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Abstract: Measurements are presented of the associated production of a W boson and

a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The

analysis is conducted with a data sample corresponding to a total integrated luminosity

of 5 fb−1, collected by the CMS detector at the LHC. W boson candidates are identified

by their decay into a charged lepton (muon or electron) and a neutrino. The W + c

measurements are performed for charm-quark jets in the kinematic region pjetT > 25 GeV,

|ηjet| < 2.5, for two different thresholds for the transverse momentum of the lepton from

the W-boson decay, and in the pseudorapidity range |η`| < 2.1. Hadronic and inclusive

semileptonic decays of charm hadrons are used to measure the following total cross sections:

σ(pp→W + c + X)×B(W→ `ν) = 107.7± 3.3 (stat.)± 6.9 (syst.) pb (p`T > 25 GeV) and

σ(pp→W + c + X)×B(W→ `ν) = 84.1±2.0 (stat.)±4.9 (syst.) pb (p`T> 35 GeV), and the

cross section ratios σ(pp → W+ + c̄ + X)/σ(pp → W− + c + X) = 0.954 ± 0.025 (stat.) ±
0.004 (syst.) (p`T > 25 GeV) and σ(pp → W+ + c̄ + X)/σ(pp → W− + c + X) = 0.938 ±
0.019 (stat.) ± 0.006 (syst.) (p`T > 35 GeV). Cross sections and cross section ratios are

also measured differentially with respect to the absolute value of the pseudorapidity of the

lepton from the W-boson decay. These are the first measurements from the LHC directly

sensitive to the strange quark and antiquark content of the proton. Results are compared

with theoretical predictions and are consistent with the predictions based on global fits of

parton distribution functions.
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Figure 1. Main diagrams at the hard-scattering level for associated W + c production at the LHC.

1 Introduction

The study of associated production of a W boson and a charm (c) quark at hadron colliders

(hereafter referred to as W+c production) provides direct access to the strange-quark con-

tent of the proton at an energy scale of the order of the W-boson mass (Q2∼(100 GeV)2) [1–

3]. This sensitivity is due to the dominance of sg→W−+c and sg→W++c contributions

at the hard-scattering level (figure 1). Recent work [4] indicates that precise measurements

of this process at the Large Hadron Collider (LHC) may significantly reduce the uncer-

tainties in the strange quark and antiquark parton distribution functions (PDFs) and help

resolve existing ambiguities and limitations of low-energy neutrino deep-inelastic scattering

(DIS) data [5]. More precise knowledge of the PDFs is essential for many present and fu-

ture precision analyses, such as the measurement of the W-boson mass [6]. An asymmetry

between the strange quark and antiquark PDFs has also been proposed as an explana-

tion of the NuTeV anomaly [5], making it crucial to measure observables related to this

asymmetry with high precision.

W + c production receives contributions at a few percent level from the processes

dg →W− + c and dg →W+ + c, which are Cabibbo suppressed [7]. Overall, the W− + c

yield is expected to be slightly larger than the W+ + c yield at the LHC because of the

participation of down valence quarks in the initial state. A key property of the qg→W+c

reaction is the presence of a charm quark and a W boson with opposite-sign charges.

The pp→W+c+X process is a sizable background for signals involving bottom or top

quarks and missing transverse energy in the final state. Particularly relevant cases are top-

quark studies and third-generation squark searches. Measurements of the pp→W + c + X

cross section and of the cross section ratio σ(pp→W + c-jet + X)/σ(pp→W + jets + X)

have been performed with a relative precision of about 20–30% at the Tevatron [8–10]

hadron collider using semileptonic charm hadron decays.

We present a detailed study of the pp→W + c + X process with the Compact Muon

Solenoid (CMS) detector, using a data sample corresponding to a total integrated luminos-

ity of 5 fb−1 collected in 2011 at a center-of-mass energy of 7 TeV. We measure the total

cross section and the cross section ratio R±c = σ(W+ + c)/σ(W− + c) using the muon and

electron decay channels of the W boson. Charm-quark jets are identified within the fiducial

region of transverse momentum pjetT > 25 GeV and pseudorapidity |ηjet| < 2.5 using exclu-

sive hadronic, inclusive hadronic, and semileptonic decays of charm hadrons. Furthermore,
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the cross section and the R±c ratio are measured as a function of the pseudorapidity of the

lepton from the W decay, thus probing a wide range in the Bjorken x variable, which at

leading order can be interpreted as the momentum fraction of the proton carried by the

interacting parton.

This paper is organized as follows: the CMS detector is briefly described in section 2

and the general analysis strategy is outlined in section 3. The samples used to carry out the

measurement and the event selection criteria are presented in sections 4 and 5. Section 6

details the measurement of the total cross section and sections 7 and 8 are devoted to

studies of the differential cross section and the charge ratio. Results and comparisons with

theoretical predictions are discussed in section 9. Finally, we summarize the results of this

paper in section 10.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel

and strip tracker, an electromagnetic calorimeter (ECAL), and a brass/scintillator hadron

calorimeter (HCAL). Muons are detected in gas-ionization detectors embedded in the steel

flux return yoke of the magnet.

The CMS experiment uses a right-handed coordinate system with the origin at the

nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis

pointing up (perpendicular to the LHC plane), and the z axis along the anticlockwise-beam

direction. The polar angle θ is measured from the positive z axis and the azimuthal angle

φ is measured in the x-y plane. The pseudorapidity is given by η = − ln(tan(θ/2)).

The tracker measures charged-particle trajectories in the pseudorapidity range |η| ≤
2.5. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules. It provides an

impact parameter resolution of 15µm and a transverse momentum (pT) resolution of about

1% for charged particles with pT around 40 GeV. The ECAL consists of nearly 76 000 lead

tungstate crystals, which provide coverage in pseudorapidity |η| ≤ 1.479 in a cylindrical

barrel region and 1.479 ≤ |η| ≤ 3.0 in two endcap regions (EE). A preshower detector,

consisting of two planes of silicon sensors interleaved with a total of three radiation lengths

of lead, is located in front of the EE. The ECAL has an ultimate energy resolution of

better than 0.5% for unconverted photons with transverse energies (ET) above 100 GeV.

The energy resolution is 3% or better for the range of electron energies relevant for this

analysis. The HCAL is a sampling device with brass as passive material and scintillator

as active material. The combined calorimeter cells are grouped in projective towers of

granularity ∆η × ∆φ = 0.087 × 0.087 at central rapidities and 0.175 × 0.175 at forward

rapidities. Muons are detected in the pseudorapidity range |η| ≤ 2.4, with detection

planes based on three technologies: drift tubes, cathode strip chambers, and resistive-plate

chambers. A high-pT muon originating from the interaction point produces track segments

in typically three or four muon stations. Matching these segments to tracks measured in the

inner tracker results in a pT resolution between 1% and 2% for pT values up to 100 GeV.

The first level of the CMS trigger system, composed of custom hardware processors, is

– 3 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

designed to select the most interesting events in less than 1 µs using information from the

calorimeters and muon detectors. The high-level trigger processor farm further decreases

the event rate to a few hundred hertz before data storage. A more detailed description of

CMS can be found elsewhere [11].

3 Analysis strategy

We study W + c associated production in final states containing a W → `ν decay (where

` = µ or e) and a leading jet with charm-quark content. Jets originating from a c (c) parton

are identified using one of the three following signatures: a displaced secondary vertex with

three tracks and an invariant mass consistent with a D+ → K−π+π+ (D− → K+π−π−)

decay; a displaced secondary vertex with two tracks consistent with a D0 → K−π+ (D̄0 →
K+π−) decay and associated with a previous D∗+(2010) → D0π+ (D∗−(2010) → D̄0π−)

decay at the primary vertex; or a semileptonic decay leading to a well-identified muon.

In total, since both electron and muon channels are considered in the W-boson decay, six

different final states are explored.

The D±, D∗±(2010), and c→ `ν+X decays provide a direct measurement of the charm-

quark jet charge, which is a powerful tool to disentangle the W + c signal component from

most of the background processes. We define two types of distributions: opposite-sign

distributions, denoted by OS, are built on samples containing a W boson and a charm-

quark jet with an opposite-charge sign; same-sign distributions, denoted by SS, are built

from samples where the W boson and the charm-quark jet have the same charge sign. The

final distributions used in the analysis are obtained by subtracting the SS distribution from

the OS distribution (referred to as OS − SS) for any given variable. This subtraction has

no effect on the signal at leading order. In contrast, W + cc and W + bb events provide the

same OS and SS contributions and are suppressed in OS−SS distributions. Moreover, any

OS− SS asymmetry present in tt, single-top-quark, or W + light-quark jet backgrounds is

found to be negligible according to simulations. As a consequence, OS − SS distributions

are largely dominated by the W + c component, allowing for many detailed studies of the

pp→W + c + X process.

Using displaced secondary vertices is a simple way to suppress backgrounds, such

as Drell-Yan events, W + light-quark jet, and multijet final states with no heavy-flavour

content. It also reduces backgrounds containing b-hadron decays, which often lead to

secondary vertices with a higher track multiplicity than a typical D-meson decay.

The sample containing semileptonic charm decays is complementary; it is a larger

data sample but is more affected by backgrounds, in particular Drell-Yan events. Exclusive

identification of D± and D∗±(2010) final states allows for a precise accounting of systematic

uncertainties in charm branching fractions and acceptances for cross section measurements.

However, only charge identification is strictly required for studies that are independent of

the overall W+c normalization, such as relative differential measurements or measurements

of the σ(W+ + c)/σ(W− + c) ratio.

In order to improve the statistical precision, we also employ inclusive selections of

charm hadron decays, i.e. without requiring the identification of the full final state, thus

– 4 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

allowing for decays with one or more neutral particles. Inclusive samples of events with

three-track and two-track secondary vertices are selected by loosening the invariant mass

constraints. Even with these relaxed criteria, simulations predict that the background

contributions to the OS− SS subtracted distributions in these inclusive samples are small

compared with the signal yield.

4 Data and Monte Carlo samples and signal definition

The analysis reported in this paper was performed with a data sample of proton-proton col-

lisions at
√
s = 7 TeV collected with the CMS detector in 2011. A detailed data certification

process [12] guarantees that the data set available for analysis, corresponding to an inte-

grated luminosity L = 5.0± 0.1 fb−1, fulfills the quality requirements for all detectors used

in this analysis. Candidate events for the muon decay channel of the W boson are selected

online by a single-muon trigger that requires a reconstructed muon with pT > 24 GeV.

Candidate events for the electron channel are selected by a variety of electron triggers.

Trigger conditions were tightened throughout the 2011 data run to cope with the increas-

ing instantaneous luminosity of the LHC collider. Most of the data used in this analysis

are selected by requiring an electron candidate with transverse energy ET > 32 GeV.

Muon and electron candidates are reconstructed following standard CMS algorithms [13,

14]. Jets, missing transverse energy, and related quantities are computed using particle-flow

techniques [15] in which a full reconstruction of the event is developed from the individual

particle signals in the different subdetectors. Jets are reconstructed from the particle-flow

candidates using an anti-kT clustering algorithm [16] with a distance parameter of 0.5.

Charged particles with tracks not originating at the primary vertex are not considered for

the jet clustering, and the extra energy clustered in jets from the presence of additional

pp interactions (pileup events) is subtracted from the jet energy [17, 18]. Finally, energy

corrections derived from data and simulated samples are applied to correct for η and pT
dependent detector effects [19].

Large samples of events simulated with Monte Carlo (MC) techniques are used to

evaluate signal and background efficiencies. The W-boson signal (W → µν and W → eν)

as well as other electroweak processes (such as Z → µµ, Z → ee, W → τν, and Z → ττ

production) are generated with the MadGraph [20] (v5.1.1) event generator, interfaced

to the pythia [21] (v6.4.24) program for parton shower simulation. The MadGraph

generator produces parton-level events with a vector boson and up to four partons in the

final state on the basis of matrix element calculations. It has been shown to reproduce

successfully the observed jet multiplicity and kinematic properties of W + jets final states

at the LHC energy regime [22]. The matching matrix element/parton shower scale m2

is equal to (10 GeV)2 and the factorization and renormalization scales are set to Q2 =

M2
W/Z + p2T,W/Z. Constraints on the phase space at the generator level are not imposed,

except for the condition M`` > 10 GeV in the case of Z(γ∗) production.

Potential backgrounds in this analysis come from tt and single-top-quark produc-

tion. A sample of tt events is generated with the MadGraph generator interfaced to

pythia. Single-top-quark events are generated in the t-channel, s-channel, and tW asso-
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ciated modes with the next-to-leading-order (NLO) generator powheg [23] (v1.0), inter-

faced with pythia. The PDF set used in these powheg productions is CT10 [24]. We

also consider the small contributions from diboson (WW, WZ, ZZ) events and quantum

chromodynamics (QCD) multijet events using pythia. All leading-order (LO) generations

use the CTEQ6L1 PDF set [25] with parameters set for the underlying event according to

the Z2 tune [26].

