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ABSTRACT 

 

This paper describes a detailed procedure into the investigation of optimised control 

strategies for CO2 cycles in medium temperature retail food refrigeration systems. To 

achieve this objective, an integrated model was developed composing of a detailed 

condenser/gas cooler model, a simplified compressor model, an isenthalpic expansion 

process and constant evaporating temperature and superheating. The CO2 system can 

operate subcritically or transcritically depending on the ambient temperature. For a 

transcritical operation, a prediction can be made for optimised refrigerant discharge 

pressures from thermodynamic cycle calculations. When the system operates in the 

subcritical cycle, a floating discharge pressure control strategy is employed and the 

effect of different transitional ambient temperatures separating subcritical and 

transcritical cycles on system performance is investigated. The control strategy assumes 

variable compressor speed and adjustable air flow for the gas cooler/condenser to be 
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modulated to achieve the constant cooling load requirement at different ambient 

conditions.  
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Nomenclature  

 

 

A area (m
2
)         Subscripts 

Cp specific heat at constant pressure (J kg
-1

K
-1

)    a air 

C          capacity rate (W K
-1

)                  amb ambient 

d diameter(m)           dis discharge 

D depth (m)                         h hot side 

h enthalpy(J kg
-1

)                   i inner, ith grid 

H height (m)           is  isentropic          

 i, j, k    coordinates                                         j   jth grid 

m  mass flow rate (kg s
-1

)          k kth grid        

 P pressure (Pa, bar)      min minimum 

 q  heat transfer per square meter (W m
-2

)             max maximum 

Q  heat transfer (W)      o outer 

R          resistance (K W
-1

),ratio     p pressure 

 s perimeter of inner pipe (m)        r refrigerant 
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TAT transition airtemperature (°C)        wi inner pipe wall   

 T,t temperature (K, °C)           v vapour, volumetric 

u velocity (m s
-1

)        l liquid 

UA      overall conductance (W K
-1

)  

Va air face velocity (m s
-1

) 

W width (m)        

z length (m)      

         heat transfer coefficient (W m
-2 

K
-1

)          

          efficiency      

         difference     

        density (kg m
-3

)                                    

          shear stress (N m
-2

)    

 effectiveness     

< > void fraction 

  compression index 

 

 

1. Introduction 

 

As a natural refrigerant, carbon dioxide (CO2) has been attracting increasing attention in 

the application areas of commercial refrigeration, heat pumps and air conditioning, as 

indicated by Nekså (2004). Compared to conventional refrigerants such as HCFCs 

(R22) or HFCs (R134a and R404A), CO2 is more environmentally friendly due to its 

zero Ozone-Depletion Potential (ODP)  and very low direct Global Warming Potential 
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(GWP<1), therefore attaining favourable thermophysical properties. These include 

higher density, latent heat, specific heat, thermal conductivity and volumetric cooling 

capacity, and lower viscosity. However, CO2 has a relatively high operating pressure 

due to its low critical temperature (31.1 °C) and high critical pressure (73.8 bar).  

    Alongside all the other application areas, CO2 has recently acquired significant 

attention for its application in supermarket refrigeration. The energy consumption of a 

typical supermarket in the UK is in the region of 1000 kWh/m
2
 of which between 30% 

and 50% will be for refrigeration (Tassou (2007)). This large amount of energy 

consumption in the form of grid electricity contributes significantly to indirect CO2 

emissions and, consequently, global warming. Moreover, HFC refrigerants such as 

R404A, which is predominantly used in supermarket refrigeration systems, contribute 

extensively to direct CO2 emissions. These direct emissions can reach up to 30% of 

indirect emissions, and thus the development and optimisation of systems employing the 

use of natural refrigerants, such as CO2 is vitally important.  

    In general, two types of CO2 refrigeration systems have been applied or are being 

considered for application in supermarkets: cascade systems (Eggen and Aflek (1998)) 

and all CO2 transcritical systems (Nekså and Girotto (2002)). In a cascade system, CO2 

operating in a subcritical cycle is used in the lower cascade, with R404A, R134a, NH3 

or hydrocarbons such as propane employed in the higher cascade for heat rejection. In 

an all CO2 system, if air cooling is used for heat rejection, which is predominantly the 

case, irrespective of the system arrangement employed, CO2 will operate in a 

transcitical mode when the ambient temperature is high. The high pressure side heat 

exchanger in this system will act as either a gas cooler or a condenser, dependent upon 

the ambient temperature.  
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    There are, conventionally, two refrigeration circuits in a supermarket refrigeration 

system arrangement: (i) medium temperature circuits for the chilled food display 

cabinets and chilled food cold rooms and (ii) low temperature circuits for the frozen 

food cabinets and frozen food cold rooms. These two temperature circuits can operate in 

parallel as in the cases with R404A systems and various CO2 systems (Girotto et al. 

