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Abstract

The purpose of this thesis is to investigate the financial volatility dynamics through the

GARCH modelling framework. We use univariate and multivariate GARCH-type models enriched

with long memory, asymmetries and power transformations. We study the financial time series

volatility and co-volatility taking into account the structural breaks detected and focusing on the

effects of the corresponding financial crisis events. We conclude to provide a complete framework

for the analysis of volatility with major policy implications and benefits for the current risk

management practices.

We first investigate the volume-volatility link for different investor categories and orders,

around the Asian crisis applying a univariate dual long memory model. Our analysis suggests

that the behaviour of volatility depends upon volume, but also that the nature of this dependence

varies with time and the source of volume. We further apply the vector AR-DCC-FIAPARCH

and the UEDCC-AGARCH models to several stock indices daily returns, taking into account

the structural breaks of the time series linked to major economic events including crisis shocks.

We find significant cross effects, time-varying shock and volatility spillovers, time-varying

persistence in the conditional variances, as well as long range volatility dependence, asymmetric

volatility response to positive and negative shocks and the power of returns that best fits the

volatility pattern. We observe higher dynamic correlations of the stock markets after a crisis event,

which means increased contagion effects between the markets, a continuous herding investors’

behaviour, as the in-crisis correlations remain high, and a higher level of correlations during

the recent financial crisis than during the Asian. Finally, we study the High-frEquency-bAsed

VolatilitY (HEAVY) models that combine daily returns with realised volatility. We enrich

the HEAVY equations through the HYAPARCH formulation to propose the HYDAP-HEAVY
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(HYperbolic Double Asymmetric Power) and provide a complete framework to analyse the

volatility process.
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Introduction

This thesis aims to study the econometric modelling of volatility in financial markets through

the GARCH framework. We examine the applicability of several modelling techniques available

in the broad family of GARCH models and their performance in volatility level-shifts observed

during financial crises. We focus on the Asian financial crisis of 1997 and the recent global

turmoil starting from 2007-08 in order to model adequately the volatility dynamics of the stock

markets. Our study aims to provide results and conclusions with major policy implications and

impact on the current risk management practices. Policy makers, risk management practitioners

and also academics should consider the stochastic properties of the financial time series and

especially their volatility dynamics, in the development of the necessary policies and risk tools to

better perform during both periods of economic tranquillity and crisis.

We first apply the univariate GARCH modelling framework with long memory features in

order to investigate the volume-volatility link in the Korean stock market for different investor

categories and orders (buy and sell), before and after the Asian financial crisis (Chapter 1). The

volume-volatility relationship has critical policy implications for stock market regulators, since

the investors trading activity is proved to affect considerably financial returns’ volatility. We

complement the literature about the impact of domestic and foreign investors on emerging stock

markets by examining the effect of the trading volume on the stock market volatility, taking into

consideration for each volume series its sell and buy side as well as its total separately and also

investigating the effect of each of the eight different domestic investor groups, that compromise

the total domestic trading volume.

We estimate the two main parameters driving the degree of persistence in volatility and

its uncertainty using a univariate GARCH model that is fractionally integrated in both the

1



autoregressive mean and variance specifications. Our model provides a general and flexible

framework with which to study complicated processes like volume and volatility. In order to be

able to examine the volume-volatility relationship, we estimate the dual long memory model with

lagged values of the trading volume included in the mean equation of the Garman-Klass volatility

series. We further study the volume effect on volatility during different periods of the economic

cycle. Our results support the causal effect from volume to volatility, which is found sensitive

to the economic period and to the various investors’ behaviour. Stock sales are found to affect

volatility positively regardless of the period or the investor category, while the buy orders and the

total trading activity effect on volatility vary across time and investor. Foreign investors’ volume

is negatively related to volatility in the pre-crisis period and turns to a positive link after the

financial crisis and during the recession period. In the contrary, domestic investors’ aggregated

volume tends to give a positive effect on volatility in all times, while the more informed players

separately have a negative impact on the pre-crisis volatility.

We further investigate the financial volatility and co-volatility dynamics using the multivariate

GARCH modelling framework (Chapter 2). The study of the linkages between volatilities

and co-volatilities of the financial markets is a critical issue in risk management practice. The

multivariate GARCH framework provides the tools to understand how financial volatilities move

together over time and across markets. Conrad et al. (2011) applied a multivariate fractionally

integrated asymmetric power ARCH (FIAPARCH) model that combines long memory, power

transformations of the conditional variances and leverage effects with constant conditional

correlations (CCC) on eight national stock market indices returns. The long-range volatility

dependence, the power transformation of returns and the asymmetric response of volatility to

positive and negative shocks are three features that improve the modelling of the volatility process

of asset returns and its implications for the various risk management practices. We extend their
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model by allowing for cross effects between the markets in the mean of returns and by estimating

time-varying conditional correlations. We also study the effect of financial crisis events on the

dynamic conditional correlations as well as on the three key features of the conditional variance

nested in the model. Therefore, the contribution of our study is that our model provides a complete

framework for the analysis of financial markets’ co-volatility processes.

The empirical analysis of our model applied on eight stock indices daily returns in a bivariate

and trivariate framework provides evidence that confirms the importance of long memory in the

conditional variance, of the power transformations of returns to best fit the volatility process

and of the asymmetric response of volatility to positive and negative shocks. We extend the

existing empirical evidence on the dynamic conditional correlations (DCC) models by adding

all cross effects in the mean equation, that is we estimate a full vector autoregressive (VAR)

model, to reveal the relationship amongst the returns of each multivariate specification. In the

previous studies the researchers have added as regressor in the mean for all stock market indices

a prevailing global index return, such as S&P 500 or an index of particular interest for the region

and the period investigated. Our cross effects are found significant in most cases. Moreover,

another of our main findings regards the DCC analysis with structural breaks. In line with the

literature, our model estimates always highly persistent conditional correlations. The correlations

increase during crisis events, indicating contagion effects between the markets and remain on a

high level after the crisis break, showing the investors’ herding behaviour. Finally, we contribute

to the existing literature findings by comparing two different financial crises, the Asian (1997)

and the recent Global (2007-08) crisis, in terms of their effects on the correlations, where we

observe much more heightened conditional correlation estimates for the recent Global crisis than

for the Asian crisis. This is reasonable since the international financial integration followed by

the financial liberalisation and deregulation in capital controls has reached its peak nowadays
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compared to its evolution during the Asian financial crisis in 1997.

In the third part of the thesis (Chapter 3) we focus again on the recent financial crises and

examine how the mean and volatility dynamics, including the underlying volatility persistence

and volatility spillovers structure, have been affected by these crises (the Asian and the recent

Global crisis). With this aim we make use of several modern econometric approaches for

univariate and multivariate time series modelling, which we also condition on the possibility of

breaks in the mean and/or volatility dynamics taking place. Moreover, we unify these approaches

by introducing a set of theoretical considerations for time-varying (TV) AR-GARCH models,

which are also of independent interest. We use a battery of tests to identify the number and

estimate the timing of breaks both in the mean and volatility dynamics. We, finally, employ the

bivariate unrestricted extended dynamic conditional correlation (UEDCC) AGARCH process

to analyse the volatility transmission structure, applied to stock market returns. The model is

based on the dynamic conditional correlation of Engle (2002a) allowing for volatility spillovers

effects by imposing the unrestricted extended conditional correlation (dynamic or constant)

GARCH specification of Conrad and Karanasos (2010). We extend it by allowing shock and

volatility spillovers parameters to shift across abrupt breaks as well as across two regimes of

stock returns, positive (increases in the stock market) and negative (declines in the stock market).

Our model is flexible enough to capture contagion effects as well as to identify the volatility

spillovers associated with the structural changes and exact movements of each market (e.g.,

upward or downward) to the other and vice versa. Knowledge of this mechanism can provide

important insights to investors by focusing their attention on structural changes in the markets

as well as their trends and movements (e.g., upward or downward) in order to set appropriate

portfolio management strategies. Overall, our results suggest that stock market returns exhibit

time-varying persistence in their corresponding conditional variances. The results of the bivariate
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UEDCC-AGARCH(1, 1) model applied to FTSE and DAX returns and NIKKEI and Hang

Seng returns also show the existence of dynamic correlations as well as time-varying shock and

volatility spillovers between the two variables in each pair.

Lastly, the fourth part of this thesis (Chapter 4) applies and extends the univariate high-

frequency-based volatility (HEAVY) model of Shephard and Sheppard (2010). The HEAVY

framework models financial volatility based on both daily and intra-daily data, so that the system

of equations estimated adopts to information arrival more rapidly than the classic daily GARCH

models. The HEAVY model is based on the classic GARCH model of Bollerslev (1986), the

GARCHX model and the Multiplicative Error Model (MEM) of Engle (2002b) in order to model

realised volatility on high-frequency data associated with daily returns GARCH conditional

volatility. Its main advantage is the robustness to structural breaks, especially during crisis periods,

since the mean reversion and short-run momentum effects result to higher quality performance in

volatility level shifts and more reliable forecasts. Our main contribution is the enrichment of the

HEAVY model with long memory structure, volatility asymmetries and power transformations

through the HYAPARCH specification of Schoffer (2003) and Dark (2005) and the relevant

GARCH models nested in the HYAPARCH structure. We compare the results of stock market

data modelling with the several long memory, power and asymmetric specifications and conclude

to prefer the most comprehensive one which we define as HYDAP-HEAVY (HYperbolic Double

Asymmetric Power) for the realised measure models (realised kernel models are presented) and

the FIAP-HEAVY (Fractional Integrated Asymmetric Power) for the squared returns models.

Moreover, we follow the GARCH literature that combines trading volume with the conditional

variance of returns (Lamoureux and Lastrapes, 1990, Gallo and Pacini, 2000) and test whether

the standard HEAVY equations adopt further to the volume increment. We add the overnight

trading activity indicator as additional regressor in the benchmark HEAVY model to evaluate
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the effect of volume on volatility and the adjustment of volatility to the additional information

from the trading volume proxy. As expected from the existing empirical evidence, the overnight

indicator gives a positive feedback to the volatility of returns. Our main finding is that the HEAVY

equations exhibit lower persistence, when the overnight surprise is used for the squared returns.

In the realised measure modelling the overnight indicator has immaterial effect on the volatility

process. We further study the Garman-Klass (GK) volatility measure in the HEAVY framework in

comparison with the other two variables (the squared returns and the realised kernel). We observe

that the realised measure shows stronger effects than the GK measure when added as regressor and

the GK-models seem to share characteristics with both the other two models (the squared returns

and the realised kernel equations), but with more similarities to the realised measure process.

Finally, we re-estimate the benchmark HEAVY equations taking into account the structural breaks

apparent in the squared returns series and estimate the time-varying behaviour of the arch, garch-x

and heavy coefficients. Focusing on the recent Global financial crisis, we observe a positive

increment on the volatility process generated by the aforementioned coefficients after the crisis

break.
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Chapter 1 Trader type effects on the volume-volatility relationship: Evidence from the

Korean stock exchange

1.1 Introduction

The volume-volatility relationship has attracted major interest of the financial econometrics

research with critical policy implications for stock market regulators, since the investors trading

activity is proved to affect considerably financial returns’ volatility. The empirical evidence on

emerging markets has focused particularly on foreign investors’ behaviour. Following Karanasos

and Kartsaklas (2009), we investigate the volume-volatility link in the Korean stock market for

different investor categories and orders (buy and sell), before and after the Asian financial crisis.

In particular, we complement the literature about the impact of domestic and foreign investors

on emerging stock markets by examining the effect of the trading volume on the stock market

volatility, taking into consideration for each volume series its sell and buy side as well as its

total separately and, also, investigating the effect of each of the eight different domestic investor

groups, that compromise the total domestic trading volume. We estimate the two main parameters

driving the degree of persistence in volatility and its uncertainty using a univariate Generalised

ARCH (GARCH) model that is Fractionally Integrated (FI) in both the Autoregressive (AR) mean

and variance specifications. We refer to this model as the ARFI-FIGARCH. It provides a general

and flexible framework with which to study complicated processes like volume and volatility. In

order to be able to examine the volume-volatility relationship, we estimate the dual long memory

model with lagged values of the trading volume included in the mean equation of volatility.

We further study the volume effect on volatility during different periods of the economic cycle

(tranquil, crisis and recession periods).

Our empirical analysis strongly supports the causal effect from volume to volatility, which

is found sensitive to the economic period and to the various investors’ behaviour. Stock sales
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are found to affect volatility positively regardless of the period or the investor category, while

the buy orders and the total trading activity effect on volatility vary across time and investor.

Foreign investors’ volume is negatively related to volatility in the pre-crisis period and turns to a

positive link after the financial crisis and during the recession period. In the contrary, domestic

investors’ aggregated volume tends to give a positive effect on volatility in all times, while the

more informed players separately have a negative impact on the pre-crisis volatility.

The remainder of the chapter is structured as follows. In Section 1.2 we illustrate the theoretical

background on the trading behaviour of different investor groups. In Section 1.3 we refer to the

data used and the structural breaks identified in volatility. In Section 1.4 we detail the econometric

models applied. Section 1.5 presents our empirical results and in Section 1.6 we check their

robustness. Finally, Section 1.7 concludes the analysis.

1.2 Theoretical background

1.2.1 The trading behaviour of institutional investors

Empirical research in finance documents that buyer- and seller-initiated (institutional/block)

trades have an asymmetric impact on prices. Holthausen et al. (1987, 1990) find permanent price

effects that increase with block size, whether the block is buyer- or seller-initiated. As regards

temporary price effects, they are not related to the size of the block for buy trades as they do for

sell trades. Temporary and permanent price effects of block trades have been explained in terms

of liquidity costs, inelastic demand curves and information effects 1. Additionally, the identity of

the management firm behind the trade (Chan and Lakonishok, 1993, 1995) 2 and the underlying

1 Liquidity costs result in a temporary price effect, if it is costly to identify potential buyers or sellers of a large block.

The seller of a large block gives the purchaser a price concession as compensation for inventory and search costs.

Permanent price effects may arise because of inelastic demand and supply conditions and/or information effects.

If there are insufficient close substitutes for a particular stock, the excess-demand (supply) curve faced by sellers

(buyers) is not perfectly elastic. This will induce a permanent price effect that will vary with the size of the block for

seller- (buyer-) initiated transactions. Block trades which convey information about a firm’s prospects, will have a

permanent price effect even if there are sufficient close substitutes to produce perfectly elastic excess demand (See

Kraus and Stoll, 1972; Scholes, 1972; Mikkelson and Partch, 1985).
2 Money managers with high demands for immediacy tend to be associated with larger market impact. Some price

pressure is also evident but the average effect is small. Saar (2001) provides an institutional trading explanation

about the price impact asymmetry of block trades. The main implication of the model is that the history of price
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market (bullish or bearish) condition (Chiyachantana et al., 2004) 3 are important contributors to

the asymmetric price impact of institutional buy and sell orders.

Institutional investors have different investment styles (active or passive, value or growth) and

order-placement strategies (market or limit orders) when they buy or sell stocks in the securities

markets. Keim and Madhavan (1995, 1996) find considerable heterogeneity in investment style

(buy-sell decision and past excess returns) across institutions. Surprisingly, the motivation for

the trade decision is often not symmetric for buys versus sells. For example, some institutions

that buy stocks, after they decline in price, do not follow the same trading rule when they sell.

Additionally, institutional traders tend to spread buy orders over longer periods than equivalent

sell orders. We also find significant differences in the choice of order type across institutional

styles. Gompers and Metrick (2001) find that institutions invest in stocks that are larger, more

liquid and have had relatively low returns during the previous year. Barber and Odean (2008) find

that professional investors are less prone to indulge in attention-driven purchases. With more time

and resources, professionals can monitor a wider range of stocks and eventually concentrate on

stocks that have passed an initial screen.

Actively managed equity mutual funds buy and sell stocks based on valuation beliefs. The

structure of open-end funds also leads them to trade for liquidity, tax and window-dressing

purposes 4. Alexander et al. (2007) relate the performance of mutual fund trades to their

motivation. They find that managers making purely valuation-motivated purchases substantially

performance influences the information content of buy and sell trades: the longer the run-up in a stock’s price,

the less the asymmetry. The intensity of institutional trading and the frequency of information events affect the

asymmetry differently depending on recent price performance. The model even predicts negative price asymmetry,

that is, sells have greater price impact than buys following a long period of price run-ups.
3 In bullish markets, institutional purchases have a bigger price impact than sells, but in bearish markets sells have

a higher price impact. They also find that the price impact varies depending on order characteristics, firm-specific

factors and cross-country differences.
4 Unanticipated investor flows force managers to continually rebalance their portfolios to control liquidity. This

provision of liquidity, however, imposes significant indirect trading costs on open-end fund. Also, a desire to

minimise taxable distributions creates incentives for them to sell losers heading into the tax year-end. Finally,

aspiring to impress investors, managers may window-dress their portfolios by buying recent winners and selling

recent losers just before reporting dates.
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beat the market, but are unable to do so when compelled to invest excess cash from investor

inflows (liquidity-motivated trading result in significant trading losses) 5. A similar, but weaker,

pattern is found for stocks that are sold. Grinblatt and Keloharju (2000) using buy and sell trades

of individuals and institutions in the Finnish stock market find evidence that investors are reluctant

to realise losses (disposition effect), they engage in tax-loss selling activity and that past returns

and historical price patterns, such as being at a monthly high or low, affect trading behaviour.

There is also modest evidence that life-cycle trading plays a role in the pattern of buys and sells.

Griffin et al. (2003) find that the 5-minute intervals with the largest institutional buying (selling)

activity are preceded by large positive (negative) abnormal stock returns in the previous 30-minute

period. Furthermore, these periods of extreme institutional trading activity are associated with

flat contemporaneous and future returns. Barber et al. (2009) construct portfolios that mimic

the purchases and sales of each investor group in order to analyse who gains and loses from

trade. Individual investors incur substantial losses while institutional ones (corporations, dealers,

foreigners and mutual funds) gain from trade 6.

Moreover, investor overconfidence and biased self-attribution is likely to motivate aggressive

trading over time (see Odean, 1998; Daniel et al., 1998). Gervais and Odean (2001) find that

volatility is increasing in a trader’s number of past successes and that both volume and volatility

increase with the degree of a trader’s learning bias. Chuang and Susmel (2011) investigate the

trading behaviour of individual vs. institutional investors in Taiwan in an attempt to identify

who is the more overconfident trader. Their findings provide evidence that individual investors

are more overconfident traders than institutional investors. Kelley and Tetlock (2013) show that

overconfidence (not hedging) explains nearly all uninformed trading, while rational informed

5 For example, a fund manager who buys stocks when there are heavy investor outflows is likely to be motivated by the

belief that the stocks are significantly undervalued. In contrast, when there are heavy inflows, the manager is likely to

be motivated to work off excess liquidity by buying stocks.
6 The trading and market-timing losses of individual investors represent gains for institutional investors. The

institutional gains are eroded, but not eliminated by the commissions and transaction taxes that they pay.
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speculation accounts for most overall trading.

Herding and feedback trading have the potential to explain destabilising stock prices or excess

volatility. Though, they have also been used to explain momentum and reversals in stock prices

depending on who trades and on what type of information 7. Lakonishok et al. (1992) use data

on the holdings of tax-exempt (predominantly pension) funds to evaluate the potential effect of

their trading on stock prices. Their evidence suggests that institutional herding moves prices but

not necessarily in a destabilising way. For example, if all investors react to the same fundamental

information, prices will adjust faster to new fundamentals. De Long et al. (1990) argue that in the

presence of positive feedback traders, rational speculation (or trading by institutional investors)

can be destabilising. The opposite view is that positive feedback trading will bring prices closer

to fundamentals, if stocks underreact to news. There is also a view that institutional traders use

different portfolio strategies (herding, positive or negative feedback) which by and large offset

each other (resulting in zero excess demand). For example, trading does not destabilise asset

prices, if there are enough negative-feedback traders to offset the positive-feedback traders. A

substantial trading volume by institutions does not destabilise stock prices.

1.2.2 The trading behaviour of individual investors

Empirical evidence indicates that the average individual investor underperforms the market

(see Barber and Odean, 2011). Part of the poor performance borne by individual investors

can be attributed to transaction costs (e.g. commissions and bid–ask spread). However,

individual investors also seem to lose money on their trades before costs. Barber and Odean

(2000) find that households significantly underperform a value-weighted market index, after a

reasonable accounting for transaction costs8. Grinblatt and Keloharju (2000) analyse two years

7 Griffin et al. (2003) also find that institutional trading largely follows past stock returns and that price movements

ahead of large institutional trades are not caused by market makers accumulating inventory for their institutional

clients. Institutional buy (and individual sell) orders are generally executed in the same direction as past daily and

intra-daily price movements. These patterns could be driven by institutional and individual investors trading on

different information and/or perceiving past stock return movements differently.
8 After accounting for the fact that the average household tilts its common stock investments toward small value stocks
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of trading in Finland and provide supportive evidence regarding the poor gross returns earned by

individual investors. Additionally, individual investors are net buyers of stocks with weak future

performance, while financial firms and foreigners are net buyers of stocks with strong future

performance. Barber et al. (2009), using a complete trading history of all investors in Taiwan,

document that the aggregate portfolio of individuals performs poorly and almost all individual

trading losses can be traced to their aggressive orders 9.

To address the puzzle of why so much trading occurs, it would be useful to understand what

motivates trades. Rational motivations such as liquidity, rebalancing or tax management generate

a high volume of individual trading. However, it is difficult to justify the very high annual turnover

rates of individual investors with non-speculative trading needs. With such high level of trading

individual investors increase the chances of trading with better informed investors and most often

to their detriment. Investing in a low cost mutual or index fund could significantly lower their

asymmetric information and transaction costs.

Behavioural motivations (or biases) can possibly explain why retail investors trade so much

and self-manage their portfolios. Overconfidence can explain the relatively high turnover rates

(increased trading) and poor performance of individual investors (see Daniel et al. 1998; Gervais

and Odean, 2001; Odean, 1998; Kelley and Tetlock, 2013). Attention can also affect the trading

behaviour of individual investors 10. Barber and Odean (2008) find that individual investors

with high market risk, the underperformance is even worse. The average household turns over approximately 75

percent of its common stock portfolio annually. The poor performance of the average household can be traced to the

costs associated with this high level of trading. High levels of trading can partly be explained by overconfidence (and

partly by liquidity, risk based rebalancing and taxes). Overconfident investors will overestimate the value of their

private information, causing them to trade too actively and, consequently, to earn below-average returns (Odean,

1998, 1999; Daniel et al., 1998; Gervais and Odean, 2001).
9 Three factors contribute (roughly) equally to the shortfall: perverse stock selection ability, commissions and the

transaction tax, with a somewhat smaller role being relegated to poor market timing choices. In contrast, institutions

enjoy positive abnormal returns (even after commisions and transactions costs) and both the aggressive and passive

trades of institutions are profitable. Bae et al. (2006) also find that individual investors have poor market timing

ability, but potentially gain during short-run trading intervals as their average sell price is consistently higher than the

average purchase price.
10 Barber and Odean (2008) argue that many investors who want to buy stocks may consider only stocks that first catch

their attention (e.g. stocks that are in the news or stocks with large price moves) to avoid the huge search problem.

This will lead individual investors to buy attention-grabbing stocks heavily. When they want to sell though, most

investors consider only stocks they already own and, as a result, selling poses less of a search problem and is less
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underperform standard benchmarks (e.g. a low cost index fund) and sell winning investments,

while holding losing investments (the “disposition effect”). Moreover, individual investors are

heavily influenced by limited attention and past return performance in their purchase decisions.

They engage in naïve reinforcement learning by repeating past behaviours that coincided with

pleasure, while avoiding past behaviours that generated pain. Others also argue that individual

traders overinvest in stocks because they are familiar to them (or love gambling), leading to

under-diversification (Goetzmann and Kumar, 2008) and average or even below-par returns

(Anderson, 2013). Under-diversification is costly to most investors, but a small subset of investors

under-diversify because of superior information (Ivkovic et al., 2008).

Barber et al. (2009a, 2009b) provide evidence that the trading of individuals is highly

correlated and persistent. This systematic trading of individual investors is not primarily driven

by passive reactions to institutional herding, by systematic changes in risk-aversion or by taxes.

Psychological biases more likely contribute to the correlated trading of individuals which lead

investors to systematically buy stocks with strong recent performance, to refrain from selling

stocks held for a loss and to be net buyers of stocks with unusually high trading volume. Kaniel

et al. (2008) provide evidence that individuals tend to buy stocks following declines in the

previous month and sell following price increases 11. Several authors characterise the trading

behaviour of individual investors as contrarian (Choe et al., 1999; Griffin et al., 2003; Barber

and Odean, 2000; Grinblatt and Keloharju, 2000, 2001). Shapira and Venezia (2001) show that

both professional and independent investors exhibit the disposition effect 12, although the effect is

sensitive to attention effects.
11 They also document positive excess returns in the month following intense buying by individuals and negative

excess returns after individuals sell, which is distinct from the previously shown past returns or volume effects. The

patterns are consistent with the notion that risk-averse individuals provide liquidity (through their contrarian trades)

to institutions that require immediacy. Finally, they do not find strong evidence of correlated (systematic) actions of

individuals across stocks.
12 Individual investors have a strong preference for selling winner stocks too early and hold on to loser stocks for too

long (Shefrin and Statman, 1985). Grinblatt and Keloharju (2001) find that investors have a tendency to hold onto

losers and sell stocks with high past returns or trading near their monthly high. Chen et al. (2007) and Choe and Eom

(2009) suggest that institutions suffer from the disposition effect but to a lesser extent than individual investors.
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stronger for independent investors. They demonstrate that professionally managed accounts were

more diversified and that round trips were both less correlated with the market and slightly more

profitable than those of independent accounts 13. There is also intriguing evidence that investors

learn to avoid the disposition effect over time 14.

1.2.3 The trading behaviour of foreign investors

Brennan and Cao (1997) present a theoretical model and empirical evidence that supports the

view that foreign investors should pursue momentum strategies and achieve inferior performance

because they are less informed than domestic investors. Froot et al. (2001) and Choe et al.

(1999) find that foreign investors tend to be momentum investors 15. Wang (2007) documents

a strong contemporaneous relationship between foreign equity trading and market volatility in

Indonesia and Thailand 16. Bae et al. (2006) find that foreign investors consistently generate

gains from trade due to good market timing, although their average sell price is lower than the

average purchase price. Specifically, foreign investors extract significant portion of their gains

by trading against Japanese institutional investors, when Japanese investors trade before their

fiscal-year end. Barber et al. (2009) find that foreigners earn nearly half of all institutional

profits, when profits are tracked over six months (and one-fourth at shorter horizons). The profits

13 Consistent with this investment behaviour being a mistake that has its origins in cognitive ability or financial literacy,

the disposition effect is most pronounced for financially unsophisticated investors.
14 Amongst the Chinese individual investors they study, Feng and Seasholes (2005) document that the disposition effect

dissipates with trading experience (time since first trade) and various measures of financial sophistication measured

early in a trader’s history. Yao and Li (2013) model a market in which investors with prospect theory preferences

interact with investors with constant relative risk aversion (CRRA) and find that this interaction commonly generates

a negative-feedback trading tendency, which favours the disposition effect and contrarian behaviour for prospect

theory investors.
15 Froot et al. (2001) find that international portfolio flows are strongly infuenced by past domestic returns, a finding

consistent with positive feedback trading by international investors. Also, the sensitivity of local stock prices to

foreign inflows is positive and large. Choe et al. (1999) using order and trade data find strong evidence of positive

feedback trading and herding by foreign investors before Korea’s economic crisis. During the crisis period herding

falls and positive feedback trading by foreign investors mostly disappears. They find no evidence that trades by

foreign investors had a destabilising effect on Korea’s stock market over the 1996-1997 sample. In particular, the

market adjusted quickly and effciently to large sales by foreign investors and these sales were not followed by

negative abnormal returns.
16 Trading within foreign and local investor groups is often negatively related to market volatility in Indonesia. This is

consistent with the view that within each group, investors are relatively homogeneous in terms of capital endowments

and information. Moreover, in Thailand foreign net purchase is negatively associated with market volatility.

Therefore foreign purchase provided liquidity when local investors were under stress to sell and helped to reduce

volatility during the Asian crisis by preventing the local markets from dropping further than they actually did.

14



of foreigners represent an unambiguous wealth transfer from Taiwanese individual investors to

foreigners. Grinblatt and Keloharju (2001) also find that foreign investors, often professionally

managed funds or investment banking houses, pursue momentum strategies and achieve superior

performance. After removing momentum investing’s contribution to performance, they find that

the momentum-adjusted performance of foreigners is still highly significant.

1.2.4 Informed vs uninformed investors/trades and volatility

Much of the empirical research in finance views individuals and institutions differently.

In particular, while institutions are viewed as informed investors, individuals are believed to

have psychological biases and are often characterised as noise traders (Black, 1986). In most

theoretical models, trading arises because of new information signals. Institutional or large block

trades are more informative than small trades and more likely to cause permanent price changes

(Easley and O’Hara, 1987, 1992). However, any relation between information effects and the size

of the block is attenuated, if informed traders make numerous smaller trades and information

gradually incorporates into prices (Kyle, 1985). Easley et al. (2008) find that it is the presence

of information, rather than the variation in the intensity of uninformed trade, that determines

the arrival rate of informed traders 17. Cai et al. (2010) using a unique dataset of Chinese Stock

Market document that higher proportions of trades initiated by institutional investors can actually

be considered as informed compared to trades initiated by individuals. This result is consistent

with the argument that institutional investors are better informed and the fact that institutional

investors can gain much more profits than individuals. Avramov et al. (2006) decompose sell

trades into contrarian and herding trades and conjecture that herding trades are uninformed and

contrarian trades are informed using serial correlation tests. They find that contrarian trades

decrease volatility, while herding trades increase volatility. They demonstrate that when stock

17 The interaction of liquidity and information flows provide an insight into the price formation process (Easley et al.,

2002; O’Hara, 2003; Acharya and Pedersen, 2005).
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price declines, herding (sell) trades govern the increase in next period volatility and when stock

price rises, contrarian trades lead to a decrease in next period volatility. Hence, trading activity

of contrarian and herding investors seems to explain the relation between daily volatility and

lagged returns. Daigler and Wiley (1999) find empirical evidence indicating that the positive

volume-volatility relation is driven by the (uninformed) general public, whereas the activity of

informed traders such as clearing members and floor traders is often inversely related to volatility.

In our study we associate the trading of institutional and individual investors with those of

informed and uninformed traders respectively. We assume that active institutional traders use

market orders to assure rapid execution (at the cost of large price impacts) and engage in herding

and positive feedback trades (based on shortlived information), which exacerbate short-run

volatility. We also assume that passive institutional traders use limit orders 18 and engage in

more contrarian trades (based on longer term information), which reduce short-run volatility.

Although for some institutions the buy-sell decision has no association with prior excess returns

19, for other institutions there is a significant relation between trades and past excess returns.

However, the overall effect of these strategies may be offsetting, because some traders pursue

contrarian strategies while others follow trends. As regards the individual investors, recent studies

find that their trading patterns are significantly affected by psychological biases which lead to

increased levels of trading, systematic behaviour and high trading costs. For example, individual

investors tend to hold on to losing common stock positions and sell their winners (disposition

effect rather than contrarian trades), buy stocks that catch their attention or are familiar with

and under-diversify their stock portfolios. As a result, the buy and sell decisions of individual

traders are likely to take place within a broader range of prices unless the extra liquidity provided

18 Passive trades (using limit orders) offer an opportunity for price improvement, but impose opportunity costs because

trade execution is not assured.
19 Further, for some institutions, trades are determined primarily by pre-determined investment objectives (index

tracking, value, growth), liquidity needs and tax-management purposes.
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by individual traders is accompanied by increased levels of informed trading by institutional

investors.

1.3 Data description and sub-periods

The data set used in this study comprises 2850 daily trading volumes and prices of the Korean

Composite Stock Price Index (KOSPI), running from 3rd of January 1995 to 26th of October

2005. The data were obtained from the Korean Stock Exchange (KSE). The KOSPI is a market

value weighted index for all listed common stocks in the KSE since 1980.

1.3.1 Price volatility

Using data on the daily high, low, opening and closing prices in the index we generate a daily

measure of price volatility. We can choose from amongst several alternative measures, each of

which uses different information from the available daily price data. To avoid the microstructure

biases introduced by high frequency data and based on the conclusion of Chen et al. (2006) that

the range-based and high-frequency integrated volatility provide essentially equivalent results,

we employ the classic range-based estimator of Garman and Klass (1980) to construct the daily

volatility (V Lt) as follows

V Lt =
1

2
u2 − (2ln2− 1)c2, t ∈ N,

where u and c are the differences in the natural logarithms of the high and low and of the closing

and opening prices respectively. Figure 1.1 plots the GK volatility from 1995 to 2005.
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Figure 1.1: Garman Klass volatility

Various measures of GK volatility have been employed by, amongst others, Daigler and Wiley

(1999), Fung and Patterson (1999), Wang (2000), Kawaller et al. (2001), Wang (2002b) and Chen

and Daigler (2004)20.

1.3.2 Trading activity

We use the daily trading volume of foreign investors and eight different domestic investors,

that is individual investors, securities companies, insurance companies, mutual funds, investment

banks, commercial banks, savings banks and other companies. The eight domestic investors are

added to construct the domestic volume. We study each volume series from its buy and sell side

as well as its total (=(buy+sell)/2). We use the volume series to form the turnover and include

it as a measure of volume in our model. This is the ratio of the value of shares traded to the

value of shares outstanding (see, Campbell et al., 1993; Bollerlsev and Jubinski, 1999). Because

20 Chou (2005) propose a Conditional Autoregressive Range (CARR) model for the range (defined as the difference

between the high and low prices). In order to be in line with previous research (Daigler and Wiley, 1999; Fung

and Patterson, 1999; Kawaller et al., 2001; Wang, 2002a; Wang, 2007) in what follows we model GK volatility as

an autoregressive type of process taking into account the feedback from volume to volatility, dual-long memory

characteristics and GARCH effects.
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trading volume is nonstationary several detrending procedures for the volume data have been

considered in the empirical finance literature (see, for details, Lobato and Velasco, 2000). We

form a trend-stationary time series of turnover (TVt) by incorporating the procedure used by

Campbell et al. (1993) that uses a 100-day backward moving average TVt = V LMt
1
100

∑100
i=1 V LMt−i

,

where VLM denotes volume. This metric produces a time series that captures the change in

the long run movement in trading volume (see, Brooks, 1998; Fung and Patterson, 1999). The

moving average procedure is deemed to provide a reasonable compromise between computational

ease and effectiveness21. Figure 1.2 plots the total turnover volume from January 1995 to October

2005.

Figure 1.2: Total Turnover volume

21 We needed (in order to reach any result) to use an outlier reduced series for Savings banks Sell Turnover and Other

companies Sell Turnover: the variance of the detrended data is estimated and any value outside four standard

deviations is replaced by four standard deviations. Chebyshev’s inequality is used as it i) gives a bound of what

percentage (1/k2) of the data falls outside of k standard deviations from the mean, ii) holds no assumption about the

distribution of the data and iii) provides a good description of the closeness to the mean, especially when the data are

known to be unimodal as in our case.
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1.3.3 Structural breaks

We also examine whether there are any structural breaks in volatility. We test for structural

breaks by employing the methodology in Bai and Perron (1998, 2003a,b), who address the

problem of testing for multiple structural changes in a least squares context and under very general

conditions on the data and the errors. In addition to testing for the presence of breaks, these

statistics identify the number and location of multiple breaks.

Moreover, Bai and Perron (1998, 2003a,b) form confidence intervals for the break dates under

various hypotheses about the structure of the data and the errors across segments. This allows

us to estimate models for different break dates within the 95 percent confidence interval and

also evaluate whether our inferences are robust to these alternative break dates. Our results (not

reported) seem to be invariant to break dates around the one which minimises the sum of squared

residuals.

The overall picture dates two change points for volatility. The first is detected in October

1997 and the next one is in November 2000. Accordingly, we break our entire sample into three

sub-periods. 1st period (the pre-crisis period, sample A hereafter): 3rd January 1995 - 15th

October 1997; 2nd: 16th October 1997 - 26th October 2005 (the post-crisis period including the

in-crisis period and the economic recovery of Korea, sample B hereafter); the 3rd period: 7th

November 2000 - 26th October 2005 (the post-crisis period characterised by the world recession

period, which starts with the second change-point in volatility, sample B1 hereafter).

The first change point in volatility is associated with the financial crisis in 1997. As mentioned

earlier on, we break our entire sample into three sub-periods: 1st) 3rd January 1995– 15th October

1997 (the first break in volatility): the tranquil and pre-(currency) crisis period. This was the time

when Korea was regarded as one of the miracle economies in East Asia and foreign investors

were enthusiastic about investing in Korea. While Korea’s own currency crisis would come later
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in November of that year, the currency of Thailand, Baht (and maybe other currencies in Asia)

was under several speculative attacks in June. The Thai Baht collapsed at the beginning of July,

marking the beginning of what we now call the Asian financial crisis (AFC). The Thai crisis sent

repercussions throughout the region. 2nd) 16th October 1997- 26th October 2005: the post-crisis

period including the in-crisis period and the economic recovery. On November 18 1997, the

Bank of Korea gave up defending the Korean Won. On November 21, the Korean government

asked the International Monetary Fund (IMF) for a bail-out. There were also some instances of

labour unrest and major bankruptcies during the period. The end of the crisis in Korea is set at the

end of 1998. Even though in October 1998 there was significant uncertainty related to emerging

markets in Russia and South America as well as in Asia, the worst of the Asian crisis was clearly

over, the markets and the economies had begun to recover. In 1999-2000 the Korean economy

achieved an early and strong recovery from the severe recession. 3rd) 7th November 2000 - 26th

October 2005: the world recession period. Since the end of 2000 the Korean economy faced

many challenges, economically and politically, compounded by a global economic slowdown

with hesitant recovery, terrorist attacks, regional wars, avian flu outbreaks in Asia and domestic

and global uncertainty ahead. A 2005 World Bank research paper on Korea concluded that “the

national economy is now suffering from weak investment, slow growth and slow job creation and

rising unemployment” (Crotty and Lee, 2006).

The share of foreign trading activity in total stock market volume increased tremendously

during the last few years. The internationalisation of capital markets is reflected not only in the

addition of foreign securities to otherwise domestic portfolios, but also in active trading in foreign

markets (Dvorak, 2001). There is surprisingly little evidence, however, on the impact of foreign

trading activity on local equity markets. In Korea foreign stock ownership increased dramatically

in the post-crisis period. The share of foreign ownership of Korea’s publicly held stock increased
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from 15% in 1997 to 22% in 1999, 37% in 2001 and 43% in early 2004 (see Chung, 2005). The

foreign ownership share of the eight large urban banks grew from 12% in 1998 to 64% in late

2004. By mid-2005, Korea had higher foreign bank ownership than almost all Latin American

and Asian countries. Korea’s central bank issued a report underscoring a growing wariness in the

country about the role of foreign investors.

1.4 Estimation procedures

1.4.1 Estimation methodology

Tsay and Chung (2000) have shown that regressions involving FI regressors can lead to

spurious results. Moreover, in the presence of conditional heteroskedasticity Vilasuso (2001)

suggests that causality tests can be carried out in the context of an empirical specification that

models both the conditional means and conditional variances.

Furthermore, in many applications the sum of the estimated variance parameters is often

close to one, which implies integrated GARCH (IGARCH) behaviour. For example, Chen and

Daigler (2004) emphasise that in most cases both variables possess substantial persistence in

their conditional variances. In particular, the sum of the variance parameters was at least 0.950.

Most importantly, Baillie et al. (1996), using Monte Carlo simulations, show that data generated

from a process exhibiting FIGARCH effects may be easily mistaken for IGARCH behaviour.

Therefore we focus our attention on the topic of long memory and persistence in terms of the

second moments of volatility. Consequently, we utilise a univariate ARFI-FIGARCH model to

test for the causal effect of volume on volatility.

1.4.2 Dual long memory

Along these lines we discuss the dual long memory time series model for volatility.

Let us first define the two variables. In the expression below the equation represents the GK

volatility (V Lt), where turnover volume (TVt) is added as regressor. The ARFI(1, dm) model for

the conditional mean of volatility is given by
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(1− L)dmφ(L)(V Lt − ϕsLsTVt − µ) = εt, (1.1)

where L is the lag operator, φ(L) = 1−
∑p

i=1
φiL

i is the AR polynomial and 0 ≤ dm ≤ 1. The

ϕs coefficient captures the effect from volume on volatility. We assume εt is conditionally normal

with mean 0 and variance ht.

Further, the FIGARCH(1, dv, 1) process for the conditional variance of volatility is defined by

(1− βL)ht = ω + [(1− βL)− (1− cL)(1− L)dv ]ε2t , (1.2)

where ω ∈ (0,∞) and 0 ≤ dv ≤ 1.22 Note that the FIGARCH model is not covariance stationary.

The question whether it is strictly stationary or not is still open at present (see Conrad and Haag,

2006). In the FIGARCH model, conditions on the parameters have to be imposed to ensure the

non-negativity of the conditional variances (see Conrad and Haag, 2006 and Conrad, 2010).23

When dv = 0 the model reduces to the GARCH(1, 1) model: (1 − βL)ht = ω + αLε2t , where

α = c− β.

1.5 Empirical Analysis

1.5.1 Dual long memory model

Within the framework of the ARFI-FIGARCH model we will analyse the dynamic adjustments

of both the conditional mean and variance of volatility for all four sample periods, as well as

the implications of these dynamics for the direction of causality from volume to volatility. The

estimates of the various formulations were obtained by quasi maximum likelihood estimation

(QMLE) as implemented by James Davidson (2009) in Time Series Modelling (TSM). To check

22 Brandt and Jones (2006) use the approximate result that if log returns are conditionally Gaussian with mean 0 and

volatility ht then the log range is a noisy linear proxy of log volatility. In this study we model the GK volatility as an

ARFI-FIGARCH process.
23 Baillie and Morana (2009) introduce a new long memory volatility process, denoted by Adaptive FIGARCH, which

is designed to account for both long memory and structural change in the conditional variance process. One could

provide an enrichment of the dual long memory model by allowing the intercepts of the mean and the variance to

follow a slowly varying function as in Baillie and Morana (2009). This is undoubtedly a challenging yet worthwhile

task.
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for the robustness of our estimates we used a range of starting values and hence ensured that the

estimation procedure converged to a global maximum.

Table 1.1. Mean Equations: AR lags

Sample: Total A B B1

V Lt 1 3 1 1

Notes: The table reports the AR lags used in the

mean equations.

The best fitting specification (see equation (1.1) ) is chosen according to the minimum value of

the information criteria (not reported). For the conditional mean of volatility (V Lt), we choose an

ARFI(3, dm) process for the pre-crisis period and an ARFI(1, dm) for the other three samples (see

Table 1.1). That is, φ(L) = 1 − φ3L3 and φ(L) = 1 − φ1L, respectively. We do not report the

estimated AR coefficients for space considerations.

Before we discuss the estimation results we want to ensure that the models are well specified.

First, we calculate Ljung–Box Q statistics at 12 lags for the levels and squares of the standardised

residuals for the estimated dual long memory GARCH models. The results (not reported) show

that the time series models for the conditional mean and the conditional variance adequately

capture the distribution of the disturbances.

Finally, we employ the diagnostic tests proposed by Engle and Ng (1993), which emphasise

the asymmetry of the conditional variance to news. According to the joint test of the size and sign

bias, for the entire sample period the sign and the negative size bias test statistics (not reported)

for asymmetries in the conditional variance of volatility are significant. For the pre-crisis period

(sample A) there is no indication of asymmetry in the conditional variance. In sharp contrast, for

the post-crisis period (sample B) the results from the diagnostic tests point to the presence of a

leverage effect in the conditional variance. To check the sensitivity of our results to the possible

presence of skewness in the conditional variance of volatility in Section 1.6.1 we re-estimate our

models using the skewed t density without asymmetries.
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1.5.2 Volume-volatility link

To recapitulate, we employ the univariate ARFI-FIGARCH model with lagged values of

volume included in the mean equation of volatility to test for causality. The estimated coefficients

ϕs, defined in equation (1.1), which capture the possible feedback between the two variables,

are reported in Appendix 1B. We also tested the contemporaneous effect of volume on volatility

adding the volume series in the volatility equation (1.1) with lag order s = 0. The estimated value

of ϕ0 (not reported) was always positive and significant, indicating a positive contemporaneous

effect of volume on volatility.

Regarding the lags used to find the causal effect, we tried to test the first ten lags for

significance and in case of reaching no significant lag we extended our search up to the twentieth

lag. The first two lags show an immediate causal effect of volume on volatility, lag order five

indicates a one-week effect and so on. The twentieth lag can mean a one-month in advance

effect of the trading turnover volume on the market’s volatility, that we count as a more weak

relationship between the two variables (ie. other companies’ total volume in sample B and

securities companies-members’ purchases in sample B). In most cases, we used up to the eight

lags, to detect the causal effect. The likelihood ratio tests and the information criteria (not

reported) choose the specification for the feedback from volume to volatility.

Table 1.2 gives an overview of the volume-volatility link over the entire sample period and the

three different subsamples considered. Panel C shows the effect of the total, domestic and foreign

trading volume on volatility. The total and foreign volume have a negative effect on volatility

in the total sample, while the domestic volume affects it positively. This volume-volatility link

is in line with the results in Karanasos and Kartsaklas (2009), who find that, the negative effect

from total volume to volatility reflects the causal relation between foreign volume and volatility.

In particular, total and foreign purchases show a negative impact, while the respective sales are
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related to volatility positively. Moreover, both purchases and sales from domestic investors

generate a positive link.

Regarding the structural breaks considered, the results suggest that the causal effect from

volume on volatility is sensitive to structural changes. We always find a positive and significant

link between the two variables in the post-crisis sample periods B and B1 for all volume series. In

the pre-crisis period (sample A) total (domestic) volume affects volatility negatively (positively),

contrary to Karanasos and Kartsaklas (2009), where no link was detected.

Foreign investors’ purchases show a negative link to volatility in the pre-crisis period. This

behaviour of the foreign purchases seems to define the effect of the total purchases and the total

trading activity, which shows the same sign. In sharp contrast, all investors’ sales have a positive

impact on volatility. These findings are in accordance with Wang (2007), where it is found that

foreign purchases tend to stabilise stock markets - by increasing the investor base in emerging

markets - especially in the first few years after market liberalisation, when foreigners are buying

into local markets. Moreover, it is noteworthy to highlight the theoretical arguments of Daigler

and Wiley (1999) and Wang (2007). The former argue that the positive relation between the two

variables is driven by the uninformed general public, whereas the latter states that foreign sales

reduce investor base and destabilise the stock markets. Note that after the financial crisis the

Korean stock market experienced large foreign outflows (see Chung, 2005).

Panel A of Table 1.2 gives the results of the volume-volatility link from 6 different domestic

investor groups that are regarded as non-members of the market. Commercial banks’, savings

banks’ and other companies’ turnover volume have a positive effect on volatility across all

samples, in total and in both buy and sell sides. Insurance companies, mutual funds and

investment banks (similar to total and foreign volume) affect the market’s volatility negatively

with their purchases in the pre-crisis period. This finding is justified by the fact that the latter three
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investors are more informed than the former three ones, as they participate in the stock markets

more actively. Insurance companies, mutual funds and investment banks are investors oriented

towards trading and investing in stock markets. On the contrary, commercial and savings banks

participate in markets as a residual portfolio activity rather than as a core business operation,

which is acceptance of deposits and loan supply. So, insurance companies, mutual funds and

investment banks are specialised in trading and, therefore, more informed to stabilise the markets

than the other non-members. The more informed traders are the less noisy ones in the markets as

evidenced by previous studies (Black, 1986; Easley and O’Hara, 1987, 1992; Easley et al., 1997).

