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ABSTRACT

The complexity of melanoma is pronounced at many levels, whereby both

environmental influences and genetic predisposition are involved and interact.

Embedded within this complexity is heterogeneity, a defining characteristic of this

malignancy. The rearrangement of genomic material on chromosomes 1p, 6q, 9p

or 10q, 11q and 17q has been frequently reported during the development and

progression of cutaneous malignant melanoma (CMM), suggesting several

putative tumour suppressor genes and oncogenes in these regions.

The genomic complexity of chromosome 9p21 in melanoma development is

well documented. This region encodes a potent cyclin-dependent kinase inhibitor

CDKN2/INK4A/p16 as a tumour suppressor gene (TSG) that is frequently

inactivated in melanomas. Functional evidence suggested the presence of

additional TSG loci in the 9p21-22 chromosome region (Parris et al., 1999). In

pursuit of identifying novel TSG(s), our previous group’s collaborative research

provided experimental evidence that suggests IFNA1 as a candidate TSG for

melanoma development. Therefore, the aim of this work was to provide a further

functional validation of such tumour-suppressive activity in CMM.

Firstly, I have successfully subcloned IFNA1 cDNA into pcDNA3

expression vector and established a panel of stably IFNA1-expressing clones.

Subsequently, I have assessed their tumourigenicity in soft agar by measuring the

colony-forming ability of each transfected clone. Expression analyses of IFNA1,

at both post-transcriptional and translational levels, were also carried out. I have
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also demonstrated a strong correlation between anchorage-independent growth in

soft agar and IFNA1 expression in qRT-PCR.

The antiproliferative and pro-apoptotic effects of IFNα have been widely

documented, however, the precise mechanisms that trigger and potentiate this

behaviour are not completely known. Based on previous findings, I have

investigated whether IFNA1 exerts its antitumoural activity through apoptosis. I

was able to demonstrate a moderate relationship between anchorage-independent

growth in soft agar and the apoptotic levels in the transfected clones. Although

unpersuasive and inconclusive, the results seemed encouraging since this study

was carried out using only the highly tumourigenic malignant melanoma

UACC903 cell line.
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CHAPTER

INTRODUCTION

1.1 Skin Cancer

The skin is the largest organ in the human body and a dynamic interface that

protects us from various extrinsic factors, including ultraviolet radiation, climate,

toxins, pollutants, and pathogens. Human skin falls into a cluster of different

colours and gradations, ranging from pale white (type I) to black (type VI).

Geographic distribution and environmental variables greatly influence the skin

pigmentation, which is produced by a chemically inert and stable pigment known

as melanin. Besides being the main determinant of skin colour, melanin plays a

major photoprotective role by absorbing, scattering, photo-oxidising, scavenging

free radicals, and therefore preventing DNA damage. However, failure to repair

this damage leads to mutations, until eventually the accumulation of mutations in

critical genes leads to skin cancer [Reviewed in (Costin and Hearing, 2007)].

The incidence, pathology, genetics and treatment of the major types of human

skin cancer with emphasis on cutaneous malignant melanoma will be detailed

further.

1
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1.1.1 Incidence

The global incidence of skin cancer has been dramatically increasing among the

Caucasian population over the past decades, making it a major global health

problem. In fact, one in every three cancers is diagnosed as skin cancer with

around 2 to 3 million non-melanoma skin cancers and 132,000 melanoma skin

cancers occur each year worldwide (World-Health-Organization, 2012 ).

Non-melanoma skin cancers are the most prevalent yet the less lethal type of skin

cancer. It is predominately common in ageing populations with a significantly

varied epidemiological prevalence. Incidence rates are highest by far in Australia,

with between 1% and 2% of the population developing NMSC annually.

Moreover, the annual incidences in the United States are estimated at over one

million cases (Ridky, 2007). In the United Kingdom, the number of newly

diagnosed cases of NMSC has reached 99.549 cases per 100,000 population in

2010 (Cancer-Research-UK, 2012).

Over the past decades, melanoma diagnosis increased by 55% in the UK. From

1999 to 2010, melanoma incidence has risen from around 11 cases to 17 cases per

100,000 population. Estimates of the UK incidence and mortality of skin cancer in

the year 2010 classified melanoma as the sixth most common cancer, and

described 12 thousand new cases with a male to female ratio of around 10:11. The

statistics described 2,203 deaths from melanoma, with a male to female ratio of

14:10 (Cancer-Research-UK, 2012). Estimated prevalence in Europe has

described 35 thousand diagnosed cases of melanoma and 9 thousand deaths
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caused by melanoma in the year 2000. Furthermore, incidence rates for melanoma

are particularly high among European migrants in Australia and non-Māori

population in New Zealand, where the annual prevalence appears to be more than

double the highest rates registered in Europe [Reviewed in (Boyle et al., 2004)].

1.1.2 Skin Biology and Structure

Adult human skin comprises over 300 million cells in a surface area of 21 square

feet. It functions as a barrier by protecting the internal tissues from a variety of

environmental insults, such as ultraviolet radiation (UVR), extreme temperatures,

toxins and pathogens. Its pivotal functions also include thermoregulation, control

of fluid loss, sensation, and immunologic surveillance (Nouri, 2008).

The human skin consists of two mutually dependent layers, the epidermis and the

dermis, which rest on a fatty subcutaneous layer called the hypodermis (figure

1.1). The uppermost epidermis comprises mainly layers of keratinocytes scattered

with other cell types, such as pigment-containing melanocytes, antigen-processing

Langerhans cells, and pressure-sensing Merkel cells. It is separated from the

dermis by the basement membrane. The dermis is the underlying layer, which

harbours collagen, elastic fibers, blood vessels, sensory structures, and fibroblasts

(Nouri, 2008).
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Figure 1.1: Schematic representation of normal skin architecture: The diagram
displays the uppermost epidermal layer, the melanocytes that are aligned
predominately in the basal layer, and the underlying dermis. Beneath these
layers lies the subcutaneous tissue (The-University-of-Chicago-Medicine, 2012).

Keratinocytes and melanocytes are the main cell populations that compose the

epidermis, and the main constituents that give rise to most skin tumours. For

instance, actinic or solar keratoses are premalignant squamoproliferative lesions

occurring on chronically sun-exposed areas of the body. These lesions arise from

abnormal proliferation with loss of orderly maturation of keratinocytes. Other

keratinocytic malignancies also include squamous cell carcinoma, consisting of

atypical nests of abnormal squamous cells arising from the epidermis and

invading the dermis [Reviewed in (Ricotti et al., 2009)].
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Interspersed amongst the basal keratinocytes are the pigment-producing cells or

melanocytes. Melanocytes produce melanin pigment as part of a protective

mechanism to prevent the ultraviolet injurious effects on skin. However, due to

various epidemiological and genetic factors, this complex pigmentary system has

many potential sites for dysfunction. In fact, malignant transformation of normal

melanocytes leads to progressive alterations of cell phenotype to develop

melanoma (figure 1.2) [Reviewed in (Bandarchi et al., 2010)].

Figure 1.2: Hematoxylin and eosin (H&E) stained histological sections
displaying melanocyte transformation progression. H&E staining method
combines two dyes; hematoxylin stains the nucleus a shade of blue-purple colour
while eosin stains the cytoplasm and connective tissue in varying shades of pink.
Left| Normal skin: the melanocytes are evenly dispersed within the basal
epithelial layer. Right| VGP malignant melanoma: showing melanoma cells
migration into the upper epidermis (pagestoid spread) and penetration through
the dermal-epidermal junction. Magnification ×20, scale bar: 20µm (Chudnovsky
et al., 2005).
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1.1.3 Types of Skin Cancer

Whilst there are several forms, these can be broadly categorised into three

pathological types of skin cancer which are the most common. Each of these three

cancers arises from different type of cells within the skin and has its own

distinctive appearance. They are named after the type of cell from which they are

derived from and can be subdivided into two groups: non-melanoma skin cancers

and malignant melanoma skin cancers.

1.1.3.1 Non-Melanoma Skin Cancers (NMSCs)

1.1.3.1.1 Basal Cell Carcinoma (BCC):

Basal cell carcinoma (BCC) is a common skin cancer in Caucasian populations

(Telfer et al., 2008). It was first described by Arthur Jacob in 1827 as a “rodent

ulcer” (Jacob, 1827), and in 1900, Krompecher named it “carcinoma epitheliale

adenoides” and described it as a malignant, locally invasive, and destructive

cancer (Kasper et al., 2012). Three years later, Krompecher hypothesised that the

tumour originated from the undifferentiated cells of the basal layer of the

epidermis (Posalaky et al., 1979).

Although it is rarely metastatic, the tumour is malignant and tends to infiltrate

tissues in a three-dimensional manner and the growth can be locally invasive

leading to destruction particularly on sites of skin that receive the most sun

exposure, such as the scalp, face and neck. Clinically, the morphological
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appearance manifests itself in many forms and the lesions may be nodular,

superficial, pigmented variants, cystic, morphoeic (sclerosing), or keratotic

[Reviewed in (Telfer et al., 2008)].

Development of BCC has been strongly correlated with geographic latitude, with

the highest incidence reported in Australia. Reports demonstrated high incidence

rates in men than those in women aged > 60 (Giles et al., 1988). UV exposure is

one the most significant aetiological factors, in which combination of high

cumulative UVB exposure in an intermittent pattern together with reduced

capacity of skin repair has been reported in the assessed BCC cases (Raasch et al.,

1998). In addition to sun-exposed sites, Crowson et al reported that lesions can

arise in sun-protected skin as well, in which the indolent-growth in these tumours

was usually of superficial type (Crowson et al., 1996).

1.1.3.1.2 Squamous Cell Carcinoma (SCC):

Squamous cell carcinomas (SCC) are the second most prevalent keratinocyte-

derived type of skin cancer among Caucasians (Goldman, 1998). It can also affect

darkly pigmented groups and usually arises on site of pre-existing inflammatory

skin conditions, burns, scars, or ulcers [Reviewed in (Diepgen and Mahler,

2002)]. SCCs are more prevalent in geographical locations near the equator, and

appear in middle-aged to older individuals and are predominantly found on the

head-and-neck region (Anwar et al., 2004).
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Several reports associated a wide diversity of histopathological variants of SCCs

with different clinical behaviours. For instance, SCCs can range from indolent,

locally invasive tumours with low metastatic potential, to rapidly growing with

high invasive potential [Reviewed in (Yanofsky et al., 2011)]. Invasive lesions

penetrate the basement membrane and may be nodular or plaque-like, display

variable keratin production, and occasionally ulcerated (Anwar et al., 2004).

Marks and colleagues reported that the majority of SCCs in light-exposed areas

arise from pre-existing actinic keratosis (AK) (Marks et al., 1988). Typical AK

lesions are less than 1 cm in diameter and are characterised as scaly or keratotic,

ranging from erythematous to pigmented papules with discrete or diffuse borders

(Rowert-Huber et al., 2007). Since AK represents the beginning of a continuum

that culminates in SCC, Mortier et al demonstrated that neoplastic progression of

AK to SCC involves a series of molecular changes leading to the inactivation of

p16INK4a (Mortier et al., 2002). Clinically, it can be hard to distinguish between

AK and SCC as they share many similarities at both molecular and histological

levels (Chia et al., 2007).

Chronic exposure to solar UV radiation is the most significant predisposing factor

in the development of SCC. UVR acts as a tumour promoter as it initiates

carcinogenesis by damaging cellular DNA. In addition, SCC is common in

oculocutaneous albinism (OCA) and xeroderma pigmentosum (XP), two

conditions that are inherited in an autosomal recessive manner. The inadequate

production of melanin pigment in OCA and the defect in excision repair
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mechanism for UV-induced pyrimidine dimers in XP result in sever

photosensitivity and a greater predisposition to SCC (Goldman, 1998). Other

aetiological factors include chronic ulcers, burn scars, human papillomavirus

infection, ionising radiation and exposure to chemical carcinogens― such as

arsenic and tobacco [Reviewed in (Diepgen and Mahler, 2002)].

1.2. Cutaneous Malignant Melanoma

1.2.1. Epidemiology

Since the early 1960s, the annual incidence rates of melanoma have increased by

3-7% in populations of predominantly European origin (Armstrong and Kricker,

1994), with an estimated doubling of rates every 10 to 20 years (Garbe et al.,

2000). In global terms, the highest incidence rates of melanoma have been

observed in Australia and New Zealand (Lens and Dawes, 2004). By contrast,

these rates are particularly low among indigenous population of Africa, Asia,

Latin America, and southern Europe (Pearce et al., 2006). In Australia, CMM is

classified as the fourth most common cancer in males and the third most common

cancer in females (Lens and Dawes, 2004). In 1999, the incidence of melanoma in

the Auckland Caucasian population in New Zealand was documented as the

highest in the world, with the crude incidence for invasive CMM of 77,7 new

cases per 100,000 population annually (Jones et al., 1999). Moreover, based on

the recent cancer statistics presented by the American Cancer Society, there is an
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estimate of 70,230 new cases of melanoma per 100,000 among men and women

in the United States (Siegel et al., 2011).

1.2.2. History of Melanoma

In Peru, paleopathological findings of several mummies of pre-Colombian Incas,

some estimated to be 2400 years old, showed diffuse melanoma metastases in the

bones of the skull and extremities as well as rounded melanotic masses in the

skin. The first accredited description of melanoma was by Hippocrates in the fifth

century BC, followed by the annotation of the Greek physician Rufus Ephesus.

However, the medical term “melanoma” was used for the first time in 1838 by

Robert Caswell to designate these pigments malignant lesions of the skin. In 1858,

Pemberton advocated and performed a radical excision for melanoma (Urteaga

and Pack, 1966).

1.2.3. Clinical Subsets of Malignant Melanoma

While more than 95% of tumours arise within epidermal melanocytes, melanoma

can also derive from non-cutaneous melanocytes. Sites of primary extra-cutaneous

melanoma include ocular, mucosal, gastrointestinal, genitourinary, leptomeninges

and lymph nodes (Chin et al., 2006, Markovic et al., 2007). Moreover, melanoma

has been classified among the more common causes of ‘metastatic cancer of

unknown primary’ due to its capricious behaviour, reflecting its tendencies to
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arise in unexpected sites along the neural crest migratory route, or its aggressive

growth of poorly differentiated lesions (Chin et al., 2006).

1.2.3.1 Superficial Spreading Melanoma (SSM):

It is the most common histologic form among Caucasians and accounts for 70%

of all human cutaneous melanoma. This neoplasm is common in adults and most

frequently appears on the upper back of both men and women as well as on the

legs of women [Reviewed in (Volkovova et al., 2012)]. Clinically, it is

characterised by an intraepidermal growth that may last 1‒5 years before vertical

dermal invasion occurs, and frequently the lesions are 2.5cm large by the time of

detection (Briele and Das Gupta, 1979). Morphologically, the lesions are arciform

in outline and sharply marginated, generally 2‒4mm elevated above the

surrounding skin. In addition, it is in this type of melanoma that variations in

colour― from brown, grey, black, and even violaceous-pink, are noted (Clark et

al., 1969).

Figure 1.3: Superficial Spreading Melanoma. The picture shows a haphazard
combination of the brown and pink-tan colours and two arrows pointing at
discrete pink nodules (Clark et al., 1969).
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1.2.3.2. Nodular Melanoma (NM):

It is the second most common subtype and accounts for 15–30% of all melanomas

[Reviewed in (Volkovova et al., 2012)]. NM tends to affect more men than

women, and generally, clinical presentation occurs in the fifth or sixth decade of

life. The common locations are the trunk in men and the legs in women (Porras

and Cockerell, 1997). This type of neoplasm evolves from an intraepithelial

melanocytic proliferation (Porras and Cockerell, 1997), and is uniformly invasive

extending to or into the reticular dermis or into the fat (Clark et al., 1969).