(2003)) or integrated, as shown with several all CO2 systems (Schiesaro and Kruse 

(2002)). The cascade CO2 system has numerous advantages, including greatly reduced 

low-temperature compressor sizes, the absence of a liquid pump, and fewer stages of 

heat transfer compared to compound or ‘booster’ systems (Kim et al. (2004)). It has also 

been reported that the energy consumption of the cascade system is neutral or less than 

that of conventional R404A systems (Christensen and  Bertilsen (2003)). 

    For an all CO2 system, reported advantages include simpler and cheaper system 

designs with one fluid and one circuit (medium temperature and low temperature) and a 

heat recovery potential.  It has also been reported, however, that the total annual energy 

consumption of an all CO2 system in a hot climate can be higher than that of a 

conventional R404A system (Girotto et al. (2004)). Systems installed in Northern 

European countries such as Sweden, Denmark, Germany and Switzerland, nonetheless, 

can attain an equivalent or lower annual energy consumption than R404A systems due 

to the higher number of hours during the year that such systems operate in the 

subcritical mode (Girotto et al. (2004)).  

    One method of improving the seasonal performance of an all CO2 refrigeration 

system would be applying optimised control strategies for the system. Such control 

strategies can ensure that the system will operate efficiently in both transcritical and 

subcritical modes at all ambient temperature conditions. By means of mathematical 
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model, the optimised refrigerant discharge pressures were correlated to be increased 

lineally with higher ambient temperatures (Kauf (1999)). The correlation can be applied 

when the types and structures of system components are known such as heat exchangers 

and compressors. In addition, the low pressure side operating conditions such as 

pressure and superheat need also be specified. This method nevertheless does provide a 

useful guideline to predict the optimised discharge pressures at different operating 

conditions and various CO2 transcritical systems. To maximise the total system COP 

(heating and cooling), the optimal refrigerant discharge pressures were correlated as a 

function of refrigerant temperatures at gas cooler outlet and evaporating (Sarkar et 

al.(2004)). The optimised pressures were increased with the higher gas cooler outlet 

temperatures but decreased with the enhanced evaporating temperatures. This 

correlation is also applicable for a particular system when the system component 

designs such as compressors are specified.  

    In this paper, a detailed procedure is described for the control of CO2 cycles for 

medium temperature food retail refrigeration applications. The development of control 

procedures and strategies has been based upon a CO2 system model. When the system 

operates in transcritical mode, the optimum refrigerant pressure and its variation with 

ambient air temperatures are predicted from thermodynamic cycle calculations. When 

the system operates in the subcritical mode, the conventional floating head pressure 

control strategy is employed wherein the condensing temperature (pressure) is 

controlled at a fixed value above the ambient temperature. The control strategy assumes 

a variable compressor speed and adjustable air flow for the gas cooler/condenser which 

can be modulated to meet the constant cooling load requirement at different ambient 
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conditions. Two ambient temperatures, 21 °C and 16 °C, are considered for transition 

between subcritical and transcritical operations.  

 

 

2. Model description 

 

The all CO2 medium temperature supermarket refrigeration system is shown 

schematically in Figure 1, with its corresponding transcritical and subcritical cycles 

depicted in Figure 2. This system is composed of four main components: compressors, 

air-cooled condensers/gas coolers, expansion valves and display cabinet evaporators. 

The system model is an integration of a detailed condenser/gas cooler model with a 

simplified compressor model, an isenthalpic expansion process and constant 

evaporating temperature and superheating at the evaporator outlet. The detailed 

component models are described in the following sections. 

 

2.1 Condenser and gas cooler model 

 

The condenser or gas cooler is a type of finned-tube air-cooled heat exchanger and is 

modelled by the distributed method. This method is widely used in the modelling of 

condensers but rarely in the modelling of gas coolers (Ge and Cropper (2004)). Since 

CO2 thermophysical properties change rapidly with temperature during an isobaric gas 

cooling process, it would be impractical to use the -NTU or LMTD method to simulate 

gas coolers (Kim et al. (2004)). The tube-in-tube method developed from the research of 

Domanski (1989) was employed in the simulation of a gas cooler by Chang and Kim 
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(2007). A gas cooler model was developed by Sarkar et al. (2006) by dividing the heat 

exchanger into several sections. The pressure drop calculations in both refrigerant and 

air sides were also reported. It is seen that the simulation accuracy can be further 

enhanced when the distributed modelling method is utilised. In this paper, considering 

the similarity, the combined model for condenser and gas cooler is described together 

using the distributed method. 