In Panel B of Table 1.2 non-members’ volumes are aggregated and presented with the other

two domestic investors, namely the market members (securities companies) and the individual

investors. The aggregated non-members and the individual investors affect volatility positively

across all samples, in total and in both buy and sell sides. The individual investors’ turnover

impact on volatility is in accordance with, amongst others, Barber and Odean (2008) and Barber et

al. (2009) results. The attention effects and the psychological biases, in general, for individuals are

depicted on higher price impact and, consequently, on higher market volatility. In sharp contrast,

the securities companies, which are the most informed amongst the domestic investors and the

main liquidity providers, show a negative impact on volatility through their purchases in the total

sample and both their purchases and sales in the pre-crisis period. This is the only case that an

investor’s sales affects volatility negatively. This is in line with the literature on institutional

investors trading activity linked to their superior information. The institutions’ trading volume

does not destabilise the markets in most cases even with herding and feedback trading conditions

(see Lakonishok et al., 1992; De Long et al., 1990). This result is consistent with the views that (i)

the activity of informed traders is often inversely related to volatility and (ii) a marketplace with a

larger population of liquidity providers will be less volatile than one with a smaller population.
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Table 1.2a. The Volume-Volatility link

Panel A. The effect of Non members’ trading volume on volatility

Sample: Total A B B1

Insurance total negative negative positive positive

Companies buy negative negative positive positive

sell positive positive positive positive

Mutual total negative negative positive positive

Funds buy negative negative positive positive

sell positive positive positive positive

Investment total negative negative positive positive

Banks buy negative negative positive positive

sell positive positive positive positive

Commercial total positive positive positive positive

Banks buy positive positive positive positive

sell positive positive positive positive

Savings total positive positive positive positive

Banks buy positive positive positive positive

sell positive positive positive positive

Other total positive positive positive positive

Companies buy positive positive positive positive

sell positive positive positive positive

Table 1.2b. The Volume-Volatility link

Panel B. The effect of Domestic Investors’ trading volume on volatility

Sample: Total A B B1

Members total negative negative positive positive

(Securities buy negative negative positive positive

Companies) sell positive negative positive positive

Non- total positive positive positive positive

members buy positive positive positive positive

sell positive positive positive positive

Individual total positive positive positive positive

Investors buy positive positive positive positive

sell positive positive positive positive

Panel C. The effect of Total trading volume on volatility

Sample: Total A B B1

total negative negative positive positive

Total buy negative negative positive positive

sell positive positive positive positive

total positive positive positive positive

Domestic buy positive positive positive positive

sell positive positive positive positive

total negative negative positive positive

Foreign buy negative negative positive positive

sell positive positive positive positive
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To sum up the results of Table 1.2, our main findings are drawed on Chart 1.1 and refer to

the sign of the volume effect on volatility with focus on the total trading volume and its buy

side regarding the total sample and the pre-crisis period (sample A). We focus on these aspects

as the sell side of the trading activity and the post-crisis samples (B, B1) in all volumes always

result to a positive sign. Domestic non-members affect the market’s volatility positively, while

the more informed ones amongst them show a negative effect, which is overridden by the less

informed investors’ positive impact. Domestic members have a negative effect on volatility in

contrast to individuals that show a positive impact, same as the non-members. The positive link

is the prevailing result for the domestic investors’ trading activity, when all domestic investor

groups are aggregated. On the other hand, foreign investors affect volatility negatively, which is

reflected also on the total volume, when all investors are included. Foreign investors are the ones

that determinate, eventually, the impact of the total trading activity on volatility, which is found

negative.
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Chart 1.C1: Trading volume (total & buy) link to volatility, Total sample & sample A

1.5.3 Fractional mean parameters

Estimates of the fractional mean parameters are shown in Table 1.3. Several findings emerge

from this table. In all cases the estimated value of dm is robust to the measures of volume used. In

other words, all ARFI models across each sample period generated very similar estimates of dm.

For example, in the total sample the twelve long memory mean parameters are between 0.40 and

0.44. For the post-crisis period (sample B) the estimated values of dm (0.38 − 0.42) are similar

to the total sample’s estimates, but higher than the corresponding values for the pre-crisis period

(sample A): 0.23− 0.27. Generally speaking, we find that the apparent long memory in volatility
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is quite resistant to ‘mean shifts’.

Table 1.3. Mean Equations: Fractional parameters (dm)

Panel A. Non-members domestic investors

Insurance Mutual Investment Commercial Savings Other

Companies Funds Banks Banks Banks Companies

Total Sample 0.43∗∗∗∗
(0.06)

0.43∗∗∗∗
(0.05)

0.42∗∗∗∗
(0.05)

0.40∗∗∗∗
(0.11)

0.44∗∗∗∗
(0.05)

0.42∗∗∗∗
(0.05)

Sample A 0.24∗∗∗∗
(0.06)

0.25∗∗∗∗
(0.07)

0.27∗∗∗∗
(0.08)

0.24∗∗∗∗
(0.06)

0.25∗∗∗∗
(0.08)

0.23∗∗∗∗
(0.08)

Sample B 0.41∗∗∗∗
(0.03)

0.42∗∗∗∗
(0.04)

0.41∗∗∗∗
(0.04)

0.38∗∗∗∗
(0.04)

0.42∗∗∗∗
(0.04)

0.42∗∗∗∗
(0.04)

Panel B. Total trading volume - Domestic investors

Total Domestic Foreign Members Non-members Individual

Investors

Total Sample 0.43∗∗∗∗
(0.05)

0.41∗∗∗∗
(0.05)

0.42∗∗∗∗
(0.08)

0.42∗∗∗∗
(0.05)

0.41∗∗∗∗
(0.05)

0.41∗∗∗∗
(0.05)

Sample A 0.25∗∗∗∗
(0.06)

0.24∗∗∗∗
(0.06)

0.25∗∗∗∗
(0.06)

0.25∗∗∗∗
(0.06)

0.23∗∗∗∗
(0.06)

0.24∗∗∗∗
(0.06)

Sample B 0.41∗∗∗∗
(0.04)

0.42∗∗∗∗
(0.04)

0.40∗∗∗∗
(0.04)

0.41∗∗∗∗
(0.04)

0.41∗∗∗∗
(0.04)

0.42∗∗∗∗
(0.04)

Notes: The table reports the fractional parameter estimates of the long memory in the mean equations.

dm is defined in equation (1).

The estimates are reported only for the case when totalTVt is added as regressor

and not for the buy and sell side of each series, due to space considerations.

The estimates of the sample B1 are not reported for space considerations.

**** denotes significance at the 0.01 level.

The numbers in parentheses are standard errors.

1.5.4 FIGARCH specifications

Table 1.4 presents estimates of the dv of the FIGARCH model.24 dv’s govern the long-run

dynamics of the conditional heteroscedasticity of volatility. The fractional parameter dv is robust

to the measures of volume used. In other words, all FIGARCH models across each sample period

generated very similar fractional variance parameters. For example, in the post-crisis period the

fractional variance parameters (0.55− 0.59) are higher than the corresponding parameters of the

total sample: 0.40 − 0.43, except for the case when the commercial banks’ turnover volume is

added where dv is 0.46 in sample B, lower than the 0.49 of the total sample. In the pre-crisis

period dv’s are close to and not significantly different from zero. In other words, the conditional

variances are characterised by a GARCH behaviour. Overall, when allowing for ‘structural

24 Various tests for long memory in volatility have been proposed in the literature (see, for details, Hurvich and Soulier,

2002).
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breaks’ the order of integration of the variance series decreases considerably, as in the pre-crisis

period the long memory in variance disappears.

Finally, the estimated values of the GARCH coefficients in the conditional variance are

robust to the different volumes added as regressors (see Appendix 1C). Note that in all cases

the necessary and sufficient conditions for the non-negativitiy of the conditional variances are

satisfied (see Conrad and Haag, 2006).

Table 1.4. Variance Equations: Fractional parameters (dv)

Panel A. Non-members domestic investors

Insurance Mutual Investment Commercial Savings Other

Companies Funds Banks Banks Banks Companies

Total Sample 0.42∗∗∗∗
(0.16)

0.42∗∗∗∗
(0.16)

0.42∗∗∗∗
(0.16)

0.49∗∗∗∗
(0.10)

0.40∗∗∗∗
(0.14)

0.42∗∗∗∗
(0.15)

Sample A − − − − − −
Sample B 0.59∗∗∗∗

(0.17)
0.57∗∗∗∗
(0.18)

0.56∗∗∗∗
(0.16)

0.46∗∗∗∗
(0.08)

0.57∗∗∗∗
(0.18)

0.55∗∗∗∗
(0.17)

Panel B. Total trading volume - Domestic investors

Total Domestic Foreign Members Non-members Individual

Investors

Total Sample 0.42∗∗∗∗
(0.16)

0.43∗∗∗∗
(0.16)

0.43∗∗∗∗
(0.17)

0.42∗∗∗∗
(0.16)

0.42∗∗∗∗
(0.15)

0.43∗∗∗∗
(0.16)

Sample A − − − − − −
Sample B 0.56∗∗∗∗

(0.17)
0.56∗∗∗∗
(0.17)

0.58∗∗∗∗
(0.18)

0.57∗∗∗∗
(0.19)

0.56∗∗∗∗
(0.17)

0.57∗∗∗∗
(0.17)

Notes: The table reports the fractional parameter estimates of the long memory in the variance equations.

dv is defined in equation (2).

The estimates are reported only for the case when totalTVt is added as regressor

and not for the buy and sell side of each series, due to space considerations.

The estimates of the sample B1 are not reported for space considerations.

**** denotes significance at the 0.01 level.

The numbers in parentheses are standard errors.

1.6 Sensitivity analysis

1.6.1 Distributional assumptions

To check the sensitivity of our results to different error distributions we re-estimate the

ARFI-FIGARCH models using the skewed t density without asymmetries. We do not report the

estimated results for space considerations.

A comparison of the results with those obtained when the normal distribution is used reveals
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that the results are qualitatively very similar. The sign of the volume effect on volatility remains

in most cases the same. This similarity disappears in the case of securities companies’ trading

activity, which is positively related to volatility as a total and in its buy side in the total sample,

contrary to the link found with the QMLE that is negative. Moreover, a major difference between

the two distributional assumptions is detected in the foreign volume, that is the foreign investors’

total turnover has a positive impact on volatility using the skewed t density contrary to the

QMLE case where the respective link is negative. However, foreign purchases are robust to the

distributional choice and remain negative in both cases, confirming the view that foreign purchases

tend to stabilise emerging stock markets. Finally, in the entire sample period the total turnover as

a total and from its buy side has a positive effect on volatility in the skewed t density, whereas in

the normal distribution the link is negative. In the former case, the total purchases seem to reflect

most the domestic investors’ activity, in contrast with the latter case, where the total purchases’

link to volatility is determined by the negative link of the foreign investors’ purchases.

Comparing the quantitative measures, we observe that the same specifications are chosen in

the AR lags of the mean equations and the FIGARCH coefficients of the variance equations.

In particular, the ARCH and GARCH coefficients [α(= c − β), β] are higher in the normal

distribution than in the skewed t in most cases. The estimated values of the fractional variance

parameters (dv) are lower in the skewed t density than in the normal case and remain constant

across the different volume series added in the mean equations. The same conclusion can be

derived comparing the fractional mean parameters (dm). Finally, we observe that the further lag

order s chosen for the turnover series added as regressors in the volatility mean equation in the

skewed t density is lower (s ≤ 12) in comparison with the QMLE case where the further lag order

s reached the seventeenth and the twentiethth lag in two cases.

Overall the results appear very robust and are generally insensitive to the presence of skewness.
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1.6.2 Structural dynamics

Furthermore, we check the robustness of our results given by the specification in equation

(1.1), where the lagged values of TVt exhibit ‘error dynamics’, since a transformation allows it

to be rewritten with only the error terms entering in the infinite moving average representation.

So, we also estimate a model, where the lagged values of TVt exhibit ‘structural dynamics’, since

they have a distributed lag representation. Overall the new results (not reported) are in broad

agreement with those presented above.

1.7 Conclusions

In this chapter we have investigated the issue of temporal ordering of the range-based volatility

and turnover volume in the Korean market for the period 1995–2005. We examined the long-run

dynamics of volatility and its uncertainty using a dual long memory model. We also studied the

nature of the volume-volatility link, focusing on the one-side effect of trading volume on volatility,

by adding the volume as regressor to the volatility model. The volume effect was examined

separately for the purchases and the sales of each investor, including eight different domestic

investor groups as well as the foreign investors. We further distinguished volume trading before

the Asian financial crisis from trading after the crisis, taking into account the structural breaks in

volatility. Our results suggest the following:

First, we find that the apparent long memory in volatility is quite resistant to ‘mean shifts’.

However, when we take into account structural breaks the order of integration of the conditional

variance series decreases considerably.

Second, the causality effects are found to be sensitive to the sample period used in terms of

their sign. Thus our analysis suggests that the behaviour of volatility depends upon volume, but

also that the nature of this dependence varies with time and the measure of volume used. In

particular, in the pre-crisis period foreign investors’ volume as a total and from its buy side affect

volatility negatively, while in the post-crisis period this effect turns to positive. This behaviour is
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reflected also in the total volume’s respective effects. This is consistent with the view that foreign

purchases tend to lower volatility in emerging markets-especially in the first few years after

market liberalisation when foreigners are buying into local markets, whereas foreign sales increase

volatility. Total domestic investors affect volatility positively across all samples, while the most

informed ‘market players’ (securities companies, investment banks, mutual funds and insurance

companies), when examined separately, are proved to have a negative impact on volatility in the

pre-crisis period. This result is in line with the theoretical argument that the activity of informed

traders tends to stabilise the market, while the positive impact of volume on volatility is driven

by the uninformed general public. In sharp contrast, in the post-crisis period increased volume

leads always to higher volatility. Finally, almost all investors’ sales are found to affect volatility

positively regardless of the sample period.

Third, most of the effects found in our study are quite robust to the distributional assumptions

concerning our models’ error distribution, as the estimates from the normal and the skewed t

density gave similar results.

Finally, our findings reinforce and extend the conclusions of Karanasos and Kartsaklas (2009).
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1.8 APPENDIX 1A: Turnover volume graphs

Figure 1A.1: Total Domestic Turnover volume

Figure 1A.2: Total Foreign Turnover volume
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1.9 APPENDIX 1B: Mean equations cross effects

Table 1B.1a: Mean Equations: Cross effects

Panel A. Non-members domestic investors a

Insurance Companies Mutual Funds

Sample Total Buy Sell Total Buy Sell

Total −0.06∗∗∗
(0.03)

[8]

−0.08∗∗∗
(0.03)

[8]

0.06∗∗
(0.03)

[6]

−0.03∗∗∗
(0.01)

[7]

−0.06∗∗
(0.03)

[2]

0.02∗∗∗∗
(0.01)

[6]

A −0.08∗∗∗
(0.03)

[8]

−0.08∗∗∗
(0.04)

[8]

0.05∗∗∗
(0.02)

[6]

−0.05∗∗
(0.03)

[8]

−0.08∗
(0.05)

[8]

0.02∗
(0.01)

[6]

B 0.34∗∗
(0.18)

[1]

0.22∗
(0.14)

[7]

0.29∗∗
(0.18)

[1]

0.03∗∗
(0.02)

[6]

0.23∗
(0.15)

[1]

0.02∗∗∗
(0.01)

[6]

Investment Banks

Sample Total Buy Sell

Total −0.08∗∗∗
(0.03)

[2]

−0.11∗∗∗
(0.05)

[2]

0.07∗∗∗∗
(0.03)

[5]

A −0.14∗∗∗
(0.07)

[1]

−0.11∗∗∗
(0.05)

[1]

0.09∗∗∗
(0.04)

[6]

B 0.53∗∗∗
(0.25)

[1]

0.34∗∗
(0.18)

[1]

0.38∗∗∗
(0.19)

[1]

Notes: The table reports parameter estimates of the cross effectsϕs in the mean equations (as defined in

equation (1)). The estimates of the sample B1 are not reported for space considerations.

**** , *** , ** , * denote significance at the 0.01, 0.05, 0.10, 0.15 level respectively.

The numbers in parentheses are standard errors. The numbers in brackets are the lag order s of the regressor.

Table 1B.1b: Mean Equations: Cross effects

Panel B. Non-members domestic investors b.

Commercial Banks Savings Banks Other Companies

Sample Total Buy Sell Total Buy Sell Total Buy Sell

Total 0.10∗∗∗
(0.05)

[4]

0.07∗∗
(0.04)

[6]

0.15∗∗∗
(0.07)

[4]

0.03∗∗
(0.01)

[3]

0.04∗
(0.03)

[6]

0.05∗∗
(0.03)

[4]

0.04∗
(0.03)

[6]

0.06∗∗
(0.04)

[6]

0.05∗∗∗
(0.02)

[5]

A 0.13∗∗∗
(0.06)

[5]

0.10∗∗
(0.05)

[5]

0.12∗∗
(0.06)

[5]

0.03∗∗∗
(0.02)

[3]

0.04∗∗
(0.02)

[3]

0.08∗
(0.05)

[4]

0.16∗∗∗
(0.08)

[6]

0.06∗
(0.04)

[1]

0.06∗
(0.04)

[5]

B 0.07∗∗∗
(0.04)

[4]

0.15∗∗
(0.08)

[1]

0.20∗∗
(0.11)

[1]

0.07∗
(0.05)

[1]

0.05∗∗∗
(0.02)

[10]

0.07∗∗∗∗
(0.02)

[11]

0.04∗
(0.03)

[17]

0.10∗
(0.07)

[12]

0.10∗∗
(0.06)

[12]

See Notes in Table 1B.1a
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Table 1B.1c: Mean Equations: Cross effects

Panel C. Domestic investors

Members Non-members

Sample Total Buy Sell Total Buy Sell

Total −0.06∗
(0.04)

[2]

−0.05∗
(0.03)

[2]

0.04∗
(0.03)

[5]

0.07∗
(0.05)

[5]

0.15∗∗∗
(0.07)

[6]

0.07∗∗
(0.05)

[4]

A −0.09∗∗∗∗
(0.03)

[8]

−0.07∗∗
(0.04)

[8]

−0.08∗∗∗
(0.04)

[8]

0.12∗∗
(0.07)

[5]

0.13∗∗
(0.07)

[5]

0.09∗∗
(0.05)

[5]

B 0.25∗∗∗∗
(0.10)

[1]

0.15∗
(0.10)

[20]

0.20∗∗∗∗
(0.08)

[1]

0.34∗∗∗
(0.17)

[1]

0.26∗∗
(0.14)

[1]

0.33∗∗∗
(0.16)

[1]

Individual Investors

Sample Total Buy Sell

Total 0.12∗
(0.07)

[1]

0.23∗∗∗
(0.10)

[6]

0.12∗∗
(0.07)

[5]

A 0.14∗∗
(0.08)

[5]

0.13∗∗
(0.08)

[5]

0.12∗∗
(0.07)

[5]

B 0.63∗∗∗∗
(0.21)

[1]

0.71∗∗∗∗
(0.23)

[1]

0.50∗∗∗∗
(0.20)

[1]

See Notes in Table 1B.1a

Table 1B.1d: Mean Equations: Cross effects

Panel D. Total trading volume

Domestic Foreign

Sample Total Buy Sell Total Buy Sell

Total 0.13∗∗
(0.08)

[5]

0.16∗∗
(0.09)

[1]

0.12∗∗∗
(0.06)

[5]

−0.03∗∗∗
(0.01)

[2]

−0.02∗∗∗∗
(0.01)

[2]

0.12∗∗∗∗
(0.04)

[6]

A 0.15∗∗∗
(0.08)

[5]

0.17∗∗∗
(0.08)

[5]

0.13∗∗
(0.07)

[5]

−0.02∗∗∗∗
(0.01)

[2]

−0.01∗∗∗
(0.00)

[2]

0.08∗∗∗
(0.04)

[6]

B 0.78∗∗∗∗
(0.26)

[1]

0.84∗∗∗∗
(0.27)

[1]

0.71∗∗∗∗
(0.26)

[1]

0.37∗∗
(0.21)

[1]

0.22∗
(0.15)

[1]

0.35∗∗
(0.21)

[1]

Total

Sample Total Buy Sell

Total −0.16∗∗∗∗
(0.05)

[8]

−0.16∗∗∗∗
(0.05)

[8]

0.11∗
(0.07)

[5]

A −0.15∗∗∗∗
(0.06)

[8]

−0.15∗∗∗∗
(0.06)

[8]

0.12∗∗
(0.07)

[5]

B 0.79∗∗∗∗
(0.29)

[1]

0.79∗∗∗∗
(0.28)

[1]

0.79∗∗∗∗
(0.28)

[1]

See Notes in Table 1B.1a
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1.10 APPENDIX 1C: Variance equations GARCH coefficients

Table 1C.1a: Variance Equations: GARCH coefficients

Panel A. Non-members domestic investors a.

Insurance Comp. Mutual Funds Investment Banks

Sample α β α β α β
Total −0.16

(0.15)
0.59∗∗∗∗
(0.22)

−0.16
(0.15)

0.59∗∗∗∗
(0.23)

−0.16
(0.15)

0.59∗∗∗∗
(0.23)

A 0.15
(0.16)

0.72∗∗∗∗
(0.22)

0.14
(0.22)

0.73∗∗∗
(0.32)

0.23
(0.28)

0.61∗∗
(0.33)

B −0.29∗∗
(0.17)

0.70∗∗∗∗
(0.16)

−0.26∗∗
(0.16)

0.71∗∗∗∗
(0.21)

−0.25∗∗
(0.14)

0.71∗∗∗∗
(0.20)

Panel B. Non-members domestic investors b.

Commercial Banks Savings Banks Other Companies

Sample α β α β α β
Total −0.15

(0.14)
0.55∗∗∗∗
(0.21)

−0.17
(0.14)

0.52∗∗
(0.27)

−0.16
(0.15)

0.60∗∗∗∗
(0.21)

A 0.16
(0.26)

0.73∗∗∗
(0.35)

0.16
(0.25)

0.71∗∗∗
(0.35)

0.17
(0.15)

0.74∗∗∗∗
(0.18)

B −0.11
(0.11)

0.59∗∗∗∗
(0.16)

−0.27∗∗
(0.16)

0.71∗∗∗∗
(0.19)

−0.25∗∗
(0.15)

0.69∗∗∗∗
(0.23)

Notes: The table reports estimates of the ARCH (α) and GARCH (β) parameters

in the variance equations.α, β are defined in equation (2).

The estimates are reported only for the case when totalTVt is added

as regressor and not for the buy and sell side of each series,

due to space considerations.

The estimates of the sample B1 are not reported for space considerations.

**** , *** , ** , * denote significance at the 0.01, 0.05, 0.10, 0.15 level

respectively. The numbers in parentheses are standard errors.

Table 1C.1b: Variance Equations: GARCH coefficients

Panel C. Domestic investors

Members Non-members Individual Investors

Sample α β α β α β
Total −0.16

(0.15)
0.59∗∗∗
(0.24)

−0.16
(0.15)

0.60∗∗∗∗
(0.21)

−0.16
(0.15)

0.60∗∗∗∗
(0.23)

A 0.13
(0.12)

0.76∗∗∗∗
(0.18)

0.16
(0.28)

0.71∗∗
(0.38)

0.14
(0.17)

0.75∗∗∗∗
(0.26)

B −0.26∗
(0.16)

0.72∗∗∗∗
(0.22)

−0.25∗∗
(0.15)

0.72∗∗∗∗
(0.20)

−0.26∗∗
(0.15)

0.71∗∗∗∗
(0.22)

Panel D. Total trading volume

Total Domestic Foreign

Sample α β α β α β
Total −0.16

(0.15)
0.60∗∗∗∗
(0.21)

−0.16
(0.15)

0.61∗∗∗∗
(0.22)

−0.16
(0.15)

0.61∗∗∗∗
(0.24)

A 0.14
(0.15)

0.74∗∗∗∗
(0.22)

0.13
(0.16)

0.76∗∗∗∗
(0.24)

0.11
(0.10)

0.78∗∗∗∗
(0.16)

B −0.25∗∗
(0.15)

0.72∗∗∗∗
(0.21)

−0.25∗∗
(0.15)

0.71∗∗∗∗
(0.22)

−0.25∗∗
(0.16)

0.73∗∗∗∗
(0.21)

See Notes in Table 1C.1a
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Chapter 2 Multivariate FIAPARCH modelling of financial markets with dynamic

correlations in times of crisis

2.1 Introduction

The intrinsic informational content that financial crises provide to the research community is

certainly one of the key reasons they remain in the spotlight of the finance and broader economic

literature long after they are resolved. The 1997 Asian financial crisis, the Global financial crisis of

2007-08 and the ongoing European sovereign-debt crisis are evidently amongst the most important

events that stirred universal fear of a worldwide economic meltdown due to financial contagion

amongst investors, financial market practitioners and policy makers alike. And inevitably, what

our modelling tools can tell us about the period around those times is, amongst other things, the

channel through which our existing risk management paradigms and decision-making processes

will evolve to better address similar episodes in the future.

In this spirit, the availability of data and processing power capacity together with the recent

developments in econometrics allow us to pinpoint better than ever before, properties of the

underlying stochastic processes that are crucial albeit hard to uncover (i) in constructively

challenging long-established assumptions of the financial practice such as the benefits of

international portfolio diversification, especially during periods of economic turmoil or (ii)

in shedding light on how the properties of our modelling efforts of the underlying stochastic

processes project the impact of these crises. Our study introduces a unified approach and

demonstrates how it can be used to determine key aspects of modelling around periods of

economic turmoil, such as changes in the linkages between financial markets, in long memory

and power effects amongst others. In particular, we focus on stock market volatilities and

co-volatilities and how they have changed due to the Asian and the recent Global financial crises.

The study of the linkages between volatilities and co-volatilities of the financial markets is a
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critical issue in risk management practice. The multivariate GARCH framework provides the

tools to understand how financial volatilities move together over time and across markets. For

thorough surveys of the available Multivariate GARCH models and their use in various fields

of risk management such as option pricing, hedging and portfolio selection see Bauwens et al.

(2006) and Silvennoinen and Teräsvirta (2009).

Conrad et al. (2011) applied a multivariate fractionally integrated asymmetric power ARCH

(FIAPARCH) model that combines long memory, power transformations of the conditional

variances and leverage effects with constant conditional correlations (CCC) on eight national

stock market indices returns. The long-range volatility dependence, the power transformation of

returns and the asymmetric response of volatility to positive and negative shocks are three features

that improve the modelling of the volatility process of asset returns and its implications for the

various risk management practices. We extend their model by allowing for cross effects between

the markets in the mean of returns and by estimating time-varying conditional correlations. We

also study the effect of financial crisis events on the dynamic conditional correlations as well as on

the three key features of the conditional variance nested in the model. Therefore, the contribution

of the present study is that our model provides a complete framework for the analysis of financial

markets’ co-volatility processes.

The empirical analysis of our model applied to eight stock indices daily returns in a bivariate

and trivariate framework provides evidence that confirms the importance of long memory in the

conditional variance, of the power transformations of returns to best fit the volatility process

and of the asymmetric response of volatility to positive and negative shocks. A Wald testing

procedure strongly supports our results. We extend the existing empirical evidence on the dynamic

conditional correlations (DCC) models by adding all cross effects in the mean equation, that is we

estimate a full vector autoregressive (VAR) model, to reveal the relationship amongst the returns
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of each multivariate specification. In the previous studies the researchers have added as regressor

in the mean for all stock market indices a prevailing global index return, such as S&P 500 or an

index of particular interest for the region and the period investigated. Our cross effects are found

significant in most cases.

Moreover, another of our main findings regards the DCC analysis with structural breaks. In

line with the literature, our model estimates always highly persistent conditional correlations. The

correlations increase during crisis events, indicating contagion effects between the markets and

remain on a high level after the crisis break, showing the investors’ herding behaviour. Finally, we

contribute to the existing literature findings by comparing two different financial crises, the Asian

(1997) and the recent Global (2007-08) crisis, in terms of their effects on the correlations, where

we observe much more heightened conditional correlation estimates for the recent Global crisis

than for the Asian crisis. This is reasonable since the international financial integration followed

by the financial liberalisation and deregulation in capital controls has reached its peak nowadays

compared to its evolution during the Asian financial crisis in 1997.

The remainder of the chapter is structured as follows. Section 2.2 discusses the existing

empirical literature on the financial crises, the contagion effects amongst the financial markets

and the investors’ herding behaviour. In Section 2.3 we detail the multivariate FIAPARCH model

with DCC and the methodology for detecting structural breaks. Section 2.4 discusses the data and

presents the empirical results. Quasi Maximum likelihood parameter estimates for the various

specifications and results of the Wald testing procedures are presented. We also evaluate the

different specifications, taking into account the structural breaks of each time series linked with

two financial crisis events. Each multivariate specification is re-estimated under three subsamples

defined by the break dates detected for each country combination. In addition, two contagion tests

are performed in Section 2.5. The final Section concludes the analysis.

2.2 Literature review
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2.2.1 Financial crises and the DCC model

There are several studies that investigate the two crises (the Asian and the recent Global one)

using the DCC model. Cho and Parhizgari (2008) study the Asian financial crisis effects on

correlations between eight East Asian stock markets. Using the AR(1)-DCC-GARCH(1,1) model

on daily returns they find an upward trend in DCCs after the break date of the crisis. They observe

a shift in the mean and the median of the DCCs computed by the model. Chiang et al. (2007) also

use an AR(1)-DCC-GARCH(1,1) on nine Asian stock markets plus the US market (as explanatory

variable in the mean equation) to investigate the effects of the Asian crisis. They conclude that

there are higher correlations during the crisis, where volatility is also increased. They also observe

two phases in the crisis period. In the first phase the correlations increase, which means contagion

effect and in the second phase the correlations remain high, which means investors’ herding

behaviour.

Syllignakis and Kouretas (2011) use the AR(1)-DCC-GARCH(1,1) model to investigate the

correlation pattern (before and after the current financial crisis) between the US, the Russian and

seven emerging markets of Central and East Europe. They consider cross effects in the mean

caused only by either the US, the German or the Russian index returns but not by the other

dependent variables of each multivariate model. They find an increase in conditional correlations

between the stock market returns during the crisis (2007-2009). They use weekly returns and

then dummy variables for the crisis periods as regressors in a separate regression of the generated

DCC. Kenourgios and Samitas (2011) apply the asymmetric generalised (AG) DCC-GARCH(1, 1)

model of Cappiello et al. (2006) to confirm the increased dynamic correlations between five

emerging Balkan stock markets, the US and three developed European markets during the current

financial crisis, also considering asymmetries in correlation dynamics. They conclude that

the higher stock market interdependence is due to herding behaviour during the crisis period.
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Kenourgios et al. (2011) extend their paper to investigate the conditional correlations over five

financial crisis events from 1995 to 2006 for the BRICs, the US and the UK using various

DCC models like the original one of Engle (2002a) and the AG-DCC as well. More recently,

Kenourgios and Padhi (2012) again estimated AG-DCC models to study correlations during crisis

periods between 1994 and 2008 on nine emerging markets and the US.

Kazi et al. (2011) use a multivariate DCC-GARCH(1,1) model to investigate the correlations

between seventeen OECD stock market returns before and during the current Global financial

crisis. They use the Bai-Perron (2003a) structural break test and apply the DCC model for the

whole period (2002-2009) and the two sub-periods, defined by the structural break detected

(1-10-2007), which corresponds to the beginning of the crisis. They observe a significant increase

in DCC during the crisis (after October 2007) compared to the pre-crisis period (before October

2007), which confirms the finding of previous studies of a higher contagion effect during financial

crisis periods. Kotkatvuori-Ornberg et al. (2013) also focus on the current financial crisis with

data from fifty stock market indices for the period 2007 to 2009, accounting for two major

events: JP Morgan’s acquisition of Bear Stearns and the Lehman Brothers’ collapse with dummy

variables for the unconditional variance in the multivariate GARCH(1,1) equation. Then the DCC

model is applied in six multivariate specifications for each region and the correlations generated

are further used to run multivariate GARCH(1,1) with the same intercept dummies in the mean

and the variance. The impact of the crisis is found significant on stock markets’ comovements and

especially the effect of the Lehman Brothers’ collapse is prominent across all regions.

The advantage of our analysis in comparison with the above studies is the FIAPARCH

specification of the conditional variance, while the existing studies use the simple GARCH model.

We also assume t-distributed innovations, since daily financial data exhibit excess kurtosis, while

all the above mentioned papers assume Gaussian innovations. Moreover, we add in the mean
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equation the cross effects between all the dependent variables and not a common regressor for all

the returns, such as the US stock index in Chiang et al. (2007) and thus we estimate a full VAR

model. We also apply the complete methodology of Karoglou (2010) to identify the structural

breaks in the mean and the volatility dynamics of the stock returns, using a comprehensive set of

data-driven methods of structural change detection and not only a single statistical test. We finally

use a very large sample period from 1988 to 2010 of daily stock returns, the widest amongst the

studies considered under our literature review.

2.2.2 Long Memory and Power Transformed returns

There are some recent studies that use the DCC models of either Engle (2002a) or Tse and Tsui

(2002) with the FIAPARCH specification in the variance equation. Aloui (2011) uses daily stock

index returns from Latin American markets for the period 1995-2009 and runs the multivariate

FIAPARCH with Engle’s DCC, assuming t-distributed innovations following Conrad et al.

(2011). The DCCs generated are modelled separately with an AR(p)-GARCH(1,1) with intercept

dummies for the crisis events in the mean and the variance equation. The breaks are defined

from the economic approach of each crisis timing, the Asian financial crisis (AFC), the Global

financial crisis (GFC) and the regional Latin American crises. They prove that the correlations

are much higher during periods of financial crises and especially the regional crises and the GFC.

Ho and Zhang (2012) apply amongst other models the multivariate FIAPARCH framework with

the DCC of Tse and Tsui (2002) with the normality assumption for the errors on daily Chinese

stock index returns from 1992-2006. They focus on the key features of the variance specification,

the asymmetries and the long memory and on the time-varying behaviour of the conditional

correlations. They do not use breaks and do not investigate the effect of crisis events.

Dimitriou and Kenourgios (2013) apply the multivariate FIAPARCH framework of Tse (1998)

with the DCC of Engle (2002a) on foreign exchange rates daily data from 2004 to 2011 with

t-distributed errors, in order to identify the effect of the recent financial crisis. They detect the
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structural breaks according to an economic approach defining the exact timing of the major crisis

events and a statistical approach applying the Markov Switching Dynamic Regression model.

They run the multivariate DCC-FIAPARCH on the whole sample without cross effects for the

five currency series and with the DCCs generated they run an AR(p)-GJR-GARCH(1,1) with

intercept dummies for the crisis breaks in the mean and the variance equation of the DCCs to

measure the crisis effects. They conclude that there are lower exchange rate correlations during

turbulent times. Dimitriou et al. (2013) also use the same FIAPARCH specification in a bivariate

framework for stock returns of the US and the BRICs markets pairwise for the period 1997-2012.

They assume again t-distributed errors but they use the DCC of Tse and Tsui (2002) instead of

Engle’s (2002a) specification. They model the DCCs extracted from the whole sample and detect

the breaks in the same way in order to investigate the correlation dynamics during the several

phases of the recent financial crisis. Stock market correlations are found to be increased after early

2009.

In the light of the more recent DCC-FIAPARCH studies, our modelling still provides a

comprehensive analysis of the volatility and correlation processes for three main reasons: we use

an outstanding breaks methodology, we apply the mean cross effects (that is a full VAR model)

and our data cover the longest sample period, which is split into subsamples for the crisis periods

in order to re-estimate the same model specifications and analyse the time-varying behaviour of

the parameters and the effects of the financial crises.

2.2.3 Contagion effects

Our empirical results below (see Section 2.5) are in line with the existing empirical evidence

that supports the increase in conditional correlations during crisis and justifies the contagion

effects amongst the financial markets and the investors’ herding behaviour. As a brief review

of the studies on the markets’ interdependence during crisis events we first refer to Lin et al.

(1994), who report the link between higher correlations and higher volatility periods in equity
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market returns as an ‘empirical regularity’ to start their research on intra-daily stock prices

across markets. Ang and Bekaert (1999) and Longin and Solnik (2001) observe higher volatility

periods associated with higher correlations between different stock index returns in bear markets.

Bartram and Wang (2005) provide evidence that contagion effects exist during crises with higher

correlation estimates. Boyer et al. (2006) show that correlation estimates increase during crisis

periods and investigate the transmission mechanisms across different markets. Increased herding

behaviour during crisis is proved in Chiang and Zheng (2010) for some of the countries under

study. Sandoval and Franca (2012) use various techniques to measure the correlation between

the markets during crises and find that in turbulent times markets exhibit higher degrees of

comovement.

Corsetti et al. (2001) show that although the stock markets’ volatilities and covariances increase

during crises, the correlations are not necessarily higher. Forbes and Rigobon (2002) give the

definition of contagion as “the significant increase in cross-market linkages after a shock to one

country”. They develop tests on the contagion effect during a crisis and show that the correlation

coefficients are conditional on market volatilities. During a crisis the market volatilities are

higher, so the correlations are biased upwards. They find no contagion effect during crises by

estimating the unconditional correlations, but they accept that there is interdependence (high

level of market comovement) across the markets in any state of the economy. Billio and Pelizzon

(2003) investigate the tests proposed by the two above mentioned studies to detect contagion

or interdependence across markets during financial crisis events. Chakrabarti and Roll (2002)

observe higher covariances, correlations and volatilities, after the Asian financial crisis arose, in

both Asian and European markets. Yang and Lim (2004) find that during the Asian financial crisis

a contagion effect is apparent across the stock markets with a higher degree of interdependence in

the whole region. Khan and Park (2009) find herding contagion across Asian markets during the
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Asian financial crisis, measuring the cross-country correlations. Finally, Moldovan (2011) proves

that correlations between the three major financial markets (US, UK and Japan) are higher after

the recent financial crash of 2007 than before.

In the financial crisis literature review we find no study that compares the AFC and the GFC,

except for Aloui (2011), who investigates the effects of the two crises only on Latin American

markets with a narrower sample. Our extended sample from 1988 to 2010 gave us the chance to

compare the conditional correlations after each crisis. We find higher correlation estimates after

the GFC break than after the AFC. This is absolutely expected since the international financial

integration is more apparent in recent years. The evident risk transmission across markets as

well as the key characteristics of volatility (co-persistence and asymmetry) during crises should

be of primary interest for the market players (all sorts of investors and risk managers) and the

regulators. The market participants must take into account the market’s stylised facts captured

by our model. For example, the volatility persistence affects the investment horizon and the

higher correlations reduce the portfolio diversification gains. The financial authorities have to

consider such findings in order to establish the appropriate market control measures and protect

the investors from extreme risk exposures.

2.3 Methodology

2.3.1 Multivariate FIAPARCH-DCC model

The most common model in finance to describe a time series of daily stock index returns is

the VAR of order 1 process. Let us define the N -dimensional column vector of the returns rt as

rt = [rit]i=1,...,N and the corresponding residual vector εt as εt = [εit]i=1,...,N . The structure of the

VAR (1) mean equation with cross effects is given by

rt= φ+ Φrt−1+εt (2.1)

where φ = [φi]i=1,...,N is an N × 1 vector of constants; the N × N coefficient matrix

Φ = [φij]i,j=1,...,N can be expressed as Φ = Φ(d) + Φ(od), with Φ(d) =diag(φ11, . . . , φNN), that
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is to allow for cross effects we allow Φ(od) 6= 0 (matrices and vectors are denoted by upper and

lower case boldface symbols, respectively.). For example, the bivariate AR(1) model is given by[
r1t
r2t

]
=

[
φ01
φ02

]
+

[
φ11 φ12
φ21 φ22

] [
r1,t−1
r2,t−1

]
+

[
ε1t
ε2t

]
or[

r1t
r2t

]
=

[
φ01
φ02

]
+

{[
φ11 0
0 φ22

]
+

[
0 φ12
φ21 0

]}[
r1,t−1
r2,t−1

]
+

[
ε1t
ε2t

]
.

Regarding εt we assume that it is conditionally student-t distributed with mean vector 0,

covariance matrix Σt = E(εtε
′
t |Ft−1 ) = [σij,t]i,j=1,...,N and variance vector σt = E(ε∧2t |Ft−1 ) =

[σii,t]i=1,...,N or σt = (IN � Σt)i with i being an N × 1 vector of ones (the symbol � denotes

element wise multiplication); σt follows a multivariate FIAPARCH(1, d, 1) model (see below).

Notice that εt can be written as (et � q
∧−1/2
t ) � σ∧1/2t (the symbol ∧ denotes element wise

exponentiation) where et = [eit]i=1,...N is conditionally student-t distributed with mean vector

0, time-varying covariance (symmetric positive definite) matrix Qt=[qij,t]i,j=1,...,N (the so called

quasi-correlations, see Engle, 2009) and variance vector qt = (IN �Qt)i. It follows that

σij,t = E(εitεjt |Ft−1 ) = E(
eitejt√
qii,tqjj,t

√
σii,tσjj,t |Ft−1 )

=

√
σii,tσjj,t
√
qii,tqjj,t

E( eitejt| Ft−1) =
√
σii,tσjj,t

qij,t√
qii,tqjj,t

=
√
σii,tσjj,tρij,t.

Most importantly, we allow for DCC, ρij,t = σij,t/
√
σii,tσjj,t, |ρij,t| ≤ 1 (i, j = 1, . . . , N )∀ t,

instead of the constant ones, ρij , used by Conrad et al. (2011) (see below).

The covariance matrix Σt can be expressed as

Σt = (IN �Σ
∧1/2
t )Rt(IN �Σ

∧1/2
t ), (2.2)

where Rt = [ρij,t]i,j=1,...,N is the N ×N symmetric positive semi-definite time-varying correlation

matrix with ones on the diagonal (ρii,t = 1) and the off-diagonal elements less than one in absolute

value.

Next, the structure of the conditional variance is specified as in Tse (1998), who combines the

FIGARCH formulation of Baillie et al. (1996) with the APARCH model of Ding et al. (1993).

The multivariate FIAPARCH(1, d, 1) we estimate is specified as follows:
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β(L)� σZδi/2t = ω + [β(L)−c(L)� d(L)]� f(εt), (3)

f(εt) = (|εt| − γεt)
Zδi ,

where β(L) = [1− βiL]i=1,...,N , ω = [ωi]i=1,...,N , ωi ∈ (0,∞); c(L) = [1− ciL]i=1,...,N , |ci| < 1

and d(L) = [(1−L)di ]i=1,...N , 0 ≤ di ≤ 1 are all N × 1 vectors; |εt| is the vector εt with elements

stripped of negative values and γ = [γi]i=1,...,N is the vector of the leverage coefficients, |γi| < 1;

the power terms, δi, take finite positive values and are used in elementwise exponentiation, that

is σ
Zδi/2
t raises the ith standard deviation to the power of δi. In other words, each conditional

variance follows a FIAPARCH(1, d, 1) model:

(1− βiL)σ
δi/2
ii,t = ωi + [(1− βiL)− (1− ciL)(1− L)di ](|εit|−γiεit)

δi , i = 1, . . . , N . (2.4)

The sufficient conditions of Bollerslev and Mikkelsen (1996) for the positivity of the

conditional variance of a FIGARCH (1, d, 1) model: ωi > 0, βi − di ≤ ci ≤ 2−di
3

and

di(ci − 1−di
2

) ≤ βi(ci − βi + di), should be satisfied ∀ i (see also Conrad and Haag (2006)

and Conrad (2010)). Of course when di = 0 the model reduces to the APARCH(1, 1):

(1−βiL)σ
δi/2
ii,t = ωi +αiL(|εit|−γiεit)

δi , αi = ci−βi; in addition, when δi = 2, γi = 0 it reduces

to the GARCH(1, 1): (1− βiL)σii,t = ωi + αiLε
2
it.

Finally, the structure of Rt according to Engle (2002a) is given by

Rt = (IN �Qt
∧−1/2)Qt(IN �Qt

∧−1/2), (5)

Qt = (1− a− b)Q + aet−1e
′

t−1 + bQt−1, (6)

where Q = E(Qt) =[qij]i,j=1,...,N , a and b are nonnegative scalar parameters satisfying a+ b < 1.

It is clear that Engle (2002a) specifies the conditional correlations as a weighted sum of past

correlations, since the matrix of the quasi correlations, Qt, is written as a GARCH process and then

transformed to a correlation matrix. Engle (2002a, 2009) used the estimator Q̂= 1
T

∑T

t=1
êtê
′
t.
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In the bivariate case the conditional correlation coefficient ρ12,t is expressed as follows:

ρ12,t =
q12,t√
q11,tq22,t

, (7)

q12,t = (1− a− b)q12 + ae1,t−1e2,t−1 + bq12,t−1,

q11,t = (1− a− b)q11 + ae21,t−1 + bq11,t−1,

q22,t = (1− a− b)q22 + ae22,t−1 + bq22,t−1.

2.3.2 Structural breaks

In order to identify the number and timing of the potential structural breaks we employ the

Awarding-Nominating procedure of Karoglou (2010). This procedure involves two stages: the

“Nominating breakdates” stage and the “Awarding breakdates” stage.

The “Nominating breakdates” stage involves the use of one or more statistical tests to identify

some dates as possible breakdates. In recent years, a number of statistical tests have been

developed for that reason and for the purposes of this study, we use the following ones:

(a) I&T (Inclán and Tiao, 1994)

(b) SAC1 (The first test of Sansó et al., 2003)

(c) SAC2BT, SAC2QS, SAC2VH (The second test of Sansó et al., 2003, with the Bartlett

kernel, the Quadratic Spectral kernel and the Vector Autoregressive HAC or VARHAC kernel of

den Haan and Levin, 1998 respectively)

(d) K&LBT, K&LQS, K&LVH (The version of the Kokoszka and Leipus, 2000 test refined

by Andreou and Ghysels, 2002 with the Bartlett kernel, the Quadratic Spectral kernel and the

VARHAC kernel respectively).

These tests are designed to detect a structural change in the volatility dynamics, but in fact

they do not discriminate between shifts in the mean and shifts in the variance. For the purpose of

this study, this is a plausible feature since all types of breaks need to be considered in order to

determine if and to what extent the distributional properties change when moving from one regime
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to another. Furthermore, their properties for strongly dependent series have been extensively

investigated (e.g. Andreou and Ghysels, 2002, Sansó et al., 2003, Karoglou, 2006) and there is

evidence that they perform satisfactorily under the most common ARCH-type processes.

To identify multiple breaks in a series we incorporate the aforementioned test in the following

iterative scheme (algorithm):

1. Calculate the test statistic under consideration using the available data.

2. If the statistic is above the critical value split the particular sample into two parts at the

date at which the value of a test statistic is maximised.

3. Repeat steps 1 and 2 for the first segment until no more (earlier) change-points are

found.

4. Mark this point as an estimated change-point of the whole series.

5. Remove the observations that precede this point (i.e. those that constitute the first

segment).

6. Consider the remaining observations as the new sample and repeat steps 1 to 5 until no

more change-points are found.

The above algorithm is implemented with each of the (single breakdate CUSUM-type) test

statistics described above (i.e. I&T, SAC1, SAC2BT, SAC2QS, SAC2VH, K&LBT, K&LQS,

K&LVH).

What differentiates this scheme from a simple binary division procedure is that it forces

the existing breaks to be detected in a time-orderly fashion, which makes it more robust when

transitional periods exist - in which case a simple binary division procedure is likely to produce

more breaks in the interim period. In the absence of transitional periods both procedures will

produce the same breaks.

The nominated breakdates for each series are simply all those which have been detected in each
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case. Note that at this stage we are not much concerned with detecting more breaks than those

that actually exist because whichever is not an actual breakdate will be picked up in the Awarding

breakdates stage.

The “Awarding breakdates” stage is a procedure which, in essence, is about uniting contiguous

nominated segments (i.e. segments that are defined by the nominated breakdates) unless one of

the following two conditions is satisfied:

(I) the means of the contiguous segments are statistically different (as suggested by the

t-test)

(II) the variances of the contiguous segments are statistically different (as suggested by the

battery of tests which is described below)

This testing procedure is repeated until no more segments can be united, that is, until no

condition of the two above is satisfied for any pair of contiguous segments.

The battery of tests mentioned in (II) constitute a different approach to the CUSUM-type tests

described previously in that they test for the homogeneity of variances of contiguous segments

without encompassing the time series dimension of the data . They include the standard F-test,

the Siegel-Tukey test with continuity correction (Siegel and Tukey, 1960 and Sheskin, 2004), the

adjusted Bartlett test (see Sokal and Rohlf, 1995 and Judge, et al., 1988), the Levene test (1960)

and the Brown-Forsythe (1974) test.