Morphologically, the lesions are quite distinctive on inspection and are

characterised by a relatively uniform, dark, blue-back nodule (Clark et al., 1969).

Figure 1.4: Nodular Melanoma. The picture displays a dark brown-black dome-
shaped nodule. At the time of diagnosis, the size of the clinical lesion is often
small in diameter (Porras and Cockerell, 1997).

1.2.3.3 Lentigo Maligna Melanoma (LMM):

Lentigo maligna melanoma originates from untreated lentigo maligna and

accounts for 4–10% of all melanomas [Reviewed in (Volkovova et al., 2012)].
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These tumours are characterised by their indolent-growth that may last for 10–25

years before dermal invasion occurs. In addition, they are more common in older

individuals― the median age being 70 years (Briele and Das Gupta, 1979). It is

occasionally confused with SSM as it shows the same colour variation, though the

lesions are irregular in outline, their surface is flat, and primarily show various

shades of brown rather than violaceous-pink (Clark et al., 1969). Moreover, the

radial intraepidermal growth of these lesions tends to cover the largest surface

area of any of the melanomas to grow to a size of 5–7cm (Briele and Das Gupta,

1979).

Figure 1.5: Lentigo Maligna Melanoma. This picture represents a flat,
asymmetrical lesion on the face of an elderly individual. This large-sized lesion
shows a combination of brown shades (Porras and Cockerell, 1997).

1.2.3.4 Acral Lentiginous Melanoma (ALM):

It is the least common form and accounts for 1–7% of all melanoma cases in

Caucasians, although incidence seems significantly higher in Chinese, Japanese,

Middle Eastern and African. The term was coined by Reed et al who described it

as ‘acral’ because of its predilection of distal areas of the body― such as the
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palmar and plantar surfaces as well as the subungual areas, and ‘lentiginous’

because of its distinct radial growth (Bristow and Acland, 2008). These tumours

tend to have a prolonged radial growth phase and have tendencies to metastasise

to regional lymph nodes, and lesions show variations in colour (Briele and Das

Gupta, 1979).

Figure 1.6: Acral Lentiginous Melanoma. The picture shows a dark longitudinal
pigmented streak of the nail. The pigmentation in subungual melanomas usually
spreads from the nail bed epithelium to the proximal nail fold and cuticle. These
melanomas are often mistaken for a hemorrhage subungual hematoma (bruise)
(Porras and Cockerell, 1997).

1.2.4 Etiologic and other Risk Factors:

Melanoma is a complex, multifactorial disease that results from the combination

of the environmental influences and genetic predisposition. The aetiology of

malignant melanoma has not been fully elucidated, however, it has been

hypothesised that melanoma develops through divergent etiologic pathways (Cho

et al., 2005).
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1.2.4.1 Ultraviolet Radiation

Various environmental factors have been hypothesised to be implicated in the

increased incidence of melanoma. Of these, the main factor is the increased

exposure to UVR, mainly caused by the depletion of the ozone layer, and possibly

attributable to behavioural changes― such as the use of sunbeds. We are daily

exposed to the UV fraction of the solar radiation, however, the world’s highest

incidence coincides with proximity to the equator [Reviewed in (Markovic et al.,

2007)]. The UVR represents a portion of the electromagnetic energy that acquires

both life-giving and life-endangering effects (Hussein, 2005).

Paul Gerson Unna, in 1894, was the first to report the implication of chronic sun

exposure in the pathogenesis of skin cancer, however, it was not until the 1930s

that UV radiation were documented as a carcinogen (Albert and Ostheimer,

2003). Furthermore, as previously stated, UV increases DNA instability, inhibits

antioxidants, and suppresses the immune system. Additionally, intermittent

intense exposure to sunlight during childhood is thought to be a significant

precursor to adult melanoma [Reviewed in (Sauter and Herlyn, 1998)].

According to the convention of the Commission Internationale de l'Eclairage

(1987), the UVR is subdivided into three wavelength regions: UVC (200-290

nm), UVB (290-320 nm), and UVA (320-400 nm). The short waves of UVC

radiation are highly mutagenic, however, they are effectively absorbed by the

earth’s atmosphere, and its role in the pathogenesis of skin cancer is insignificant

[Reviewed in (Hussein, 2005)]. Contrariwise, the composition of solar UVR
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spectrum that reaches the earth’s surface is composed of 95% UVA and 5% UVB

(Alapetite et al., 1996).

In human epidermal skin cells, the small amount of UVB is strongly absorbed by

DNA, and is considered as the most efficient wavelength for the formation of

cyclobutane pyrimidine dimers (CPDs) that leads to thymine dimer (TT)

formation (Clingen et al., 1995). These dimers have been described as UVB

distinct signature in DNA after they were identified in human melanoma in situ

after exposure to UVB (Young et al., 1998). Consequently, these dimers not only

affect cellular function, but they may also induce immunosuppression, and

subsequently lead to tumour formation [Reviewed in (Abdulla et al., 2005)].

Atillasoy and colleagues demonstrated that chronic UVB irradiation can induce

human melanocytic lesions, including melanoma. These findings were based on

an experimental system that utilised full-thickness human skin ― a skin graft

containing both the epidermis and the dermis, xenografted to mice with severe

combined immunodeficiency disease (SCID). UVB-treated xenografts at 500

J/m2, which corresponds to approximately 2 MED (human minimal erythemal

dose), three times per week, with or without an initiating carcinogen, was

sufficient to induce AK and SCC within 7-month treatment/observation period,

and malignant melanoma within 10 months (Atillasoy et al., 1998).

In 1989, Setlow et al developed a xiphophorus animal model to demonstrate the

carcinogenicity of UVB absorbed by melanoma. The hybrid animals developed

melanomas after repeated exposures. Although 304 nm was the lowest exposure
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that induced melanomas, those wavelengths of 360 nm were also found to be

important in inducing tumours (Setlow et al., 1989). The potential

photocarcinogenesis of UVA has been demonstrated by Marrot and colleagues

who established the induction of DNA breaks in the nucleus of Caucasian human

melanocytes with 320 to 400 nm radiation (Marrot et al., 1999). Additionally,

Kvam and Tyrell associated UVA exposure of tanned skin with increased

mutations in melanocytes after they have demonstrated that human melanoma

cells with a high melanin content accumulated larger amounts of premutagenic

oxidative DNA base damage after UVA irradiation (Kvam and Tyrrell, 1999).

1.2.4.2. Skin Type

Pigmentary characteristics and host susceptibility have been reported to play a

significant role in the aetiology of melanoma. For instance, pigmentary factors,

such as eye colour― blue eyes compared to brown, hair colour― blond/red hair

colour compared to brown/black, freckling, tendency to develop multiple moles―

benign or atypical, sun sensitivity and inability to tan, have all been highly

associated with melanoma risk (Titus-Ernstoff et al., 2005).

The variation in melanocortin-1 receptor (MC1R) gene, involved in pigmentation,

was moderately associated in the increased risk of melanoma carcinogenesis.

Although MC1R was shown to be a low-penetrance susceptibility locus, a positive

association between melanoma and MC1R variants was duly noted (Kanetsky et

al., 2006).
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1.2.4.3. Family History

Patients with a familial predisposition of melanoma have approximately a 2-fold

increased risk of melanoma for all body sites, except melanoma on upper

extremity that was strongly  associated with history of multiple sunburns (Cho et

al., 2005). The initial clinical observation of familial melanoma was reported in

1951 by Cawley. The hereditary aetiology was estimated for approximately 10%

of all occurrences of melanoma by Anderson in 1971. Subsequently, melanoma

susceptibility locus was localised in the chromosomal region 9p21 (Meyer and

Zone, 1994).

Clustering of melanoma in families has been highly associated with the presence

of abnormal melanocytic naevi or moles, known as atypical mole syndrome

(AMS) phenotype, inherited in an autosomal dominant pattern. Reports showed

that the majority of susceptible families in the UK suffer from this phenotype, and

the approximate lifetime risk is 1 in 20 (Newton, 1994). Although rare, melanoma

may also develop in families with high penetrance melanoma susceptibility genes.

These inherited mutations were reported in 2% of all melanomas and implicated

CDKN2A and, rarely, CDK4 (Thompson et al., 2005).

1.2.4.4 Melanocytic Naevi

Whether acquired, congenital or dysplastic, melanocytic naevus cells can serve as

a potential precursor lesion from which melanoma may develop. The histologic

presence of melanocytic naevi was found associated with 57.6% of primary SSM
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and NM, supporting Clark’s hypothesis of tumour progression in the melanocytic

system (Sagebiel, 1993). Nevertheless, the presence of multiple naevi, atypical or

non-atypical, is a strong marker for melanoma risk irrespective of family history

(Thompson et al., 2005).

Several epidemiologic findings have associated the presence of large (particularly

>5 mm) or giant naevi (>20 cm) with an elevated melanoma risk. Furthermore,

there is a 1.5-fold increased risk in people with 11 to 25 naevi than people with

≤10 naevi, and the risk doubles with every 25 naevi [Reviewed in (Markovic et

al., 2007)].

1.2.4.5. Immunosuppression

Interestingly, the immunogenic characteristics of melanoma have been associated

with impairment of immune function. A number of reports documented melanoma

development in immunodeficiency syndrome and transplant recipients. For

instance, Smith and colleagues reported an increase in pigmented lesions in HIV-

1-positive patients, clarifying that some of these were malignant melanomas

(Smith et al., 1993). Likewise, renal transplantation recipients who receive long-

term immunosuppression therapy have a 3.6-fold increased risk of developing

melanoma than the general population (Hollenbeak et al., 2005).
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1.2.5. Pathogenesis and Prognosis of Melanoma

The ABCD (Asymmetry, Border irregularity, Colour variegation, Diameter >6

mm) acronym is the standard dermoscopic terminology for melanoma screening.

Devised in 1985, it has since been universally applied for appraisal of pigmented

skin lesions. This acronym has been further expanded to ABCDE (a criterion for

Evolving lesions), which encompasses any significant change in size, shape,

shades of colour or surface features (Abbasi et al., 2004). Although this system is

the main diagnostic criteria, more than 50% of melanomas are de novo lesions that

may not have any of these characteristics (Testori et al., 2009).

In normal skin, melanocyte growth and behaviour are tightly regulated by

epidermal keratinocytes. This homeostasis is exercised through a complex system

of paracrine growth factors and cell–cell adhesion molecules. Divergent etiologic

factors disrupt this delicate homeostatic balance, resulting in mutations in

essential growth regulatory genes, the secretion of autocrine growth factors, and

the loss of adhesion molecules. Consequently, this dysregulation triggers a

continuous proliferation of the melanocytes, leading to a malignant phenotype

(Haass et al., 2004).

In a tissue’s architectural context, naevi may be defined as ‘junctional’― naevus

cell nests scattered at the junction of the epidermis and the underlying dermis,

‘dermal’― nests of naevus cells restricted to the dermis, or ‘compound’― nests

of naevus cells overlapping components of both dermis and epidermis.

Melanocytic naevi are commonly benign, but can progress in a radial fashion to
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invade the papillary dermis (uppermost layer of the dermis). The radial-growth-

phase (RGP) melanoma involves an intra-epidermal lesion that may demonstrate

local microinvasion of the dermis, which is considered to be the primary

malignant stage. These lesions may acquire metastatic potential and progress to

the vertical-growth phase (VGP) to invade deeper into the dermis as tumourigenic

nodules (figure 1.7). Nevertheless, not all melanomas behave through each of

these individual phases (Gray-Schopfer et al., 2007).
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Figure 1.7: Schematic illustration of transformed melanocytes progression. A|
Normal skin: showing scattered dendritic melanocytes within the basal layer of
the epidermis. B| Naevus: benign melanocytic naevi appear with an increased
number of dendritic melanocytes during early stage disease. C| RGP melanoma:
primary malignant stage. D| VGP (vertical-growth-phase) melanoma:
documented as the deadly stage, in which the lesional cells infiltrate the vascular
and lymphatic system (Gray-Schopfer et al., 2007).

In 2001, the American Joint Committee on Cancer (AJCC) designated a staging

system for cutaneous melanoma that estimates the survival rates at different stages
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based on certain standard criteria (table 1.1). This system mainly used the TNM

classification: T indicates the size of the primary tumour, N indicates number

and/or extent of spread to regional lymph nodes, and M indicates the presence of

metastasis). This staging system was largely based on data collected from

melanomas with superficial spreading and nodular growth patterns (Balch et al.,

2001).

5-YEAR
SURVIVAL

10-YEAR
SURVIVAL

Stage I (primary tumour ≤ 1 mm) 93% 85%

Stage II (primary tumour > 1 mm) 68% 55%

Stage III (regional node metastasis) 45% 36%

Stage IV (systemic metastasis) 11% 6%

Table 1.1: Stage-specific survival estimates for melanoma patients, according
to the AJCC staging system. These survival rates are based on the details of
17,600 patients from 13 melanoma treatment centers around the world
(Thompson et al., 2005).

This new staging system incorporated major changes and the prognosis mainly

depended on the thickness of the primary tumour and the presence or absence of

metastasis to regional lymph nodes (Thompson et al., 2005).

The T category thresholds of melanoma were defined as 1.0, 2.0 and 4.0 mm in

thickness in patients with stage I disease. Ulceration was frequently observed

among patients in stage II disease with tumours > 1 mm in thickness. Prognosis of

the N category, for patients with stage III disease, used the number of metastatic

lymph nodes rather than their gross dimensions and whether they were
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microscopic or macroscopic. In addition, ulceration was also defined as a criterion

of this staging. Finally, the presence of an elevated serum lactic dehydrogenase

and the site of distant metastases were used for the M category in stage IV disease

(Balch et al., 2001).

1.3. Molecular Genetics of Cutaneous Malignant Melanoma

Prevalence differences across ethnic groups may reflect different environmental

behaviours; however, the genetic backgrounds play a significant role in melanoma

predisposition. The existence of familial clustering in approximately 5–12% of all

melanomas, which may affect one or more first degree relatives, suggests the

segregation of mutant predisposition alleles (Loo et al., 2005).

Melanoma tumourigenesis is thought to be a long-term multistep accumulation of

genetic defects that disrupt normal melanocytic proliferation and differentiation

(Morita et al., 1998). Analysis revealed that the earliest genetic alterations in this

multistep disease appear to involve mutations in the melanocytes of the

melanocytic dysplastic naevi (MDN) involving allelic loss of important tumour

suppressor genes― such as p16, microsatellite instability (MSI), and alterations of

tumour suppressor genes (TSGs) [Reviewed in (Hussein, 2004)].

Karyotypic analysis and cytogenetic studies have indicated allelic deletions at

several chromosomes, including 1p, 6q, 9p or 10q, 11q and 17q. Analyses also

revealed that the mutation or loss of one or more of the familial susceptibility
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genes, located at 1p36, 9p21, and 12q14, which also act as TSGs, may lead to the

development of melanoma [Reviewed in (Hussein, 2004)].

