Predictive Model using 
Bayesian Inference 

 

5.1    Introduction 

 

In this chapter we describe our empirical study of a (news enhanced) multivariate 

predictive model. We first discuss the context and relevance of the research problem 

and the study. From the perspective of designing a trading strategy it is necessary to 

predict the behaviour of a single asset or a small collection of assets which are used in 

the trading strategy. So for the collection of assets which defines the universe of the 

trading portfolio it becomes necessary to describe/predict the discrete realisations of 

these assets in a multivariate setting. These discrete realisations are also popularly 

known as scenarios and the corresponding model a scenario generator. Thus the 

multivariate model can generate scenarios which find use in asset allocation that is, 

trading strategies. Equally the scenarios are used in the simulation (computation) of 

the risk of a given trade/trading strategy. This sets out the context and the focus of the 

multivariate predictive model. In our predictive model, we follow the approach of the 

Black-Litterman model (1991) and combine the news sentiment data series with the 

estimated series of return, volatility and liquidity to create a new estimation in the 

form of a posterior distribution based on a mix of data. The models constructed are 

multivariate taking into account the prediction and correlation of several assets 

simultaneously.  

 

Trading in the financial markets equates to rebalancing one or multiple (a few) stocks 

at a high frequency. The trading decision taken for each individual asset also needs to 

be coordinated with its counterparts dependent on their correlation.  Therefore, the 

requirement of multivariate modelling arises. We fulfil this requirement of 

multivariate modelling by introducing three different models: multivariate linear 

models, multivariate GARCH models and vector autoregressive (VAR) models for 

asset return, volatility and liquidity respectively. The choice of each category of 

model for each of the three variables is justified in section 5.2 
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The Black-Litterman model estimates expected excess returns and covariance, which 

is applied as an input to an optimizer. Fisher Black and Robert Litterman claim to 

overcome three essential problems of portfolio construction. They are unintuitive, 

highly-concentrated portfolios, input-sensitivity and estimation error maximization. 

Beside these factors, the model also clearly specifies a method of incorporating 

investors’ views into the return estimation model. The prior is chosen to be the CAPM 

equilibrium market portfolio. The Black-Litterman model enables investors to 

combine their unique views regarding the performance of various assets with the 

market equilibrium in a manner that results in intuitive, diversified portfolios.  The 

same concept and argument are used in Bayesian Inference where additional 

information such as investors’ views, expert opinions and industry experience are 

incorporated into the modelling process. In our work, we apply the idea of Black-

Litterman (1991) and perform news sentiment based market data analysis for return, 

volatility and liquidity (spread) by using a formal Bayesian approach. 

 

As we restated earlier, the cliché is “news moves the markets”. Thus a news item 

affects (influences) multiple stocks which are under consideration. One of these 

effects is known as information spill over effect. This describes the instance when 

news for one asset has partial implications for another asset (non-announcing stock) 

which in turn affects the pricing of both stocks. Subsequently, the covariance between 

returns of the announcing stocks and market return increases. 

 

Bayesian inference 

 

Classical estimation techniques for fitting regression models typically test regression 

coefficients as unknown but fixed, and then proceed to implement frequents approach 

which assumes sufficient measurements to gather meaningful information about the 

unknown parameter. The least squares estimation method is an example of such an 

approach. Bayesian techniques however, treat the regression parameters as random 

variables and select priors according to the mean/median/mode of the distribution. An 

advantage of Bayesian inference is the ability to calculate confidence intervals in a 

straightforward manner. Bayesian predictive distributions are straightforward to 

calculate and summarize the fund manager or the investor’s views of future return 

distributions (Jacquier and Polson, 2010, Barberis, 2000).  
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In the Bayesian approach, data is supplemented with additional information in the 

form of a prior probability distribution. According to Bayes’ theorem, the prior 

distribution, 𝑝(𝜃), for the parameters 𝜃 combined with the data's likelihood function, 

𝑝(𝑑𝑎𝑡𝑎|𝜃) , yields the posterior distribution about the parameters, 𝑝(𝜃|𝑑𝑎𝑡𝑎) .   

Mathematically, Bayes' theorem states that the posterior distribution is proportional to 

the product of the prior distribution of parameters and the likelihood function from 

data:    

 

𝑝(𝜃|𝑑𝑎𝑡𝑎)  ∝  𝑝(𝜃) ∗ 𝑝(𝑑𝑎𝑡𝑎|𝜃) 

 

The prior can take different functional forms depending on the domain and the 

information that is available a priori. But a conjugate prior that gives a closed-form 

expression for the posterior is normally expected, particularly in high-dimensional 

parametric estimation and regression analysis. Otherwise, numerical integration 

methods such as Markov chain Monte Carlo (MCMC) needs to be applied.  Conjugate 

prior means that the posterior distributions 𝑝(𝜃|𝑑𝑎𝑡𝑎) are in the same family as the 

prior probability distribution 𝑝(𝜃). In our study we have used conjugate priors in our 

Bayesian inference. 

 

It is useful to think of the construction of an empirical model as the process of 

combining historical and a-priori information. Alternative modelling techniques 

provide different a-priori information or different relative weights to sample the prior 

information. In-sample over fitting typically translates into poor forecasting 

performance. Bayesian methods address this problem; they make in-sample fitting 

less dramatic and improve out-of-sample performance.  

 

We extend the models described in section 4.3 and apply multivariate versions of 

autoregressive and GARCH models, that is, vector autoregressive (VAR) and 

multivariate GARCH (MGARCH) models.  

 

VAR models remove certain constraints arising from economics theory and are useful 

for multivariate analysis. But in large models with many parameters they have a 

problem with over-parameterization. Since the number of coefficients to be estimated 

quickly increases with the number of variables as well as the number of lags in the 

system, a moderate sized system can be highly over-parameterized relative to the 

number of observations. An over-parameterized unrestricted VAR model can explain 
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data “too well”. It captures not only important features that are useful for forecasting, 

but also noisy features that merely reflect accidental or random relationships. 