  To describe this modelling process, a diagram with the sub elements of the coil in a 

three-dimensional (3-D) space is shown schematically in Figure 3. In this diagram, 

tubes are arranged parallel to the i direction, j is specified in the longitudinal direction, 

while k is in the transverse direction. Air flows parallel to the j direction and refrigerant 

is assumed to flow in approximate counter-cross direction to the air flow. The selection 

of the number of small elements in the i direction is arbitrary, with a range from one to 

infinity. The larger this value, the more accurate the simulation will be, but expensive 

computing time will be required with diminishing accuracy. The coordinate value i 

represents the number of sub-elements for each pipe, j signifies the pipe number in the 

longitudinal path starting from air inlet to the heat exchanger, whilst k represents the 

tube number in the transverse path counting from the bottom of the heat exchanger.  

    With this arrangement, the state point of either the refrigerant or air at each specified 

sub-element in the 3-D space can be located with its corresponding coordinate values i, j 

and k.  The modelling methodology is based upon the establishment of the conservation 

equations for each sub-element and an efficient routine to solve these equations. The 

solution and outputs from one sub-element are used as inputs to the next sub element 

with the simulation commencing from the refrigerant inlet. Initially, the corresponding 
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air side parameters are assumed and iterative calculations are completed until the 

calculated air parameters remain unchanged with any subsequent iteration.   

 

2.1.1 Refrigerant side conservation equations 

In the establishment of the refrigerant side conservation equations for each element, the 

following assumptions were made: 

 System is in steady state 

 No heat conduction within the longitudinal direction along the pipe axis 

 Uniform heat exchanger air face velocity 

 No contact heat resistance between fin and pipe 

 The refrigerant at any point in the flow direction is in a thermal equilibrium 

condition 

 

Mass equation: 

    0])1([  llvv uu
dz

d
                                      (1) 

Momentum equation: 

     
A

s

dz

dP
uu

dz

d wiwi

llvv


  ])1([ 22                          (2) 

Energy equation: 

            qAdhuhu
dz

d
iolllvvv
)/ (])1([                          (3) 

    It should be noted that the above three conservation equations are for the two-phase 

refrigerant region in the condenser. They are, however, also applicable for the single-

phase regions of the condenser if the void fraction   is replaced by unity for the 
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vapour phase or zero for the liquid phase. For the gas cooler, the above conservation 

equations are applicable if the void fraction   is set to unity. 

    The conservation equations can also be used for the air side calculations. The 

pressure drop calculation is applied instead of the momentum equation and heat transfer 

calculation is included in the energy equation for this side. In addition, there is a heat 

balance between the air and refrigerant sides for each element. 

 

2.1.2 Airside Heat Transfer 

The - NTU method is used in the calculation of the air side heat transfer.  For a single 

grid on the air side,   

          )],,(),,([min kjiTkjiTCQ ara                                                       (4) 

where, the effectiveness  is calculated from: 
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and,  
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The overall heat transfer coefficient can be calculated as: 

          1
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
                                (7) 

where Ri is the sum of heat conduction resistances through the pipe wall and collared 

fin.  
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The heat transfer from airside can be calculated as: 

           
)],,(),,([),,(      
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kjiTkjiTkjiUA
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ar

aaaaa



 
                (8) 

The parameters at grid points (i+1, j, k) for refrigerant and (i, j+1 ,k) air can be obtained 

when equations (1) to (3) are discretized and solved together with equations (4) to (8). 

    Accurate model predictions also rely upon the precise calculations of fluid properties, 

heat transfer coefficients and pressure drops on both refrigerant and air sides. The CO2 

refrigerant properties are calculated using subroutines from the National Institute of 

Standards and Technology software package REFPROP (McLinden et al. (1998)). The 

Dobson and Chato (1998) correlation is used for the calculation of the refrigerant heat 

transfer coefficient in the two-phase region of the condenser. For the single phases of 

the condenser, the calculation of the heat transfer coefficients for refrigerant flow in 

tubes is based upon the Dittus-Boelter correlation (Incoprera and DeWitt (1990)).  The 

correlation from Müller-Steinhagen and Heck (1986) is used for the refrigerant two-

phase friction pressure drop prediction in the condenser. The calculation of refrigerant 

heat transfer coefficient in the gas cooler uses the correlation by Pitla et al. (2002). The 

Blasius equation (Incropera and DeWitt(1996) is employed in the prediction of 

refrigerant pressure drop in the gas cooler. In addition, the air side heat transfer and 

friction coefficients are computed using the correlations by Wang et al (1999,2001).  

