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Dual-Lattice Ordering and Partial Lattice Reduction
for SIC-Based MIMO Detection
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Abstract— In this paper, we propose low-complexity lattice
detection algorithms for successive interference cancelation in
multi-input multi-output (MIMO) communications. First, we
present a dual-lattice view of the vertical Bell Labs Layered
Space-Time (V-BLAST) detection. We show that V-BLAST
ordering is equivalent to applying sorted QR decomposition
to the dual basis, or equivalently, applying sorted Cholesky
decomposition to the associated Gram matrix. This new view
results in lower detection complexity and allows simultaneous
ordering and detection. Second, we propose a partial reduction
algorithm that only performs lattice reduction for the last several,
weak substreams, whose implementation is also facilitated by the
dual-lattice view. By tuning the block size of the partial reduction
(hence the complexity), it can achieve a variable diversity order,
hence offering a graceful trade-off between performance and
complexity. Numerical results are presented to compare the
computational costs and to verify the achieved diversity order.

I. INTRODUCTION

In several models of digital communications such as multi-
user detection/broadcast, multi-antenna communication with
or without linear encoding, and cooperative diversity with
amplify-and-forward relaying, the outputs can be written as
a linear combination of the inputs corrupted by additive noise
[1], [2]. When the system sizes become moderately large
which is common in multi-user multi-antenna communica-
tion, fast decoding for such multi-input multi-output (MIMO)
systems in the broad sense is a challenging problem. The
theory of lattices has emerged as a powerful tool for MIMO
decoding, as the problem can be formulated as the closest
vector problem (CVP) in the language of lattices [3], [4]. For
regular constellations, the CVP can be solved exactly by using
sphere decoding [1], [5]. While sphere decoding greatly lowers
the decoding complexity, its average complexity still grows
exponentially with the system size for any fixed signal-to-noise
ratio (SNR) [6]. The complexity can be further reduced by
using lattice reduction [7], [8]. Among the algorithms of lattice
reduction, the Lenstra, Lenstra and Lovász (LLL) algorithm
[9] is the most practical in terms of computational costs since
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it features polynomial complexity. Full receive diversity of
lattice-reduction-aided decoding was shown in [10], while
the performance gap to (infinite) lattice decoding has been
determined in [11].

For practical implementations, even the LLL reduction
might not be fast enough. Moreover, its complexity is vari-
able [12], [13]. The vertical Bell Labs Layered Space-Time
(V-BLAST) detection is a well known technique for low,
fixed-complexity MIMO detection [14]. It orders the data
substreams and employs successive interference cancellation
(SIC). The naive implementation of the ordering algorithm
requires O(N4) computational complexity for an N × N
MIMO system. A number of O(N3) V-BLAST algorithms
have been developed [15]–[21], while suboptimal orderings
were proposed in [22], [23]. Ordering can also speed up lattice
reduction as a preprocessing step [24] or when being integrated
into the reduction algorithm [25]. Despite considerable gain of
SNR, V-BLAST ordering fails to increase the diversity order.
In fact, it was shown remarkably in [26] that no ordering can
increase the diversity order.

In this paper, we present new low-complexity lattice detec-
tion algorithms. Firstly, we interpret V-BLAST ordering from
the viewpoint of lattices. The dual lattice has nice properties
for MIMO detection, which prompt a new ordering algorithm
for V-BLAST. The proposed dual-lattice algorithm has two
versions: one applies sorted QR decomposition to the dual
basis, while the other applies sorted Cholesky decomposition
to the associated Gram matrix. Secondly, we propose partial
lattice reduction that is tunable from V-BLAST to full lattice
reduction. It reduces the end of the basis and can achieve
an increasing diversity order as the block size of the partial
reduction increases. Its implementation can also be facilitated
by the dual-lattice view.

Notation: Matrices and vectors are denoted by boldface
letters, and the transpose, Hermitian transpose, inverse, pseu-
doinverse of a matrix A by AT , AH , A−1 and A†, respec-
tively. The columns of an M × N matrix A are denoted by
a1,a2, ...,aN , while the (j, k)-th element of A is denoted by
aj,k. IN denotes the N ×N identity matrix. ‖x‖ denotes the
Euclidean length of a vector x. dxc denotes the integer closest
to x.

II. MIMO DETECTION AND LATTICE BASICS

For convenience, consider an uncoded M ×N MIMO sys-
tem where quadrature amplitude modulation (QAM) symbols
are sent. The received signal vector is a noisy version of a
point in a lattice. Let x = (x1, ..., xN )T be the N × 1 data
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vector, where each symbol xn is chosen from a finite subset
of the complex integer lattice Z+ iZ. With proper scaling and
shifting, one has the MIMO system model

y = Hx + n (1)

where y,n ∈ CM denote the channel output and noise vectors,
respectively, and H ∈ CM×N is the M ×N full-rank matrix
of channel coefficients with N ≤ M . The entries of n are
i.i.d. complex Gaussian with variance σ2 each.

Prior to detection, the zero-forcing (ZF) detector applies the
left pseudoinverse H†:

z = H†y = (HHH)−1HHy, (2)

while the minimum mean-square error (MMSE) detector ap-
plies MMSE filtering:

z = (HHH + σ2IN )−1HHy (3)

where the data vector is assumed to have been scaled to unit
average power.