Statistically, over-parameterization usually causes multicollinearity and loss of 

degrees of freedom, which lead to inefficient estimates and large out-of-sample 

forecasting errors. The solution can be found in two different methods – structural 

VAR and Bayesian VAR. A Bayesian VAR (BVAR) model, offers an intelligent way 

to overcome over-parameterization without relying on classical hypothesis testing. 

Due to the process of defining proper prior distributions for each parameter in the 

model, there will not be the situation where parameters are erroneously and 

coincidently considered as nonzero. Furthermore, BVARs enable forecasters to 

impose prior specifications through probabilistic terms in a fully transparent way. The 

means of prior distributions reflect forecasters’ prior beliefs and best guesses about 

the true values of unknown parameters. The variances reflect forecasters’ confidence 

on the prior means. Small prior variances indicate that forecasters believe the true 

values are not likely to deviate from their guesses (i.e., prior means), and vice versa. 

This standard specification procedure allows resulting forecasts to be reproduced. 

Moreover, BVARs generate complete multivariate density forecasts, by fully 

incorporating parameter uncertainty instead of simply using point estimates of 

parameters. Although the initial intention of BVAR models was to improve 

macroeconomic forecasts by Litterman (1979), they have evolved dramatically and 

are now used for a variety of purposes. 

 

For the predictive modelling of volatility, the Bayesian inference approach is also 

adopted to the multivariate GARCH model. In our case, we have chosen to use the 

Dynamic Conditional Correlation (DCC) GARCH model built by Engle (2002). It 

considers correlation as a time-varying variable, which is the more realistic rendition 

of the multivariate GARCH models. Applying Bayesian inference to multivariate 

GARCH models is still a relatively new approach with only a few studies reporting 

results (Fioruci, Ehlers and Andrade Filho, 2014, Vrontos, Dellaportas and Politis, 

2002). 

 

The process by which we include news sentiment in the modelling framework is 

through the impact score derived in section 3.4. Instead of directly affecting the 

estimations of variables, the univariate prediction series estimated using the impact 

score is utilised to determine the distribution of the variable estimator. That is to say, 

the news data series is not required in the calculation of these multivariate models. 
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5.2    The Models 

 

In this section we construct three models that enable us to obtain multivariate 

predictions for stock price return, volatility and liquidity. The choices of the 

respective models for these three characteristics of asset behaviour are explained in 

what follows. In the case of return, a multivariate linear model is applied. As for 

volatility, the multivariate case of the model that we use is the Multivariate GARCH 

(MGARCH) model (Bollerslev, Engle, Wooldridge, 1988), specifically the Dynamic 

Correlation Condition case (DCC) (Engle, 2002). As the estimation of such models 

are very costly due to the large number of parameters involved, we have taken the 

approach of using returns predicted by our news enhanced model as the input to 

calculating multivariate volatility. Lastly for liquidity, the adopted model takes a 

Vector Autoregressive (VAR) framework, which is common practice for multivariate 

analysis of asset characteristics (Reinsel, 2003; Lutkepohl, 1993). 

 

Notation and Measures 

 

We follow the notation set out in section 4.3 and provide a repeated description for 

convenience. 

 

t – time period/time bucket. 

i – lag in the time bucket. 

 

Return, volatility, liquidity and news impact all use the same measures as explained in 

section 3.4 and 4.3. 

 

 

Return 

 

We choose a multivariate linear model consisting of two lags for asset return 

prediction, following the lag choice from section 4.3. Initial analysis of the stock 

returns data showed little correlation between the asset returns through the study of 

correlation plots. For this reason, a direct multivariate autoregressive model was not 

applied (otherwise known as vector autoregressive model). 
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Let  𝑹𝒕  be a d x 1 vector of log-returns for d number of assets in period t, 

       𝑹𝒕−𝒊 be d x 1 vectors of log-returns with lag i for d assets, 

        𝑨𝒊 be d x d coefficient matrices for the variables at lag period i, 

       𝜼𝒕 be the error term in time t. 

 

Therefore, the returns expressed as 𝑹𝒕 is given by the following multivariate linear 

equation,  

 

                                𝑹𝒕 = 𝑨𝟎 + 𝑨𝟏𝑹𝒕−𝟏 + 𝑨𝟐𝑹𝒕−𝟐 + 𝜼𝒕                     [5.1] 

 

 

Volatility 

 

Variance and standard deviation measure the spread of a distribution around its mean 

and is easily deduced from the covariance matrix of asset returns. The leading 

diagonal contains the variance values and square rooting those values give standard 

deviations. We have therefore adopted the DCC-GARCH model which is described 

below. 

 

In general, denote 𝑹𝒕 as the return series and assume that (Bauwens et al., 2006): 

 

                                                   𝑹𝒕 = 𝝁𝒕(𝜽) + 𝜺𝒕                                 [5.2] 

 

and the 𝜺𝒕 term equates to 

                                                    𝜺𝒕 = 𝑯𝒕

𝟏
𝟐⁄ (𝜽)𝒛𝒕     [5.3] 

 

where  𝜽 is the vector of parameters, 

𝝁𝒕(𝜽) is a d x 1 vector of conditional means, 

𝑯𝒕(𝜽) is a d x d matrix of conditional variances associated with the log 

            return 𝑹𝒕, 

 𝒛𝒕 ~ 𝑵(0, 𝑰) . 

 

Then 𝑯𝒕 (omitting 𝜽 thereafter for convenience), the conditional covariance matrix, is 

expressed as 
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                                                 𝑯𝒕 = 𝑫𝒕𝑷𝒕𝑫𝒕                                       [5.4] 

 

where  𝑫𝒕 = 𝑑𝑖𝑎𝑔(ℎ11𝑡

1
2⁄ …ℎ𝑑𝑑𝑡

1
2⁄ ), 

 ℎ𝑖𝑖𝑡 can be any univariate GARCH model for d number of assets, 

 𝑷𝒕 = 𝑑𝑖𝑎𝑔(𝑞11𝑡

1
2⁄ …𝑞𝑑𝑑𝑡

1
2⁄ )𝑸𝒕𝑑𝑖𝑎𝑔(𝑞11𝑡

1
2⁄ …𝑞𝑑𝑑𝑡

1
2⁄ ), 

 𝑸𝒕 = (𝑞𝑖𝑗𝑡) is the d x d symmetric positive definite matrix defined as  

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝑢𝑡−1𝑢𝑡−1
′ + 𝛽𝑄𝑡−1 

 with 𝑢𝑖𝑡 = 𝑟𝑖𝑡/√ℎ𝑖𝑖𝑡 .  