1.3.1. Chromosomal Aberrations in Melanoma

Certain combinations of accumulated chromosomal aberrations seem fundamental

for the pathogenesis of advanced, metastatic neoplastic disease. The cytogenetic

analyses of 158 metastatic malignant melanoma cases revealed clonal structural

chromosomal aberrations in 80% of the cases at chromosomes 1, 6, 7, 11, 9 and 3,

respectively. Chromosomal aberrations were considered as clonal if observed in at

least two metaphases of the same cell line, per ISCN (International Cancer

Screening Network) convention. Moreover, analysis of chromosome segment

gains and losses showed frequent loss of chromosomes 6, 10 and to an equal

extent, involvement of chromosomes 1, 7, and 9, respectively. Based on frequency

of chromosome involvement in this study, the authors suggested that structural

abnormalities of chromosome 1 and 6 and loss of chromosome 10 are important in

the pathogenesis of sporadic advanced melanoma, and supported the linkage of

familial melanoma to chromosome 9p (Thompson et al., 1995).

Matsuta and colleagues evaluated chromosomal aberrations in 22 malignant

melanomas using the fluorescence in situ hybridisation (FISH) with chromosome-

specific DNA probes. Quantitative hybridisation signal analysis and histological

data revealed the frequent aberrations in chromosomes 6, 7, 9, and 10.

Additionally, these analyses also showed gain of chromosomes 6, and 7, and

monosomy of chromosomes 9 and 10, emphasising their important roles in the
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tumourigenesis and development of malignant melanomas (Matsuta et al., 1997).

The table below summarises some of the frequently observed chromosomal

aberrations in melanoma tumourigenesis.

CHR ABERRATIONS CANDIDATE
GENES

INVOLVEMENT

1p Deletion; translocation; Loss of
heterozygosity (LOH)

LOH in advanced melanomas

6q22-27 Deletion most common 40%-75% LOH in late stage

Melanomas

7 Amplification EGFR Increased expression in

melanomas; level correlates

with aggressiveness

9p21 LOH; deletion; intragenic
mutation

INK4a

Dysplastic naevus; early

melanoma; hereditary

predisposition

10q24-26 LOH PTEN Dysplastic naevus; early

Melanoma

Table 1.2: Chromosomal aberrations in cutaneous malignant melanoma.
Chromosomal aberrations in 1p36 are commonly reported in early-stage
melanoma. Cytogenetic rearrangements spanning 6q22-27 have been observed in
both early- and late-stage primary tumours. EGFR is frequently overexpressed in
association with amplified copies of chromosome 7 in late-stage melanomas. The
9p21 region most commonly harbours homozygous deletions in sporadic cases
and both deletions and point mutations in familial cases. LOH and chromosomal
rearrangements spanning 10q24-26 have been reported in melanoma, whereby
PTEN appears to be targeted for loss [Adapted from (Chin et al., 1998)].
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1.3.2. Alterations at Chromosome 9p21 in Melanoma

Tumour suppressor genes are pivotal for regulating cellular behaviour and

differentiation. Based on the classical ‘two hit’ hypothesis, the inactivation of a

TSG requires two genetic events to lose both alleles of the gene in order to result

in the uncontrolled cell growth. Loss of heterozygosity (LOH) at specific regions

provided evidence for the presence of these suppressors, which could be caused

by chromosomal deletion, mitotic recombination, non-dysjunction, or unbalanced

translocation [Reviewed in (Hussein, 2004)].

Historically, Cowan et al suggested that deletion of a gene(s) on 9p could be an

initial step in the malignant transformation of melanocytes (Cowan et al., 1988).

LOH at 9p21 in primary melanomas, prior to the acquisition of metastatic

potential, led to suspect the existence of a melanoma TSG in this region (Fountain

et al., 1992). In addition, homozygous deletions on 9p21 have been frequently

reported in familial melanomas (Cannon-Albright et al., 1992). Cytogenetic

studies and molecular analyses of familial and sporadic melanomas presented

compelling evidence that loss of suppressors harboured in the chromosomal

region 9p21 represents a critical stage in the development of virtually all

melanomas (Chin et al., 1998).

1.3.3. Melanoma Susceptibility Genes

The genomic complexity of familial melanoma fuelled considerable attention to

study the class of genes involved in the predisposition to melanoma. These studies
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have identified the existence of high-penetrance genes as well as low-penetrance

genes described below.

1.3.3.1. High-Penetrance Susceptibility Genes

1.3.3.1.1. CDKN2A gene [location: 9p21]

Deletion mapping has identified the 9p21-encoded cyclin-dependent kinase

inhibitor p16INK4a (CDKN2A) as a candidate TSG involved in both sporadic and

familial melanomas. This gene was established to be homozygously deleted or

frequently carried frameshift, nonsense, or missense mutations in nearly 75% of

melanoma cell lines (Kamb et al., 1994).

The CDKN2A gene encodes the p16 protein (Kamb et al., 1994), which functions

to bind to CKD4 and inhibit the catalytic activity of the CKD4/cyclin D enzymes.

In addition, p16INK4 may act as a negative regulator of cell proliferation by

inhibiting the CDK4-mediated phosphorylation of the retinoblastoma (Rb)

protein. Moreover, in cells lacking a functional Rb protein, there is an increased

activity of p16INK4 with a consequent inhibition of CDK4 (Serrano et al., 1993).

CDKN2A consists of 3 coding exons: exon 1 (E1) containing 125bp, exon 2 (E2)

containing 305bp, which have been implicated in mutations, and exon 3 (E3)

containing only 12bp (figure 1.8). Hemizygous genetic lesions in either E1 or E2

of CDKN2 were frequently observed in primary and metastatic melanomas (Kamb

et al., 1994). This gene encodes two distinct proteins translated in alternate
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reading frames (ARFs), p16INK4A encoded by the alpha transcript― comprising

exons 1α, 2, and 3, and the smaller beta transcript― comprising exons 1β, 2 and 3

specifies p14ARF.While p16INK4a is central in cell-cycle control by regulating G1-

phase, p14ARF acts via the p53 pathway to induce cell-cycle arrest or apoptosis

(Kefford et al., 1999).

Figure 1.8: Genomic organisation of the CDKN2A locus, which encodes for two
transcripts: p16INK4a (exons 1α, 2 and 3), coloured in green, and p14ARF (exons 1β,
2, and exon 3 translated in alternate reading frame), coloured in purple.

An estimate of mutation penetrance in the CDKN2A gene showed rates ranging

between <5 to >50% of tested melanomas, subject of family and population

selection (Bishop et al., 2002). This penetrance could be influenced by birth

cohort, levels of sun exposure, and possibly by modified genes, which could cause

multiple naevi in certain families (Kefford et al., 1999).
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1.3.3.1.2. CDK4 gene [location: 12q14]

A candidate gene search led to the identification of the second melanoma

susceptibility gene, CDK4 on chromosome 12q14, which acts as an oncogene

(Zuo et al., 1996). CDK4 mutations have been found in few families worldwide.

For instance, the first germline mutation, Arg24Cys― resulting in a Cysteine

substitution for an Arginine at codon 24, has been cosegregated with melanoma in

two unrelated families who do not carry germline p16INK4a mutation. The

Arg24Cys germline mutation in the p16INK4a-binding site in CDK4 abolishes the

binding of these two proteins, hence generating an oncogene that is resistant to

normal physiological inhibition by p16INK4a (Zuo et al., 1996). The second

germline mutation, Arg24His― Arginine to Histidine substitution, which

occurred in the same codon as the first alteration, was reported in only one family

(Soufir et al., 1998).

Although CDK4 mutation penetrance seems low in familial melanoma, these

mutations have a similar impact as those in CDKNA2. Families who carry CDK4

mutations share similar phenotypic characteristics, and show high penetrance for

melanoma in mutation positive family members [Reviewed in (de Snoo and

Hayward, 2005)]. On the other hand, Wolfel and colleagues reported CDK4

mutations as somatic alterations in two sporadic melanomas, describing that this

mutation produced a mutated protein that has functionally prevented binding of

the CDK4 protein to p16INK4a (Flores et al., 1997).
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1.3.3.1.3. p14ARF gene [location: 9p21]

A part of the CDKNA2 gene is common to another transcript that encodes the

human p14ARF protein, with a coding sequence from exons 1and 2 (Bressac-de-

Paillerets et al., 2002). Consequently, point mutations located in exon 2 affect the

impairment of p16 and p14ARF proteins concurrently, confounding the role of each

gene in melanoma tumourigenesis. Nevertheless, multiple cases of melanoma-

prone families reported defects at the p14ARF gene exclusively, indicating the fact

that ARF locus represents a melanoma susceptibility gene in its own right

[Reviewed in (de Snoo and Hayward, 2005)]. In addition, 16bp exon 1β germline

insertion, described in a sporadic multiple melanoma case, was shown to

specifically altering p14ARF, but not p16INK4a. The mutant protein was functionally

impaired and showed loss of growth arrest in a p53 expressing melanoma cell line

(Rizos et al., 2001).

1.3.3.2. Low-Penetrance Susceptibility Genes

1.3.3.2.1.MC1R gene [location: 16q24]

The melanocortin receptor-1 (MC1R) gene, located on chromosome 16q24.3, is

one of the common low-penetrance melanoma susceptibility genes. The MC1R is

ubiquitously expressed in melanocytes and keratinocytes, and functions as a

receptor for alpha-melanocyte stimulating hormone (α-MSH) and

adrenocorticotropic hormone (ACTH). The binding of -MSH and MC1R



Chapter 1: Introduction

32

stimulates a series of events that result in the production of the brown/black

eumelanin. Polymorphisms of the MC1R gene could be evolutionarily deleterious,

and may result in diminished receptor function, which disequilibrates melanin

synthesis from eumelanin to the red-yellow and potentially mutagenic

pheomelanin (Stratigos et al., 2006).

In addition to being remarkably polymorphic in Caucasians, several reasons have

suggested that human MC1R alleles may be associated with increased

susceptibility to melanoma (Palmer et al., 2000). To date, three MC1R variants

alleles also called ‘red hair colour’ variants, have been shown to be associated

with an increased risk of melanoma, and these include Arg151Cys, Arg160Trp,

and Asp294His (Stratigos et al., 2006). These variants confer about a 2.2-fold

increased risk of CMM in individuals carrying one of these three ‘active’ variants,

and the risk increases for each additional allele carried (Palmer et al., 2000).

1.3.4. A Melanoma Molecular Disease Model

Speculation that melanomas may evolve along the ‘naevus’ pathway and arise at

different anatomical sites dependently/independently of chronic sun-exposure,

postulates a ‘divergent pathway’ model in melanoma epidemiology (Whiteman et

al., 1998). Transformation of melanocytes lies at the convergence of activated or

abrogated pathways, in which oncogenic signalling network requires cooperation

of tumour suppressors (Hocker et al., 2008).
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The two main classes of genes that result in cancer when mutations prevent or

alter their normal function are oncogenes and tumour suppressor gene. While an

oncogene is a normally occurring proto-oncogene that is activated by point

mutation or chromosomal rearrangement (i.e. RAS, RAF), a tumour suppressor

gene, on the other hand, is a ‘cell cycle’ control gene that in many instances is

inactivated by mutations such as deletion, frameshift, or hypermethylation (i.e.

p53, Rb) (Weinberg, 1994).

Oncogenic RAS is the central piece of a complex signalling network that regulates

proliferation, survival and invasion and acts through two distinct canonical

effector cascades, the RAF-MAPK and the PI3K-AKT signalling streams (figure

1.9). Activating mutations that target one of the two key MAPK pathway genes,

BRAF or NRAS, have been found in up to 90% of melanomas and benign

melanocytic neoplasms. On the other hand, the PI3K-AKT signalling pathway is

aberrantly activated in up to 70% of melanomas through loss or inactivating

mutations in PTEN (Phosphatase and Tensin homolog), or though amplification

of any PI3K subunit [Reviewed in (Hocker et al., 2008)].
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Figure 1.9: A simplified diagram of the fundamental signalling networks
involved in melanoma tumourigenesis. Activation of RAS can promote
proliferation through the MAPK pathway or survival through the PI3K/AKT
pathway (Curtin et al., 2005).

The human RAS family consists of three proto-oncogenes that are located on

different chromosomes: the H-RAS and K-RAS genes are the cellular counterparts

of the viral Harvey and Kirsten genes, respectively, and the N-RAS gene is derived

from a human neuroblastoma cell line (Bar-Sagi, 2001). Activating point

mutations in the N-RAS gene, mostly at codon 61, have been reported in 56% of

congenital naevi from patients with skin types II, III and IV (Papp et al., 1999).

Given the closely related functions of NRAS and BRAF in the MAPK pathway,
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Pollock and colleagues reported activating mutations in NRAS in 7 of 11

melanoma metastases carrying a wild-type BRAF (Pollock et al., 2003).

Activation of senescence, by coexpression of NRAS and BRAF in the same

melanoma cells, postulated an epistatic relationship of synthetic lethality between

both oncogenes, leading to selection against ‘double-mutant’ cells (Petti et al.,

2006).

A study based on genome-wide mutation detection approach has reported BRAF

somatic missense mutations in 66% of malignant melanomas and in a number of

human carcinomas at a lower frequency. About 80% of the reported changes

occurred at a single codon within the kinase domain, precisely in exon 15 at

T1796A, resulting to a substitution of valine by glutamic acid at position 599

(V599E) (Davies et al., 2002). This mutation is prevalent in benign naevi, which

highlights the role of BRAF activation in the molecular events necessary for

melanocytic proliferation (Pollock et al., 2003).

While the RAF-MAPK cascade acts as major stimulus of melanocytic

proliferation, the PI3K-AKT cascade acts as a promoter of melanoma progression.

RAS binds and activates PI3K, which subsequently activates the pathway’s major

downstream effector, Akt [Reviewed in (Hocker et al., 2008)]. Deregulated Akt

activity has been shown to steadily increase during the progression from benign

naevi to primary melanomas, and lastly, to metastatic. In fact, selective activation

of Akt3 has been reported in 43 to 60% of sporadic melanomas, resulting from a

combination of increased Akt3 expression and decreased PTEN protein activity
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due to loss or haploinsufficiency of the PTEN gene (Stahl et al., 2004). LOH on

chromosome 10q has been reported in 30 to 50% of malignant melanomas. PTEN

is one of the genes on chromosome 10 whose mutations were reported in

approximately 10% of melanomas [Reviewed in (Chudnovsky et al., 2005)]. In

addition, PTEN expression has been reported lost or decreased in 15 to 50% of

sporadic melanomas even in the absence of intragenic PTEN mutation or biallelic

deletion. Therefore, an epigenetic mechanism of biallelic functional inactivation

or haplotype insufficiency could account for PTEN dysfunction (Zhou et al.,

2000). Essentially, NRAS activation and PTEN abrogation have been shown to

exist in a reciprocal manner and may functionally overlap in at least a subset of

cutaneous melanoma (Tsao et al., 2000).

The absence of oncogenic-induced senescence, which is primarily caused by the

mutation of tumour suppressors, leaves the mechanisms that mediate senescence

unimpeded. Rb (retinoblastoma) and p53 are the two main signalling pathways

that characterise senescence and highly targeted in tumours (Collado and Serrano,

2006).

The CDKN2A (INK4A/ARF) locus encodes the p16INK4a and the p14ARF and

engages both Rb and p53 anticancer pathways. Deletion of this locus has been

reported in approximately 50% of primary tumours and nearly all melanoma cell

lines. p16INK4a functions by inhibiting CDK4/6-mediated phosphorylation of the

retinoblastoma tumour suppressor protein (pRb). In the hypophosphorylated state,

pRb binds and represses E2F transcriptional activity and prevents the progression
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through the G1-S junction. Following its localisation to the 9p21 gene, germline

INK4a point mutations were reported to co-segregate with familial melanoma insome kindreds. On the other hand, p14ARF stabilises p53 by inhibiting its MDM2-

mediated ubiquitinylation. Several studies reported germline mutations

exclusively affecting p14ARF in familial melanomas [Reviewed in (Sharpless and

Chin, 2003)].