There are two formulations of successive interference cance-
lation (SIC) detection which are mathematically equivalent but
have different implementations. In the first formulation [14],
[18], one detects a symbol xn, subtract out the interference,
deflate H, and update the filtering matrix (i.e., inverse Gram
matrix) in (2) or (3). In the second formulation, one uses
the QR decomposition [15], [16]. In particular, under the ZF
criterion one applies the QR decomposition H = QR, where
Q is an orthonormal matrix and R is an upper triangular
matrix [27]. Multiplying (1) on the left with Q† one has

y′ = Q†y = Rx + n′. (4)

Then, starting from the end of R, previously detected symbols
are substituted to remove the interference. Meanwhile, the
MMSE version is equivalent to dealing with the augmented
channel matrix [15]

H̃ =
[

H
σIN

]
. (5)

For simplicity, the algorithms developed in this paper will
mostly be presented under the ZF criterion. However, we stress
that the algorithms are equally applicable to both the ZF and
the MMSE criteria, since they are formally similar. One only
needs to replace H with H̃ (or to replace (HHH)−1 with
(HHH + σ2IN )−1) in MMSE-SIC.

Obviously, the order of detection makes a difference in the
error performance of SIC. Ordering amounts to permuting
the columns of H, i.e., multiplying H on the right with a
(square) permutation matrix P so that a certain criterion is
met. In V-BLAST, this is done successively from bottom up;
it always chooses the column with the maximum distance at
each stage of detection. It is proven that this greedy search
strategy actually maximizes the minimum distance among all
N ! possible orders [14].

The QR decomposition can be implemented by the Gram-
Schmidt orthogonization H = ĤµT , where Ĥ = [ĥ1, ..., ĥN ],
and µ = [µi,j ] is a lower-triangular matrix with unit diagonal
elements [27]. One has the relations µj,i = ri,j/ri,i and ĥi =
ri,i · qi. The decision region of SIC for the lattice point x =

0 is the rectangle {y|y = Ĥa,−1/2 ≤ an < 1/2} [11].
Correspondingly, the distance to the n-th facet of the decision
region is given by dn = ‖ĥn‖/2, n = 1, ..., N [11]. Hence,
V-BLAST ordering amounts to successively choosing the n-
th Gram-Schmidt vector with the maximum length for n =
N,N − 1, ..., 1.

The theory of lattices is a useful tool to study MIMO
detection. An N -dimensional complex lattice L , L(H) with
basis H is generated as the complex-integer linear combination
of the set of linearly independent vectors {h1,h2, ...,hN}. As
the received vector y is a noisy version of a point in the lattice
{Hx|x ∈ ZN + iZN}, the detector aims to search for a point
in the lattice that is reasonably close to y, if not the closest.

Lattice reduction is the problem of selecting a nice basis
among many possible bases of a lattice. The celebrated LLL
algorithm is a polynomial-complexity algorithm at the expense
of exponential approximation factors [9]. The original LLL
algorithm dealt with real-valued lattices. It has been extended
to complex-valued lattices in [28]. A complex basis H is LLL
reduced if

|<(µi,j)| ≤ 1/2, |=(µi,j)| ≤ 1/2, 1 ≤ j < i ≤ N ; (6)

‖ĥi + µi,i−1ĥi−1‖2 ≥ δ‖ĥi−1‖2, 1 < i ≤ N. (7)

The condition (6) is called size reduction, while the Lovász
condition (7) means that the lengths of ĥi’s are not too
different. The parameter δ takes values in the interval (1/2, 1]
for complex LLL reduction; a larger value means stronger but
slower reduction.

Since the decision region of SIC is determined by Gram-
Schmidt vectors ĥi only, the full size-reduction condition (6)
is unnecessary, and a weaker version of the LLL algorithm
suffices for SIC. Extending the definition for real-valued
lattices [12], we define an effectively LLL-reduced complex
basis as that satisfies condition (7) and

|<(µi,i−1)| ≤ 1/2, |=(µi,i−1)| ≤ 1/2, 1 < i ≤ N. (8)

The LLL algorithm can also run with the Gram matrix A =
HHH, since LLL conditions are invariant with respect to Q
[29]. To obtain R, one replaces the QR decomposition with
the Cholesky decomposition A = RHR where R is an upper
triangular matrix. As we will see later, the usage of the Gram
matrix may lead to lower complexity.

One can combine lattice reduction with conventional SIC
[7], [8]. More precisely, the basis H is transformed into a new
basis consisting of near-orthogonal vectors H′ = HU where
U is a unimodular matrix, i.e., U contains only complex-
integer entries and the determinant detU = ±1,±i. Then
one has the equivalent channel model

y = H′U−1x + n = H′x′ + n, x′ = U−1x.

Then the conventional SIC detector is applied on the reduced
basis. The estimate x̂′ is then transformed back into x̂ = Ux̂′.

III. DUAL-LATTICE ORDERING FOR V-BLAST

Similar to a real lattice, the dual lattice L∗ of a complex
lattice L is defined as those vectors u, such that the inner
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product 〈u,v〉 ∈ Z+ iZ, for all v ∈ L. Usually, the dual basis
is given by (H†)H . In this paper, we follow the definition in
[30] that reverses the columns of (H†)H . Let J be the column-
reversing matrix with ones on the anti-diagonal only. Then the
dual basis can be expressed as H∗ = (H†)HJ. The dual lattice
is the same under the two definitions. Yet, the latter definition
of the dual basis is better suited to our application.

A. Properties of the Dual Basis

The following property is a trivial extension of its real-
valued counterpart in [31] to complex-valued bases.