Cross sections for single W and Z production processes are normalized to the pre-

dictions from fewz [27] evaluated at next-to-next-to-leading order (NNLO) using the

MSTW08NNLO [28] PDF set. The tt cross section is taken at NNLO from ref. [29].

For the rest of the processes, cross sections are normalized to the NLO cross section pre-

dictions from mcfm [30] using the MSTW08NLO PDF set. The QCD multijet cross section

is evaluated at LO.

Several minimum-bias interactions, as expected from the projected running conditions

of the accelerator, are superimposed on the hard scattering to simulate the real experi-

mental conditions of multiple pp collisions occurring simultaneously. To reach an optimal

agreement with the experimental data, the simulated distributions are reweighted accord-

ing to the actual number of interactions (an average of nine) occurring given the instanta-

neous luminosity for each bunch crossing. Generated events are processed through the full

Geant4 [31] detector simulation, trigger emulation, and event reconstruction chain of the

CMS experiment. Predictions derived from the MC-simulated samples are normalized to

the integrated luminosity of the data sample.

At the hard-scattering level we identify W + c signal events as those containing an

odd number of charm partons in the final state. This choice provides a simple operational

definition of the process and ensures that pure QCD splittings of the g → cc type are

associated with the background. Events containing b quarks in the final state are always

classified as W+b+X in order to correctly identify b→ c decays. The W+c signal reference

is defined at the hard-scattering level of MadGraph, which provides an implicit parton-

jet matching for a jet separation parameter of R =
√

(∆η)2 + (∆φ)2 = 1 that is suitable

for comparisons with the NLO theoretical predictions of mcfm at the .1% level. The

phase space definition at the generator level is chosen in order to approximately match the

experimental selections used in the analysis. For charm partons we require pcT > 25 GeV,

|ηc| < 2.5. Differential measurements are performed as a function of the absolute value

of the lepton pseudorapidity |η`|, whereas total cross sections and average ratios require

|η`| < 2.1. Potential dependencies on the center-of-mass energy of the hard scattering

process are explored by considering two different transverse momentum thresholds for the

charged leptons from the W-boson decay: p`T > 25 GeV and p`T > 35 GeV. The p`T > 25 GeV

case is analyzed in the W→ µν channel only.

5 Event selection

The selection of W-boson candidates closely follows the criteria used in the analysis of

inclusive W → µν and W → eν production [32]. The leptonic decay of a W boson

into a muon or an electron, and a neutrino is characterized by the presence of a high-
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transverse momentum, isolated lepton. The neutrino escapes detection causing an apparent

imbalance in the transverse energy of the event. Experimentally, the magnitude of the

vector momentum imbalance in the plane perpendicular to the beam direction defines

the missing transverse energy of an event, Emiss
T . In W-boson events, this variable is an

estimator of the transverse energy of the undetected neutrino.

Muon tracks are required to have a transverse momentum pµT > 25 GeV and to be

measured in the pseudorapidity range |ηµ| < 2.1. A muon isolation variable, Iµrel, is defined

as the sum of the transverse energies of neutral particles and momenta of charged particles

(except for the muon itself) in a ∆R =
√

(∆η)2 + (∆φ)2 = 0.4 cone around the direction

of the muon, and normalized to the muon transverse momentum. The muon is required to

be isolated from any other detector activity according to the criterion Iµrel < 0.12.

Electron candidates with peT > 35 GeV are accepted in the pseudorapidity range

|ηe| < 2.1 with the exception of the region 1.44 < |ηe| < 1.57 where service infrastruc-

ture for the detector is located, thus degrading the performance. The electron isolation

variable, Ierel, is defined as the sum of the transverse components of ECAL and HCAL en-

ergy deposits (excluding the footprint of the electron candidate) and transverse momenta of

tracks reconstructed in the inner tracker in a ∆R = 0.3 cone around the electron direction,

and normalized to the electron pT. An isolated electron must satisfy Ierel < 0.05.

The background arising from Drell-Yan processes is reduced by removing events con-

taining additional muons (electrons) with p`T > 25 (20) GeV in the pseudorapidity region

|ηµ| < 2.4 (|ηe| < 2.5). Finally, the reconstructed transverse mass, MT, which is built from

the transverse momentum of the isolated lepton, p`T, and the missing transverse energy in

the event, MT ≡
√

2 p`T Emiss
T [1− cos(φ` − φEmiss

T
)], where φ` and φEmiss

T
are the azimuthal

angles of the lepton and the Emiss
T vector, must be large. In the muon channel, MT must

be greater than 40 GeV. A higher threshold is set in the electron channel, MT > 55 GeV,

since a condition on this variable (MT > 50 GeV) is already included in the online trigger

selection. This requirement reduces the QCD multijet background to a negligible level in

the muon channel. Residual QCD background in the electron channel is estimated from

the experimental Emiss
T distribution. It is found to be negligible after subtraction of the

SS component.

A W + jets sample is selected by demanding the presence of at least one jet with

pjetT > 25 GeV in the pseudorapidity range |ηjet| < 2.5, thus ensuring that the jet passes

through the tracker volume, and hence achieving the best possible jet pT resolution. A

W+c candidate sample is further selected by searching for a distinct signature of a charmed

particle decay among the constituents of the leading jet associated with the W boson, as

introduced in section 3. For that purpose, events with a secondary vertex consistent with

the decay of a relatively long-lived quark are kept. Secondary vertices are reconstructed

using an adaptive vertex finder [33] algorithm with well understood performance [34]. This

algorithm is stable with respect to alignment uncertainties and is an essential component

of the vertex-based b-tagging algorithms used in the CMS experiment. In its default

implementation, used in this analysis, tracks within a ∆R = 0.3 cone around the jet axis,

that have a transverse momentum larger than 1 GeV and a probability of originating from
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the primary vertex below 50% are considered to come from a secondary vertex. Finally,

only secondary vertices with a transverse decay length significance with respect to the

primary vertex position larger than 3 are kept.

A search for D± and D0 charm meson decays is carried out in those events having

reconstructed secondary vertices with three or two tracks, respectively. In addition, a

W + c candidate sample with the charm quark decaying semileptonically is selected from

the events with an identified muon among the particles constituting the jet. These samples

are described in more detail in the following subsections.

5.1 Selection of exclusive D± decays

We identify D± → K∓π±π± decays in the selected W + jets sample using secondary

vertices with three tracks and a reconstructed invariant mass within 50 MeV of the D±

mass, 1869.5 ± 0.4 MeV [35]. The kaon mass is assigned to the track that has oppo-

site sign to the total charge of the three-prong vertex and the remaining tracks are as-

sumed to have the mass of a charged pion. This assignment is correct in more than

99% of the cases, since the fraction of double Cabibbo-suppressed decays is very small:

B(D+ → K+π+π−)/B(D+ → K−π+π+) = 0.00577± 0.00022 [35].

Figure 2 shows the OS − SS distributions of the reconstructed invariant mass for D±

candidates associated with W → µν and W → eν decays. It is compared with the predic-

tions obtained from the simulated MC samples. We distinguish two different contributions

in the W + c prediction. A resonant W + c component is composed of those events with a

D± meson decaying into the K∓π±π± final state at generator level; it is visible as a clear

peak around the D± mass in figure 2. A nonresonant component arises from W + c events

where the charm meson decays to any final state other than K∓π±π±. The reconstructed

invariant mass distribution in this case extends as a continuum over the whole spectrum.

The distribution presented in figure 2 is almost exclusively populated by W + c events.

The contribution from the non-(W + c) processes introduced in section 4 is shown as part

of the background.

The MC prediction for the D± signal is scaled by the ratio of the branching fractions

B(c→ D± → K∓π±π±) used in the simulation and measured experimentally. The branch-

ing fraction used in the pythia simulation, (1.528±0.008)%, is about 25% smaller than the

experimental measurement, (2.08±0.10)%. This value is the combination of three measure-

ments performed at LEP [36–38] of this branching fraction times the relative partial decay

width of the Z boson into charm-quark pairs, Rc = Γ(Z→ cc)/Γ(Z→ hadrons). The orig-

inal LEP measurements are divided by the latest experimental value from the PDG [35] of

Rc = 0.1721±0.0030. In the combination of these three experiments, we have assumed that

experimental systematic uncertainties are uncorrelated among the measurements, given the

substantially different sources of uncertainty considered by each experiment, whereas the

experimental uncertainty in Rc is propagated in a correlated way. Agreement between data

and predictions is reasonable, although a small signal excess over the predictions (of about

10%) is visible in figure 2.

For illustration purposes, the sum of a Gaussian function to describe the signal plus a

second-degree polynomial for the nonresonant background is fitted to the data distribution.

The PDG value of the D± mass is reproduced precisely in all cases.

– 8 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

Secondary vertex mass [GeV]
1.6 1.8 2 2.2

(O
S

-S
S

) 
ev

en
ts

 / 
0.

01
2 

G
eV

0

200

400

600
Data

W+c resonant 

W+c non-resonant

Background

fit

±π±π

±

 K→ ±D

 > 25 GeVµ
T

p

M [GeV]:  0.001± 1.868 

 [MeV]: σ  0.90± 15.85 

 = 7 TeVs at -1L = 5.0 fbCMS

Secondary vertex mass [GeV]
1.6 1.8 2 2.2

(O
S

-S
S

) 
ev

en
ts

 / 
0.

01
2 

G
eV

 

0

100

200

300
Data

W+c resonant 

W+c non-resonant

Background

fit

±π±π

±

 K→ ±D

 > 35 GeVe
T

p

M [GeV]:  0.001± 1.868 

 [MeV]: σ  1.3± 19.2 

 = 7 TeVs at -1L = 5.0 fbCMS

Figure 2. The invariant mass distribution of three-prong secondary vertices in data, after sub-

traction of the SS component. The position and width of the resonance peak are in reasonable

agreement with the MC expectations (only statistical uncertainties are quoted). The channels

shown correspond to muon and electron decay channels of the W boson with pµT > 25 GeV (left)

and peT > 35 GeV (right). The different contributions shown in the plot are described in the text.

Note that the amount of non-(W + c) background predicted by the simulation is almost negligible.

5.2 Selection of exclusive D∗±(2010) decays

The first step in the identification of D∗+(2010) → D0π+ (D∗−(2010) → D̄0π−) decays

is the selection of a secondary vertex with two tracks of opposite charge, as expected

from a D0 → K−π+ (D̄0 → K+π−) decay. This two-track system is combined with a

primary track having pT > 0.3 GeV found in a cone of ∆R = 0.1 around the direction of

the D0 candidate momentum. The secondary track with charge opposite to the charge of

the primary track is assumed to be the kaon in the D0 decay. Only combinations with

a reconstructed mass differing from the D0 mass (1864.86 ± 0.13 MeV [35]) by less than

70 MeV are kept. The D∗±(2010) signal is identified as a peak in the distribution of the

difference between the reconstructed D∗±(2010) and D0 masses near the expected value,

mrec(D∗±(2010))−mrec(D0) = 145.421± 0.010 MeV [35].

The OS − SS distribution of the reconstructed mass difference mrec(D∗±(2010)) −
mrec(D0) is shown in figure 3. Both W → µν and W → eν decays are considered, with

transverse momentum requirements of pµT > 25 GeV and peT > 35 GeV. The resonant W+c

component is composed here of those events with a D∗±(2010) meson decaying into the

D0π+; D0 → K−π+ (D̄0π−; D̄0 → K+π−) final state at generator level; it is visible as a

clear peak around the nominal mass difference mrec(D∗±(2010))−mrec(D0) in figure 3. The

nonresonant component comes from W + c events where the charm meson decays to any

final state other than D0π+; D0 → K−π+ (D̄0π−; D̄0 → K+π−). Note that the amount of

background predicted by the simulation, and also observed in data, is extremely small.

The MC prediction for the full D∗±(2010) decay chain is scaled by the ratio between the

product of the branching fraction for the decay chain B(c→ D∗+(2010))×B(D∗+(2010)→
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Figure 3. Distribution of the reconstructed mass difference between D∗±(2010) and D0 candidates

in the selected W+c sample, after subtraction of the SS component. The position and width of the

peak near 145 MeV are in agreement with the MC expectations. The different contributions shown

in the plot are described in the text. The channels shown correspond to muon and electron decay

channels of the W boson with pµT > 25 GeV (left) and peT > 35 GeV (right).

D0π+)× B(D0 → K−π+) used in the simulation and the experimental measurement. The

product of the branching fractions used in the pythia simulation is (0.743 ± 0.005)%,

which is about 20% larger than our estimation of the experimental value, (0.622±0.020)%.