 

𝑷𝒕 represents the dynamic (time-varying) co-movements between assets. 𝛼 depicts the 

impact of past standardised shocks and 𝛽 measures the impact of lagged dynamic 

conditional correlations on those dynamic conditional correlations at time t. Both of 

these parameters are non-negative and a necessary condition that 𝛼 + 𝛽 < 1 must 

hold. 𝑄 = 𝑛−1 ∑ 𝑢𝑡𝑢𝑡
′𝑛

𝑡=1   is the unconditional correlation matrix of 𝑹𝒕. 

 

This multivariate GARCH model allows one-step-ahead volatility values to be 

forecasted. This is implemented using an iterative process. With such inputs we are 

able to calculate 𝑸𝒕 . Bayesian inference is adopted here to incorporate prior 

information and the likelihood function to inference 𝑷𝒕 (and therefore 𝑯𝒕). 

 

Given the conjugate prior outlined in section 5.3, we are also able to derive 𝑷𝒕 as a 

Wishart distribution as follows (Brown, Vannucci and Fearn, 1998): 

 

                                      𝑷𝒕 ~ 𝑊(𝑑 + 𝑛,𝑫𝒕𝑽𝑫𝑡
−1)                                      [5.5] 

 

where  𝑽 =  𝐖−𝟏 + 𝐒 +
𝑛

1+𝑛
(𝒎 − 𝒙̅)(𝒎 − 𝒙̅)T, 

 d is the number of assets, 

 n is the length of sample data used, 

m is the mean of returns estimated from a news enhanced model, 

 𝒙̅ is the mean of returns estimated from a market data only model, 

𝐖−𝟏 is the covariance matrix of volatility estimated with news sentiment  

data,  

𝐒 = ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑻𝑛
𝑖=1 , 𝑥𝑖 are data points from return series estimated  

using only market data, 

 𝑫𝒕 as above. 
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It is possible to derive this because 𝑯𝒕is also a Wishart distribution. Therefore, with 

the distribution of 𝑷𝒕  determined, we are able to update or estimate 𝑷𝒕  by the 

expectation of the posterior distribution, which is given by: 

 

                                           𝐸⌊𝑷𝒕⌋ = (𝑑 + 𝑛) ∗ ⌊𝑫𝒕𝑽𝑫𝑡
−1⌋                              [5.6] 

 

For further details see section 5.3. It should be noted that DCC-GARCH models are 

relatively insensitive to the choice of the univariate model specification, so whether a 

straight forward GARCH model is used or a variation will not alter the multivariate 

results extensively (Cappiello, Engle and Sheppard, 2006). 

 

Liquidity 

 

A VAR model of lag three is used for the prediction of liquidity (using the bid-ask 

spread as a proxy). Taking a direct extension of the univariate liquidity prediction 

model, we include the correlation between liquidity values of different assets, 

contrasting the case of the asset return model. 

 

Let, 𝑺𝒕 be a d x 1 vector of bid-ask spreads for d number of assets, 

        𝑩𝒊 be d x d coefficient matrices with i = 1,2,3, 

        𝒆𝑡 be the error term 

 

Therefore, the liquidity (bid-ask spread) expressed as 𝑺𝒕 is given by 

 

                                          𝑺𝑡 = ∑ 𝑩𝑖𝑺𝑡−𝑖
3
𝑖=1 + 𝒆𝑡                                      [5.7] 

 

 

5.3    Prior Selection and Posterior Distributions 

 

We follow the arguments and concepts of the Black-Litterman model (1991) and 

regard news sentiment as extra knowledge to be considered in the model estimation (it 

is only considered externally). That is to say, neither the impact score nor the news 

sentiment data is used in the multivariate predictive models or in Bayesian inference. 

Instead, the univariate predicted series of return, volatility and liquidity obtained in 

Chapter 4 are used in the calculation of prior and posterior distributions. It is in this 

way that news sentiment is considered as additional information and incorporated in 
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the modelling process. Similar to the experiments carried out in the univariate case, 

we also set out to compare the performance of the multivariate predictive models 

considering news sentiment against those that only consider market data. This is 

achieved through comparison of uninformative priors and informative priors, where 

the uninformative priors only use market data.   

 

Return Model 

For the asset return model, we assume a Gaussian distribution for 𝑹𝒕 . 

 

𝑹𝒕 | 𝜇, Φ ~ 𝒩(𝜇,Φ−1) 

 

where Φ is d x d matrix. We aim to infer 𝜇 and Φ by Bayesian inference based on the 

likelihood and prior, where the likelihood comes from market data and the prior 

comes from the news sentiment data.  

 

First we consider the simple case where the d assets are assumed to be independent, 

which means that Φ−1 = 𝜎2𝐈 and 𝜎2 is known. Then we have a conjugate prior for 𝜇 

as normal and is written as: 

 

𝜇|𝑆0 ~ 𝑁(𝜇0, 𝑆0) 

 

Due to the selection of conjugate priors, closed form equations are provided to 

calculate the posterior distribution. The posterior of 𝜇 is given by: 

 

𝑃(𝜇 |𝑦) ~ 𝒩(𝜇, 𝑆) 
 

where y denotes data and  

 

                                         𝑆−1 = 𝑆0
−1 +

1

𝜎2 𝑋𝑇𝑋                                             [5.8] 

                                                 𝜇 = 𝑆(𝑆0
−1𝜇0 +

1

𝜎2 𝑋𝑇𝑦)                                          [5.9] 

 

X is a matrix based on lag returns. Clearly 𝜇 is also the posterior mean in this case. 

Furthermore, the posterior mean combines both market data and news sentiment data. 