Overall, we find that the stochastic behaviour of all indices yields about three to seven breaks

during the sample period, roughly one every two to four years on average. The resulting break

dates for each series are in the Appendix 2B, Table 2B.1. The predominant feature of the

underlying segments is that mainly changes in variance are found statistically significant. Finally,

there are several breakdates that are identical in all series and others that are very close to one

another, which apparently signify economic events with a global impact.
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Table 2B.2 in the Appendix 2B provides a detailed account of the possible associations that

can be drawn between each breakdate and a major economic event that took place at or around the

breakdate period, either in the world or in each respective economy. It appears that dates for the

extraordinary events of the AFC of 1997, the GFC of 2007–08 and the European sovereign-debt

crisis that followed are very clearly identified in all stock return series and with very little or no

variability. Other less spectacular events, such as the Russian financial crisis of 1998, the Japanese

asset price bubble of 1986-1991 or the UK’s withdrawal from the European Exchange Rate

Mechanism (ERM), can also be associated with the breakdates that have been identified in some

series. Table 2B.3 presents some of the descriptive statistics of the stock returns of each segment

between the breakdates. The variability of the mean returns becomes particularly prominent for

all countries at the end of our sample i.e. after the 2007-08 financial crisis. In exactly the same

period, the stock market uncertainty as proxied by the standard deviation rises dramatically.

We selected amongst the breaks detected (for each series’ combination for the respective

bivariate and trivariate models) the two dates that correspond to the two financial crisis events,

on which we will focus in our analysis. These dates are also the most common breaks of each

series’ combination. We intend to study the impact of the AFC of 1997 and the recent GFC of

2007-08 on the volatility and correlation dynamics of the eight stock markets. As seen in Table

2.1 we break the whole sample into three subsamples and rerun all the models under the same

specifications. The first subsample (A) starts from our first observation of 1988 and ends on the

break date near the AFC. This is the pre-AFC period. The second subsample (B) starts from the

AFC and ends on our last observation of 2010. This is called the post-AFC period, which also

includes the current crisis. Finally, the third subsample (C) starts from the AFC break point and

ends on the GFC break. This is the period between the two crises.
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Table 2.1: Break dates and subsamples

Panel A: Break dates

1st break 2nd break

CAC-DAX 17/03/1997 15/01/2008

CAC-FTSE 17/03/1997 24/07/2007

DAX-FTSE 21/07/1997 24/07/2007

HS-NIKKEI 24/10/2001 27/07/2007

HS-STRAITS 28/08/1997 26/07/2007

NIKKEI-STRAITS 28/08/1997 26/07/2007

SP-TSE 27/03/1997 15/01/2008

ASIA 28/08/1997 26/07/2007

EUROPE 17/03/1997 24/07/2007

Panel B: Subsamples

subsample A subsample B subsample C

CAC-DAX 01/01/1988 - 17/03/1997 18/03/1997 - 30/06/2010 18/03/1997 - 15/01/2008

CAC-FTSE 01/01/1988 - 17/03/1997 18/03/1997 - 30/06/2010 18/03/1997 - 24/07/2007

DAX-FTSE 01/01/1988 - 21/07/1997 22/07/1997 - 30/06/2010 22/07/1997 - 24/07/2007

HS-NIKKEI 01/01/1988 - 24/10/2001 25/10/2001 - 30/06/2010 25/10/2001 - 27/07/2007

HS-STRAITS 01/01/1988 - 28/08/1997 29/08/1997 - 30/06/2010 29/08/1997 - 26/07/2007

NIKKEI-STRAITS 01/01/1988 - 28/08/1997 29/08/1997 - 30/06/2010 29/08/1997 - 26/07/2007

SP-TSE 01/01/1988 - 27/03/1997 28/03/1997 - 30/06/2010 28/03/1997 - 15/01/2008

ASIA 01/01/1988 - 28/08/1997 29/08/1997 - 30/06/2010 29/08/1997 - 26/07/2007

EUROPE 01/01/1988 - 17/03/1997 18/03/1997 - 30/06/2010 18/03/1997 - 24/07/2007

2.4 Empirical analysis

2.4.1 Data

Daily stock price index data for eight countries were sourced from the Datastream database

for the period 1st January 1988 to 30th June 2010, giving a total of 5, 869 observations. The

eight countries and their respective price indices are: UK: FTSE 100 (FTSE), US: S&P 500 (SP),

Germany: DAX 30 (DAX), France: CAC 40 (CAC), Japan: Nikkei 225 (NIKKEI), Singapore:

Straits Times (STRAITS), Hong Kong: Hang Seng (HS) and Canada: TSE 300 (TSE). We selected

the most representative indices for the European, Asian and American stock markets. Our sample

is large enough to include various crisis events like the Asian (1997), the Russian (1998) and the

recent Global crisis, which is still an on-going process beginning from 2007. For each national

index, the continuously compounded return was estimated as rt = (log pt− log pt−1)× 100 where

pt is the price on day t.
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The descriptive statistics of each return series and the series correlations pairwise are reported

in Table 2.2. The mean of all returns is positive except for NIKKEI. The Asian returns show

greater standard deviation on average than the European and the American. FTSE from Europe

and the two American series have the lowest values of unconditional volatility, between 44%

and 49%. HS and NIKKEI exhibit the highest volatility, 73% and 64%, respectively and DAX

follows with 62%. CAC and STRAITS volatility is calculated in the middle, 59% and 57%,

respectively. It is obvious that the normality hypothesis for our daily returns is rejected. All

series exhibit skewness with negative values of the relevant measure, indicating that the data are

skewed left (long left tail) and excess kurtosis, far above the benchmark of 3 of the normality

case, which means a more ‘peaked’ data distribution (leptokurtosis). The higher correlations

are computed for the European returns (CAC-DAX-FTSE) and the American pair (SP-TSE).

Moreover, the American variables correlation to the Asian variables is lower than their correlation

to the European. See in the Appendix 2A the graphs of each return series.

Table 2.2: Descriptive Statistics

Panel A: Returns descriptive statistics

CAC DAX FTSE HS NIKKEI STRAITS SP TSE

Minimum -4.1134 -5.9525 -4.0240 -10.649 -5.2598 -4.43287 -4.1126 -4.2509

Maximum 4.6011 4.6893 4.0756 7.4903 5.7477 6.4573 4.7587 4.0695

Mean 0.0092 0.0132 0.0078 0.0160 -0.0062 0.0105 0.0106 0.0094

Median 0.0000 0.0188 0.0028 0.0000 0.0000 0.0000 0.0113 0.0153

Standard deviation 0.5948 0.6240 0.4812 0.7292 0.6403 0.5686 0.4946 0.4351

Skewness -0.0369 -0.2220 -0.1276 -0.5687 -0.0384 -0.0362 -0.2635 -0.7959

Kurtosis 8.2136 9.3199 9.8214 19.9725 9.2271 12.6490 12.4805 15.2183

Jarque-Bera statistic 6647.14 9813.85 11393 70748.6 9482.4 22764.9 22043.6 37119.9

Panel B: Returns correlations

CAC DAX FTSE HS NIKKEI STRAITS SP TSE

CAC 1.0000

DAX 0.7869 1.0000

FTSE 0.7950 0.7004 1.0000

HS 0.3110 0.3343 0.3286 1.0000

NIKKEI 0.2775 0.2591 0.2820 0.4310 1.0000

STRAITS 0.3203 0.3360 0.3291 0.6251 0.4100 1.0000

SP 0.4550 0.4674 0.4598 0.1550 0.1136 0.1723 1.0000

TSE 0.4600 0.4491 0.4785 0.2286 0.1968 0.2261 0.6986 1.0000
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2.4.2 Multivariate models

Multivariate GARCH models with time-varying correlations are essential for enhancing our

understanding of the relationships between the (co-)volatilities of economic and financial time

series. Thus in this Section, within the framework of the multivariate DCC model, we will analyse

the dynamic adjustments of the variances and the correlations for the various indices. Overall

we estimate seven bivariate specifications: three for the European countries: CAC 40-DAX

30 (CAC-DAX), CAC 40-FTSE 100 (CAC-FTSE) and DAX 30-FTSE 100 (DAX-FTSE);

three for the Asian countries: Hang Seng-Nikkei 225 (HS-NIKKEI), Hang Seng-Straits Times

(HS-STRAITS) and Nikkei 225-Straits Times (NIKKEI-STRAITS); one for the S&P 500 and TSE

300 indices (SP-TSE). Moreover, we estimate two trivariate models: one for the three European

countries (CAC-DAX-FTSE) and one for the three Asian countries (NIKKEI-HS-STRAITS). We

have also performed the test of Engle and Sheppard (2001) for DCC against constant conditional

correlations in all models. Table 2.3 shows that the CCC hypothesis is always rejected at 100%

significance level.

Table 2.3: Engle and Sheppard Test for DCC

E-S Test(j)~χ2(j + 1) under H0: CCC model

E-S Test(12) p-values

CAC-DAX 375.73 [0.00]

CAC-FTSE 414.24 [0.00]

DAX-FTSE 305.11 [0.00]

HS-NIKKEI 99.54 [0.00]

HS-STRAITS 128.76 [0.00]

NIKKEI-STRAITS 53.43 [0.00]

SP-TSE 56.62 [0.00]

ASIA 211.63 [0.00]

EUROPE 533.58 [0.00]

We estimate the various specifications using the approximate Quasi Maximum Likelihood

Estimation (QMLE) method as implemented in the OxMetrics module G@rch 5.0 by Laurent

(2007). The existence of outliers, particularly in daily data, causes the distribution of returns

to exhibit excess kurtosis (Table 2.2, Panel A with descriptive statistics). To accommodate the
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presence of such leptokurtosis, we estimate the models using student-t distributed innovations.

2.4.2.1 Bivariate Processes

For the mean equation we choose a VAR(1) process whereas in the variance equation a (1, d, 1)

order is chosen for the FIAPARCH formulation with DCC.

Table 2.4 gives the mean equation coefficients estimates. In the majority of the models (nine

out of fourteen) the AR(1) coefficients (φii) are significant at the 10% level or better. The mean

equation of diagonal elements of Φ (φij), which capture the cross effects between the series,

are also significant in most of the cases (eight out of the fourteen cases). In the European stock

markets we see that DAX is positively affected by the other two European indices while the

German index has a negative impact on FTSE. In the Asian markets there is a mixed bidirectional

feedback between HS and NIKKEI, where the latter affects the former negatively and the effect

in the opposite direction is positive. STRAITS affects both HS and NIKKEI positively, but it is

independent of changes from the other two Asian indices. Finally, there is a unidirectional positive

feedback from SP to TSE.
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Table 2.4: Bivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

Mean equation

φii φij (i 6= j)
CAC-DAX CAC 0.02

(0.97)
−0.01
(−0.53)

DAX −0.10
(−5.18)∗∗∗

0.11
(6.32)∗∗∗

CAC-FTSE CAC −0.01
(−0.74)

0.03
(1.27)

FTSE 0.02
(0.85)

−0.01
(−0.88)

DAX-FTSE DAX −0.07
(−4.45)∗∗∗

0.11
(5.40)∗∗∗

FTSE 0.03
(1.81)∗∗

−0.02
(−1.84)∗∗

HS-NIKKEI HS 0.04
(2.50)∗∗∗

−0.02
(−1.93)∗∗∗

NIKKEI −0.03
(−2.53)∗∗∗

0.03
(3.15)∗∗∗

HS-STRAITS HS 0.01
(0.53)

0.06
(3.24)∗∗∗

STRAITS 0.08
(4.83)∗∗∗

0.02
(1.28)

NIKKEI-STRAITS NIKKEI −0.04
(−2.84)∗∗∗

0.07
(5.03)∗∗∗

STRAITS 0.08
(5.66)∗∗∗

−0.003
(−0.31)

SP-TSE SP −0.02
(−1.34)

0.01
(0.35)

TSE 0.06
(3.63)∗∗∗

0.07
(5.57)∗∗∗

Notes: The numbers in parentheses are t-statistics.
∗∗∗, ∗∗, ∗ denote significance at the 0.05, 0.10, 0.15
level respectively.

Table 2.5 summarises the variance equation results. In all cases the fractional differencing

parameter (di), the power term parameter (δi) and the asymmetry parameter (γi) are highly

significant. The estimates for the two GARCH parameters (βi, ci) are also significant except

for one case. The fractional parameters are very similar in the three European models with

values between 0.36 and 0.43, while in the Asian models we get similar but slightly lower values

of long-range volatility dependence (0.30 − 0.38). The SP-TSE process generated significant

estimates (0.37 and 0.41), similar to the other six models. The power terms are also similar,

with the values from the Asian pairs being higher than in the other four bivariate formulations.

The three Asian processes gave powers between 1.58 to 1.89, while in the rest of the models we
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obtained power terms between 1.47 to 1.66. It is worth mentioning that STRAITS exhibits the

highest power terms (1.89 and 1.81) and the lowest degree of (long memory) persistence (0.30 and

0.35) in the two bivariate formulations that are included (NIKKEI-STRAITS and HS-STRAITS,

respectively). Finally, the asymmetric response of volatility to positive and negative shocks is

strong in all cases. The value of the corresponding parameter γi is between 0.18 (STRAITS) and

0.56 (SP).

Table 2.5: Bivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models - Variance equation

βi ci γi δi di
CAC-DAX CAC 0.61

(13.26)∗∗∗
0.26

(10.31)∗∗∗
0.41

(6.02)∗∗∗
1.52

(17.54)∗∗∗
0.41

(8.33)∗∗∗

DAX 0.57
(10.70)∗∗∗

0.24
(7.64)∗∗∗

0.31
(5.10)∗∗∗

1.64
(19.70)∗∗∗

0.39
(8.64)∗∗∗

CAC-FTSE CAC 0.59
(11.62)∗∗∗

0.26
(8.99)∗∗∗

0.40
(5.62)∗∗∗

1.63
(18.64)∗∗∗

0.36
(7.78)∗∗∗

FTSE 0.63
(16.71)∗∗∗

0.28
(10.80)∗∗∗

0.38
(5.88)∗∗∗

1.55
(17.60)∗∗∗

0.41
(10.43)∗∗∗

DAX-FTSE DAX 0.55
(9.27)∗∗∗

0.20
(5.73)∗∗∗

0.31
(5.25)∗∗∗

1.62
(17.97)∗∗∗

0.39
(8.83)∗∗∗

FTSE 0.62
(14.75)∗∗∗

0.24
(8.89)∗∗∗

0.40
(6.20)∗∗∗

1.47
(16.27)∗∗∗

0.43
(10.58)∗∗∗

HS-NIKKEI HS 0.54
(7.21)∗∗∗

0.23
(4.86)∗∗∗

0.31
(4.61)∗∗∗

1.58
(19.68)∗∗∗

0.38
(7.76)∗∗∗

NIKKEI 0.54
(9.06)∗∗∗

0.19
(5.05)∗∗∗

0.47
(4.47)∗∗∗

1.70
(15.33)∗∗∗

0.38
(7.21)∗∗∗

HS-STRAITS HS 0.53
(7.36)∗∗∗

0.26
(5.46)∗∗∗

0.31
(4.75)∗∗∗

1.58
(21.15)∗∗∗

0.35
(7.63)∗∗∗

STRAITS 0.46
(6.25)∗∗∗

0.22
(4.19)∗∗∗

0.18
(4.66)∗∗∗

1.81
(19.92)∗∗∗

0.35
(7.80)∗∗∗

NIKKEI-STRAITS NIKKEI 0.50
(7.68)∗∗∗

0.19
(4.18)∗∗∗

0.48
(4.46)∗∗∗

1.75
(15.25)∗∗∗

0.36
(7.23)∗∗∗

STRAITS 0.27
(1.94)∗∗∗

0.09
(0.72)

0.20
(4.67)∗∗∗

1.89
(19.52)∗∗∗

0.30
(7.74)∗∗∗

SP-TSE SP 0.59
(10.40)∗∗∗

0.27
(8.54)∗∗∗

0.56
(5.60)∗∗∗

1.52
(16.78)∗∗∗

0.37
(6.99)∗∗∗

TSE 0.57
(10.29)∗∗∗

0.24
(6.16)∗∗∗

0.23
(4.52)∗∗∗

1.66
(21.62)∗∗∗

0.41
(10.40)∗∗∗

Notes: See Notes in Table 2.4

The unconditional correlation coefficient ρij is highly significant in most cases (five out

of the seven cases, see the first column of Table 2.6). CAC-FTSE and DAX-FTSE generated

insignificant coefficients. It is interesting that CAC-FTSE also gave insignificant cross effects

in the mean of returns (see Table 2.4). Amongst the other models, SP-TSE gave the highest

unconditional correlation parameter, 0.64, whereas the lowest significant value is obtained from

NIKKEI-STRAITS, that is 0.30. The DCC parameters a and b are also highly significant,
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indicating a considerable time-varying comovement. The persistence of the conditional

correlations, measured by the sum of a and b, is always high and close to unity, that is between

0.9661 and 0.9999. b is always above 0.90 and a is below 0.05, revealing slight response to

innovations and major persistence.

Table 2.6: BivariateAR(1)-DCC-FIAPARCH(1, d, 1) Models

Equation for Quasi Correlations

ρij a b
CAC-DAX 0.42

(1.60)∗
0.0159
(3.52)∗∗∗

0.9840
(213.3)∗∗∗

CAC-FTSE 0.25
(1.25)

0.0241
(2.81)∗∗∗

0.9758
(112.1)∗∗∗

DAX-FTSE 0.26
(1.37)

0.0228
(2.79)∗∗∗

0.9771
(117.4)∗∗∗

HS-NIKKEI 0.37
(5.09)∗∗∗

0.0119
(2.14)∗∗∗

0.9861
(134.9)∗∗∗

HS-STRAITS 0.52
(20.95)∗∗∗

0.0523
(5.09)∗∗∗

0.9138
(43.00)∗∗∗

NIKKEI-STRAITS 0.30
(4.41)∗∗∗

0.0117
(1.56)∗

0.9860
(92.24)∗∗∗

SP-TSE 0.64
(28.31)∗∗∗

0.0261
(3.59)∗∗∗

0.9589
(61.74)∗∗∗

Notes: See Notes in Table 2.4

The degrees of freedom (υ) parameters are highly significant and fluctuate around 7 for the

Asian and American models and around 9 for the European processes. In the majority of the cases

the hypothesis of uncorrelated standardised and squared standardised residuals is well supported

(see the last two columns of Table 2.7).
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Table 2.7: Bivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

Degrees of freedom - Ljung-Box test statistics

υ Q12 Q212
CAC-DAX CAC 8.03

(12.61)∗∗∗
13.93
[0.31]

34.99
[0.00]

DAX 21.37
[0.05]

15.06
[0.24]

CAC-FTSE CAC 9.63
(11.41)∗∗∗

18.64
[0.10]

11.23
[0.51]

FTSE 12.11
[0.44]

19.94
[0.07]

DAX-FTSE DAX 9.20
(11.50)∗∗∗

19.74
[0.07]

8.40
[0.75]

FTSE 11.03
[0.53]

24.94
[0.02]

HS-NIKKEI HS 7.02
(15.22)∗∗∗

32.52
[0.00]

57.59
[0.00]

NIKKEI 11.67
[0.47]

7.15
[0.85]

HS-STRAITS HS 6.23
(15.75)∗∗∗

21.39
[0.04]

76.45
[0.00]

STRAITS 16.69
[0.16]

1.58
[1.00]

NIKKEI-STRAITS NIKKEI 6.92
(14.87)∗∗∗

8.33
[0.76]

10.46
[0.58]

STRAITS 23.24
[0.03]

1.56
[1.00]

SP-TSE SP 7.33
(14.31)∗∗∗

34.23
[0.00]

8.75
[0.72]

TSE 19.33
[0.08]

5.21
[0.95]

Notes: The numbers in parentheses are t-statistics.

The numbers in brackets are p-values.
∗∗∗, ∗∗, ∗ denote significance at the 0.05, 0.10, 0.15
level respectively.

Next, the Wald testing procedure applied on the estimated models provides support for the

consideration of long memory and power features in our modelling. We examine the Wald

statistics for the linear constraints di
′s = 0 (stable APARCH) and di

′s = 1 (IAPARCH). As

seen in Panel A of Table 2.8, the Wald tests clearly reject both the stable and the integrated null

hypotheses against the FIAPARCH one. We also test whether the estimated power terms are

significantly different from unity or two using Wald tests. All the estimated power coefficients are

significantly different from either unity or two (see Table 2.8, Panel B). We observe in all cases

higher Wald statistics for the di
′s = 0 and the δi

′s = 1 hypotheses in comparison with their

alternatives: di
′s = 1 and δi

′s = 2, which means that the former hypotheses are more ‘rejectable’

than the latter ones.
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Table 2.8: Wald tests - χ2(1) - Bivariate models

Panel A: Tests for restrictions on fractional differencing parameters

H0 d′is di
′s= 0 di

′s= 1
CAC-DAX 0.41 {0.05} - 0.39 {0.04} 81.17 [0.00] 5.65 [0.02]

CAC-FTSE 0.36 {0.05} - 0.41 {0.04} 95.13 [0.00] 8.75 [0.00]

DAX-FTSE 0.39 {0.04} - 0.43 {0.04} 120.75 [0.00] 5.38 [0.02]

HS-NIKKEI 0.38 {0.05} - 0.38 {0.05} 98.47 [0.00] 9.25 [0.00]

HS-STRAITS 0.35 {0.05} - 0.35 {0.04} 93.60 [0.00] 17.17 [0.00]

NIKKEI-STRAITS 0.36 {0.05} - 0.30 {0.04} 100.74 [0.00] 27.10 [0.00]

SP-TSE 0.37 {0.05} - 0.41 {0.04} 100.95 [0.00] 8.58 [0.00]

Panel B: Tests for restrictions on power term parameters

H0 δi
′s δi

′s= 1 δi
′s = 2

CAC-DAX 1.52 {0.09} - 1.64 {0.08} 199.12 [0.00] 57.29 [0.00]

CAC-FTSE 1.63 {0.09} - 1.55 {0.09} 203.89 [0.00] 59.48 [0.00]

DAX-FTSE 1.62 {0.09} - 1.47 {0.09} 199.66 [0.00] 54.28 [0.00]

HS-NIKKEI 1.58 {0.08} - 1.70 {0.11} 260.08 [0.00] 82.24 [0.00]

HS-STRAITS 1.58 {0.07} - 1.81 {0.09} 348.13 [0.00] 118.02 [0.00]

NIKKEI-STRAITS 1.75 {0.11} - 1.89 {0.10} 285.20 [0.00] 109.83 [0.00]

SP-TSE 1.52 {0.09} - 1.66 {0.08} 241.94 [0.00] 70.86 [0.00]

Notes: For each of the seven pairs of indices, Table 2.8 reports the values

of the Wald statistics of the unrestricted bivariate DCC-FIAPARCH(1, d, 1)

and the restricted (di = 0, 1; δ = 1, 2) models respectively.

The numbers in curly brackets are standard errors.

The numbers in square brackets are p-values.

2.4.2.2 Trivariate processes

Table 2.9 reports the parameters of interest for the two trivariate AR(1)-DCC-

FIAPARCH(1, d, 1) models for the three European and the three Asian indices. The cross

effects in the mean equation are similar to the bivariate results. DAX is positively affected by

both CAC and FTSE as in the bivariate processes, while FTSE is independent of changes from the

other two markets in the trivariate model. In the trivariate model of the Asian countries we obtain

the same results for the cross effects as in the bivariate ones. The ARCH and GARCH parame-

ters (βi, ci) are highly significant in all cases. The fractional parameters (di) are all significant

and similar to the ones obtained from the bivariate models. FTSE gives the highest value for di

amongst the three European series as in the bivariate case and the same stands for NIKKEI (0.40)

in the Asian countries. The power terms δi are also significant and in accordance with the corre-

sponding results from the bivariate models. The Asian indices give higher power terms on average
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in comparison with the European indices. The asymmetry parameter γi is strong in both models

and similar to the bivariate cases. STRAITS again gives the lowest value of di (0.32), the highest

value of δi (1.83) and the lowest value of γi (0.16). Both trivariate models generate strong un-

conditional correlation coefficients ρij , which are all highly significant unlike the bivariate cases

of the European countries. In Europe the highest unconditional correlation is between CAC and

DAX (0.45). The highest correlation between the French and the German financial markets is jus-

tified since they are both Continental European markets. FTSE is the Anglo-Saxon market with

characteristics that differ traditionally from the Continental European markets because of more

advanced financial liberalisation and deregulation. So, the correlation of FTSE to CAC or DAX

is found to be lower. In Asia the highest unconditional correlation is between HS and STRAITS

(0.50), the same as in the bivariate models. The conditional correlations’ persistence is again high

(close to unity) and significant in both models. Finally, the degrees of freedom (υ) parameters are

highly significant and lower in Asia than in Europe, which also confirms the bivariate results.
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Table 2.9: Trivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

EUROPE ASIA

CAC DAX FTSE NIKKEI HS STRAITS

φii −0.02
(−0.78)

−0.10
(−5.14)∗∗∗

0.03
(1.52)∗

−0.04
(−2.98)∗∗∗

0.01
(0.68)

0.07
(4.28)∗∗∗

φij
D

−0.01
(−0.46)

C

0.08
(4.03)∗∗∗

C

−0.01
(−0.46)

HS

0.02
(2.05)∗∗∗

N

−0.02
(−1.99)∗∗∗

N

−0.002
(−0.19)

F

0.05
(2.24)∗∗∗

F

0.05
(2.31)∗∗∗

D

−0.01
(−0.93)

S

0.05
(3.37)∗∗∗

S

0.05
(2.82)∗∗∗

HS

0.01
(0.95)

βi 0.59
(14.91)∗∗∗

0.56
(10.94)∗∗∗

0.62
(18.64)∗∗∗

0.55
(9.10)∗∗∗

0.56
(8.67)∗∗∗

0.45
(6.15)∗∗∗

ci 0.29
(11.37)∗∗∗

0.26
(7.75)∗∗∗

0.29
(11.83)∗∗∗

0.19
(5.05)∗∗∗

0.27
(6.54)∗∗∗

0.23
(4.14)∗∗∗

γi 0.35
(6.04)∗∗∗

0.25
(4.73)∗∗∗

0.38
(5.73)∗∗∗

0.41
(4.91)∗∗∗

0.25
(4.26)∗∗∗

0.16
(4.05)∗∗∗

δi 1.59
(19.86)∗∗∗

1.70
(20.68)∗∗∗

1.52
(16.72)∗∗∗

1.77
(16.48)∗∗∗

1.61
(21.04)∗∗∗

1.83
(20.25)∗∗∗

di 0.35
(10.21)∗∗∗

0.35
(9.72)∗∗∗

0.38
(12.12)∗∗∗

0.40
(7.61)∗∗∗

0.36
(7.89)∗∗∗

0.32
(7.67)∗∗∗

ρij
C−D
0.45

(2.65)∗∗∗

C−F
0.27
(1.74)∗∗

D−F
0.33

(2.38)∗∗∗

HS−N
0.38

(13.68)∗∗∗

N−S
0.33

(11.43)∗∗∗

S−HS
0.50

(18.50)∗∗∗

a 0.0129
(5.61)∗∗∗

0.0326
(2.89)∗∗∗

b 0.9870
(425.2)∗∗∗

0.9449
(36.48)∗∗∗

υ 8.57
(15.42)∗∗∗

7.42
(17.09)∗∗∗

Q12 15.89
[0.20]

20.01
[0.07]

12.96
[0.37]

9.55
[0.66]

26.81
[0.01]

19.40
[0.08]

Q212 46.76
[0.00]

23.57
[0.02]

24.78
[0.02]

9.82
[0.63]

95.19
[0.00]

1.55
[1.00]

Notes: See Notes in Table 2.7

Next, again we examine the Wald statistics for the linear constraints di
′s = 0 (stable APARCH)

and di
′s = 1 (IAPARCH). As seen in Table 2.10 the Wald tests reject the stable null hypothesis

but not the integrated one, unlike the bivariate results, where both hypotheses are rejected against

the FIAPARCH one. Regarding the Wald tests of the power terms, all the estimated power

coefficients are significantly different from either unity or two as in the bivariate models.
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Table 2.10: Wald tests - χ2(1) - Trivariate models

H0 EUROPE ASIA

di
′s 0.35{0.03}-0.35{0.04}-0.38{0.03} 0.40{0.05}-0.36{0.05}-0.32{0.04}

di
′s= 0 157.89 [0.00] 137.46 [0.00]

di
′s= 1 0.92 [0.34] 0.73 [0.39]

δ′s 1.59{0.08}-1.70{0.08}-1.52{0.09} 1.77{0.11}-1.61{0.08}-1.83{0.09}

δi
′s= 1 358.65 [0.00] 593.48 [0.00]

δi
′s= 2 194.97 [0.00] 345.16 [0.00]

Notes: The numbers in curly brackets are standard errors.

The numbers in square brackets are p-values.

2.4.3 Subsamples

2.4.3.1 Bivariate processes

All bivariate models run for the whole sample period are re-estimated for each subsample

period under the same specification, that is the AR(1)-DCC-FIAPARCH(1, d, 1) with student-t

distributed errors. Only the model for SP-TSE did not converge for subsamples B and C. The

leverage parameter γi is significant in most models in the three subsamples and the estimated

values are similar to those for the whole sample (see in the Appendix 2C, Tables 2C.3-2C.5).

The fractional parameter results in Table 2.11 show that all estimates are significant except

for one. In most cases the subsample models’ values of di fluctuate around the respective value

of the original model (for the whole sample). We cannot conclude on a certain direction of this

fluctuation. The degree of the series’ long memory ‘persistence’ across the different subperiods

remains at the same level for the majority of the models. Table 2.12 reports the Wald statistics for

the linear constraints di
′s = 0 and di

′s = 1 across the sub-periods. Both hypotheses are rejected

against the FIAPARCH in most cases.
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Table 2.11: Bivariate AR(1)-DCC–FIAPARCH(1, d, 1) Models

Variance equation: Fractional parameter di
whole sample subsample A subsample B subsample C

cac dax cac dax cac dax cac dax

CAC-DAX 0.41
(8.33)∗∗∗

0.39
(8.64)∗∗∗

0.29
(3.76)∗∗∗

0.43
(3.64)∗∗∗

0.42
(5.17)∗∗∗

0.39
(5.78)∗∗∗

0.29
(3.61)∗∗∗

0.29
(5.06)∗∗∗

cac ftse cac ftse cac ftse cac ftse

CAC-FTSE 0.36
(7.78)∗∗∗

0.41
(10.43)∗∗∗

0.40
(4.46)∗∗∗

0.45
(2.68)∗∗∗

0.31
(6.19)∗∗∗

0.36
(9.01)∗∗∗

0.37
(5.66)∗∗∗

0.37
(8.30)∗∗∗

dax ftse dax ftse dax ftse dax ftse

DAX-FTSE 0.39
(8.83)∗∗∗

0.43
(10.58)∗∗∗

0.40
(5.11)∗∗∗

0.31
(3.80)∗∗∗

0.35
(6.97)∗∗∗

0.39
(8.76)∗∗∗

0.40
(6.51)∗∗∗

0.39
(7.93)∗∗∗

hs nikkei hs nikkei hs nikkei hs nikkei

HS-NIKKEI 0.38
(7.76)∗∗∗

0.38
(7.21)∗∗∗

0.39
(5.29)∗∗∗

0.34
(4.90)∗∗∗

0.41
(5.32)∗∗∗

0.43
(5.61)∗∗∗

0.48
(2.43)∗∗∗

0.39
(2.64)∗∗∗

hs straits hs straits hs straits hs straits

HS-STRAITS 0.35
(7.63)∗∗∗

0.35
(7.80)∗∗∗

0.27
(5.54)∗∗∗

0.05
(1.02)

0.19
(2.80)∗∗∗

0.29
(4.10)∗∗∗

0.19
(2.77)∗∗∗

0.31
(4.64)∗∗∗

nikkei straits nikkei straits nikkei straits nikkei straits

NIKKEI-STRAITS 0.36
(7.23)∗∗∗

0.30
(7.74)∗∗∗

0.34
(3.78)∗∗∗

0.22
(7.27)∗∗∗

0.37
(6.44)∗∗∗

0.32
(5.44)∗∗∗

0.28
(4.55)∗∗∗

0.26
(3.96)∗∗∗

sp tse sp tse sp tse sp tse

SP-TSE 0.37
(6.99)∗∗∗

0.41
(10.40)∗∗∗

0.32
(5.01)∗∗∗

0.12
(5.06)∗∗∗

− − − −

Notes: See Notes in Table 2.4

Table 2.12: Tests for restrictions on fractional differencing

parameters - Wald tests - χ2(1) - Bivariate models

whole sample subsample A

H0 di
′s= 0 di

′s= 1 di
′s= 0 di

′s= 1
C-D 81.17 [0.00] 5.65 [0.02] 22.53 [0.00] 3.46 [0.06]

C-F 95.13 [0.00] 8.75 [0.00] 14.72 [0.00] 0.50 [0.48]

D-F 120.75 [0.00] 5.38 [0.02] 35.58 [0.00] 5.88 [0.02]

HS-N 98.47 [0.00] 9.25 [0.00] 49.17 [0.00] 7.23 [0.01]

HS-S 93.60 [0.00] 17.17 [0.00] 21.81 [0.00] 105.70 [0.00]

N-S 100.74 [0.00] 27.10 [0.00] 35.87 [0.00] 22.39 [0.00]

SP-T 100.95 [0.00] 8.58 [0.00] 41.01 [0.00] 64.98 [0.00]

subsample B subsample C

H0 di
′s= 0 di

′s= 1 di
′s= 0 di

′s= 1
C-D 31.85 [0.00] 1.62 [0.20] 20.97 [0.00] 11.21 [0.00]

C-F 64.91 [0.00] 15.60 [0.00] 57.71 [0.00] 7.66 [0.01]

D-F 78.46 [0.00] 9.71 [0.00] 69.90 [0.00] 4.68 [0.03]

HS-N 48.55 [0.00] 1.76 [0.18] 11.09 [0.00] 0.23 [0.63]

HS-S 15.11 [0.00] 17.39 [0.00] 22.86 [0.00] 24.01 [0.00]

N-S 59.74 [0.00] 12.41 [0.00] 30.79 [0.00] 22.38 [0.00]

SP-T − − − −
Notes: The numbers in brackets are p-values.

The power term parameter δi is highly significant across all subsamples’ estimates (see Table

2.13). As in the case of the fractional parameter, the power terms for the sub-periods’ models
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also fluctuate around the level of the value in the corresponding model for the entire period.

Interestingly, for most cases the power term estimates of the period between the two crises

(subsample C) are higher than the estimates in the other two subsamples (A and B) and the whole

sample’s values. The Wald tests (Table 2.14) show that δi is significantly different from either

unity or two for all the cases across the three subsamples.

Table 2.13: Bivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

Variance equation: Power term parameter δi
whole sample subsample A subsample B subsample C

cac dax cac dax cac dax cac dax

CAC-DAX 1.52
(17.54)∗∗∗

1.64
(19.70)∗∗∗

1.65
(8.16)∗∗∗

1.53
(5.81)∗∗∗

1.51
(13.60)∗∗∗

1.61
(14.54)∗∗∗

2.17
(8.13)∗∗∗

2.14
(8.94)∗∗∗

cac ftse cac ftse cac ftse cac ftse

CAC-FTSE 1.63
(18.64)∗∗∗

1.55
(17.60)∗∗∗

1.42
(6.22)∗∗∗

1.36
(4.28)∗∗∗

1.63
(14.90)∗∗∗

1.47
(15.02)∗∗∗

1.73
(12.65)∗∗∗

1.48
(10.88)∗∗∗

dax ftse dax ftse dax ftse dax ftse

DAX-FTSE 1.62
(17.97)∗∗∗

1.47
(16.27)∗∗∗

1.37
(6.74)∗∗∗

1.34
(4.21)∗∗∗

1.62
(14.16)∗∗∗

1.43
(14.54)∗∗∗

1.64
(11.08)∗∗∗

1.55
(11.01)∗∗∗

hs nikkei hs nikkei hs nikkei hs nikkei

HS-NIKKEI 1.58
(19.68)∗∗∗

1.70
(15.33)∗∗∗

1.51
(14.84)∗∗∗

1.91
(10.14)∗∗∗

1.83
(11.61)∗∗∗

1.79
(9.74)∗∗∗

1.81
(3.24)∗∗∗

2.04
(5.49)∗∗∗

hs straits hs straits hs straits hs straits

HS-STRAITS 1.58
(21.15)∗∗∗

1.81
(19.92)∗∗∗

1.39
(16.01)∗∗∗

2.18
(6.42)∗∗∗

2.07
(11.30)∗∗∗

1.98
(14.31)∗∗∗

2.27
(11.11)∗∗∗

2.09
(12.68)∗∗∗

nikkei straits nikkei straits nikkei straits nikkei straits

NIKKEI-STRAITS 1.75
(15.25)∗∗∗

1.89
(19.52)∗∗∗

2.10
(8.32)∗∗∗

1.87
(10.93)∗∗∗

1.85
(9.05)∗∗∗

1.98
(16.46)∗∗∗

2.23
(7.09)∗∗∗

2.05
(13.51)∗∗∗

sp tse sp tse sp tse sp tse

SP-TSE 1.52
(16.78)∗∗∗

1.66
(21.62)∗∗∗

1.89
(7.17)∗∗∗

2.22
(6.34)∗∗∗

− − − −

Notes: See Notes in Table 2.4
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Table 2.14: Tests for restrictions on power term parameters

Wald tests - χ2(1) - Bivariate models

whole sample subsample A

H0 δ′is= 1 δ′i s = 2 δ′i s = 1 δ′i s = 2
C-D 199.12 [0.00] 57.29 [0.00] 43.01 [0.00] 12.66 [0.00]

C-F 203.89 [0.00] 59.48 [0.00] 14.11 [0.00] 2.70 [0.10]

D-F 199.66 [0.00] 54.28 [0.00] 19.14 [0.00] 3.32 [0.07]

HS-N 260.08 [0.00] 82.24 [0.00] 126.62 [0.00] 43.41 [0.00]

HS-S 348.13 [0.00] 118.02 [0.00] 47.15 [0.00] 17.59 [0.00]

N-S 285.20 [0.00] 109.83 [0.00] 92.78 [0.00] 40.88 [0.00]

SP-T 241.94 [0.00] 70.86 [0.00] 37.37 [0.00] 17.20 [0.00]

subsample B subsample C

H0 δ′i s = 1 δ′i s = 2 δ′i s = 1 δ′i s = 2
C-D 103.78 [0.00] 29.06 [0.00] 49.67 [0.00] 24.19 [0.00]

C-F 129.00 [0.00] 35.45 [0.00] 88.42 [0.00] 26.55 [0.00]

D-F 126.57 [0.00] 33.18 [0.00] 85.87 [0.00] 25.46 [0.00]

HS-N 94.59 [0.00] 36.13 [0.00] 16.13 [0.00] 6.80 [0.01]

HS-S 125.28 [0.00] 56.59 [0.00] 134.03 [0.00] 66.07 [0.00]

N-S 125.11 [0.00] 52.24 [0.00] 77.70 [0.00] 37.53 [0.00]

SP-T − − − −
Notes: The numbers in brackets are p-values.

The dynamic correlation estimates follow the predictable pattern according to the financial

crisis literature. They are always lower before the crisis. After the crisis break they are much

higher and remain on a higher level. These findings are depicted on the graphs of the dynamic

conditional correlations for each bivariate model presented in the Appendix 2A. It is obvious

that the DCCs estimated after the second break for the GFC period are much higher than those

after the AFC break, revealing that the recent crisis has caused stronger contagion effects in

the market and leads the investors to exhibit more evident herding behaviour. During the GFC

the international financial integration is complete in comparison with the AFC in 1997, where

the financial liberalisation and deregulation was still in process. As seen in Table 2.15, the

correlation coefficient ρij , which is significant in most cases, in the pre-AFC period (subsample

A) always receives lower values than in the post-AFC period and the period between the two

crises (subsamples B and C, respectively). For the majority of the models, we also observe that

the ρij value of the whole period model approaches mostly the level of the pre-crisis model.
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Table 2.15: Bivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

Unconditional Correlations ρij
whole sample subsample A subsample B subsample C

CAC-DAX 0.42
(1.60)∗

0.53
(21.82)∗∗∗

0.66
(1.98)∗∗∗

0.68
(1.97)∗∗∗

CAC-FTSE 0.25
(1.25)

0.24
(1.57)∗

0.88
(41.51)∗∗∗

0.84
(34.38)∗∗∗

DAX-FTSE 0.26
(1.37)

0.29
(1.39)

0.82
(23.70)∗∗∗

0.77
(25.75)∗∗∗

HS-NIKKEI 0.37
(5.09)∗∗∗

0.30
(12.40)∗∗∗

0.55
(20.81)∗∗∗

0.50
(13.73)∗∗∗

HS-STRAITS 0.52
(20.95)∗∗∗

0.38
(10.66)∗∗∗

0.63
(37.52)∗∗∗

0.57
(22.50)∗∗∗

NIKKEI-STRAITS 0.30
(4.41)∗∗∗

0.20
(5.50)∗∗∗

0.46
(18.75)∗∗∗

0.22
(2.23)∗∗∗

SP-TSE 0.64
(28.31)∗∗∗

0.54
(9.56)∗∗∗

− −

Notes: See Notes in Table 2.4

Finally, in the Appendix 2C with all the parameters’ estimations we observe that the AR(1)

coefficients (φii) are significant at the 15% level or better for the majority of the models in the

subsamples. The cross effects are significant in many cases (see also Panel A in Table 2.18).

DAX, as with the whole sample, is affected positively by the other two European indices before

the AFC (subsample A) and between the two crises (subsample C). Interestingly, these two effects

disappear in subsample B, that is in the period after the AFC until the end of the sample. Similarly,

the negative effect of the German index on FTSE disappears in the three subsamples.

For the HS-NIKKEI pair, there is still a mixed bidirectional feedback in the periods after the

AFC and in between the two crises. However, the negative effect of NIKKEI on HS disappears

in the pre AFC period. In the other two Asian pairs with STRAITS the φij coefficients indicate

a positive effect from STRAITS to HS and NIKKEI for all three subsamples, as with the whole

sample. The higher values of the cross effect coefficients in the period with the two crises taking

place indicate a more sound market integration in Asia during the turbulent times. For the

American pair in the pre-AFC period, as in the whole period, SP affects TSE positively.

2.4.3.2 Trivariate processes

Finally, we re-estimate the two trivariate models, one for the Asian indices and one for the

European, for the three subsamples. The Asian model did not converge for the third sub-period
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and the European for the second one. Our findings are very similar to the ones for the bivariate

processes. The fractional parameters and the power terms (Table 2.16, Panels A and B) fluctuate

around the values of the whole sample and are always significant. The Wald tests show that δi

is significantly different from either unity or two and they also reject the di
′s = 0 hypothesis,

but do not reject the di
′s = 1 (see Panels A and B in Table 2.17). The correlation coefficients

(Table 2.16, Panel C) are again higher in the post-AFC periods (subsamples B and C) than in

the pre-AFC period (subsample A). See also the graphs of the conditional correlations for the

two trivariate models in the Appendix 2A. The asymmetric response of volatility to positive and

negative shocks is strong in most subsamples’ models, with γi fluctuating around the respective

estimated values of the whole sample (see Tables 2C.6-2C.8 in the Appendix 2C).
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Table 2.16: Trivariate AR(1)-DCC-FIAPARCH(1, d, 1) Models

Panel A: Variance equation: Fractional parameter di
EUROPE ASIA

cac dax ftse nikkei hs straits

whole sample 0.35
(10.21)∗∗∗

0.35
(9.72)∗∗∗

0.38
(12.12)∗∗∗

0.40
(7.61)∗∗∗

0.36
(7.89)∗∗∗

0.32
(7.67)∗∗∗

subsample A 0.32
(4.61)∗∗∗

0.41
(4.15)∗∗∗

0.42
(3.77)∗∗∗

0.43
(3.06)∗∗∗

0.26
(3.00)∗∗∗

0.19
(7.36)∗∗∗

subsample B − − − 0.36
(6.80)∗∗∗

0.22
(3.30)∗∗∗

0.32
(5.90)∗∗∗

subsample C 0.36
(2.70)∗∗∗

0.39
(3.28)∗∗∗

0.34
(3.80)∗∗∗

− − −

Panel B: Variance equation: Power term parameter δi
EUROPE ASIA

cac dax ftse nikkei hs straits

whole sample 1.59
(19.86)∗∗∗

1.70
(20.68)∗∗∗

1.52
(16.72)∗∗∗

1.77
(16.48)∗∗∗

1.61
(21.04)∗∗∗

1.83
(20.25)∗∗∗

subsample A 1.72
(9.58)∗∗∗

1.57
(6.29)∗∗∗

1.48
(5.47)∗∗∗

2.19
(6.65)∗∗∗

1.61
(10.09)∗∗∗

2.01
(11.95)∗∗∗

subsample B − − − 1.95
(9.40)∗∗∗

2.07
(12.72)∗∗∗

1.94
(17.43)∗∗∗

subsample C 1.70
(6.98)∗∗∗

1.63
(6.00)∗∗∗

1.45
(5.69)∗∗∗

− − −

Panel C: Unconditional Correlations ρij
EUROPE ASIA

cac-dac cac-ftse dax-ftse nikkei-hs nikkei-straits hs-straits

whole sample 0.45
(2.65)∗∗∗

0.27
(1.74)∗∗

0.33
(2.38)∗∗∗

0.38
(13.68)∗∗∗

0.33
(11.43)∗∗∗

0.50
(18.50)∗∗∗

subsample A 0.54
(19.38)∗∗∗

0.58
(23.08)∗∗∗

0.44
(14.94)∗∗∗

0.22
(6.77)∗∗∗

0.20
(5.97)∗∗∗

0.37
(11.29)∗∗∗

subsample B − − − 0.51
(25.07)∗∗∗

0.47
(21.22)∗∗∗

0.62
(36.10)∗∗∗

subsample C 0.62
(0.84)

0.57
(1.18)

0.54
(1.62)∗

− − −

Notes: See Notes in Table 2.4

Table 2.17: Wald tests - χ2(1) - Trivariate models

Panel A: Tests for restrictions on fractional differencing parameters

EUROPE ASIA

H0 di
′s = 0 di

′s = 1 di
′s = 0 di

′s = 1
whole sample 157.89 [0.00] 0.92 [0.34] 137.46 [0.00] 0.73 [0.39]

subsample A 37.98 [0.00] 0.62 [0.43] 27.92 [0.00] 0.49 [0.48]

subsample B − − 53.55 [0.00] 0.65 [0.42]

subsample C 10.76 [0.00] 0.07 [0.79] − −
Panel B: Tests for restrictions on power term parameters

EUROPE ASIA

H0 δ′s = 1 δ′s = 2 δi
′s= 1 δi

′s= 2
whole sample 358.65 [0.00] 194.97 [0.00] 593.48 [0.00] 345.16 [0.00]

subsample A 74.46 [0.00] 40.16 [0.00] 137.19 [0.00] 86.16 [0.00]

subsample B − − 230.53 [0.00] 146.89 [0.00]

subsample C 27.05 [0.00] 14.63 [0.00] − −
Notes: The numbers in brackets are p-values.

Regarding the cross effects in the Appendix 2C (see also Table 2.18), DAX, similarly to the
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whole sample, is positively affected by both CAC and FTSE in the pre-AFC period but only

by CAC in the period between the two crises, where the FTSE index affects the French index

positively as in the model for the whole sample. In the Asian case, HS positively affects both

NIKKEI and STRAITS before the AFC, while STRAITS has a positive impact on the other two

indices in the post-AFC period, including also the GFC, as in the whole sample. During this

period NIKKEI affects HS negatively, as in the whole sample.

Table 2.18: Cross Effects (φij , i 6= j , coefficients)

Panel A: Bivariate Models

Whole Sample Pre-AFC Period Post-AFC Period Subsample C

CAC, FTSE
+→DAX CAC, FTSE

+→DAX - CAC, FTSE
+→DAX

DAX
−→FTSE - - -

STRAITS
+→NIKKEI,HS STRAITS

+→NIKKEI,HS STRAITS
+→NIKKEI,HS STRAITS

+→NIKKEI,HS

HS

+

�
−

NIKKEI HS
+→NIKKEI HS

+

�
−

NIKKEI HS

+

�
−

NIKKEI

SP
+→TSE SP

+→TSE NC NC

Panel B: Trivariate Models

CAC, FTSE
+→DAX CAC, FTSE

+→DAX NC CAC
+→DAX

FTSE
+→CAC - NC FTSE

+→CAC

STRAITS
+→NIKKEI,HS - STRAITS

+→NIKKEI,HS NC

HS

+

�
−

NIKKEI HS
+→NIKKEI, STRAITS NIKKEI

−→HS NC

Notes: CAC, FTSE
+→DAX: CAC and FTSE affect DAX positively. HS

+

�
−

NIKKEI: there is a mixed bidirectional

feedback between HS and NIKKEI, where the latter affects the former negatively. NC: No Convergence.