The latter number is a weighted average that uses as inputs the dedicated measurements

of this product times Rc by ALEPH [37] and OPAL [39], as well as the measurement

of B(c → D∗+(2010)) × B(D∗+(2010) → D0π+) by DELPHI [40]. To obtain the charm

fractions needed for the W+c cross section normalization, the ALEPH [37] and OPAL [39]

measurements are divided by the world-averageRc experimental value and the DELPHI [40]

measurement is multiplied by the world-average B(D0 → K−π+) = 0.0388 ± 0.0005, both

taken from the PDG [35]. Also in this case, experimental systematic uncertainties are

assumed to be uncorrelated among the three LEP measurements and the experimental

uncertainty in Rc is propagated in a correlated way. A small excess of data over the

theoretical predictions is also observed in this channel.

5.3 Selection of semileptonic charm decays

In addition to the previous exclusive channels, we consider the identification of charm-

quark jets via semileptonic decays of the c quark. Only jets containing semileptonic decays

into muons are considered. Muons in jets are identified with the same criteria used for

muon identification in W-boson decays, with the exception that the isolation requirements

are not applied. Since the OS− SS strategy effectively suppresses all backgrounds except

Drell-Yan processes, additional requirements are applied in order to reduce the Drell-Yan

contamination to manageable levels without affecting the signal in an appreciable way. We

require pµT < 25 GeV, pµT/p
jet
T < 0.6, and prelT < 2.5 GeV, where pµT denotes here the trans-
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Figure 4. Distributions of the transverse momentum of the muon inside the leading jet of the event,

after subtraction of the SS component. The channels shown correspond to muon and electron decay

channels of the W boson with pµT > 25 GeV (left) and peT > 35 GeV (right).

verse momentum of the muon identified inside the jet and prelT is its transverse momentum

with respect to the jet direction. We also require the invariant mass of the dilepton system

to be above 12 GeV, in order to avoid the region of low-mass resonances. Finally, dimuon

events with an invariant mass above 85 GeV are rejected. The latter requirement is not

applied to the sample with W-boson decays into electrons, which is minimally affected by

high-mass dilepton contamination.

For the input semileptonic branching fraction of charm-quark jets, we employ the value

B(c → `) = 0.091 ± 0.005, which is the average of the inclusive value, 0.096 ± 0.004 [35],

and of the exclusive sum of the individual contributions from all weakly decaying charm

hadrons, 0.086± 0.004 [35, 41]. The uncertainty is increased in order to cover both central

values within one standard deviation. This value is consistent with the pythia value

present in our simulations (9.3%).

Figure 4 shows the resulting transverse momentum distribution of the selected muons

inside the leading jet after the OS− SS subtraction procedure. Again, both W → µν and

W → eν decays are considered, with transverse momentum requirements of pµT > 25 GeV

and peT > 35 GeV for the leptons from the W-boson decay. The background predicted

by the simulation is rather small in the electron channel, but has a substantial Drell-Yan

component in the muon channel. The visible excess of data over the predictions is consistent

with the observations in the D± and D∗±(2010) channels.

5.4 Selection of inclusive D± and D∗±(2010) decays

Enlarged samples of W + c candidates are selected from the events with secondary ver-

tices with three or two tracks, in order to increase the size of the samples available for

the differential measurements. We refer to them as inclusive three-prong and two-prong

samples, respectively.
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Figure 5. Inclusive three-prong samples: Invariant mass distribution of the three tracks composing

a secondary vertex assuming a D± → K∓π±π± hypothesis. The left plot is for W → µν events,

with pµT > 25 GeV. The right plot is for W → eν events, with peT > 35 GeV. Distributions are

presented after subtraction of the SS component.

Candidates for charm meson decays in the D± → K∓π±π± decay mode are selected

among the events with a secondary vertex with three tracks and with a vertex charge

equal to ±1, which is computed as the sum of the charges associated with the tracks

constituting the vertex. The mass assignment for the secondary tracks follows the procedure

described in section 5.1. However, the constraint that the invariant mass of the secondary

vertex be compatible with the D± nominal mass within 50 MeV is not required in this

case. The OS − SS distribution of the reconstructed invariant mass in events with three

prongs is presented in figure 5. In addition to the resonant peak at the D± mass, there

is a nonresonant spectrum with lower values of the invariant mass corresponding mainly

to D± decays with one or more unaccounted neutral particles in the final state. For

the differential cross section measurement, we consider the region of the invariant mass

spectrum m(K∓π±π±) < 2.5 GeV. This results in a sample five times larger than the D±

exclusive sample.

Similarly, candidates for D0 charm meson decays are reconstructed in the W + jets

events with a displaced secondary vertex built from two tracks of opposite curvature. The

two tracks are assumed to correspond to the decay products of a D0. The decay chain

D∗±(2010) → D0π±, D0 → K∓π± is identified according to the procedure described in

section 5.2, but dropping the D0 mass constraint |m(K∓π±) − 1864.86 MeV| < 70 MeV.

Figure 6 shows the OS− SS distributions of the mass difference m(K∓π±π±)−m(K∓π±),

where one of the pions is the closest track from the primary pp interaction vertex. The

peak at m(K∓π±π±) −m(K∓π±)∼145 MeV corresponds to the nominal D∗±(2010) − D0

mass difference [35]. W + c events are still the dominant contribution at larger values of

the mass difference. The remaining background is small and it is mainly due to residual

W + light-quark jets, W + cc, and tt production. We select the events with an invariant
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Figure 6. Inclusive two-prong samples: distribution of the difference between the invariant mass of

the two-track system and the closest track from the primary pp interaction vertex and the invariant

mass of the two secondary vertex tracks (m(K∓π±π±) − m(K∓π±)), assuming the decay chain

D∗±(2010)→ D0π± → K∓π±π±. The sharp peak at 145 MeV reflects the nominal mass difference

between the invariant mass of the D0 and the primary-pion system and the D0 mass for the decay

D∗±(2010) → D0π±. The left plot is for W → µν events, with pµT > 25 GeV. The right plot is

for W → eν events, with peT > 35 GeV. The distributions are presented after subtraction of the

SS component.

mass difference m(K∓π±π±) −m(K∓π±) < 0.7 GeV. The size of the sample is increased

by a factor of ∼25 with respect to the exclusive D∗±(2010) sample.

6 Measurement of the W + c cross section

The measurement of the W + c cross section is performed with several different final states

containing a well-identified W→ `ν decay plus a leading jet with charm content. We use the

exclusive D± and D∗±(2010) samples and the semileptonic sample, described in section 5.

Two sets of measurements are provided: one with p`T > 25 GeV using only W→ µν decays;

and a second one, using both W→ µν and W→ eν decays with p`T > 35 GeV.

For all channels under study, the W+c cross section is determined in the fiducial region

p`T > 25 (35) GeV, |η`| < 2.1, pjetT > 25 GeV, |ηjet| < 2.5 using the following expression:

σ(W + c) =
Nsel −Nbkg

Lint B C
,

where Nsel is the number of OS−SS events selected in the defined signal region, Nbkg is the

estimated number of background events after OS − SS subtraction, Lint is the integrated

luminosity, and B is the relevant charm branching fraction, derived in section 5, for the

channel under study, i.e. B ≡ B(c → D+; D+ → K−π+π+) = (2.08 ± 0.10)% in the

case of the D± channel, B ≡ B(c → D∗+(2010); D∗+(2010) → D0π+; D0 → K−π+) =

(0.622 ± 0.020)% for the D∗±(2010) channel, and B ≡ B(c → `) = (9.11 ± 0.49)% for the

semileptonic channel.
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The factor C accounts for limited acceptances and efficiencies. In W+c events, less than

20% of the events have a well-identified secondary vertex, while less than 50% of the muons

from semileptonic charm decays have sufficiently high energy to be reconstructed and iden-

tified in the muon spectrometer. The simulated W+jets sample generated by MadGraph

+ pythia is used to calculate the fraction of events within the fiducial region that fulfil the

criteria for the several charm-quark jet categories. These simulated samples are corrected

for any differences between data and MC description in lepton trigger, identification and

reconstruction efficiencies. Scaling factors, defined as the ratio efficiencydata/efficiencyMC

as a function of the lepton pseudorapidity, are determined with samples of Z → `+`−

events. An invariant mass (m`+`−) constraint and tight quality requirements assigned to

one of the leptons (“tag”) allow the other lepton to be used as a probe to test the different

steps in lepton identification (“tag-and-probe” method) [32]. The precision in the factor C
is limited by the size of the MC sample employed; its statistical uncertainty is propagated

as a systematic uncertainty to the W + c cross section.

The signal region for the D± channel is defined by the constraint ∆m(D±) ≡ |mrec(D±)−
1.87 GeV| < 0.05 GeV, where mrec(D±) is the reconstructed mass of the D± candidate (fig-

ure 2). The same requirement is applied to the MC simulations in order to determine

the correction factor C. We estimate values of C = 0.1114 ± 0.0033 (pµT > 25 GeV) and

C = 0.0834±0.0032 (peT > 35 GeV), where the quoted uncertainties are statistical only. The

background is fully dominated by the nonresonant W+c component. It is subtracted from

the selected number of events in the data window by using the number of events selected

in a control region away from the resonance, extending up to a difference of 200 MeV with

respect to the nominal D± mass, N [0.05 GeV < ∆m(D±) < 0.20 GeV]. This number is

scaled by the ratio N [∆m(D±) < 0.05 GeV]/N [0.05 GeV < ∆m(D±) < 0.20 GeV] observed

in the simulation in order to obtain the number of background events expected in the refer-

ence window. This procedure is largely independent of uncertainties in the charm fractions

present in pythia. Systematic biases due to the assumed nonresonant background sub-

traction are expected to be negligible compared to the statistical uncertainty, given the

approximate agreement between data and MC distributions.

The signal region for the D∗±(2010) channel is restricted to the interval ∆m(D∗±(2010)) ≡
|mrec(D∗±(2010)) −mrec(D0) − 145 MeV| < 5 MeV, where mrec(D∗±(2010)) −mrec(D0) is

the reconstructed mass difference between the D mesons (figure 3). The same procedure is

applied to the MC simulations in order to determine the correction factor C. We estimate

values of C = 0.0849 ± 0.0040 (pµT > 25 GeV) and C = 0.0559 ± 0.0036 (peT > 35 GeV),

where the quoted uncertainties are statistical only. As in the D± case, the background

is subtracted from the selected number of data events in a sideband sample, 5 MeV <

∆m(D∗±(2010)) < 20 MeV. This number is scaled by the ratio N [∆m(D∗±(2010)) <

5 MeV]/N [5 MeV < ∆m(D∗±(2010)) < 20 MeV] observed in the simulation.

For the semileptonic channel, Nsel is given by the number of events with a W-boson

candidate decaying into a high-pT muon or electron and an identified muon inside the jet

passing the requirements described in section 5.3. The correction factors C for the different

lepton thresholds are estimated in the MC simulation as C = 0.2035±0.0021 (pµT > 25 GeV)

and C = 0.1706±0.0021 (peT > 35 GeV), where the quoted uncertainties are statistical only.
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The number of background events remaining after selection is estimated from the simulated

samples. In the sample with two opposite-sign muons, the residual Drell-Yan background

corresponds to events with significant missing transverse energy and one low-pT muon

inside a jet. Potential discrepancies between data and MC description in this particular

phase space region are evaluated by analyzing the Drell-Yan-dominated control sample

with dimuon invariant masses above 85 GeV. A correction factor of 1.2 ± 0.1 provides

agreement between data and MC simulation in this region and it is applied to estimate the

background in the signal region. The uncertainty in this correction factor is propagated

as a systematic uncertainty in the cross section measurement. This takes into account

possible differences in the description of events below and around the Z-boson peak, where

this factor is derived.

Table 1 contains all the relevant inputs used in the measurements and the resulting

cross sections in the different subchannels. The sources of systematic uncertainties affecting

the measurement are discussed in section 6.1.

For each W-boson decay channel and lepton pT threshold considered, the cross sections

measured from the three charm meson decay samples are consistent and are combined.

Measurements performed in the muon and electron channel with a lepton pT threshold

of 35 GeV are also combined. The combination is a weighted average of the individual

measurements taking into account their statistical and systematic uncertainties. System-

atic uncertainties arising from a common source and affecting several measurements are

considered to be fully correlated.

For pµT > 25 GeV the average W + c cross section is

σ(pp→W + c + X)× B(W→ µν)(pµT > 25 GeV) = 107.7± 3.3 (stat.)± 6.9 (syst.) pb.

For p`T > 35 GeV we obtain

σ(pp→W + c + X)× B(W→ µν)(pµT > 35 GeV) = 82.9± 2.6 (stat.)± 5.1 (syst.) pb,

σ(pp→W + c + X)× B(W→ eν)(peT > 35 GeV) = 85.3± 2.5 (stat.)± 5.7 (syst.) pb,

σ(pp→W + c + X)× B(W→ `ν)(p`T > 35 GeV) = 84.1± 2.0 (stat.)± 4.9 (syst.) pb.