Functional alteration of the p16-cyclin D/CDK4-Rb pathway is a common event

in melanoma. Interconnection that exists between MAPK and Rb pathways occurs

at the level of cyclin D, which functions as a regulatory subunit of CDK4/6,

leading to phosphorylation of Rb and promoting entry into mitosis (Sauter et al.,

2002). Interestingly, most melanoma cell lines that exhibit PTEN alterations,

either harbour p16/CDKN2A or CDK4 mutations, postulating that insults to both

the Rb pathway and the PTEN pathway may contribute to melanoma development

(Tsao et al., 1998). Furthermore, the CD1 gene (CCND1) is a crucial component

of the CDKs complex and a vital melanoma oncogene. The chromosomal region

that encompasses the CD1 locus demonstrated frequent amplification in acral

lentiginous melanomas (44.4%). Remarkably, antisense-mediated knockdown of

this gene induced apoptosis in vitro and led to significant regression of melanoma

xenografts in immunodeficient mice (Sauter et al., 2002).

In a pivotal function study, Chin and colleagues reported that INK4a-deficient

transgenic mice with melanocyte-specific expression of mutant H-RAS developed

multiple cutaneous melanomas after a short latency and with high penetrance.
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These mice harboured deletion of the wild-type INK4a allele and retained a wild-

type p53 gene with no observed mutation or allelic loss. Unlike most solid

tumours, the relative death of p53 mutations in melanoma postulated a possible

functional overlap in tumour suppressor activity between p53 and INK4a, given

that the latter is a constituent of the former’s anticancer pathway. The reciprocity

between p53 and p19ARF (p14ARF in human) suggested that INK4a is a tumour

suppressor gene that is strongly implicated in the genesis of melanoma, and that

its loss requires concomitant activation of RAS in order to accelerate melanoma

development (Chin et al., 1997).

1.4. Treatment of Cutaneous Malignant Melanoma

1.4.1. Surgical Treatment

The gold standard treatment in primary melanoma is to achieve a complete

surgical resection of the tumour with margins of normal-appearing skin (Brenner

and Tamir, 2002). As previously mentioned, the first surgical dissection for

melanoma was performed in 1858 by Pemberton, who carried a wide excision

below the underlying fascia with the removal of the implicated lymph nodes by

groin dissection (Urteaga and Pack, 1966).

The current established surgical management of primary melanoma consists of

excision and primary closure. It involves a diagnostic biopsy of 2 mm margin and

a small amount of the underlying subcutaneous tissue. However, larger lesions

(>3cm on body or >2cm on face) require a full-thickness incisional biopsy by
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removing a small amount of the skin containing both the epidermis and the whole

thickness of the dermis with some of the subcutaneous fat. The appropriate

surgical excision is based on tumour thickness and vary from 0.5 cm for

melanoma in situ to 2 cm margin in melanomas >2 mm. In fact, the depth of

excision in all surgical trials of primary melanoma has always been to the muscle

fascia, which is the recommended deep margin for eliminating any suspicious

melanoma lesions. Moreover, sentinel lymph node (SLN) biopsy provides

accurate staging information for patients with primary melanoma ≥1.0 mm thick

and without distant metastases, or ulcerated melanomas (Testori et al., 2009).

Surgical curative treatment in melanoma is subjected to a high tendency for local,

regional or distant recurrence [Reviewed in (Cobben et al., 2002)]. The

phenomenon of metastatic relapse after surgical treatment of the primary lesion

may take more than a decade to arise, and could be the behavioural consequence

of the same quiescent cancer-initiating cell that derives cancer progression

(Schlaak et al., 2012).

1.4.2. Adjuvant Therapies

Given that melanomas are prone to metastasise and the limited therapeutic options

for inoperable advanced melanomas have forced the development of more

adjuvant therapeutic approaches (Garbe et al., 2008). Previously, numerous

randomised and nonrandomised studies have tested a range of adjuvant regimens

including chemotherapy, high dose chemotherapy, isolated limb perfusion (ILP),
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immunotherapy, combination chemo-immunotherapy, and radiotherapy. The

agents that have been assessed include non-specific immunotherapy with

levamisole, Bacillus Calmette-Guerin (BCG), megestrol acetate (Megace),

transfer factor (TF), and vitamin A; however, these regimens were unequivocally

unbeneficial [Reviewed in (Molife and Hancock, 2002)].

Despite inadequate response rates of 15%, which are generally incomplete and

endure only a few months, Dacarbazine (DTIC) is the standard therapy for

metastatic melanoma (Augustine et al., 2009). As an alkylating agent, DTIC

exerts cytotoxic effects by causing DNA intrastrand cross-links. After metabolic

activation, its primary mechanism of action is cell disruption by attacking DNA,

causing nucleic acid alkylation ―adding an alkyl group, and hence triggering

apoptosis. In addition, DTIC is a cycle-nonspecific agent, affecting melanoma

cells during more than one cell-cycle, therefore preventing multiplication of

rapidly growing cancer cells. However, its efficiency varies in different kinds of

melanoma cells, limiting success in the treatment of melanoma (Olszewska-

Slonina et al., 2005). Subsequently, Temozolomide (TMZ) was designed as a

second-generation alkylating chemotherapeutic agent, however, response rates of

only 13% are achieved (Augustine et al., 2009). Therefore, treatment for this

group of patients required more robust curative strategies.

Ipilimumab, a monoclonal antibody directed against cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4) on lymphocytes, was shown to improve overall

survival in patients with metastatic melanoma when used as a monotherapy in
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phase II studies, as well as when combined with other agents― such as

dacarbazine  or Interleukin 2 (Hodi et al., 2010). On the other hand, trials on

carriers of the BRAF V600E mutation have recently showed improved rates of

overall and progression-free survival with the discovery of the single-agent

vemurafenib, which specifically targets the V600E mutation in patients with

metastatic melanoma (Chapman et al., 2011). Nonetheless, these regimens were

not designed for the entire patient group due to lack of the V600E mutation, and

were associated with adverse events such as toxicity and development of

resistance (Engesaeter et al., 2012).

Recently, an open-label study― in which both the researchers and the patients are

aware of the drug being administered, involving 247 patients, with metastatic

BRAF V600 melanoma, evaluated the efficacy of a combination regimen of the

BRAF-inhibitor dabrafenib and the MEK-inhibitor trametinib. The combination

therapy significantly improved median progression-free survival, which was 9.4

months, as compared with 5.8 months in dabrafenib monotherapy. In addition, the

combination regimen showed greater extent of tumour regression with a response

rate of 76%, as compared with 54% with monotherapy regimen. Moreover,

proliferative skin lesions such as cutaneous squamous-cell carcinomas,

papillomas, and hyperkeratosis were commonly observed with dabrafenib

monotherapy, and less frequently with the combination regimen. However,

frequent adverse events were observed in patients receiving combination therapy

than those in the monotherapy regimen, and that included pyrexia, fatigue, nausea,

vomiting, and diarrhoea. Together, the use of MEK-inhibitor in this trial
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corroborated a possible strategy to delay/suppress mechanisms of resistance in

melanoma (Flaherty et al., 2012).

Observations through prospective randomised studies have shown a significant

therapeutic advantage of interferon alpha (IFN-α), not only for prolonging the

recurrence-free survival interval but also for total survival, wherein the risk of

death was reduced by 3% after 5 year from the time of IFN administration

[Reviewed in (Garbe et al., 2008)]. A meta-analysis of 14 randomised control

trials (RCTs), which involved 8122 patients with high-risk cutaneous melanoma,

demonstrated a statistically significant benefit of IFN-α adjuvant treatment in both

disease-free survival and overall survival, with relative risk reductions of 18% and

11%, respectively (Mocellin et al., 2010). Despite the controversy on its

therapeutic efficacy, a one year high-dose adjuvant IFN therapy is approved by

the Food and Drug Administration (FDA) in the United States and proposed in

European countries for resected melanoma at high recurrence (Grob et al., 2012).

1.5. Interferon in Human Malignant Melanoma

Karyotypic analysis of cultured melanocytes from a variety of congenital to

increasingly malignant melanocytic lesions reported the loss of one copy of

chromosome 9 or the loss of 9pter-p22 chromosomal region. Based on these

findings and previous reports, the authors hypothesised that loss of an allele from

9p is central in the transformation of melanocytes, mapping the possible candidate

genes to the interferon loci (Cowan et al., 1988). Conversely, Petty and colleagues
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reported that melanoma predisposition gene locus neighbours the IFNA-D9S126

clustering (Petty et al., 1993). Further refinement of the putative TSG(s) suggested

that the clustering of 31% of melanoma cases with LOH at IFNA indicated that

interferon-α loci presumably harbour candidate suppressors, describing it as a ‘hot

spot’ and a potential boundary marker of TSGs (Hussein et al., 2002).

1.5.1. Characterisation of the Type 1 Interferon Gene

The human type I interferons consist of one IFN-β and multiple IFN-α subtypes,

as well as -ω and -κ subtypes. These cytokines are distinguished by their

pleiotropic properties that confer capacity to exert physiological and pathological

roles in infections and cancer. In fact, these characteristics made them useful

therapeutic agents in clinical medicine today. The type I IFN gene cluster

encompasses a region of 400kb on the short arm of Homo sapiens (HAS)

chromosome 9p21, consisting of 26 genes― 13 IFNAs, a single IFNB and IFNW,

and 11 IFN pseudogenes (Hardy et al., 2004).
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Figure 1.10: Schematic illustration of HAS chromosome 9 with an enlarged
exemplification, depicting type I IFN locus genes. This schema shows the type I
IFN genes― centromeric IFNA1 and IFNA8; telomeric IFNA2, IFNA6, IFNA13,
and IFNB1. Additionally, there are five α and ω IFN pseudogenes― IFNAP11,
IFNAP23, IFNWP2, IFNWP12, and IFNWP19. This predicted human gene
designated MXI1, a most possibly pseudogene, which was repeated four times
throughout the cluster, as well as IFNE1 (Hardy et al., 2004).

1.5.2. Biological Effects of Interferons

The interferons are named after their ‘interference’ with an antiviral activity

(Pestka et al., 1987). These cytokines are endowed with compelling biological

effects on cells, exerting immunomodulatory, antiproliferative, pro-apoptotic,

antiangiogenic and antitumoural activities [Reviewed in (Ferrantini and

Belardelli, 2000)]. To date, empirical research on the IFN-α subset has revealed

its prominence in the promotion of T cells in vivo proliferation and survival, and

monocytes differentiation into dendritic cells along with enhancing the latter’s
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activities. These immunomodulatory effects have been employed to apply IFN-α

as a designated candidate for therapeutic efficacy in vivo (Arico et al., 2011).

Historically, to investigate the antitumour effects of these cytokines, a mixture of

virus-induced α/β interferons was used for the treatment of mice inoculated with

either IFN-sensitive or IFN-resistant syngeneic tumour cells. However, the

molecular mechanisms by which interferon acts remains unclear. In the 1990s,

manipulating the antitumour response through in vitro gene transfer was

considered as an attractive prospect to generate a more effective cell-based cancer

vaccine by inserting cytokine genes into tumour cells [Reviewed in (Ferrantini et

al., 2007)].

1.5.3. Efficacy of IFNs in the Treatment of Melanoma

Bart and colleagues have previously demonstrated encouraging in vitro

antitumoural effectiveness of IFN-α in murine B16 melanoma cell line, causing

moderate inhibition of cell multiplication (Bart et al., 1980). The use of interferon

as adjuvant treatment for high-risk melanoma is controversial in terms of

therapeutic efficacy. Although some research groups stated that high-dose

interferon-α for high-risk resected melanoma patients is unrivalled when

compared with other adjuvant treatments, others incontrovertibly discouraged its

clinical use (Wheatley et al., 2002). Despite the conflicting opinions, the FDA has

previously approved high-dose IFNα-2b (HDI) adjuvant treatment for patients

with stage IIB-III melanoma, as well as the recent PEGylated IFNα-2b (PEG-
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IFN)― a covalent conjugate of recombinant IFNα-2b with monomethoxy

polyethylene glycol (PEG), for the adjuvant treatment of stage IIIA-C melanoma

with microscopic or gross nodal involvement (Rubin et al., 2012).

In the recent meta-analysis by Mocellin et al, dose regimens of adjuvant IFN-α

varied from high dose [20 MU/m2], intermediate dose [10 MU/m2], to low dose

[1–3 MU/m2]. This analysis indicated statistically significant improvement in

both disease-free survival and overall survival, though no optimal IFN-α dose

and/or treatment duration could be identified. Regarding the use of PEG-IFN

therapy on the other hand, a recent randomised study compared the efficiency and

safety of adjuvant low-dose PEG-IFN intended for 36 months and standard

European low-dose IFN therapy for 18 months in an intermediate-risk melanoma

population without clinically detectable nodes. The trial did not reveal superiority

for prolonged adjuvant PEG-IFN over standard low-dose IFN therapy. Moreover,

PEG-IFN was associated with higher rates of toxicity (47.3% versus 25.2%) and

discontinuations (54.3% versus 30.4%) compared with IFN (Grob et al., 2012).
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RESEARCH AIM AND OBJECTIVES

In order to provide new therapeutic targets for the treatment of advanced

melanoma, it is essential to derive a full genetic model of the disease. Dissecting

the genetic heterogeneity and performing comprehensive genomic

characterisation will certainly aid to reveal the existence of many yet to be

identified tumour suppressor genes in CMM.

Previous investigation provided evidence for the presence of additional TSG(s) on

9p that function independently of the INK4 locus, spanning between markers

D9S171 (9p21) to IFNA (9p22) (Parris et al., 1999). To examine the activity of

these loci, Dr. Lylia Ouboussad, former PhD student, introduced A9HyTK9a― a

variant of chromosome 9 deleted for the INK4 locus only, into the highly

tumourigenic melanoma cell line UACC-903 by microcell mediated chromosome

transfer. In her study, the constructed hybrids were assessed for tumourigenicity

in vitro by anchorage-independent growth, whereby a category of hybrids

demonstrated growth suppression in soft agar (suppressors) and the other one did

not (segregants). Gene expression of a panel of functional genes in chromosome

9p21 region was carried out by RT-PCR, followed by real-time PCR analysis. The

results demonstrated significantly high expression of IFNA1 in “suppressed”

compared to “segregant” hybrids (p <0.05 students unpaired t-test) suggesting that

the deletion of IFNA1 gene might be associated with a loss of tumour suppressor

activity.
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The hypothesis of my research is that IFNA1 has a tumour suppressor function

and for further functional validation, I tried to investigate such tumour-

suppressive activity in melanoma; therefore, the aims of this project were as

follows:

1. Subcloning IFNA1 cDNA from pCR®4-TOPO® cloning vector into pcDNA3

expression vector.

2. Establish a panel of stably IFNA1-expressing clones.

3. Assess their tumourigenic behaviour by anchorage-independent growth in soft

agar.

4. Evaluate IFNA1 expression at both post-transcriptional and translational levels.

5. Given that melanomas are highly resistant to apoptosis, I also investigated

whether IFNA1 could sensitize this resistance.
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CHAPTER

GENERAL MATERIALS AND METHODS

2.1. Cell Lines

UACC-903: Highly tumourigenic human malignant melanoma cell line, a kind

gift from Dr. J. M. Trent, National Cancer Institute, Bethesda, MD (Trent et al.,

1990), was derived from a primary melanoma specimen and displays anchorage-

independent growth and rapid population doubling in plastic culture. It is deleted

for exons 1α and 2 of the p16 (Parris et al., 1999), and harbours the BRAFV600E

mutation (Esteve-Puig et al., 2009). Given that it is deleted for the p16, UACC-

903 was an ideal model for this study to assess possible antitumour role of IFNA1

independently of the p16.