2.4.4 Discussion

Our analysis gives strong evidence that conditional volatility is best modelled with

the FIAPARCH specification, which combines long memory, leverage effects and power

transformations of the conditional variances. These three features augment the traditional

GARCH model in a suitable way to adequately fit the volatility process. The Wald tests applied

support the particular augmented model and are in line with the results of Conrad et al. (2011).

The corresponding parameters are found robust to the structural breaks in the returns’ and

volatilities’ series, since their estimated values in the subsamples are similar to those of the
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whole sample. The volatility ‘persistence’, as measured by the long memory parameter di, is

significant in almost all cases and different from either zero or unity. In the whole sample it

hovers around the same level for the eight stock markets, which indicates that a common factor

of ‘persistence’ may affect the markets and due to the financial integration their co-persistence

is apparent. The asymmetry parameter γi is always significant and positive, meaning a leverage

for negative returns. That is, negative shocks have stronger influence on the volatility of returns

than the positive shocks of the same level. The power term δi allows us to increase the flexibility

of our modelling. The power transformation of returns, which is significantly different from one

and two, gives the appropriate formulation to model the volatility process. One or more cross

effects between the dependent variables in the majority of the multivariate specifications are also

significant for the mean of returns and show a time-varying behaviour across the subsamples.

Finally, the implementation of the DCC model of Engle (2002a) provides a thorough insight into

the time-varying pattern of conditional correlations, which accounts for structural breaks that

correspond to major financial crisis events.

2.5 Contagion effect

In order to complete our empirical modelling of the main equity markets during the two crisis

periods we perform two contagion tests. We intend to clarify whether the higher correlations

observed in the post crisis periods are due to the contagion between the financial markets

or their interdependence. Following Forbes and Rigobon (2002), contagion is characterised

by the increased spillovers between different markets after a crisis shock in one market and

interdependence is their high inter-linkages during all states of the economy. The higher volatilities

after a shock result in higher correlation coefficients calculations due to heteroskedasticity and

omitted variables. This can mislead the analysis in favour of contagion, while the interdependence

is the actual spillover phenomenon. Forbes and Rigobon (2002) proposed an adjustment to the

correlation coefficient calculation in order to test it during crisis events. We will use the DCC
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coefficients generated by (the estimated) Engle’s model in order to overcome the limitations

of the classic correlations coefficients. Cho and Parhizgari (2008) point out the superiority of

the DCCs in comparison to the Forbes and Rigobon (2002) modified coefficients, since Engle’s

model estimates not only volatility-adjusted correlations but also correlations that consider the

time-varying behaviour of the volatility pattern.

Our model’s DCCs computed from the multivariate framework (with cross effects in the mean

equation and long memory, asymmetries and power transformations in the variance equation) are

suitable to test the contagion effect during both crises (AFC and GFC). We perform two contagion

tests used broadly in the empirical literature: the t-test in the difference of the means of DCCs

across the subsamples to detect the significant increase after crisis episodes (see for example Cho

and Parhizgari, 2008) and the DCCs regression analysis with crisis intercept dummies to observe

the upward shift of the correlations’ mean (see, for example, Chiang et al., 2007). The DCCs from

the whole sample’s bivariate models are used for both tests. The two crisis breaks (see Table 2.1)

are applied to determine the pre- and post-crisis periods of the t-test and to form the dummies for

the regressions.

The t-test is calculated for the difference of the dynamic correlations means of each period

before and after both crises. Tables 2.19 and 2.20 report the main statistical properties of the

correlations for the whole sample and each subsample around the crises, as well as the t-test’s

p-value for the means’ difference. For both crises, we always reject the null hypothesis that the

means are equal (two-sided test). We conclude that their difference is statistically significant and

their increase after the crisis event denotes sound contagion effects due to the financial shocks of

the AFC and the GFC. For the AFC shock, in particular, we also confirm the contagion effect

by excluding the GFC period from the post-AFC subsample. It is interesting that the lowest

correlation shift after both crises is observed between the US and the Canadian stock indices. We
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recalculate the t-statistics for shorter periods around the crisis breaks (500 observations before

and after each crisis) and again the DCCs mean difference is statistically significant (results not

reported due to space considerations). Our empirical results confirm the contagion phenomenon

for all the main financial markets under study for both crises using the t-test irrespective of the

sample size.

Table 2.19: DCC mean difference t-tests for the Asian Financial Crisis

C-D C-F D-F HS-N HS-S N-S SP-T

whole mean 0.7277 0.7090 0.6217 0.3972 0.5297 0.3543 0.6505

sample median 0.7527 0.7425 0.6494 0.4172 0.5439 0.3655 0.6658

std dev 0.1877 0.1803 0.2060 0.1478 0.1467 0.1426 0.0975

N 5867 5867 5867 5867 5867 5867 5867

pre-AFC mean 0.5538 0.5532 0.4327 0.3220 0.4666 0.2648 0.6198

median 0.5476 0.5858 0.4367 0.3504 0.4793 0.2615 0.6430

std dev 0.1222 0.1500 0.1372 0.1317 0.1593 0.1449 0.1126

N 2400 2400 2490 3602 2518 2518 2408

post AFC mean 0.8481 0.8168 0.7611 0.5167 0.5772 0.4216 0.6720

median 0.8818 0.8382 0.7772 0.5228 0.5863 0.4386 0.6863

std dev 0.1178 0.1048 0.1185 0.0758 0.1157 0.0964 0.0786

N 3467 3467 3377 2265 3349 3349 3459

post AFC mean 0.8250 0.7852 0.7224 0.4817 0.5579 0.4008 0.6663

excl. GFC median 0.8645 0.8060 0.7413 0.4904 0.5596 0.4030 0.6783

std dev 0.1187 0.0970 0.1065 0.0665 0.1121 0.0939 0.0763

N 2826 2701 2611 1502 2585 2585 2818

AFC mean increase 0.2943 0.2637 0.3284 0.1947 0.1107 0.1568 0.0522

difference (%) increase 53.15 47.67 75.88 60.47 23.72 59.22 8.43

t-test p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AFC mean increase 0.2712 0.2320 0.2897 0.1597 0.0914 0.1360 0.0466

difference (%) increase 48.97 41.94 66.94 49.59 19.59 51.35 7.51

excl. GFC t-test, p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 2.20: DCC mean difference t-tests for the recent Global Financial Crisis

C-D C-F D-F HS-N HS-S N-S SP-T

whole mean 0.7277 0.7090 0.6217 0.3972 0.5297 0.3543 0.6505

sample median 0.7527 0.7425 0.6494 0.4172 0.5439 0.3655 0.6658

std dev 0.1877 0.1803 0.2060 0.1478 0.1467 0.1426 0.0975

N 5867 5867 5867 5867 5867 5867 5867

pre-GFC mean 0.7004 0.6760 0.5810 0.3690 0.5128 0.3337 0.6449

median 0.7120 0.7088 0.5902 0.3892 0.5247 0.3432 0.6601

std dev 0.1809 0.1702 0.1896 0.1372 0.1448 0.1394 0.0976

N 5226 5101 5101 5104 5103 5103 5226

post GFC mean 0.9501 0.9285 0.8930 0.5857 0.6424 0.4921 0.6969

median 0.9530 0.9324 0.8947 0.5866 0.6630 0.4872 0.7182

std dev 0.0137 0.0223 0.0272 0.0342 0.1032 0.0668 0.0834

N 641 766 766 763 764 764 641

GFC mean increase 0.2497 0.2525 0.3120 0.2167 0.1296 0.1584 0.0521

difference (%) increase 35.64 37.36 53.70 58.73 25.27 47.46 8.07

t-test, p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

In the regression analysis we run the DCCs (ρij,t) on a constant (ψ0), the two crisis intercept

dummies DUM1 for the AFC and DUM2 for the GFC (with coefficients ψ1 and ψ2, respectively)

and the AR(1) lag with the coefficient χ1 to remove any serial correlation:

ρij,t = ψ0 + ψ1DUM1 + ψ2DUM2 + χ1ρij,t−1 + uij,t

We limit our correlation model to the mean equation without conditional variance estimation, since

no ARCH effect is neglected. Table 2.21 presents the regression results. The AR(1) coefficient is

always above 0.95, denoting very high correlation persistence. The intercept dummies are always

positive and significant confirming the significant correlations’ increase, which means contagion

effects after both crises. For the SP-TSE pair the GFC dummy is insignificant when both dummies

are included, so we run two regressions for each crisis dummy separately. We observe the lowest

dummy coefficients with the smallest t-statistic for the US and Canada, which is in accordance

with the t-test procedure for the DCCs mean difference. Our dynamic correlations analysis proves

that both contagion tests are in favour of contagion rather than simple interdependence after the

crisis shocks.
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Table 2.21: DCC AR(1) mean equation with crisis dummies

ρij,t = ψ0 + ψ1DUM1 + ψ2DUM2 + χ1ρij,t−1 + εij,t
ψ0 ψ1 ψ2 χ1

CAC-DAX 0.0030
(2.43)∗∗∗

0.0015
(3.03)∗∗∗

0.0006
(2.54)∗∗∗

0.9946
(526.3)∗∗∗

CAC-FTSE 0.0046
(2.84)∗∗∗

0.0017
(2.56)∗∗∗

0.0012
(2.81)∗∗∗

0.9921
(386.0)∗∗∗

DAX-FTSE 0.0046
(3.99)∗∗∗

0.0032
(4.32)∗∗∗

0.0017
(3.79)∗∗∗

0.9895
(453.9)∗∗∗

HS-NIKKEI 0.0111
(7.95)∗∗∗

0.0035
(3.77)∗∗∗

0.0025
(2.22)∗∗∗

0.9673
(282.0)∗∗∗

HS-STRAITS 0.0200
(8.67)∗∗∗

0.0041
(3.72)∗∗∗

0.0036
(2.81)∗∗∗

0.9569
(246.6)∗∗∗

NIKKEI-STRAITS 0.0085
(7.10)∗∗∗

0.0029
(3.06)∗∗∗

0.0020
(1.77)∗∗

0.9703
(297.6)∗∗∗

SP-TSE 0.0100
(4.86)∗∗∗

0.0008
(1.83)∗∗

0.9840
(324.7)∗∗∗

SP-TSE 0.0100
(4.81)∗∗∗

0.0010
(1.49)∗

0.9846
(323.9)∗∗∗

Notes: See Notes in Table 2.4

2.6 Conclusions

The purpose of the current analysis was to investigate the applicability of the multivariate

FIAPARCH model with DCC to eight stock market indices returns, also taking into account the

structural breaks corresponding to financial crisis events. The VAR-DCC-FIAPARCH model

is proved to capture thoroughly the volatility and correlation processes compared to simpler

specifications, like the multivariate GARCH with CCC.

We have provided strong evidence that conditional volatilities are better modelled incorporating

long memory, power effects and leverage features. We further prove that time-varying conditional

correlations across markets, estimated by the DCC model, are highly persistent and follow a

sound upward pattern during financial crises. The cross-border contagion effects depicted on the

increasing correlations and the herding behaviour amongst investors as the correlations remain

high confirm the existing empirical evidence. We also compare two different crises in terms of

correlations to observe higher correlations in the recent Global financial crisis than in the Asian

one. The financial liberalisation, deregulation and integration of the markets has led to more

apparent market interdependence nowadays. Such a conclusion has major policy implications and

a substantial impact on the current risk management practices.
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2.7 APPENDIX 2A: Graphs

Figure 2A.1: Returns graphs

CAC_DAX CAC_FTSE

DAX_FTSE EUROPE
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HS_NIKKEI HS_STRAITS

NIKKEI_STRAITS ASIA

SP_TSE

Figure 2A.2: Dynamic conditional correlations graphs whole sample
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hs_straits A hs_straits B hs_straits C

nikkei_straits A nikkei_straits B nikkei_straits C

asia A asia B sp_tse A

Figure 2A.3: Dynamic conditional correlations graphs subsamples

2.8 APPENDIX 2B: Breaks

Table 2B.1: Break dates

Break CAC DAX FTSE HS NIKKEI STRAITS SP TSE

1 17/03/1997 27/08/1991 22/10/1992 24/10/2001 21/02/1990 26/08/1991 27/03/1997 05/11/1996

2 31/07/1998 21/07/1997 13/07/1998 27/07/2007 04/01/2008 28/08/1997 04/09/2008 15/01/2008

3 15/01/2008 17/06/2003 24/07/2007 05/05/2009 03/04/2009 06/06/2000 31/03/2009 02/04/2009

4 03/04/2009 15/01/2008 06/04/2009 01/12/2009 26/07/2007 16/07/2009 19/08/2009

5 27/04/2010 03/04/2009 27/04/2010 28/05/2009 27/04/2010

6 25/08/2009

7 28/04/2010
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Table 2B.2: Possible explanations of each identified break

Breakdate Major economic event that may be associated with the breakdate

CAC 17/03/1997 Asian financial crisis of 1997

31/07/1998 Russian financial crisis of 1998

15/01/2008 Financial crisis of 2007–08

03/04/2009 European sovereign-debt crisis

27/04/2010 European sovereign-debt crisis

DAX 27/08/1991 German reunification

21/07/1997 Asian financial crisis of 1997

17/06/2003 German Chancellor announces (29/06/2003)

a plan to bring forward about €18bn tax cuts

15/01/2008 Financial crisis of 2007–08

03/04/2009 European sovereign-debt crisis

FTSE 22/10/1992 The UK withdraws the pound sterling from

the European Exchange Rate Mechanism (ERM)

13/07/1998 Russian financial crisis of 1998

24/07/2007 Financial crisis of 2007–08

06/04/2009 European sovereign-debt crisis

27/04/2010 European sovereign-debt crisis
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Table 2B.2 (Continued): Possible explanations of each identified break

Breakdate Major economic event that may be associated with the breakdate

HS 24/10/2001 The interest rate caps on demand and

savings deposits are removed in July 2001

27/07/2007 Financial crisis of 2007–08

05/05/2009 European sovereign-debt crisis

01/12/2009 European sovereign-debt crisis

NIKKEI 21/02/1990 The Japanese asset price bubble of 1986-1991

04/01/2008 Financial crisis of 2007–08

03/04/2009 European sovereign-debt crisis

STRAITS 26/08/1991

28/08/1997 Asian financial crisis of 1997

06/06/2000

26/07/2007 Financial crisis of 2007–08

28/05/2009 European sovereign-debt crisis

25/08/2009 European sovereign-debt crisis

28/04/2010 European sovereign-debt crisis

SP 27/03/1997 Asian financial crisis of 1997

04/09/2008 Financial crisis of 2007–08

31/03/2009 Stimulus package and FED’s quantitative easing

16/07/2009 European sovereign-debt crisis

27/04/2010 European sovereign-debt crisis

TSE 05/11/1996

15/01/2008 Financial crisis of 2007–08

02/04/2009 European sovereign-debt crisis

19/08/2009 European sovereign-debt crisis
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Table 2B.3: Returns descriptive statistics for segments

Break Mean Std. Dev. Skewness Kurtosis JB Obs.

CAC 0 0.0172 0.4680 −0.1940 6.1543 1010.43 2401
1 0.0579 0.5758 −0.0530 4.4944 33.57 359
2 0.0040 0.6090 −0.1173 5.8423 836.04 2467
3 −0.0783 1.0846 0.3216 6.3276 152.20 318
4 0.0411 0.5730 −0.3648 3.2788 7.04 277
5 −0.1042 1.0373 1.0082 6.8047 35.54 46

DAX 0 0.0228 0.5885 −0.9455 17.4267 8397.65 952
1 0.0258 0.3866 −0.2593 4.7893 222.54 1539
2 −0.0063 0.8239 −0.1423 4.6356 176.96 1541
3 0.0303 0.4243 −0.2741 3.9821 62.99 1195
4 −0.0745 1.0370 0.4527 7.0541 228.63 318
5 0.0414 0.6113 −0.1452 3.5569 5.31 323

FTSE 0 0.0152 0.3787 0.1734 5.6049 360.84 1254
1 0.0235 0.3239 −0.1352 3.9077 55.76 1492
2 0.0016 0.4947 −0.1739 5.8543 811.61 2356
3 −0.0476 0.9041 0.0647 6.6606 248.20 444
4 0.0533 0.4660 −0.2996 3.3883 5.86 276
5 −0.1234 0.6864 0.5729 4.5836 7.32 46

Notes: Break 0 covers the period preceding all breaks and so on so forth
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Table 2B.3 (Continued): Returns descriptive statistics for segments

Break Mean Std. Dev. Skewness Kurtosis JB Obs.

HS 0 0.0180 0.7484 −0.9064 23.2083 61800.70 3603
1 0.0228 0.4359 −0.0875 4.3076 108.93 1502
2 −0.0298 1.2230 0.1870 6.3446 218.04 462
3 0.0860 0.7488 −0.0433 2.9288 0.08 150
4 −0.0270 0.5276 −0.1819 3.0258 0.84 151

NIKKEI 0 0.0393 0.2903 0.5437 11.5241 1716.86 558
1 −0.0083 0.6177 0.1443 6.4670 2351.10 4662
2 −0.0693 1.1933 −0.2458 6.8361 202.54 325
3 0.0094 0.6000 −0.0446 3.3719 1.97 323

STRAITS 0 0.0220 0.5357 −0.8734 13.5488 4530.31 951
1 0.0132 0.3957 −0.1909 6.4644 793.66 1568
2 0.0065 0.8843 0.5168 9.7091 1388.15 723
3 0.0136 0.4517 −0.3967 6.7701 1151.59 1862
4 −0.0403 0.8820 −0.1018 5.5337 129.22 480
5 0.0916 0.6268 −0.2433 2.4451 1.43 63
6 0.0279 0.3721 −0.2435 3.23 2.11 176
7 −0.0323 0.5077 −0.1169 2.7358 0.23 45

SP 0 0.0206 0.3357 −0.6297 9.6680 4622.07 2409
1 0.0068 0.4926 −0.0803 5.9488 1084.68 2985
2 −0.1286 1.5148 0.0923 3.7766 3.93 148
3 0.0929 0.7025 −0.2396 3.0389 0.74 77
4 0.0492 0.4087 −0.6348 4.1249 24.34 203
5 −0.1307 0.7609 0.3152 3.2404 0.87 46

TSE 0 0.0110 0.2373 −0.6003 6.3146 1194.65 2307
1 0.0127 0.4310 −0.6714 8.4297 3806.26 2920
2 −0.0526 1.0517 −0.3814 5.6312 99.13 317
3 0.0718 0.7116 −0.4300 2.9335 3.07 99
4 0.0107 0.4099 −0.2839 3.5215 5.57 225

Notes: See Notes in Table 2B.3
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2.9 APPENDIX 2C: The estimated models in the whole sample and the subsamples

Table 2C.1: Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Whole Sample

CAC-DAX CAC-FTSE DAX-FTSE

CAC DAX CAC FTSE DAX FTSE

ci 0.019
(3.53)∗∗∗

0.030
(5.37)∗∗∗

0.017
(3.02)∗∗∗

0.016
(3.42)∗∗∗

0.027
(4.99)∗∗∗

0.016
(3.62)∗∗∗

ζ i 0.019
(0.97)

−0.098
(−5.18)∗∗∗

−0.014
(−0.74)

0.016
(0.85)

−0.073
(−4.45)∗∗∗

0.031
(1.81)∗∗

ηi −0.010
(−0.53)

0.114
(6.32)∗∗∗

0.031
(1.27)

−0.013
(−0.88)

0.111
(5.40)∗∗∗

−0.024
(−1.84)∗∗

ωi 0.022
(4.32)∗∗∗

0.018
(3.88)∗∗∗

0.017
(3.66)∗∗∗

0.013
(3.94)∗∗∗

0.019
(3.74)∗∗∗

0.016
(4.21)∗∗∗

φi 0.262
(10.31)∗∗∗

0.242
(7.64)∗∗∗

0.265
(8.99)∗∗∗

0.277
(10.80)∗∗∗

0.199
(5.73)∗∗∗

0.235
(8.89)∗∗∗

βi 0.611
(13.26)∗∗∗

0.574
(10.70)∗∗∗

0.586
(11.62)∗∗∗

0.632
(16.71)∗∗∗

0.548
(9.27)∗∗∗

0.615
(14.75)∗∗∗

di 0.405
(8.33)∗∗∗

0.386
(8.64)∗∗∗

0.360
(7.78)∗∗∗

0.408
(10.43)∗∗∗

0.393
(8.83)∗∗∗

0.432
(10.58)∗∗∗

γi 0.413
(6.02)∗∗∗

0.314
(5.10)∗∗∗

0.403
(5.62)∗∗∗

0.377
(5.88)∗∗∗

0.310
(5.25)∗∗∗

0.404
(6.20)∗∗∗

δi 1.515
(17.54)∗∗∗

1.642
(19.70)∗∗∗

1.627
(18.64)∗∗∗

1.547
(17.60)∗∗∗

1.616
(17.97)∗∗∗

1.474
(16.27)∗∗∗

ρij 0.421
(1.60)∗

0.251
(1.25)

0.255
(1.37)

a 0.0159
(3.52)∗∗∗

0.0241
(2.81)∗∗∗

0.0228
(2.79)∗∗∗

b 0.9840
(213.3)∗∗∗

0.9758
(112.1)∗∗∗

0.9771
(117.4)∗∗∗

υ 8.035
(12.61)∗∗∗

9.633
(11.41)∗∗∗

9.205
(11.50)∗∗∗

Loglik −5391.32 −4408.54 −5152.36
Q12 13.93

[0.31]
21.37
[0.05]

18.64
[0.10]

12.11
[0.44]

19.74
[0.07]

11.03
[0.53]

Q212 34.99
[0.00]

15.06
[0.24]

11.23
[0.51]

19.94
[0.07]

8.40
[0.75]

24.94
[0.02]

Notes:

Robust-standard errors are used.Q12 andQ212 are Ljung-Box tests for

serial correlation of 12 lags on the standardised and standardised squared

residuals, respectively. The numbers in parentheses are t-statistics.

The numbers in brackets are p-values.

∗∗∗
,
∗∗

,
∗

denote significance at the 0.05, 0.10, 0.15 level respectively.
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Table 2C.1 (Continued): Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Whole Sample

HS-NIKKEI HS-STRAITS NIKKEI-STRAITS SP-TSE

HS NIKKEI HS STRAITS NIKKEI STRAITS SP TSE

ci 0.031
(5.10)∗∗∗

0.009
(1.63)∗∗

0.027
(4.48)∗∗∗

0.015
(3.11)∗∗∗

0.008
(1.30)

0.018
(3.57)∗∗∗

0.019
(4.41)∗∗∗

0.017
(5.15)∗∗∗

ζ i 0.036
(2.50)∗∗∗

−0.033
(−2.53)∗∗∗

0.008
(0.53)

0.077
(4.83)∗∗∗

−0.038
(−2.84)∗∗∗

0.082
(5.66)∗∗∗

−0.021
(−1.34)

0.061
(3.63)∗∗∗

ηi −0.025
(−1.93)∗∗∗

0.034
(3.15)∗∗∗

0.061
(3.24)∗∗∗

0.017
(1.28)

0.073
(5.03)∗∗∗

−0.003
(−0.31)

0.007
(0.35)

0.070
(5.57)∗∗∗

ωi 0.030
(3.99)∗∗∗

0.012
(2.03)∗∗∗

0.034
(4.26)∗∗∗

0.018
(4.11)∗∗∗

0.009
(1.60)∗

0.018
(3.12)∗∗∗

0.014
(3.52)∗∗∗

0.009
(4.04)∗∗∗

φi 0.232
(4.86)∗∗∗

0.195
(5.05)∗∗∗

0.256
(5.46)∗∗∗

0.222
(4.19)∗∗∗

0.186
(4.18)∗∗∗

0.085
(0.72)

0.265
(8.54)∗∗∗

0.241
(6.16)∗∗∗

βi 0.540
(7.21)∗∗∗

0.538
(9.06)∗∗∗

0.533
(7.36)∗∗∗

0.459
(6.25)∗∗∗

0.500
(7.68)∗∗∗

0.272
(1.94)∗∗∗

0.592
(10.40)∗∗∗

0.567
(10.29)∗∗∗

di 0.384
(7.76)∗∗∗

0.381
(7.21)∗∗∗

0.353
(7.63)∗∗∗

0.348
(7.80)∗∗∗

0.357
(7.23)∗∗∗

0.302
(7.74)∗∗∗

0.368
(6.99)∗∗∗

0.406
(10.40)∗∗∗

γi 0.305
(4.61)∗∗∗

0.471
(4.47)∗∗∗

0.314
(4.75)∗∗∗

0.185
(4.66)∗∗∗

0.481
(4.46)∗∗∗

0.196
(4.67)∗∗∗

0.557
(5.60)∗∗∗

0.227
(4.52)∗∗∗

δi 1.580
(19.68)∗∗∗

1.705
(15.33)∗∗∗

1.582
(21.15)∗∗∗

1.812
(19.92)∗∗∗

1.749
(15.25)∗∗∗

1.887
(19.52)∗∗∗

1.519
(16.78)∗∗∗

1.660
(21.62)∗∗∗

ρij 0.369
(5.09)∗∗∗

0.519
(20.95)∗∗∗

0.301
(4.41)∗∗∗

0.644
(28.31)∗∗∗

a 0.0119
(2.14)∗∗∗

0.0523
(5.09)∗∗∗

0.0117
(1.56)∗

0.0261
(3.59)∗∗∗

b 0.9861
(134.9)∗∗∗

0.9138
(43.00)∗∗∗

0.9860
(92.24)∗∗∗

0.9589
(61.74)∗∗∗

υ 7.018
(15.22)∗∗∗

6.225
(15.75)∗∗∗

6.917
(14.87)∗∗∗

7.329
(14.31)∗∗∗

Loglik −9078.62 −7545.80 −7850.93 −2670.31
Q12 32.52

[0.00]
11.67
[0.47]

21.39
[0.04]

16.69
[0.16]

8.33
[0.76]

23.24
[0.03]

34.23
[0.00]

19.33
[0.08]

Q212 57.59
[0.00]

7.15
[0.85]

76.45
[0.00]

1.58
[1.00]

10.46
[0.58]

1.56
[1.00]

8.75
[0.72]

5.21
[0.95]

Notes: See Notes in Table 2C.1
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Table 2C.2: Trivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Whole sample

EUROPE ASIA

CAC DAX FTSE NIKKEI HS STRAITS

ci 0.019
(3.64)∗∗∗

0.030
(5.47)∗∗∗

0.017
(3.91)∗∗∗

0.008
(1.44)∗

0.032
(5.28)∗∗∗

0.019
(3.94)∗∗∗

ζ i −0.017
(−0.78)

−0.102
(−5.14)∗∗∗

0.029
(1.52)∗

−0.040
(−2.98)∗∗∗

0.010
(0.68)

0.068
(4.28)∗∗∗

ηi
D

−0.009
(−0.46)

C

0.084
(4.03)∗∗∗

C

−0.008
(−0.46)

HS

0.021
(2.05)∗∗∗

N

−0.025
(−1.99)∗∗∗

N

−0.002
(−0.19)

F

0.053
(2.24)∗∗∗

F

0.053
(2.31)∗∗∗

D

−0.015
(−0.93)

S

0.053
(3.37)∗∗∗

S

0.054
(2.82)∗∗∗

HS

0.013
(0.95)

ωi 0.021
(4.84)∗∗∗

0.017
(4.12)∗∗∗

0.015
(4.40)∗∗∗

0.010
(1.93)∗∗∗

0.028
(4.27)∗∗∗

0.016
(3.77)∗∗∗

φi 0.288
(11.37)∗∗∗

0.256
(7.75)∗∗∗

0.295
(11.83)∗∗∗

0.189
(5.05)∗∗∗

0.274
(6.54)∗∗∗

0.226
(4.14)∗∗∗

βi 0.593
(14.91)∗∗∗

0.561
(10.94)∗∗∗

0.624
(18.64)∗∗∗

0.548
(9.10)∗∗∗

0.561
(8.67)∗∗∗

0.449
(6.15)∗∗∗

di 0.351
(10.21)∗∗∗

0.352
(9.72)∗∗∗

0.380
(12.12)∗∗∗

0.397
(7.61)∗∗∗

0.357
(7.89)∗∗∗

0.324
(7.67)∗∗∗

γi 0.348
(6.04)∗∗∗

0.251
(4.73)∗∗∗

0.382
(5.73)∗∗∗

0.411
(4.91)∗∗∗

0.251
(4.26)∗∗∗

0.156
(4.05)∗∗∗

δi 1.594
(19.86)∗∗∗

1.696
(20.68)∗∗∗

1.517
(16.72)∗∗∗

1.771
(16.48)∗∗∗

1.608
(21.04)∗∗∗

1.833
(20.25)∗∗∗

ρij
C−D
0.446
(2.65)∗∗∗

C−F
0.273
(1.74)∗∗

D−F
0.331
(2.38)∗∗∗

HS−N
0.378
(13.68)∗∗∗

N−S
0.333
(11.43)∗∗∗

S−HS
0.504
(18.50)∗∗∗

a 0.0129
(5.61)∗∗∗

0.0326
(2.89)∗∗∗

b 0.9870
(425.2)∗∗∗

0.9449
(36.48)∗∗∗

υ 8.571
(15.42)∗∗∗

7.417
(17.09)∗∗∗

Loglik −5400.20 −11496.10
Q12 15.89

[0.20]
20.01
[0.07]

12.96
[0.37]

9.55
[0.66]

26.81
[0.01]

19.40
[0.08]

Q212 46.76
[0.00]

23.57
[0.02]

24.78
[0.02]

9.82
[0.63]

95.19
[0.00]

1.55
[1.00]

Notes: See Notes in Table 2C.1
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Table 2C.3: Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample A

CAC-DAX CAC-FTSE DAX-FTSE

CAC DAX CAC FTSE DAX FTSE

ci 0.018
(2.19)∗∗∗

0.028
(3.77)∗∗∗

0.020
(2.27)∗∗∗

0.018
(2.79)∗∗∗

0.029
(3.91)∗∗∗

0.020
(3.24)∗∗∗

ζ i 0.043
(1.71)∗∗

−0.086
(−3.47)∗∗∗

0.038
(1.43)∗

0.063
(2.20)∗∗∗

−0.068
(−3.05)∗∗∗

0.046
(1.94)∗∗∗

ηi −0.023
(−0.82)

0.157
(6.91)∗∗∗

0.012
(0.34)

−0.027
(−1.21)

0.195
(6.38)∗∗∗

−0.014
(−0.79)

ωi 0.060
(2.96)∗∗∗

0.033
(2.57)∗∗∗

0.052
(2.04)∗∗∗

0.029
(1.25)

0.032
(2.58)∗∗∗

0.035
(1.66)∗∗

φi 0.258
(3.66)∗∗∗

0.290
(4.73)∗∗∗

0.231
(5.01)∗∗∗

0.239
(3.75)∗∗∗

0.214
(3.30)∗∗∗

0.184
(1.70)∗∗

βi 0.502
(4.38)∗∗∗

0.640
(5.13)∗∗∗

0.602
(6.69)∗∗∗

0.671
(4.91)∗∗∗

0.546
(5.15)∗∗∗

0.485
(2.98)∗∗∗

di 0.288
(3.76)∗∗∗

0.431
(3.64)∗∗∗

0.399
(4.46)∗∗∗

0.445
(2.68)∗∗∗

0.402
(5.11)∗∗∗

0.309
(3.80)∗∗∗

γi 0.333
(3.05)∗∗∗

0.180
(2.17)∗∗∗

0.304
(2.70)∗∗∗

0.172
(1.88)∗∗

0.172
(2.03)∗∗∗

0.235
(2.09)∗∗∗

δi 1.652
(8.16)∗∗∗

1.535
(5.81)∗∗∗

1.417
(6.22)∗∗∗

1.360
(4.28)∗∗∗

1.369
(6.74)∗∗∗

1.344
(4.21)∗∗∗

ρij 0.534
(21.82)∗∗∗

0.242
(1.57)∗

0.289
(1.39)

a 0.0286
(2.81)∗∗∗

0.0092
(0.52)

0.0103
(2.92)∗∗∗

b 0.9184
(29.53)∗∗∗

0.9907
(51.78)∗∗∗

0.9889
(260.7)∗∗∗

υ 7.916
(7.74)∗∗∗

9.560
(6.92)∗∗∗

8.350
(7.73)∗∗∗

Loglik −2203.12 −1613.55 −1751.71
Q12 7.31

[0.84]
11.06
[0.52]

6.22
[0.90]

10.03
[0.61]

12.09
[0.44]

12.94
[0.37]

Q212 15.21
[0.23]

7.01
[0.86]

5.65
[0.93]

13.80
[0.31]

4.29
[0.98]

20.42
[0.06]

Notes: See Notes in Table 2C.1
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Table 2C.3 (Continued): Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample A

HS-NIKKEI HS-STRAITS NIKKEI-STRAITS SP-TSE

HS NIKKEI HS STRAITS NIKKEI STRAITS SP TSE

ci 0.034
(4.01)∗∗∗

0.006
(0.93)

0.037
(4.08)∗∗∗

0.010
(1.43)∗

0.013
(1.73)∗∗

0.015
(2.17)∗∗∗

0.024
(4.45)∗∗∗

0.012
(3.05)∗∗∗

ζ i 0.067
(3.58)∗∗∗

−0.025
(−1.50)∗

0.069
(3.02)∗∗∗

0.164
(7.16)∗∗∗

0.019
(1.71)∗∗

0.166
(7.60)∗∗∗

0.009
(0.41)

0.189
(8.04)∗∗∗

ηi −0.011
(−0.69)

0.021
(2.07)∗∗∗

0.007
(0.29)

0.040
(2.20)∗∗∗

−0.011
(−0.50)

0.043
(2.66)∗∗∗

0.014
(0.47)

0.037
(2.27)∗∗∗

ωi 0.072
(2.67)∗∗∗

0.020
(2.43)∗∗∗

0.103
(2.73)∗∗∗

0.016
(3.69)∗∗∗

0.017
(2.17)∗∗∗

0.150
(4.45)∗∗∗

0.012
(2.01)∗∗∗

0.031
(1.02)

φi 0.177
(1.49)∗

0.211
(3.94)∗∗∗

−0.008
(−0.04)

0.829
(21.76)∗∗∗

0.233
(3.04)∗∗∗

−0.986
(−57.20)∗∗∗

0.372
(6.13)∗∗∗

−0.771
(−1.07)

βi 0.459
(2.74)∗∗∗

0.499
(6.05)∗∗∗

0.144
(0.59)

0.710
(12.81)∗∗∗

0.515
(4.08)∗∗∗

−0.979
(−40.13)∗∗∗

0.659
(8.68)∗∗∗

−0.745
(−0.95)

di 0.386
(5.29)∗∗∗

0.337
(4.90)∗∗∗

0.267
(5.54)∗∗∗

0.045
(1.02)

0.335
(3.78)∗∗∗

0.224
(7.27)∗∗∗

0.324
(5.01)∗∗∗

0.118
(5.06)∗∗∗

γi 0.350
(4.49)∗∗∗

0.554
(3.40)∗∗∗

0.300
(3.11)∗∗∗

0.134
(2.45)∗∗∗

0.503
(3.43)∗∗∗

0.096
(1.45)∗

0.201
(1.50)∗

0.110
(1.16)

δi 1.506
(14.84)∗∗∗

1.907
(10.14)∗∗∗

1.386
(16.01)∗∗∗

2.183
(6.42)∗∗∗

2.104
(8.32)∗∗∗

1.870
(10.93)∗∗∗

1.888
(7.17)∗∗∗

2.221
(6.34)∗∗∗

ρij 0.296
(12.40)∗∗∗

0.379
(10.66)∗∗∗

0.199
(5.50)∗∗∗

0.541
(9.56)∗∗∗

a 0.0550
(3.46)∗∗∗

0.0545
(4.06)∗∗∗

0.0485
(3.55)∗∗∗

0.0192
(2.39)∗∗∗

b 0.8548
(15.57)∗∗∗

0.8925
(29.27)∗∗∗

0.9016
(26.51)∗∗∗

0.9704
(67.29)∗∗∗

υ 6.436
(13.28)∗∗∗

5.264
(11.71)∗∗∗

6.289
(10.92)∗∗∗

5.805
(10.97)∗∗∗

Loglik −5731.41 −2650.80 −2686.69 312.22
Q12 25.81

[0.01]
12.60
[0.40]

14.82
[0.25]

14.41
[0.28]

12.70
[0.39]

15.25
[0.23]

20.75
[0.05]

23.41
[0.02]

Q212 32.42
[0.00]

9.58
[0.65]

53.77
[0.00]

0.86
[1.00]

8.13
[0.77]

0.44
[1.00]

4.37
[0.98]

4.94
[0.96]

Notes: See Notes in Table 2C.1
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Table 2C.4: Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample B

CAC-DAX CAC-FTSE DAX-FTSE

CAC DAX CAC FTSE DAX FTSE

ci 0.021
(2.32)∗∗∗

0.031
(3.37)∗∗∗

0.015
(1.84)∗∗

0.013
(2.03)∗∗∗

0.022
(2.66)∗∗∗

0.011
(1.73)∗∗

ζ i −0.055
(−1.51)∗

−0.053
(−1.44)∗

−0.045
(−1.41)

−0.023
(−0.73)

−0.046
(−1.78)∗∗

−0.010
(−0.37)

ηi 0.035
(0.98)

0.036
(0.95)

0.036
(0.93)

−0.001
(−0.04)

0.036
(1.12)

−0.016
(−0.76)

ωi 0.018
(2.09)∗∗∗

0.015
(1.80)∗∗

0.012
(1.95)∗∗∗

0.012
(2.67)∗∗∗

0.012
(1.73)∗∗

0.013
(2.77)∗∗∗

φi 0.270
(7.90)∗∗∗

0.249
(6.31)∗∗∗

0.300
(7.19)∗∗∗

0.313
(10.20)∗∗∗

0.219
(4.61)∗∗∗

0.267
(8.89)∗∗∗

βi 0.628
(9.92)∗∗∗

0.586
(8.54)∗∗∗

0.561
(9.20)∗∗∗

0.608
(14.77)∗∗∗

0.524
(8.25)∗∗∗

0.598
(14.12)∗∗∗

di 0.421
(5.17)∗∗∗

0.395
(5.78)∗∗∗

0.313
(6.19)∗∗∗

0.358
(9.01)∗∗∗

0.350
(6.97)∗∗∗

0.390
(8.76)∗∗∗

γi 0.497
(4.51)∗∗∗

0.407
(3.96)∗∗∗

0.597
(4.37)∗∗∗

0.650
(5.25)∗∗∗

0.513
(3.93)∗∗∗

0.683
(5.22)∗∗∗

δi 1.510
(13.60)∗∗∗

1.614
(14.54)∗∗∗

1.628
(14.90)∗∗∗

1.474
(15.02)∗∗∗

1.623
(14.16)∗∗∗

1.426
(14.54)∗∗∗

ρij 0.658
(1.98)∗∗∗

0.881
(41.51)∗∗∗

0.818
(23.70)∗∗∗

a 0.0246
(1.13)

0.0400
(5.02)∗∗∗

0.0439
(4.39)∗∗∗

b 0.9753
(43.36)∗∗∗

0.9510
(89.79)∗∗∗

0.9468
(68.51)∗∗∗

υ 8.276
(9.92)∗∗∗

10.248
(8.82)∗∗∗

10.494
(8.46)∗∗∗

Loglik −3158.20 −2757.32 −3353.53
Q12 20.30

[0.06]
10.66
[0.56]

19.01
[0.09]

22.39
[0.03]

9.44
[0.66]

23.49
[0.02]

Q212 21.56
[0.04]

36.74
[0.00]

11.65
[0.47]

11.64
[0.48]

26.17
[0.01]

19.21
[0.08]

Notes: See Notes in Table 2C.1

92



Table 2C.4 (Continued): Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample B

HS-NIKKEI HS-STRAITS NIKKEI-STRAITS SP-TSE

HS NIKKEI HS STRAITS NIKKEI STRAITS SP TSE

ci 0.028
(2.99)∗∗∗

0.011
(1.10)

0.016
(1.84)∗∗

0.016
(2.13)∗∗∗

0.003
(0.38)

0.018
(2.46)∗∗∗

− −
ζ i 0.029

(1.23)
−0.087
(−3.55)∗∗∗

−0.054
(−2.52)∗∗∗

0.038
(1.70)∗∗

−0.018
(−0.86)

0.042
(1.88)∗∗

− −

ηi −0.046
(−2.11)∗∗∗

0.114
(4.43)∗∗∗

0.111
(4.13)∗∗∗

−0.009
(−0.46)

0.103
(4.43)∗∗∗

−0.024
(−1.28)

− −

ωi 0.011
(1.82)∗∗

0.018
(1.77)∗∗

0.017
(2.37)∗∗∗

0.013
(2.26)∗∗∗

0.016
(1.35)

0.008
(1.61)∗

− −
φi 0.217

(4.73)∗∗∗
0.113
(2.13)∗∗∗

0.198
(2.41)∗∗∗

0.147
(1.17)

0.130
(2.29)∗∗∗

0.099
(0.73)

− −
βi 0.611

(8.07)∗∗∗
0.549
(5.94)∗∗∗

0.343
(2.60)∗∗∗

0.368
(1.99)∗∗∗

0.479
(5.71)∗∗∗

0.347
(1.98)∗∗∗

− −
di 0.411

(5.32)∗∗∗
0.429
(5.61)∗∗∗

0.192
(2.80)∗∗∗

0.291
(4.10)∗∗∗

0.370
(6.44)∗∗∗

0.317
(5.44)∗∗∗

− −
γi 0.189

(1.97)∗∗∗
0.203
(2.33)∗∗∗

0.373
(3.80)∗∗∗

0.212
(3.99)∗∗∗

0.324
(2.82)∗∗∗

0.234
(3.91)∗∗∗

− −
δi 1.832

(11.61)∗∗∗
1.786
(9.74)∗∗∗

2.071
(11.30)∗∗∗

1.979
(14.31)∗∗∗

1.850
(9.05)∗∗∗

1.976
(16.46)∗∗∗

− −
ρij 0.551

(20.81)∗∗∗
0.632
(37.52)∗∗∗

0.465
(18.75)∗∗∗

−
a 0.0287

(3.37)∗∗∗
0.0787
(1.85)∗∗

0.0341
(3.33)∗∗∗

−
b 0.9315

(42.85)∗∗∗
0.7670
(3.77)∗∗∗

0.9210
(33.67)∗∗∗

−
υ 8.870

(7.47)∗∗∗
7.514
(9.95)∗∗∗

7.818
(9.94)∗∗∗

−
Loglik −3303.53 −4801.84 −5092.13 −
Q12 8.91

[0.71]
13.16
[0.36]

16.97
[0.15]

11.78
[0.46]

15.38
[0.22]

13.61
[0.33]

− −
Q212 9.64

[0.65]
4.89
[0.96]

23.74
[0.02]

3.18
[0.99]

11.52
[0.49]

1.65
[1.00]

− −

Notes: See Notes in Table 2C.1
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Table 2C.5: Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample C

CAC-DAX CAC-FTSE DAX-FTSE

CAC DAX CAC FTSE DAX FTSE

ci 0.025
(2.74)∗∗∗

0.035
(3.64)∗∗∗

0.024
(2.70)∗∗∗

0.015
(2.16)∗∗∗

0.027
(2.78)∗∗∗

0.012
(1.68)∗∗

ζ i −0.058
(−1.54)∗

−0.084
(−2.22)∗∗∗

−0.046
(−1.35)

−0.013
(−0.38)

−0.074
(−2.47)∗∗∗

0.001
(0.04)

ηi 0.039
(1.10)

0.073
(1.85)∗∗

0.050
(1.13)

0.005
(0.17)

0.086
(2.01)∗∗∗

−0.014
(−0.63)

ωi 0.017
(1.93)∗∗∗

0.019
(1.90)∗∗

0.007
(1.24)

0.010
(2.00)∗∗∗

0.008
(1.21)

0.007
(1.70)∗∗

φi 0.298
(6.37)∗∗∗

0.304
(5.62)∗∗∗

0.322
(7.83)∗∗∗

0.337
(10.31)∗∗∗

0.263
(5.49)∗∗∗

0.287
(8.13)∗∗∗

βi 0.539
(6.71)∗∗∗

0.547
(7.49)∗∗∗

0.634
(9.76)∗∗∗

0.639
(15.10)∗∗∗

0.610
(9.49)∗∗∗

0.614
(12.30)∗∗∗

di 0.285
(3.61)∗∗∗

0.292
(5.06)∗∗∗

0.366
(5.66)∗∗∗

0.367
(8.30)∗∗∗

0.401
(6.51)∗∗∗

0.393
(7.93)∗∗∗

γi 0.336
(3.21)∗∗∗

0.308
(2.78)∗∗∗

0.416
(3.58)∗∗∗

0.611
(4.08)∗∗∗

0.423
(3.19)∗∗∗

0.551
(3.97)∗∗∗

δi 2.169
(8.13)∗∗∗

2.142
(8.94)∗∗∗

1.731
(12.65)∗∗∗

1.482
(10.88)∗∗∗

1.645
(11.08)∗∗∗

1.551
(11.01)∗∗∗

ρij 0.682
(1.97)∗∗∗

0.844
(34.38)∗∗∗

0.768
(25.75)∗∗∗

a 0.0311
(1.96)∗∗∗

0.0348
(4.99)∗∗∗

0.0439
(4.56)∗∗∗

b 0.9688
(56.99)∗∗∗

0.9545
(91.17)∗∗∗

0.9400
(59.82)∗∗∗

υ 9.492
(8.64)∗∗∗

10.650
(7.44)∗∗∗

12.279
(6.58)∗∗∗

Loglik −2532.62 −2005.71 −2512.15
Q12 29.44

[0.00]
8.35
[0.76]

16.97
[0.15]

18.64
[0.10]

6.07
[0.91]

18.59
[0.10]

Q212 12.65
[0.40]

20.62
[0.06]

12.06
[0.44]

6.58
[0.88]

19.34
[0.08]

8.66
[0.73]

Notes: See Notes in Table 2C.1

94



Table 2C.5 (Continued): Bivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1) models

Subsample C

HS-NIKKEI HS-STRAITS NIKKEI-STRAITS SP-TSE

HS NIKKEI HS STRAITS NIKKEI STRAITS SP TSE

ci 0.034
(3.46)∗∗∗

0.024
(2.07)∗∗∗

0.019
(2.11)∗∗∗

0.019
(2.44)∗∗∗

0.010
(1.01)

0.021
(2.65)∗∗∗

− −
ζ i 0.046

(1.59)∗
−0.062
(−2.10)∗∗∗

−0.029
(−1.23)

0.045
(1.81)∗∗

−0.009
(−0.39)∗∗∗

0.033
(1.39)

− −

ηi −0.043
(−1.86)∗∗

0.095
(2.69)∗∗∗

0.097
(3.32)∗∗∗

0.018
(0.86)

0.071
(2.89)∗∗∗

0.006
(0.29)

− −

ωi 0.007
(0.67)

0.007
(0.50)

0.019
(2.47)∗∗∗

0.014
(2.62)∗∗∗

−0.002
(−0.11)

0.008
(1.27)

− −

φi 0.238
(2.67)∗∗∗

0.119
(1.14)

0.297
(3.91)∗∗∗

0.196
(1.88)∗∗

0.114
(1.41)

0.004
(0.01)

− −
βi 0.748

(5.51)∗∗∗
0.538
(2.47)∗∗∗

0.460
(4.43)∗∗∗

0.431
(3.07)∗∗∗

0.392
(3.46)∗∗∗

0.185
(0.58)

− −
di 0.479

(2.43)∗∗∗
0.395
(2.64)∗∗∗

0.188
(2.77)∗∗∗

0.305
(4.64)∗∗∗

0.284
(4.55)∗∗∗

0.256
(3.96)∗∗∗

− −
γi 0.028

(0.22)
0.094
(1.08)