The average cross sections are dominated by the measurements in the semileptonic channel

(∼50%), followed by the D± channel (∼30%) and the D∗±(2010) channel (∼20%). The

weight of the W→ µν channel in the cross section measurement with a lepton pT threshold

of 35 GeV is ∼30% higher than the contribution from the W→ eν channel.

These measurements are largely background-free. The overall relative uncertainty,

6-7%, is dominated by systematic uncertainties in the theoretical modeling of the signal

and by experimental uncertainties in the efficiency of the selection criteria. A detailed

comparison with theoretical predictions is provided in section 9.

6.1 Systematic uncertainties in the W + c cross section measurement

The various sources of systematic uncertainties are presented in table 2. The limited

precision in the branching fractions of the charm decays is one of the dominant sources

of uncertainties.
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W→ µν, pµT > 25 GeV

Final state Nsel Nsel −Nbkg C [%] σ(W + c) [pb]

D± 1502± 62 1203± 91 11.1± 0.3 103.6± 7.8 (stat.)± 8.1 (syst.)

D∗±(2010) 318± 21 309± 23 8.5± 0.4 116.9± 8.7 (stat.)± 10.0 (syst.)

c→ µ 14215± 196 9867± 237 20.4± 0.2 106.5± 2.6 (stat.)± 9.6 (syst.)

W→ µν, pµT > 35 GeV

Final state Nsel Nsel −Nbkg C [%] σ(W + c) [pb]

D± 1209± 55 981± 79 11.4± 0.4 82.9± 6.7 (stat.)± 6.4 (syst.)

D∗±(2010) 260± 19 248± 21 8.6± 0.5 92.3± 7.8 (stat.)± 8.2 (syst.)

c→ µ 11462± 172 7875± 207 21.6± 0.2 79.9± 2.1 (stat.)± 6.9 (syst.)

W→ eν, peT > 35 GeV

Final state Nsel Nsel −Nbkg C [%] σ(W + c) [pb]

D± 838± 47 726± 55 8.3± 0.3 83.5± 6.3 (stat.)± 7.1 (syst.)

D∗±(2010) 148± 15 145± 18 5.6± 0.4 83.3± 10.4 (stat.)± 8.5 (syst.)

c→ µ 7156± 151 6701± 175 17.1± 0.2 86.5± 2.2 (stat.)± 6.9 (syst.)

Table 1. Cross section results for three specific final states. Here Nsel is the estimated number of

selected events in the signal region (around the resonance in the case of D± and D∗±(2010) final

states). Nsel − Nbkg is the estimate for the signal events after background subtraction using the

method described in the text, C is the acceptance and efficiency correction factor, and σ(W + c) is

the measured W + c cross section after correction for the charm fractions as discussed in the text.

Results obtained with the sample of W bosons decaying into a muon and a neutrino and for the

two muon transverse momentum thresholds (pµT > 25 GeV and pµT > 35 GeV) are shown in the first

two blocks of the table. Results obtained when the W boson decays into an electron and a neutrino

(peT > 35 GeV) are given in the lowest block of the table. All uncertainties quoted in the table are

statistical, except for the measured cross sections, which include systematic uncertainties due to

the sources discussed in section 6.1.

Tracking reconstruction inefficiencies are intrinsically small (< 1% [42]). Given the

nature of the method used to build secondary vertices, tracks are assigned to either the

primary or secondary vertex in a way that may be different in data and MC simulation.

In order to estimate the size of a potential discrepancy, the set of secondary tracks is

either increased by adding a nearby primary track or decreased by dropping one of the

original secondary tracks. A systematic uncertainty of 3.3% in the measured cross sections

is estimated from the observed differences at the resonant D0 and D± peaks between data

and simulation. Its impact on the final cross sections is reduced after combination with

the results from the semileptonic channel, which is free of this uncertainty.

Uncertainties due to the pileup modeling are calculated using a modified pileup profile

obtained with a minimum bias cross section increased by its estimated uncertainty, ≈6%.

Jet energy scale uncertainties are extracted from dedicated CMS studies [19], which also

take into account possible variations in the jet flavour composition. Additional Emiss
T effects
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are estimated by smearing the MT distribution in simulation in order to match the MT

shape observed in data. Their impact is ≈2% on the final measurement.

Lepton trigger and selection inefficiencies are included in the simulation by applying

the corresponding data/MC scale factors determined in dedicated “tag-and-probe” studies

as a function of the lepton pseudorapidity. For muons we estimate a 0.7% uncertainty

according to CMS studies on dimuon events in the Z-boson mass peak. In the electron

case we consider the difference between switching on and off the efficiency scale factors,

because of the presence of missing transverse energy requirements at the trigger level that

cannot be fully accounted by using “tag-and-probe” techniques. The effect of momentum

and energy resolution corrections determined at the Z-boson mass peak is also propagated

as an additional uncertainty. We combine the uncertainties due to lepton identification,

isolation, and trigger efficiencies with the uncertainty in the lepton momentum and energy

resolution in a single entry in table 2.

The efficiency uncertainty for muons inside jets is taken to be 3.0% according to ded-

icated studies in multijet events. The systematic uncertainty arising from the Drell-Yan

background subtraction in the semileptonic channel is determined as the change in the cross

section when the correction factor to the MC simulation is varied within its uncertainties.

The propagation of the statistical uncertainty in the factor C to the cross section is

not negligible due to the limited size of the MC samples used. The uncertainties related

to initial-state radiation (ISR) are estimated by recalculating the factor C from samples

generated with different renormalization and factorization scales (half and twice the default

scale Q2 used in the generation). The average value of the meson energy fraction in charm

decays is varied by 4%, which is about twice the uncertainty in the D∗±(2010) fragmentation

determined at LEP [37, 39], in order to cover possible uncertainties in the assumed shape.

Other theoretical uncertainties in C include PDF effects and potential biases due to the

adoption of the MadGraph jet-parton matching scheme as the reference to be compared

with the mcfm calculations (≈ 1%).

The integrated luminosity measurement has a 2.2% uncertainty [43]. Physics back-

grounds, including the gluon-splitting W + cc component, have a negligible contribution to

the systematics compared with the statistical uncertainties in the background subtraction.

6.2 Characterization of W + c kinematics

The high signal purity of the selected samples allows a deeper study of the properties of W+

c events. Figure 7 shows the distributions of the jet pseudorapidity and the jet momentum

fraction carried by the D± candidates (top row of plots) and the D∗±(2010) candidates

(middle row of plots), while the jet pseudorapidity and the jet momentum fraction carried

by the muon is shown for the semileptonic candidates (bottom row of plots). The latter

observable is directly related to the charm fragmentation function. The normalization

of the W + c component in the simulation has been scaled by a factor of 1.1 in order to

match approximately the experimental rate measured in data. Electron and muon channels

are added in order to enhance the statistical power of the comparison. All distributions

show reasonable agreement with the predictions of MadGraph + pythia, although the

experimental charm fragmentation spectra are slightly harder than the predicted ones.

– 17 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

pµT > 25 GeV p`T > 35 GeV

Source ∆syst[%] ∆syst[%]

B(c→ D± → K∓π±π±) 1.5 1.5

B(c→ D∗±(2010)→ D0 → K∓π±) 0.7 0.6

B(c→ µ) 2.6 2.7

Vertex reconstruction 1.8 1.7

Pileup 0.9 0.8

Jet energy scale 3.0 1.7

Emiss
T 2.0 2.0

Lepton efficiency, resolution 0.8 1.5

Muon efficiency in charm decay 1.4 1.5

Drell-Yan background 1.4 0.9

MC statistics (C stat. uncert.) 1.6 1.3

ISR and renormalization/
0.2 0.2

factorization scales

Fragmentation function 0.8 0.6

Other theoretical uncertainties 0.8 0.7

Luminosity 2.2 2.2

Total 6.3 5.7

Table 2. Breakdown of the different contributions to the total systematic uncertainty (∆syst) in

the combined σ(W + c) measurements in the fiducial region given by pjetT > 25 GeV, |ηjet| < 2.5,

|η`| < 2.1 for two different thresholds of the transverse momentum of the lepton from the W-boson

decay: p`T > 25 GeV (muon channel only) and p`T > 35 GeV (muon and electron channels combined).

7 Measurement of the differential cross section as a function of the lepton

pseudorapidity

The W + c cross section is also measured differentially with respect to the absolute value

of the pseudorapidity of the lepton from the W-boson decay. We first determine the

normalized differential cross section, (1/σ(W+c)) dσ(W+c)/d|η|. The absolute differential

cross section is derived from the normalized one just by scaling to the average cross section

presented in the previous section.

For this measurement, the inclusive three-prong and two-prong samples of W+c candi-

dates are used. In addition, the semileptonic sample is employed. Five bins in the absolute

value of the lepton pseudorapidity are considered: [0, 0.35], [0.35, 0.7], [0.7, 1.1], [1.1,

1.6], [1.6, 2.1]; this binning is chosen in order to have a uniform distribution of the events

among the five bins.

The normalized differential cross section is computed from the observed number of

OS − SS events with the lepton from the W-boson emitted in a given pseudorapidity bin
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Figure 7. Distributions of W+c selected events in the different charm decay channels as a function

of the jet pseudorapidity (left) and the jet momentum fraction (right) carried by the D meson or

by the muon inside the jet. The top row corresponds to the D± decay channel, the middle row

corresponds to the D∗±(2010) decay channel, and the bottom row corresponds to semileptonic

charm decays into muons. Only events in the signal region used to determine the cross section are

used. The Monte Carlo predictions have been scaled by a factor of 1.1 in order to approximately

match the W + c yield measured in data.
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W→ µν W→ eν

pµT > 25 GeV pµT > 35 GeV peT > 35 GeV

[|η|min, |η|max] Cnorm CnormSV Cnorm CnormSV Cnorm CnormSV

[0, 0.35] 1.00 1.00 1.00 1.00 1.00 1.00

[0.35, 0.7] 1.07 1.07 1.06 1.06 1.01 0.99

[0.7, 1.1] 0.98 0.97 0.98 0.96 1.01 1.01

[1.1, 1.6] 0.96 0.94 0.97 0.95 0.73 0.69

[1.6, 2.1] 0.90 0.86 0.91 0.87 0.72 0.65

Table 3. Correction factors Cnorm used for the calculation of the differential measurements. Sta-

tistical uncertainties in Cnorm are typically 0.3% while in CnormSV they are roughly 1%.

(Nsel,i), after subtraction of the residual background (Nbkg,i), which is evaluated with the

simulated samples. A bin-by-bin correction (Cnormi ) is used to correct (Nsel,i −Nbkg,i) for

detector inefficiencies. For this differential cross section only the differences among rapidity

bins are relevant. Hence we define the lowest rapidity bin [0, 0.35] as Cnorm1 = 1.0 and

compute the correction factors relative to this bin. These correction factors are displayed

in table 3. For Cnormi only selection requirements related to the W-boson identification and

jet selection are applied; these will be used to correct the observed events in the semileptonic

sample. This procedure is done separately for events with a secondary vertex using the

correction factors CnormSV , which are applied to the events in the inclusive three- and two-

prong samples. Global factors correcting for effects independent of the pseudorapidity of

the lepton from the W-boson decay affect equally all bins and cancel in the normalization.

The statistical uncertainty in the Cnormi factors is propagated as a systematic uncertainty

to the normalized differential cross section.

The number of events selected, Nsel,i, in the inclusive three-prong sample is subject to

the constraint that the invariant mass of the three tracks from the vertex, m(K∓π±π±) is

smaller than 2.5 GeV. The events included in the inclusive two-prong sample have a mass

difference of less than 0.7 GeV between (1) the invariant mass of the two-track system plus

the closest track from the primary pp interactionm(K∓π±π±), and (2) the invariant mass of

the two-track system m(K∓π±). For the semileptonic channel Nsel,i is given by the number

of events with a W-boson candidate decaying into a high-pT lepton and an identified muon

inside the jet passing the requirements described in section 5.3. The assignment to the

corresponding ith bin in the differential distribution is determined by the absolute value

of the pseudorapidity of the lepton from the W-boson decay.

The normalized differential cross sections are presented graphically in figure 8. The

number of OS−SS events in each lepton pseudorapidity bin for the three charm meson decay

samples are detailed in tables 11, 12, and 13 of appendix A, together with the expected

residual background Nbkg,i and the numerical values of the normalized cross sections. The

estimation of this background contamination has large statistical uncertainties due to the

limited size of the MC samples, mainly for the data with a displaced secondary vertex. This
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Figure 8. Normalized differential cross section distribution of W+c (W→ `ν) events as a function

of the absolute value of the pseudorapidity of the lepton from the W-boson decay. The first two

plots show the results from the W → µν sample, with pµT > 25 GeV (left plot) and pµT > 35 GeV

(middle plot). The right plot shows the results from the W → eν sample, with peT > 35 GeV. The

results obtained with the inclusive three-prong sample are shown as open points. Solid squares

represent the results obtained with the inclusive two-prong sample and the open triangles give the

result from the semileptonic sample. Data points showing the results from the three-prong and the

semileptonic samples are slightly displaced in the horizontal axis for better visibility of the results.

uncertainty is propagated to the differential cross sections as a systematic uncertainty in

the measurement. Unlike the W → eν sample, there is a sizable background contribution

in the W→ µν sample arising from Drell-Yan events.