Property 1: Let H = ĤµT and H∗ = Ĥ∗(µ∗)T be the
Gram-Schmidt orthogonalization of the primal basis H and
dual basis H∗, respectively. Then

Ĥ∗ = (Ĥ†)HJ,

µ∗ = J(µ−1)HJ.
(9)

Ĥ∗ = (Ĥ†)HJ implies an elegant relation between a basis
and its dual [30]:

ĥ∗n =
ĥN−n+1

‖ĥN−n+1‖2
, n = 1, 2, ..., N (10)

where ĥ∗1, ..., ĥ
∗
N are the Gram-Schmidt vectors of the dual

basis H∗. Obviously,

‖ĥ∗n‖ = 1/‖ĥN−n+1‖. (11)

It implies that if the dual basis has short Gram-Schmidt
vectors, then the distances from the noise-free lattice point to
the decision region boundary will be large for the SIC detector.

In the original V-BLAST paper [14], the SIC detection
progresses as

x̂n = Q


wH

n


y −

N∑

j=n+1

hj x̂j






 (12)

for n = N, ..., 1, where Q(·) is the quantization function, and
the n-th nulling vector wn is defined as the unique minimum-
norm vector satisfying

〈wn,hk〉 =
{

0, for k < n,

1, for k = n.
(13)

The Gram-Schmidt orthogonalization of the dual basis has
the following property that is appealing to the implementation
of the detector.

Property 2: The n-th Gram-Schmidt vector of the dual
basis H∗ is the (N−n+1)-th nulling vector for SIC, namely,

ĥ∗n = wN−n+1, n = 1, 2, ..., N. (14)
Proof: It is easy to see from (13) that

wn =
qn

rn,n
=

ĥn

r2
n,n

=
ĥn

‖ĥn‖2
.

Substituting (10), we have wn = ĥ∗N−n+1.
Property 3: Ordering the dual basis corresponds to ordering

the primal basis with the same permutation matrix.

To see this, suppose P is the permutation matrix arising
from ordering the dual basis, then the corresponding primal
basis is given by

H′ = (H∗P)∗ = HP∗ = HP (15)

since (AB)† = B†A† for full-rank matrices A and B [27],
and (P†)H = (P−1)H = (PH)H = P for any permutation
matrix P.

B. Dual-Lattice Algorithm Using Basis Matrix H

The inversely proportional relation (11) between the lengths
of the Gram-Schmidt vectors leads to a new interpretation
of V-BLAST ordering. That is, it permutes the dual basis in
such an order that the lengths of its Gram-Schmidt vectors
are successively minimized for n = 1, 2, ..., N , instead of
maximizing that of the primal basis for n = N,N − 1, ..., 1.
The former is more tractable.

This ordering can be realized by slightly modifying the
standard Gram-Schmidt orthogonalization, as done in the
sorted QR decomposition of Wubben et al. [22]. As in [22], the
only change is to sort the remaining columns of H∗ according
to their length orthogonal to the linear space spanned by
the Gram-Schmidt vectors already obtained. This results in
significant computational savings because only a single Gram-
Schmidt orthogonalization process is needed. The following
proposition is the main discovery of this section:

Proposition 1: Applying the sorted QR decomposition to
the dual basis realizes the V-BLAST ordering.

We stress that Wubben et al.’s original work on sorted QR
decomposition results in suboptimal (in the sense of maximiz-
ing the minimum distance) ordering when applied to the primal
basis H; the min-max strategy is not necessarily equivalent
to the max-min one of V-BLAST. On the other hand, it is
worth mentioning that the error rate performance of sorted QR
decomposition is not much inferior to that of the V-BLAST
ordering [22]. This is because det(L) =

∏N
n=1 ‖ĥn‖ is a

lattice constant for given basis H; minimizing ‖ĥn‖ starting
from n = 1 will force large values for ‖ĥN‖, ‖ĥN−1‖, · · ·
and vice versa.

Algorithm 1 describes the whole ordering and detection
process, where the Gram-Schmidt matrix Ĥ∗ is continuously
being updated, and p is the permutation vector.

Algorithm 1: (Dual-lattice algorithm using sorted QR de-
composition)

Initialization: Set Ĥ∗ = H∗,p = (1, 2, ..., N)T .
Recursion: For n = 1, ..., N

1) Sorting and nulling. Find the index j =
arg minn≤m≤N ‖ĥ∗m‖, exchange the n-th and j-th
columns of Ĥ∗, and also pn and pj . Then, project the
received signal y onto the nulling vector ĥ∗n and perform
the detection

x̂pn = Q
(
(ĥ∗n)Hy

)
.

2) Interference cancelation. Subtract the detected symbol
from the received signal

y := y − hpn x̂pn .
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3) Projection. Project the remaining columns of H∗ to the
orthogonal complement of ĥ∗n

ĥ∗m := ĥ∗m − (ĥ∗n)H ĥ∗m
‖ĥ∗n‖2

ĥ∗n, m = n + 1, ..., N. (16)

In Algorithm 1, the Gram-Schmidt vector ĥ∗n for n =
1, ..., N are used as the nulling vectors (cf. Property 2). There-
fore, the algorithm does not only have O(N3) complexity for
an N ×N system, it also integrates the ordering and nulling
processes. The projection procedures (16) is in fact the so-
called modified Gram-Schmidt orthogonalization.

Remark 1: For V-BLAST under the MMSE criterion, one
replaces H with the augmented matrix H̃ in (5).