0.377
(2.24)∗∗∗

0.203
(3.31)∗∗∗

0.189
(1.66)∗∗

0.199
(3.07)∗∗∗

− −
δi 1.814

(3.24)∗∗∗
2.037
(5.49)∗∗∗

2.266
(11.11)∗∗∗

2.091
(12.68)∗∗∗

2.231
(7.09)∗∗∗

2.047
(13.51)∗∗∗

− −
ρij 0.502

(13.73)∗∗∗
0.567
(22.50)∗∗∗

0.222
(2.23)∗∗∗

−
a 0.0381

(3.21)∗∗∗
0.0376
(2.63)∗∗∗

0.0047
(1.58)∗

−
b 0.9154

(31.99)∗∗∗
0.9133
(18.08)∗∗∗

0.9952
(291.7)∗∗∗

−
υ 8.345

(6.46)∗∗∗
8.062
(8.88)∗∗∗

7.885
(9.20)∗∗∗

−
Loglik −1650.20 −3398.31 −3650.21 −
Q12 5.83

[0.92]
13.40
[0.34]

11.86
[0.46]

7.46
[0.83]

10.61
[0.56]

12.50
[0.41]

− −
Q212 7.39

[0.83]
5.33
[0.95]

8.46
[0.75]

5.69
[0.93]

11.05
[0.52]

3.03
[1.00]

− −

Notes: See Notes in Table 2C.1
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Table 2C.6: Trivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1)

Subsample A

EUROPE ASIA

CAC DAX FTSE NIKKEI HS STRAITS

ci 0.021
(2.46)∗∗∗

0.029
(3.85)∗∗∗

0.018
(2.95)∗∗∗

0.013
(1.66)∗∗

0.041
(4.72)∗∗∗

0.016
(2.41)∗∗∗

ζ i 0.053
(1.88)∗∗

−0.103
(−3.92)∗∗∗

0.041
(1.59)∗

−0.011
(−0.56)

0.075
(3.28)∗∗∗

0.154
(6.96)∗∗∗

ηi
D

−0.018
(−0.64)

C

0.116
(4.31)∗∗∗

C

−0.018
(−0.85)

HS

0.022
(2.05)∗∗∗

N

−0.010
(−0.62)

N

0.016
(1.21)

F

−0.003
(−0.09)

F

0.129
(3.78)∗∗∗

D

0.005
(0.24)

S

−0.012
(−0.53)

S

0.010
(0.40)

HS

0.040
(2.26)∗∗∗

ωi 0.050
(3.33)∗∗∗

0.035
(2.80)∗∗∗

0.029
(2.15)∗∗∗

0.013
(2.37)∗∗∗

0.118
(1.37)

0.140
(5.00)∗∗∗

φi 0.251
(4.46)∗∗∗

0.292
(4.47)∗∗∗

0.237
(3.80)∗∗∗

0.232
(4.09)∗∗∗

0.096
(0.22)

−0.988
(−116.4)∗∗∗

βi 0.532
(6.22)∗∗∗

0.623
(5.34)∗∗∗

0.640
(6.21)∗∗∗

0.601
(4.37)∗∗∗

0.249
(0.49)

−0.985
(−94.47)∗∗∗

di 0.320
(4.61)∗∗∗

0.411
(4.15)∗∗∗

0.415
(3.77)∗∗∗

0.426
(3.06)∗∗∗

0.263
(3.00)∗∗∗

0.194
(7.36)∗∗∗

γi 0.225
(2.83)∗∗∗

0.163
(2.05)∗∗∗

0.181
(1.99)∗∗∗

0.392
(4.45)∗∗∗

0.241
(2.25)∗∗∗

0.079
(1.26)

δi 1.721
(9.58)∗∗∗

1.566
(6.29)∗∗∗

1.478
(5.47)∗∗∗

2.193
(6.65)∗∗∗

1.612
(10.09)∗∗∗

2.013
(11.95)∗∗∗

ρij
C−D
0.542
(19.38)∗∗∗

C−F
0.582
(23.08)∗∗∗

D−F
0.445
(14.94)∗∗∗

HS−N
0.220
(6.77)∗∗∗

N−S
0.197
(5.97)∗∗∗

S−HS
0.370
(11.29)∗∗∗

a 0.0261
(3.36)∗∗∗

0.0411
(4.85)∗∗∗

b 0.9393
(37.31)∗∗∗

0.9081
(37.30)∗∗∗

υ 8.842
(8.96)∗∗∗

6.604
(12.48)∗∗∗

Loglik −2339.36 −4192.18
Q12 4.75

[0.97]
11.27
[0.51]

13.23
[0.35]

15.61
[0.21]

17.21
[0.14]

14.44
[0.27]

Q212 16.33
[0.18]

6.97
[0.86]

16.12
[0.19]

7.15
[0.85]

45.95
[0.00]

0.60
[1.00]

Notes: See Notes in Table 2C.1
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Table 2C.7: Trivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1)

Subsample B

EUROPE ASIA

CAC DAX FTSE NIKKEI HS STRAITS

ci − − − 0.002
(0.25)

0.019
(2.20)∗∗∗

0.017
(2.38)∗∗∗

ζ i − − − −0.081
(−4.22)∗∗∗

−0.042
(−1.82)∗∗

0.036
(1.57)∗

ηi − − −
HS

0.011
(0.49)

N

−0.042
(−2.14)∗∗∗

N

−0.017
(−1.02)

− − −
S

0.120
(5.09)∗∗∗

S

0.110
(4.03)∗∗∗

HS

−0.009
(−0.45)

ωi − − − 0.014
(1.27)

0.013
(2.22)∗∗∗

0.010
(2.25)∗∗∗

φi − − − 0.116
(1.95)∗∗∗

0.251
(4.07)∗∗∗

0.198
(2.65)∗∗∗

βi − − − 0.480
(5.90)∗∗∗

0.431
(4.12)∗∗∗

0.451
(4.26)∗∗∗

di − − − 0.364
(6.80)∗∗∗

0.221
(3.30)∗∗∗

0.315
(5.90)∗∗∗

γi − − − 0.237
(2.56)∗∗∗

0.282
(3.56)∗∗∗

0.184
(3.49)∗∗∗

δi − − − 1.945
(9.40)∗∗∗

2.071
(12.72)∗∗∗

1.941
(17.43)∗∗∗

ρij − − −
HS−N
0.509
(25.07)∗∗∗

N−S
0.466
(21.22)∗∗∗

S−HS
0.625
(36.10)∗∗∗

a − 0.0363
(3.16)∗∗∗

b − 0.8979
(17.71)∗∗∗

υ − 8.556
(11.27)∗∗∗

Loglik − −7176.49
Q12 − − − 6.95

[0.86]
17.98
[0.12]

11.66
[0.47]

Q212 − − − 9.70
[0.64]

23.38
[0.02]

4.33
[0.98]

Notes: See Notes in Table 2C.1
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Table 2C.8: Trivariate AR(1)-FIAPARCH(1, d, 1)-DCC(1, 1)

Subsample C

EUROPE ASIA

CAC DAX FTSE NIKKEI HS STRAITS

ci 0.027
(2.69)∗∗∗

0.037
(3.45)∗∗∗

0.018
(2.28)∗∗∗

− − −
ζ i −0.085

(−1.92)∗∗
−0.116
(−2.78)∗∗∗

0.013
(0.36)

− − −

ηi
D

0.015
(0.38)

C

0.073
(1.56)∗

C

0.008
(0.22)

− − −
F

0.079
(1.68)∗∗

F

0.058
(1.18)

D

−0.028
(−0.91)

− − −

ωi 0.011
(0.51)

0.014
(0.55)

0.013
(0.73)

− − −
φi 0.326

(7.83)∗∗∗
0.304
(7.01)∗∗∗

0.350
(9.91)∗∗∗

− − −
βi 0.635

(5.84)∗∗∗
0.637
(6.07)∗∗∗

0.632
(9.24)∗∗∗

− − −
di 0.359

(2.70)∗∗∗
0.389
(3.28)∗∗∗

0.339
(3.80)∗∗∗

− − −
γi 0.291

(1.71)∗∗
0.274
(1.72)∗∗

0.558
(2.23)∗∗∗

− − −
δi 1.698

(6.98)∗∗∗
1.627
(6.00)∗∗∗

1.454
(5.69)∗∗∗

− − −

ρij
C−D
0.619
(0.84)

C−F
0.565
(1.18)

D−F
0.542
(1.62)∗∗

− − −
a 0.0181

(0.71)
−

b 0.9818
(35.87)∗∗∗

−
υ 9.707

(9.68)∗∗∗
−

Loglik −2392.47 −
Q12 26.38

[0.01]
6.57
[0.88]

18.26
[0.11]

− − −
Q212 10.91

[0.54]
31.51
[0.00]

4.65
[0.97]

− − −

Notes: See Notes in Table 2C.1

98



Chapter 3 Modelling returns and volatilities during financial crises: A time-varying

coefficient approach

3.1 Introduction

The Global financial crisis of 2007-08 and the European sovereign-debt crisis that took place

immediately afterwards are at the heart of the research interests of practitioners, academics and

policy makers alike. Given the widespread fear of an international systemic financial collapse at

the time it is no wonder that the currently on-going heated discussion on the actual causes and

effects of these crises is the precursor to the development of the necessary tools and policies for

dealing with similar phenomena in the future.

The inevitable step in undertaking such an enormous task is to map, as accurately as possible,

the ‘impact’ of these crises onto what are currently considered the main stochastic properties of

the underlying financial time series. In this way, informed discussions on the causes and effects

of these crises can take place and thus more accurately specify the set of features that have to

characterise the necessary tools and policies to address them. This study aspires to provide a

platform upon which changes in the main statistical properties of financial time series due to

economic crises can be measured.

In particular, we focus on the recent financial crises and examine how the mean and volatility

dynamics, including the underlying volatility persistence and volatility spillovers structure,

have been affected by these crises. With this aim we make use of several modern econometric

approaches for univariate and multivariate time series modelling, which we also condition on

the possibility of breaks in the mean and/or volatility dynamics taking place. Moreover, we

unify these approaches by introducing a set of theoretical considerations for time-varying (TV)

AR-GARCH models, which are also of independent interest. In particular, we make three broad

contributions to the existing literature.
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First, we present and utilise some new theoretical results on time-varying AR and/or

asymmetric GARCH (AGARCH) models. We limit our analysis to low order specifications to

save space and also since it is well documented that low order AR models for stock returns often

emerge in practice. We show the applicability of these general results to one important case: that

of abrupt breaks, which we make particular use of in our empirical investigation. Our models

produce time-varying unconditional variances in the spirit of Engle and Rangel (2008) and Baillie

and Morana (2009). TV-GARCH specifications have recently gained popularity for modelling

structural breaks in the volatility process (see, for example, Frijns et al., 2011 and Bauwens, et

al., 2014). Despite nearly half a century of research work and the widely recognised importance

of time-varying models, until recently there was a lack of a general theory that can be employed

to explore their time series properties systematically. Granger in some of his last contributions

highlighted the importance of the topic (see, Granger 2007 and 2008). The stumbling block to

the development of such a theory was the lack of a method that can be used to solve time-varying

difference equations of order two or higher. Paraskevopoulos et al. (2013) have developed such

a general theory (see also Paraskevopoulos and Karanasos, 2013). The starting point of the

solution method that we present below is to represent the linear time-varying difference equation

of order two as an infinite system of linear equations. The coefficient matrix of such an infinite

system is row finite. The solution to such infinite systems is based on an extension of the classic

Gauss elimination, called Infinite Gaussian elimination (see Paraskevopoulos, 2012, 2014). Our

method is a natural extension of the first order solution formula. It also includes the linear

difference equation with constant coefficients (see, for example, Karanasos, 1998, 2001) as a

special case. We simultaneously compute not only the general solution but also its homogeneous

and particular parts as well. The coefficients in these solutions are expressed as determinants of

tridiagonal matrices. This allows us to provide a thorough description of time-varying models by
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deriving, first, multistep ahead forecasts, the associated forecast error and the mean square error

and, second, the first two time-varying unconditional moments of the process and its covariance

structure.

Second, we use a battery of tests to identify the number and estimate the timing of breaks

both in the mean and volatility dynamics. Following our theoretical results and prompted by

Morana and Beltratti (2004) amongst others who acknowledge that misleading inference on

the persistence of the volatility process may be caused by unaccounted structural breaks, we

implement these break tests in the univariate context also to determine changes in the persistence

of volatility. The special attention we pay to this issue is well justified, especially within the

finance literature given that it is well-established that the proper detection of breaks is pivotal for

a variety of financial applications, particularly in risk measurement, asset allocation and option

pricing. Kim and Kon (1999) emphasise the importance of incorporating some break detection

procedure into the existing financial modelling paradigms when they call attention to the fact that

". . . Public announcements of corporate investment and financial decisions that imply a change in

the firm’s expected return and risk will be impounded in stock prices immediately in an efficient

market. The announcements of relevant macroeconomic information will affect the return and risk

of all securities and hence, portfolios (indexes). Since relevant information that changes the risk

structure is randomly released with some time interval (not at every moment) in sequence, these

information events translate into sequential discrete structural shifts (or change-points) for the

mean and/or variance parameter(s) in the time series of security returns."

Third, we employ the bivariate unrestricted extended dynamic conditional correlation

(UEDCC) AGARCH process to analyse the volatility transmission structure, applied to stock

market returns. The model is based on the dynamic conditional correlation of Engle (2002a)

allowing for volatility spillovers effects by imposing the unrestricted extended conditional
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correlation (dynamic or constant) GARCH specification of Conrad and Karanasos (2010). The

most recent applications of the model can be found in Conrad et al. (2010), Rittler (2012),

Karanasos and Zeng (2013) and Conrad and Karanasos (2013). However, we extend it by

allowing shock and volatility spillovers parameters to shift across abrupt breaks as well as across

two regimes of stock returns, positive (increases in the stock market) and negative (declines in

the stock market) (see also Karanasos et al., 2013). Recently, following our work, Caporale et

al. (2014) adopted our UEDCC framework but they do not allow for breaks in the shock and

volatility spillovers. The extant literature on modelling returns and volatilities is extensive and

it has evolved in several directions. One line of literature has focused on return correlations and

comovements or what is known as contagion amongst different markets or assets (e.g., Caporale

et. al., 2005; Rodriguez, 2007, amongst others), while another line of the literature has focused

on volatility spillovers amongst the markets (e.g., Baele, 2005; Asgharian and Nossman, 2011,

amongst others). The model adopted in this study is flexible enough to capture contagion effects

as well as to identify the volatility spillovers associated with the structural changes and exact

movements of each market (e.g., upward or downward) to the other and vice versa. Knowledge of

this mechanism can provide important insights to investors by focusing their attention on structural

changes in the markets as well as their trends and movements (e.g., upward or downward) in order

to set appropriate portfolio management strategies.

Overall, our results suggest that stock market returns exhibit time-varying persistence in their

corresponding conditional variances. The results of the bivariate UEDCC-AGARCH(1, 1) model

applied to FTSE and DAX returns and NIKKEI and Hang Seng returns also show the existence

of dynamic correlations as well as time-varying shock and volatility spillovers between the two

variables in each pair. For example, the results of the bivariate FTSE and DAX returns show

that the transmission of volatility from DAX to FTSE exhibited a time-varying pattern across
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the Asian financial crisis and the announcement of the €18bn German tax cuts plan as well as

the Global financial crisis. As far as the NIKKEI and Hang Seng pair is concerned, the results

provide evidence that these two financial markets have only been integrated during the different

phases of the recent financial crisis. With regard to the regime-dependent volatility spillovers, the

results suggest that declines in FTSE and DAX generate shock spillovers to each other, whereas

increases in each of these market generate negative volatility spillovers to the other. Furthermore,

the results show that declines in NIKKEI generate shock spillovers to Hang Seng, whilst increases

in NIKKEI generate negative volatility spillovers to Hang Seng.

The remainder of this chapter is as follows. Section 3.2 considers the AR-GARCH model

with abrupt breaks in the first two conditional moments and the time-varying process, which

are our two main objects of inquiry. Section 3.3 introduces the theoretical considerations on

the time-varying AR and AGARCH models. In Section 3.3.1 we represent the former as an

infinite linear system and concentrate on the associated coefficient matrix. This representation

enables us to establish an explicit formula for the general solution in terms of the determinants

of tridiagonal matrices. We also obtain the statistical properties of the aforementioned models,

e.g., multi-step-ahead predictors and their forecast error variances. Section 3.4 describes our

methodology and data. Section 3.5 presents our empirical univariate results and the next Section

discusses the results from various bivariate models. The final Section contains the summary and

our concluding remarks.

3.2 Abrupt breaks

First, we introduce the notation and the AR-AGARCH model with abrupt breaks both in the

conditional mean and variance. Throughout the chapter we will adhere to the conventions: (Z+) Z

and (R+) R stand for the sets of (positive) integers and (positive) real numbers, respectively. To

simplify our exposition we also introduce the following notation. Let t ∈ Z represent present time

and k ∈ Z+ the prediction horizon.
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3.2.1 The conditional mean

In this study we will examine an AR(2) model25 with n abrupt breaks, 0 ≤ n ≤ k − 1, at times

t − k1, t − k2, . . ., t − kn, where 0 = k0 < k1 < k2 < · · · < kn < kn+1 = k, kl ∈ Z+ and kn is

finite. That is, between t− k = t− kn+1 and the present time t = t− k0 the AR process contains

n structural breaks and the switch from one set of parameters to another is abrupt. In particular,

yτ = φ0,l + φ1,lyτ−1 + φ2,lyτ−2 + ετ , (3.1)

for l = 1, . . . , n + 1 and τ = t− kl−1, . . . , t− kl + 1, where26 E[ετ |Fτ−1 ] = 0 and ετ follows a

time-varying AGARCH type of process with finite variance σ2τ (see the next Section).27 Within

the class of AR(2) processes, this specification is quite general and allows for intercept and slope

shifts as well as errors with time-varying variances (see also Pesaran and Timmermann, 2005

and Pesaran et al. 2006). Each regime l is characterised by a vector of regression coefficients,

φl = (φ0,l, φ1,l, φ2,l)
′ and positive and finite time-varying variances, σ2τ , τ = t−kl−1, . . . , t−kl+1.

We will term the AR(2) model with n abrupt breaks: abrupt breaks autoregressive process of order

(2;n), AB-AR(2;n).

3.2.2 The conditional variance

We assume that the noise term is characterised by the relation ετ = eτ
√
hτ , where hτ is positive

with probability one and it is a measurable function of Ft−1; eτ is an i.i.d sequence with zero mean

and finite second and fourth moments: κ(i) = E(e2iτ ), i = 1, 2. In other words the conditional (on

time τ − 1) variance of yτ is Var(yτ |Fτ−1 ) = κ(1)hτ . In what follows, without loss of generality,

we will assume that κ(1) = 1.

Moreover, we specify the parametric structure of hτ as an AGARCH(1, 1) model

with m abrupt breaks, 0 ≤ m ≤ k − 1, at times t − κ1, t − κ2, . . ., t − κm, where

25 To keep the exposition tractable and reveal its practical significance we work with low order specifications.
26 {Ft} is a non-decreasing sequence of σ-fields Ft−1 ⊆ Ft ⊆ F .
27 Without loss of generality we will assume that outside the prediction horizon there are no breaks. That is: regime one

(l = 1) extends to time τ = . . . , t+ 2, t+ 1 and the (n+ 1)th regime extends to time τ = t− k, t− k − 1, . . ..

104



0 = κ0 < κ1 < κ2 < · · · < κm < κm+1 = k, κm ∈ Z+ and κm is finite. That is, between

t − k = t − κm+1 and the present time t = t − κ0 the AGARCH process contains m structural

breaks and the switch from one set of parameters to another is abrupt:

hτ = ω` + α∗`ε
2
τ−1 + β`hτ−1, (3.2)

for ` = 1, . . . ,m + 1 and τ = t− κ`−1, . . . , t− κ` + 1; where α∗` , α` + γ`S
−
τ−1, with S−τ−1 = 1

if eτ−1 < 0, 0 otherwise.28 As with the AR process we will assume that outside the prediction

horizon there are no breaks. Obviously, the above process nests the simple AGARCH(1, 1)

specification if we assume that the four coefficients are constant.

In what follows we provide a complete characterisation of the main time series properties of this

model. Although in this work we will focus our attention on the AB-AR(2;n)-AGARCH(1, 1;m)

process29 our results can easily be extended to models of higher orders (see Paraskevopoulos et

al., 2013).

3.2.3 Time-varying model

In the current Section we face the non-stationarity of processes with abrupt breaks head on by

employing a time-varying treatment. In particular, we put forward a framework for examining

the AR-AGARCH specification with n and m abrupt breaks in the conditional mean and variance

respectively. We begin by expressing the model as a TV-AR(2)-AGARCH(1, 1) process:

yt = φ0(t) + φ1(t)yt−1 + φ2(t)yt−2 + εt, (3.3)

where for l = 1, . . . , n + 1 and τ = t − kl−1, . . . , t − kl + 1, φi(τ) , φi,l, i = 0, 1, 2, are the

time-varying drift and AR parameters; as before {εt, t ∈ Z} is a sequence of zero mean serially

uncorrelated random variables with positive and finite time-varying variances σ2t ∀ t. Recall that

we have relaxed the assumption of homoscedasticity that is likely to be violated in practice and

28 This type of asymmetry is the so called GJR-GARCH model (named for Glosten et al., 1993). The asymmetric power

ARCH process (see, amongst others, Karanasos and Kim, 2006; Margaronis et al., 2013) is yet another asymmetric

variant. For other asymmetric GARCH models see Francq and Zakoïan (2010, chapter 10) and the references therein.
29 That is an AR(2)-AGARCH(1, 1) model with n and m abrupt breaks in the conditional mean and variance

respectively.
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allow εt to follow a TV-AGARCH(1, 1) type of process:

ht = ω(t) + α∗(t)ε2t−1 + β(t)ht−1, (3.4)

where for ` = 1, . . . ,m + 1 and τ = t − κ`−1, . . . , t − κ` + 1, ω(τ) , ω`, α
∗(τ) ,

α(τ) + γ(τ)S−t−1 , α∗` and β(τ) , β` are the time-varying parameters of the conditional variance

equation.

The TV-AGARCH(1, 1) formulation in eq. (3.4) can readily be seen to have the following

representation

ht = ω(t) + c(t)ht−1 + α∗(t)vt−1, (3.5)

with c(t) , α∗(t) + β(t) = α(t) + γ(t)S−t−1 + β(t) and for ` = 1, . . . ,m + 1 and

τ = t− κ`−1, . . . , t− κ` + 1, c(τ) , c`; the ‘innovation’ of the conditional variance vt = ε2t − ht

is, by construction, an uncorrelated term with expected value 0 and E(v2t ) = σ2vt = κ̃E(h2t ), with

κ̃ = Var(e2t ) = κ(2) − 1. The above equation has the linear structure of a TV-ARMA model

allowing for simple computations of the linear predictions (see Section 3.3.2.1 below).30

Although in the next Section we will focus our attention on the TV-AR(2)-AGARCH(1, 1)

model our results can easily be extended to time-varying models of higher orders (see

Paraskevopoulos et al., 2013).

3.3 Theoretical considerations

The current Section presents some new theoretical findings for time-varying models which also

provide the platform upon which we unify the results we obtain from the different econometric

tools. That is, we put forward a framework for examining AR models with abrupt breaks,

like eq.(3.1), based on a workable closed form solution of stochastic time-varying difference

equations. In other words, we exemplify how our theoretical methodology can be used to

incorporate structural changes, which in this study we view as abrupt breaks. We also explain how

30 As pointed out, amongst others, by Francq and Zakoïan (2010, p. 20) under additional assumptions (implying

the second-order of ht or ε2t ), we can state that if εt follows a TV-AGARCH model then ht or ε2t are TV-ARMA

processes as well.
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we can extend our approach to the AGARCH specification with abrupt breaks in the conditional

variance.

3.3.1 The mean

In the context of eq. (3.3), the second-order homogeneous difference equation with

time-varying coefficients is written as

φ2(t)yt−2 + φ1(t)yt−1 − yt = 0, t ≥ τ + 1 = t− k + 1. (3.6)

The infinite set of equations in the above equation is equivalent to the infinite linear system whose

coefficient matrix is row-finite (row-finite matrices are infinite N× N matrices whose rows have a

finite number of nonzero elements)


φ2(τ + 1) φ1(τ + 1) −1 · · ·

φ2(τ + 2) φ1(τ + 2) −1 · · ·
φ2(τ + 3) φ1(τ + 3) −1 · · ·

...
...

...
...

...
...

...
...
...





yτ−1
yτ
yτ+1
yτ+2
yτ+3
yτ+4
...


=


0
0
0
...

 , (3.7)

(here and in what follows empty spaces in a matrix31 have to be replaced by zeros) or in a compact

form: Φ · y = 0. The equivalence of eqs. (3.6) and (3.7) follows from the fact that for an arbitrary

i in {1, 2, 3, . . .} the ith equation of (3.7), as a result of the multiplication of the ith row of Φ by

the column of ys equated to zero, is equivalent to eq. (3.6), as of time t = τ + i. By deleting the

first column of the Φ matrix and then keeping only the first k rows and columns we obtain the

following square matrix:

31 Matrices and vectors are denoted by upper and lower case boldface symbols, respectively. For square matrices

X = [xij ]i,j=1,...,k ∈ Rk×k using standard notation, det(X) or |X| denotes the determinant of matrixX.
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Φt,k =



φ1(τ + 1) −1
φ2(τ + 2) φ1(τ + 2) −1

φ2(τ + 3) φ1(τ + 3) −1
. . .

. . .
. . .

φ2(t− 1) φ1(t− 1) −1
φ2(t) φ1(t)


(3.8)

(where τ = t− k). Formally Φt,k is a square k × k matrix whose (i, j) entry 1 ≤ i, j ≤ k is given

by

 −1 if i = j − 1, and 2 ≤ j ≤ k,
φ1+d(t− k + i) if d = 0, 1, i = j + d, and 1 ≤ j ≤ k − d,

0 otherwise.

This is a tridiagonal or continuant matrix, that is a matrix that is both upper and lower

Hessenberg matrix. We next define the bivariate function ξ : Z× Z+ 7−→ R by

ξt,k = det(Φt,k) (3.9)

coupled with the initial values ξt,0 = 1 and ξt,−1 = 0. ξt,k for k ≥ 2, is a determinant of a

k × k matrix; each two nonzero diagonals (below the superdiagonal) of this matrix consists of

the time-varying coefficients φi(·), i = 1, 2, from t− k + i to t. That is, the number of elements

of φi(·) in the diagonals below the superdiagonal is k − i + 1. In other words, ξt,k is a k-order

tridiagonal determinant. For the AB-AR(2;n) process, ξt,k is given by

ξt,k = det(Φt,k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1,n+1 −1
φ2,n+1 φ1,n+1 −1

. . .
. . .

. . .

φ2,l φ1,l −1
φ2,l φ1,l −1

. . .
. . .

. . .

φ2,1 φ1,1 −1
φ2,1 φ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.10)

that is, the (i, i− 1) and (i, i) elements in rows i = k− kl−1, . . . , k− (kl − 1), l = 1, . . . , n+ 1, of

the matrix Φt,k are given by φ2,l and φ1,l, respectively.

The general term of the general homogeneous solution of eq. (3.6) with two free constants
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(initial condition values), yt−k and yt−k−1, is given by

yhomt,k = ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1. (3.11)

Similarly, the general particular solution, ypart,k , can be expressed as

ypart,k =

k−1∑
r=0

ξt,rφ0(t− r) +

k−1∑
r=0

ξt,rεt−r. (3.12)

The general solution of eq. (3.3) with free parameters yt−k, yt−k−1 is given by the sum of the

homogeneous solution plus the particular solution:

ygent,k = yhomt,k +ypart,k = ξt,kyt−k+φ2(t−k+1)ξt,k−1yt−k−1+
k−1∑
r=0

ξt,rφ0(t−r)+
k−1∑
r=0

ξt,rεt−r. (3.13)

(see the Appendix and also Paraskevopoulos et al., 2013 and Karanasos et al., 2014a). In the

above expression ygent,k is decomposed into two parts: the yhomt,k part, which is written in terms of

the two free constants (yt−k−i, i = 0, 1); and, the ypart,k part, which contains the time-varying drift

terms (φ0(·)) and the error terms (εs) from time t − k + 1 to time t. When k = 1, since ξt,0 = 1

and ξt,1 = φ1(t), the above expression reduces to eq. (3.3). Notice also that for the model with n

abrupt breaks, we have

k−1∑
r=0

ξt,rφ0(t− r) =
n+1∑
l=1

φ0,l

kl−1∑
r=kl−1

ξt,r and φ2(t− k + 1) = φ2,n+1,

where ξt,r is given in eq. (3.10). The main advantage of our TV model/methodology is that

we suppose that the law of evolution of the parameters is unknown, in particular they may be

stochastic (i.e., we can either have a stationary or non-stationary process) or non stochastic (e.g.,

periodic models serve as an example, see Karanasos et al., 2014a,b). Therefore, no restrictions are

imposed on the functional forms of the time-varying AR parameters. In the non stochastic case

the model allows for (past/known) abrupt breaks.

3.3.1.1 First moments

We turn our attention to a consideration of the time series properties of the TV-AR(2)-

AGARCH(1, 1) process. Let the triplet (Ω, {Ft, t ∈ Z}, P ) denote a complete probability space

with a filtration, {Ft}. Lp stands for the space of P -equivalence classes of finite complex
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random variables with finite p-order. Finally, H = L2(Ω,Ft, P ) stands for a Hilbert space of

random variables with finite first and second moments. Assuming that the drift and the two

AR time-varying coefficients φi(t), i = 0, 1, 2, are non stochastic and taking the conditional

expectation of eq. (3.13) with respect to the σ field Ft−k yields the k-step-ahead optimal (in

L2-sense) linear predictor of yt

E(yt |Ft−k ) =

k−1∑
r=0

ξt,rφ0(t− r) + ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1. (3.14)

In addition, the forecast error for the above k-step-ahead predictor, FE(yt |Ft−k ) =

yt − E[yt |Ft−k ], is given by

FE(yt |Ft−k ) =
k−1∑
r=0

ξt,rεt−r, (3.15)

which is a linear combination of k error terms from time t−k+1 to time t, where the time-varying

coefficients, ξt,r, are (for r ≥ 2) the determinants of an r × r tridiagonal matrix (Φt,r); each

nonzero variable diagonal of this matrix consists of the AR time-varying coefficients φi(·),

i = 1, 2 from time t− r + i to t.

The Assumption below provides conditions that are used to obtain the equivalent of the Wold

decomposition for non-stationary time-varying processes with non stochastic coefficients.

Assumption 1.
∑k

r=0 ξt,rφ0(t − r) as k → ∞ converges for all t and
∑∞

r=0 supt(ξ
2
t,rσ

2
t−r) <

M <∞, M ∈ Z+.

The challenge we face is that in the time-varying models we cannot invert the AR polynomial

due to the presence of time-dependent coefficients. We overcome this difficulty and formulate a

type of time-varying Wold decomposition theorem (see also Singh and Peiris, 1987; Kowalski and

Szynal, 1991).

Under Assumption 1 the model in eq. (3.3) with non stochastic coefficients admits a

second-order MA(∞) representation:

yt
L2= lim

k→∞
ypart,k

L2=
∞∑
r=0

ξt,r[φ0(t− r) + εt−r], (3.16)
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which is a unique solution of the TV-AR(2)-AGARCH(1, 1) model (3.3). In other words

yt is decomposed into a non random part and a zero mean random part. In particular, the

time-dependent first moment:

E(yt) = lim
k→∞

E(yt |Ft−k ) =

∞∑
r=0

ξt,rφ0(t− r) (3.17)

is the non random part of yt while limk→∞ FE(yt |Ft−k ) =
∑∞

r=0 ξt,rεt−r is the zero mean random

part.

The time-varying expected value of yt is an infinite sum of the time-varying drifts where the

time-varying coefficients are expressed as determinants of continuant matrices (the ξs).

3.3.1.2 Second moments

The current Section and Section 3.3.2.1 below discusses the second-order properties of the

TV-AR(2)-AGARCH(1, 1) model. Next we state the results for the second moment structure.32

The mean square error

Var[FE(yt |Ft−k )] =
k−1∑
r=0

ξ2t,rσ
2
t−r (3.18)

is a linear combination of k variances from time t− k+ 1 to time t, with time-varying coefficients

(the squared ξs).

Moreover, under Assumption 1 the second time-varying unconditional moment of yt exists and

it is given by

E(y2t ) = [E(yt)]
2 +

∞∑
r=0

ξ2t,rσ
2
t−r, (3.19)

which is an infinite sum of the time-varying unconditional variances of the errors, σ2t−r, (see

Section 3.3.2.1 below) with time-varying ‘coefficients’ or weights (the squared values of the ξs).

In addition, the time-varying autocovariance function γt,k is given by

γt,k = Cov(yt, yt−k) =

∞∑
r=0

ξt,k+rξt−k,rσ
2
t−k−r (3.20)

= ξt,kVar(yt−k) + φ2(t− k + 1)ξt,k−1Cov(yt−k, yt−k−1),

32 Estimating the time-varying parameters of forecasting models is beyond the scope of this study (see Elliott and

Timmermann, 2008, for an excellent survey on forecasting methodologies available to the applied economist).
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where the second equality follows from the MA(∞) representation of yt in eq. (3.16) and the third

one from the general solution in eq. (3.13) and

Cov(yt−k, yt−k−1) =

∞∑
r=0

ξt−k,r+1ξt−k−1,rσ
2
t−k−1−r.

For any fixed t, limk→∞ γt,k → 0 when limk→∞ ξt,k = 0 ∀ t. For the process with n abrupt

breaks in eq. (3.1) ξt,k is given by eq. (3.10).

Panel A: AR(1) Model; 3 Breaks at: t− 5, t− 10 and t− 15;

Cor(yt, yt−j), j = 1, . . . , 19 Cor(yt, yt−j), j = 1, . . . , 19

Panel B: AR(1) Model; 3 Breaks at: t− 100, t− 120 and t− 140;

Cor(yt−i, yt−i−1), i = 80, . . . , 150 Cor(yt−i, yt−i−1), i = 80, . . . , 150

Panel C: AR(1) Model; 3 Breaks at: t− 100, t− 121 and t− 142;

Cor(yt−i, yt−i−7), i = 79, . . . , 149 Cor(yt−i, yt−i−7), i = 79, . . . , 149

Figure 3.1: Time-varying Autocorrelations
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As an illustrative example Figure 3.1 shows the autocorrelations (ACR) of an AR(1) model with

three breaks and homoscedastic/independent innovations. The left graph in Panel B shows the

first order ACR, Cor(yt−i, yt−i−1), for an AR(1) model with three breaks at times t− k1(= 100),

t − k2(= 120) and t − k3(= 140) and autoregressive coefficients φ1,1 = 0.98, φ1,2 = 0.80,

φ1,3 = 0.70 and φ1,4 = 0.90. The first part of the graph shows the ACR when i < k1 = 100, that

is, when yt−i is after all three breaks: t − i > t − k1 (the construction of the autocorrelations is

based on eq. (3.20)). As i increases, that is, as we are going back in time, the first order ACR

decrease at an increasing rate. The second part of the graph shows the ACR when k1 ≤ i ≤ k2−1,

that is, when yt−i is between the first and the second break. The third part of the graph shows the

ACR when k2 ≤ i ≤ k3 − 1. The ACR increase since after the third break the autoregressive

coefficient increases from 0.70 to 0.90. Finally, for i ≥ k3, the first order ACR are not affected

by the three breaks and therefore are equal to φ1,4 = 0.90, whereas when i → −∞, the ACR

converge to φ1,1 = 0.98.

Moreover, the right graph in Panel C shows the seventh order ACR (yt−i, yt−i−7) for an AR(1)

model with three breaks at times t− k1(= 100), t− k2(= 121) and t− k3(= 142), autoregressive

coefficients φ1,1 = 0.60, φ1,2 = 1.20, φ1,3 = 0.80 and φ1,4 = 0.92 and homoscedastic/independent

innovations. The second part of the graph shows the ACR when i ≤ k1−1 and k1+1 ≤ i+7 ≤ k2.

The fourth part of the graph shows the ACR when k1 ≤ i ≤ k2 − 1 and k2 + 1 ≤ i+ 7 ≤ k3. The

sixth part of the graph shows the ACR when k2 ≤ i ≤ k3 − 1 and k3 + 1 ≤ i + 7. Notice that

when i ≤ k1 − 1 or k2 ≤ i ≤ k3 − 1 the seventh order ACR increase with i whereas when k1

≤ i ≤ k2 − 1 they decrease as i increases. Finally, for i ≥ k3, the ACR are equal to φ71,4 = 0.56,

whereas when i→ −∞, the ACR converge to φ71,1 = 0.03.

3.3.2 The conditional variance

In order to simplify the description of the analysis of this Section we will introduce the
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following notation. As before t represents the present time and k the prediction horizon. We

define the bivariate function ς : Z× Z+ 7−→ R by

ς t,k =
∏k−1

j=0
c(t− j), (3.21)

coupled with the initial values ς t,0 = 1 and ς t,−1 = 0 where c(·) has been defined above (see eq.

(3.5)). In other words ς t,1 = c(t) and ς t,k for k ≥ 2 is a product of k terms which consist of the

time-varying coefficients c(·) from time t − k + 1 to time t. For the GARCH process with m

abrupt breaks in eq. (3.2) we have

ς t,k =
∏m

`=0
c
κ`+1−κ`
`+1 . (3.22)

Next, we define

gt,r+1 = ς t,rα
∗(t− r), r ≥ 0, (3.23)

where α∗(t) has been defined in eq. (3.4). Notice that when r = 0, gt,1 = α∗(t), since ς t,0 = 1.

Since the TV-AGARCH(1, 1) model can be interpreted as a ‘TV-ARMA(1, 1)’ process, it

follows directly from the results in Section 3.3.1 that the general solution of eq. (3.5) with free

constant (initial condition value) ht−k, is given by

hgent,k = hhomt,k + hpart,k = ς t,kht−k +
k−1∑
r=0

ς t,rω(t− r) +
k∑
r=1

gt,rvt−r, (3.24)

where ς t,r and gt,r have been defined in eqs. (3.21) and (3.23) respectively. In the above expression

hgent is decomposed into two parts: the hhomt,k part, which is written in terms of the free constant

(ht−k); and the hpart,k part, which contains the time-varying drift terms, ω(·) and the uncorrelated

terms (vs). Notice that in eq. (3.24) hgent,k is expressed in terms of diagonal determinants (the ς s and

therefore the gs).

Next consider the case of a GARCH(1, 1) model with constant coefficients. Since for this

model α(t) , a and c(t) , c , α+ b, for all t, then ς t,k reduces to ck and gt,k becomes ck−1a, for

k ∈ Z+ (see, for example, Karanasos, 1999).
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3.3.2.1 Time-varying unconditional variances

In this Section in order to provide a thorough description of the TV-AGARCH(1, 1) process

given by eq. (3.4) we derive, first its multistep ahead predictor, the associated forecast error and

the mean square error and, second, the first unconditional moment of this process.

The k-step-ahead predictor of ht, E(ht |Ft−k−1 ), is readily seen to be33

E(ht |Ft−k−1 ) =

k−1∑
r=0

ς t,rω(t− r) + ς t,kht−k, (3.25)

where, for r ≥ 1, ς t,r = E(ς t,r).34 In addition, the forecast error for the above k-step-ahead

predictor (for the symmetric case), FE(ht |Ft−k−1 ), is given by

FE(ht |Ft−k−1 ) =
k∑
r=1

gt,rvt−r. (3.26)

Notice that this predictor is expressed in terms of k uncorrelated terms (the vs) from time t− k

to time t− 1, where the ‘coefficients’ have the form of diagonal determinants (the ς s). The mean

square error is given by

Var(ht |Ft−k−1 ) = Var[FE(ht |Ft−k−1 )] = κ̃
k∑
r=1

g2t,rE(h2t−r). (3.27)

This is expressed in terms of k second moments, E(h2t−r), from time t − k to time t − 1, where

the coefficients are the expectations of the squared coefficients of the multistep ahead predictor

multiplied by κ̃. Moreover, the definition of the uncorrelated term vt implies that E(ε2t |Ft−k−1 ) =

E(ht |Ft−k−1 ), FE(ε2t |Ft−k−1 ) = vt + FE(ht |Ft−k−1 ). The associated mean squared error is

given by Var[FE(ε2t |Ft−k−1 )] = κ̃E(h2t ) + Var[FE(ht |Ft−k−1 )] = κ̃
∑k

r=0 g
2
t,rE(h2t−r).

Next to obtain the first unconditional moment of ht, for all t, we impose the conditions that:∑k
r=0 ς t,rω(t− r) as k →∞ is positive and converges and

κ̃
∑∞

r=1
supt[g

2
t,rE(h2t−r)] < M <∞, M ∈ Z+, (3.28)

33 For the issue of temporal aggregation and a discussion of the wider class of weak GARCH processes see Bollerslev

and Ghysels (1996) and Ghysels and Osborn (2001, pp. 195-197).

34 E(ςt,r) = E[
∏r−1

j=0
c(t− j)] =

∏r−1

j=0
c(t− j) with c(t) , E[c(t)] = α(t) + β(t) + γ(t)

2 . For the process with m

abrupt breaks: E(ςt,r) =
∏m

`=0
c
κ`+1−κ`
`+1 .
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where g2t,r = E(g2t,r) for r ≥ 135. This guarantees that, for all t, the model in eq. (3.5) admits the

second-order MA(∞) representation:

hgent,∞ = lim
k→∞

hpart,k

L2=

∞∑
r=0

ς t,rω(t− r) +
∞∑
r=1

gt,rvt−r, (3.29)

which is a unique solution of the TV-AGARCH(1, 1) model in eq. (3.4). The above result states

that {hpart,k , t ∈ Z+} (defined in eq. (3.24)) L2 converges as k →∞ if and only if
∑k

r=0 ς t,rω(t−r)

as k → ∞ converges and
∑k

r=1 gt,rvt−r converges a.s. and thus under the aforementioned

conditions hgent,∞
L2= limk→∞ h

par
t,k satisfies eq. (3.24).

Moreover, the first time-varying unconditional moment of ht, E(ht) = σ2t , is the limit of the

(k + 1)-step-ahead predictor of ht, E(ht |Ft−k−1 ), as k →∞:

E(ht) = lim
k→∞

E(ht |Ft−k−1 ) =
∞∑
r=0

ς t,rω(t− r). (3.30)

Notice of course that the first moment is time-varying. The expected value of the conditional

variance, that is the unconditional variance of the error, is an infinite sum of the time-varying drifts

where the coefficients (the ς s) are expressed as expectations of diagonal determinants. Finally, for

the process with m abrupt breaks in eq. (3.2), for i ≤ κ1 we have (if and only if cm+1 < 1):

E(ht−i) =
1− cκ1−i1

1− c1
ω1 +

m∑
`=2

c̃`
1− cκ`−κ`−1`

1− c
`

ω
`

+ c̃m+1
1

1− cm+1
ωm+1 , (3.31)

with

c̃` = cκ1−i1

∏`−1

j=2
(c
κj−κj−1
j ),

where we use the convention
∏j

r=i
(·) = 1 for j < i and the ωs and the cs are defined in eqs.

(3.4) and (3.5) respectively. Notice that if and only if c1 < 1 the above expression as i → −∞

becomes: E(ht−i) = ω1
1−c1 since c̃` = cκ1−i1 = 0 for all `. Finally, when i > κm, that is when we

are before all the breaks, then if and only if cm+1 < 1: E(ht−i) = ωm+1
1−cm+1 .

3.4 Methodology and data

This Section outlines the methodology we have employed to study the different properties of

35 E(g2t,r+1) = E(ς2t,r)[α2(t − r) + γ2(t − r)/2 + α(t − r)γ(t − r)] and, for r ≥ 1, E(ς2t,r) =
∏r−1

j=0
E[c2(t − j)],

with E[c2(t)] = [α(t) + β(t)]2 + γ2(t)/2 + [α(t) + β(t)]γ(t).
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the stochastic processes around the 2007-08 crisis and offers an overview of the data employed.

First, we describe the univariate models we have estimated. Then we describe the break

identification method which we have adopted. Finally, we provide a brief discussion of our data.

3.4.1 Univariate modelling

Let stock returns be denoted by rt = (log pt− log pt−1)× 100, where pt is the stock price index

and define its mean equation as:

rt = µ+ φ1rt−1 + φ2rt−2 + εt, (3.32)

where εt | Ft−1 ∼ N(0, ht), that is the innovation is conditionally normal with zero mean

and variance ht.
36 Next, the dynamic structure of the conditional variance is specified as an

AGARCH(1, 1) process of Glosten et al. (1993) (the asymmetric power ARCH could also be

employed, as in Karanasos and Kim, 2006). In order to examine the impact of the breaks on the

persistence of the conditional variances, the following equation is specified as follows:

ht = ω +
7∑
i=1

ωiDi + αε2t−1 +
7∑
i=1

αiDiε
2
t−1 + γS−t−1ε

2
t−1 +

7∑
i=1

γiDiS
−
t−1ε

2
t−1

+βht−1 +
7∑
i=1

βiDiht−1, (3.33)

where S−t−1 = 1 if et−1 < 0 and 0 otherwise. Note that failure to reject H0 : γ = 0 and γi = 0,

i = 1, . . . , 7, implies that the conditional variance follows a symmetric GARCH(1, 1) process.

Furthermore, the second order conditions require that c < 1 and c +

7∑
i=1

ci < 1.37 The breakdates

i = 1, ...., 7 are given in Table 3.1 and Di are dummy variables defined as 0 in the period before

each break and one after the break.38 We also consider a simple GARCH(1, 1) model which allows

36 Since mainly structural breaks in the variance are found statistically significant (see Section 3.5.1 below) we do not

include any dummies in the mean. Moreover, low order AR specifications capture the serial correlation in stock

returns.
37 c , α+ β + γ

2 and ci , αi + βi + γi/2.
38 The relation between the parameters in eq. (3.33) and the ones in eq. (3.2) is given by, i.e., for the ωs:

ω +
∑m+1−`

i=1
ωi = ω`, ` = 1, . . . ,m+ 1, where the ωs in the right hand side are the ones in eq. (3.2).
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the dynamics of the conditional variances to switch across positive and negative stock returns.

This is given by

ht = ω + ω−D−t−1 + αε2t−1 + α−D−t−1ε
2
t−1 + βht−1 + β−D−t−1ht−1. (3.34)

where D−t−1 = 1 if rt−1 < 0, 0 otherwise.39 This is an example of a TV-AGARCH model with

stochastic coefficients.

3.4.2 Data and breaks overview

We use daily data that span the period 1/1/1988 - 30/6/2010 for the stock market indices,

obtained from Thomson DataStream (same as in Chapter 2). To account for the possibility of

breaks in the mean and/or volatility dynamics we use a set of non-parametric data-driven methods

to identify the number and timing of the potential structural breaks. In particular, we adopt the

two-stage Nominating-Awarding procedure of Karoglou (2010) to identify breaks that might

be associated either to structural changes in the mean and/or volatility dynamics or to latent

non-linearities that may manifest themselves as dramatic changes in the mean and/or volatility

dynamics and might bias our analysis.40 Alternatively, we could choose the break points by

employing the methodologies in Kim and Kon (1999), Bai and Perron (2003a) and Lavielle and

Moulines (2000) (see, for example, Karanasos and Kartsaklas, 2009 and Campos et al., 2012).

3.5 Empirical analysis

This Section presents the empirical results we obtain from the different econometric tools.

First, we present the breaks that we have identified and discuss the possible economic events

that may be associated with them. Then we focus on the stock market returns and condition our

analysis based on these breaks to discuss first the findings from the univariate modelling and then

from the bivariate one (presented in Section 3.6).

39 We estimate another specification with α+D+
t−1, β

+D+
t−1, and ω+D+

t−1, instead of α−D−
t−1, β

−D−
t−1, and ω−D−

t−1,

where D+
t−1 = 1 if rt−1 > 0, 0 otherwise. The results (not reported) are very similar.

40 The details of the two stages in the Nominating-Awarding procedure and a summary of the statistical properties of

stock market returns are presented in the second Chapter.
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3.5.1 Estimated breaks

After applying the Nominating-Awarding procedure on stock market returns we find that the

stochastic behaviour of all indices yields about three to seven breaks during the sample period,

roughly one every two to four years on average. The predominant feature of the underlying

segments is that mainly changes in variance are found statistically significant. Finally, there

are several breakdates that are either identical in all series or very close to one another, which

apparently signify economic events with a global impact.