The normalized differential cross sections measured with the different W+c subsamples

and for the two W → `ν decay channels are consistent. Therefore, the results obtained in

the W → µν channel with pµT > 25 GeV are averaged, as are the results for the W → µν

and W→ eν channels with p`T > 35 GeV. These combinations are a weighted average of the

individual measurements taking into account their statistical and systematic uncertainties.

Systematic uncertainties arising from a common source and affecting several measurements

are considered to be fully correlated among them. The existing statistical correlations

among the normalized cross section in the five pseudorapidity bins are included in the

combination. These averaged values are given in table 4. The corresponding correlation

matrices are presented in table 5.

The normalized differential cross sections obtained for pµT > 25 GeV and p`T > 35 GeV

are combined with the respective W + c cross sections presented in section 6 to obtain

the absolute differential cross sections, dσ(W + c)/d|η|. Results are shown in table 6.

Normalized differential cross section and total cross section measurements are essentially

uncorrelated and the full covariance matrices for the absolute differential cross sections

can be obtained by propagating the information contained in tables 4 and 5 and the total

uncertainty in the W + c cross sections.

7.1 Systematic uncertainties in the normalized differential cross section mea-

surement

The dominant source of systematic uncertainty in the normalized differential cross sections

from the three samples is the limited size of the MC samples. It impacts the statistical
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Normalized differential cross section, (1/σ(W + c)) dσ(W + c)/d|η|

[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 0.638± 0.016 (stat.)± 0.012 (syst.) 0.622± 0.013 (stat.)± 0.010 (syst.)

[0.35, 0.7] 0.556± 0.016 (stat.)± 0.012 (syst.) 0.585± 0.014 (stat.)± 0.010 (syst.)

[0.7, 1.1] 0.527± 0.015 (stat.)± 0.011 (syst.) 0.541± 0.012 (stat.)± 0.009 (syst.)

[1.1, 1.6] 0.416± 0.012 (stat.)± 0.009 (syst.) 0.407± 0.010 (stat.)± 0.008 (syst.)

[1.6, 2.1] 0.326± 0.012 (stat.)± 0.009 (syst.) 0.316± 0.010 (stat.)± 0.007 (syst.)

Table 4. The normalized differential cross section as a function of the absolute value of the lepton

pseudorapidity. These results are the average of the three samples (inclusive three-prong, inclusive

two-prong, and semileptonic). The left column shows the results obtained with the W → µν

sample for muons with pT > 25 GeV, while the right column combines the results obtained with

the W→ µν and W→ eν samples for leptons with pT > 35 GeV.

p`T > 25 GeV

[|η|min, |η|max] [0, 0.35] [0.35, 0.7] [0.7, 1.1] [1.1, 1.6] [1.6, 2.1]

[0, 0.35] 1.00

[0.35, 0.7] −0.22 1.00

[0.7, 1.1] −0.24 −0.22 1.00

[1.1, 1.6] −0.26 −0.26 −0.28 1.00

[1.6, 2.1] −0.24 −0.24 −0.26 −0.26 1.00

p`T > 35 GeV

[|η|min, |η|max] [0, 0.35] [0.35, 0.7] [0.7, 1.1] [1.1, 1.6] [1.6, 2.1]

[0, 0.35] 1.00

[0.35, 0.7] −0.20 1.00

[0.7, 1.1] −0.22 −0.21 1.00

[1.1, 1.6] −0.26 −0.26 −0.28 1.00

[1.6, 2.1] −0.24 −0.24 −0.25 −0.27 1.00

Table 5. Correlation matrices for the averaged normalized differential cross sections (1/σ(W +

c)) dσ(W + c)/d|η|. Matrices are symmetric and only the lower part of them is shown. The top

matrix is for the normalized differential cross section requiring that the pT of the lepton be larger

than 25 GeV (W→ µν sample only). The bottom one refers to the combination of results obtained

with the W→ µν and W→ eν samples for leptons with pT > 35 GeV.

accuracy in the estimation of the residual background after the SS subtraction, and to a

lesser extent, in the determination of the correction factors Cnormi . As summarized below,

most of the other sources that have been discussed in section 6 have a negligible impact in

the differential distributions since their effects largely cancel out in the ratios.

– 22 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

Differential cross section, dσ(W + c)/d|η| [pb]

[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 68.7± 2.7 (stat.)± 4.6 (syst.) pb 52.3± 1.7 (stat.)± 3.2 (syst.) pb

[0.35, 0.7] 59.9± 2.5 (stat.)± 4.0 (syst.) pb 49.2± 1.6 (stat.)± 3.0 (syst.) pb

[0.7, 1.1] 56.7± 2.4 (stat.)± 3.8 (syst.) pb 45.5± 1.5 (stat.)± 2.7 (syst.) pb

[1.1, 1.6] 44.8± 1.9 (stat.)± 3.2 (syst.) pb 34.2± 1.2 (stat.)± 2.1 (syst.) pb

[1.6, 2.1] 35.1± 1.7 (stat.)± 2.4 (syst.) pb 26.6± 1.0 (stat.)± 1.7 (syst.) pb

Table 6. The differential cross section as a function of the absolute value of the lepton pseudorapid-

ity. These results are the average of the three samples (inclusive three-prong, inclusive two-prong,

and semileptonic). The left column shows the results obtained with the W→ µν sample for muons

with pT > 25 GeV, while the right column combines the results obtained with the W → µν and

W→ eν samples for leptons with pT > 35 GeV.

Differential distributions are mostly independent of jet energy scale effects since they

are measured as a function of the pseudorapidity of the lepton from the W-boson decay and

the spanned jet kinematic region is similar in all cases, independently of the pseudorapidity

of the lepton. Possible effects due to jet energy scale uncertainties are evaluated by changing

the jet energy scale in the simulated W + c sample in accord with the results of dedicated

studies by CMS [19]. The variations observed in the resulting differential distribution can

be largely explained by statistical fluctuations in the MC sample.

The calibration factors for lepton momentum scale and resolution have been derived

from detailed studies of the position and width of the Z-boson peak [44, 45]. The system-

atic uncertainty in the normalized differential cross section is estimated in the W → eν

channel by comparing the resulting distributions with and without calibration corrections.

Variations are smaller than 1% in the barrel, and of the order of 1.5% in the endcap re-

gion. In the W→ µν channel the measurement is repeated many times, varying the muon

calibration factors within their uncertainties and comparing to the values obtained when

applying the central value of the correcting factors. The width of the resulting distribu-

tion is taken as the systematic uncertainty arising from limited knowledge of the muon

momentum scale and resolution. Uncertainties between 0.2% and 0.4% in the normalized

differential distributions are obtained, depending on the particular muon pseudorapidity

bin, the sample selection, and the pµT threshold.

We estimate a residual ∼0.35% systematic uncertainty in the muon efficiency scaling

factors, which are treated as uncorrelated among the different pseudorapidity bins. For the

W → eν channel, the effect of the efficiency corrections in the measured ratios (∼0.25%)

is computed and taken as an estimation of the systematic uncertainty.

In the modeling of the background remaining after the SS subtraction, the only physical

process with a visible contribution to the final sample is Drell-Yan production, which, when

one of the two muons is inside a jet, mimics the semileptonic sample in the W→ µν channel.

The correction factor (1.2±0.1) applied to the Drell-Yan prediction is varied by one sigma

and the differential distribution is reevaluated. Variations smaller than 0.3% are observed
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and taken as the associated systematic uncertainty. Top-quark contributions have also been

varied by 6% for tt production and by 15% for single-top-quark production. Variations in

the differential distributions are smaller than 0.2%. A total systematic uncertainty of 0.3%

is assumed to account for the background subtraction.

It is observed that the uncertainties related to the parton distribution function of

the strange quark within the same PDF set are smaller than, or equal to, the differences

between the central values obtained with MSTW08 [28], CT10 [24], and NNPDF23 [46].

However, no variation in the C correction factors computed with these sets of PDFs is

observed and therefore no change is expected in the final result.

Systematic uncertainties arising from other sources, such as knowledge of the event

pileup or the average energy fraction in charm fragmentation have been evaluated with the

W + c MC sample and are found to be negligible.

The systematic uncertainties in the absolute differential cross sections given in table 6

are dominated by the uncertainties in the total W+c cross section. The relative importance

of the different sources essentially follows the breakdown of the contributions presented in

table 2. The effect of the limited MC statistics is increased because both measurements,

total and normalized differential cross sections, are affected.

8 Measurement of the cross section ratio σ(W+ + c)/σ(W− + c)

Cross section ratios σ(W+ + c)/σ(W− + c) are also measured for the three specific final

states discussed in the previous section. They are determined as the ratio of the OS− SS

samples in which the lepton from the W-boson decay is positively or negatively charged:

R±c =
σ(W+ + c)

σ(W− + c)
=

(N+
sel −N

+
bkg)

(N−sel −N
−
bkg)

.

The total cross section ratio and the ratio as a function of the absolute value of the pseu-

dorapidity of the lepton from the W-boson decay are determined.

The numbers for N+
sel and N−sel are extracted from the same subsamples used for the

differential cross section measurement presented in the previous section and by separating

the events according to the sign of the lepton from the W-boson decay. The background

contributions N+
bkg and N−bkg to N+

sel and N−sel have a small effect in the ratio and are

neglected in the calculation. The largest effect is due to the Drell-Yan contamination in

the W → µν channel and that is reduced by requiring that the transverse momentum of

the muon inside the jet be less than 12 GeV. No efficiency corrections are applied since

they affect the positively and negatively charged samples equally and cancel in the ratio.

Figure 9 presents the cross section ratios R±c (|η`|) obtained from the three samples.

The numerical values of the cross section ratio are detailed in table 14 in appendix A. The

last row of each set of results in the table gives the cross section ratio for the full lepton

absolute pseudorapidity range [0., 2.1].

The effect of neglecting the background is estimated to be of the order of 0.3% and

0.2% for the inclusive cross section ratio in the inclusive three- and two-prong samples,

respectively. It is 1% (0.3%) in the semileptonic sample in the W→ µν (W→ eν) channel.
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Figure 9. Measured ratios σ(W+ + c)/σ(W− + c) as a function of the absolute value of the lepton

pseudorapidity from the W-boson decay. The first two plots show the results from the W → µν

sample, with pµT > 25 GeV (left plot) and pµT > 35 GeV (middle plot). The right plot shows the

results from the W → eν sample, with peT > 35 GeV. The results obtained with the inclusive

three-prong sample are shown as open points. Solid squares represent the results obtained with the

inclusive two-prong sample and the open triangles give the result from the semileptonic sample.

Data points showing the results from the three-prong and the semileptonic samples are slightly

displaced in the horizontal axis for better visibility of the results.

In the ratios as a function of the absolute value of the pseudorapidity, the largest effect

is for the highest |η| bin for all samples (∼1%) except for the semileptonic sample in the

W → µν channel where it reaches ∼4%. Other sources of systematic uncertainties in

the cross section ratios are those related to lepton reconstruction, identification, and, in

particular, any lepton-charge-dependent effect that may affect the W+ and W− candidate

samples differently. The systematic uncertainty in the cross section ratio due to lepton

momentum scale and resolution is estimated following the same technique used for the

normalized differential cross section. The uncertainties in the W→ eν channel are smaller

than 1% in the barrel, and approximately 1.5% in the endcap region. They vary in the

range 0.4–0.8% in the W → µν channel, depending again on the muon pseudorapidity

bin, the sample, and the muon pT threshold. They reduce to ∼0.2–0.3% for the inclusive

cross section ratios since the effect of muon momentum correction factors for the muon

pseudorapidity bins cancels to a large extent, thus decreasing the final uncertainty. The

correction factors to the lepton reconstruction efficiencies for positively and negatively

charged leptons are the same within their statistical uncertainty and thus no additional

systematic uncertainties are assigned to this source.

The lepton charge misassignment in CMS is smaller than 0.3% for electrons [47] and of

the order of 10−4 for muons [48]. The associated systematic uncertainty in the cross section

ratio is proportional to the relative difference between W+ + c and W− + c production.

Since this is small because the measured cross section ratios are close to 1, the total effect

is neglected.

The cross section ratios, both total and as a function of the lepton pseudorapidity,

measured with the different W + c samples and for the two W → `ν decay channels are

consistent. The results obtained in the W → µν channel with pµT > 25 GeV are averaged,

as are the results for the W → µν and W → eν channels with p`T > 35 GeV. Statistical
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Charged cross section ratio, σ(W+ + c)/σ(W− + c)

[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 1.013± 0.052 (stat.)± 0.005 (syst.) 0.993± 0.041 (stat.)± 0.007 (syst.)