Remark 2: Note that the sorted QR decomposition is a
modification of the classical QR decomposition with pivoting
[27], where the maximum column length is chosen at each
step. Choosing the minimum column length at each step is
not attractive from the viewpoint of numerical stability. Better
numerical stability can be obtained by using the Householder
and Givens transform.

C. Dual-Lattice Algorithm Using Gram Matrix HHH

We now present a Gram-matrix version of the dual-lattice
algorithm, motivated by the Gram matrix version of the LLL
algorithm. This algorithm is a modification of the classic
outer-product Cholesky decomposition with pivoting [27]. It
has lower complexity than sorted QR decomposition, as the
Cholesky decomposition will be faster given the Gram matrix.

This algorithm is closely related to Benesty et al.’s algorithm
[18] where the inverse Gram matrix, i.e., the Gram matrix
of the dual basis, is updated. The complexity of Benesty et
al.’s algorithm was quite high in its form of [18]. During
the past few years, some improvements have been made to
reduce the complexity, notably [19]–[21]. We will show in
the next subsection that sorted Cholesky decomposition has
considerably lower complexity than [18].

During the execution of Algorithm 2, z is successively
shortened, the Gram matrix A = HHH is deflated, and A∗ =
(H∗)HH∗ = JA−1J is updated by Cholesky decomposition.
a∗m,n is the (m,n)-th entry of A∗, while a∗m,n denotes its
complex conjugate. For convenience, we also use MATLAB
notation a∗i:j,k to denote a vector containing those elements of
A∗.

Algorithm 2: (Dual-lattice algorithm using sorted Cholesky
decomposition)

Initialization: Set A = HHH ,A∗ = JA−1J, z =
HHy, p = (1, 2, ..., N)T .

Recursion: For n = 1, ..., N

1) Sorting and detection. Find the index j =
arg minn≤m≤N a∗m,m, exchange the n-th and j-th
columns and rows of A∗, and also pn and pj , z1 and
zj−n+1. Then, project z and perform the detection

x̂p1 = Q (
(a∗n:N,n)Hz

)
.

2) Interference cancelation. Remove the first element from
z, and the j-th row and column from A. Subtract out the
interference

z := z− aj−n+1x̂p1 .

3) Cholesky update.

a∗n+1:N,n := a∗n+1:N,n/
√

a∗n,n

a∗m:N,m := a∗m:N,m − a∗m:N,na∗m,n, m = n + 1, ..., N.
(17)

Remark 1: Obviously, one can also set A∗ = A−1, which
gives the same ordering.

Remark 2: For MMSE-SIC, one defines A = HHH ,A∗ =
(HHH + σ2IN )−1, while the rest is the same.

Remark 3: When Algorithm 2 terminates, the lower trian-
gular part of A∗ is the Hermitian transpose of the R factor of
the QR decomposition for the dual basis H∗. Although the R
factor itself is not used in Algorithm 2, it will be useful in the
next section where lattice reduction is run on the R factor.

The Cholesky update (17) corresponds to the Gram matrix
of the projected vectors ĥ∗m in (16). To see this, we derive

a∗l,m :=

(
ĥ∗l −

(ĥ∗n)H ĥ∗l
‖ĥ∗n‖2

ĥ∗n

)H (
ĥ∗m − (ĥ∗n)H ĥ∗m

‖ĥ∗n‖2
ĥ∗n

)

= (ĥ∗l )
H ĥ∗m − (ĥ∗l )

H (ĥ∗n)H ĥ∗m
‖ĥ∗n‖2

ĥ∗n

= a∗l,m − a∗l,na∗m,n

a∗n,n

,

(18)

which is equivalently implemented by (17).
It is less clear why (18) produces A∗ for the deflated Gram

matrix A. We prove this in Appendix II.

D. Comparison

A suboptimal order was given in [23] that in essence sorts
the dual basis in ascending-length order

‖h∗kN
‖ ≤ ... ≤ ‖h∗k2

‖ ≤ ‖h∗k1
‖, (19)

where we assume again the detection starts from n = N .
Surprisingly, this simple ordering is significantly better than
sorting the primal basis in the same way, and its performance
is close to that of V-BLAST ordering. The reason can be
explained by comparing it with the dual-lattice algorithm.
Clearly, the first vector on the left of (19) has the minimum
length in all columns of the dual basis, i.e., it in fact corre-
sponds to the initial sorting stage of Algorithm 1. In MIMO
fading channels, the first stage of detection usually dominates
the error performance. Therefore, its error rate performance
should not be much worse than that of V-BLAST. It can be
viewed as partial V-BLAST ordering.

In [32], [33], another V-BLAST algorithm based on the
backward Greville formula was proposed (see Appendix I).
In [32] we showed that it is the same as Algorithm 1. Further
comparison reveals that the ordering part of Algorithm 1 is the
same as that of the noise-predictive algorithm of Waters and
Barry [17]. This is because of the orthogonality principle of the
MMSE linear prediction: to achieve the MMSE, the prediction
error has to be orthogonal to the previous signals. Therefore,
the noise-predictive algorithm is also realized by recursively
projecting onto the orthogonal complement. Nonetheless, the
dual-basis algorithm does lead to some computational savings.
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TABLE I
COMPLEXITY COMPARISON FOR ZF V-BLAST DETECTION ALGORITHMS USING BASIS MATRIX (IN COMPLEX OPERATIONS, M > N )

Square-Root [15] Decorrelating [16] Noise-Predictive [17] Dual-Lattice Sorted QR [22] Dual Ascending [23]