Culture medium: RPMI-1640 (Sigma-Aldrich)

PC-3: Epithelial cell line from a human prostatic adenocarcinoma (Kaighn et al.,

1979), which was used as a tumourigenic control in this study.

Culture medium: Ham’s F12K (Gibco, Invitrogen).

2
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NB1-Tert: This cell line was established by transfecting NB1 normal fibroblast

cells with human telomerase transcriptase (hTERT) (Ulus-Senguloglu et al.,

2012). hTERT-immortalised cells tend to have a relatively ‘normal’ phenotype.

Following their immortalisation, primary human cells retain their diploid

karyotype, contact-inhibition, anchorage dependency, and require growth factors

for proliferation. Aside from their unlimited lifespan, they are genomically stable,

remain differentiated, possess normal cell cycle checkpoints, and express

functional p53, pRB, and p16INK4a (Lee et al., 2004).  Hence, hTERT efficiently

extends the cells’ lifespan without changing their normal phenotypic

characteristics, which makes the NB1-Tert a relatively normal cell line and an

ideal control for this study.

Culture medium: Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,

Invitrogen).

2.2. General Cell Culture Equipment

All cell culture was performed in LaminAir Class II (Heraeus Instruments) safety

cabinet that had been cleaned by swabbing with 70% industrial methylated sprit

(IMS) before and after any cell manipulation. Cells were cultured in fully

humidified incubators (Heraeus 6000, Heraeus Instruments, Germany) that were

set at either 5% or 10% and at 37°C. An inverted phase contrast microscope,

Olympus CK40, was used for visualising the cells.
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2.3. Cell Culture

Cells were cultured in growth medium supplemented with 10% foetal bovine

serum (Gibco, Invitrogen) and 2 mM of L-Glutamine (Gibco, Invitrogen). At each

subculture, the cell monolayer was washed with pre-warmed versene (0.2mg/ml

EDTA in phosphate-buffered saline (PBS) (Sigma Chemicals, Dorset, UK)) and

gently detached by incubation in 1 ml of 0.25% trypsin-EDTA (Sigma-Aldrich)

for 1-2 minutes. To neutralize the trypsin, the cells were resuspended in 9 ml of

pre-warmed complete growth medium. The cell suspension was then transferred

into a 15 ml conical tube (Sarstedt) and spun down in a centrifuge (Megafuge 1.0,

Heraeus Instruments) at 1200rpm for 5 minutes― the relationship between

revolutions per minute (RPM) and relative centrifugal force (RCF) or g-force (×g)

is: RCF = 1.118 × 10-5 × R × N2 where R is the radius of the rotor in centimetres,

and N is the speed in RPM (Kahn et al., 1976). After centrifugation, the

supernatant was aspirated and the cells were resuspended in 10 ml of complete

growth medium and subcultured in 1:3 or 1:4 at a seeding density of 5×105 to

1×106 cells/ml to reach confluence within 48 to 72 hours.

2.4. Cryopreservation of cells

Healthy log phase cells were fed with fresh medium one day before freezing them

down. On the following day, the cells were visualised under an inverted

microscope in order to confirm the absence of contamination and to assess cell

density. After detaching, spinning down the cells and aspirating off the
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supernatant, the cell pellet was gently flicked and resuspended in freezing medium

consisting of 90% of foetal bovine serum (Gibco, Invitrogen) and 10% DMSO

(Dimethyl Sulfoxide) (Fisher). Aliquots of 0.5 or 1.0 ml of cells were transferred

into cryogenic vials (Sarstedt) and kept in a Nalge Nunc Cooler filled with

isopropyl alcohol for 24 hours prior to storing them in liquid nitrogen.

2.5. Recovery of Cells from Cryopreservation

Vials of cells were recovered from liquid nitrogen and swabbed with 70% IMS.

Prior to thawing the cells at 37°C, caps were loosened to release the pressure.

Cells were transferred into 10 ml of pre-warmed complete growth medium and

centrifuged at 1200rpm for 5 minutes. The supernatant was aspirated off and the

pellet was gently flicked and resuspended in the appropriate volume of complete

medium. After 24 hours, complete growth medium was replenished to remove any

residual DMSO.

2.6. RNA Extraction Using Trizol® Reagent

TRIzol (Invitrogen) is a ready-to-use reagent for isolating total RNA from cells

and tissues. The reagent combines phenol and guanidine isothiocyanate in a

monophasic solution that maintains the integrity of RNA while disrupting cells

and dissolving cell components during sample homogenisation or lysis.
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2.6.1. Cell Homogenisation

Monolayer of cells at 80-90% confluence was washed twice with 10 ml of cold

PBS. Two millilitres of TRIzol reagent (Invitrogen) was added and left for at least

1 minute at room temperature. The cell lysate was gently retropipetted for

homogenisation, transferred into a 1.5 ml sterile Eppendorf tube and incubated for

5 minutes at room temperature to allow the complete dissociation of the

nucleoprotein complex.

2.6.2. Phase Separation

After incubating the homogenised samples, 200μl of chloroform (per ml of initial

TRIzol) was added to the samples and the tubes were shaken vigorously for at

least 15 seconds. The samples were then incubated for 3 minutes at room

temperature prior to spinning them at 13000rpm for 30min at 4C in a bench

centrifuge (Eppendorf centrifuge 5414R). Following centrifugation, the mixture is

separated into a clear upper aqueous phase that contains RNA, and lower red

phenol/chloroform phase.

2.6.3. RNA Precipitation, Wash and Redissolving

The aqueous phase was carefully pipetted into a sterile Eppendorf tube. A total of

500μl of isopropyl alcohol was added to each sample and mixed gently for 15

seconds prior to incubation for 10 minutes at room temperature. Samples were
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centrifuged at 13000rpm for 20 minutes at 4°C. After the centrifugation, the RNA

precipitate formed a gel-like pellet on the side and bottom of the tube. The

supernatant was decanted and the RNA pellets were washed with 1 ml of 75%

ethanol, per ml of initial TRIzol. The samples were mixed by vortexing for 5 to 10

seconds prior to centrifugation at 8000rpm for 5 minutes at 4°C.  The ethanol was

decanted and the RNA pellets were air-dried at room temperature for 5 to 10

minutes. RNA was dissolved in 20μl of diethyl pyrocarbonate (DEPC)-treated

water (Fisher Scientific) and incubated at 55 to 60°C for 10 minutes the stored at

‒80°C.

2.6.4. Quality Control

RNA concentration and purity was determined by spectrophotometry using

NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Wilmington,

USA). UV absorbance was measured at 260ηm and the quality was determined by

using A260/A280 ratio.

2.7. Standard Polymerase Chain Reaction (PCR)

PCR is an enzyme-mediated-reaction that enables selective amplification of a

specific DNA sequence. A basic PCR set up requires DNA polymerase, a DNA

template to be amplified, and a designed pair of primers of approximately 20

bases that are complementary to the template in 5’ to 3’ direction in order to

initiate the synthesis of the new DNA strands.
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The basis of PCR amplification of DNA consists of a series of 20 to 40 repeated

cycles of three temperature dependent steps, which can sometimes be preceded by

a hot start step if the polymerase requires thermoactivation, thereby avoiding

nonspecific amplification products resulting from mispriming. Elevated

temperature (>90°C) is held anywhere between 1 to 10 minutes.

Initially, the denaturation of DNA, which consists of heating the reaction to

>90°C for 20 to 40 seconds, separates the double strands by disrupting the

hydrogen bonds between the complementary bases. In the next step, DNA

annealing, the primers are allowed to anneal to the DNA template. However, an

optimisation must be performed to find the correct annealing for each primer set

and to reduce any unspecific binding, such as primer dimer. Note also, that during

this step the temperature is usually lowered to 50-65°C for 20 to 40 seconds. This

is followed by the extension/elongation step at 72°C for 30 to 40 seconds, in

which the DNA polymerase synthesises a new complementary DNA strand to the

DNA template. A final extension is given at 72°C for 5 to 10 minutes to ensure

the completion of any truncated products.

2.8. Agarose Gel Electrophoresis

Agarose gel electrophoresis is a method used to separate negatively charged DNA

or RNA fragments by forcing them to move through a gel matrix in response to an

electric current. These fragments are separated by size with the smaller ones

migrating faster and farther through the pores of the gel.
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The preparation of 1% horizontal agarose gel consisted of dissolving 1g of

agarose (Fisher Scientific) in 100 ml of 1X TBE buffer (Tris/Borate/EDTA)

(Fisher Scientific), and heated in a microwave for 2 to 3 minutes until the agarose

has completely dissolved and formed a transparent homogenised mixture. After

cooling the latter, 5μl of EtBr (10 mg/ml) was added― EtBr is the most

commonly used dye to visualise DNA and RNA in gels during exposure to the

UV light. After gently swirling the mixture, it was poured into a casting tray (Bio-

Rad) containing sample combs and allowed to solidify at room temperature. The

solidified gel was then submerged in TBE/EtBr buffer until the level was about

5mm above the surface of the gel and the combs were carefully removed. About

5‒8μl of 1 Kb plus ladder (1µg/µl) (Invitrogen) was loaded to estimate the

molecular weight of the samples. The test samples were mixed with the

appropriate amount of 6X loading buffer (Thermo Scientific) ―containing orange

G dye for visual tracking of DNA migration during electrophoresis, and slowly

loaded into each well. Electrophoresis was carried out at 60 to 70 Volts until the

fastest dye had moved ¾ of the gel length. Upon completion, gels were visualised

under a UV transilluminator which causes EtBr bound to DNA to fluoresce, and

pictures were taken using an Alpha Imager 2200 (Alpha Innotech Corporation).

2.9 Statistical Analysis

Statistical analyses were carried out using Microsoft Excel 2010 software. All t-

tests were done at 95 percent significance with α set at 0.05.
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CHAPTER

SUBCLONING AND CHARACTERISATION OF

IFNA1 GENE

3.1. INTRODUCTION

To evaluate the anti-tumourigenic effect(s) of IFNA1 in human melanoma, IFNA1

cDNA fragment of 691bp in size was subcloned into pcDNA3 expression vector

at EcoRI restriction site, under the control of cytomegalovirus (CMV) promoter.

The expression of this plasmid construct was assessed in UACC-903 cell line to

further assess its tumourigenic behaviour by anchorage independent growth in soft

agar and evaluate its expression at post-transcriptional and translational levels.

DNA cloning is the process of generating multiple copies of a particular sequence

of DNA by inserting it into a plasmid vector. These plasmids are double-stranded

molecules that carry a cloning site, a drug-resistance gene, and a replication origin

within bacterial cells that have been specifically constructed for recombinant

cloning technology. Their frequent use in modern recombinant DNA methods is

due to the fact that they can propagate and are inherited autonomously of the

bacterial chromosome (Lodish H, 2000).

3
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To assess the tumour suppressor potential of any gene, it is essential to be able to

control its expression before any further manipulations. pcDNA3 is a 5.4 kb

expression vector (figure 3.1) that utilises a CMV promoter, which drives high

transcriptional activity of the gene of interest in transfected cells. This expression

vector harbours multiple cloning sites located downstream of the CMV promoter,

ampicillin and neomycin resistance genes, and an SV40 (Simian Virus 40) early

promoter ― providing neomycin resistance gene expression for selecting stably

transfected mammalian cells using G418 (Mammalian Expression Vectors Guide,

Invitrogen).

Figure 3.1: Schematic representation of the pcDNA3 expression vector. The
diagram displays the multiple cloning sites located downstream of the CMV
promoter, the different restriction enzyme sites (such as EcoRI, Hind III, SmaI,
etc), as well as ampicillin and neomycin resistance genes (www.invitrogen.com).
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The notion of IFN-α antiproliferative and pro-apoptotic effects has had a big

impact in the treatment of advanced melanoma. This cytokine can directly inhibit

the proliferation of tumour cells by delaying their progression through the S and

into the G2/M phases. Moreover, high concentrations of IFN-α in the

microenvironment have been demonstrated to induce apoptosis, however, this

effect seems transient and greatly depends on cell sensitivity to the expression of

interferon alpha receptor and genes. Although IFN-α antitumour effects have been

widely documented, the precise mechanisms that trigger and potentiate this

behaviour are yet to be defined (Maellaro et al., 2003).
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3.2. MATERIALS AND METHODS

From our previous research study, conducted by Dr. Lylia Ouboussad, IFNA1

PCR product was directly inserted into a sequencing vector using the TOPO TA

cloning® kit (Invitrogen, UK) (figure 3.2). Formerly, PCR product, resulting from

the amplification of IFNA1 cDNA, was ligated into pCR®4-TOPO® cloning

vector. Transformation in competent E.coli cells resulted in 8 colonies that have

had their plasmid DNA isolated and purified using Miniprep kit (Qiagen). To

confirm the presence of IFNA1, all 8 DNA plasmid products were treated with

EcoRI and their sequencing (Cogenics, UK) revealed that clone number 3 displays

100% similarity to IFNA1 gene. Subsequently, clone number 3 has been used for

the current study.

Figure 3.2: Agarose gel image of plasmid cDNA treated with ECORI enzyme. U
(Uncut) are the control samples, where no enzyme was added, and C (Cut) are
the cDNA samples digested with EcoRI resulting in 2 bands: the upper one
corresponds to plasmid DNA and the bottom one to IFNA1 cDNA with a size of
691 bp. A 1 Kb+ ladder was used to determine the size of the insert.
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3.2.1. EcoRI Restriction Enzyme Digestion

In order to release IFNA1 from the pCR®4-TOPO® cloning vector, 2µl of EcoRI

restriction enzyme (10 units/ µl) (New England Biolabs) was used to digest 10µl

of plasmid DNA in a total volume of 50µl including 5µl of 10X restriction buffer

(New England Biolabs) and 33µl of DEPC treated water. The reaction was

incubated at 37°C for 2 hours and the final product was electrophoresed on a 1%

EtBr-stained agarose gel. The size of the digests was determined by using 1 Kb

plus ladder (Invitrogen, UK) as shown in the figure below.

Figure 3.3: 1 KB plus ladder is used to estimate the molecular weight of double-
stranded DNA fragments from 100bp to 12 kb (http://www.lifetechnologies.com)

Preparation of 1% TBE agarose gel, containing EtBr at a final concentration of

0.5µg/ ml, was carried out by loading the digested DNA sample, which contained

7µl of 6X loading buffer. Electrophoresis was carried out at 35 volts for 45
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minutes. Subsequently, the final product was visualised under a UV illuminator

and a picture (figure 3.3) was taken by Alpha Imager 2200 (Alpha Innotech

Corporation, USA).

3.2.2. Geneclean– Purifying DNA Fragments from TBE Agarose Gel

GENECLEAN® Kit III (Qbiogene) was used to purify the band of interest by

excising the lower band of approximately 691bp from the former agarose gel. The

DNA band was excised with a sterile scalpel blade using long wavelength UV

light (362ηm) and placed into a tube. To the excised gel slice, 50µl of TBE

modifier, which facilitates dissolving the gel, and 450µl of NaI solution were

added to the tube. The agarose blocks were completely dissolved by incubation in

a 55°C water bath for 5 minutes while frequently flicking the contents gently.

Once dissolved, 10µl of GLASSMILK® was added to the DNA/NaI solution. The

sample was gently vortexed and incubated for 5 minutes at room temperature with

gentle mixing every 1 minute to ensure that GLASSMILK® stays in suspension.