[0.35, 0.7] 0.960± 0.053 (stat.)± 0.005 (syst.) 0.977± 0.039 (stat.)± 0.007 (syst.)

[0.7, 1.1] 0.897± 0.051 (stat.)± 0.008 (syst.) 0.927± 0.040 (stat.)± 0.008 (syst.)

[1.1, 1.6] 1.062± 0.061 (stat.)± 0.014 (syst.) 0.948± 0.046 (stat.)± 0.010 (syst.)

[1.6, 2.1] 0.776± 0.058 (stat.)± 0.016 (syst.) 0.784± 0.050 (stat.)± 0.011 (syst.)

Table 7. Measured ratios σ(W+ + c)/σ(W− + c) as a function of the absolute value of the pseu-

dorapidity of the lepton from the W-boson decay. The results are the average of the three different

samples (inclusive three-prong and two-prong and semileptonic). The left column shows the results

obtained with the W → µν sample for muons with pµT > 25 GeV, while the right column combines

the results obtained with the W→ µν and W→ eν samples for leptons with p`T > 35 GeV.

and systematic uncertainties of the individual measurements are taken into account in the

combination process. Systematic uncertainties arising from a common source and affecting

several measurements are considered to be fully correlated.

The following averaged R±c ratios in the full pseudorapidity interval are derived:

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(pµT > 25 GeV) = 0.954± 0.025 (stat.)± 0.004 (syst.),

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(pµT > 35 GeV) = 0.947± 0.026 (stat.)± 0.005 (syst.),

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(peT > 35 GeV) = 0.927± 0.029 (stat.)± 0.012 (syst.),

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(p`T > 35 GeV) = 0.938± 0.019 (stat.)± 0.006 (syst.).

and the corresponding averaged values as a function of the absolute value of the pseudo-

rapidity are presented in table 7.

A larger production yield of W− + c than of W+ + c is expected because the former

process involves a d quark whereas the latter involves a d (sea) antiquark. This prediction

is confirmed since the measured cross section ratio σ(W+ + c)/σ(W− + c) is smaller than

1.0. The difference in production between W+ + c and W−+ c is not constant over the full

pseudorapidity range. Production cross sections are similar in the central region, R±c ∼1,

for absolute values of the pseudorapidity of the lepton smaller than 0.35. The ratio reduces

to about 0.8 for the most forward lepton pseudorapidity. A decrease of the cross section

ratio with the lepton pseudorapidity is expected, since in this case we are probing a region

of Bjorken x where the difference between the d and d contributions is larger.

9 Results and comparisons with theoretical predictions

The measured total and differential cross sections and cross section ratios can be compared

to analytical calculations from the mcfm program. The W+c process is available in mcfm

– 26 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

up to O(αs
2) with a massive charm quark (m(c) = 1.5 GeV). The mcfm predictions for this

process do not include contributions from gluon splitting into a cc pair, but only contribu-

tions where the strange (or the down) quark couples to the W boson. The implementation

of W + c follows the calculation for the similar W+top-quark process [49].

The parameters of the calculation have been adjusted to match the experimental mea-

surement: pjetT > 25 GeV and |ηjet| < 2.5. Two sets of predictions are computed, utilizing

the different lepton pT thresholds used in the analysis: p`T > 25 GeV in the W → µν

channel and p`T > 35 GeV in the W→ µν and in the W→ eν channel.

We show predictions for three NNLO PDF sets: MSTW2008, CT10, and NNPDF2.3.

These three PDF sets have in common the use of a global data set with a wide variety of

observables to constrain PDFs, and, in particular, they include neutrino charm production

data to provide information on the strange-quark content of the proton. In addition, we

compare with predictions using the NNPDF2.3coll NNLO set [50], which is based on high

energy collider data only, and thus does not rely on the neutrino DIS charm information. In

particular, it includes W and Z production data from ATLAS, CMS, and LHCb, and leads

to a larger strangeness content of the proton than that of global PDF sets. These four sets

span a wide range of values for the strange-quark PDF, and the strangeness content from

other PDF analyses falls within this interval. NNPDF2.3 has the smallest strangeness, and

NNPDF2.3coll the largest one. We have also computed the theoretical predictions for the

ABM11 [51], JR09 [52], and HERAPDF1.5 [53, 54] PDF sets and we discuss these results

below as well.

Both the factorization and the renormalization scales are set to the value of the W-

boson mass. To estimate the uncertainty from missing higher perturbative orders, cross

section predictions are computed by varying independently the factorization and renor-

malization scales to twice and half the nominal value (with the constraint that the ratio

of scales is never larger than two). The envelope of the cross sections with these scale

variation defines the theoretical scale uncertainty.

The value of αs(MZ) in the calculation is set to the central value given by the respec-

tive PDF groups. Uncertainties in the predicted cross sections associated with αs(MZ)

are smaller than the uncertainties from the PDFs, and have been neglected in the follow-

ing comparisons.

9.1 Total cross section

The measured total cross sections are consistent with theoretical expectations. However,

there are significant variations depending on the PDF set used in the prediction. The

detailed theoretical predictions are summarized in table 8 where the central value of the

prediction is given, together with the uncertainty due to the PDF variations within each set.

The experimental results reported in this document are also included in the table. The size

of the PDF uncertainties depends on the different methodology used by the various groups.

In particular, they depend on the parametrization of the strange-quark PDF and on the

definition of the one-standard-deviation uncertainty band. In the case of NNPDF2.3coll,

the larger uncertainties arise from the lack of direct constraints on strangeness in a collider-

only fit.
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p`T > 25 GeV p`T > 35 GeV

PDF set σ(W + c) [pb] ∆PDF[%] σ(W + c) [pb] ∆PDF[%]

MSTW08 100.7 +1.8
−2.2 78.7 +1.8

−2.2

CT10 109.9 +7.0
−5.8 87.3 +7.1

−5.9

NNPDF2.3 99.4 ±4.2 78.9 ±4.2

NNPDF2.3coll 129.9 ±11.6 102.7 ±11.5

CMS 107.7± 3.3 (stat.)± 6.9 (syst.) 84.1± 2.0 (stat.)± 4.9 (syst.)

Table 8. Predictions for σ(W+c) from mcfm at NLO. Kinematic selection follows the experimental

requirements: pjetT > 25 GeV, |ηjet| < 2.5, and |η`| < 2.1. Partons are joined using an anti-kT
algorithm with a distance parameter of 1. Theoretical predictions are computed with mcfm for two

different thresholds in the lepton pT: p`T > 25 (35) GeV in the first (second) column of predictions.

For every PDF set, the central value of the prediction is given, together with the relative uncertainty

as prescribed from the PDF set. The uncertainty associated with scale variations is ±5%. The last

row in the table gives the experimental results presented in this document.

These predictions are compared graphically to the experimental measurement in fig-

ure 10. Only PDF uncertainties are shown. Scale uncertainties in the total cross section

are of the order of ±5%. From figure 10 we see that measured W + c cross sections agree

with the theoretical predictions using the PDF sets introduced above within theoretical and

experimental uncertainties. The total cross sections for ABM11, JR09, and HERAPDF1.5

are respectively 98.9 pb (78.0 pb), 80.0 pb (63.4 pb) and 96.9 pb (76.7 pb) for a lepton pT
threshold of 25 (35) GeV. As discussed in [4], the strangeness in ABM11 and HERAPDF1.5

is close to that of MSTW and NNPDF, hence the similarities in the predictions.

9.2 Differential cross section

Predictions for the differential (both absolute and normalized) cross sections are obtained

from analytical calculations from mcfm using the same binning as in the data analysis:

[0, 0.35], [0.35, 0.7], [0.7, 1.1], [1.1, 1.6], [1.6, 2.1]. Table 9 presents the predictions for

(1/σ(W + c)) dσ(W + c)/d|η|. The differences among the central value of the predictions

obtained with the various PDF sets are of the same order as the associated uncertainties

(at 68% confidence level, CL). As in the case of the inclusive cross section, the different size

of the associated uncertainties arises from the different assumptions of PDF groups about

the strange quark and antiquark content of the proton and from the different experimental

inputs included [3]. As expected, PDF uncertainties increase at forward pseudorapidi-

ties, where the range of Bjorken x is outside that covered by available data sensitive to

strangeness. Systematic uncertainties due to the scale variations are smaller than 1% for

all lepton pseudorapidity bins.

The theoretical predictions are compared with the average of the experimental mea-

surements presented in section 7. Figure 11 (figure 12) compares the measurements and

predictions for the normalized cross sections (absolute cross sections). There is agree-
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Figure 10. Comparison of the theoretical predictions for σ(W + c) computed with mcfm and

several sets of PDFs with the average of the experimental measurements. The top plot shows

the predictions for a pT threshold of the lepton from the W-boson decay of p`T > 25 GeV and

the bottom plot presents the predictions for p`T > 35 GeV. The uncertainty associated with scale

variations is ±5%.

ment between the measured distributions and the theoretical predictions. We note that a

comparison among the several predictions in figures 11 and 12 may lead to different conclu-

sions. For instance, NNPDF2.3coll gives the smallest prediction in the first rapidity bin in

figure 11, whereas it gives the highest value in figure 12. The normalized differential cross

sections probe the shape of the strange-quark PDF whereas the behaviour of the absolute

differential cross sections is also driven by the overall magnitude of the strange-quark PDF.

9.3 Charged cross section ratio

Theoretical predictions for σ(W+ + c) and σ(W− + c) production are computed indepen-

dently under the same conditions explained before and for the same lepton pseudorapidity

intervals used in the analysis. Expectations for the cross section ratio σ(W++c)/σ(W−+c)

are derived from them and are presented in table 10. The last row in each block of predic-

tions gives the prediction of the charged cross section ratio for the full lepton pseudorapidity

interval, |η`| < 2.1. We note that this ratio is sensitive to the strangeness asymmetry in the

proton, but also to the down quark and antiquark asymmetry from the Cabibbo-suppressed
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p`T > 25 GeV

MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max] 1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%]

[0, 0.35] 0.596 +0.5
−0.5 0.605 +1.3

−2.3 0.612 1.1 0.569 5.5

[0.35, 0.7] 0.566 +0.4
−0.4 0.576 +1.0

−1.8 0.590 0.9 0.556 4.4

[0.7, 1.1] 0.518 +0.2
−0.2 0.527 +0.4

−0.7 0.521 0.4 0.513 1.9

[1.1, 1.6] 0.446 +0.3
−0.3 0.436 +1.3

−0.8 0.429 0.7 0.448 2.8

[1.6, 2.1] 0.327 +0.9
−1.0 0.316 +4.4

−2.4 0.314 2.1 0.354 9.6

p`T > 35 GeV

MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max] 1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%] 1

σ
dσ
d|η| ∆PDF[%]

[0, 0.35] 0.607 +0.6
−0.5 0.615 +1.4

−2.4 0.618 1.2 0.580 5.0

[0.35, 0.7] 0.582 +0.5
−0.4 0.588 +1.0

−1.9 0.587 0.9 0.568 3.8

[0.7, 1.1] 0.529 +0.2
−0.2 0.532 +0.4

−0.7 0.527 0.4 0.512 2.5

[1.1, 1.6] 0.431 +0.3
−0.3 0.428 +1.5

−0.9 0.436 0.8 0.438 1.4

[1.6, 2.1] 0.314 +1.0
−1.2 0.304 +4.9

−2.6 0.299 2.3 0.349 11.4

Table 9. The (1/σ(W + c)) dσ(W + c)/d|η| theoretical predictions calculated with mcfm at NLO.

Kinematic selection follows the experimental requirements: pjetT > 25 GeV, |ηjet| < 2.5, and |η`| <
2.1. Partons are joined using an anti-kT algorithm with a distance parameter of 1. Predictions for

W→ `ν when the transverse momentum of the lepton from the W boson is larger than 25 GeV are

given in the first block of the table. The second block of predictions are for W → `ν production

with p`T > 35 GeV. For every PDF set, the central value of the prediction is given, together with

the relative uncertainty as prescribed from the PDF set. The uncertainty associated with scale

variations is smaller than 1%.

process gd→W−c (gd→W+c). The d–d asymmetry is larger in absolute value than the

difference between strange quarks and antiquarks.