Given H 4MN2 + 5
3
N3 2MN2 + 11

3
N3 5MN2 + 2

3
N3 5MN2 + 1

3
N3 2MN2 -

Given H∗ - - 2MN2 + 1
3
N3 2MN2 - 2MN2

TABLE II
COMPLEXITY COMPARISON FOR ZF V-BLAST DETECTION ALGORITHMS USING GRAM MATRIX (IN COMPLEX OPERATIONS)

Benesty-Huang-Chen [18] Dual-Lattice Shang-Xia [19] Zhu-Chen-She [20] Liu-Liu [21]

Given H 11
2

MN2 + 7
6
N3 MN2 + 4

3
N3 MN2 + 2N3 MN2 + 4

3
N3 2MN2 + 4

3
N3

Given H∗ - MN2 + 1
3
N3 - - -

After obtaining the detection index, the noise-predictive algo-
rithm has to calculate the prediction coefficients by inverting
an N×N triangular matrix, whose complexity is about N3/3
[17]. In contrast, the nulling vectors are readily available once
the ordering is done in Algorithm 1.

Now we analyze the complexity of the two algorithms in
terms of the number of complex-valued operations. As the
standard flop counting, this is a crude analysis of complexity,
since other overheads such as comparison and exchange are
ignored. For simplicity, we focus on the leading (i.e., cubic)
terms of the complexity, which are dominant for moderate and
large system sizes; it is in these cases that complexity becomes
an issue.

The complexity of Algorithm 1 is that of the noise predictive
algorithm [17] less N3/3. More precisely, the complexity
for ZF-SIC is approximately 5MN2 + 1

3N3 for M > N ,
where H† is computed by using QR decomposition; it is
11
3 N3 for M = N (?), where H−1 is computed by using LU

decomposition. For MMSE-SIC, one substitutes M+N for M
due to the size of the augment matrix H̃; therefore it requires
approximately 5MN2 + 16

3 N3 complex operations.
The complexity of Algorithm 2 for ZF-SIC is approximately

MN2 + 4
3N3, explained as follows. Thanks to symmetry, the

computation of the Gram matrix A = HHH costs MN2 oper-
ations, while the inversion A−1 costs N3 (Cholesky, inversion
of a lower-triangular matrix, and multiplication); the sorted
Cholesky decomposition costs N3/3 operations. MMSE-SIC
does not change the leading terms of the complexity, since the
inversion (HHH + σ2IN )−1 also costs N3.

When M = N , Algorithm 2 costs 7
3N3, which is simpler

than Algorithm 1. Moreover, when M > N , Algorithm 2
is considerably simpler. Therefore, Algorithm 2 is especially
appealing for MMSE-SIC.

Table I compares the complexity of various ZF-SIC detec-
tion algorithms using the basis matrix H (cf. Table III in [17]).
The square-root algorithm [15], decorrelating algorithm [16],
noise-predictive algorithm [17], and the proposed dual-lattice
algorithm realize V-BLAST ordering, while the other two
are suboptimal. We assume that the modified Gram-Schmidt
orthogonalization is employed by all algorithms as in [17]. As
mentioned in [17], it is possible to estimate the ZF nulling
vectors directly. It is seen that the dual-lattice algorithm has
the lowest complexity. Moreover, it is more attractive when H∗

is given. In this case, the dual-lattice algorithm has almost the
same complexity as the detector using dual ascending [23],
which costs 2N3 complex operations due to the subsequent
QR decomposition although the ordering itself only costs
O(N2).

Another advantage of the dual-lattice algorithm is that
ordering and detection can be performed simultaneously. All
other three optimal algorithms in Table I have to wait until
the ordering is finished1. Thus, the dual-basis algorithm will
reduce the processing delay.

Table II compares the complexity of various ZF V-BLAST
algorithms using the Gram matrix. Again, the proposed al-
gorithm is more attractive when H∗ is given. The proposed
algorithm and the Zhu-Chen-She algorithm [20] have the
lowest complexity. In fact, the deflation in [19], [20] is the
same as Cholesky update in Algorithm 2, but the ways to
obtain the Gram matrix and its inverse are different. We also
believe Algorithm 2 has a more clear interpretation.

IV. PARTIAL LATTICE REDUCTION

On one end, V-BLAST ordering does not increase the
diversity order. On the other end, lattice reduction achieves full
diversity at the expense of higher complexity [10], [11]. This
gap between V-BLAST ordering and lattice reduction naturally
poses the question about a tunable algorithm achieving a
diversity order that ranges from 1 to N . In this section, we
present a partial reduction algorithm that indeed offers such
a flexible tradeoff between performance and complexity. It
makes use of the LLL algorithm [9] shown in Table III.

The idea is to only reduce part of the lattice. More precisely,
we reduce the basis comprising the projections of the last
K vectors (K ≤ N ) onto the orthogonal complement of the
previous N −K vectors, since the last several substreams are
weaker. Since only K vectors are reduced, the complexity will
be lower.

A. Partial Reduction Without V-BLAST Sorting

In this subsection, we describe and analyze the plain form
of the partial reduction without V-BLAST sorting. Of course,
pre-sorting leads to improved BER performance and lower

1The square-root algorithm allows simultaneous ordering and detection as
well, but the complexity will be higher than that shown in Table I [15].
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TABLE III
LLL ALGORITHM

Input: Basis B = [b1, ...bn]
Output: LLL-reduced basis

1: k := 2
2: while k ≤ n do
3: size-reduction bk := bk − dµk,k−1cbk−1

4: if ‖b̂k + µk,k−1b̂k−1‖2 < δ‖b̂k−1‖2 then
5: swap bk and bk−1 and update GSO
6: k := k − 1 (k > 1)
7: else
8: for l = k − 2, k − 3, ..., 1 do
9: size-reduction bk := bk − dµk,lcbl

10: k := k + 1

complexity, which will be presented in the next subsection.
The purpose of this subsection is to gain insights into the
diversity order and complexity of the partial reduction.