The sample was then centrifuged at 14000×g for 30 seconds. Once centrifuged,

the supernatant was discarded and the GLASSMILK®/DNA pellet was washed 3×

by adding 250µl of NEW Wash solution, followed by vortexing and brief

centrifugation. The pellet was air-dried at room temperature and re-suspended in

15µl of dH2O. The DNA was eluted from the GLASSMILK® by gentle vortexing

and centrifugation at 14000×g for 30 seconds. Finally, the supernatant containing

the eluted DNA was carefully removed and transferred into a new tube, and stored

at -20°C until further manipulations.
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3.2.3. Preparation of LB Agar Plates

Luria-Bertani (LB) agar plates were prepared by weighing out 10g of bacto

tryptone, 5g of bacto yeast extract, 10g of sodium chloride, and 15g of bacto agar.

These reagents were dissolved in 950 ml of distilled water and autoclaved at

121°C for 20 minutes. After allowing the agar to equilibrate in a water bath at

55°C, 100µg of ampicillin per ml of agar solution was added. The agar solution

was poured into 100-mm petri dishes (Corning, Fisher Scientific) and the top of

each plate was flamed with a Bunsen burner to prevent the development of

bubbles on the surface of the agar. Each plate was partially covered with its lid

and allowed to set for 30 minutes at room temperature. Finally, the plates were

wrapped and stored at 4°C for no longer than one month.

3.2.4. Ligation of cDNA into Expression Vector and Transformation

3.2.4.1. Preparative Restriction Enzyme Digests

For further cloning steps, pcDNA3 vector was linearized in a final volume of 20µl

containing 3µl of pcDNA3 (1µg/ µl), 2µl of 10X restriction buffer, 1µl of EcoRI

and 14µl of DEPC treated water.

3.2.4.2. Ligation of Plasmid Vector and Insert

IFNA1 cDNA was cloned into the linearized pcDNA3 vector. A ligation reaction

was set up in a final volume of 20µl using T4 DNA ligase (New England
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Biolabs). The reaction consisted of 1µl of 150ηg plasmid vector, 10µl of purified

DNA (29.2ηg/µl), 2µl of 10X buffer (New England Biolabs), 1µl of T4 DNA

ligase (0.4 unit/ µl), and finally 6µl of DEPC treated water was added to make up

the final volume to 20µl. The contents were briefly centrifuged and incubated at

room temperature for 10 minutes prior to incubation overnight at 4°C.

3.2.4.3. Transformation of Competent E.coli (DH5α) cells

A total of 2µl ligation reaction was taken and added into 50µl of competent E.coli

cells (DH5α) (Invitrogen) that were previously thawed on ice. The contents were

flicked gently and the tube was placed on ice for 30 minutes. Heat-shock was

carried out in a water bath at 42°C for 45 seconds, and then the tube was

immediately placed on ice for 2 minutes.  Prior to incubation, 900µl of pre-

warmed SOC medium (Super Optimal broth with Catabolic repressor)

(Invitrogen) was added to the mixture and the tube was placed horizontally in a

rotary shaking incubator at 37°C for 1 hour at 225rpm. Cells were spread on LB

agar plates with 100µg/ml ampicillin by using the L-shaped plastic spreader. Once

dried, plates were inverted and placed in a 37°C incubator overnight. The colonies

were observed on the following day and a total of 12 individual colonies were

picked and inoculated in 5 ml of LB medium containing 100µg/ml ampicillin

(selective LB medium). An additional control tube that does not contain cells was

used to confirm the absence of contamination. The tubes were incubated overnight

at 37°C with shaking at 225rpm. On the following day, the bacterial cultures

became very turbid except the control tube. These cultures were re-inoculated by
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diluting 1ml of the starter culture in 500mL of selective LB medium and further

incubated overnight at 37°C with shaking at 225rpm. Aliquots of each clone were

stored at -80°C by taking 750µl of bacterial culture into an Eppendorf tube and

adding 250µl of warm glycerol (Sigma-Aldrich).

QIAGEN® plasmid Midi purification kit, purchased from QIAGEN, was used to

extract and purify plasmid DNA from the overnight cultures of the selected

colonies.

3.2.4.3.1. Harvesting and lysis of bacterial cells

The 500mL overnight cultures were harvested by centrifugation in Sigma 6K10

centrifuge at 6000×g for 15 minutes at 4°C. After removing the supernatant, the

pellet was homogeneously re-suspended in 4ml of re-suspension buffer P1 (50

mM Tris·Cl; pH 8.0; 10 mM EDTA, 100 µg/ml RNase A).

After harvesting and re-suspension, the bacterial cells were lysed in 4 ml of lysis

buffer P2 (200 mM NaOH; 1% SDS (w/v), in which NaOH lysis the cells and

SDS solubilises phospholipids and DNA as well as proteins. The contents were

mixed thoroughly by vigorously inverting the capped tubes 5 times and were then

incubated for 5 minutes at room temperature.

3.2.4.3.2. Neutralisation and clearing of lysates

The lysed cells were then neutralised by adding 4ml of chilled neutralisation

buffer P3 (3.0 M potassium acetate; pH 5.5) and were immediately mixed by

inverting the tubes until the solution was homogeneous, and were incubated on ice
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for 15 minutes. The lysates were centrifuged at 16000 ×g for 30 minutes at 4°C.

The supernatant containing plasmid DNA was transferred to a sterile tube and re-

centrifuged for 15 minutes. The clear supernatant was transferred to a new tube

3.2.4.3.3. Bind, wash and elute plasmid DNA on QIAGEN-tip

The QIAGEN-tip 100 was equilibrated by applying 4 ml of buffer QBT (750 mM

NaCl; 50 mM MOPS, pH 7.0; 15% isopropanol (v/v); 0.15% Triton® X-100

(v/v)) and allowed to drain into a waste tube by gravity flow. The supernatant

containing plasmid DNA was applied to the equilibrated QIAGEN-tip and

allowed to enter the resin by gravity flow. After discarding the flow-through, the

QIAGEN-tip was washed twice with 10ml of buffer QC (1.0 M NaCl; 50 mM

MOPS, pH 7.0; 15% isopropanol (v/v)) by allowing the buffer to move through

by gravity flow. After discarding the flow-through, the DNA was eluted with 5ml

of elution buffer QF (1.25 M NaCl; 50 mM Tris·Cl, pH 8.5; 15% isopropanol

(v/v)) into a clean 15ml vessel.

3.2.4.3.4. Precipitating, washing and re-dissolving plasmid DNA

The DNA was precipitated by adding 3.5ml of room-temperature isopropanol to

the eluted DNA, followed by centrifugation at 16,000 ×g for 30 minutes in 4°C.

Once centrifuged, the supernatant was carefully discarded, and the DNA pellet

was washed with 2ml of room-temperature 70% ethanol to remove any

precipitated salt. Another centrifugation was carried out for 10 minutes at 16,000

×g. The supernatant was carefully discarded and the pellet was air-dried for 5
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minutes. The purified plasmid DNA was re-dissolved in 250µl of TE buffer (10

mM Tris·Cl, pH 8.0; 1 mM EDTA) and was then stored at -20°C.

3.2.4.4. Isolating Colonies with Construct Plasmid

Having a large number of colonies in which some of them are likely to harbour

the plasmid with the insert and some might contain the re-ligated plasmid only, it

was important to conduct a simplified and rapid protocol for screening the

bacterial colonies with cloned constructs by digesting them with EcoRI.

Restriction digests were set up in a total volume of 20µl by using 5µl of each

plasmid DNA, 1µl EcoRI, 2µl 10X buffer, and 12µl of DEPC treated water. A

total of 24 samples have been run on a 1% agarose gel electrophoresis to confirm

the EcoRI treatment, in which 12 of them consisted of 2µl of uncut (undigested)

plasmid DNA, 2µl of 6X buffer and 4µl DEPC treated water; the other 12

consisted of 2µl cut (digested) DNA, 5µl 6X buffer and 2µl DEPC treated water.

Plasmids were then electrophoresed on a 1% agarose gel and visualised using

Alpha Imager (figure 3.4).

To confirm the presence and the right insertion of the fragment of interest, an

aliquot of 100ηg/µl of the positive clone and the sequencing primers were sent to

Cogenics (Essex, UK). The sequencing primers consisted of CMV forward

5’CGCAAATGGGCGGTAGGCGTG (Invitrogen) and IFNA1 reverse

5’ATGAAAGCGTGACCTGGTGT (Invitrogen).
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The following is the FASTA sequence of IFNA1, downloaded from National

Center for Biotechnology Information (NCBI reference sequence:

NM_024013.2), showing the IFNA1 reverse primer.

AGAACCTAGAGCCCAAGGTTCAGAGTCACCCATCTCAGCAAGCCCAGAAGTATCTGCAAT

ATCTACGATGGCCTCGCCCTTTGCTTTACTGATGGTCCTGGTGGTGCTCAGCTGCAAGTCAA

GCTGCTCTCTGGGCTGTGATCTCCCTGAGACCCACAGCCTGGATAACAGGAGGACCTTGAT

GCTCCTGGCACAAATGAGCAGAATCTCTCCTTCCTCCTGTCTGATGGACAGACATGACTTT

GGATTTCCCCAGGAGGAGTTTGATGGCAACCAGTTCCAGAAGGCTCCAGCCATCTCTGTCC

TCCATGAGCTGATCCAGCAGATCTTCAACCTCTTTACCACAAAAGATTCATCTGCTGCTTG

GGATGAGGACCTCCTAGACAAATTCTGCACCGAACTCTACCAGCAGCTGAATGACTTGGA

AGCCTGTGTGATGCAGGAGGAGAGGGTGGGAGAAACTCCCCTGATGAATGCGGACTCCAT

CTTGGCTGTGAAGAAATACTTCCGAAGAATCACTCTCTATCTGACAGAGAAGAAATACAG

CCCTTGTGCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCCCTCTCTTTATCAACAAAC

TTGCAAGAAAGATTAAGGAGGAAGGAATAACATCTGGTCCAACATGAAAACAATTCTTAT

TGACTCATACACCAGGTCACGCTTTCAT GAATTCTGTCATTTCAAAGACTCTCACCCCTG

3’-TGTGGTCCAGTGCGAAAGTA-5’ IFNA1 Reverse

CTATAACTATGACCATGCTGATAAACTGATTTATCTATTTAAATATTTATTTAACTATTCAT

AAGATTTAAATTATTTTTGTTCATATAACGTCATGTGCACCTTTACACTGTGGTTAGTGTAA

TAAAACATGTTCCTTATATTTACTC
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3.3. RESULTS

The GENECLEAN procedure was successfully prepared by formerly

electrophoresing the digested DNA fragment. The band of interest was carefully

excised from the gel as small as possible, and the DNA was finally eluted for

further use.

Figure 3.4: A picture of 1% agarose gel showing the treated plasmid DNA with
EcoRI restriction enzyme. This plasmid was electrophoresed for 45 minutes at 35
volts. The upper band corresponds to the plasmid vector, whereas the lower one
corresponds to IFNA1 cDNA with a size of 691 bp. The latter was carefully
excised and eluted using GENECLEAN®

EcoRI digestion of the 12 isolated colonies has been performed to verify which of

the latter has the band of interest. From the 12 plasmids, the IFNA1 cDNA of

691bp was exclusively seen in clone number 1 as displayed below. The other 11

plasmid digests did not display a lower band, signifying that the insertion was

unsuccessful.
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Figure 3.5: A picture of 1% agarose gel showing the 12 treated colonies with
EcoRI. The gel was run for 35 minutes at 60 volts. U| uncut or control samples
where no enzyme was added; C| cut or digested DNA plasmids with EcoRI. The
upper band corresponds to the plasmid vector and the lower one to IFNA1
cDNA with a size of 691bp.

The sequencing results from Cogenics, which have been analysed using

SnapGene viewer (figure 3.6), showed a 100% compatibility of the sequence

(clone number 1) to IFNA1 gene. This indicates the absence of mutations in the
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sequence and that the PCR product was ligated into the pcDNA3 expression

vector in the correct orientation.

Figure 3.6: SnapGene analysis of IFNA1 cDNA sequencing. The picture
illustrates a region of the sequenced IFNA1 in the pcDNA3 expression vector.
The analysis generated a four-colour chromatogram― blue, black, green, red
peaks in sequences indicate C, G, A and T bases, respectively. The nucleotide
peaks seem evenly-spaced and vary in height. The real peaks are easily
distinguished from the baseline noise peaks, which seem very minimal. In
addition, sequence analysis of the clone revealed a full length IFNA1 cDNA
without errors, hence, a fully functional pcDNA3-IFNA1 expression construct.
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3.4. DISCUSSION

Our previous research group study pursued the identification of novel TSG(s) in

melanoma and has provided experimental evidence that supports the candidacy of

IFNA1 as a tumour suppressor gene. The basic logic behind any genetic

manipulation is to assess the expression of the gene of interest. Accordingly, the

first step toward compiling sufficient data to validate this hypothesis was to be

able to express this gene in melanoma cells.

IFNA1 PCR product that was previously cloned into pCR®4-TOPO® cloning

vector has been subcloned into pcDNA3 expression vector. Initially, after

digestion with EcoRI, IFNA1 PCR product was isolated from a 1% agarose gel

using the GENECLEAN kit. As depicted in figure 3.4, the gel displays three

bands. The high-molecular-weight band, which appears faint, could be the result

of nicked or relaxed circular plasmid DNA that has not been completely digested.

The second band represents the supercoiled plasmid, linearized by EcoRI

digestion. Finally, the third band, which migrated through the gel at about twice

the rate of the supercoiled plasmid, represents the desired IFNA1 PCR product of

691bp that has been successfully isolated and eluted. The isolated fragment was

then ligated into the digested pcDNA3 and transformed into competent E.coli

DH5α.

The protocol used to extract and purify plasmid DNA from bacterial cell

suspensions is based on the alkaline lysis method of Birnboim and Doly, 1979.

During the procedure, sodium hydroxide (NaOH) denatures both chromosomal



Chapter 3: Subcloning

73

and plasmid DNAs to single strands by disrupting the hydrogen bonds between

base pairs. Upon neutralisation by the addition of potassium acetate (CH3CO2K),

the large chromosomal DNA precipitates, while the small plasmid DNA renatures

correctly and stays in solution. However, prolonged exposure to alkaline

conditions causes the plasmid DNA to entre an irreversibly denatured state. The

resulting closed circular plasmid DNA is refractory to restriction enzyme

digestion and runs faster on agarose gels (Adapted from QIAprep® Miniprep

Handbook).

Plasmid vectors that are used to clone DNA inserts tend to be circular and

genetically engineered. Plasmids exist in a highly supercoiled state in vivo. Such

covalently closed circular-DNA molecules would maintain their supercoiled

conformation after plasmid isolation and downstream processing; however, a

certain amount will sustain single- or double-stranded nicks that result in nicked-

circular (open-circular) or linear plasmid forms, respectively (Balagurumoorthy et

al., 2008).

The electrophoretic mobility of these three topological forms differs in an agarose

gel. The supercoiled DNA has a tighter conformation and a more entangled shape

than the other two and migrates faster through the pores of the agarose matrix than

its linear form, and the linear DNA migrates faster than its nicked-circular form

(Restriction Enzyme Cleavage of DNA, EDVO kit #102 Manual, EDVOTEK®).