 

2.2. Compressor model 

 

An open-type compressor is assumed and modelled using the empirical correlations 

from Brown et al (2002) for volumetric and isentropic efficiencies.  
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    The volumetric efficiency can be calculated from: 

            













 )1(09604.018263.0

1

 Pv R                          (9) 

and the isentropic efficiency from: 

 

            pis R04478.09343.0                           (10) 

 

3. Model validations 

 

The finned-tube air-cooled condenser model has been validated previously by 

comparing the model with test results (Ge and Cropper (2004)). Therefore, only the 

validation of the gas cooler model is described in this paper.  

    Detailed test results published by Hwang et al. (2005) were used for the validation, of 

which were obtained on a test facility developed for the evaluation of components for 

transcritical CO2 systems. The test facility consisted of two environmental chambers 

which established the conditions for the evaporator and gas cooler/condenser 

respectively. Using this facility, numerous parametric tests were carried out on a CO2 

gas cooler. Varied parameters included inlet air temperature and velocity, refrigerant 

inlet temperature, mass flow rate and operating pressure.  

    A schematic diagram and flow arrangement of the gas cooler is shown in Figure 4 

and specifications are listed in Table 1. To measure the variation of refrigerant 

temperature along the heat exchanger pipes, a number of thermocouples were attached 

to the outer surface of the pipes at the refrigerant inlet and outlet and to the U-bend 
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pipes. These thermocouples were well-insulated to guarantee accuracy in their 

temperature measurement.  

    Figures 5 and 6 display a comparison between simulation and test results for 

refrigerant temperature along the length of the gas cooler under different test conditions. 

It is noticeable from both the simulation and test results that most cooling occurs in the 

first few pipes, with the rapid reduction of refrigerant temperature and almost linearly 

up to pipe 6. The rate of cooling then reduces and plateaus at around pipe 27.  Figures 5 

and 6 also illustrate that for a constant refrigerant and air inlet temperature, the higher 

the air face velocity the higher the cooling rate of the refrigerant. This is evidently 

attributable to the impact of air velocity on the air side heat transfer coefficient.  

    The comparison between test and simulation results show that in the first few pipes 

the simulation under predicts the refrigerant temperature in the pipes particularly at the 

lower air face velocity of 1.0 m/s. This may be due to under prediction of the air side 

heat transfer coefficient at low velocities and high temperature differences such that this 

area requires further investigation. The impact of the simulation error in the first few 

pipes upon the overall simulation of the gas cooler, however, is fairly insignificant. The 

principal feature of the simulation employed in this paper is the simulation accuracy of 

the refrigerant outlet temperature of the gas cooler. Figure 7 compares the test and 

simulation results of the gas cooler refrigerant outlet temperature with error lines of 

±2.0 
o
C and displays the vast majority of the results falling within the ±2.0 

o
C error 

lines.  

 

4. Development of control strategies  
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To achieve an optimum performance, various control strategies are implemented 

dependent upon whether the system operates in the transcritical or subcritical mode. The 

mode of operation is determined by the Transition Air Temperature (TAT) which is a 

design parameter. This temperature primarily depends upon the effectiveness of the gas 

cooler and has been steadily increasing in the recent years due to the innovated designs 

of more effective gas coolers. 

    Thermodynamic analyses of the CO2 system indicate that whilst the system operates 

in the transcritical mode, there is an optimum discharge (or ‘head’) pressure that 

maximises the system COP. The variation of this optimum pressure with the ambient air 

temperature is shown in Figure 8 for a gas cooler approach temperature of 3 K, a 

constant evaporating temperature of - 10 °C and 10 K superheat at the evaporator outlet. 

The approach temperature for a heat exchanger is defined as the as the minimum 

temperature difference between the two fluids. In this paper, for an air-cooled gas 

cooler, the approach temperature is assumed to be the temperature difference between 

refrigerant outlet and incoming air inlet.   This shows that the optimum value of 

discharge pressure increases with higher ambient temperature of above 25 °C. For 

instance, at an ambient temperature of 28 °C, the optimum discharge pressure is 80 bar 

giving a cycle COP of approximately 2.3. At a higher ambient temperature, such as 35 

°C, the optimum discharge pressure increases to 93 bar and the corresponding COP 

drops to 1.8. 