A flat (uninformative) prior is also constructed. In contrast 

 

𝑃(𝜇) ∝ 1. 

 

Then the posterior distribution is normal and derived as: 
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                                           𝑃(𝜇 |𝑦) =  𝒩((𝑋𝑇𝑋)−1𝑋′𝑦, 𝜎2𝐈)                               [5.10] 

 

which is the same as the frequency result.  

 

Volatility Model 

Starting from the assumption of our multivariate GARCH model (see section 5.2) we 

aim to infer 𝑯𝒕 . Under the Bayesian structure, a Normal-Wishart prior is applied, 

which is a conjugate prior. Taken from Bayesian statistics, the conjugate prior for the 

mean vector of a multivariate normal distribution is another multivariate normal 

distribution, and the conjugate prior for the covariance matrix is an inverse-Wishart 

distribution. Let 𝚽 = 𝑯𝒕
−𝟏, we obtain a Wishart distribution for 𝚽. Therefore, 

 

𝝁 | 𝚽 ~ 𝒩(𝒎,𝚽−𝟏) 

𝚽 ~𝒲 (𝑑,𝑾) 

 

where  d is the number of assets, 

𝐖−𝟏 is the covariance matrix of volatility estimated with news sentiment data,  

m is the mean of returns estimated from a news enhanced model. 

 

Thus we are able to use the analytical (closed form) formula to estimate the posterior 

mean, which is the estimator. According to Bayes’ theorem the posterior distribution 

of 𝝁 and 𝚽 are given by 

 

𝝁 | 𝚽, 𝒚 ~ 𝒩 (
𝒎 + 𝒙̅

1 + 𝑛
 ,

1

1 + 𝑛
𝚽−1) 

 

𝚽 | 𝒚 ~ 𝒲 (𝑑 + 𝑛,𝐖−𝟏 + 𝐒 +
𝑛

1 + 𝑛
(𝒎 − 𝒙̅)(𝒎 − 𝒙̅)T) 

 

where  n is the sample size used to determine the prior, 

𝐒 = ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑻𝑛
𝑖=1 , 𝑥𝑖 are data points from return series estimated  

using only market data, 

𝒙̅ is the mean of returns estimated from a market data only model. 

 

For convenience, we denote the second distribution parameter of the posterior Wishart 

distribution as V (this is used to derive equation 5.5). Evidently the Wishart 

distribution for the posterior is different from the Wishart distribution for the prior. 

Here the incorporation of news sentiment data can be identified. In the calculation of 
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the covariance matrix in the posterior distribution both of the return series are used 

(the series estimated using market data only and the series from market data plus the 

impact score). Finally, taking the posterior mean to be the estimator for 𝑯𝒕 we have 

   

                                                         𝐸[𝑯𝒕] = (𝑑 + 𝑛) ∗ 𝑽                                     [5.11] 

 

where = 𝐖−𝟏 + 𝐒 +
𝑛

1+𝑛
(𝒎 − 𝒙̅)(𝒎 − 𝒙̅)T . 

 

The limiting prior for the conjugate multivariate normal is taken to be our non-

informative prior. It has the form 𝑝(𝚽)  ∝ |𝚽|
𝑘+1

2 . Hence the posterior distribution is  

 

𝝁 | 𝚽, 𝒚 ~ 𝒩 (𝒙̅ ,
1

𝑛
𝚽−1) 

𝚽 | 𝒚 ~ 𝒲(𝑛 − 1, 𝑺)  

 

This does not involve the news sentiment series at all. 

 

Liquidity Model 

For convenience, we form a matrix 𝒮 = (𝐒𝟏, 𝐒𝟐, … , 𝐒𝐧). Assume 𝒮  follows a 

multivariate normal. 

𝒮|𝚪,𝚿 ~ 𝒩(𝚪,𝚿,𝛀)  

or written as 𝚪| 𝚿 ~ 𝒩(𝚪,𝚿⨂𝛀), where 𝛀 = (𝒁𝑻𝒁)−𝟏  with Z being a matrix of 

lagged liquidity terms, and 𝚿 is the covariance matrix for each 𝐒𝐭. Again we use the 

conjugate prior for 𝚪 and 𝚿.  

 

𝚪 | 𝚿 ~ 𝒩(𝚪,𝚿,𝛀) 

𝚿 ~ 𝑖𝒲(𝐒, υ ) 

 

where 𝚪, 𝐒, υ and 𝛀 are calculated from the liquidity series that uses news sentiment 

data. The posterior distributions are derived as below. 

 

𝚪 | 𝚿 , 𝐲 ~ 𝒩(𝚪,𝚿,𝛀) 

𝚿| 𝐲 ~ 𝑖𝒲(𝐒, 𝜐) 

 

                                                          𝛀̅−1 = 𝛀−1 + 𝐙′𝐙                                          [5.12] 

                                                      𝚪 = 𝛀(𝛀−1𝚪 + 𝐙′𝐙𝚪̂)                                       [5.13] 
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with 𝚪̂ = (𝐙′𝐙)−𝟏𝐙′𝐘  and 𝐒 = (𝐘 − 𝐙𝚪̂)′(𝐘 − 𝐙𝚪̂). Accordingly the normal-diffuse 

prior is used for considering market data only. It takes the form: 

 

𝑝(𝚿) ∝ |𝚿|−(𝑚+1)/2 

 

Using this prior in the Bayesian VAR model, we obtain the posterior distribution as 

the following 

 

𝚪| 𝒚,𝚿 ~ 𝒩(𝛾̅, Σ̅𝛾) 

𝚿| 𝒚, 𝚪 ~ 𝑖𝒲(𝑺̅, 𝜐̅) 
 

                                                 𝚺𝛾 = (𝚺𝛾
−1 + 𝚿−1⨂𝐙′𝐙)−1                                  [5.14] 

                                                𝛾 = 𝚺𝛾 [𝚺𝛾
−1𝛾 + (𝚿−1⨂𝐙′𝐙)𝛾]                             [5.15] 

 

where 𝛾 = [𝚿−1⨂𝐙′𝐙]−1(𝚿−1⨂𝐙′)𝒚 . 