Figure 3.5 exemplifies all these three conformations. For example, lane (10 U), in

the lower part of the gel, displays three bands produced by separating uncut

plasmid DNA: the upper nicked-circular, the middle band of linear DNA, and the
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thick band of supercoiled DNA at the bottom. Although the supercoiled structure

is the desired form of plasmid DNA and normally the predominant species, a

small portion of this form becomes nicked, which is a common event during the

plasmid preparation.

The pure plasmid DNA in figure 3.5 shows no contamination with other nucleic

acids, such as degraded RNase A-resistant RNA, but a sharp band of 691bp.

However, the subcloning efficiency is notably low since only one insert was

successfully ligated in the expression vector. When digests are performed with the

same endonuclease enzyme to generate compatible ends, ligation then simply

involves the joining of two linear DNA fragments. DNA ligase catalyses the

formation of a phosphodiester bond between juxtaposed 5’-phosphate and 3’-

hydroxyl termini. However, DNA ligase can join cohesive/blunt end termini

before the desired ligation can take place. This phenomenon is described as re-

circularisation of plasmid DNA and it can be minimised by removing the 5’-

phosphate residues from both termini of the plasmid DNA with alkaline

phosphatase. The 5’-dephosphorylation reaction would eventually suppress self-

ligation of the plasmid vector and efficiently decrease the number of empty

vectors. However, a foreign DNA segment with intact 5’-terminal phosphate

residues can be ligated efficiently into the dephosphorylated vector (Green and

Sambrook, 2012). Therefore, this step was not performed in order to eliminate

undesired ligation products. Although only one IFNA1 cDNA fragment was

ligated into pcDNA3, the sequencing results of the plasmid DNA displayed

effective insertion.
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CHAPTER

EVALUATING THE TUMOURIGENICITY OF

IFNA1-TRANSFECTED UACC-903 CLONES FOR

ANCHORAGE-INDEPENDENT GROWTH IN

SOFT AGAR ASSAY

4.1. INTRODUCTION

In attempt to exploit the tumour-suppressive potential of IFNA1 in the

development of melanoma, as previously suggested by our research group,

UACC-903 melanoma cell line was stably transfected with IFNA1. Subsequently,

to assess the effect of IFNA1 gene expression on the malignant behaviour of this

cell line, I have monitored and measured the colony-forming ability of each

transfected clone by assessing their tumourigenicity in soft agar. Clonogenicity in

soft agar of the highly tumourigenic UACC-903 cell line has been demonstrated

in numerous studies (Church et al., 1993, Robertson et al., 1996, Parris et al.,

1999).

Mammalian cells are able to take up and recombine exogenous DNA into the

nucleus to generate expression of genes of interest. The delivery of intact DNA

4
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across the enzymatic and membrane barriers, however, is not a spontaneous

phenomenon, mainly because of the size and charge of DNA. Thereafter, a

number of chemical, lipid and physical approaches― such as calcium phosphate,

liposome fusion, microinjection, and electroporation, have been developed to

facilitate and offer enhanced efficiency of the so-called ‘transfection’ process

(Felgner et al., 1987). Although certain viruses can also be used as highly efficient

delivery vectors, this method can be associated with non-specific inflammations

or an unexpected immune response in vivo (Khalil et al., 2006).

Transfections are fundamentally characterised as transient or stable. The

transfected genetic material can be expressed in a transient fashion, whereby the

foreign DNA is able to be transcribed but cannot be copied and, consequently,

will be degraded and diluted during mitosis (Stuchbury and Munch, 2010).

Therefore, gene expression could be analysed for a period of 24 to 96 hours

following introduction. Alternatively, analysing the long-term impact of gene

expression requires establishing stably transfected subpopulations. The introduced

genetic material would integrate into the target cell genome to persist only in the

presence of a selecting agent [reviewed in (Grimm, 2004)].

Stable transfection of tumour cells with expression plasmids containing IFN-α

genes has been reported to result in abrogation of tumour growth and

establishment, and induction of antitumour immunity in several murine tumour

model systems (Tuting et al., 1997). For instance, the murine B16 melanoma

cells, characterised by very low immunogenicity and high tumourigenicity, were
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transfected with mouse IFN-α1 gene and tested for their ability to grow by

injecting them in syngeneic and allogeneic mice. Interestingly, while IFN-α1-B16

transfectants showed decreased tumourigenicity in syngeneic mice, these clones

were totally rejected by allogeneic mice. Furthermore, immunisation of the latter

with irradiated IFN-α1 cells exhibited long-lasting tumour-specific immunity with

parental B16 cells (Kaido et al., 1995).

The loss of anchorage dependence phenomenon is a hallmark of neoplastic

transformation that was first described in 1964 by MacPherson and Montagnier

who used growth in soft agar for selecting transformed cells from polyoma-

infected baby hamster kidney cells (Peehl and Stanbridge, 1981). Further studies

have demonstrated a strong correlation between the tumourigenicity in

immunodeficient nude mouse and the anchorage-independence in vitro (Shin et

al., 1975). Subsequently, this correlation has been further established as a

quantitative marker for tumourigenicity in vitro (Jones et al., 1976, Howell and

Sager, 1978).

Deprivation to substratum adhesion triggers cell cycle arrest which causes normal

epithelial cells to undergo programmed cell death (apoptosis) in a phenomenon

referred to as anoikis (Frisch and Ruoslahti, 1997). Acquisition of apoptosis

resistance by loss of anchorage is believed to be a critical step during tumour

progression and metastasis (Kantak and Kramer, 1998).



Chapter 4: Transfection and Soft Agar Assay

78

Oncogenic transformation is commonly accompanied by a variety of cellular

changes, which include deregulated growth control, alterations in adhesiveness,

motility, morphology and organisation of the cytoskeleton. Neoplastically

transformed cells exhibit pronounced morphological changes, characterised by

rounded cell shape with poorly organised microfilament bundles, as previously

illustrated in a study by Pollack and colleagues (1975). The organisation of

microfilaments has been demonstrated to be highly correlated with anchorage-

independent growth and cellular tumourigenicity, emphasizing the pivotal role of

microfilament alteration in oncogenic transformation (Gimona et al., 1996).

Furthermore, several studies have reported that many microfilament associated

proteins ― such as α-actinin, gelsolin, vinculin and tropomyosins, are down-

regulated to varying levels in various neoplastic cells; thus they are considered to

contribute to the deterioration of the microfilament system, and their restoration

inhibits the malignant phenotype. Altogether, this signifies that cytoskeletal

organisation is central in maintaining a normal phenotype (Shah et al., 2001).

Maintaining cell-cell and/or cell-ECM (extracellular matrix) interactions is what

supports the cell to function.  The ECM is produced by collaboration between

epithelial cells and stromal fibroblasts to form a dynamic complex architecture of

glycoproteins, collagens, glycosaminoglycans and proteoglycans. This

macromolecular array of proteins not only provides structural support for the cell

and its biological functions, but can also determine the cell behaviour, polarity,

migration, differentiation, proliferation and survival. These behaviours are
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determined by communicating with the intracellular cytoskeleton and

transmission of growth signals [reviewed in (Kim et al., 2011)].

Neoplastic transformation is the product of the tissue microenvironment. Altered

expression of soluble factors and ECM components are the unequivocal

characteristics distinguishing tumour microenvironments from normal tissue

counterparts. While tumourigenic cells are capable to thrive independently from

ECM survival cues, different stages of cancer development have been modulated

by abnormal ECM dynamics [reviewed in (Schooley et al., 2012)].

The soft agar colony formation assay is a convenient method to monitor and

assess anchorage-independent growth in a semi-solid media agar. MacPherson

and Montagnier initially introduced this assay for selecting transformed cells from

polyoma-infected baby hamster kidney cells (Peehl and Stanbridge, 1981). This

assay was further refined by Hamburger and Salmon who developed anchorage-

independent growth for the detection of colony-forming human myeloma stem

cells in vitro. Growth was induced in a conditioned medium prepared from

adherent spleen cells of BALB/c mice (inbred albino strain developed by H.J.

Bagg), which has been previously primed with 0.2ml of mineral oil. Bone marrow

cells derived from myeloma patients were suspended in 0.3% agar in a

supplemented growth medium to yield a final concentration of 5×105 cells/ml.

Cultures were incubated at 37°C in a 5% humidified incubator. Final colony

counts were made 2 to 3 weeks later, when the colonies consisted of 40 to several

hundred round cells of >20 µm diameter. Cells derived from bone marrows of
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untreated patients or those in relapse could easily thrive, and the number of

colonies was proportional to the number of cells plated, however, cells derived

from normal volunteers failed to form colonies (Hamburger and Salmon, 1977).

These results presented a normal population that could not grow in soft agar and a

tumourigenic population that displayed anchorage-independent growth in vitro.

Anchorage-independent growth in soft agar has been previously correlated to the

ability of transformed cells to form tumours in nude mice (Freedman and Shin,

1974, Shin et al., 1975). Furthermore, a study conducted by Cifone and Fidler

correlated the pattern of in vitro anchorage-independent growth of tumour cells

with their ability to produce metastases in vivo. Generally, when the semi-solid

agar layer concentration was increased from standard 0.3% to 0.6%, highly

metastatic cells were distinguished from cells of low metastatic potential by the

ability of the former to multiply and develop larger tumour colonies at a faster rate

than the latter (Cifone and Fidler, 1980).
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4.2. MATERIALS AND METHODS

4.2.1. Selection with Geneticin®

The bacterial Neomycin phosphotransferase gene is one of the most commonly

used selectable markers in mammalian cell culture. Geneticin® or G418 is an

aminoglycoside antibiotic similar in structure to gentamicin, neomycin, and

kanamycin. Since Neomycin sulphate does not cross the cellular membrane of

mammalian cells, G418 is an alternative antibiotic for selection of cells stably

transfected with Neomycin resistance gene (neo). Expression of the neo gene

confers resistance to G418 sulphate by blocking polypeptide synthesis through

interference with ribosomal function and inhibiting protein elongation (G418,

Sigma-Aldrich).

Figure 4.1: Schematic representation of the pcDNA3 vector showing multiple
cloning sites and ‘ampicillin’ and ‘neomycin’ drug resistance genes (Mammalian
Expression Vectors Guide, Invitrogen)
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Selection with G418 would enable the subpopulation of cells, where the

exogenous IFNA1 has been incorporated into the genome, to persist while the

non-transfected cells undergo selection. However, since cells differ in their

susceptibility to G418, determination of the optimal antibiotic dosing was very

critical. The stock solution consisted of dissolving 1g of G418 (PAA) in 10 ml of

DEPC treated water to optimise a final concentration of 100 mg/ml, filtered using

a 0.22 micron filter, and stored at -20°C. Thereafter, a dose response curve

protocol was applied on the parental UACC-903 to determine the minimum

antibiotic concentration that will result in approximately 50% of cell death in

about 5 days and kills all the cells over the course of two weeks.

In 6-well cell culture plates, cells were seeded to achieve a cell density of 70-80%

needed for the multi-titration. The following day, the culture medium was

substituted with complete growth medium containing varying concentrations of

G418 (0, 50, 100, 200, 300, 400, 500, 600, 700, 800µg/ml). The plates were then

incubated at 37°C in a humidified atmosphere of 10% CO2 air. Each well was

examined for viable cells regularly, and the selective medium was replenished

every three days until the optimal concentration was determined. After two weeks,

the cells were washed with PBS and visualised under an inverted microscope and

the lowest dose that killed the cells was used for the selection.

Choosing a transfection reagent could be very challenging as most of the

previously listed methods tend to exhibit high cellular toxicity or poor

reproducibility. GeneJuice® transfection reagent (Novagen, UK) is composed of
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histone, a nontoxic cellular protein, and a small amount of polyamine

(manufacturer’s description). The formula of histone and the polyamine

neutralises the negative charge on the DNA molecules, making it easy to traverse

the negatively charged cellular membrane. Thereafter, DNA entry is thought to be

followed by endocytosis, in which the highly cationic polyamine enhances the

DNA–GeneJuice complex fusion by promoting endosomal escape (Reagents for

Transfection Guide, Merck Millipore).

In order to test the efficiency of this reagent, UACC-903 cells were transiently

transfected with pEGFP-C1 (Clontech) expression plasmid. Green fluorescence

protein (GFP) distribution was verified 24h post-transfection by a fluorescent cell

analyser (figure 4.2).

4.2.1.1 Preparation of Cells for Transfection

Prior to transfection, 2×106 cells/ ml were seeded in complete growth medium per

100-mm petri dish and left to proliferate overnight at 37°C (10% CO2) to reach

70-80% confluence. In a sterile Eppendorf tube, 18µl of GeneJuice® transfection

reagent was added drop-wise to 800µl of serum-free RPMI 1640 medium, briefly

vortexed and left to incubate for 5 minutes at room temperature. For each dish to

be transfected, 6 µg of circular DNA was added to the GeneJuice®–serum-free

medium complex. Mixed by gently retropipetting, the mixture complex was

incubated for 10 minutes at room temperature and then entirely added drop-wise
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to the cells in complete growth medium. The dishes were gently rocked to ensure

even distribution and returned to the incubator. After 5 hours of incubation, the

transfection mixture was replaced with 15 ml of complete growth medium. After

48h, cells were harvested by trypsinisation and subcultured at 1:5 split ratio in

complete growth medium containing 700 µg/ml of G418. For 2 weeks, cells were

treated every 3-4 days with selective medium until distinct colonies were

visualised.

4.2.1.2. Isolation of Drug Resistant Clones

Once the resistant cells formed distinct colonies, they were circled with a marker

on the underside of the petri dish. Culture medium was aspirated off and with a

pair of sterile forceps, an appropriate sized cloning cylinder was drawn on

autoclaved Vaseline and carefully lowered onto the colony and pressed down

firmly. Depending on the size of the cylinder being used, 50-100µl of trypsin-

EDTA was pipetted and cells were left to incubate for 2 minutes. Once detached,

the cells were retropipetted, diluted into 5 ml of selective medium and transferred

into a 60-mm petri dish. Subsequently, individual cells that further survived the

selection, expanded into propagated and characterised clonal groups.
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4.2.2. Soft Agar Assay

In this study, anchorage-independence assays were performed by seeding

exponentially dividing cells in a semi-solid agar using the same complete growth

medium to culture the cells. This assay consisted of the preparation of two types

of layer, a 0.33% agar layer where cells are seeded on top of a previously

hardened 0.6% agar layer, which prevents the attachment and subsequent growth

of cells on the surface of the plate.

Preparation of the 6% agar base layer was prepared by incorporating 6g of Agar

Noble (Sigma) with 1g of Bacto-Peptone (BD Biosciences) in a final volume of

100 ml of double distilled water. The 3.3% top layer consisted of mixing 3.3g of

Agar Noble with 1g of Bacto-Peptone in a total volume of 100 ml of ddH2O.

Finally, both agar stock solutions were sterilised by autoclaving at 121°C (15lb/sq

inch) for 15 minutes.

To prepare the 0.6% agar base layer, 9 ml of culture medium supplemented with

10% (v/v) foetal bovine serum and 2 mM of L-Glutamine were mixed thoroughly

with 1 ml of 6% molten agar and rapidly dispensed by pouring 4ml of aliquots

into each well of a 6-well plate (Sarstedt). After that, the agar was allowed to set

inside the biosafety cabinet for 10 to 15 minutes.

Cells were detached with trypsin/EDTA, re-suspended in a complete culture

medium and counted to derive a final density of 5×103 cells/ 4ml (per well).