    The discharge pressure can be controlled by the high pressure valve (HP control 

valve, Figure 1). A programmed controller is needed to calculate the pressure setting 

point as a function of ambient temperature. The inputs of the controller are the 

discharge pressure and ambient temperature and the output from the controller will 
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modulate the high pressure valve.  The variation in discharge pressure in response to 

changes in ambient temperature will instigate the approach temperature of the gas 

cooler to diverge away from its design value. A constant approach temperature can be 

maintained by modulating the coolant flow rate across the gas cooler through the use of 

variable speed fans. A variable frequency drive (VFD) system can be installed to 

modulate the frequency of the electrical power supplied to the fan motor in order to 

control the air face velocity. It is noted that the fan power consumption of condensers or 

gas coolers in a refrigeration system is normally about 5% or less of those consumed by 

compressors. Therefore somewhat air flow increase by modulating the fan speed will 

increase fan power consumption but it will not be significant enough to affect the 

cooling COP or EER.  

    For a subcritical cycle, the maximum condensing temperature can not be higher than 

approximately 31 °C, a value very close to the critical point. For a conventional HFC or 

HCFC system which employs floating head pressure controls, the temperature 

differences between the condensing refrigerant and ambient air can be assumed as 15 K 

(Faramarzi and Walker (2004)). If the equivalent temperature difference is applied for a 

CO2 system, the transition air temperature can be taken as 16 °C (Girotto et al. (2004)). 

Recent improvements in the efficiency of condensers and gas coolers, nonetheless, 

allow a smaller refrigerant-air temperature difference, such as 10 K, to be used and a 

transition air temperature of around 21 °C is currently applied successfully throughout 

the UK.   

    To investigate the effect of transition air temperature on system performance, the two 

transition temperatures of 16 °C and 21 °C have been considered in this study. For 

control stability, a dead band of 1 °C was used for the two set-points. For both the 
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transcritical and subcritical modes of operation, the assumption stated that the system 

would employ compressor variable speed control to correspond with the cooling 

capacity of the system to the load. For floating ‘head’ pressure control in a subcritical 

operation the minimum condensing temperature for the refrigeration system was 

assumed as 10 °C (Girotto et al. (2004)). 

    In the case of the transition temperature of 161.0 °C, at ambient temperature below 

15 °C, the condensing temperature and pressure reduces with a decreased ambient 

temperature until the condensing temperature reaches the minimum of 10 °C, which 

occurs at an ambient temperature of 10 °C-15 °C = -5°C (assuming a temperature 

difference of 15 K between condensing and ambient temperatures). For ambient 

temperatures below -5°C, a constant pressure will be maintained at around 45 bar. On 

the other hand, any ambient temperatures above 17°C will stimulate the system to 

operate in the transcritical mode. The discharge pressure will be kept constant at 80 bar 

with increasing ambient temperatures of up to 29°C. Any values above this temperature 

will control the discharge pressure to the optimum value, which subsequently increases 

with ambient temperatures as shown in Figure 8. 

    For the transition temperature of 211.0°C, at ambient temperatures below 20°C, the 

condensing temperature and pressure will be reduced with decreasing ambient 

temperatures until the condensing temperature reaches the minimum of 10°C. This will 

occur at an ambient temperature of 10°C-10°C=0°C (assuming a temperature difference 

of 10 K between condensing and ambient temperatures). For ambient temperatures 

below 0°C the pressure will be kept constant at around 45 bar. On the other hand, 

ambient temperatures above 22°C will induce the system to operate in the transcritical 

mode. A constant discharge pressure will be maintained at 80 bar with increasing 
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ambient temperatures of up to 29°C. As shown in Figure 8, any values above this 

temperature will monitor the discharge pressure to the optimum value. 

    When the ambient temperature is within one of the transition temperature periods, 

(16±1°C or 21±1°C), the discharge pressure will be maintained as one in the previous 

operation mode (transcritical or subcritical). 

    The variation of the controlled refrigerant discharge pressure with ambient air 

temperatures for the two transition temperatures of 16°C and 21°C is shown in Figure 9. 

The variation can be expressed mathematically by the equations 11 and 12 respectively.  

 

When TAT=16±1°C, 
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and when TAT=21±1°C, 
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    To establish the effect of the control strategies outlined above on the system 

performance, these strategies were applied to the simulation of the CO2 refrigeration 

system model. The condenser/gas cooler was assumed to have equal characteristics to 
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those shown in Figure 4. To correspond with the compressor capacity to the 

condenser/gas cooler, a displacement of 2.75 m
3
/h was selected for the open-type 

compressor and a constant evaporating temperature of -10°C and 10K superheat at the 

evaporator outlet were assumed for the simulations. For the base case, in a transcritical 

operation the approach temperature on the gas cooler outlet was attained as 3K and in a 

subcritical operation the degree of subcooling was rendered 5K. 