It appears that dates for the extraordinary events of the Asian financial crisis of 1997, the

Global financial crisis of 2007–08 and the European sovereign-debt crisis that followed are clearly

identified in all stock return series and with very little or no variability (see Table 3.1). Other less

spectacular events, such as the Russian financial crisis of 1998 or the Japanese asset price bubble

of 1986-1991 or the UK’s withdrawal from the European Exchange Rate Mechanism (ERM), can

also be associated with the breakdates that have been identified in some series.41

Table 3.1: The break points (Stock Returns)

Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
1 27/03/97 05/11/96 17/03/97 27/08/91 22/10/92 24/10/01 21/02/90 26/08/91

2 04/09/08 15/01/08 31/07/98 21/07/97 13/07/98 27/07/07 04/01/08 28/08/97

3 31/03/09 02/04/09 15/01/08 17/06/03 24/07/07 05/05/09 03/04/09 06/06/00

4 16/07/09 19/08/09 03/04/09 15/01/08 06/04/09 01/12/09 26/07/07

5 27/04/10 27/04/10 03/04/09 27/04/10 28/05/09

6 25/08/09

7 28/04/10

Notes: The dates in bold indicate breakdates for which, in the univariate estimation (see Table 3.2), at least one

dummy variable is significant, i.e, for the S&P index for the 04/09/08 breakdate β2 andγ2 are significant. The

underlined dates indicate breakdates for which, in the bivariate estimation (see Tables 3.6 and 3.8), at least one

dummy variable is significant, i.e., for the NIKKEI-HS bivariate model, for the 01/12/09 breakdateα412 is significant.

3.5.2 Univariate results

The quasi-maximum likelihood estimates of the AGARCH(1, 1) model allowing the drifts (the

ωs) as well as the ‘dynamics of the conditional variance’ (the αs, βs and γs) to switch across the

41 A detailed account of the possible associations that can be drawn between each breakdate for stock returns and a

major economic event that took place at or around the breakdate period either in the world or in each respective

economy is presented in the second Chapter, as is a summary of the descriptive statistics of each segment.
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considered breaks, as in eq. (3.33), are reported in Table 3.2. The estimated models are shown to

be well-specified: there is no linear or nonlinear dependence in the residuals in all cases, at the

5% level. Note that the insignificant parameters are excluded. The impact of the breaks on the

ω is insignificant in all eight cases. However, there exists a significant impact of the breaks on

the ‘dynamic structure of the conditional variance’ for all stock returns (irrespective of whether a

symmetric GARCH(1, 1) or an AGARCH (1, 1) model is considered). More specifically, while

the ARCH parameter shows time-varying features across a single break in the cases of S&P and

DAX, for CAC and Hang Seng it is shifted across two breaks and for STRAITS it is shifted across

three breaks (see the αi coefficients). With regard to the GARCH parameter, CAC and NIKKEI

show time-varying parameters for only one break, but S&P, TSE and FTSE across two breaks.

Furthermore, the GARCH parameter shows a time-varying pattern across three breaks in the case

of DAX and across five breaks in the case of STRAITS.
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Table 3.2: The estimated univariate AGARCH (1,1) allowing for breaks in the variance

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

µ 0.012
(0.004)

a 0.011
(0.003)

a 0.010
(0.006)

c 0.019
(0.005)

a 0.009
(0.004)

b 0.019
(0.005)

a 0.006
(0.005)

0.010
(0.005)

b

φ1 0.129
(0.013)

a 0.079
(0.014)

a 0.124
(0.016)

a

ω 0.001
(0.0002)

c 0.003
(0.0007)

a 0.005
(0.0004)

a 0.011
(0.0006)

a 0.002
(0.0003)

a 0.015
(0.003)

a 0.007
(0.001)

a 0.018
(0.004)

a

α 0.018
(0.006)

a 0.012
(0.007)

c 0.006
(0.003)

b 0.031
(0.006)

a 0.013
(0.004)

a 0.039
(0.007)

a 0.019
(0.005)

a 0.018
(0.010)

c

α1 −0.039
(0.008)

a −0.050
(0.011)

a 0.059
(0.013)

a

α2 0.011
(0.006)

c 0.068
(0.014)

a

α3 −0.044
(0.016)

a −0.050
(0.011)

a

β 0.954
(0.002)

a 0.906
(0.016)

a 0.936
(0.003)

a 0.861
(0.002)

a 0.952
(0.001)

a 0.866
(0.013)

a 0.820
(0.026)

a 0.854
(0.011)

a

β1 −0.019
(0.002)

a 0.081
(0.021)

a −0.112
(0.029)

a

β2 −0.048
(0.009)

a −0.031
(0.003)

a 0.029
(0.007)

a −0.019
(0.006)

a 0.115
(0.029)

a

β3 0.039
(0.015)

a 0.017
(0.009)

c −0.029
(0.012)

b −0.076
(0.018)

a

β4 −0.025
(0.013)

c 0.038
(0.006)

a 0.137
(0.029)

a

γ 0.023
(0.012)

c 0.028
(0.009)

a 0.056
(0.004)

a 0.117
(0.023)

a 0.029
(0.006)

a 0.130
(0.021)

a 0.117
(0.013)

a 0.105
(0.017)

a

γ1 0.092
(0.014)

a 0.097
(0.023)

a 0.035
(0.007)

a 0.028
(0.005)

a

γ2 0.113
(0.027)

a 0.019
(0.009)

b 0.055
(0.016)

a

γ3 −0.094
(0.029)

a 0.117
(0.038)

a 0.075
(0.043)

c 0.026
(0.012)

b

LogL −2921.3 −1837.5 −4374.3 −4469.8 −2904.1 −5231.4 −4764.1 −3957.7
LB(5) 8.343

[0.138]
2.316
[0.128]

10.870
[0.054]

5.170
[0.395]

9.745
[0.082]

2.928
[0.231]

2.555
[0.768]

3.303
[0.069]

LB2(5) 1.947
[0.856]

0.759
[0.979]

3.953
[0.556]

5.524
[0.354]

4.192
[0.522]

4.105
[0.534]

8.992
[0.109]

1.635
[0.897]

Notes: Robust-standard errors are used in parentheses.LB(5) andLB2(5) are Ljung-Box tests for serial correlations

of five lags on the standardised and squared standardised residuals, respectively (p-values reported in brackets).

Insignificant parameters are excluded.
a

,
b

and
c

indicate significance at the 1%, 5% and 10% levels, respectively. For

the Hang Seng indexφ3 and γ4 are significant and for the STRAITS indexα4, α6, β6, γ5 and γ6 are also significant.

Interestingly, the asymmetry parameter also displays significant time-variation over the

considered breaks. Specifically, the TSE, DAX and Hang Seng cases are significantly shifted for

one break, whereas S&P, CAC and FTSE show a time-varying pattern across three breaks and

STRAITS for two breaks (see the γi coefficients in Table 3.2). Furthermore, the results are shown

to be robust by considering the dynamics of a GARCH(1, 1) process to switch across positive

and negative stock returns (see Table 3.3). Clearly, the ARCH and GARCH parameters show

time-dependence across positive and negative returns in all cases (see the α− and β− coefficients).
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Table 3.3: The estimated univariate GARCH (1, 1) models allowing for different persistence across

positive and negative returns: ht = ω + ω−D−t−1 + αε2t−1 + α−D−t−1ε
2
t−1 + βht−1 + β−D−t−1ht−1

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

µ 0.036
(0.005)

a 0.023
(0.004)

a 0.044
(0.007)

a 0.054
(0.008)

a 0.032
(0.004)

a 0.051
(0.007)

a 0.034
(0.007)

a 0.027
(0.004)

a

φ1 0.114
(0.012)

a 0.069
(0.013)

a 0.112
(0.011)

a

ω 0.002
(0.0008)

a 0.002
(0.0006)

a 0.007
(0.001)

a 0.008
(0.002)

a 0.002
(0.0005)

a 0.009
(0.002)

a 0.004
(0.0008)

a 0.006
(0.002)

a

α 0.054
(0.005)

a 0.062
(0.012)

a 0.070
(0.008)

a 0.091
(0.018)

a 0.066
(0.006)

a 0.088
(0.011)

a 0.065
(0.008)

a 0.051
(0.015)

a

α− 0.033c
(0.017)

0.033c
(0.020)

0.025c
(0.015)

0.104
(0.021)

a

β 0.837
(0.023)

a 0.861
(0.027)

a 0.822
(0.023)

a 0.779
(0.039)

a 0.832
(0.014)

a 0.815
(0.025)

a 0.842
(0.016)

a 0.883
(0.023)

a

β− 0.208
(0.034)

a 0.106a
(0.024)

0.181a
(0.029)

0.233
(0.043)

a 0.187
(0.023)

a 0.141a
(0.037)

0.157
(0.027)

a

LogL −2941.2 −1865.7 −4388.4 −4478.8 −2903.4 −5260.7 −4799.1 −4048.6
LB(5) 9.526

[0.089]
1.674
[0.195]

3.256
[0.071]

4.464
[0.484]

8.031
[0.154]

4.521
[0.104]

2.180
[0.823]

3.650
[0.056]

LB2(5) 2.398
[0.791]

0.573
[0.989]

4.237
[0.515]

5.340
[0.375]

5.428
[0.365]

4.998
[0.416]

8.430
[0.134]

2.385
[0.793]

Notes: See notes of Table 3.2. Theφ3 coefficient was significant for the CAC and Hang Seng indices.

Overall, Table 3.4 shows that the persistence of the conditional variances of stock returns

varies over the considered breaks in all cases by considering the AGARCH (1, 1) models. The

persistence is measured by c` = α` + β` + γ`/2, ` = 1, . . . ,m + 1 (these are the cs used in eq.

(3.31) as well) and, for example,β` = β +
∑m+1−`

i=1
βi︸ ︷︷ ︸

Eq. (3.33)

.
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Table 3.4: The persistence of the AGARCH (1,1) models

Panel A: The persistence of the standard AGARCH (1,1) models

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990

Panel B: The persistence of the AGARCH (1,1) models allowing for breaks in the variance

Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
0 (c4 =)0.983 0.932 0.970 (c4 =)0.950 0.979 0.970 0.897 0.924
1 (c3 =)0.990 0.980 0.987 0.974 0.920 0.978 0.871
2 (c2 =)0.998 0.976 (c3 =)0.979 0.982 0.988 0.986
3 (c1 =)0.990 0.997 0.990 (c2 =)0.937 0.995 0.910
4 0.972 (c1 =)0.976 0.945 0.974
5 0.948
6 0.884

Notes: Break 0 covers the period preceding all breaks, while break 1 covers the period between break

1 and 2 and break 2 covers the period between break 2 and 3 and so on (see Table 3.1 for the dates of the

breaks). When the value of the persistence is left blank for a break, it indicates that such persistence

has not changed during the period covered by such a break. The persistence is measured by

c` = α` + β` + γ`/2, ` = 1, . . . ,m+ 1 and, for example,β` = β +
∑m+1−`

i=1
βi︸ ︷︷ ︸

Eq. (3.33)

. That is cm+1

is the persistence before all breaks and c1 is the persistence after all the breaks.

The cases which are shown to have been impacted strongly by the breaks are those of TSE,

DAX, Hang Seng, NIKKEI and STRAITS. In particular, the persistence of the conditional

variance of TSE increases from 0.93 to 0.98 after the break in 1996, remains 0.98 during the

recent financial crisis and then increases to near unity after the European sovereign-debt crisis.

With regard to the persistence of the conditional variance of DAX, it appears to be unaffected by

German reunification, its highest value is 0.98 during the Asian financial crisis, its lowest value is

0.94 after the break associated with the announcement of the €18bn tax cuts plan in Germany

(17/06/03), it increases to 0.97 on the onset of the recent financial crisis and it remains there

during the sovereign-debt crisis. The results also suggest that the persistence of the conditional

variance of Hang Seng declines from 0.97 to 0.92 (its lowest value) after the savings deposits

were removed in July 2001, it increases to 0.99 during the recent financial crisis in 2007/2008 and

finally it declines to 0.94 after the European sovereign-debt crisis. Furthermore, the corresponding

persistence of STRAITS increases from 0.87 to near unity (0.99) after the Asian financial crisis.
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However, such persistence declines after the break in June 2000 to 0.91, remains the same through

the unexpected economic recession in Singapore in 2001 before bounding back to 0.97 at the

onset of the Global financial crisis and then exhibits a sharp decline to 0.88 during the European

sovereign-debt crisis. Surprisingly, the persistence of the conditional variance of NIKKEI

increases from 0.90 to approximately 0.98 during the asset price bubble in Japan over the period

1986-1991 and remains unaffected afterwards. For example, the impact of the Asian financial

crisis as well as that of the recent financial crisis are shown to be limited, which may be due to the

fact that Japan has been immune to such crises.

The persistence of the conditional variances by allowing the GARCH (1, 1) process to switch

across positive and negative returns also shows a time-varying pattern (see Table 3.5). In

particular, it is shown that the persistence of the conditional variances stemming from positive

returns is lower than those of the negative counterparts. More specifically, positive returns are

shown to lower the persistence of the conditional variances in most of the cases to around 0.90

whereas the persistence of the negative returns is close to unity (0.99).

Table 3.5: The persistence of the GARCH (1,1) allowing for different persistence

across positive and negative returns

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS
r 0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990
r+ 0.891 0.923 0.892 0.870 0.898 0.903 0.907 0.934
r− 0.995 0.992 0.982 0.986 0.991 0.990 0.998 0.986
Notes: r denotes the persistence generated from returns, that is from the standard AGARCH

model whilst r+(r−) corresponds to the persistence generated from positive (negative) returns.
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Figure 3.2. Unconditional Variances (Stock Returns)

AGARCH(1, 1) model allowing for abrupt breaks in the variance

Figure 3.2 shows the estimated time-varying unconditional variances for the eight stock index
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returns. For the S&P the first part of the graph shows the unconditional variances when i < k1,

that is, when ht−i is after all three breaks (t − k3(=03/97), t − k2(=09/08) and t − k1(=03/09))

(we construct the time-varying unconditional variances using the formula in eq. (3.31)). When

i → −∞, the unconditional variances converge to ω/(1 − c1) = 0.001/(1 − 0.990) = 0.100.

As i increases, that is, as we are going back in time, the unconditional variances increase

at an increasing rate. The second part of the graph shows the unconditional variances when

k1 ≤ i ≤ k2 − 1, that is, when ht−i is between the first and the second break. Higher values of

i are associated with lower unconditional variances. When i = k1, the unconditional variance

is [(1 − ck2−k12 )/(1 − c2) + ck2−k12 (1 − ck3−k23 )/(1 − c3) + ck2−k12 ck3−k23 /(1 − c4)]ω = 0.228

(see eq. (3.31) and the cs in the first column of Table 3.4). The third part of the graph shows

the unconditional variances when k2 ≤ i ≤ k3 − 1. When i = k2, the unconditional variance

is [(1 − ck3−k23 )/(1 − c3) + ck3−k23 /(1 − c4)]ω = 0.105. Finally, for i ≥ k3, the unconditional

variances are not affected by the three breaks and therefore are equal to ω/(1− c4) = 0.061.

Similarly, for the DAX the first part of the graph shows the unconditional variances when

i < k1, that is, when ht−i is after all three breaks (t−k3(=07/97), t−k2(=06/03) and t−k3(=01/08)).

When i→ −∞, the unconditional variances converge to ω/(1−c1) = 0.011/(1−0.976) = 0.458.

As i increases, that is, as we are going back in time, the unconditional variances decrease at

an increasing rate. The second part of the graph shows the unconditional variances when

k1 ≤ i ≤ k2 − 1 (E(ht−k1) = 0.177). Higher values of i are associated with higher unconditional

variances. The third part of the graph shows the unconditional variances when k2 ≤ i ≤ k3 − 1.

They are decreasing with i. Finally, for i ≥ k3, the unconditional variances are not affected by the

three breaks and therefore are equal to ω/(1− c4) = 0.222.

For the NIKKEI the first part of the graph shows the unconditional variances when i < k1,

that is, when ht−i is after the only break (t − k1(=02/90)). When i → −∞, the unconditional
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variances converge to ω/(1 − c1) = 0.326. As i increases the unconditional variances decrease

at an increasing rate. In addition, for i ≥ k1, the unconditional variances are not affected by the

break and therefore are equal to ω/(1− c2) = 0.068.

Finally, STRAITS exhibits the highest number of breaks, that is six. The first part of the

graph shows the unconditional variances when i < k1, that is, when ht−i is after all six breaks

(t− k6(=08/91), t− k5(=08/97), t− k4(=06/00), t− k3(=07/07), t− k2(=05/09), t− k1(=08/09)).

As i increases, that is, as we are going back in time, the unconditional variances increase at an

increasing rate. When i → −∞, the unconditional variances converge to ω/(1 − c1) = 0.157.

The second part of the graph shows the unconditional variances when k1 ≤ i ≤ k2 − 1. Higher

values of i are associated with higher unconditional variances. The third part of the graph shows

the unconditional variances when k2 ≤ i ≤ k3 − 1. They are decreasing with i. For the fourth and

sixth part the unconditional variances increase with i whereas for the fifth part they decrease with

i. Finally, for i ≥ k6, the unconditional variances are not affected by the six breaks and therefore

are equal to ω/(1− c7) = 0.238.

3.6 Bivariate models

In this Section we use a bivariate extension of the univariate formulation of Section 3.4.1 In

particular, we use a bivariate model to simultaneously estimate the conditional means, variances

and covariances of stock returns. Let yt = (y1,t, y2,t)
′ represent the 2 × 1 vector with the two

returns. Ft−1 = σ(yt−1,yt−2, . . .) is the filtration generated by the information available up

through time t− 1. We estimate the following bivariate AR(2)-AGARCH(1, 1) model

yt = µ+ Φ1yt−1 + Φ2yt−2 + εt, (3.35)

where µ = [µi]i=1,2 is a 2 × 1 vector of drifts and Φl = [φ
(l)
ij ]i,j=1,2, l = 1, 2, is a 2 × 2 matrix

of autoregressive parameters. We assume that the roots of
∣∣I−∑2

l=1 ΦlL
l
∣∣ (where I is the 2× 2

identity matrix) lie outside the unit circle.
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Let ht = (h1,t,h2,t)
′ denote the 2 × 1 vector of Ft−1 measurable conditional variances. The

residual vector is defined as εt = (ε1,t,ε2,t)
′ = [et � q

∧−1/2
t ] � h

∧1/2
t , where the symbols � and

∧ denote the Hadamard product and the elementwise exponentiation respectively. The stochastic

vector et = (e1,t,e2,t)
′ is assumed to be independently and identically distributed (i.i.d.) with

mean zero, conditional variance vector qt = (q11,t, q22,t)
′ and 2× 2 conditional correlation matrix

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2 with diagonal elements equal to one and off-diagonal

elements absolutely less than one. A typical element of Rt takes the form ρij,t = qij,t /
√
qii,t qjj,t

for i, j = 1, 2. The conditional covariance matrix Qt = [qij,t ]i,j=1,2 is specified as in Engle (2002a)

Qt = (1− αD − βD)Q̄+ αDet−1e
′
t−1 + βDQt−1, (3.36)

where Q̄ is the unconditional covariance matrix of et and αD and βD are non-negative scalars

fulfilling αD + βD < 1.

Following Conrad and Karanasos (2010) and Rittler (2012), we impose the UEDCC-

AGARCH(1, 1) structure on the conditional variances (multivariate fractionally integrated

APARCH models could also be used, as in Conrad et al., 2011 or Karanasos et al., 2014) and we

also amend it by allowing the shock and volatility spillovers parameters to be time-varying:

ht = ω + A∗ε∧2t−1 +

n∑
l=1

AlDlε
∧2
t−1 + Bht−1 +

n∑
l=1

BlDlht−1, (3.37)

where ω = [ωi]i=1,2, A = [αij]i,j=1,2, B = [βij]i,j=1,2; Al, l = 1, . . . , n (and n = 0, 1, . . . , 7)

is a cross diagonal matrix with nonzero elements αlij , i, j = 1, 2, i 6= j and Bl, is a cross

diagonal matrix with nonzero elements βlij , i, j = 1, 2, i 6= j; A∗ = A + ΓSt−1, Γ is a diagonal

matrix with elements γii, i = 1, 2 and St−1 is a diagonal matrix with elements S−i,t−1 = 1 if

ei,t−1 < 0, 0 otherwise. The model without the breaks for the shock and volatility spillovers, that
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is ht = ω + A∗ε∧2t−1 + Bht−1, is minimal in the sense of Jeantheau (1998, Definition 3.3) and

invertible (see Assumption 2 in Conrad and Karanasos, 2010). The invertibility condition implies

that the inverse roots of |I−BL|, denoted by ϕ1 and ϕ2, lie inside the unit circle. Following

Conrad and Karanasos (2010) we also impose the four conditions which are necessary and

sufficient for ht � 0 for all t: (i) (1 − b22)ω1 + b12ω2 > 0 and (1 − b11)ω2 + b21ω1 > 0, (ii)

ϕ1 is real and ϕ1 > |ϕ2|, (iii) A∗ � 0 and (iv) [B−max(ϕ2, 0)I]A∗ � 0, where the symbol �

denotes the elementwise inequality operator. Note that these constraints do not place any a priori

restrictions on the signs of the coefficients in the B matrix. In particular, these constraints imply

that negative volatility spillovers are possible. Finally, if conditional correlations are constant, the

model reduces to the UECCC-GARCH(1, 1) specification of Conrad and Karanasos (2010).

Finally, we also amend the UEDCC-AGARCH(1, 1) model by allowing shocks and volatility

spillovers to vary across positive and negative returns:

ht = ω + A∗ε∧2t−1 + B∗ht−1, (3.38)

where A∗ = A + ΓSt−1 + A−D−t−1 and B∗ = B + B+D+
t−1; A−(B+) is a cross diagonal

matrix with nonzero elements α−ij(β
+
ij), i, j = 1, 2, i 6= j; D−t (D+

t ) are 2 x 1 vectors with elements

d−it(d
+
it), i = 1, 2 where d−it(d

+
it) is one if rjt < 0 (rjt > 0) and zero otherwise, j = 1, 2, j 6= i.

3.6.1 Bivariate results

Example 1: FTSE-DAX

Table 3.6 reports the results of the UEDCC-AGARCH(1, 1) model between the returns on

FTSE and DAX allowing shock and volatility spillover parameters to shift across the breaks in

order to analyse the time-varying volatility transmission structure between the two variables.42 As

42 For an application on the returns of commodity metal futures see Karanasos et al. (2013).
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is evident from Table 3.6, the results suggest the existence of strong conditional heteroscedasticity

in the two variables. The ARCH as well as the asymmetry parameters of the two variables are

positive and significant, indicating the existence of asymmetric responses in the two variables. In

addition, rejection of the model with constant conditional correlations, using Tse’s (2000) test,

indicates the time-varying conditional correlation between the two financial markets. Figure 3.3

displays the evolution of the time-varying conditional correlation between the two variables over

the sample period.

Table 3.6: Coefficient estimates of bivariate UEDCC-AGARCH models allowing

for shifts in shock and volatility spillovers between FTSE and DAX

Conditional Variance Equation

ω1 0.003
(0.0006)

a γ11 0.078
(0.016)

a β312 −0.007
(0.002)

a

ω2 0.004
(0.001)

a γ22 0.082
(0.022)

a αD 0.044
(0.010)

a

α11 0.016
(0.007)

b α12 0.010
(0.003)

a βD 0.952
(0.011)

a

α22 0.033
(0.009)

a α412 0.011
(0.004)

a

β11 0.921
(0.014)

a β12 −0.007
(0.003)

c

β22 0.912
(0.015)

a β212 0.003
(0.001)

a

LogL −5427.03
Q(5) 27.970

[0.110]
Q2(5) 9.427

[0.977]

Notes: Robust-standard errors are used in parentheses, 1= FTSE, 2=DAX.Q(5) andQ2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardised

and squared standardised residuals, respectively (p-values are reported in brackets).

α12(β12) indicates shock (volatility) spillovers from DAX to FTSE, whileαl12(β
l
12)

indicates the shift in shock (volatility) spillovers for the break l (see Table 3.1) from DAX to FTSE.

Insignificant parameters are excluded.
a

,
b

and
c

indicate significance at the 1%, 5% and

10% levels, respectively. Tse’s (2000) test for constant conditional correlations: 20.41.

Furthermore, the results suggest that there is evidence of shock spillovers as well as negative

volatility spillovers from DAX to FTSE (the α12 and β12 coefficients are significant at the

1% and 10% levels, respectively). With regard to the impact of the breaks on the volatility

transmission structure, it is shown that both shock and volatility spillovers between the two

variables change over time. The most significant changes include the impact of the fourth break in

DAX (15/01/2008), which corresponds to the Global financial crisis, in which it shifts the shock
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spillovers parameter from DAX to FTSE (the α412 coefficient is significant at the 1% level). Also,

volatility spillovers from DAX to FTSE are shown to be shifted after the second (21/07/1997) and

the third break (17/06/2003), corresponding to the Asian financial crisis and the announcement of

the €18bn German tax cuts plan, respectively (see the β212 and β312 coefficients in Table 3.6).

These results are consistent with the time-varying conditional correlations. The average

time-varying conditional correlation for the period before the break 15/01/2008 is 0.58 compared

to the period after the break of 0.89. This also applies for the break 21/07/1997 (17/06/2003) with

an average time-varying correlation of 0.43 (0.52) for the period before the break and 0.75 (0.82)

for the period after the break. Overall these findings are indicative of the existence of contagion

between DAX and FTSE during the turbulent periods of the two financial crises.

Figure 3.3. Evolution of the dynamic conditional correlation between FTSE and DAX returns.

Another way to look at the structure of the volatility spillovers between DAX and FTSE is

to allow volatility (and shock) spillover parameters to shift across two regimes of stock returns:

positive (increases in the stock market) and negative (declines in the stock market) returns. The

results, displayed in Table 3.7, suggest that declines in each market generate shock spillovers to

the other (the coefficients α−12 and α−21 are positive and significant), whilst increases in each market

generate negative volatility spillovers to the other (the coefficients β+12 and β+21 are negative and

significant).
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Table 3.7: Coefficient estimates of bivariate UEDCC-AGARCH models allowing

for different spillovers across positive and negative returns (FTSE-DAX)

Conditional Variance Equation

ω1 0.002
(0.0005)

a γ11 0.058
(0.012)

a αD 0.043
(0.010)

a

ω2 0.004
(0.001)

a γ22 0.060
(0.016)

a βD 0.954
(0.011)

a

α11 0.030
(0.008)

a α−12 0.019
(0.005)

a

α22 0.027
(0.008)

a β+12 −0.014
(0.004)

a

β11 0.926
(0.012)

a α−21 0.042
(0.015)

a

β22 0.928
(0.012)

a β+21 −0.036
(0.016)

a

LogL −5430.26
Q(5) 26.965

[0.136]
Q2(5) 9.533

[0.975]

Notes: Robust-standard errors are used in parentheses, 1= FTSE, 2=DAX.Q(5) andQ2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardised

and squared standardised residuals, respectively (p-values reported in brackets).α−12(β
+
12)

indicates the shock (volatility) spillovers from DAX to FTSE generated by negative (positive)

returns in DAX.α−21(β
+
21) reports the shock (volatility) spillovers from FTSE to DAX

generated by negative (positive) returns in FTSE. Insignificant parameters are excluded.

a
indicates significance at the 1% level.

Example 2: NIKKEI-Hang Seng

Next, we consider the structure of the volatility spillovers between the returns on NIKKEI

and Hang Seng to provide an example about the dynamic linkages between the Asian financial

markets. The estimated bivariate model, reported in Table 3.8, suggests the existence of strong

conditional heteroscedasticity. There is evidence of asymmetric effects of the two variables as

the ARCH and asymmetry parameters (the α and the γ coefficients) are positive and significant.

Furthermore, the model with constant conditional correlations is rejected according to Tse’s

(2000) test, hence the correlation between the two variables is time-varying. This is also

confirmed by Figure 3.4, which shows the evolution of the time-varying correlation between the

two variables.
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Table 3.8: Coefficient estimates of bivariate UEDCC-AGARCH models allowing

for shifts in shock and volatility spillovers between NIKKEI and Hang Seng

Conditional Variance Equation

ω1 0.003
(0.0008)

a γ11 0.094
(0.012)

a αD 0.015
(0.005)

a

ω2 0.009
(0.002)

a γ22 0.081
(0.021)

a βD 0.982
(0.006)

a

α11 0.024
(0.004)

a α312 0.050
(0.017)

a

α22 0.050
(0.007)

a α412 0.025
(0.011)

b

β11 0.920
(0.007)

a β312 −0.046
(0.015)

a

β22 0.885
(0.015)

a β221 0.016
(0.009)

c

LogL −9413.42 Tse’s test: 10.10
Q(5) 22.122

[0.333]
Q2(5) 13.594

[0.850]

Notes: Robust-standard errors are used in the parentheses, 1= NIKKEI, 2=Hang Seng.Q(5) andQ2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardised

and squared standardised residuals, respectively (p-values are reported in brackets).

αl12(β
l
12) indicates shift in shock (volatility) spillovers for the break l (see Table 3.1) from

Hang Seng to NIKKEI, whilstβl21 reports the shift in volatility spillovers for the break l in the

reverse direction. Insignificant parameters are excluded.
a

,
b

and
c

indicate significance at the

1%, 5% and 10% levels, respectively.

With regard to the linkages between the two variables, the results show the existence of

shock spillovers from Hang Seng to NIKKEI after the third (05/05/2009) and the fourth break

(01/12/2009), which correspond to the different phases of the European sovereign-debt crisis.

Also, while Hang Seng generates negative volatility spillovers to NIKKEI after the third break in

the former (05/05/2009), there are positive volatility spillovers from NIKKEI to Hang Seng after

the second break (04/01/2008) in the former, which corresponds to the Global financial crisis.

These findings indicate the superiority of the time-varying spillover model over the conventional

one. In contrast to the conventional model, allowing for breaks shows that the two financial

markets have been integrated during the Global financial crisis.43

With regard to the time-varying conditional correlations, the average time-varying conditional

correlation for the period before the breaks 04/01/2008, 05/05/2009 and 01/12/2009 are

respectively 0.40, 0.41 and 0.415 compared to the period after the breaks of 0.60, 0.58 and 0.585,

43 The results from the conventional bivariate UEDCC-AGARCH(1, 1) process indicate that there is no evidence of

volatility spillovers between the two financial markets. For this model the stationarity condition of Engle (2002) is

fulfilled.
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respectively. These results are consistent with those of volatility spillovers in which these two

types of markets have become more dependent during the recent financial crisis.

Figure 3.4. Evolution of the dynamic conditional correlation between NIKKEI and HS returns.

Finally, allowing the volatility spillover structure to shift across two different regimes, that

is, positive and negative returns, also shows the existence of time-varying volatility spillovers

between the two variables. Specifically, the results, displayed in Table 3.9, suggest that declines

in NIKKEI generate shock spillovers to Hang Seng (the estimated α−21 coefficient is positive and

significant), whilst increases in NIKKEI generate negative volatility spillovers to Hang Seng (the

estimated β+21 coefficient is negative and significant).

Table 3.9: Coefficient estimates of bivariate UEDCC-AGARCH models allowing

for different spillovers across positive and negative returns (NIKKEI-Hang Seng)

Conditional Variance Equation

ω1 0.003
(0.0009)

a β11 0.917
(0.007)

a α−21 0.017
(0.009)

a

ω2 0.008
(0.002)

a β22 0.897
(0.013)

a β+21 −0.018
(0.008)

a

α11 0.027
(0.005)

a γ11 0.099
(0.015)

a αD 0.016
(0.007)

a

α22 0.052
(0.007)

a γ22 0.065
(0.019)

a βD 0.980
(0.010)

a

LogL −9414.61
Q(5) 22.918

[0.292]
Q2(5) 9.534

[0.975]

Notes: Robust-standard errors are used in parentheses, 1= NIKKEI, 2=Hang Seng.Q(5) andQ2(5)
are the multivariate Hosking (1981) tests for serial correlation of five lags on the standardised

and squared standardised residuals, respectively (p-values are reported in brackets).α−21(β
+
21)

reports the shock (volatility) spillovers from NIKKEI to Hang Seng generated by negative (positive)

returns in NIKKEI. Insignificant parameters are excluded.
a

indicates significance at the 1% level.
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3.7 Conclusions

In this chapter, we have introduced a platform to examine empirically the link between

financial crises and the principal time series properties of the underlying series. We have

also adopted several models, both univariate and bivariate, to examine how the mean and

volatility dynamics, including the volatility persistence and volatility spillovers structure of stock

market returns have changed due to the recent financial crises and conditioned our analysis on

non-parametrically identified breaks. Overall, our findings are consistent with the intuitively

familiar albeit empirically hard-to-prove time-varying nature of asset market linkages induced

by economic events and suggest the existence of limited diversification opportunities, especially

during turbulent periods.

In particular, with respect to the mean and volatility dynamics our findings suggest that in

general the financial crises clearly affect more the (un)conditional variances. Also, the results of

the volatility persistence are clear-cut and suggest that they exhibit substantial time-variation. This

time-variation applies to all stock market returns irrespective of whether we allow for structural

changes or positive and negative changes in the underlying market. As far as the direction of this

time-variation during financial crises is concerned the jury is still out, but there is little doubt that

the financial crises are the primary driving force behind the profound changes in the unconditional

variances.

Finally, with respect to the existence of dynamic correlations as well as time-varying shock

and volatility spillovers our findings are also conclusive. Specifically, they suggest that in the

cases we examine there is an increase in conditional correlations, occurring at different phases of

the various financial crises, hence providing evidence as to the existence of contagion during this

period. Such a finding is comparable to those of other studies using only conditional correlation

analysis to examine the existence of contagion during the various financial crises. The results also
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suggest the existence of regime dependent volatility spillovers in all cases we examine by using

two regimes of returns, positive and negative. Given that this is to our knowledge the first attempt

to take into account the joint effect of dynamic correlations, volatility spillovers and structural

breaks in the mean and/or volatility dynamics, these findings are of particular interest to those

seeking refuge from financial crises.

3.8 APPENDIX

In this Appendix we will prove eq. (3.13) by mathematical induction. For k = 1 the result is

trivial since eq. (3.13) reduces to eq. (3.3). If we assume that eq. (3.13) holds for k then it will be

sufficient to prove that it holds for k + 1 as well. Combining eqs. (3.13) and (3.3, at time t − k)

yields

ygent,k = ξt,kyt−k + φ2(t− k + 1)ξt,k−1yt−k−1 +
k−1∑
r=0

ξt,rφ0(t− r) +
k−1∑
r=0

ξt,rεt−r ⇒

ygent,k+1 = ξt,k[φ0(t− k) + φ1(t− k)yt−k−1 + φ2(t− k)yt−k−2 + εt−k] + φ2(t− k + 1)ξt,k−1yt−k−1

+
k−1∑
r=0

ξt,rφ0(t− r) +
k−1∑
r=0

ξt,rεt−r

= [ξt,kφ1(t− k) + φ2(t− k + 1)ξt,k−1]yt−k−1 + φ2(t− k)ξt,kyt−k−2

+
k−1∑
r=0

ξt,rφ0(t− r) + φ0(t− k) +
k−1∑
r=0

ξt,rεt−r + εt−k. (A.1)

Expanding the determinant ξt,k+1 in eq. (3.9) along the first column we have: ξt,k+1 =

ξt,kφ1(t− k) + φ2(t− k + 1)ξt,k−1. Substituting this expression into eq. (A.1) gives

ygent,k+1 = ξt,k+1yt−k−1 + φ2(t− k)ξt,kyt−k−2 +
k∑
r=0

ξt,rφ0(t− r) +
k∑
r=0

ξt,rεt−r,

which is eq. (3.13), at time t, when the prediction horizon is k + 1.
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Chapter 4 Stylised facts for extended HEAVY models: the importance of asymmetries,

power transformations and long memory, the use of Garman-Klass volatility and structural

breaks

4.1 Introduction

In the final chapter we apply the high-frequency-based volatility (HEAVY) model of Shephard

and Sheppard (2010), SS10 hereafter. We estimate this new class of models using financial data

from the Oxford-Man Institute’s (OMI) realised library, version 0.2, Heber et al. (2009). The

library provides realised measures calculated on high-frequency data. The HEAVY framework

models financial volatility based on both daily and intra-daily data, so that the system of equations

estimated adopts to information arrival more rapidly than the classic daily GARCH models. The

HEAVY model is based on the classic GARCH model of Bollerslev (1986), the GARCHX model

and the Multiplicative Error Model (MEM) of Engle (2002b) in order to model realised volatility

on high-frequency data associated with daily returns GARCH conditional volatility. Its main

advantage, proved in SS10, is the robustness to structural breaks, especially during crisis periods,

since the mean reversion and short-run momentum effects result to higher quality performance in

volatility level shifts and more reliable forecasts.

Our main contribution is the enrichment of the HEAVY model with long memory structure,

volatility asymmetries and power transformations through the HYAPARCH specification of

Schoffer (2003) and Dark (2005) and the relevant GARCH models nested in the HYAPARCH

structure. We compare the results of stock market data modelling with the several long memory,

power and asymmetric specifications and conclude to prefer the most comprehensive one which

we define as HYDAP-HEAVY (HYperbolic Double Asymmetric Power) for the realised measure

models and the FIAP-HEAVY (Fractional Integrated Asymmetric Power) for the returns models.

Moreover, we follow the GARCH literature that combines trading volume with the conditional
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variance of returns (Lamoureux and Lastrapes, 1990, Gallo and Pacini, 2000) and test whether

the standard HEAVY equations adopt further to the volume increment. We add the overnight

trading activity indicator as additional regressor in the benchmark HEAVY equations to evaluate

the effect of volume on volatility and the adjustment of volatility to the additional information

from the trading volume proxy. As expected from the existing empirical evidence, the overnight

indicator gives a positive feedback to the volatility of returns. Our main finding is that the HEAVY

equations exhibit lower persistence, when the overnight surprise is used for the squared returns.

In the realised measure modelling the overnight indicator has immaterial effect on the volatility

process. So, the benchmark HEAVY framework is proved adequate to capture most of the eligible

information needed for volatility modelling.

We further study the Garman-Klass (GK) volatility measure in the HEAVY framework in

comparison with the other two variables (the squared returns and the realised kernel). We observe

that the realised measure shows stronger effects than the GK measure when added as regressor and

the GK-models seem to share characteristics with both the other two models (the squared returns

and the realised kernel equations), but with more similarities to the realised measure process.

Finally, we re-estimate the benchmark HEAVY equations taking into account the structural breaks

apparent in the squared returns series and estimate the time-varying behaviour of the arch, garch-x

and heavy coefficients. Focusing on the recent Global financial crisis, we observe a positive

increment on the volatility process generated by the aforementioned coefficients after the crisis

break.

The remainder of the chapter is structured as follows. In Section 4.2 we refer to the literature on

available models for realised volatility and high-frequency data in general, the GARCH and MEM

frameworks used in the HEAVY models. In Section 4.3 we detail the benchmark HEAVY models

and the extended HEAVY with long memory, volatility asymmetries and power transformations.

138



Section 4.4 presents and discusses our empirical results of the HEAVY framework. In Section

4.5 we extend the standard HEAVY with the overnight trading activity indicator and we test the

Garman-Klass volatility measure in the HEAVY framework. Section 4.6 presents our empirical

results taking into account the structural breaks of the squared returns series. Finally, Section 4.7

concludes the analysis.

4.2 A review of the literature

4.2.1 Realised volatility modelling

The asset return volatility has attracted major interest of the financial econometrics research.

We focus on the realised volatility measurement, modelling and forecasting. Several studies have

introduced non-parametric estimators of realised volatility using high-frequency market data

and trying to overcome the market microstructure noise contained in the dataset. Andersen and

Bollerslev (1998), Andersen et al. (2001b) and Barndorff-Nielsen and Shephard (2002) were the

first studies that formalised econometrically the realised variance with quadratic variation-like

measures. Hansen and Lunde (2006) studied, amongst others, the effect of market frictions on

the measurement of realised volatility and proved the superiority of kernel-based estimators.

Finally, Barndorff-Nielsen et al. (2008, 2009) focus on the realised kernel estimation as the

realised measure the more robust to noise. Thorough reviews of realised measures calculation and

modelling are written by Hansen and Lunde (2011), Andersen and Benzoni (2009), Andersen et

al. (2009), McAleer and Medeiros (2008) and Barndorff-Nielsen and Shephard (2007).

Moreover, voluminous empirical evidence on modelling and forecasting the realised volatility

is developed. A popular approach broadly used is the ARFIMA time series model of realised

variance in its original or logarithmic form. Dettling and Buhlmann (2004) apply the ARFIMA

model for the log-realised volatility, recognising the slow hyperbolic decay in its autocorrelation

function. Andersen et al. (2003) follow the multivariate approach with the fractionally integrated

VAR model for exchange rate realised volatilities and compare its performance to the daily
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GARCH and FIEGARCH models. Chiriac and Voev (2011) also propose, amongst other

methodologies, the VARFIMA model for realised volatilities in order to forecast realised

covariance matrices. Koopman et al. (2005) estimate univariate ARFIMA models of realised

volatility and compare them with their simpler ARMA counterparts and the Stochastic Volatility

and GARCH models. Oomen (2001) enrich the long memory model of realised variance with two

exogenous variables: the lagged positive and negative returns, to measure the leverage effect and

the (log) contemporaneous trading volume as in Lamoureux and Lastrapes (1990). Martens et

al. (2009), apart from studying solely the long memory characteristics of the realised measures,

improve the classic ARFIMA specification incorporating level-shifts, day-of-the-week, leverage

and volatility level effects. Asai et al. (2012) also associate the long memory process with

asymmetries of positive and negative shocks as well as the size effect of the shocks on realised

volatility. Allen et al. (2013) is the more recent study to propose a fractionally integrated model

with asymmetries named Dually Asymmetric Realised Volatility model (DARV-FI), where the

ARFIMA model incorporates leverage effect parameters to measure the higher volatility risk in

periods of negative returns.

Another popular approach to model the temporal aggregation of realised volatility is the

Heterogeneous Autoregressive (HAR-RV) model introduced by Corsi (2004). Focusing on

the persistence of the volatility time series Corsi (2004, 2005, 2009) build a long memory

autoregressive model that captures the hyperbolic autocorrelation of the realised volatility process.

The model is estimated as a restricted AR(22) process with the 1st, 5th and 22nd autoregressive

lag. The realised volatility is related to its values back in the previous day, week and month.

Andersen et al. (2007) extend the HAR model to include jump and non-jump components and

result to the HAR-CJ, which is further enriched by Huang et al. (2013) with a momentum

parameter producing the HAR-CJ-M. Liu and Maheu (2008) use the HAR model to investigate
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the structural breaks in realised volatility. Bollerslev et al. (2009) also include the HAR model

for bipower variation in their discrete-time daily stochastic volatility model. The DARV model of

Allen et al. (2013) is specified additionally with the HAR-RV structure (DARV-HAR) with the

same leverage terms as the DARV-FI. Celik and Ergin (2014) estimate the HAR-CJ and compare

its performance with simpler HAR models, GARCH and MIDAS. The HAR-CJ and the MIDAS

are found to better fit the volatility process, while MIDAS is proved the best in crisis periods.

Finally, Soucek and Todorova (2014) recently estimated a multivariate LHAR-CJ specification,

introduced in its univariate form by Corsi and Reno (2012), who extended the HAR-RV with

leverage effects and jump components.

4.2.2 GARCH modelling with realised volatility and high frequency data

Regarding the GARCH volatility modelling technique, there is plenty of empirical evidence

relating the realised volatility with the conditional variance of asset returns. Engle (2002b)

introduced the GARCHX model of daily returns, where the realised volatility is included as

exogenous variable in the conditional variance equation. Martens (2002) also incorporated

realised volatility measures of intra-daily returns in the daily GARCH variance. Corsi et al. (2008)

extended the HAR model of realised volatility with a GARCH error process (HAR-GARCH)

to model the volatility of realised volatility, in order to account for the time-varying conditional

heteroscedasticity of the normally distributed HAR errors and improve its predictive power.

Louzis et al. (2011) include the lagged realised variance in the GARCH equation of daily returns

after being estimated first with ARFIMA and HAR models, in order to generate forecasts of Value

at Risk. Chen et al. (2012) select to include the after-hours realised variance in the daily GARCH

equation as regressor and produce significantly better forecasts for the following day’s volatility

than without including it.

Amongst the models that combine realised volatility with GARCH modelling, Hansen et

al. (2012a) introduce the Realised GARCH model, which is the most close specification to the
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HEAVY model. They estimate two equations: firstly, the GARCH (1, 0) with a realised measure

as regressor replacing the ARCH term, same as the HEAVY-r equation of SS10 and secondly,

the measurement equation of the realised measure. Unlike the MEM(1, 1) structure of SS10

HEAVY-RM, the second equation relates the realised measure to the contemporaneous GARCH

conditional variance of returns estimated in the first equation and a leverage function to allow

for the asymmetric response of volatility to different signed or sized return shocks. The Realised

GARCH is also presented with a log-linear specification with both the conditional variance and

the realised measure in logarithmic form. Hansen and Huang (2012) propose further the Realised

EGARCH extending the Realised GARCH with the EGARCH framework. Finally, Hansen et al.

(2012b) build the multivariate version of Realised GARCH, the Realised Beta GARCH to model

additionally realised co-volatilities and spillover effects.

In many studies researchers use directly high frequency returns in the GARCH models instead

of incorporating daily realised volatility measures in the daily returns GARCH equation. Martens

(2001) estimated a continuous time GARCH process with intra-daily foreign exchange rates

returns of different frequencies to compare the forecasts of daily volatility from the various return

frequencies. Hashimoto (2005) use intra-daily Japanese exchange rates to estimate an EGARCH

and a TGARCH and detect the Japanese crisis effects in 1997. Giot (2005) incorporate intra-daily

data in a GARCH model assuming alternatively normal and student-t error distribution. Gau

(2005) and Haniff and Pok (2010) prefer the Periodic GARCH to model high frequency returns.

Kang and Yoon (2008) estimate a FIAPARCH process with high frequency data and the student-t

distribution assumption and study the asymmetric long memory property of returns in different

frequencies. Chen et al. (2008) investigate the time series dynamics of hourly DJ returns with

an exponential asymmetric AR–GARCH model assuming a generalised error distribution to

account for fat tails apparent in the data. They employ in the mean equation the exponential
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AR (EAR) and in the variance the GJR-GARCH. Xie and Li (2010) use tick data from S&P500

with GARCH-in-mean amongst other GARCH models. Chortareas et al. (2011) calculate the

15min returns of Euro exchange rates, estimate intra-daily GARCH and FIGARCH processes

and compare them to daily returns GARCH and FIGARCH, as well as to the daily realised

volatility ARFIMA model. The intra-daily GARCH models and the ARFIMA realised volatility

model perform better than the daily data processes. Chen et al. (2011) introduce the HYBRID

(High FrequencY Data-Based PRojectIon-Driven)-GARCH class of models with various

parametrisations based on intra-daily returns. Kitamura (2010) use intra-daily data to measure

interdependencies between foreign currency markets in the multivariate GARCH framework

with time-varying correlations of Tse and Tsui (2002), while Chiang et al. (2009) apply the

Dynamic Conditional Correlation (DCC) model of Engle (2002a) with high frequency stock index

returns. The intra-daily GARCH framework is applied also on commodity data. In Hickey et al.

(2012) hourly electricity price data are used to estimate the simple GARCH specification and

compare it with the EGARCH, the APARCH and the Component GARCH models. Finally, Engle

(2000) move the attention from high-frequency data to ultra-high-frequency (UHF) data, that

are irregularly spaced in time, introducing the UHF-GARCH after incorporating the conditional

duration from the Autoregressive Conditional Duration (ACD) model (Engle and Russell, 1998)

into the GARCH specification. Park and Kim (2011) extend Engle’s UHF-GARCH building the

two-state Markov-Switching MS-GARCH with UHF futures data.