In the partial reduction, we project the last K columns
of the basis H to the orthogonal complement of the first
N −K columns. Let [πN−K(hN−K+1), πN−K(hN−K+2),
· · · , πN−K(hN )] denote the projections. The, we LLL-
reduce the basis comprising K vectors [πN−K(hN−K+1),
πN−K(hN−K+2), · · · , πN−K(hN )]. Let UK be the corre-
sponding K × K unimodular matrix. The partially reduced
basis is given by

H′ = H
[
IN−K

UK

]
. (20)

It is worth mentioning that directly reducing the last K vectors
hN−K , · · · ,hN does not work. This is because it is the
projections rather than the vectors themselves that matters
when it comes to SIC detection. By tuning K, the partial
reduction algorithm can range between V-BLAST ordering
(K = 1) and full LLL reduction (K = N ).

1) Reducing a Tall Matrix: Obviously, one reduces an
M ×K (M > K) tall matrix in the partial reduction. Dealing
with the tall matrix itself is not the most economic way, as
the complexity will be proportional to M . One can reduce
the random projection of the basis matrix [34]. In this paper,
we reduce the R factor of the tall matrix obtained from the
QR or Cholesky decomposition, as the LLL conditions can be
specified by the R factor alone. Since the Cholesky decompo-
sition is faster, the Gram matrix version of the LLL algorithm
[29] is well suited to this application. The complexity will
be lower since the size of the R factor is K ×K, i.e., it does
not depend on M any more. More precisely, it is equivalent to
reducing the K×K submatrix RK on the bottom-right corner
of R, as shown in Fig. 1. In SIC, a reduced RK will improve
the performance of the initial stages of detection. During the
execution of the LLL algorithm, RK is udpdated, but the tall
matrix itself is not updated. After obtaining the transformation
matrix UK , we multiply it with the tall basis matrix to obtain
the reduced basis.

2) Diversity Order: Here, we show that for N × N i.i.d.
complex Gaussian H, the partial reduction with block size

R
 R
*


R
K


R
*
K


Fig. 1. Illustration of the R factors for the primal basis H and dual basis
H∗.

K achieves diversity order K. Therefore, we can achieve any
diversity order by tuning K.

The squares of the diagonal elements of R are i.i.d. Chi-
square random variables with degrees of freedom 2, 4, ..., 2N
[35]. Hence, the statistics of the submatrix RK are for-
mally similar to R, and its diagonal elements are i.i.d. Chi-
square random variables with degrees of freedom 2, 4, ..., 2K.
Moreover, detection of the last K substreams is formally
similar to detection of all N substreams; the only difference
is a smaller size K. Since reducing R achieves diversity
order N , reducing RK achieves diversity order K for the
last K substreams. Other substreams have higher diversity
order 2(K + 1), · · · , 2N , if the effect of error propagation is
excluded. Therefore, the diversity order of the overall system
with the partial reduction is K.

When M > N , it is not difficult to show that the achieved
diversity order will be K + M −N .

3) Computational Complexity: It is well known that the
standard LLL algorithm costs O(MN3) arithmetic operations
for M × N integer bases [9]. Based on the analysis of [12],
we can show that the average complexity of LLL reduction
is O(MN2 log N) for bases whose vectors are i.i.d. Gaus-
sian2. Partial reduction of the M × K matrix itself costs
O(MK2 log K) arithmetic operations on average, where 1 ≤
K ≤ N . This is again because RK is statistically similar to R;
following [12], one can show that the number of iterations is
O(K2 log K), while each iteration costs O(M). If we reduce
the R factor RK , the complexity will be O(K3 log K), which
is even lower. This clearly indicates the lower-complexity
advantage of the partial reduction. Of course, multiplying the
transformation matrix UK (which is however often sparse) is
likely to incur 2MK2 extra operations.

If the ratio K/N is fixed as N goes to infinity, the overall
computational cost is still O(N3 log N). Nonetheless, the
benefit is that the hidden constant of the complexity can be
smaller.

B. Dual-Lattice Partial Reduction and Ordering

In this subsection, we combine dual-lattice ordering and the
partial reduction.

2Although the result in [12] was derived for real-valued square bases, the
extension to complex-valued rectangular bases is straightforward.
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Let R∗ be the R factor of the dual basis H∗, and R∗
K be

the K × K upper-left corner. The relationship with R and
RK is illustrated in Fig. 1. The partial reduction and ordering
algorithm can be described in the dual-lattice language, as
shown in Algorithm 3.

Algorithm 3: (Partial reduction and ordering using the dual
lattice)

1) Sorting. Apply sorted QR decomposition to the dual
basis H∗ (or sorted Cholesky decomposition to its Gram
matrix). Let P be the corresponding permutation matrix.