    Figure 10 shows the variation of the system cooling capacity and compressor power 

consumption with ambient temperature for the two transition temperatures. The 

variation of the system COP is shown in Figure 11. 

    For 16°C TAT, when the ambient temperature is below -5°C, both the condensing 

temperature and the evaporating temperature will be controlled to constant values and 

hence the cooling capacity, power consumption of the compressor and cooling COP will 

remain constant. When the ambient temperature is between -5°C and 15°C, the 

discharge pressure will increase with the ambient temperature, as indicated in Figure 9. 

This will cause an augmentation in the compressor power consumption and a reduction 

in both the cooling capacity and the cooling COP. At ambient temperatures between 

17°C and 29°C, the discharge pressure will be controlled to a constant value and thus 

the compressor power consumption will remain constant. Nonetheless, the system 

cooling capacity will decrease due to the increased refrigerant temperature at the gas 

cooler exit which will further lead to a decline in the system cooling effect and, 

consequently, a reduction in the cooling COP. When the ambient temperature is above 

29 °C, the power consumption of the compressor will increase, whilst both the cooling 

capacity and COP will decrease corresponding to higher ambient temperatures. This is 

because the controlled discharge pressure increases together with the elevated ambient 
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temperature. In the transition temperature period of 161°C, the system performance 

would depend upon the system operation mode. If the operation mode is subcritical, the 

compressor power consumption, cooling capacity and COP would all be unchanged. 

Supposing in this period the system is in transcritical mode, the compressor power will 

remain unchanged, whilst the cooling capacity and COP will decrease with higher 

ambient air temperatures. Similar trends can be applied to the system of 21 °C TAT but 

with different magnitude levels. The power consumption is never higher nor the cooling 

COP lower for 21°C TAT than those for 16°C TAT at different ambient temperatures. 

The cooling capacity for 21°C TAT is always greater than that of 16°C TAT when 

ambient temperature is below 15°C or above 22°C. At ambient temperatures between 

15°C and 22°C, the cooling capacity for 21°C TAT would be lower if a system with 

16°C TAT is in the transcritical mode; otherwise, it will be a higher capacity. 

    In supermarket applications, should the internal temperature and relative humidity be 

controlled by the air conditioning system to constant values, the load on each installed 

display cabinet needs to remain equivalent to the designed value despite any changes in 

the outside ambient temperature. The capacity of the refrigeration system is designed to 

coincide with the total load at a designed ambient air temperature which should be 

sufficiently high in order to minimise the design risk without excessively over-sizing the 

system. For the exemplar CO2 system considered in this study, an ambient design 

temperature of 40
o
C was selected, giving the cooling capacity for the system of 4.7 kW. 

At ambient temperatures below 40
o
C, the system will have excess capacity comparable 

to the constant load by modulating the compressor motor frequency. A variable 

frequency drive (VFD) system can also be installed to control the frequency of the 
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electrical power supplied to the compressor motor. The rotational speed of the motor is 

therefore controlled. 

     The variation of the motor frequency with ambient temperatures is shown in Figure 

12. Correspondingly, the variations of normalized compressor power consumption, 

cooling capacity and COP are shown in Figure 13. For a 16
o
C TAT, when the ambient 

temperature is between 40
o
C and 17

o
C, the system is in a transcritical mode and both 

the motor frequency and the normalised compressor power consumption decrease 

alongside the lower ambient temperature. When the ambient is between 15
o
C and -5

o
C, 

the system is in a subcritical mode and the motor frequency and the normalized power 

consumption are both reduced with the lower ambient temperature. When the ambient 

temperature is further reduced from -5
o
C, the system is still in the subcritical mode and 

both the motor frequency and the normalized power consumption remain unchanged at 

minimum values. In the transition temperature period between 15
o
C and 17

o
C, the 

motor frequency and the normalized power consumption are all unaffected in the 

subcritical mode but increase with the ambient temperature in transcritical mode. 