 

Only the distribution of  𝛾 is of importance in our case as the estimator we want is 

given by the mean of this distribution.  

 

 

5.4   Data 

 

In general, if a trader wishes to trade in a financial stock, for example, then they 

would execute a transaction in one or a collection of stocks within the same sector. 

Therefore, with this in mind, we have chosen five stocks from the Finance industry: 

AIG, Bank of America, Barclays, HSBC and JP Morgan. The fact that all these stocks 

belong to the same sector ensures that a correlation exists within the portfolio. As in 

the univariate case, market and news sentiment data are extracted for the year 2008 to 

fit the models, and then the proceeding three months of January-March 2009 are used 

for out-of-sample testing. Throughout this work, the impact score described in section 

3.4 is used as the data series for news sentiment.    

 

 

5.5   Computational Results and Validation 

 

To compare the performance of these news enhanced Bayesian models, direct 

comparison is made between the models described in Section 5.2 and the equivalent 
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predictive models that only use market data i.e. adopts a flat prior. This flat prior 

provides no additional information or knowledge but follows the same estimation 

procedure as those described in section 5.3. We use market data only models as a 

benchmark to compare the performance against our multivariate models. From this, 

the specific impact of news sentiment on prediction power is revealed. Using in 

sample data of 2008 for five financial assets, we estimate the coefficient matrices for 

the stock price return model that forms its prior based on the news sentiment data 

series (see equation 5.1). They are: 

  

 𝑨𝟎 =

[
 
 
 
 
−1.96𝑒−5

−6.36𝑒−6

−3.73𝑒−6

−8.46𝑒−7

−2.20𝑒−6]
 
 
 
 

, 𝑨𝟏 =

[
 
 
 
 

1.72𝑒−1

2.93𝑒−3

−2.28𝑒−3

3.48𝑒−3

−7.51𝑒−3]
 
 
 
 

, 𝑨𝟐 =

[
 
 
 
 

1.04𝑒−2

1.23𝑒−2

−2.92𝑒−4

3.42𝑒−3

−1.62𝑒−2]
 
 
 
 

 

 

The coefficient matrices estimated from market data only (flat prior) are: 

  

𝑨𝟎 =

[
 
 
 
 
−8.96𝑒−6

−2.80𝑒−6

−2.50𝑒−6

−8.36𝑒−7

−8.70𝑒−7]
 
 
 
 

, 𝑨𝟏 =

[
 
 
 
 

4.21𝑒−2

−1.85𝑒−2

−4.25𝑒−1

−6.06𝑒−1

1.60𝑒−1 ]
 
 
 
 

, 𝑨𝟐 =

[
 
 
 
 
−2.85𝑒−3

6.31𝑒−3

−1.63𝑒−1

−2.86𝑒−1

−2.71𝑒−2]
 
 
 
 

 

 

Evidently, these two sets of matrices are not equal and therefore will have different 

results for the prediction of returns.  

 

As for the multivariate volatility model, we present the estimated values for the 

measures of impact from past standardised shocks (𝛼 ) and from lagged dynamic 

conditional correlations (𝛽) – see table 5.1. This was calculated using the package 

‘CCgarch’ in the software R. The necessary condition of 𝛼 + 𝛽 < 1 holds for both 

models. 

 

 

DCC-GARCH Model 𝜶 𝜷 

Market data only 3.40640𝑒−3 0.86363 

Market and News data 5.99723𝑒−4 0.99733 

 

Table 5.1: Estimated values of 𝛼 and 𝛽 parameters for the DCC-GARCH model in two cases 

– with only market data and including news sentiment data with market data. 
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The coefficient matrix to be estimated for the prediction model of liquidity (by using 

the bid-ask spread as a proxy) with the consideration of news sentiment is 𝐁News =

(𝐁𝟏, 𝐁𝟐, 𝐁𝟑)′ (see equation 5.7). The sample calculations resulted this to be 

 

 

𝐁News =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1.00216 −0.13193 −0.02597 0.29831 −0.09181
1.69672 2.10184 0.18117 −2.14771 0.62422

−1.65849 −1.07422 −0.19660 0.86639 −0.82184
−0.00730 −0.00531 −0.00096 0.31607 −0.00326
0.46910 0.35984 0.06573 −0.77433 1.36271
0.37419

−1.72855
−0.72300

−0.00240
−0.53551

−0.39206
1.65616

−0.99812
−0.00715

0.62669

0.02608

−0.36563
−0.80197

−0.00174
−0.41238

−0.06185
0.69656

−0.81910
−0.00497

0.48682

0.00970 −0.10406 0.03520

−0.15338 1.83415 −0.52787
0.43951 0.72228 −0.57991

−0.00033 0.52751 −0.00125
−0.07532

−0.01368
0.19438

−0.51335
−0.00089

0.08965

0.87568

0.16110
−2.31878

1.61581
0.23906

−1.05060

0.20733

−0.04981
0.67416

−0.79118
−0.00299

−0.06043]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Similarly, the coefficient matrix for the BVAR model using market data only gives 

the following estimator 

 

 

𝐁M =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.04544   0.00645      9.94𝑒−6  0.00012  0.00057
0.01829 0.13064 2.46𝑒−5 −0.00077 0.00040

−0.59828 −0.63509 0.21269 −0.01397 −0.64502
1.17𝑒−5 −7.66𝑒−5 1.91𝑒−8

0.00177 8.61𝑒−6

0.00460 0.001738 −3.81𝑒−5 0.00070 0.09978
1.78719

−0.04747
−0.18676
3.01𝑒−6

−0.00416
−0.77110
0.03406

−0.69388
0.00017

0.00202

−0.01761

1.87393
−0.31596
9.83𝑒−5

−0.00260
0.01199

−0.90764
−0.70095
9.36𝑒−6

0.00189

−1.51𝑒−5
4.74𝑒−5 −0.00077

−2.56𝑒−5 0.00226 −0.00147
0.36113 −0.00706 −0.36924
−8.49𝑒−7

1.15984 −2.11𝑒−5

0.00011
5.99𝑒−6

−2.54𝑒−6

−0.57381
3.49𝑒−6

−7.51𝑒−5

−0.00164
−6.15𝑒−5

−0.00151
0.04259
0.33082
0.00092

1.91329
0.00027
0.00125

−0.77381
2.17𝑒−5

−0.90284]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Once again these matrices are numerically different indicating that the addition of 

news sentiment affects the prediction of liquidity, and hence will give differing 

predictive performance to just market data. Next we evaluate this difference in 

performance. 
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To understand the extent to which news sentiment impacts these models, the fitted 

models obtained in sample are used to predict out-of-sample values. This period has 

been chosen to be a duration of 3 months straight after the in sample period, i.e. 