4.2.3 Multiplicative Error Models for realised volatility and the HEAVY specification

Engle (2002b) first introduced the MEM specification for the conditional expectation of

non-negative valued time series. MEM nests the GARCH structure with the squared returns

series being replaced by any non-negative process. The MEM structure also nests several

GARCH-type models for positive valued processes like the ACD model of Engle and Russell

(1998) for durations, the Conditional Autoregressive Range (CARR) of Chou (2005) for the
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price range and the Autoregressive Conditional Volume (ACV) of Manganelli (2005) for the

transaction volume. Engle and Gallo (2006) estimate a trivariate MEM for three non-negative

series: the squared returns, the high-low range and the realised variance. They also include in

their multivariate specification cross effects to measure the volatility spillovers and asymmetries

to detect the asymmetric volatility response to positive and negative shocks. Lanne (2006) extend

the MEM for exchange rates realised volatility estimating time-varying coefficients, that vary

along with the parameters of the error distribution or the values of an exogenous variable with two

distinct probability regimes. Cipollini et al. (2007, 2013) estimate multivariate MEMs allowing

for interdependence across the terms of the vector representation of the model and formalise the

joint probability density function of the vector error term with a copula approach (Cipollini et al.,

2007) and a semiparametric approach (Cipollini et al., 2013). Brownlees et al. (2011) propose

a further MEM extension, the Component MEM, which incorporates both daily and intra-daily

components in the non-negative process modelling. Finally, Gallo and Otranto (2012), following

Lanne (2006), focus on the time-varying behaviour of the MEM’s parameters in the realised

volatility modelling and propose Markov Switching parameters in order to capture the volatility

regimes with different dynamics.

Following the MEM framework, SS10 model the realised volatility with a MEM(1, 1) equation,

the HEAVY-RM. They model also the returns with a GARCH process, the HEAVY-r, where

the ARCH term is replaced by the lagged realised volatility. The two-equation system, the

HEAVY-r and the HEAVY-RM, defines the HEAVY model, which is extended to its multivariate

specification by Noureldin et al. (2012). Cipollini et al. (2013) refer to the HEAVY model

by simply restricting the bivariate Vector MEM representation for squared returns and realised

variance. Lastly, Borovkova and Mahakena (2013) are the first to apply the univariate HEAVY

model with different error distributions (student-t and skewed-t). They also extend the HEAVY-r
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equation with a leverage term, a news sentiment proxy and a time to maturity variable alternatively.

In the present study, we extend the univariate HEAVY model with long memory, asymmetries

and power transformations through the HYAPARCH framework.

4.3 The HEAVY framework: models description

4.3.1 The benchmark HEAVY/GARCH/MEM models

The HEAVY-i, i = r, R, GARCH type of models44, introduced by SS10, use two variables:

the close-to-close return rt and the open-to-close variation proxied by the realised measure, RMt.

We first form the signed square rooted (SSR) realised measure as follows: R̃Mt =sign(rt)
√
RMt,

where sign(rt) = 1, if rt > 0 and sign(rt) = −1, if rt < 0. We assume that the returns and the

SSR realised measure follow zero conditional mean equations:

rt = εrt, R̃M t = εRt, or

r2t = ε2rt, RMt = R̃M
2

t = ε2Rt,

where εit = eitσit , i = r, R and eit
i.i.d.∼ N(0, 1); σ2it is positive with probability one for all t and it

is a measurable function of FHFt−1 , the high frequency past data for the case of the realised measure

(or FLFt−1, low frequency past data for the case of the close-to-close return). That is, the conditional

variance of εit (or the conditional mean of ε2it) is σ2it: E(ε2it
∣∣FHFt−1 ) , σ2it.

The HEAVY-i, i = r, R, models consist of the following GARCH(1, 1)-type equations45:

(1− βiL)σ2it = ωi + αiε
2
i,t−1 + γiε

2
j,t−1, i, j = r, R, j 6= i, (4.1)

where L is the lag operator, ωi ∈ (0,∞), αi, βi, γi ≥ 0 and (αi + βi) ∈ [0, 1).

It will be convenient to have labels for the six different models that we estimate (see aso below

Panel A in Table 4.1). The abbreviations HEAVY-E-r or GARCH-X-r stand for the model for

44 The acronym HEAVY stands for High-frEquency-bAsed VolatilitY models (see SS10).
45 This is the way to run the Multiplicative Error Model (MEM) of Engle (2002b) for the conditional mean of a

non-negative time series process with the GARCH packages already available. Assuming zero conditional mean

equations we obtain the squared series, r2t or R̃M
2

t = RMt and run the MEM model. In other words, the GARCH

model for the conditional variance of the returns or the SSR realised measure, is identical to the MEM model for the

conditional mean of the squared returns or the realised measure.
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stock returns (where i = r and j = R) with αr, γr 6= 0:

(1− βrL)σ2rt = ωr + αrr
2
t−1 + γrRMt−1. (4.2)

The benchmark conditional volatility standard GARCH(1, 1) process is the one with γr = 0,

while the so called Heavy-r process is the one with αr = 0: (1 − βrL)σ2rt = ωr + γrRMt−1.
46

The γr coefficient will be called the Heavy coefficient. The general model in eq. (4.2) can be

thought of as an extended HEAVY-r process with the lagged squared returns included as an

additional regressor. The name suggests that it is the lagged realised measure which does almost

all the work at moving around the conditional variance of returns (see SS10). Alternatively it

can be considered as a GARCH-X-r process, that is the realised measure is used as a regressor

in the GARCH(1, 1) process (see also Engle, 2002b). As pointed out by SS10, the GARCH-X

terminology suggests that it is the squared returns which drive the model.

Similarly, the HEAVY-E-RM or GARCH-X-RM model for the SSR realised measure, where

i = R, j = r and αR, γR 6= 0, is given by

(1− βRL)σ2Rt = ωR + αRRMt−1 + γRr
2
t−1. (4.3)

The αR coefficient will be called the Heavy coefficient. The GARCH(1, 1) process for R̃Mt

with γR = 0 is also called HEAVY-RM , while the GARCH(1, 0)-X model is obtained by setting

αR = 0: (1− βRL)σ2Rt = ωR + γRr
2
t−1. That is, γR is the GARCH-X coefficient.

4.3.1.1 Bivariate representation

The two HEAVY-E or GARCH(1, 1)-X processes in eqs. (4.2) and (4.3), can be

expressed/interpreted as a bivariate GARCH(1, 1) process with shocks spillovers:

(I−BL)σ∧2t = ω + ALε∧2t , (4.4)

where B is a 2 × 2 diagonal matrix with nonzero elements βi, i = r, R and ω = [ωr , ωR]′;

46 That is, the HEAVY-r model is identical to the GARCH (1, 0)-X model. Thus for the HEAVY-r process, we run

a zero mean return process with variance equation GARCH (1, 0) and adding as a regressor the lagged realised

measure.
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σ∧2t = [σ2rt , σ
2
Rt]
′ and ε∧2t = [ε2rt , ε2Rt]; A is a 2 × 2 full matrix with (cross)diagonal elements

αi(γi). The above bivariate GARCH model is also identical to a bivariate HEAVY-E model since

it can be written as

(I−BL)σ∧2t = ω +α2Lε
2
Rt +α1Lε

2
rt = α2L ·RMt +α1Lr

2
t , (4.5)

where α1 and α2 are the two columns of A. If α1 = 0 then we have the simple bivariate HEAVY

model. In other words α2 is the column with the two heavy coefficients. If A is a diagonal matrix

the model is equivalent to two univariate GARCH(1, 1) or MEM(1, 1) processes.

4.3.2 Extended HEAVY/GARCH/MEM specifications

The benchmark specification of the HEAVY/GARCH/MEM models in eq. (4.1) can be

extended in many directions. We allow for power transformations of the volatilities, leverage

effects and long memory in the conditional variance process. We re-run the six aforementioned

models, estimated in the simple specification, enriched with the three key features to improve

further the HEAVY/GARCH volatility modelling.

4.3.2.1 Double Asymmetric Power formulations

First we estimate two alternative double asymmetric power (DAP) HEAVY-E specifications:

(1− βiL)σδiit = ωi + αi(1 + µist−1)|εi,t−1|δi + (γi + πist−1) |εj,t−1|δj , or (4.6)

(1− βiL)σδiit = ωi + (αi + µist−1)|εi,t−1|δi + (γi + πist−1) |εj,t−1|δj , i, j = r, R, and j 6= i,(4.7)

where st = [1−sign(rt)]/2, that is, st = 1 if rt < 0 and 0 otherwise; µi, πi are the own and cross

leverage coefficients respectively (positive µi, πi means larger contribution of negative ‘shocks’

in the volatility process47); δi is the parameter of the power transformed variance, that takes

(finite) positive values and as before γi ≥ 0 is the coefficient of the lagged exogenous variable

ε2jt, which in our case is either the lagged squared returns (j = r: r2t−1) or the lagged realised

measure, j = R: RMt−1. The exogenous variable allows the conditional variance to exhibit also

47 They capture the possible ‘double’ asymmetry in the two conditional variances. That is, both the own (µi) and cross

(πi) asymmetries.
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structural dynamics and is always a non-negative time series, in order to ensure the positivity of

the conditional variance.

Bivariate formulation Equations (4.6) and (4.7) can be written as a bivariate system:

(I−BL)σ
(δ)
t = ω + A∗L |εt|(δ) , (4.8)

where σ
(δ)
t = [σδrrt , σ

δR
Rt ]
′ and |εt|(δ) = [|εrt|δr , |εRt|δR ]; A∗ = A + Gst−1 and G is a 2× 2 matrix

with diagonal elements αiµi (or just µi), i = r, R and off diagonal elements πi.

4.3.2.2 Long Memory formulations

In this Section we estimate the most general specification, that is the hyperbolic double

asymmetric power (HYDAP) HEAVY-E or GARCH-X process (see, for example, Schoffer, 2003

and Dark, 2005):

(1− βiL)(σδiit − ωi) = Ai(L)(1 + µist)|εit|δi + (γi + πist−1) |εj,t−1|δj , (4.9)

with

Ai(L) = (1− βiL)− (1− φiL)[(1− ζ i) + ζ i(1− L)di ], (4.10)

where i, j = r, R and j 6= i; βi, |φi| < 1; di is the long memory parameter: 0 ≤ di ≤ 1 and ζ i is

the amplitude parameter: 0 ≤ ζ i ≤ 1. For the HEAVY-E-R model the HYDAP specification has

five Heavy coefficients: ζR, dR, βR, φR and µR and two Heavy extended coefficients: γi and πi. If

ζ i = 0 and φi − βi = αi, the HYDAP specification reduces to the DAP one in eq. (4.6) since in

this case we have: Ai(L) = αiL.

The HYDAP-HEAVY-E specification also nests the fractional integrated (FI) one by imposing

the restriction ζ i = 1. In this case Ai(L) in eq. (4.10) becomes

Ai(L) = (1− βiL)− (1− φiL)(1− L)di . (4.11)

It also nests the HYP specification by imposing the restriction µi = πi = 0 which if, in addition

δi = 2, reduces to the HY one.
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Overall we estimate six HEAVY/GARCH models and nine specifications (see Table 4.1

below).48 For the HEAVY-r or GARCH(1, 0)-X-r and the GARCH(1, 0)-X-RM models we only

estimate the three specifications with Ai(L) = 0:

(1− βiL)(σδiit − ω) = (γi + πist−1) |εj,t−1|δj .

Table 4.1: Models (HEAVY/GARCH/MEM) and Specifications (HYDAP/FIDAP/DAP)

Panel A: Six alternative models: σ2it = ωi + αiε
2
i,t−1 + βiσ

2
i,t−1 + γiε

2
j,t−1

(i,j=r,R,j 6=i)
Returns (rt):

ε2i,t−1 = r2t−1
(i=r)

, ε2j,t−1 = RMt−1
(j=R)

σ2it = σ2rt = E(r2t |Ft−1 )

, γr = 0︸ ︷︷ ︸
GARCH(1,1)
or MEM(1,1)

αr = 0
(γr 6=0)︸ ︷︷ ︸
HEAVY

or GARCH(1,0)-X

or MEM(1,0)-X

αr, γr 6= 0︸ ︷︷ ︸
HEAVY-E

or GARCH(1,1)-X
or MEM(1,1)-X

SSR Realised Measure (R̃M t):

ε2i,t−1 = RMt−1
(i=R)

, ε2j,t−1 = rt−1
(j=r)

σ2it = σ2Rt = E(R̃M
2

t |Ft−1 )

γR = 0︸ ︷︷ ︸
HEAVY

or GARCH(1,1)
MEM(1,1)

αR = 0
(γR 6=0)︸ ︷︷ ︸

GARCH(1,0)-X
or MEM(1,0)-X

αR, γR 6= 0︸ ︷︷ ︸
HEAVY-E

or GARCH(1,1)-X
or MEM(1,1)-X

Panel B: HYDAPGARCH specification and eight alternative restricted ones

(1− βiL)(σδit − ωi) = Ai(L)(1 + µisit)|εit|δ + (γi + πist−1) |ε|δjj,t−1 ,
Ai(L) = (1− βiL)− (1− φiL)[(1− ζ i) + ζ i(1− L)di ].

Restrictions↓→: ζ i = 0 FI: ζ i = 1 HY: ζ i ∈ (0, 1)
δi = 2 and µi = πi = 0 GARCH FIGARCH HYGARCH

P : µi = πi = 0 PGARCH FIPGARCH HYPGARCH

AP: no restrictions DAPGARCH FIDAPGARCH HYDAPGARCH

Notes: In the case of the three HY specifications the condition ζ i < 1 ensures

their stationarity. For the HEAVY-r model we estimate only the three specifications

withAi(L) = 0. Recall that the HYDAP–HEAVY-E model is identical to the

HYDAPGARCH-X and HYDAP-MEM-E models.

The power transformation (δi), leverage effects (µi, πi) and long memory (di, ζ i) are our main

contribution to the HEAVY-E models of SS10 as well as to the GARCH-X and MEM models of

Engle (2002b).49

For the simple, fractionally integrated (FI) or hyperbolic (HY) specifications we provide results

with and without (double) asymmetries and/or power transformations (DAP formulations) in

48 SS10 propose as an extension of the HEAVY-RM model a fractional process with leverage effects or Corsi’s (2009)

long memory HAR structure. They also suggest the use of realised semivariances in the HEAVY formulations, to

capture leverage effects or the inclusion of a leverage parameter multiplied with the realised measure as in Engle and

Gallo (2006).
49 Engle (2002b) first proposed the MEM model using the various GARCH family specifications to estimate the

volatility of volatility, which is a non-negative process. He uses the Asymmetric Power MEM (AP-MEM) model in

his Volatility Laboratory (V-Lab) amongst other processes for real-time financial volatility modelling.
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order to study thoroughly their effects on the conditional variances of either the stock returns

or the SSR realised measures. The sufficient conditions of Dark (2005) for the positivity of the

conditional variance of a HYGARCH (1, di, 1) specification are: ωi > 0, βi − ζ idi ≤ φi ≤ 2−di
3

and ζ idi(φi − 1−di
2

) ≤ βi(φi − βi + ζ idi), i = r, R (see also Conrad, 2010). When ζ i = 1 they

reduce to the ones for the FIGARCH (1, di, 1) specification given in Bollerslev and Mikkelsen

(1996).

Bivariate formulation The two HYDAP-HEAVY-E models in eq. (4.9) can be written in a

matrix form as

(I−BL)(σ
(δ)
t − ω) = A(L)[(I + Mst) + (Γ + Πst−1)]L |εt|(δ) ,

with

A(L) = (I−BL)− (I−ΦL)(I− Z + Z ·D),

where Φ is a 2×2 diagonal matrix with nonzero elements φi, i = r, R; Z and D are 2×2 diagonal

matrices with nonzero elements ζ i and (1− L)di respectively; M, Π(Γ) are 2× 2 (cross)diagonal

matrices with nonzero elements µi and πi(γi) respectively. The above formulation is identical to

the bivariate HYDAPGARCH(1, 1)-X model. When Z = 0 it reduces to the bivariate specification

in eq. (4.8) with A = Φ−B + Γ and G = AM + Π.

If in addition, M = Π = 0 and δi = 2, i = r, R, then it becomes the bivariate specification in

eq. (4.4).

4.4 Empirical analysis

4.4.1 Data description

The various GARCH/HEAVY models are estimated for twenty one stock indices returns

and realised volatilities. According to the analysis in SS10, the HEAVY formulations improve

considerably the volatility modelling by allowing momentum and mean reversion effects and

adjusting quickly to the structural breaks of volatility. We first run the simple specifications for
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the twenty one assets and then we extend them by adding the features of long memory, power

transformation of the conditional variances and leverage effects in the volatility process. We

finally run the benchmark HEAVY models with the Overnight trading indicator, the Garman Klass

volatility measure and dummies for the structural breaks of the squared returns to identify the

recent Global financial crisis effects on the volatility process.

We use daily data for twenty one stock market indices extracted from the Oxford-Man

Institute’s (OMI) realised library version 0.2 of Heber et al. (2009). Our sample covers the period

from 03/01/2000 to 01/03/2013 for most indices. For the Canadian stock market index TSE

the data begin from 2002. The Indian index NIFTY has too many missing observations despite

its wide sample dates’ range. The OMI’s realised library includes daily stock market indices’

prices, returns and several realised volatility measures calculated on high-frequency data from

the Reuters DataScope Tick History database. The high-frequency data are first cleaned and

then used in the realised measures calculations. According to the library’s documentation, the

data cleaning applied on stock index data consists of deleting records outside the time interval

that the stock exchange is open. Some minor manual changes are also needed when results are

ineligible due to the rebasing of indices. We use the daily closing prices to form the daily returns

as follows: rt = ln(PC
t )− ln(PC

t−1), PC
t is the stock market index closing price and two realised

measures as drawn from the library: the realised kernel and the 5-minute realised variance. The

estimation results using the two realised measures alternatively are very similar, so we present

only the ones with the realised kernels (the results for the 5-minute realised variances are available

upon request). We also choose to present the results from the six indices of the more developped

countries (due to space considerations), that is S&P 500 from the US, Nikkei 225 from Japan,

TSE from Canada, FTSE from the UK, DAX from Germany and Eustoxx 50 from the Eurozone.

4.4.1.1 Realised Measures

The library’s realised measures are calculated in the way described in SS10. The 5-minute

151



realised variance, RVt, which we also employ as an alternative realised measure, is calculated

with the formula: RVt =
∑
x2j,t, where xj,t = Xtj,t − Xtj−1,t , xj,t are the 5-minute intra-daily

returns, Xtj,t are the intra-daily prices and tj,t are the times of trades on the t-th day. Heber et

al. (2009) implement additionally a subsampling procedure from the data to the most feasible

level in order to eliminate the stock market noise effects. The subsampling involves averaging

across many realised variance estimations from different data subsets (see also the references

in SS10 for realised measures surveys, noise effects and subsampling procedures). The realised

kernel, which we present in our analysis here, is chosen as a measure more robust to noise,

as in SS10, where the exact calculation with a Parzen weight function is described as follows:

RKt =
H∑

k=−H
k(h/(H + 1))γh, where γh =

n∑
j=|h|+1

xj,txj−|h|,t and k(x) is the Parzen kernel

function. They declare that they select the bandwidth of H as in Barndorff-Nielsen et al. (2009).

Table 4.2 presents the stock indices extracted from the database and provides volatility

estimations for each one’s squared returns and realised kernels time series for the respective

sample period. We calculate the standard deviation (sd) of the series and the annualised volatility

(Avol). Avol is the square rooted mean of 252 times the squared return or the realised kernel.

The standard deviations are always lower than the annualised volatilities. The realised kernels

have lower Avol and sd than the squared returns since they ignore the overnight effects and are

affected by less noise. The returns represent the close-to-close yield and the realised kernels the

open-to-close variation. The annualised volatility of the realised measure is between 11% and

26%, while the squared returns show figures from 16% to 30%.
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Table 4.2: Data Description

sample period r2t RKt

Index symbol Index name (Country) Strart date End date Obs. Avol sd Avol sd

sp S&P 500 (US) 03/01/2000 01/03/2013 3281 0.212 0.054 0.183 0.029

dj DJIA (US) 03/01/2000 01/03/2013 3283 0.198 0.047 0.178 0.028

nasdaq NASDAQ 100 (US) 03/01/2000 01/03/2013 3286 0.285 0.086 0.204 0.029

russell RUSSELL 2000 (US) 03/01/2000 01/03/2013 3284 0.262 0.067 0.180 0.024

tse S&P/TSX Comp. Index (Canada) 02/05/2002 01/03/2013 2701 0.183 0.041 0.128 0.016

ipc IPC Mexico (Mexico) 03/01/2000 01/03/2013 3288 0.228 0.053 0.133 0.011

bvsp Bovespa Index (Brazil) 03/01/2000 28/02/2013 3207 0.304 0.094 0.258 0.043

aord All Ordinaries (Australia) 04/01/2000 01/03/2013 3297 0.155 0.027 0.113 0.009

nikkei NIKKEI 225 (Japan) 04/01/2000 01/03/2013 3184 0.250 0.073 0.174 0.020

hs HANG SENG (China) 03/01/2000 01/03/2013 2978 0.279 0.217 0.158 0.018

straits FT Straits Times Index (Singapore) 03/01/2000 01/03/2013 3242 0.200 0.065 0.127 0.009

kospi KOSPI Comp. Index (South Korea) 04/01/2000 28/02/2013 3242 0.275 0.081 0.205 0.026

nifty S&P CNX Nifty (India) 06/01/2000 01/03/2013 2732 0.289 0.168 0.215 0.038

cac CAC 40 (France) 03/01/2000 01/03/2013 3350 0.244 0.059 0.203 0.026

dax DAX (Germany) 03/01/2000 01/03/2013 3333 0.253 0.070 0.227 0.035

ftse FTSE 100 (UK) 04/01/2000 01/03/2013 3301 0.197 0.044 0.159 0.017

aex AEX (Netherlands) 03/01/2000 01/03/2013 3349 0.243 0.065 0.191 0.024

ssmi Swiss Market Index (Switzerland) 04/01/2000 01/03/2013 3295 0.200 0.047 0.154 0.015

mib FTSE MIB (Italy) 03/01/2000 28/02/2013 3316 0.248 0.065 0.188 0.022

ibex IBEX 35 (Spain) 03/01/2000 01/03/2013 3315 0.245 0.061 0.199 0.022

eustoxx EUROSTOXX 50 (Eurozone) 03/01/2000 01/03/2013 3325 0.248 0.062 0.216 0.035

Notes: Avol is the annualised volatility and sd is the standard deviation.

4.4.2 The benchmark HEAVY results

We first estimate the original HEAVY models, as introduced in SS10 and described in the six

equations of Table 4.1, Panel A. Table 4.3 presents the results for the six stock indices chosen

to be reported as more representative. We obtain similar results as in SS10 and we observe the

following stylised facts:

Firstly, for the squared returns equations the preferred model is the HEAVY-r since the ARCH

coefficient, αr, of the HEAVY-E-r is insignificant in all cases but two, where it is very low.

Additionally, the Heavy coefficient, γr, of the HEAVY-E-r is significant and around 0.30 to 0.55,

which means that the lagged realised measure does all the work at moving around the conditional

variance of returns and it entirely crowds out the lagged squared returns. So, we exclude the

ARCH coefficient and prefer the simpler HEAVY-r equation with the momentum or GARCH
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coefficient, βr, to be estimated around 0.60 to 0.70.

Secondly, for the SSR realised kernel equations we prefer the HEAVY-RM model, where the

results are again similar to the SS10 analysis and we can also compare them to HEAVY-E-RM

and the GARCH(1, 0)-X-RM , not estimated by SS10. In the HEAVY-E-RM model the Heavy-E

or GARCH-X coefficient, γR, although significant, it is very close to zero, around 0.02 − 0.04

and the Heavy coefficient, αR, is significant and around 0.35 to 0.45. It is obvious, that the

lagged realised measure (αR) drives the model of its conditional mean and not the squared returns

(γR). So, we select the HEAVY-RM equation as more preferred, where the Heavy coefficient is

estimated around 0.40 to 0.50.

So, the benchmark HEAVY models estimated result to the HEAVY-r and the HEAVY-RM

as the equations that best describe the volatility process. These are exactly the two equations

proposed also by SS10 to constitute the HEAVY system of equations.
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Table 4.3: HEAVY/GARCH Models; Specification: ζ i = µi = 0, δi = 2.

SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Squared Returns

GARCH(1, 1)−r αr 0.09
(7.84)∗∗∗

0.10
(6.60)∗∗∗

0.09
(6.32)∗∗∗

0.09
(7.33)∗∗∗

0.09
(6.90)∗∗∗

0.09
(6.46)∗∗∗

βr 0.90
(80.08)∗∗∗

0.89
(59.16)∗∗∗

0.90
(52.70)∗∗∗

0.90
(70.98)∗∗∗

0.90
(70.98)∗∗∗

0.90
(63.68)∗∗∗

HEAVY-E-r
or GARCH(1,1)-X-r

αr 0.000
(0.00)

0.04
(1.72)∗∗

0.05
(2.66)∗∗∗

0.003
(0.12)

0.000
(0.00)

0.000
(0.00)

βr 0.71
(15.44)∗∗∗

0.76
(11.30)∗∗∗

0.77
(9.97)∗∗∗

0.60
(8.62)∗∗∗

0.60
(9.67)∗∗∗

0.65
(14.01)∗∗∗

γr 0.37
(6.70)∗∗∗

0.37
(2.54)∗∗∗

0.29
(1.80)∗∗

0.56
(4.38)∗∗∗

0.47
(5.80)∗∗∗

0.46
(6.71)∗∗∗

HEAVY-r
or GARCH(1,0)-X-r

βr 0.71
(16.70)∗∗∗

0.71
(8.66)∗∗∗

0.69
(16.21)∗∗∗

0.60
(11.11)∗∗∗

0.60
(9.69)∗∗∗

0.65
(14.01)∗∗∗

γr 0.37
(6.61)∗∗∗

0.53
(3.55)∗∗∗

0.52
(6.50)∗∗∗

0.55
(6.69)∗∗∗

0.47
(5.89)∗∗∗

0.46
(7.08)∗∗∗

Panel B: Realised Measures

HEAVY-RM
or GARCH(1,1)-RM

αR 0.41
(10.75)∗∗∗

0.41
(9.41)∗∗∗

0.40
(10.97)∗∗∗

0.48
(11.26)∗∗∗

0.50
(10.78)∗∗∗

0.46
(11.92)∗∗∗

βR 0.58
(15.97)∗∗∗

0.58
(13.28)∗∗∗

0.59
(16.18)∗∗∗

0.51
(12.31)∗∗∗

0.48
(10.69)∗∗∗

0.52
(13.35)∗∗∗

HEAVY-E-RM
or GARCH(1,1)-X-RM

αR 0.37
(9.83)∗∗∗

0.35
(9.34)∗∗∗

0.37
(11.04)∗∗∗

0.40
(9.10)∗∗∗

0.45
(9.61)∗∗∗

0.40
(10.38)∗∗∗

βR 0.59
(17.19)∗∗∗

0.59
(14.89)∗∗∗

0.58
(16.54)∗∗∗

0.54
(10.65)∗∗∗

0.50
(11.06)∗∗∗

0.54
(14.03)∗∗∗

γR 0.02
(2.89)∗∗∗

0.02
(4.19)∗∗∗

0.02
(4.55)∗∗∗

0.04
(4.34)∗∗∗

0.03
(4.08)∗∗∗

0.03
(5.01)∗∗∗

GARCH(1, 0)-X-RM βR 0.85
(90.61)∗∗∗

0.86
(70.07)∗∗∗

0.84
(128.7)∗∗∗

0.87
(74.47)∗∗∗

0.87
(93.89)∗∗∗

0.84
(77.67)∗∗∗

γR 0.10
(13.47)∗∗∗

0.06
(11.57)∗∗∗

0.06
(12.98)∗∗∗

0.09
(10.66)∗∗∗

0.10
(12.88)∗∗∗

0.11
(12.84)∗∗∗

Notes: The numbers in parentheses are t-statistics.
∗∗∗

,
∗∗

,
∗

denote significance at the 0.05, 0.10, 0.15 level respectively.

4.4.3 The extended HEAVY results

4.4.3.1 Stylised facts for Asymmetric Power (AP) specifications

After running the six benchmark HEAVY equations, we add asymmetries and power

transformations to enrich our volatility modelling by extending the original HEAVY models.

From the estimated results we choose to present in Table 4.4, we conclude to the stylised facts of

the Asymmetric Power Specifications:

For the squared returns we prefer the AP-HEAVY-E-r model since the power term δr is very

close to two in all cases, δr ∈ [1.93, 2.05] (see also the Wald tests of the power terms, where the

hypothesis of δ = 2 is not rejected) and the Heavy coefficient, γr, is significant and around 0.15

to 0.30. Although αr is insignificant and excluded in most cases, the own asymmetry coefficient
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(µr) is significant and around 0.10 for four out of the six cases. In other words, not only the

lagged realised measure but also the lagged squares of the negative returns drive the model of

the conditional variance of returns. Moreover, the momentum coefficient, βr, is estimated to be

around 0.70 to 0.85.

Regarding the realised measure equations we present the most preferred AP-HEAVY-E-RM

formulation, where we model the conditional standard deviation of the SSR realised measure, as

δR is estimated around 1.00 to 1.10 in all cases but one. The Wald tests of the power terms do

not reject the hypothesis of δ = 1. The Heavy coefficient, αR, is significant and around 0.30 to

0.35, while the Heavy-E or GARCH-X coefficient, γR, is between 0.50 and 1.00. This means that

both the SSR realised measure and the lagged squared returns affect significantly the conditional

standard deviation of the SSR realised measure. Lastly, the own asymmetry, µR, is significant and

around 0.10 to 0.20.

To sum up, in our first HEAVY extension with the inclusion of power transformations and

asymmetries in the equations, we estimate the HEAVY-E models with δi 6= 2 and µi 6= 0, where

both asymmetric coefficients are proved significant and positive. In the AP-HEAVY-E-r model, γr

is significant and around 0.20− 0.30 in all cases but one; αr is insignificant in all cases (except for

NIKKEI for which we estimate an APGARCH(1, 1)-X specification); µr is significant and around

0.10 in most cases50 and δr is close to two. In the AP-HEAVY-E-RM model, γR is significant

(around 0.50 to 1.00) and not close to zero as in the benchmark HEAVY, δR is close to one, which

means that the squared returns have a significant effect on the conditional standard deviation of

the SSR realised measure and µR is around 0.10 to 0.2051. (See also in the Appendix Table 4A.1

with the two preferred AP-HEAVY-E equations estimated linearly with fixed powers).

50 When we estimate models with µr, γr and πr, γr becomes insignificant.
51 When we estimate a model with µR, γR and πR, πR is around 0.55 to 1.00 and γR becomes insignificant (results not

reported).
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Table 4.4: AP-HEAVY-E Models; Specifications with ζ i = 0 and

Wald tests for restrictions on power terms - ChiSq(1)

Specification↓ SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Power Transformed Squared Returns

P-HEAVY-E-r
or PGARCH(1,1)-X-r

βr 0.72
(16.37)∗∗∗

0.85
(17.67)∗∗∗

0.70
(13.17)∗∗∗

0.61
(8.98)∗∗∗

0.60
(9.66)∗∗∗

0.65
(14.01)∗∗∗

αr 0.000
(0.00)

0.06
(2.50)∗∗∗

0.000
(0.00)

0.01
(0.22)

0.001
(0.00)

0.001
(0.00)

γr 0.60
(2.30)∗∗∗

0.15
(14.72)∗∗∗

0.54
(1.69)∗∗

0.69
(1.77)∗∗

0.59
(2.12)∗∗∗

0.48
(2.25)∗∗∗

δr 1.88
(16.94)∗∗∗

2.00
(9.15)∗∗∗

2.01
(14.77)∗∗∗

1.94
(13.44)∗∗∗

1.94
(15.64)∗∗∗

1.98
(17.56)∗∗∗

Wald tests δ = 1 62.10
[0.00]

26.14
[0.00]

51.49
[0.00]

42.30
[0.00]

57.34
[0.00]

81.00
[0.00]

δ = 2 1.21
[0.27]

0.00
[1.00]

0.004
[0.95]

0.19
[0.67]

0.23
[0.63]

0.01
[0.91]

AP-HEAVY-E-r
or APGARCH(1,0)-X-r◦

βr 0.77
(19.72)∗∗∗

0.85
(29.92)∗∗∗

0.80
(16.41)∗∗∗

0.80
(21.69)∗∗∗

0.71
(10.90)∗∗∗

0.76
(14.33)∗∗∗

µr 0.08
(1.88)∗∗

0.50
(5.66)∗∗∗

0.11
(1.61)∗∗

0.19
(1.86)∗∗∗

0.11
(1.90)∗∗

0.10
(2.23)∗∗∗

γr 0.28
(2.26)∗∗∗

0.13
(7.00)∗∗∗

0.31
(1.62)∗∗

0.21
(1.69)∗∗

0.32
(1.66)∗∗

0.19
(1.62)∗

δr 1.95
(20.84)∗∗∗

2.00
(12.90)∗∗∗

1.96
(13.18)∗∗∗

1.93
(14.46)∗∗∗

1.97
(15.71)∗∗∗

2.05
(17.14)∗∗∗

Wald tests δ = 1 103.2
[0.00]

39.80
[0.00]

41.50
[0.00]

48.81
[0.00]

60.21
[0.00]

77.57
[0.00]

δ = 2 0.27
[0.60]

0.00
[1.00]

0.09
[0.77]

0.29
[0.59]

0.07
[0.80]

0.17
[0.68]

Panel B: Power Transfomed Realised Measures

AP-HEAVY-E-RM
or APGARCH(1,1)-X-RM

βR 0.66
(24.79)∗∗∗

0.60
(16.31)∗∗∗

0.69
(15.11)∗∗∗

0.58
(14.88)∗∗∗

0.59
(15.27)∗∗∗

0.63
(19.91)∗∗∗

αR 0.30
(11.30)∗∗∗

0.34
(10.79)∗∗∗

0.29
(9.16)∗∗∗

0.33
(10.26)∗∗∗

0.35
(9.68)∗∗∗

0.31
(11.01)∗∗∗

µR 0.17
(8.52)∗∗∗

0.11
(7.78)∗∗∗

0.14
(5.81)∗∗∗

0.20
(3.71)∗∗∗

0.11
(7.21)∗∗∗

0.15
(8.76)∗∗∗

γR 0.56
(1.76)∗∗

0.50
(2.14)∗∗∗

0.74
(1.67)∗∗

0.59
(1.33)

0.78
(1.80)∗∗

0.94
(2.02)∗∗∗

δR 1.10
(6.55)∗∗∗

1.10
(5.57)∗∗∗

1.00
(64.51)∗∗∗

1.28
(5.07)∗∗∗

1.11
(6.52)∗∗∗

1.08
(6.71)∗∗∗

Wald tests δ = 1 0.34
[0.56]

0.26
[0.61]

0.002
[0.97]

1.21
[0.27]

0.41
[0.52]

0.25
[0.62]

δ = 2 28.84
[0.00]

20.66
[0.00]

34.66
[0.00]

8.23
[0.00]

27.43
[0.00]

32.72
[0.00]

Notes: See Notes in Table 4.3. The numbers in square brackets are p-values.

◦
For the NIKKEI we estimate a APGARCH(1, 1)-X-r model with αr : 0.05

(4.24)∗∗∗ .

4.4.3.2 Stylised facts for Long Memory Asymmetric Power specifications

We further extend the asymmetric power transformations with long memory through the

HYAPARCH framework and present the preferred models for each volatility process. For the

squared returns the chosen equation is the FIAP-HEAVY-E-r and for the SSR realised kernel we

select the HYDAP-HEAVY-E-RM .

In the FIAP-HEAVY-E-r specification for the power transformed absolute returns (Table 4.5)
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δr is close to 1.50 (around 1.30 to 1.70) with dr close to 0.50 (around 0.40 to 0.55). In most cases

the Wald tests reject the null hypotheses of d = 0 or 1 and δ = 1 or 2. The HEAVY coefficient, γr,

is significant and around 0.40 to 0.60. In other words, both the lagged realised measure and the

lagged power transformed absolute returns drive the model of the power transformed conditional

variance of returns. Furthermore, the own asymmetry coefficient (µr) is significant and around

0.30 to 0.60, while the αr is insignificant and excluded.

Table 4.5: FIAP-HEAVY-E-r Specifications with ζr = 1, φr = 0
Power Transformed Squared Returns and Wald tests for restrictions

on power terms and fractional differencing parameters - ChiSq(1) and ChiSq(2)

SP NIKKEI TSE FTSE DAX EUSTOXX

FIAP-HEAVY-E-r
or FIAPGARCH(1,0)-X-r

βr 0.46
(6.13)∗∗∗

0.46
(4.17)∗∗∗

0.49
(8.89)∗∗∗

0.36
(4.88)∗∗∗

0.46
(4.57)∗∗∗

0.52
(1.79)∗∗

dr 0.49
(7.34)∗∗∗

0.51
(5.74)∗∗∗

0.52
(6.94)∗∗∗

0.40
(6.07)∗∗∗

0.49
(5.71)∗∗∗

0.54
(3.07)∗∗∗

µr 0.58
(3.73)∗∗∗

0.29
(1.92)∗∗

0.40
(1.87)∗∗

0.60
(4.13)∗∗∗

0.53
(3.88)∗∗∗

0.48
(2.42)∗∗∗

γr 0.38
(1.52)∗

0.42
(1.50)∗

0.59
(1.63)∗

0.62
(1.45)∗

0.63
(2.41)∗∗∗

0.49
(2.15)∗∗∗

δr 1.40
(10.64)∗∗∗

1.55
(5.92)∗∗∗

1.37
(5.84)∗∗

1.52
(11.83)∗∗∗

1.35
(12.15)∗∗∗

1.66
(6.57)∗∗∗

Wald tests d = 0 53.88
[0.00]

32.93
[0.00]

48.17
[0.00]

36.83
[0.00]

32.70
[0.00]

8.78
[0.00]

d = 1 58.37
[0.00]

30.40
[0.00]

41.04
[0.00]

82.87
[0.00]

34.57
[0.00]

6.37
[0.01]

δ = 1 9.13
[0.00]

4.36
[0.04]

2.46
[0.12]

16.58
[0.00]

9.67
[0.00]

7.07
[0.01]

δ = 2 21.10
[0.00]

3.01
[0.08]

7.29
[0.01]

13.61
[0.00]

35.10
[0.00]

1.77
[0.18]

d = 0 and δ = 1 58.20
[0.00]

33.38
[0.00]

63.56
[0.00]

36.84
[0.00]

39.65
[0.00]

9.39
[0.01]

d = 0 and δ = 2 85.26
[0.00]

43.65
[0.00]

139.7
[0.00]

152.0
[0.00]

74.06
[0.00]

32.83
[0.00]

d = 1 and δ = 1 74.81
[0.00]

43.22
[0.00]

98.97
[0.00]

281.5
[0.00]

47.67
[0.00]

46.73
[0.00]

d = 1 and δ = 2 71.51
[0.00]

30.53
[0.00]

44.91
[0.00]

94.88
[0.00]

64.24
[0.00]

6.82
[0.03]

Notes: See Notes in Table 4.3. The numbers in square brackets are p-values.

In the HYDAP-HEAVY-E-RM of the power transformed SSR realised measure (Tables 4.6a

and 4.6b) we model the power transformed conditional variance of the SSR realised measure

since δR is estimated around 1.25 to 1.40. The Wald tests do not reject the null of δ = 1 at 5%

significance level for two out of six cases. There is also strong evidence of hyperbolic memory

as ζR and dR are around 0.80 − 0.90 and 0.50 − 0.70 respectively, with the Wald tests always

rejecting the null of both equal to 0 or 1. We further include the two GARCH-X coefficients, γR
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and πR. The former is always insignificant and excluded and the latter, which captures the cross

asymmetries, is significant and around 0.80 − 1.10 in all but one case. So, both lagged power

transformations of the SSR realised measure and the lagged squares of negative returns affect

significantly the power transformed conditional variances of the SSR realised measure. The own

asymmetry is significant in all but one case and around 0.20 to 0.70 and the other two Heavy

coefficients, βR and φR, are around 0.45 − 0.65 and 0.15 − 0.35 respectively. It seems that the

HYDAP-HEAVY-E-RM specification with δR ∼ 1.30, ζR ∼ 0.85 and dR ∼ 0.70 is the preferred

model.

Table 4.6a: HYDAP-HEAVY-E-RM Specification with no restrictions

Power Transformed Realised Measures

SP NIKKEI TSE FTSE DAX EUSTOXX

HYDAP-HEAVY-E-RM
or HYDAPGARCH(1,1)-X-RM

βR 0.63
(13.64)∗∗∗

0.50
(7.17)∗∗∗

0.46
(7.03)∗∗∗

0.47
(6.43)∗∗∗

0.65
(12.14)∗∗∗

0.63
(12.16)∗∗∗

φR 0.20
(8.14)∗∗∗

0.20
(5.42)∗∗∗

0.28
(4.44)∗∗∗

0.16
(7.36)∗∗∗

0.35
(6.04)∗∗∗

0.28
(7.03)∗∗∗

dR 0.72
(14.39)∗∗∗

0.69
(13.10)∗∗∗

0.53
(15.04)∗∗∗

0.67
(16.00)∗∗∗

0.69
(15.78)∗∗∗

0.71
(15.30)∗∗∗

ζR 0.81
(29.85)∗∗∗

0.89
(45.59)∗∗∗

0.85
(40.10)∗∗∗

0.92
(68.07)∗∗∗

0.87
(51.63)∗∗∗

0.85
(41.75)∗∗∗

µR 0.71
(4.36)∗∗∗

0.17
(3.45)∗∗∗

0.20
(2.95)∗∗∗

0.03
(0.33)

0.18
(3.31)∗∗∗

0.27
(3.60)∗∗∗

πR 0.95
(1.65)∗∗

0.78
(1.45)∗

1.11
(2.30)∗∗∗

1.86
(2.24)∗∗∗

0.84
(1.81)∗∗

1.07
(1.47)∗

δR 1.42
(7.52)∗∗∗

1.25
(5.06)∗∗∗

1.33
(12.79)∗∗∗

1.24
(10.61)∗∗∗

1.39
(9.04)∗∗∗

1.35
(6.76)∗∗∗

Notes: See Notes in Table 4.3
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Table 4.6b: HYDAP-HEAVY-E-RM Specification with no restrictions

Wald tests for restrictions on power terms, fractional differencing and amplitude parameters

ChiSq(1), ChiSq(2) and ChiSq(3)

SP NIKKEI TSE FTSE DAX EUSTOXX

d = 0 207.3
[0.00]

171.8
[0.00]

225.8
[0.00]

255.9
[0.00]

249.1
[0.00]

234.2
[0.00]

d = 1 30.22
[0.00]

35.39
[0.00]

184.8
[0.00]

63.57
[0.00]

49.78
[0.00]

40.27
[0.00]

ζ = 0 890.5
[0.00]

2077.3
[0.00]

1604.7
[0.00]

4622.7
[0.00]

2662.1
[0.00]

1735.3
[0.00]

ζ = 1 45.97
[0.00]

29.47
[0.00]

53.06
[0.00]

36.03
[0.00]

56.85
[0.00]

52.53
[0.00]

δ = 1 4.93
[0.03]

1.04
[0.31]

9.93
[0.00]

4.20
[0.04]

6.39
[0.01]

3.05
[0.08]

δ = 2 9.48
[0.00]

9.10
[0.00]

42.15
[0.00]

42.50
[0.00]

15.90
[0.00]

10.67
[0.00]

d = 1 and ζ = 1 50.53
[0.00]

51.22
[0.00]

210.8
[0.00]

90.02
[0.00]

70.65
[0.00]

59.10
[0.00]

d = 0 and ζ = 1 513.8
[0.00]

258.1
[0.00]

324.3
[0.00]

317.3
[0.00]

580.7
[0.00]

641.1
[0.00]

d = 1 and ζ = 0 1569.7
[0.00]

2433.4
[0.00]

2027.1
[0.00]

4868.4
[0.00]

4186.3
[0.00]

3204.2
[0.00]

d = 0 and ζ = 0 895.8
[0.00]

2078.1
[0.00]

1676.5
[0.00]

4693.9
[0.00]

2816.8
[0.00]

1867.7
[0.00]

d = 1 and δ = 1 36.75
[0.00]

38.55
[0.00]

194.2
[0.00]

63.99
[0.00]

51.61
[0.00]

40.27
[0.00]

d = 1 and δ = 2 37.80
[0.00]

74.75
[0.00]

228.2
[0.00]

128.4
[0.00]

77.42
[0.00]

67.25
[0.00]

d = 0 and δ = 1 209.2
[0.00]

229.0
[0.00]

236.4
[0.00]

280.4
[0.00]

276.9
[0.00]

272.1
[0.00]

d = 0 and δ = 2 223.0
[0.00]

181.2
[0.00]

266.7
[0.00]

269.9
[0.00]

250.9
[0.00]

235.1
[0.00]

ζ = 1 and δ = 1 47.07
[0.00]

33.95
[0.00]

53.67
[0.00]

36.03
[0.00]

65.60
[0.00]

70.43
[0.00]

ζ = 1 and δ = 2 95.51
[0.00]

76.33
[0.00]

142.1
[0.00]

117.3
[0.00]

187.1
[0.00]

173.7
[0.00]

ζ = 0 and δ = 1 1220.9
[0.00]

2918.6
[0.00]

1907.5
[0.00]

5300.5
[0.00]

4775.5
[0.00]

3355.4
[0.00]

ζ = 0 and δ = 2 1039.1
[0.00]

2666.6
[0.00]

1656.3
[0.00]

4910.2
[0.00]

4069.4
[0.00]

2855.8
[0.00]

d = 1 and ζ = 1 and δ = 1 50.56
[0.00]

395.5
[0.00]

212.8
[0.00]

91.11
[0.00]

75.20
[0.00]

73.38
[0.00]

d = 1 and ζ = 1 and δ = 2 96.39
[0.00]

586.5
[0.00]

288.1
[0.00]

194.6
[0.00]

188.2
[0.00]

173.8
[0.00]

Notes: The numbers in square brackets are p-values.

4.4.3.3 Power Terms and Long Memory parameters

Power terms (δ̂i)

We further focus on the behaviour of the power terms across the different specifications

estimated (see also in the Appendix Tables 4A.2 and 4A.3 with the esimated γR and πR). In

Table 4.7 we present analytically the powers estimated (δ̂i). Regarding the returns equations,

for the short memory specifications δ̂r is very close to 2 (with or without asymmetries), while
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for the symmetric fractionally integrated ones in three cases the estimated power is between

1.60 and 1.70. When we include asymmetries as well, the estimated power terms are decreasing

further around 1.40 to 1.65. In the case of the realised measure formulations, for the symmetric

short memory specifications δ̂R is around 1.10 to 1.30. When we include own asymmetries the

estimated power decreases a bit and in all cases but one, is around 1.00− 1.10. For the symmetric

hyperbolic specifications δ̂R is higher in the majority of the cases; it is between 1.00 and 1.40

(for four out of the six cases it is around 1.30 to 1.40). When we include both own and cross

asymmetries it slightly increases to 1.25− 1.40.

Table 4.7: HEAVY-E Models; Power Parameters δ

Spec.↓ SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Power Transformed Squared Returns

P ◦ 1.88
(17.28)∗∗∗

2.00
(12.71)∗∗∗

2.00
(14.17)∗∗∗

1.94
(13.95)∗∗∗

1.94
(16.30)∗∗∗

1.98
(18.00)∗∗∗

AP ◦ 1.95
(20.84)∗∗∗

2.00
(12.90)∗∗∗

1.96
(13.18)∗∗∗

1.93
(14.46)∗∗∗

1.97
(15.71)∗∗∗

2.05
(17.14)∗∗∗

FIP 1.67
(27.77)∗∗∗

1.90
(27.74)∗∗∗

1.64
(22.27)∗∗∗

1.98
(28.10)∗∗∗

1.62
(20.04)∗∗∗

1.94
(19.48)∗∗∗

FIAP 1.40
(10.64)∗∗∗

1.55
(5.92)∗∗∗

1.37
(5.84)∗∗∗

1.52
(11.83)∗∗∗

1.35
(12.15)∗∗∗

1.66
(6.57)∗∗∗

Panel B: Power Transformed Realised Kernels

P 1.14
(6.38)∗∗∗

1.12
(4.77)∗∗∗

1.17
(71.45)∗∗∗

1.30
(6.57)∗∗∗

1.18
(6.45)∗∗∗

1.25
(6.93)∗∗∗

AP 1.10
(6.55)∗∗∗

1.10
(5.57)∗∗∗

1.00
(64.51)∗∗∗

1.28
(5.07)∗∗∗

1.11
(6.52)∗∗∗

1.08
(6.71)∗∗∗

HY P 1.01
(4.68)∗∗∗

1.14
(4.68)∗∗∗

1.35
(9.04)∗∗∗

1.26
(6.52)∗∗∗

1.29
(6.19)∗∗∗

1.38
(6.31)∗∗∗

HY AP 1.14
(6.14)∗∗∗

1.06
(4.74)∗∗∗

1.33
(9.40)∗∗∗

1.27
(5.54)∗∗∗

1.21
(7.18)∗∗∗

1.26
(7.14)∗∗∗

HYDAP 1.42
(7.52)∗∗∗

1.25
(5.06)∗∗∗

1.33
(12.79)∗∗∗

1.24
(10.61)∗∗∗

1.39
(9.04)∗∗∗

1.35
(6.76)∗∗∗

Notes: See Notes in Table 4.3
◦

Estimated models withoutαr except for NIKKEI (AP).