Similar trends can be found for the system with a 21°C TAT. However, the compressor 

power consumptions for 21°C TAT are always lower than or equal to that of a system 

with a 16°C TAT. The required motor frequency for a 21°C TAT is never higher than 

that of system with 16°C TAT when the ambient temperature is below 15°C or above 

22°C. When the ambient temperature is between 15°C and 22°C, the motor frequency 

for 16°C TAT is lower should it be in transcritical mode and higher in a subcritical 

mode. For both TATs, the normalised cooling capacity can always be maintained in 

unison.  
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    It should be noted that the proposed control strategies are based upon the assumptions 

of the 3K approach temperature at the gas cooler exit and the 5K subcooling at the 

condenser outlet. However, both the approach temperature and the subcooling will be 

affected by different ambient temperatures, and there are set requirements for the 

application of controls in order to maintain these two temperature differences. The 

effects of ambient temperature at various heat exchanger face velocities on the approach 

temperature and the subcooling were predicted by the developed model and are shown 

in Figure 14 for the approach temperature and in Figures 15 and 16 for the subcoolings 

at different TATs. At a specific ambient temperature, the approach temperature 

decreases with an increased air face velocity, while the subcooling increases with a 

higher air face velocity. At different ambient temperatures, the air face velocities ensure 

the constant approach temperature and the predictions for the subcooling are shown in 

Figure 17.  

    In addition to the ambient temperature and air face velocity, the refrigerant 

parameters at the heat exchanger inlet such as temperature, pressure and mass flow rate 

will also strongly affect the approach temperature and the subcooling.  To fully 

comprehend the variation of the controlled air face velocity with the ambient 

temperature at different TATs, as shown in Figure 17, the effect of ambient temperature 

upon these refrigerant parameters requires careful consideration. For a 16°C TAT, when 

the ambient temperature is below -5°C, the refrigerant parameters at the condenser inlet 

do not vary with the ambient temperature. Thus, to maintain a constant subcooling, the 

air velocity requires an augmentation with a higher ambient temperature. When the 

ambient temperature is increased from -5°C to 15 °C, the refrigerant inlet temperature, 

pressure and mass flow rate all increase. These higher refrigerant inlet temperatures and 
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mass flow rates have negative trends to the subcooling but a higher inlet pressure will 

boost the subcooling. The interactions amongst these three parameters will render the 

initial rise in the air face velocity and reduction with a higher ambient temperature. 

When the ambient temperature increases from 17°C to 29°C, the system is in a 

transcritical mode but at a constant refrigerant discharge pressure and inlet temperature 

whilst the refrigerant mass flow rate rises owing to a higher motor frequency, as shown 

in Figure 12. Consequently, there is a slight increase in the air face velocity with a 

higher ambient temperature. When the ambient temperature is increased from 29 °C, the 

air face velocity experiences an abrupt rise due to an increased refrigerant pressure. 

When ambient temperature is further increased, the approach temperature has a trend to 

decrease and, to a certain extent, the air face velocity also reduces. In the transition 

temperature period of 161°C, the air face velocity increases with higher ambient 

temperature, unless the minimum air face velocity is achieved whereby the air face 

velocity remains the same. Similar results can be applied to the system with different 

TATs. However, the controlled air face velocity for a 21°C TAT is always higher than 

or equal to that of system with a 16°C TAT. 

   The system simulation procedure can therefore be generalised. When ambient air 

temperature is know, the refrigerant gas cooler outlet temperature and optimal discharge 

pressure will be determined according to constant approach temperature and equation 

(11) or (12). The refrigerating effect is then solved when the evaporating temperature 

and superheating at evaporator outlet are specified. The required refrigerant mass flow 

rate is subsequently calculated when the cooling load is given. The compressor motor 

frequency is then updated to satisfy the required refrigerant mass flow rate. Afterwards, 

the condenser or gas cooler model is run and the fan speed (air velocity) is modulated to 
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guaranty that the calculated approach temperature and subcooling are close to the 

designed values. As a result, the compressor power consumption and cooling COP are 

predicted. 

    The control strategies outlined above can be used to predict the seasonal compressor 

power consumption of a CO2 refrigeration system. In this paper, weather data for the 

city of Glasgow in the UK was chosen for simulation. The hourly variation of the 

ambient temperature over an entire year in Glasgow is shown in Figure 18. This 

diagram highlights that for the majority of time, the ambient temperature is below 20
o
C.  

To investigate the effect of transition temperatures upon the annual compressor energy 

consumption, annual simulations were performed for the two transition temperatures. 

The conclusive results, shown in Figure 19, were normalised against the power 

consumption of the system at a 40
o
C ambient temperature.  These results demonstrate 

that lower transition temperatures lead to higher compressor power consumptions, 

compared with higher transition temperatures. The annual electrical energy savings for 

the 21°C TAT over the 16 C TAT is at 18%.  