January-March 2009. Predictions are made for one-step ahead, so that is the next 

minute of trading. The performance of the models is measured according to the 

accuracy of the prediction against the true values. Below we present several statistical 

measures describing the estimation accuracy by the two sets of models. 

 

Firstly, for stock price return, boxplots for the difference in residuals between the two 

types of models are provided for each of the five assets (see figure 5.1). Through 

observation of this graph it can be concluded that there is little difference in the 

prediction power of the multivariate model that incorporates news sentiment and one 

that does not. In other words, no added value is brought about by including news 

sentiment in stock price return prediction. This is demonstrated in the dispersion of 

the difference in residuals with the median for all assets grouped around zero, except 

for one – JP Morgan. Figure 5.2 displays a magnified plot excluding JP Morgan to 

show the exact quartiles of the data series. Observing with the naked eye it can be 

identified that Bank of America is the only asset that has a median value which is 

positive. The financial stock of JP Morgan exhibits a distinct behaviour in contrast to 

the others in that its median of difference in residuals is highly negative, indicating a 

worse performance by the news enhanced model than the market data only model. 

Moreover, JP Morgan also has the greatest range in data values with the whiskers of 

the plot representing the highest and lowest data points falling within 1.5*IQR.  
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Figure 5.1: Boxplot of difference in residuals between a multivariate linear model for 

stock price return that incorporates news sentiment and one that does not, for five 

assets (AIG, Bank of America, Barclays, HSBC and JP Morgan). The difference is 

taken as the market data only model minus the news enhanced model. Outliers are not 

included in the plot for clarity reasons.  

 

Figure 5.2: Boxplot of difference in residuals between a multivariate linear model for stock 

price return that incorporates news sentiment and one that does not, for four assets (AIG, 

Bank of America, Barclays and HSBC). The difference is taken as the market data only model 

minus the news enhanced model. Outliers are not included in the plot for clarity reasons. 
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Secondly, the boxplot for difference in residuals for the volatility models are given in 

figure 5.3. As with the case for return, the volatility prediction performance of one 

asset is particularly noticeable from the rest - AIG. From the boxplot it can be seen 

that it possesses the most negative series and also the widest range in data points 

represented by the long whiskers extending from the box, in comparison to the other 

assets. Such negativity indicates that generally, the predictions by the market data 

only multivariate GARCH model are closer to the true value than those predicted by 

the model that incorporates news sentiment. The other four remaining assets all 

exhibit comparable features, that is their median value of difference in residuals are 

all close to zero and their lowest data point that falls within 1.5*IQR is smaller than -

7.00𝑒−6  (see figure 5.4). Furthermore, there is an obvious negative skew to these 

differenced residuals with the third quartile value at a far greater distance from the 

median compared with the first quartile. The longer extension of the whisker in the 

negative direction also indicates a negative skew to the data.  

 

 

Figure 5.3: Boxplot of difference in residuals between a DCC-GARCH model for volatility 

that incorporates news sentiment and one that does not, for five assets (AIG, Bank of America, 

Barclays, HSBC and JP Morgan). The difference is taken as the market data only model 

minus the news enhanced model. Outliers are not included in the plot for clarity reasons. 
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Figure 5.4: Boxplot of difference in residuals between a DCC-GARCH model for volatility 

that incorporates news sentiment and one that does not, for four assets (Bank of America, 

Barclays, HSBC and JP Morgan). The difference is taken as the market data only model 

minus the news enhanced model. Outliers are not included in the plot for clarity reasons. 

 

 

Lastly, the results for liquidity prediction vary significantly as suggested by the 

boxplot in figure 5.5. Out of all five selected assets, both positive and negative 

median values appear meaning that predictions of liquidity values (by using the bid-

ask spread as a proxy) are improved with the consideration of news sentiment for 

some assets but not others. Specifically, AIG and Barclays show positive results but 

Bank of America and JP Morgan show negative results. Similar to the results for 

volatility, HSBC shows little dispersion in the difference of residuals for liquidity 

modelling and the same observation applies to AIG for predictions of return and 

liquidity. However, compared to the previous two sets of predictive models, these 

liquidity predictions produce large values of difference in residuals. Here, the range is 

between -0.1 and 0.1 whereas the former results are all within a range of -0.001 and 

0.001 (bar the exception of JP Morgan return predictions). 
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Figure 5.5: Boxplot of difference in residuals between a VAR model for liquidity that 

incorporates news sentiment and one that does not, for five assets (AIG, Bank of America, 

Barclays, HSBC and JP Morgan). The difference is taken as the market data only model 

minus the news enhanced model. Outliers are not included in the plot for clarity reasons. 

 

In order to be able to deduce some conclusions with more certainty, we calculated 

additional statistical measures, namely root mean squared errors (RMSE) and mean 

absolute errors (MAE) for the residual time series of each asset. The difference is 

taken between the errors for the market only model and the news enhanced model to 

clearly show which performs best. A positive value represents a better prediction by 

the model that considers news sentiment and a negative value suggests otherwise. 