Long memory parameters (d̂i and ζ̂ i)

In Table 4.8 we present the long memory parameters estimated under each long memory

extension we run. For the returns equations the fractionally integrated models are the preferred

ones, that is ζr = 1. In the symmetric FIGARCH model d̂r is between 0.50 and 0.70 and reduces

to 0.40 − 0.55 when power transformations and asymmetries are added (FIAPARCH). In the
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realised measure HYAPARCH models chosen, d̂R is between 0.60 and 0.80 for the hyperbolic

models without asymmetries and power transformations. When we include them the estimated

long memory parameter slightly reduces and hovers around 0.55 to 0.70. The estimated amplitude

parameter, ζ̂R, is between 0.90 and 1.00 for the hyperbolic models without asymmetries and

power transformations. When we include them the estimated hyperbolic parameter is smaller,

around 0.80 to 0.90.

Table 4.8: HEAVY-E Models; Long memory Parameters d, ζ

SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Power Transformed Squared Returns

FI 0.62
(6.13)∗∗∗

0.53
(3.94)∗∗∗

0.69
(9.40)∗∗∗

0.47
(4.13)∗∗∗

0.56
(9.09)∗∗∗

0.66
(3.86)∗∗∗

FIP 0.56
(5.59)∗∗∗

0.52
(5.21)∗∗∗

0.61
(4.51)∗∗∗

0.47
(5.40)∗∗∗

0.48
(2.16)∗∗∗

0.59
(7.12)∗∗∗

FIAP 0.49
(7.34)∗∗∗

0.51
(5.74)∗∗∗

0.52
(6.94)∗∗∗

0.40
(6.07)∗∗∗

0.49
(5.71)∗∗∗

0.54
(3.07)∗∗∗

Panel B: Power Transformed Realised Kernels

d
HY 0.76

(11.05)∗∗∗
0.72

(12.38)∗∗∗
0.62

(13.29)∗∗∗
0.62

(9.22)∗∗∗
0.72

(10.83)∗∗∗
0.74

(10.25)∗∗∗

HY P 0.77
(9.50)∗∗∗

0.72
(11.55)∗∗∗

0.55
(11.75)∗∗∗

0.63
(11.84)∗∗∗

0.72
(10.89)∗∗∗

0.75
(10.07)∗∗∗

HY AP 0.71
(10.76)∗∗∗

0.74
(11.81)∗∗∗

0.55
(12.36)∗∗∗

0.63
(13.10)∗∗∗

0.70
(12.19)∗∗∗

0.70
(10.57)∗∗∗

HYDAP 0.72
(14.39)∗∗∗

0.69
(13.10)∗∗∗

0.53
(15.04)∗∗∗

0.67
(16.00)∗∗∗

0.69
(15.78)∗∗∗

0.71
(15.30)∗∗∗

ζ
HY 0.95

(52.95)∗∗∗
0.93

(54.94)∗∗∗
0.98

(89.48)∗∗∗
0.95

(47.40)∗∗∗
0.93

(48.54)∗∗∗
0.91

(41.98)∗∗∗

HY P 0.97
(70.58)∗∗∗

0.94
(59.74)∗∗∗

0.92
(51.18)∗∗∗

0.94
(30.28)∗∗∗

0.93
(56.72)∗∗∗

0.92
(48.79)∗∗∗

HY AP 0.83
(18.99)∗∗∗

0.87
(31.13)∗∗∗

0.79
(27.79)∗∗∗

0.85
(23.44)∗∗∗

0.85
(32.76)∗∗∗

0.81
(21.52)∗∗∗

HYDAP 0.81
(29.85)∗∗∗

0.89
(45.59)∗∗∗

0.85
(40.10)∗∗∗

0.92
(68.07)∗∗∗

0.87
(51.63)∗∗∗

0.85
(41.75)∗∗∗

Notes: See Notes in Table 4.3

Finally, in the Appendix Tables 4A.2 and 4A.3 we present the esimated γR and πR of

the HEAVY-E-RM formulations. We see that the Garch-x coefficient (γR) is small in the

specifications without powers and asymmetries and becomes large when power and asymmetries

are added. The cross asymmetry coefficient (πR) is mostly higher when the hyperbolic memory is

added.
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4.5 HEAVY extended with the Overnight indicator and the Garman-Klass volatility

4.5.1 The Overnight trading activity indicator

We further extend the HEAVY models adding a trading activity proxy for volume to study

the volume-volatility relationship. Lamoureux and Lastrapes (1990) added a volume variable in

the GARCH (1, 1) model to explain the conditional variance of daily returns and especially the

persistence of the model. We follow Gallo and Pacini (2000) who test two alternative proxies for

trading activity, apart from volume, in the GARCH equation of daily returns. The first variable

is the intra-day volatility IDVt, which is calculated as the difference between the highest (PH
t )

and the lowest (PL
t ) price divided by the closing price (PC

t ) on day t.: IDVt =
PHt −PLt
PCt

, which

we do not test with the HEAVY models, as it is a close (but more simplistic) specification to

the Garman-Klass volatility that we intend to study in the following part of the chapter. The

second trading activity proxy suggested by Gallo and Pacini (2000) is the overnight indicator

ONIt =
∣∣∣log

POt
PCt−1

∣∣∣, where PO
t is the opening price of day t. The overnight indicator ONIt, which

represents the overnight surprise and we choose to study with the HEAVY models, is proved to

contain information for the conditional variance of the close-to-close returns and the conditional

mean of the realised kernel (open-to-close variation).

We calculate ONIt from the prices available in the OMI’s realised library and add it with the

coefficient ϑi (i = r, R) as variance regressors in the three returns equations as well as in the

three realised kernel equations to detect the effect on the original models of Table 4.3. Table

4.11 presents the overnight information effect on the HEAVY models. ONIt captures the trading

activity information of the end-of-day traders of the previous day’s closing to the following day’s

opening. We add the contemporaneous ONIt as in Gallo and Pacini (2000). All ϑ′s are positive

with sound influence on the coefficients of the returns equations estimated. In the GARCH(1, 1)-r

αr is mostly higher and βr lower with their sum lower. The overnight surprise absorbs some of

163



the previous day’s conditional variance effect (βr) and a part of the whole model’s persistence

(αr + βr). In the HEAVY-E-r with ONIt γr becomes higher, all αr coefficients become zero

and βr is much lower, as ONIt receives again a lot of the previous day’s conditional variance

and the whole persistence, increasing the effect of the lagged realised measure. In the HEAVY-r

model we observe material differences in γr and βr comparing to the original results without

ONIt. Their movement is similar to the HEAVY-E-r equations with lower βr and higher γr. All

ϑ′rs are significant in the returns models, while in the realised kernel models we have two times

insignificant ϑR for the GARCH(1, 0)-X-RM . The realised kernel equations are almost identical

to the benchmark equations without ONIt and ϑ′Rs are close to zero. The realised measure models

receive immaterial contribution from the overnight trading activity indicator.
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Table 4.9: HEAVY/GARCH models withONIt coefficient ϑi
Equ. (1) becomes: (1− βiL)σ2it = ωi + αiε

2
i,t−1 + γiε

2
j,t−1 + ϑiONIt, i, j = r, R, j 6= i

SP NIKKEI TSE FTSE DAX EUSTOXX

GARCH(1, 1)-r αr 0.09
(7.86)∗∗∗

0.10
(6.21)∗∗∗

0.10
(5.02)∗∗∗

0.11
(6.36)∗∗∗

0.10
(5.66)∗∗∗

0.10
(5.28)∗∗∗

βr 0.88
(60.39)∗∗∗

0.89
(58.82)∗∗∗

0.86
(22.44)∗∗∗

0.85
(28.16)∗∗∗

0.86
(32.34)∗∗∗

0.83
(20.61)∗∗∗

ϑr 0.007
(2.78)∗∗∗

0.000
(0.33)

0.002
(1.93)∗∗∗

0.003
(2.85)∗∗∗

0.005
(2.99)∗∗∗

0.013
(2.53)∗∗∗

HEAVY-E-r
or GARCH(1,1)-X-r

αr 0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

βr 0.62
(4.81)∗∗∗

0.75
(8.31)∗∗∗

0.73
(9.70)∗∗∗

0.45
(4.88)∗∗∗

0.33
(3.44)∗∗∗

0.53
(7.40)∗∗∗

γr 0.44
(4.12)∗∗∗

0.41
(2.33)∗∗∗

0.31
(4.87)∗∗∗

0.49
(6.47)∗∗∗

0.62
(6.83)∗∗∗

0.44
(6.86)∗∗∗

ϑr 0.017
(1.68)∗∗

0.004
(2.76)∗∗∗

0.007
(2.90)∗∗∗

0.012
(4.44)∗∗∗

0.019
(5.01)∗∗∗

0.023
(4.03)∗∗∗

HEAVY-r
or GARCH(1,0)-X-r

βr 0.62
(6.49)∗∗∗

0.77
(13.21)∗∗∗

0.70
(13.06)∗∗∗

0.46
(7.03)∗∗∗

0.34
(3.58)∗∗∗

0.53
(7.75)∗∗∗

γr 0.44
(4.32)∗∗∗

0.39
(3.55)∗∗∗

0.49
(4.93)∗∗∗

0.48
(8.43)∗∗∗

0.62
(7.17)∗∗∗

0.45
(5.97)∗∗∗

ϑr 0.017
(2.10)∗∗∗

0.005
(4.00)∗∗∗

0.005
(5.01)∗∗∗

0.012
(7.87)∗∗∗

0.019
(5.08)∗∗∗

0.028
(4.47)∗∗∗

HEAVY-RM
or GARCH(1,1)-RM

αR 0.41
(11.21)∗∗∗

0.40
(10.17)∗∗∗

0.41
(11.07)∗∗∗

0.48
(11.44)∗∗∗

0.49
(10.61)∗∗∗

0.46
(11.41)∗∗∗

βR 0.56
(15.07)∗∗∗

0.57
(13.46)∗∗∗

0.58
(15.60)∗∗∗

0.50
(11.81)∗∗∗

0.48
(10.11)∗∗∗

0.49
(11.55)∗∗∗

ϑR 0.006
(3.03)∗∗∗

0.001
(3.31)∗∗∗

0.001
(2.75)∗∗∗

0.001
(3.62)∗∗∗

0.003
(3.40)∗∗∗

0.005
(4.82)∗∗∗

HEAVY-E-RM
or GARCH(1,1)-X-RM

αR 0.37
(9.99)∗∗∗

0.37
(9.41)∗∗∗

0.39
(7.61)∗∗∗

0.42
(9.83)∗∗∗

0.44
(9.40)∗∗∗

0.40
(9.99)∗∗∗

βR 0.57
(15.95)∗∗∗

0.57
(13.43)∗∗∗

0.57
(8.73)∗∗∗

0.52
(12.13)∗∗∗

0.49
(10.28)∗∗∗

0.51
(11.94)∗∗∗

γR 0.02
(2.70)∗∗∗

0.01
(2.94)∗∗∗

0.02
(3.74)∗∗∗

0.03
(3.77)∗∗∗

0.02
(3.83)∗∗∗

0.03
(4.51)∗∗∗

ϑR 0.005
(2.97)∗∗∗

0.001
(2.29)∗∗∗

0.000
(1.55)∗

0.001
(2.40)∗∗∗

0.002
(3.09)∗∗∗

0.005
(4.38)∗∗∗

GARCH(1, 0)-X-RM βR 0.84
(81.52)∗∗∗

0.87
(67.63)∗∗∗

0.84
(76.78)∗∗∗

0.87
(55.45)∗∗∗

0.86
(85.38)∗∗∗

0.82
(67.70)∗∗∗

γR 0.10
(14.13)∗∗∗

0.06
(10.72)∗∗∗

0.06
(11.73)∗∗∗

0.09
(9.10)∗∗∗

0.10
(12.92)∗∗∗

0.11
(13.04)∗∗∗

ϑR 0.003
(3.60)∗∗∗

0.001
(4.83)∗∗∗

0.000
(0.00)

0.000
(0.00)

0.002
(4.06)∗∗∗

0.004
(6.03)∗∗∗

Notes: See Notes in Table 4.3

4.5.2 The Garman-Klass volatility

In this part of our study, we test the inclusion of an alternative measure of volatility (apart

from squared returns and realised kernel) to the HEAVY framework already analysed. Using data

on the daily high, low, opening and closing prices of each index in the OMI’s realised library

we generate an alternative daily measure of price volatility. To avoid the microstructure biases

introduced by high frequency data and based on the conclusion of Chen et al. (2006) that the

range-based and high-frequency integrated volatility provide essentially equivalent results, we
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employ the classic range-based estimator of Garman and Klass (1980) - GK - to construct the

daily volatility (GKt) as follows:

GKt =
1

2
u2 − (2ln2− 1)c2, t ∈ N,

where u and c are the differences in the natural logarithms of the high and low and of the closing

and opening prices respectively. We further form the SSR of the GKt in order to use it as

dependent variable in the HEAVY/GARCH/MEM models.

We run for SP all benchmark equations of Table 4.3 applying all possible combinations with

GKt as dependent variable and as regressor. Table 4.10 presents the new results with SP’s GKt.

The boxed area contains the combinations already shown in Table 4.3. It is obvious from the

results below that the realised kernel has a stronger effect on the GK volatility than the opposite

when we estimate a significant non zero arch coefficient and add the lagged squared returns as

second regressor. The reverse effect is observed when the arch effect is omitted. In the regressions

with GKt as dependent variable the arch coefficient is zero when the lagged RKt is added,

same as in the benchmark returns equations and when the lagged r2t is added, the αGK remains

significant and non zero, same as in the benchmark realised measure equations. Comparing the

standard GARCH(1, 1) models of the three dependent variables, we see that the arch and garch

coefficients of the GK volatility take values between the other two variables’ coefficients’ values,

respectively. For the RKt models, we result to a more sound impact of GKt than the impact of the

lagged r2t , with a lower arch coefficient when GKt is added. Regarding the returns equations, the

effect of RKt dominates GKt, which becomes zero when both regressors are used and both also

absorb the arch effect (of the lagged r2t ). Overall, we could deduce from our GK-extended models

that the GK volatility by definition is a measure for intra-day volatility a lot more sufficient and

’correct’ than the squared returns but less comprehensive and ’suitable’ than the realised kernel

to contain the intra-daily trading information. Our results show stronger RKt effects than GKt
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and the GKt models seem to share characteristics with both the other two dependent variables’

equations, but with more similarities to the realised measure models. The same conclusions can be

drawn after running the GKt as dependent variable with asymmetries and power transformations

for the six indices presented in this study (see in the Appendix Tables 4A.4 and 4A.5, the values

of the power terms are between the respective values of the other two variables on average).

Table 4.10: HEAVY/GARCH models withGKt,RKt and r2t for SP

Equ. (1) becomes:

(1− βiL)σ2it = ωi + αiε
2
i,t−1 + γjε

2
j,t−1, i, j = r, R,GK, j 6= i

dependent variable→ GKt RKt r2t
GARCH(1, 1) αGK 0.21

(6.75)∗∗∗
αR 0.41

(10.75)∗∗∗
αr 0.09

(7.84)∗∗∗

βGK 0.78
(26.84)∗∗∗

βR 0.58
(15.97)∗∗∗

βr 0.90
(80.08)∗∗∗

GARCH(1, 1)-X αGK 0.15
(7.29)∗∗∗

αR 0.37
(9.83)∗∗∗

αr 0.000
(0.00)

βGK 0.78
(33.04)∗∗∗

βR 0.59
(17.19)∗∗∗

βr 0.71
(15.44)∗∗∗

γr2 0.03
(3.61)∗∗∗

γr2 0.02
(2.89)∗∗∗

γRK 0.37
(6.70)∗∗∗

GARCH(1, 0)-X βGK 0.87
(67.47)∗∗∗

βR 0.85
(90.61)∗∗∗

βr 0.71
(16.70)∗∗∗

γr2 0.07
(8.86)∗∗∗

γr2 0.10
(13.47)∗∗∗

γRK 0.37
(6.61)∗∗∗

GARCH(1, 1)-X αGK 0.000
(0.00)

αR 0.33
(6.95)∗∗∗

αr 0.000
(0.00)

βGK 0.64
(10.98)∗∗∗

βR 0.59
(16.00)∗∗∗

βr 0.81
(40.67)∗∗∗

γRK 0.28
(4.19)∗∗∗

γGK 0.08
(3.13)∗∗∗

γGK 0.30
(7.61)∗∗∗

GARCH(1, 0)-X βGK 0.64
(11.68)∗∗∗

βR 0.73
(35.16)∗∗∗

βr 0.81
(40.28)∗∗∗

γRK 0.28
(5.95)∗∗∗

γGK 0.32
(11.64)∗∗∗

γGK 0.30
(9.01)∗∗∗

GARCH(1, 1)-X αGK 0.000
(0.00)

αR 0.28
(6.08)∗∗∗

αr 0.000
(0.00)

βGK 0.65
(11.30)∗∗∗

βR 0.60
(17.39)∗∗∗

βr 0.71
(14.90)∗∗∗

γr2 0.01
(1.15)

γr2 0.02
(3.06)∗∗∗

γRK 0.37
(4.08)∗∗∗

γRK 0.25
(3.67)∗∗∗

γGK 0.08
(3.36)∗∗∗

γGK 0.000
(0.00)

GARCH(1, 0)-X βGK 0.65
(12.09)∗∗∗

βR 0.72
(39.48)∗∗∗

βr 0.71
(16.11)∗∗∗

γr2 0.01
(1.16)

γr2 0.05
(6.38)∗∗∗

γRK 0.37
(4.00)∗∗∗

γRK 0.25
(5.07)∗∗∗

γGK 0.25
(12.69)∗∗∗

γGK 0.000
(0.00)

Notes: See Notes in Table 4.3. The γ coefficient’s subscript denotes the

regressor variable used and not the dependent variable of the equation.
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4.6 Structural breaks in the HEAVY framework

In this Section of the study we intend to identify the structural breaks effects on the HEAVY

models and focus on the recent Global financial crisis. We test for structural breaks by employing

the methodology in Bai and Perron (1998, 2003a,b), who address the problem of testing for

multiple structural changes in a least squares context and under very general conditions on the

data and the errors. In addition to testing for the presence of breaks, these statistics identify the

number and location of multiple breaks. So, for each index squared returns and realised kernel

series we identify the structural breaks with the Bai and Perron methodology (Table 4.11, Panels

A and B). We select the breaks of the returns series (Table 4.11, Panel C) first to build the slope

dummies (for the garch-x and heavy coefficient and the asymmetries in the AP-models) for the

benchmark HEAVY models. We observe that for all indices a break date for the current financial

crisis of 2007-08 is detected, so that we can focus on the recent crisis effect.

We first run the benchmark HEAVY equations with the selected returns breaks and present

the results in Tables 4.12a and 4.12b. Our main finding is that the dummies corresponding to

the 2007-08 crisis are mainly positive and give an increment to the coefficient they refer to. We

observe always that the heavy and garch-x coefficients in the both the returns and the realised

measure equations become higher after the crisis. The two other dummies for 2003 and 2009-10

(sovereign debt crisis) give mainly a negative effect. The garch β′s remain mostly in the same

level as the models without dummies.

We then run the same equations with the realised kernel breaks and the asymmetric power

specifications with the returns breaks (results not reported, available upon request). All our

estimates are consistent and lead to similar conclusions for the crisis effects as the results reported

from the benchmark models in Tables 4.12a,b. We could only notice that the power terms are

close, but tend to be a bit higher than the models without break dummies.
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Table 4.11: Break dates

Panel A: Squared returns

Break SP-r NIKKEI-r TSE-r FTSE-r DAX-r EUSTOXX-r

1 02/04/2003 17/12/2003 14/01/2008 19/05/2003 07/07/2003 22/05/2003

2 08/09/2006 27/12/2007 03/09/2009 23/07/2007 14/01/2008 18/01/2008

3 03/09/2008 13/01/2010 15/07/2009 11/01/2010 27/05/2010

4 17/08/2010

Panel B: Realised Kernel

Break SP-R NIKKEI
∗

-R TSE-R FTSE-R DAX-R EUSTOXX-R

1 11/04/2003 17/12/2003 21/09/2005 29/04/2003 21/05/2003 06/06/2003

2 04/01/2008 09/05/2007 04/01/2008 24/07/2007 09/05/2005 15/01/2008

3 28/12/2009 19/05/2009 25/08/2009 16/07/2009 17/01/2008 26/01/2010

Panel C: Selected break dates for each index (from squared returns)

Break SP NIKKEI TSE FTSE DAX EUSTOXX

1 02/04/2003 17/12/2003 14/01/2008 19/05/2003 07/07/2003 22/05/2003

2 03/09/2008 27/12/2007 03/09/2009 23/07/2007 14/01/2008 18/01/2008

3 17/08/2010 13/01/2010 15/07/2009 11/01/2010 27/05/2010

Bai & Perron breaks identification:

Results selected from the repartition procedure for 1% significance level

with 5 maximum number of breaks and 0.15 trimming parameter.

* For the realised kernel of NIKKEI the 10% significance level is preferred,

since the 1% level gives only 1 break at 19/05/2009
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Table 4.12a: HEAVY/GARCH models with breaks (selected from squared returns)

(1− βiL)σ2it = ωi + αiε
2
i,t−1 +

∑3
z=1 αizDizε

2
i,t−1 + γiε

2
j,t−1 +

∑3
z=1 γizDizε

2
j,t−1,

i, j = r, R, j 6= i, z = 1, 2, 3 the break dates andDiz the dummies for the breaks

SP NIKKEI TSE FTSE DAX EUSTOXX

GARCH(1, 1)−r αr 0.10
(7.24)∗∗∗

0.11
(6.28)∗∗∗

0.074
(6.35)∗∗∗

0.11
(6.61)∗∗∗

0.11
(5.88)∗∗∗

0.11
(6.06)∗∗∗

αr1 −0.028
(−2.67)∗∗∗

−0.026
(−1.94)∗∗

0.027
(2.04)∗∗∗

−0.048
(−3.52)∗∗∗

−0.037
(−2.74)∗∗∗

−0.038
(−3.06)∗∗∗

αr2 0.028
(2.37)∗∗∗

0.030
(1.95)∗∗

−0.024
(−1.92)∗∗

0.066
(3.51)∗∗∗

0.028
(2.66)∗∗

0.034
(2.97)∗∗

αr3 −0.018
(−1.47)∗

−0.020
(−1.42)

−0.030
(−2.07)∗∗∗

βr 0.90
(75.79)∗∗∗

0.88
(54.21)∗∗∗

0.90
(56.13)∗∗∗

0.88
(56.63)∗∗∗

0.89
(60.94)∗∗∗

0.89
(55.56)∗∗∗

HEAVY-E-r
or GARCH(1,1)-X-r

αr 0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

βr 0.71
(14.44)∗∗∗

0.72
(9.12)∗∗∗

0.74
(16.24)∗∗∗

0.61
(10.52)∗∗∗

0.60
(9.66)∗∗∗

0.62
(12.11)∗∗∗

γr 0.38
(6.43)∗∗∗

0.44
(2.90)∗∗∗

0.69
(4.52)∗∗∗

0.44
(5.13)∗∗∗

0.45
(5.79)∗∗∗

0.50
(6.42)∗∗∗

γr1 −0.061
(−1.89)∗∗

−0.14
(−2.01)∗∗∗

−0.145
(−3.13)∗∗∗

γr2 0.066
(2.24)∗∗∗

0.22
(2.23)∗∗∗

−0.22
(−3.29)∗∗∗

0.18
(3.91)∗∗∗

0.05
(1.44)∗

0.167
(2.90)∗∗∗

γr3 −0.085
(−1.65)∗∗

HEAVY-r
or GARCH(1,0)-X-r

βr 0.71
(16.22)∗∗∗

0.72
(10.27)∗∗∗

0.74
(16.93)∗∗∗

0.61
(11.68)∗∗∗

0.60
(9.69)∗∗∗

0.62
(12.12)∗∗∗

γr 0.38
(6.33)∗∗∗

0.44
(3.94)∗∗∗

0.69
(5.60)∗∗∗

0.44
(6.74)∗∗∗

0.45
(5.88)∗∗∗

0.50
(6.71)∗∗∗

γr1 −0.061
(−1.89)∗∗

−0.14
(−2.13)∗∗∗

−0.145
(−3.13)∗∗∗

γr2 0.066
(2.27)∗∗∗

0.22
(2.93)∗∗∗

−0.22
(−3.58)∗∗∗

0.18
(4.12)∗∗∗

0.05
(1.44)∗

0.167
(2.91)∗∗∗

γr3 −0.085
(−1.65)∗∗

Notes: See Notes in Table 4.3
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Table 4.12b: HEAVY/GARCH models with breaks (selected from squared returns)

(1− βiL)σ2it = ωi + αiε
2
i,t−1 +

∑3
z=1 αizDizε

2
i,t−1 + γiε

2
j,t−1 +

∑3
z=1 γizDizε

2
j,t−1,

i, j = r, R, j 6= i, z = 1, 2, 3 the break dates andDiz the dummies for the breaks

SP NIKKEI TSE FTSE DAX EUSTOXX

HEAVY-RM
or GARCH(1,1)-RM

αR 0.43
(11.10)∗∗∗

0.43
(9.66)∗∗∗

0.39
(11.04)∗∗∗

0.52
(6.34)∗∗∗

0.54
(10.50)∗∗∗

0.50
(11.49)∗∗∗

αR1 −0.053
(−3.51)∗∗∗

−0.045
(−2.84)∗∗∗

0.077
(3.15)∗∗∗

−0.108
(−2.38)∗∗∗

−0.092
(−4.04)∗∗∗

−0.082
(−4.15)∗∗∗

αR2 0.065
(2.37)∗∗∗

0.051
(2.62)∗∗∗

−0.029
(−1.59)∗

0.110
(2.24)∗∗∗

0.082
(3.59)∗∗∗

0.070
(4.12)∗∗∗

αR3 −0.044
(−1.58)∗

−0.053
(−2.36)∗∗∗

−0.065
(−2.73)∗∗∗

−0.037
(−1.94)∗∗

βR 0.56
(15.22)∗∗∗

0.56
(12.65)∗∗∗

0.55
(12.38)∗∗∗

0.49
(6.07)∗∗∗

0.45
(9.62)∗∗∗

0.49
(12.01)∗∗∗

HEAVY-E-RM
or GARCH(1,1)-X-RM

αR 0.37
(10.48)∗∗∗

0.34
(8.48)∗∗∗

0.35
(10.32)∗∗∗

0.38
(9.28)∗∗∗

0.43
(9.75)∗∗∗

0.39
(10.32)∗∗∗

βR 0.58
(17.38)∗∗∗

0.58
(14.56)∗∗∗

0.56
(12.12)∗∗∗

0.52
(13.08)∗∗∗

0.49
(11.13)∗∗∗

0.53
(13.82)∗∗∗

γR 0.037
(3.74)∗∗∗

0.041
(6.05)∗∗∗

0.012
(3.59)∗∗∗

0.094
(5.41)∗∗∗

0.070
(5.82)∗∗∗

0.049
(5.59)∗∗∗

γR1 −0.031
(−3.15)∗∗∗

−0.025
(−3.27)∗∗∗

0.035
(4.18)∗∗∗

−0.074
(−4.52)∗∗∗

−0.060
(−4.35)∗∗∗

−0.034
(−3.02)∗∗∗

γR2 0.036
(2.17)∗∗∗

0.012
(1.46)∗

0.038
(3.38)∗∗∗

0.033
(2.70)∗∗∗

0.027
(2.59)∗∗∗

γR3 −0.033
(−1.81)∗∗

−0.015
(−1.88)∗∗

−0.030
(−3.13)∗∗

−0.019
(−1.62)∗

GARCH(1, 0)-X-RM βR 0.85
(83.48)∗∗∗

0.84
(59.76)∗∗∗

0.81
(64.65)∗∗∗

0.84
(68.14)∗∗∗

0.84
(78.92)∗∗∗

0.83
(70.50)∗∗∗

γR 0.11
(13.64)∗∗∗

0.09
(10.32)∗∗∗

0.042
(13.90)∗∗∗

0.130
(10.93)∗∗∗

0.138
(11.71)∗∗∗

0.120
(11.95)∗∗∗

γR1 −0.021
(−4.08)∗∗∗

−0.026
(−7.22)∗∗∗

0.054
(9.55)∗∗∗

−0.068
(−7.46)∗∗∗

−0.057
(−7.13)∗∗∗

−0.028
(−4.35)∗∗∗

γR2 0.015
(1.85)∗∗

0.035
(4.97)∗∗∗

0.032
(4.84)∗∗∗

0.026
(4.76)∗∗∗

γR3 −0.020
(−2.42)∗∗∗

−0.022
(−6.69)∗∗∗

−0.025
(−4.65)∗∗∗

−0.009
(−1.60)∗

Notes: See Notes in Table 4.3

4.7 Conclusions

Our study extends the HEAVY models introduced by SS10 and the MEM models of Engle

(2002b) through the GARCH framework with long memory, leverage and power transformations.

We result to prefer the most comprehensive specification for the realised measure models, the

HYAPARCH of Schoffer (2003), after which we name the new model estimated as HYDAP-

HEAVY and, respectively, the MEM models introduced as HYDAP-MEM. For the squared

returns equations we prefer the FIAP-HEAVY formulation, restricting the hyperbolic parameter

to 1. Since the HEAVY class of models with realised volatility on high-frequency data are proved

to outperform the simple daily GARCH estimations and forecasts, our extensions can provide a
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complete framework to analyse the volatility process. The fractional integration of volatility, its

asymmetric response to negative and positive shocks and its power transformations ensures the

superiority of our contribution, which can be implemented on the areas of asset allocation and

portfolio selection as well as on several risk management practices.

Moreover, when adding the overnight trading activity indicator to the original HEAVY

equations the positive feedback effect of the overnight surprise to volatility is small but significant

for the squared returns and immaterial for the realised measures. So, the HEAVY framework

is proved adequate to capture the volatility dynamics without additional trading information.

The Garman-Klass volatility included in the HEAVY framework exhibits more similarities to the

realised measure behaviour and the structural breaks applied prove the time-varying pattern of the

benchmark HEAVY models’ parameters with the break corresponding to the financial crisis of

2007-08 giving a positive increment on the garch-x and heavy coefficients.

Further research on the HEAVY model could focus on the multivariate specification applying

the HYDAP-HEAVY extensions on the multivariate HEAVY of Noureldin et al. (2012). In the

univariate framework we could also test more lags of the coefficients in both HEAVY equations,

assume different error distributions like the Student-t or the Skewed-t and perform forecasts using

the selected HYDAP-HEAVY model or the simpler fractional, power or asymmetric structures

presented.
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4.8 APPENDIX

Table 4A.1: Linear A(P)-HEAVY-E Models; Specifications with ζ i = 0 and δi fixed

Specification↓ SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Power Transformed Squared Returns

AP-HEAVY-E-r
or APGARCH(1,0)-X-r

βr 0.88
(66.98)∗∗∗

0.84
(33.70)∗∗∗

0.88
(65.71)∗∗∗

0.84
(30.15)∗∗∗

0.86
(47.45)∗∗∗

0.88
(50.84)∗∗∗

µr 0.15
(7.27)∗∗∗

0.14
(5.06)∗∗∗

0.12
(7.01)∗∗

0.15
(7.96)∗∗∗

0.16
(6.63)∗∗∗

0.17
(6.54)∗∗∗

γr 0.001
(2.69)∗∗∗

0.003
(4.99)∗∗∗

0.001
(3.96)∗∗

0.008
(3.09)∗∗∗

0.001
(3.55)∗∗∗

0.001
(2.79)∗∗∗

δr 2.00 2.00 2.00 1.90 2.00 2.00
Panel B: Power Transfomed Realised Measures

AP-HEAVY-E-RM
or APGARCH(1,1)-X-RM

βR 0.66
(28.98)∗∗∗

0.62
(19.93)∗∗∗

0.69
(24.55)∗∗∗

0.62
(19.61)∗∗∗

0.63
(18.87)∗∗∗

0.65
(23.21)∗∗∗

αR 0.29
(13.16)∗∗∗

0.32
(12.20)∗∗∗

0.26
(11.15)∗∗∗

0.29
(10.46)∗∗∗

0.32
(10.69)∗∗∗

0.28
(11.63)∗∗∗

µR 0.10
(9.73)∗∗∗

0.06
(8.01)∗∗∗

0.06
(7.16)∗∗∗

0.24
(4.63)∗∗∗

0.06
(8.04)∗∗∗

0.08
(9.32)∗∗∗

γR 0.46
(3.35)∗∗∗

0.42
(3.69)∗∗∗

0.84
(4.14)∗∗∗

0.31
(4.99)∗∗∗

0.63
(4.66)∗∗

0.72
(5.11)∗∗∗

δR 1.10 1.10 1.00 1.30 1.10 1.10
Notes: See Notes in Table 4.3

The estimated models with fixed δi, i = r, R are:

σδiit = ωi + (αi + µist−1) |εi,t−1|
δi + βiσ

δi
i,t−1 + (γi + πist−1) |εj,t−1|δj

Table 4A.2: HEAVY-E-RM Models; The γR Parameter

Spec.↓ SP NIKKEI TSE FTSE DAX EUSTOXX

− 0.02
(2.89)∗∗∗

0.02
(4.19)∗∗∗

0.02
(4.55)∗∗∗

0.04
(4.34)∗∗∗

0.03
(4.08)∗∗∗

0.03
(5.01)∗∗∗

P 0.59
(1.68)∗∗

0.53
(1.57)∗

0.74
(6.82)∗∗∗

0.60
(1.58)∗

0.71
(1.60)∗

0.62
(1.64)∗∗

AP 0.56
(1.76)∗∗

0.50
(2.14)∗∗∗

0.74
(1.67)∗∗

0.59
(1.33)

0.78
(1.80)∗∗

0.94
(2.02)∗∗∗

HY 0.02
(2.92)∗∗∗

0.02
(3.76)∗∗∗

0.02
(5.59)∗∗∗

0.05
(3.59)∗∗∗

0.02
(3.58)∗∗∗

0.03
(4.25)∗∗∗

HY P 0.95
(1.63)∗∗

0.58
(1.34)

0.59
(1.43)∗

1.01
(1.68)∗∗

0.44
(1.18)

0.37
(1.19)

HY AP 0.46
(1.35)

0.69
(1.56)∗∗

0.48
(1.52)∗

0.95
(1.43)∗

0.59
(1.55)∗

0.57
(1.56)∗

Notes: See Notes in Table 4.3

Table 4A.3: HEAVY-E-RM Models; The πR Parameter

Spec.↓ SP NIKKEI TSE FTDSE DAX EUSTOXX

DAP 0.95
(1.90)∗∗

0.56
(1.97)∗∗∗

0.84
(9.55)∗∗∗

0.77
(3.08)∗∗∗

0.87
(1.87)∗∗

0.96
(2.10)∗∗∗

HYDAP 0.95
(1.65)∗∗

0.78
(1.44)∗

1.11
(2.30)∗∗∗

1.86
(2.24)∗∗∗

0.84
(1.81)∗∗

1.07
(1.47)∗

Notes: See Notes in Table 4.3

173



Table 4A.4: AP-GARCH-X models - dependent variableGKt with regressor r2t
Equ. (1) becomes: (1− βiL)σ2it = ωi + αiε

2
i,t−1 + γjε

2
j,t−1, i, j = r, R,GK, j 6= i

SP NIKKEI TSE FTSE DAX EUSTOXX

PGARCH(1, 1)-X-GK αGK 0.16
(7.20)∗∗∗

0.18
(5.60)∗∗∗

0.22
(9.19)∗∗∗

0.17
(7.77)∗∗∗

0.20
(10.30)∗∗∗

0.18
(8.66)∗∗∗

βGK 0.77
(31.39)∗∗∗

0.74
(14.06)∗∗∗

0.71
(22.62)∗∗∗

0.76
(34.71)∗∗∗

0.75
(37.42)∗∗∗

0.75
(35.21)∗∗∗

γGK 0.27
(1.31)

0.33
(1.05)

1.03
(1.55)∗

0.19
(1.20)

0.33
(1.59)∗

0.34
(1.48)∗

δGK 1.47
(6.68)∗∗∗

1.39
(6.18)∗∗∗

1.17
(7.81)∗∗∗

1.67
(7.38)∗∗∗

1.41
(7.71)∗∗∗

1.46
(7.45)∗∗∗

APGARCH(1, 0)-X-GK βGK 0.83
(44.20)∗∗∗

0.81
(33.25)∗∗∗

0.83
(40.78)∗∗∗

0.83
(50.50)∗∗∗

0.85
(69.18)∗∗∗

0.83
(59.69)∗∗∗

γGK 0.03
(2.74)∗∗∗

0.01
(1.65)∗∗

0.07
(2.47)∗∗∗

0.04
(2.23)∗∗∗

0.04
(3.24)∗∗∗

0.06
(1.97)∗∗∗

δGK 2.01
(26.36)∗∗∗

2.27
(19.32)∗∗∗

1.78
(24.32)∗∗∗

2.05
(25.29)∗∗∗

1.99
(29.86)∗∗∗

1.94
(16.80)∗∗∗

µGK 0.17
(2.93)∗∗∗

0.05
(1.78)∗∗

0.51
(2.94)∗∗∗

0.13
(2.74)∗∗∗

0.16
(3.47)∗∗∗

0.20
(2.10)∗∗∗

APGARCH(1, 1)-X-GK αGK 0.14
(6.49)∗∗∗

0.18
(6.38)∗∗∗

0.18
(7.95)∗∗∗

0.15
(7.78)∗∗∗

0.17
(10.62)∗∗∗

0.16
(8.85)∗∗∗

βGK 0.80
(36.09)∗∗∗

0.73
(15.23)∗∗∗

0.75
(24.65)∗∗∗

0.78
(34.52)∗∗∗

0.78
(40.93)∗∗∗

0.78
(37.36)∗∗∗

γGK 0.55
(1.68)∗∗

0.57
(1.51)∗

0.90
(1.58)∗

0.15
(1.53)∗

0.95
(2.09)∗∗∗

0.97
(2.19)∗∗∗

δGK 1.21
(6.02)∗∗∗

1.23
(6.55)∗∗∗

1.16
(7.70)∗∗∗

1.68
(7.68)∗∗∗

1.00
(5.94)∗∗∗

1.07
(6.36)∗∗∗

µGK 0.38
(6.99)∗∗∗

0.18
(5.73)∗∗∗

0.23
(5.99)∗∗∗

0.20
(4.52)∗∗∗

0.27
(9.03)∗∗∗

0.29
(7.72)∗∗∗

Notes: See Notes in Table 4.3

Table 4A.5: AP-GARCH-X models - dependent variableGKt with regressorRKt

Equ. (1) becomes: (1− βiL)σ2it = ωi + αiε
2
i,t−1 + γjε

2
j,t−1, i, j = r, R,GK, j 6= i

SP NIKKEI TSE FTSE DAX EUSTOXX

PGARCH(1, 1)-X-GK αGK 0.000
(0.00)

0.000
(0.00)

0.06
(0.76)

0.04
(1.52)∗

0.07
(2.39)∗∗∗

0.03
(1.08)

βGK 0.64
(10.90)∗∗∗

0.60
(7.27)∗∗∗

0.55
(1.96)∗∗∗

0.57
(24.27)∗∗∗

0.60
(12.39)∗∗∗

0.62
(14.46)∗∗∗

γGK 0.31
(2.55)∗∗∗

0.09
(1.46)∗

0.50
(2.15)∗∗∗

0.34
(11.02)∗∗∗

0.28
(2.59)∗∗∗

0.31
(2.66)∗∗∗

δGK 1.98
(22.70)∗∗∗

2.29
(17.64)∗∗∗

1.94
(19.02)∗∗∗

2.01
(96.59)∗∗∗

2.00
(24.45)∗∗∗

1.99
(22.82)∗∗∗

APGARCH(1, 0)-X-GK βGK 0.71
(15.82)∗∗∗

0.61
(7.64)∗∗∗

0.61
(11.95)∗∗∗

0.63
(11.46)∗∗∗

0.66
(15.48)∗∗∗

0.67
(16.05)∗∗∗

γGK 0.14
(2.72)∗∗∗

0.07
(1.45)∗

0.41
(2.63)∗∗∗

0.30
(1.74)∗∗

0.20
(3.20)∗∗∗

0.22
(2.88)∗∗∗

δGK 2.01
(26.54)∗∗∗

2.29
(17.10)∗∗∗

1.92
(23.79)∗∗∗

1.99
(16.21)∗∗∗

2.02
(31.53)∗∗∗

2.01
(27.22)∗∗∗

µGK 0.17
(2.92)∗∗∗

0.03
(1.49)∗

0.22
(2.43)∗∗∗

0.12
(2.02)∗∗∗

0.14
(3.47)∗∗∗

0.12
(3.07)∗∗∗

APGARCH(1, 1)-X-GK αGK 0.05
(6.02)∗∗∗

0.02
(2.09)∗∗∗

0.06
(4.97)∗∗∗

0.04
(3.82)∗∗∗

0.04
(2.59)∗∗∗

0.04
(4.18)∗∗∗

βGK 0.72
(15.40)∗∗∗

0.60
(7.68)∗∗∗

0.61
(11.80)∗∗∗

0.63
(11.31)∗∗∗

0.66
(15.35)∗∗∗

0.67
(16.41)∗∗∗

γGK 0.31
(2.53)∗∗∗

0.07
(1.61)∗

0.48
(7.79)∗∗∗

0.31
(1.67)∗∗

0.26
(2.84)∗∗∗

0.32
(2.45)∗∗∗

δGK 1.81
(16.82)∗∗∗

2.29
(18.00)∗∗∗

1.88
(68.43)∗∗∗

1.97
(15.32)∗∗∗

1.96
(24.33)∗∗∗

1.91
(19.61)∗∗∗

µGK 0.98
(24.18)∗∗∗

0.99
(2.93)∗∗∗

0.61
(4.94)∗∗∗

0.69
(4.37)∗∗∗

0.88
(2.57)∗∗∗

0.90
(4.91)∗∗∗

Notes: See Notes in Table 4.3
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Concluding Remarks

The purpose of this thesis was to investigate the financial volatility dynamics through the

GARCH modelling framework. We use univariate and multivariate GARCH-type models

enriched with long memory, asymmetries and/or power transformations that best fit the volatility

process. We study the financial time series volatility and co-volatility taking into account the

structural breaks detected and focusing on the effects of the corresponding financial crisis events.

We conclude to provide a complete framework for the analysis of volatility with major policy

implications and usefulness on the current risk management practices.

We first investigate the issue of temporal ordering of the range-based volatility and turnover

volume in the Korean stock market applying a univariate dual long memory model. In this

framework we study the volume-volatility link for different investor categories and orders, before

and after the Asian financial crisis. We complement the literature about the impact of domestic

and foreign investors on emerging stock markets by examining the effect of the trading volume on

the stock market volatility, taking into consideration for each volume series its sell and buy side as

well as its total separately and also investigating the effect of each of the eight different domestic

investor groups, that compromise the total domestic trading volume. We further study the volume

effect on volatility during different periods of the economic cycle including the Asian financial

crisis shock. The causality effects are found to be sensitive to the period examined in terms of

their sign. Our analysis suggests that the behaviour of volatility depends upon volume, but also

that the nature of this dependence varies with time and the measure of volume used. In particular,

in the pre-crisis period foreign investors’ volume as a total and from its buy side affect volatility

negatively, while in the post-crisis period this effect turns to positive. This behaviour is reflected

also in the total volume’s respective effects. Total domestic investors affect volatility positively
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across all samples, while the most informed ‘market players’ (securities companies, investment

banks, mutual funds and insurance companies), when examined separately, are proved to have a

negative impact on volatility in the pre-crisis period. In sharp contrast, in the post-crisis period

increased volume leads always to higher volatility. Finally, almost all investors’ sales are found

to affect volatility positively regardless of the sample period. Lastly, the apparent long memory in

volatility is quite resistant to ‘mean shifts’. However, when we take into account structural breaks

the order of integration of the conditional variance series decreases considerably.

In the second part of the thesis we examine the applicability of the multivariate FIAPARCH

model with DCC to eight stock market indices returns, also taking into account the structural

breaks corresponding to financial crisis events. The VAR-DCC-FIAPARCH model is proved to

capture thoroughly the volatility and correlation processes compared to simpler specifications, like

the multivariate GARCH with CCC. We provide strong evidence that conditional volatilities are

better modelled incorporating long memory, power effects and leverage features. We further prove

that time-varying conditional correlations across markets, estimated by the DCC model, are highly

persistent and follow a sound upward pattern during financial crises. The cross-border contagion

effects depicted on the increasing correlations and the herding behaviour amongst investors as the

correlations remain high confirm the existing empirical evidence. We also compare two different

crises in terms of correlations to observe higher correlations in the recent Global financial crisis

than in the Asian one. The financial liberalisation, deregulation and integration of the markets has

led to more apparent market interdependence nowadays.

The third part of the thesis examines how the most prevalent stochastic properties of key

financial time series have been affected during the recent financial crises. In particular we focus

on changes associated with the remarkable economic events of the last two decades in the mean

and volatility dynamics, including the underlying volatility persistence and volatility spillovers
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structure. Using daily data from several key stock market indices we find that stock market returns

exhibit time-varying persistence in their corresponding conditional variances. Furthermore, the

results of our bivariate UEDCC-AGARCH models show the existence of time-varying correlations

as well as time-varying shock and volatility spillovers between the returns of FTSE and DAX

and those of NIKKEI and Hang Seng, which became more prominent during the recent financial

crisis. Our theoretical considerations on the time-varying model which provides the platform

upon which we integrate our multifaceted empirical approaches are also of independent interest.

In particular, we provide the general solution for low order time-varying specifications, which is a

long standing research topic. This enables us to characterise these models by deriving, first, their

multistep ahead predictors, second, the first two time-varying unconditional moments and, third,

their covariance structure.

The final part of the thesis studies and extends the high-frequency-based volatility (HEAVY)

model of Shephard and Sheppard (2010). The HEAVY framework models financial volatility

based on both daily and intra-daily data, so that the system of equations estimated adopts to

information arrival more rapidly than the daily GARCH models. It combines daily returns with

realised volatility calculated on high-frequency data using both the GARCH and the MEM class of

models. Its mean reversion and short-run momentum effects result to higher quality performance

in volatility level shifts and more reliable forecasts. Our main contribution is the enrichment

of the HEAVY model with long memory, asymmetries and power transformations through the

HYAPARCH specification of Schoffer (2003) and its nested power, fractional and asymmetric

models. The most extended model is named HYDAP-HEAVY and is preferred against the nested

structures for the realised measure modelling. For the squared returns equations we prefer the

FIAP-HEAVY formulation, restricting the hyperbolic parameter to 1. Since the HEAVY class of

models with realised volatility on high-frequency data are proved to outperform the simple daily
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GARCH estimations and forecasts, our extensions can provide a complete framework to analyse

the volatility process. The fractional integration of volatility, its asymmetric response to negative

and positive shocks and its power transformations ensures the superiority of our contribution,

which can be implemented on the areas of asset allocation and portfolio selection as well as

on several risk management practices. Moreover, we extend the original HEAVY specification

with the overnight trading activity indicator resulting to a positive feedback to the volatility of

returns, but mostly trivial impact on the realised measure. The Garman-Klass volatility included

in the HEAVY framework gives results more similar to the realised kernel modelling. Finally,

the structural breaks applied capture the time-varying behaviour of the process’ parameters in

particular after the Global financial crisis of 2007-08.

Further research on the HEAVY models could focus on the multivariate specification applying

the HYDAP-HEAVY extensions on the multivariate HEAVY of Noureldin et al. (2012). In the

univariate framework we could also test more lags of the coefficients in both HEAVY equations,

assume different error distributions like the Student-t or the Skewed-t and perform forecasts using

the selected HYDAP-HEAVY model or the simpler fractional, power or asymmetric formulations.
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