 

5. Conclusions 

 

A procedure has been established by means of system models and the calculations of 

thermodynamic cycles to explore optimal control strategies for transcritical and 

subcritical CO2 cycles of medium temperature food retail refrigeration systems. The 

system model is an integration of a detailed condenser /gas cooler model, simplified 

compressor model, isenthalpic expansion process, and constant evaporating temperature 

and superheating. Two transition ambient temperatures of 16C and 21C from 



   24 

subcritical to transcritical operations were investigated. The variations of controlled 

refrigerant discharge pressures and cooling COP with ambient temperatures for these 

two transition temperatures were proposed and thus calculated. The control strategy 

employs variable speed compressor controls, and variable speed condenser fan controls. 

The compressor speed and capacity was modulated to correspond to the system capacity 

which varies with the ambient temperature to the load. During the subcritical operation, 

the condenser subcooling is controlled to a fixed value of 5 K by varying the air 

flowrate across the condenser. In the transcritical operation, the gas cooler air flow rate 

is varied to maintain a constant approach temperature of 3 K. When applying the control 

strategies into system performance simulations, the system performance with a higher 

transition temperature is continuously more advanced than that with a lower transition 

temperature, although there are requirements for a higher air face velocity.  

Furthermore, seasonal simulations for the city of Glasgow have shown that using the 

proposed control strategy will lead to energy savings of approximately 18% with a 

transition temperature of 21
o
C compared to 16

o
C. The proposed control strategies can 

be applied to both the existing and new CO2 refrigeration systems when subscritical and 

transcritical operations are employed. 
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Fig. 1 - Schematic diagram of an all CO2 medium temperature supermarket refrigeration system. 
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Fig. 2 - CO2 transcritical and subcritical cycles with gas cooler outlet temperature of 40 C and 

evaporating temperature of -10 C. 
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Fig. 3 - Three-dimensional coordinate of sub elements in the coil for the condenser/gas cooler 

model. 
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  Fig. 4 - Tested gas cooler and numbered pipes. 
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Fig. 5 - Comparison of simulation with test results for refrigerant temperature along the length of 

the gas cooler (1
st
 set of test conditions). 
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Fig. 6 - Comparison of simulation with test results for refrigerant temperature along the length of 

the gas cooler (2
nd

 set of test results). 
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Fig. 7 - Comparison of simulation with test results for gas cooler refrigerant outlet temperature.  
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Fig.8 - Variation of cooling COP with refrigerant discharge pressure at different ambient air 

temperatures. 
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Fig. 9 - Variations of controlled refrigerant discharge pressures with ambient temperatures for the 

two transition temperatures. 
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Fig. 10 - Variation of compressor power consumption and cooling capacity with ambient air 

temperature. 
 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

-10 -5 0 5 10 15 20 25 30 35 40

Ambient air temperature (°C)

P
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 a

n
d

 c
o

o
li
n

g
 

c
a

p
a

c
it

y
 (

k
W

)

Transition temp.=16±1°C

Transition temp.=21±1°C

Cooling 

capacity

Power 

consumption



   38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 - Variation of cooling COP with ambient air temperature. 
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Fig. 12 - Variation of compressor motor frequency with ambient temperature. 
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Fig. 13 - Variation of normalized power consumption and cooling capacity with ambient air 

temperature.  
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Fig. 14 - Variation of gas cooler approach temperature with ambient air temperature and face 

velocity. 
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Fig. 15 - Variation of refrigerant subcooling at condenser outlet with ambient temperature and face 

velocity at 16 
o
C transition air temperature. 
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Fig. 16 - Variation of refrigerant liquid subcooling at condenser outlet with ambient temperature 

and air face velocity at 21 C transition air temperature. 
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Fig. 17 - Variation of condenser/gas cooler air face velocity with AAT. 
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Fig. 18 - Hourly variation of ambient air temperature in Glasgow.  
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Fig. 19 - Hourly Variation of normalised compressor power consumption for the two transition 

temperatures over a year. 
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Table 1 Specification of the tested gas cooler 

Parameters                                                                                                         Dimensions/Specifications 

___________________________________________________________________________________ 

WHD (m)                                                                                                       0.610.460.05 

Front area (m
2
)                                                                                                   0.281 

Shape                                                                                                                 Raised lance 

Fin pitch (mm)                                                                                                   1.5 

Thickness (mm)                                                                                                 0.13 

No. of tube rows                                                                                                3 

No. of tubes per row                                                                                         18 

Tube outside diameter (mm)                                                                             7.9 

Tube inside diameter (mm)                                                                               7.5 

Tube shape                                                                                                        Smooth 

___________________________________________________________________________________ 

 

 

 

 

 

 

 

 