Table 5.2 displays the RMSE values, which depicts an improved prediction in 

volatility by the news enhanced model with the majority of differences giving positive 

results, albeit values that are very close to zero. However, liquidity results are not so 

promising with all differences presenting negative values except one – HSBC. This is 

consistent with the interpretation from the boxplot of liquidity residuals. Return 

prediction performance is inconclusive as some asset returns are better predicted by 

the market data only model and some are better predicted by the multivariate linear 

model that incorporates news sentiment. Exactly the same conclusions are made by 

looking at the MAE values (see table 5.3).  
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RMSE AIG BAC BARC HSBC JPM 

Return      Without sentiment 0.00370 0.00240 0.00508 0.01587 0.00127 

                  With sentiment 0.00387 0.00233 0.00498 0.01785 0.00772 

                  Difference -0.0017 0.00007 0.00010 -0.00198 -0.00645 

Volatility   Without sentiment 0.00271 0.00229 0.00418 16.10897 0.00276 

                  With sentiment 0.00260 0.00229 0.00414 16.65892 0.00276 

                  Difference 0.00011 0.00000 0.00004 -0.54995 0.00000 

Liquidity   Without sentiment 0.00831 0.00944 0.05588 0.03350 0.00097 

                  With sentiment 0.01117 0.08985 0.14200 0.02300 0.03282 

                  Difference -0.00286 -0.08041 -0.08412 0.01050 -0.03185 

 

Table 5.2: Root mean squared errors (RMSE) for the prediction of stock price return, 

volatility and liquidity for each asset (AIG, Bank of America, Barclays, HSBC and JP 

Morgan). A separation is made between the multivariate model that incorporates news 

sentiment and the one without. The difference value indicates which model performs better. 

Numbers are given to 5 decimal points.  

 

 

 

 

Mean Absolute Error AIG BAC BARC HSBC JPM 

Return      Without sentiment 0.00062 0.00108 0.00135 0.00096 0.00061 

                  With sentiment 0.00754 0.00105 0.00118 0.000762 0.00754 

 

                  Difference -0.00692 

 

0.00003 

 

0.00017 

 

0.000199 

 

-0.00692 

 

Volatility   Without sentiment 0.00250 0.00209 0.00332 0.95309 0.00262 

                  With sentiment 0.00249 0.00209 0.00330 1.09715 0.00261 

                  Difference 0.00001 0.00000 

 

0.00002 

 

-0.14406 

 

0.00001 

 

Liquidity   Without sentiment 0.00209 0.00138 0.03715 0.00261 0.00059 

                  With sentiment 0.00211 0.03888 0.07902 0.00176 0.01356 

                  Difference -0.00002 

 

-0.0375 

 

-0.04187 

 

0.00085 

 

-0.01297 

 

Table 5.3: Mean absolute error (MAE) for the prediction of stock price return, volatility and 

liquidity for each asset (AIG, Bank of America, Barclays, HSBC and JP Morgan). A 

separation is made between the multivariate model that incorporates news sentiment and the 

one without. The difference value indicates which model performs better. Numbers are given 

to 5 decimal points.  
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5.6    Summary 

 

In this chapter we have considered in a multivariate setting the prediction of return, 

volatility and liquidity for a small universe of trading assets. This requires 

multivariate techniques that include the consideration of correlation between assets. 

This justifies our selection of five assets all belonging to the Finance industry so that 

correlations are guaranteed to be strong. We also note that this is a natural way traders 

rebalance (holds and liquidates positions) a trading portfolio. Bayesian inference is 

adopted because it combines information from the likelihood and the prior. We first 

propose the inclusion of news sentiment data for priors. This is the proper way to use 

news information in this context because it occurs at the same time as market 

information. This is a better method than historical data based priors because 

historical data may be out of date or inconsistent with current data. By considering 

news sentiment metadata in the formation of priors, we acknowledge the additional 

information supplied and use this to construct Bayesian prediction models. The results 

of our empirical tests show that some improvements can be made in the prediction of 

volatility once news sentiment is considered, which is consistent with what was found 

in the univariate case. Another result that is similar to single asset predictions is stock 

price return, specifically the inability to better the predictions made by the market data 

only model. However, when modelling liquidity in a multivariate framework it seems 

that the added value contained in the news enhanced model seen in the univariate case 

is lost. This, however, does not imply that the incorporation of news sentiment data or 

Bayesian inference is not useful. Our contention is that the results point us to consider 

an alternative Bayesian inference model (other than the normal distribution); but this 

is outside the scope of this thesis and can be explored in future work. An additional 

feature that may bring more insight into this work is the consideration of prediction 

performance of a whole portfolio. Instead of reporting the asset behaviour of 

individual companies, the return, volatility and liquidity variables of a portfolio built 

from all 5 assets may better indicate the effect of news sentiment on asset behaviour 

prediction.      

 

 

 

 

 

 



114 

 

Chapter 6 
 

Conclusions 
 

6.1 Summary 

 

In this thesis we have explored how news stories as events can be incorporated in 

predictive models in the domain of finance. We have studied and reported on research 

literature in this area which describes the evolution of proxies for sentiment and how 

they impact asset behaviour. We have considered briefly how news stories are 

converted to quantified measures. The power of unstructured text and sentiment 

quantification is an important research topic in the field of machine learning, however, 

the focus of our research has been on the application of sentiment measures as 

supplied by trusted content suppliers (see Appendix A and Appendix B). 

 

Since the research results reported in this thesis are of value to traders and risk 

officers, we have reviewed the field of market microstructure and automated trading. 

In our predictive data models we have used minute bar data and constructed 

predictive models whose results find use in automated high frequency (intraday) 

trading. We have further considered the topic of liquidity in some depth since we have 

introduced liquidity as an additional parameter in the description of asset behaviour. 

 

To set the context of the predictive models reported in this thesis – the input data, the 

scope and purpose (the focus) – we consider in Chapter 3 news metadata and some 

attributes such as entity recognition, relevance, novelty and sentiment score. Earlier 

researchers have only used sentiment scores in analysing the impact of news on 

financial instruments. We have, however, formally defined an impact measure which 

takes into account (i) news flow and (ii) the decaying effect of news sentiment. 

 

News data arrives asynchronously during the day and market data is available at 

various frequencies (tick data, minute bar, end of day setting). Our predictive models 

use these two time series data, namely, asynchronous daily news metadata and minute 

bar market data. The predictions made by our news enhanced GARCH (1,1) and 

AR(3) models for volatility and liquidity, respectively, showed superior performance. 
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The volatility results displayed substantial improvements to a market data only model, 

which is consistent with previous research findings. The improved predictions of 

liquidity do not compare to those seen in volatility but does show better performance 

than stock price return predictions, which are not improved at all.   