Both the central values and the associated PDF uncertainties are quite different for the

various sets of predictions. These differences arise from the assumptions underlying each

global fit. For instance, the CT10 set assumes equal content of strange quark and antiquark

in the proton, leading to a charged cross section ratio almost exclusively driven by the d–d

asymmetry and with a very small PDF uncertainty in the prediction. On the other hand,

both MSTW08 and NNPDF2.3 provide independent parametrizations of the strangeness

asymmetry, thus resulting in larger PDF uncertainties. The MSTW08 and NNPDF2.3

predicted values for the σ(W+ + c)/σ(W− + c) ratio in the full pseudorapidity region are

smaller than in the CT10 case. As before, PDF uncertainties increase for large values of the

lepton pseudorapidity. Systematic uncertainties in the cross section ratio due to the scale
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Figure 11. Normalized differential cross section, (1/σ(W + c)) dσ(W + c)/d|η|, as a function of

the absolute value of the pseudorapidity of the lepton from the W boson decay, compared with

the theoretical predictions. Theoretical predictions at NLO are computed with mcfm using four

different PDF sets. Kinematic selection follows the experimental requirements: pjetT > 25 GeV,

|ηjet| < 2.5, and |η`| < 2.1. The transverse momentum of the lepton is larger than 25 GeV in the

left plot and larger than 35 GeV in the right plot. The data points are the average of the results

presented before with the three different samples: inclusive three- and two-prong and semileptonic

samples. In the right plot the results obtained with the W→ µν samples and W→ eν samples are

combined. Symbols showing the theoretical expectations are slightly displaced in the horizontal axis

for better visibility of the predictions. The uncertainty associated with scale variations is smaller

than 1%.

variations are smaller than 1% for the full lepton absolute pseudorapidity range [0., 2.1] and

of the order of 1–2% for the smaller pseudorapidity bins of the differential measurement.

Differences among the predictions are relatively large for some of the lepton pseudo-

rapidity bins, ∼4–5%, although this difference is covered by one standard deviation of the

PDF uncertainties. All PDF sets predict the decrease of the charged ratio with the absolute

value of the lepton pseudorapidity as a consequence of the higher d–d asymmetry at large

values of Bjorken x. The decrease with |η`| is more pronounced in the case of NNPDF2.3.

Averaged cross section ratios obtained in section 8 are compared with theoretical pre-

dictions. Figure 13 shows the measurements and the predictions for the total cross section

ratios and figure 14 shows the cross section ratios as a function of the absolute value of the

lepton pseudorapidity.

The theoretical predictions based on the CT10 PDF set agree with the measured

cross section ratios. Predictions from NNPDF23 and NNPDF23coll are well within the

uncertainty of the measurements, whereas expectations using MSTW08 lie about 1.5 sigma

below the measurements. For the cross section ratio as a function of the absolute value of

the lepton pseudorapidity, there is agreement between the measurements and the theoretical

predictions, especially when the transverse momentum of the lepton from the W-boson

decay is larger than 35 GeV.
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Figure 12. Differential cross section, dσ(W + c)/d|η|, as a function of the absolute value of the

pseudorapidity of the lepton from the W-boson decay, compared with the theoretical predictions.

Theoretical predictions at NLO are computed with mcfm and four different PDF sets. Kinematic

selection follows the experimental requirements: pjetT > 25 GeV, |ηjet| < 2.5, and |η`| < 2.1. The

transverse momentum of the lepton is larger than 25 GeV in the left plot and larger than 35 GeV in

the right plot. The data points are the average of the results from the inclusive three- and two-prong

and semileptonic samples. In the right plot the results achieved with the W → µν samples and

W→ eν samples are combined. Symbols showing the theoretical expectations are slightly displaced

in the horizontal axis for better visibility of the predictions.

10 Summary and conclusions

The associated production of a W boson with a charm-quark jet in pp collisions at
√
s =

7 TeV is experimentally established for the first time, using a data sample collected by the

CMS experiment during the 2011 LHC run with an integrated luminosity of 5 fb−1. The

signature of W-boson production together with a charm-quark jet is observed by identifying

the leptonic decay of the W boson into a muon or an electron and a neutrino and the

reconstruction of exclusive and inclusive final states from the decay of charm hadrons. In

total, distinct W + c signals are observed independently in six different final states.

The high performance of the CMS tracking detector and the algorithms devised for

secondary-vertex reconstruction allow the efficient selection of candidate samples with a

displaced secondary vertex having three or two tracks corresponding to the decay products

of charm mesons. Clear signals of D± mesons are observed through the reconstruction of

the decay mode D± → K∓π±π± in events with three-track secondary vertices and from D0

production in the decay chain D∗±(2010)→ D0π± with the subsequent decay D0 → K∓π±

in events with two-track secondary vertices. In addition, efficient muon identification among

the particles constituting the jet leads to an independent W + c sample with an identified

muon from the semileptonic decay of the charm quark.

The analysis exploits the intrinsic charge correlation in W + c production between the

charge of the W boson and the charge of the c quark, which are always of opposite sign.
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p`T > 25 GeV

MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%]

[0, 0.35] 0.944 +1.2
−3.6 0.968 +0.2

−0.2 0.993 0.8 0.959 1.4

[0.35, 0.7] 0.941 +1.3
−3.5 0.965 +0.2

−0.2 0.920 1.0 0.975 1.5

[0.7, 1.1] 0.918 +1.7
−3.1 0.959 +0.3

−0.3 0.949 1.3 0.948 1.8

[1.1, 1.6] 0.871 +2.4
−2.7 0.951 +0.6

−0.5 0.893 2.0 0.913 2.6

[1.6, 2.1] 0.854 +3.1
−3.4 0.889 +1.2

−0.9 0.842 3.5 0.893 5.1

[0, 2.1] 0.906 +1.9
−2.8 0.949 +0.4

−0.4 0.922 1.5 0.937 2.0

p`T > 35 GeV

MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|ηmin|, |ηmax|] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%]

[0, 0.35] 0.949 +1.2
−3.7 0.974 +0.2

−0.2 0.972 0.9 1.009 1.5

[0.35, 0.7] 0.932 +1.4
−3.5 0.964 +0.3

−0.3 0.957 1.0 0.984 1.6

[0.7, 1.1] 0.902 +1.8
−3.2 0.953 +0.4

−0.3 0.953 1.4 0.927 3.3

[1.1, 1.6] 0.882 +2.5
−2.7 0.918 +0.6

−0.5 0.909 2.2 0.886 5.1

[1.6, 2.1] 0.845 +3.4
−3.8 0.888 +1.2

−1.0 0.831 3.8 0.877 5.9

[0, 2.1] 0.904 +2.0
−2.7 0.942 +0.4

−0.4 0.923 1.6 0.936 2.4

Table 10. Theoretical predictions for R±
c (η`) ≡ σ(W+ + c)(|η`|)/σ(W− + c)(|η`|) calculated with

mcfm at NLO. Kinematic selection follows the experimental requirements: pjetT > 25 GeV, |ηjet| <
2.5, and |η`| < 2.1. Partons are joined using an anti-kT algorithm with a distance parameter of

1. Predictions for W → `ν when the transverse momentum of the lepton from the W boson is

larger than 25 GeV are given in the first block of the table. The second block of predictions are

for W → `ν production with p`T > 35 GeV. For each PDF set, the central value of the prediction

is given, together with the relative uncertainty as prescribed from the PDF set. The uncertainty

associated with scale variations are of the order of 1–2%.

The W-boson decay into a well-identified charged lepton and the final-state mesons allow

us to determine unequivocally the signs of both the W boson and the charm-quark jet

candidates. Independent opposite-sign and same-sign samples of events are hence defined.

The background contributions from processes that are charge symmetric are subtracted in

an essentially model-independent way through a same-sign sample subtraction from the

opposite-sign sample in the relevant variables used in the analysis.

The high purity of the resulting samples allows us to perform various measurements in

an almost background-free environment. The sample of candidate events from the semilep-

tonic decay of charm mesons is affected by a larger background, mainly in the W → µν

channel, but it provides a larger statistical power so that the final precision attained in

the measurements in the three charm meson final states is similar. Furthermore, the large

number of events in the inclusive three- and two-prong samples and in the semileptonic

sample permit us to perform differential measurements.
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Figure 13. Comparison of the theoretical predictions for σ(W+ + c)/σ(W− + c) computed with

mcfm and several PDF sets with the average of the experimental measurements. The top plot

compares the average of the measurements made in the muon channel for a pT threshold of the lepton

from the W-boson decay of p`T > 25 GeV. The bottom plot presents the average of the measurements

in the muon and electron channel with the predictions for p`T > 35 GeV. The uncertainty associated

with scale variations is ±1%.

A detailed analysis of W + c production at
√
s = 7 TeV is presented. The study is

done for the kinematic region pjetT > 25 GeV, |ηjet| < 2.5, in the lepton pseudorapidity

range |η`| < 2.1, and for two different thresholds for the transverse momentum of the

lepton from the W-boson decay: p`T > 25 GeV in the W-boson muon decay channel only,

and p`T > 35 GeV in both the muon and the electron W-boson decay channels. Results

obtained in the three charm decay samples and in the two W-boson decay modes are fully

consistent and are thus combined to increase the final precision of the measurements.

– 34 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

|lη|
0 0.5 1 1.5 2

+
 c

)
-

(Wσ
)/c

+
 

+
(Wσ

0.6

0.8

1

1.2

Data
MSTW08
CT10
NNPDF23

collNNPDF23

Stat. uncertainty

Total uncertainty

 = 7 TeVs at -1L = 5.0 fbCMS  = 7 TeVs at -1L = 5.0 fbCMS

 > 25 GeVl
T

p

 > 25 GeVjet

T
p

)µ (l = 
ν l →W

|lη|
0 0.5 1 1.5 2

+
 c

)
-

(Wσ
)/c

+
 

+
(Wσ

0.6

0.8

1

1.2

Data
MSTW08
CT10
NNPDF23

collNNPDF23

Stat. uncertainty

Total uncertainty

 = 7 TeVs at -1L = 5.0 fbCMS  = 7 TeVs at -1L = 5.0 fbCMS

 > 35 GeVl
T

p

 > 25 GeVjet

T
p

,e)µ(l = 
ν l →W

Figure 14. Cross section ratio, σ(W+ + c)/σ(W− + c), as a function of the absolute value of the

pseudorapidity of the lepton from the W-boson decay. Results for the p`T > 25 GeV case are shown

in the left plot (muon channel only). In the right plot, the transverse momentum of the lepton

is larger than 35 GeV. The data points are the average of the results from the inclusive three-

and two-prong and semileptonic samples. In the right plot the results obtained with the W → µν

samples and W→ eν samples are combined. Theoretical predictions at NLO computed with mcfm

and four different PDF sets are also shown. The uncertainty associated with scale variations are

of the order of 1–2%. Symbols showing the theoretical expectations are slightly displaced in the

horizontal axis for better visibility of the predictions.

The total W + c production cross sections are measured to be

σ(pp→W + c + X)× B(W→ µν)(pµT > 25 GeV) = 107.7± 3.3 (stat.)± 6.9 (syst.) pb,

σ(pp→W + c + X)× B(W→ `ν)(p`T > 35 GeV) = 84.1± 2.0 (stat.)± 4.9 (syst.) pb.

Cross section ratios of the associated production of a positively charged W boson with a c̄

antiquark and a negatively charged W boson with a c quark are obtained:

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(pµT > 25 GeV) = 0.954± 0.025 (stat.)± 0.004 (syst.),

σ(pp→W+ + c + X)

σ(pp→W− + c + X)
(p`T > 35 GeV) = 0.938± 0.019 (stat.)± 0.006 (syst.).

The measured cross section ratios are the first evidence for an asymmetry in the W+ + c

and W−+c production. Total cross sections and cross section ratios are also measured as a

function of the absolute value of the pseudorapidity of the lepton from the W-boson decay,

thus probing a wide range of Bjorken x of the parton distribution of the proton. These

measurements provide the first direct constraint from LHC data on the strange quark

and antiquark content of the proton and constitute a valuable input for future global

PDF analyses.