2) Reduction. LLL-reduce R∗
K of the sorted dual basis. Let

UK be the corresponding K×K unimodular matrix. The
partially reduced primal basis is given by the dual basis
of

H′ = H∗P
[
UK

IN−K

]
. (21)

Next, we show that Step 2) in Algorithm 3 makes
[πN−K(hN−K+1), πN−K(hN−K+2), · · · , πN−K(hN )] effec-
tively LLL-reduced, which suffices for the purpose of SIC
detection. Using the QR decomposition H = QR, the dual
basis can be expressed as

H∗ = (H†)HJ = (Q†)H(R†)HJ

= (Q†)HJ · J(R−1)HJ = QJ · J(R−1)HJ,
(22)

which is precisely the QR decomposition H∗ = Q∗R∗. Then
Q∗ = QJ and R∗ = J(R−1)HJ. As illustrated in Fig. 1,
the bottom-right corner RK corresponds to the top-left corner
R∗

K in the R factor of the dual basis. It is known that the
dual basis will be effectively LLL-reduced if the primal basis
is effectively reduced, and vice versa [31]. Therefore, if R∗

K

is LLL-reduced, RK will be effectively LLL-reduced.
The advantage of the dual-lattice version of the partial

reduction is that it is natural to adapt the joint sorting and LLL
reduction algorithm [25] to the partial reduction. The joint
sorting and reduction algorithm speeds up the LLL algorithm
by integrating sorting and LLL reduction. The LLL reduction
successively increments the index kmax that stands for the
largest index having been visited by k during the execution
(Cf. LLL Algorithm). Standard LLL reduction performs Gram-
Schmidt orthogonalization when a new vector is picked (i.e.,
when the index k in the LLL algorithm [9] becomes greater
than kmax). The joint sorting and reduction algorithm uses
modified Gram-Schmidt orthogonalization and when a new
vector is picked it picks the (projected) one with the minimum
norm [25]. This algorithm integrates sorting and reduction as
opposed to separate sorting and reduction in [24]. During the
execution of the LLL algorithm, the first k − 1 vectors have
been LLL-reduced. Thus, when k is greater than K, the first
K vectors have been LLL-reduced, and in the partial reduction
we can skip the LLL reduction while only running sorted
QR decomposition for the remaining vectors. Obviously, this
algorithm also works for the Gram matrix and Cholesky
decomposition. This idea is described in Algorithm 4.

Algorithm 4: (Joint sorting and partial reduction)
1) Joint sorting and reduction. If k ≤ K, perform joint

sorting and LLL reduction in [25] for the dual basis H∗

(or its Gram matrix).

2) Sorting. Else, apply sorted QR (or Cholesky) decompo-
sition to the remaining N −K vectors.

Like Algorithm 3, Algorithm 4 also makes the basis V-
BLAST-sorted and partially reduced, although the obtained
basis is not necessarily the same.

Note that since LLL reduction is an incremental algorithm,
it is not obvious how this idea could be extended to the primal
basis. The potential advantage of the dual-lattice versions
is that their performance can be robust to early termination
in fixed-complexity implementation. For example, the perfor-
mance of Algorithm 4 should not degrade much if Step 2)
is skipped, because the weaker streams have already been
improved. In fact, it can be viewed as an early terminated
version of the joint sorting and reduction algorithm [25].

V-BLAST ordering makes the performance better, but it
does not change the diversity order. Moreover, ordering results
in lower complexity of lattice reduction. However, as a quan-
titative complexity analysis seems difficult, if not impossible,
we resort to numerical evaluation of the complexity of partial
reduction with ordering.

V. NUMERICAL RESULTS AND DISCUSSION

To evaluate the computational complexity, we count the
(real-valued) flops of various detectors by running numer-
ical experiments. V-BLAST or lattice reduction is applied
to the complex-valued matrices directly. As usual, complex
additions/subtractions count two flops each while complex
multiplications/divisions count six flops each. We set M = N
for convenience.

In Fig. 2, we show the complexity of the two versions of
the proposed dual-lattice algorithm for V-BLAST detection
under the ZF and MMSE criteria, respectively. In general,
the number of flops follows the cubic terms of the analysis
in Section III. Obviously, Algorithm 2 is simpler: under the
ZF criterion, it reduces the complexity by almost half; under
the MMSE criterion, it reduces the complexity by a factor
larger than 4. In particular, Algorithm 2 has almost the same
complexity under the ZF or MMSE criterion, making it very
attractive for MMSE-SIC.

(♣ needs to be rewritten) Fig. 3 compares the average
complexity of the partial reduction for the i.i.d. complex
Gaussian model. The dual-lattice versions Algorithm 3 and 4
with δ = 0.99 are used. When executing the LLL algorithm,
we update the Gram-Schmidt vectors Ĥ∗ as well so that they
need not be recalculated in SIC. The LLL algorithm outputs
Gram-Schmidt coefficients µ, hence the R factor for the dual
basis. Therefore, we only need another matrix inversion to
obtain the R factor for the primal basis for SIC, which costs
N3/3 complex computations. Fig. 3 shows that the average
complexity decreases as the block size K decreases. In the
mean time, joint sorting and reduction is faster than standard
LLL reduction. For full reduction, joint sorting and reduction
decreases the complexity by half.

In the following simulations of the BER performance, we
use MMSE-based complex LLL reduction, and set δ = 0.99
for the best performance.

Fig. 4 shows the performance of the partial reduction for
different values of K for a 4×4 MIMO system with 64-QAM
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Fig. 3. Average complexity of the partial reduction as a function of dimension
N , for the ZF criterion, M = N , δ = 0.99, and given H.

modulation. The entries of H are i.i.d. complex Gaussian. The
performance of ML detection is also shown as a benchmark
of comparison. Note that K = 1 corresponds to standard V-
BLAST ordering, while K = N corresponds to LLL reduction
for the full lattice. It is seen that increasing K improves the
diversity order.