 

In the multivariate models which are used to predict the behaviour of a collection of 

assets belonging to the same industry, correlation effects deteriorate the superior -

prediction performance seen in the univariate setting. The most promising results are 

seen from the DCC-GARCH model that predicts multivariate volatility but 

performance is no longer highly significant. When modelling liquidity using a 

Bayesian VAR model no further value can be added by incorporating the impact score. 

We observe that the multivariate predictive model for return is unable to produce 

improved predictions.  

 

 

6.2 Conclusions and Contributions 

 

The study of our thesis is motivated by two research problems which are determining 

trading strategies and quantifying trading risk. In addition to return and volatility, we 

have considered liquidity such that taken together (return, volatility and liquidity) 

these provide a complete characterisation of asset behaviour. Our use of a predictive 

model for liquidity provides a framework for capturing the liquidity risk for 

executable trades. During our empirical investigation to discover a relationship 

between news arrival and asset price, we gained some insight into how news 

sentiment and asset prices are related. In section 3.2 and 3.4 we report the results of 

two 𝜒2 tests which examine the connections between news sentiment and asset price. 

We observe that there exists a stronger relationship between impact score and prices 

compared to sentiment of individual news events and price. In the preliminary stages 

of our investigation, we set out to predict asset behaviour by using these news 

sentiment scores calculated and supplied by data vendors. However, the performance 

of models which used individual news sentiment scores was weak leading us to 

abandon a direct application of these sentiment scores and explore alternative 

measures. Thus the negative results of this investigation led us to find a positive way 

of quantifying the relationship; hence we derived the impact score. The impact score 

is in some sense a natural and intuitive measure as this takes into account news flow 

and its effect on market movements. Our two sets of predictive models use this new 
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measure, namely, the impact score which takes into account (i) the volume of news 

and (ii) the decaying effect of news sentiment. In such a manner we derive the impact 

of aggregated news events for a given asset. The derivation of the impact measure and 

the characterisation of asset behaviour by introducing liquidity are two innovations 

reported in this thesis and are contributions to knowledge. 

 

A critical evaluation of the results of our univariate and multivariate models lead us to 

conclude that univariate predictions are far better than multivariate predictions. 

However, multivariate models play an important role by providing a blueprint for 

scenario generation which can be used for constructing trading strategies and 

quantifying trading risk. The Black-Litterman model (1991) is widely studied and 

reported because of its inclusion of human judgement (expert knowledge) in the 

prediction of asset behaviour. We have taken the underlying principle of Black-

Litterman (1991) and constructed Bayesian multivariate predictive models such that 

domain expertise is incorporated to improve predictions. This is another novel aspect 

of our work and a further contribution to knowledge. 

 

 

6.3 Future Research  

 

A Critique of the Present Study  

 

Different news events are known to have different impacts. Typically quarterly filings 

of reports and news of mergers and acquisitions are known to impact the markets on a 

different scale compared to news events such as product recalls or employee cutbacks. 

The relative importance of different news categories can be a research study in its 

own right. An obvious approach would be to apply the method of event study to 

determine the relative importance of these categories. The results can then be used to 

determine weightings of such news categories. 

 

In our study we have used the bid-ask spread as the proxy for liquidity. Alternative 

liquidity measures, such as those mentioned in section 2.3, can be selected to carry 

out more modelling experiments. For example, the common depth measure of Kyle’s 

λ can be used to explore the aspect of market depth in liquidity. Furthermore, the 

distribution assumption for liquidity can be changed to improve its multivariate 

predictions. 
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Other Research Directions 

In our study we have taken a very general perspective whereby we find that the 

introduction of two different information streams (two different time series data), 

namely, news metadata and market data, improves the predictive power of asset 

behaviour. With this in mind, we see two further directions of research which can be 

of value to the financial modelling community.  

 

It is well-known by practitioners that order flow data provides a good insight into 

trading strategies. Therefore, incorporation of order flow data as another time series is 

likely to improve the results of predictive models. We also observe that due to the 

growth of electronic communication networks (ECNs), such streams of data can be 

easily collected. 

 

There has been growth in online posting of micro-blogs in general and Twitter data, to 

be more specific. As in the case of newswire texts which are transformed into 

sentiment data streams, Twitter data is also similarly processed (see Appendix C) and 

hence can be incorporated as an additional time series in the predictive models. We 

may also consider another source of online information, namely, search engine 

queries sequenced over time. For instance, if we consider Google Trends, it is 

possible to find a further information stream which can be used as yet another time 

series. The inclusion of such additional information streams is likely to give better 

predictions of asset behaviour.  
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Appendix A 

 

News Sentiment Metadata from Thomson Reuters 

 

We provide a snapshot of the news sentiment metadata produced by Thomson Reuters 

in a tabular form. Here the sample company is chosen to be IBM and news events are 

listed for a few consecutive days. Not all data attributes are displayed. 

 

 

Figure A: Sample of news sentiment data. Source: Thomson Reuters. Further details are 

given in Thomson Reuters (2010). 
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Appendix B 
 

News Sentiment Metadata from RavenPack 

 

We display below a sample of news sentiment metadata produced by RavenPack in a 

tabular form. The most important data fields have been selected and included in the 

snapshot for news regarding Facebook Inc. 

 

 

Figure B: Sample of news sentiment data. Source: RavenPack. Further details are available 

in RavenPack (2010). 
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Appendix C 
 

Twitter Data in a Comparable Form 

 

Twitter, a micro-blogging platform, now allows users to download content from the 

site. Therefore, a similar process of filtering and aggregation can be applied to this 

data in order to deduce the sentiment of the text. Figure C shows an example of such 

an information stream where sentiment probabilities have been assigned to each 

individual blog post (otherwise known as ‘Tweet’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C: Sample of Twitter sentiment data. Source: FSWire. Further information can be 

found at www.fswire.com.  

 

http://www.fswire.com/