These measurements are compared with theoretical predictions calculated with mcfm

at next-to-leading order in perturbative QCD using various sets of parton distribution

– 35 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

functions. The PDF groups make different assumptions in their global fits about the total

strange-quark content of the proton and of the s–s asymmetry. An overall agreement be-

tween the experimental results and the theoretical predictions is observed, which validates

the fitted strange quark and antiquark parton distribution functions at an energy signifi-

cantly higher than those of previous experiments. In particular, the predicted total cross

sections based on those PDF sets that include low-energy DIS data in their fits agree with

the measurements. Theoretical calculations also predict differential cross section shapes

in agreement with the measured ones. The observed W− + c yield is slightly larger than

the W+ + c yield, as expected from the dominance of the d quark over the d antiquark in

the proton.
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A Normalized differential cross section and cross section ratios as a func-

tion of the lepton pseudorapidity

W→ µν, pµT > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 1697± 83 86± 49 0.64± 0.03± 0.02

[0.35, 0.7] 1596± 86 63± 46 0.57± 0.03± 0.02

[0.7, 1.1] 1558± 83 113± 52 0.52± 0.03± 0.02

[1.1, 1.6] 1495± 85 142± 56 0.40± 0.02± 0.02

[1.6, 2.1] 1133± 72 72± 43 0.34± 0.02± 0.01

W→ µν, pµT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 1390± 75 37± 37 0.65± 0.03± 0.02

[0.35, 0.7] 1323± 76 40± 37 0.58± 0.03± 0.02

[0.7, 1.1] 1252± 74 87± 45 0.51± 0.03± 0.02

[1.1, 1.6] 1224± 75 90± 45 0.40± 0.02± 0.02

[1.6, 2.1] 899± 63 16± 30 0.34± 0.02± 0.02

W→ eν, peT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 950± 65 219± 44 0.56± 0.05± 0.03

[0.35, 0.7] 955± 64 182± 44 0.60± 0.05± 0.03

[0.7, 1.1] 940± 64 178± 44 0.51± 0.04± 0.03

[1.1, 1.6] 741± 55 97± 38 0.50± 0.04± 0.03

[1.6, 2.1] 437± 50 100± 33 0.28± 0.04± 0.03

Table 11. Estimated number of OS − SS events in the inclusive three-prong sample (defined in

section 5.4). The estimated numbers of remaining background events after SS subtraction is given

in the third column. The normalized differential cross section as a function of the absolute value

of the lepton pseudorapidity is shown in the last column. The first two blocks of the table present

the results from the W → µν sample, with pµT > 25 GeV and pµT > 35 GeV. The results from the

W→ eν sample, with peT > 35 GeV are given in the lowest block of the table. The first error in the

normalized differential cross section is due to the statistical size of the data sample and the second

one is the systematic uncertainty due to the sources discussed in section 7.1.
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W→ µν, pµT > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 1815± 96 210± 65 0.68± 0.04± 0.03

[0.35, 0.7] 1609± 98 303± 67 0.52± 0.04± 0.03

[0.7, 1.1] 1657± 98 325± 67 0.51± 0.03± 0.02

[1.1, 1.6] 1675± 103 265± 71 0.44± 0.03± 0.02

[1.6, 2.1] 1097± 91 159± 63 0.32± 0.03± 0.02

W→ µν, pµT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 1517± 86 170± 56 0.66± 0.04± 0.03

[0.35, 0.7] 1364± 87 200± 58 0.54± 0.04± 0.03

[0.7, 1.1] 1407± 86 256± 58 0.51± 0.03± 0.02

[1.1, 1.6] 1381± 90 218± 61 0.42± 0.03± 0.02

[1.6, 2.1] 919± 79 94± 50 0.33± 0.03± 0.02

W→ eν, peT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 931± 61 153± 42 0.59± 0.04± 0.03

[0.35, 0.7] 944± 62 200± 42 0.58± 0.04± 0.03

[0.7, 1.1] 1031± 63 128± 43 0.59± 0.04± 0.03

[1.1, 1.6] 655± 55 155± 38 0.39± 0.04± 0.03

[1.6, 2.1] 476± 52 83± 35 0.32± 0.04± 0.03

Table 12. Estimated number of OS − SS events in the inclusive two-prong sample (defined in

section 5.4). The estimated numbers of remaining background events after SS subtraction is given

in the third column. The normalized differential cross section as a function of the absolute value

of the lepton pseudorapidity is shown in the last column. The first two blocks of the table present

the results from the W → µν sample, with pµT > 25 GeV and pµT > 35 GeV. The results from the

W→ eν sample, with peT > 35 GeV are given in the lowest block of the table. The first error in the

normalized differential cross section is due to the statistical size of the data sample and the second

one is the systematic uncertainty due to the sources discussed in section 7.1.
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W→ µν, pµT > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 3059± 88 941± 66 0.62± 0.02± 0.02

[0.35, 0.7] 3068± 89 1008± 69 0.57± 0.02± 0.02

[0.7, 1.1] 2976± 89 902± 68 0.54± 0.02± 0.02

[1.1, 1.6] 3004± 93 1040± 72 0.42± 0.02± 0.01

[1.6, 2.1] 2071± 79 687± 63 0.32± 0.02± 0.01

W→ µν, pµT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 2435± 77 751± 59 0.62± 0.03± 0.02

[0.35, 0.7] 2483± 79 823± 61 0.57± 0.02± 0.02

[0.7, 1.1] 2425± 79 713± 59 0.56± 0.02± 0.02

[1.1, 1.6] 2444± 81 891± 62 0.41± 0.02± 0.01

[1.6, 2.1] 1673± 68 578± 54 0.31± 0.02± 0.01

W→ eν, peT > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|

[0, 0.35] 1607± 64 213± 43 0.62± 0.03± 0.02

[0.35, 0.7] 1574± 64 163± 43 0.62± 0.03± 0.02

[0.7, 1.1] 1633± 66 208± 46 0.55± 0.02± 0.02

[1.1, 1.6] 1078± 58 198± 39 0.38± 0.02± 0.01

[1.6, 2.1] 815± 54 103± 35 0.31± 0.02± 0.01

Table 13. Estimated number of OS−SS events in the semileptonic sample (defined in section 5.3).

The estimated numbers of remaining background events after SS subtraction is given in the third

column. The normalized differential cross section as a function of the absolute value of the lepton

pseudorapidity is shown in the last column. The first two blocks of the table present the results from

the W → µν sample, with pµT > 25 GeV and pµT > 35 GeV. The results from the W → eν sample,

with peT > 35 GeV are given in the lowest block of the table. The first error in the normalized

differential cross section is due to the statistical size of the data sample and the second one is the

systematic uncertainty due to the sources discussed in section 7.1.
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W→ µν, pµT > 25 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample

[0, 0.35] 0.877± 0.087± 0.004 1.213± 0.129± 0.005 1.047± 0.076± 0.010

[0.35, 0.7] 0.973± 0.104± 0.005 0.882± 0.109± 0.005 0.990± 0.075± 0.009

[0.7, 1.1] 0.837± 0.091± 0.006 1.023± 0.121± 0.007 0.890± 0.071± 0.015

[1.1, 1.6] 0.999± 0.114± 0.007 1.043± 0.127± 0.007 1.114± 0.089± 0.030

[1.6, 2.1] 0.898± 0.115± 0.010 0.784± 0.134± 0.012 0.709± 0.078± 0.028

[0, 2.1] 0.915± 0.045± 0.003 0.999± 0.055± 0.004 0.959± 0.035± 0.009

W→ µν, pµT > 35 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample

[0, 0.35] 0.844± 0.092± 0.005 1.202± 0.137± 0.009 0.991± 0.080± 0.009

[0.35, 0.7] 0.912± 0.106± 0.006 0.988± 0.126± 0.007 1.044± 0.085± 0.011

[0.7, 1.1] 0.801± 0.096± 0.006 1.039± 0.127± 0.008 0.933± 0.080± 0.016

[1.1, 1.6] 0.946± 0.117± 0.007 1.028± 0.133± 0.008 1.030± 0.088± 0.028

[1.6, 2.1] 0.873± 0.124± 0.010 0.791± 0.140± 0.013 0.779± 0.089± 0.031

[0, 2.1] 0.873± 0.047± 0.003 1.021± 0.059± 0.004 0.965± 0.038± 0.009

W→ eν, peT > 35 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample

[0, 0.35] 1.097± 0.148± 0.016 0.924± 0.123± 0.012 1.042± 0.083± 0.014

[0.35, 0.7] 0.990± 0.133± 0.014 1.070± 0.141± 0.015 0.832± 0.068± 0.011

[0.7, 1.1] 0.996± 0.136± 0.014 1.054± 0.130± 0.014 0.899± 0.074± 0.013

[1.1, 1.6] 0.920± 0.137± 0.013 0.871± 0.148± 0.012 0.865± 0.095± 0.014

[1.6, 2.1] 0.619± 0.154± 0.009 0.581± 0.142± 0.008 0.964± 0.127± 0.016

[0, 2.1] 0.953± 0.063± 0.013 0.929± 0.061± 0.012 0.917± 0.038± 0.012

Table 14. Cross section ratios σ(W++c)/σ(W−+c) as a function of the absolute value of the lepton

pseudorapidity from the W-boson decay for the three samples: inclusive three-prong and two-prong

and semileptonic. The first two blocks of the table present the results from the W → µν sample,

with pµT > 25 GeV and pµT > 35 GeV. The results from the W → eν sample, with peT > 35 GeV are

given in the lowest block of the table. The last row of each block gives the cross section ratio for

the full lepton pseudorapidity range [0., 2.1]. The first error is due to the statistical size of the data

sample and the second one is the systematic uncertainty due to the sources discussed in section 8.

– 41 –



J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] U. Baur, F. Halzen, S. Keller, M.L. Mangano and K. Riesselmann, The charm content of

W + 1 jet events as a probe of the strange quark distribution function, Phys. Lett. B 318

(1993) 544 [hep-ph/9308370] [INSPIRE].

[2] A. Kusina et al., Strange quark parton distribution functions and implications for Drell-Yan

boson production at the LHC, Phys. Rev. D 85 (2012) 094028 [arXiv:1203.1290] [INSPIRE].

[3] W. Stirling and E. Vryonidou, Charm production in association with an Electroweak Gauge

Boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].

[4] R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125

[arXiv:1211.5142] [INSPIRE].

[5] NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters

and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B

823 (2009) 195 [arXiv:0906.1958] [INSPIRE].

[6] G. Bozzi, J. Rojo and A. Vicini, Impact of the parton distribution function uncertainties on

the measurement of the W boson mass at the Tevatron and the LHC, Phys. Rev. D 83 (2011)

113008 [arXiv:1104.2056] [INSPIRE].

[7] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

[8] CDF collaboration, T. Aaltonen et al., First measurement of the W boson production in

association with a single charm quark in pp̄ collisions at
√
s = 1.96 TeV, Phys. Rev. Lett.

100 (2008) 091803 [arXiv:0711.2901] [INSPIRE].

[9] CDF collaboration, T. Aaltonen et al., Observation of the production of a W boson in

association with a single charm quark, Phys. Rev. Lett. 110 (2013) 071801

[arXiv:1209.1921] [INSPIRE].

[10] D0 collaboration, V. Abazov et al., Measurement of the ratio of the pp̄→ c-jet cross section

to the inclusive pp̄→W+ jets cross section, Phys. Lett. B 666 (2008) 23 [arXiv:0803.2259]

[INSPIRE].

[11] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004

[INSPIRE].

[12] L. Tuura, A. Meyer, I. Segoni and G. Della Ricca, CMS data quality monitoring: systems

and experiences, J. Phys. Conf. Ser. 219 (2010) 072020.

[13] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at√
s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE].

[14] CMS collaboration, Electron reconstruction and identification at
√
s = 7 TeV,

CMS-PAS-EGM-10-004 (2010).

[15] CMS collaboration, Particle-flow commissioning with muons and electrons from J/Ψ, and W

events at 7 TeV, CMS-PAS-PFT-10-003 (2010).

[16] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [arXiv:0802.1189] [INSPIRE].

– 42 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0370-2693(93)91553-Y
http://dx.doi.org/10.1016/0370-2693(93)91553-Y
http://arxiv.org/abs/hep-ph/9308370
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9308370
http://dx.doi.org/10.1103/PhysRevD.85.094028
http://arxiv.org/abs/1203.1290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1290
http://dx.doi.org/10.1103/PhysRevLett.109.082002
http://arxiv.org/abs/1203.6781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6781
http://dx.doi.org/10.1007/JHEP04(2013)125
http://arxiv.org/abs/1211.5142
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5142
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.003
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.003
http://arxiv.org/abs/0906.1958
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1958
http://dx.doi.org/10.1103/PhysRevD.83.113008
http://dx.doi.org/10.1103/PhysRevD.83.113008
http://arxiv.org/abs/1104.2056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2056
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,10,531
http://dx.doi.org/10.1103/PhysRevLett.100.091803
http://dx.doi.org/10.1103/PhysRevLett.100.091803
http://arxiv.org/abs/0711.2901
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2901
http://dx.doi.org/10.1103/PhysRevLett.110.071801
http://arxiv.org/abs/1209.1921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1921
http://dx.doi.org/10.1016/j.physletb.2008.06.067
http://arxiv.org/abs/0803.2259
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2259
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://inspirehep.net/search?p=find+J+JINST,3,S08004
http://dx.doi.org/10.1088/1742-6596/219/7/072020
http://dx.doi.org/10.1088/1748-0221/7/10/P10002
http://arxiv.org/abs/1206.4071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4071
http://cds.cern.ch/record/1299116
http://cds.cern.ch/record/1279347
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189


J
H
E
P
0
2
(
2
0
1
4
)
0
1
3

[17] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119

[arXiv:0707.1378] [INSPIRE].

[18] M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005

[arXiv:0802.1188] [INSPIRE].

[19] CMS collaboration, Determination of jet energy calibration and transverse momentum

resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].

[20] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond,

JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
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16: Also at Université de Haute Alsace, Mulhouse, France

17: Also at Joint Institute for Nuclear Research, Dubna, Russia

18: Also at Brandenburg University of Technology, Cottbus, Germany

19: Also at The University of Kansas, Lawrence, U.S.A.

20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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30: Also at Università degli Studi di Siena, Siena, Italy

31: Also at Purdue University, West Lafayette, U.S.A.

32: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico

33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
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