Fig. 5 shows the performance for an 8 × 8 MIMO system
with 64-QAM modulation. A similar trend is observed. On the
other hand, the returning SNR gain is diminishing for practical
values of BER as K increases.

The implication of the partial reduction is that we can
achieve diversity order higher than one with cubic complexity.
More precisely, we can asymptotically achieve diversity order
K with cubic complexity as long as K3 log K ≤ N3, which
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Fig. 4. Performance of the partial reduction using MMSE-based LLL
reduction for a 4 × 4 MIMO system with 64-QAM. K = 1 and K = 4
correspond to V-BLAST and full reduction, respectively.
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Fig. 5. Performance of the partial reduction using MMSE-based LLL
reduction for an 8 × 8 MIMO system with 64-QAM. K = 1 and K = 8
correspond to V-BLAST and full reduction, respectively.

can be satisfied by setting K = N/(log N)1/3. Of course, this
estimate is crude, and can only serve as a rough guideline in
the selection of K in practice. Simulations will tell value of
K best suited to a specific scenario that balances performance
and complexity.

VI. CONCLUSIONS

We have presented low-complexity algorithms for SIC-
based MIMO detection. First, a new view of V-BLAST
detection was given, which suggests that V-BLAST detection
is equivalent to applying the sorted Gram-Schmidt orthogo-
nalization to the dual basis, or applying the sorted Cholesky
decomposition to the Gram matrix of the dual basis. The
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dual-lattice algorithm does not only reduce the computational
complexity, but also allows simultaneous ordering and nulling.
Second, a partial reduction algorithm was proposed which
bridges the gap between V-BLAST detection and standard
lattice-reduction-aided detection. The dual-lattice view also
facilitates the implementation of joint sorting and partial
reduction which results in lower complexity.

APPENDIX I
BACKWARD GREVILLE FORMULA

In the original V-BLAST paper [14], the nulling vector
wn in (13) is given by the n-th column of the matrix
(H

†
n+1,...,N )H , where Hn+1,...,N , with n columns, is the

remaining matrix after deleting columns hn+1, ...,hN from
H, for which detection has already been done3. At the first
detection stage n = N , the V-BLAST algorithm chooses the
column of (H†)H with the minimum length, and the corre-
sponding column is deleted. This procedure is then repeated
on the remaining matrix for n = N − 1, ..., 1.

The O(N4) complexity of the naive V-BLAST ordering is
due to recomputing the pseudoinverse at each stage. The com-
plexity can be reduced by employing the backward Greville
formula to recursively compute the pseudoinverses.

Proposition 2 (Backward Greville Formula): Suppose that
the matrix An = [An−1,an] = [a1, ..., an−1,an] ∈ Cm×n

has pseudoinverse A†
n. Partition A†

n into the form

A†
n =

[
Bn−1

bH
n

]
.

Then the pseudoinverse of An−1 is given by

A†
n−1 = Bn−1 − dnbH

n (23)

where
dn =

Bn−1an

1− bH
n an

(24)

if an is in the subspace spanned by the columns a1, ...,an−1,
and

dn = −Bn−1bn/‖bn‖2 (25)

otherwise.
The proof was given in [36]. Since the channel matrix

is normally of full rank in MIMO communications, case
(24) does not apply; otherwise the columns will be linearly
dependent. Accordingly, we only have to apply case (25) for
our purposes.

To apply the backward Greville formula, we slightly modify
(23) and (25). Write

(A†
n)H = [BH

n−1 bn].

Then

(A†
n−1)

H = BH
n−1 − bndH

n

= BH
n−1 −

bnbH
n

‖bn‖2 BH
n−1

= BH
n−1 −

bn

‖bn‖2 (bH
n BH

n−1)

(26)

3Note that (H
†
n+1,...,N )H is the usual definition of the dual basis. Hence,

the dual-basis view is indeed very natural.

which represents the projection to the orthogonal comple-
ment of bn. Then (26) can be used to recursively compute
(H

†
n+1,...,N )H . Since (26) is precisely the modified Gram-

Schmidt process (16), the backward Greville formula boils
down to the sorted QR decomposition.

Case (24) was also derived in [33]; actually it had been
derived earlier in [37]. It is worth mentioning that Proposition
2 is more general, and has been applied in the computation of
dual frames [36].

APPENDIX II
GRAM MATRIX OF THE DEFLATED DUAL BASIS

Let An = [An−1,an] and (A†
n)H = [BH

n−1 bn]. Express
the Gram matrix of (A†

n)H as

Cn = A†
n(A†

n)H =
[
Cn−1 v
vH c

]
(27)

where Cn = Bn−1BH
n−1, v = Bn−1bn, and c = bH

n bn.
Using (26), we derive the Gram matrix of (A†

n−1)
H :

A†
n−1(A

†
n−1)

H

=
(
Bn−1 − (Bn−1bn)

bH
n

‖bn‖2
) (

BH
n−1 −

bn

‖bn‖2 (bH
n BH

n−1)
)

= Bn−1BH
n−1 −

Bn−1bnbH
n BH

n−1

‖bn‖2

= Cn−1 − vnvH
n

c
.

(28)

This is associated with the Cholesky update (18), although (18)
corresponds to removing the first rather than the last column.
Equation (28) suggests that Cholesky updating of the Gram
matrix of the dual basis indeed gives the Gram matrix of the
deflated dual basis.
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