Subsequently, 1.6 ml of the 3.3% molten agar has been diluted to 0.33% by
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mixing it with 13.4 ml of complete growth medium and 1 ml of 5×103 cells, to

reach a final volume of 16 ml of 0.33% top layer. Lastly, 4ml of the latter mix has

been rapidly dispensed on top of the base layer, making sure that there are no air

bubbles. The assays were conducted with at least two technical replicates per

clone and repeated with at least four biological replicates. The 6-well plates were

incubated for 3 weeks in humidified incubators at 37°C with 10% CO2 (UACC-

903 parental cells and transfected clones), and 5% CO2 (PC-3 control cell line).

After the incubation period, the plates were stained with 0.005% (w/v) crystal

violet (Sigma-Aldrich) for 30 minutes and counted under an inverted microscope,

in which only colonies that formed more than 50 cells were counted.
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4.3. RESULTS

Optimisation for stable transfection begins with successful transient transfection.

For this reason, GFP was used to monitor and develop an efficient transfection

protocol by testing the expression of transfected cDNA using a 1:3 ratio,

cDNA(µg):GeneJuice®(µl). Cellular imaging of GFP transfection into UACC-903

parental cells gave an estimated transfection efficiency of approximately 50% as

shown below.

(A) (B)

Figure 4.2: UACC-903 cells transiently transfected with GFP. These pictures
were captured after transfection using Juli® smart fluorescent cell analyser by
Digital Bio. A| Represents a merged image of UACC-903 cells in brightfield and
GFP in fluorescent field; B| Image of GFP in fluorescent field. EGFP has an
excitation peak at about 488ηm with an emission peak wavelength of 509ηm.

Subsequently, the cloned IFNA1 cDNA into pcDNA3 expression vector under the

control of the CMV promoter was then transfected into UACC-903 cells. Ten
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clones (C1 to C10) were established to stably express IFNA1 together with two

additional clones transfected with empty vector pcDNA3 (clone1 and clone2

pcDNA3) as controls.

Colony-forming ability was expressed as a percentage by dividing the number of

counted colonies by the number of cells seeded. The number of colonies was

proportional to the initial number of cells seeded, signifying that these colonies

were derived from single cells, as previously described by Hamburger and Salmon

(1977). The colony efficiency of the parental tumourigenic UACC-903 together

with PC-3 prostate cancer cell line― which previously showed anchorage-

independent growth in soft agar and produced tumours in nude mice (Kaighn et

al., 1979), and both empty vector pcDNA3 clones, were used as controls and

produced more than 50% colony-forming ability.

The ability to thrive in soft agar was rather variable in the transfected clones, in

which two types have been observed; (a) clones that preserved their tumourigenic

phenotype and demonstrated a high number of large colonies (figure 4.3), and (b)

clones that displayed a reduced ability for anchorage-independence in soft agar,

demonstrating few and small-sized colonies, or clones that failed to grow (figure

4.3). The results are summarised in figure 4.4 by plotting the mean percentage and

comparing it to the parental UACC-903 cells.
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Figure 4.3: Representative images of soft agar colony formation at day 21

UACC-903 Clone 1pcDNA3

Clone 4 Clone 3

Clone 1 Clone 8

Photomicrographs of soft agar colonies captured under ×100 magnification using an Olympus
IX71 inverted microscope attached to a CoolSNAP-cf camera (Photometrics). The growth of
these colonies was measured in 35mm diameter dishes with a lower layer of 0.6% agar solution
and an upper layer of 0.33% agar solution, in which 5×103 cells/well were re-suspended. The
first 4 images display large colonies that vary in size, and were counted as tumourigenic. The
white arrows indicate small-sized colonies that formed <50 cells and were not counted as
tumorigenic, while the red ones indicate single cells that have failed to form colonies.
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Figure 4.4: Average colony-forming ability of the transfected clones against parental
tumourigenic UACC-903. Clone 2, 4, 6, 9 and 10, coloured in light blue, showing high
growth ability varying from 41 to 98%, whereas the clones in purple showing
significantly reduced capacity of 21% and 4% for anchorage independence in clone 3
and clone 5, respectively, or no growth (≤1%) in soft agar as seen in clone 1, 7, and 8.
Error bars indicate standard error of the mean. Asterisk (*) indicates statistically
significant differences between the control (UACC-903) and the transfected clones (*p <
0.05 (significant); **p < 0.01 (very significant); ***p < 0.001 (highly significant)).
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4.4. DISCUSSION

The ability to undergo proliferation and to differentiate in vitro in the absence of

cell-substratum adhesion is thought to be the critical growth precondition of

neoplastically transformed cells. Soft agar assay of the stably transfected clones

with IFNA1 cDNA generated two populations. The first population preserved its

tumourigenic phenotype by exhibiting high efficiency of anchorage-independence

characteristics similar to the parental UACC-903 and PC-3 prostate cancer cells.

Conversely, the other population displayed a significantly decreased colony-

forming efficiency or even failed to grow in soft agar, a rather reversed

tumourigenic phenotype. Colony-forming ability of ≤1% compared to parental

UACC-903 would categorise the clones that failed to form colonies as suppressors

(Parris et al., 1999).

Previous investigations have provided evidence of tumour suppression activity

after the introduction of two chromosome 9 derivatives into UACC-903 cells; (9a)

contained locus-specific deletions of INK4, and (9b) harboured a microdeletion

spanning between D9S171 (9p21) to IFNA (9p22). Tumourigenicity assessment

of these microcell hybrids showed that chromosome 9a variant demonstrated an

increased ability to suppress growth in soft agar and suppressed both tumour

formation and metastasis in athymic nu/nu immune-deficient mice to a greater

extent than chromosome 9b variant (figure 4.5). These results suggested the

presence of tumour suppressor gene(s) on 9p21 that function independently of

INK4 locus (Parris et al., 1999).
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DNA Marker 9a 9b
IFNB (telomeric)
IFNA
3.3B
5BS
CDK4I3’
Exon 3 (p16)
Exon 2 (p16)
CDK4I
CDK4I3’
Exon 1 (p16)
Exon 2 (p15)
Exon 1 (p15)
2F
3.21
MTAP
D9S171 (Centromeric)

Figure 4.5: Chromosomal region 9p21-22 showing deletions in the two variants
of chromosome 9 transferred to UACC-903 cell line. 9a| a variant of
chromosome 9 harbouring exon-specific deletions of the p15INK4B and p16INK4a
genes; 9b| a variant of chromosome 9 harbouring a microdeletion of ∼30cM from
markers D9S171 to IFNA. ■ present markers, □ deleted markers (Parris et al.,
1999).

Given that UACC-903 parental cells are deleted for the p16 and that the

introduction of hybrids microdeleted for the INK4 locus would still cause growth

suppression implies compelling evidence that the region between IFNA

(telomeric) to D9S171 (centromeric) harbours suppressor(s) that would confer

tumourigenicity if deleted, as observed in the hybrids constructed with

chromosome 9b variant. In parallel, transfection of IFNA1 abrogated the growth

of some of the clones or reduced their tumourigenicity, to a certain extent.
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Altogether, this would clearly suggest a possible suppression activity of IFNA1 in

UACC-903 cells, and raises the question of whether the introduction of IFNA1

restores the normal phenotype. Nevertheless, the fact that some of the clones

could still display their tumourigenicity in soft agar could be because of the

disintegration of exogenous IFNA1 during the process of transfection.

The use of cationic polyamine to facilitate the insertion of plasmid DNA has been

documented to operate by binding and condensing plasmid DNA into confined

structures of approximately 100‒200ηm. However, the topology of plasmid DNA

has an impact on transfection efficiency in mammalian cells. The supercoiled and

open-circular DNA have been shown to provide greater efficiency than the linear

counterparts, in which more compact vectors form more nuclease resistant

polyplexes with comparatively more transgene expression (Dhanoya et al., 2011).

Although the uptake of DNA polyplexes is dependent upon topology, the

transfected circular plasmid will be linearized by a random cut in the course of

integration, in which parts of the plasmid such as the resistance gene or the gene

of interest could be destroyed upon linearization (Stuchbury and Munch, 2010).
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CHAPTER

DETERMINATION OF IFNA1 GENE EXPRESSION

LEVELS USING REAL-TIME QUANTITATIVE

REVERSE TRANSCRIPTION PCR

5.1. INTRODUCTION

In this section of the study, the expression levels of IFNA1 were measured using

the real-time qRT-PCR relative quantification method. This method was used to

analyse the variation in gene expression in the stably transfected clones. This

method compares the Ct value of IFNA1 gene with an internal housekeeping gene,

which was GAPDH, in each tested sample.

The reverse transcription polymerase chain reaction (RT-PCR), established by

Kary Mullis and colleagues in the mid-1980s, has been the preferred method for

the detection and amplification of mRNA in a cyclic process, generating a large

number of essentially identical copies. However, in spite of its sensitivity, the

standard PCR had some limitations. In 1992 Higuchi et al. refined the original

PCR method and developed the revolutionary real-time PCR [Reviewed in

5
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(Kubista et al., 2006)]. While the preceding era of quantitating nucleic acids

involved densitometric scanning (Piechaczyk et al., 1984), Southern and Northern

blotting, quantitative PCR has become, par excellence, the method of choice

(Ferre, 1992).

Analysis of PCR kinetics was established by Higuchi et al.  who initially

constructed a real-time system that visualises and amplifies PCR products by

adding an intercalator, in this case, ethidium bromide (Higuchi et al., 1992). This

system used a thermal cycler with a UV source and a CCD camera. As the PCR

products accumulate and the intercalator binds to the newly synthesised double-

stranded DNA, it generated a plot of increased fluorescence signal against the

cycle number. However, as revolutionary as this method was, it still lacked

specificity (Higuchi et al., 1993).

The advent of real-time PCR alleviated the lack of detection and quantification

within the amplification phase, which was previously associated with the

traditional quantitative or semi-quantitative PCR.  Hydrolysis probes (TaqMan),

hairpin probes (molecular beacons, scorpions), fluorescent-labelled hybridisation

probes (Light Cycler), and DNA-binding agents (SYBR Green), are the four

fluorescence-based approaches which have been commonly used for quantitative

detection in real-time PCR. These chemistries offer an accurate determination of

the accumulated newly amplified DNA by detecting the fluorescence signal which

increases proportionally with the cycle number, combining amplification and

detection into a single step [Reviewed in (Chao, 2008)].
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While PCR technology enabled the amplification, sequencing, and analysis of the

genome, real-time PCR offers a greater number of advantages, and thus, proves to

be valuable in a wide variety of diagnostic applications. These include pathogen

detection, single nucleotide polymorphism (SNP) analysis, analysis of

chromosome aberrations, protein detection by immuno-PCR, and gene expression

analysis (Jain, 2010).

Tartour et al. highlighted the role of Interleukin 6 (IL-6), the multifunctional

cytokine, in the pathogenesis of carcinoma of the uterine cervix using quantitative

PCR assay to measure the variation from sample-to-sample. They presented the

first report of quantitative gene expression of this cytokine in tumour tissue

(Tartour et al., 1994).  Furthermore, Bieche et al. developed a quantitative real-

time PCR assay (qRT-PCR) to quantify the MYC gene expression in a series of

134 unilateral invasive primary breast tumours.  They confirmed that gene

expression dysregulation of this proto-oncogene is potentially involved in breast

tumourigenesis (Bieche et al., 1999).

Koyanagi and colleagues expanded the usage of this technology and developed a

multimarker real-time PCR assay to detect melanoma cells in patients’ blood and

assess tumour progression. Their objective was to develop a method that would

successfully detect metastasis and monitor treatment response of melanoma

patients (Koyanagi et al., 2005). Latterly, Arenberger et al. supported this

“staging” method by describing it as a disease progression predictor in melanoma

patients highlighting the usefulness of real-time PCR in enabling efficient

screening of a large number of samples (Arenberger et al., 2008).
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This technology consists of a PCR reaction that generates copies of a DNA

template in a logarithmic manner. In other words, the amplification increases

exponentially and eventually reaches a ‘plateau phase’ where the reaction is no

longer in log-linear growth. As a result, some reactions will generate more end

product than others, emphasising the predominant reason for why “traditional”

end point quantification of PCR products is so unreliable. The ability to measure

the kinetics of the reaction as the PCR products accumulate, in a real time range,

provides a distinct advantage of measuring the amount of PCR products at a point

in which the reaction amplifies exponentially. During the exponential growth

phase in real-time PCR, mathematical extrapolation takes place to determine the

starting amount of template (Ginzinger, 2002).

The two common approaches used to quantify mRNA transcription in real-time

PCR are absolute quantification and relative quantification. Absolute

quantification of transcription, as the name implies, determines the absolute

amount of target sequence– expressed as copy number per cell or total RNA

concentration. To ensure accurate reverse transcription and PCR amplification,

this quantification assay uses an absolute standard curve to quantify the amount of

target sequence of unknown samples by interpolation. In contrast, relative

quantification analyses changes in target gene expression in a given sample

relative to a calibrator, which could be an untreated control sample with a known

concentration (Bustin, 2000).
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Two derived approaches are used for relative quantification: standard curve and

comparative Ct. The standard curve approach determines the quantity of target

DNA in the test sample from a standard curve and then divides it by the quantity

of the same target DNA in the control sample. The threshold cycle (Ct) value

represents the fractional PCR cycle number required for the sample fluorescence

to rise above the threshold setting. In the comparative Ct approach, the Ct values of

test samples are compared with the Ct value of a control sample, which have

already been normalised to an endogenous housekeeping gene. This approach is

also known as the 2-ΔΔCt method, in which ΔΔCt = ΔCt, test – ΔCt, control. The fold

difference in gene expression between control and test sample is calculated by

using the resulting difference in cycle number (ΔCt) as the exponent of base 2 due

to the doubling function of PCR product after each amplification cycle (Chao,

2008).
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5.2. MATERIALS AND METHODS

5.2.1. Nucleic Acid Purification and cDNA Synthesis

As previously described in the general materials and methods, TRIzol® reagent

has been used to conduct total RNA extractions. The purity of the extracted

nucleic acid used in this study was critical for generating reproducible data.

Following RNA isolation, concentration and purity of each sample was

determined by using NanoDrop 2000c.

5.2.1.1. Deoxyribonuclease I, Amplification Grade Treatment of RNA

For the quantification of mRNA copy number, it was important to eliminate any

contaminating DNA that might have occurred during RNA extractions. To avoid

the inaccurate quantification, all the RNA samples were subjected to DNase I,

amplification grade treatment (Invitrogen, UK).

In an RNase free pre-chilled 0.2ml PCR tube, 1µg of total RNA was treated with

1µl 10X DNase I reaction buffer, 1µl DNase I, amp grade 1U/µl. The reaction

volume was made up to 10µl with DEPC-treated water. The samples were

incubated for 15 minutes at room temperature to digest any single- or double-

stranded DNA. The DNase I was then inactivated by the addition of 1µl of 25 mM

EDTA solution to the reaction mixture followed by incubation at 65°C for 10

minutes in a PCR machine. The samples were then chilled on ice.
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5.2.1.2. Synthesis of First Strand cDNA

The first strand complementary DNA (cDNA) was synthesised by using

SuperScriptTM III Reverse Transcriptase kit (Invitrogen, UK). In a pre-chilled

nuclease-free PCR tube, 10µl of 1µg DNase treated total RNA were mixed with

1µl of 250ηg of random primers, 1µl 10 mM dNTP Mix (10 mM each of dATP,

dGTP, dCTP, and dTTP at neutral pH) (Invitrogen). The reaction volume was

made up to 13µl with DEPC-treated water.

The reaction was incubated at 65°C for 5 minutes in a PCR machine. The tubes

were chilled on ice for 5 minutes and briefly centrifuged prior to adding the

following to the reaction; 4µl 5X First-Strand buffer, 1µl 0.1 M DTT, 1µl RNase

OUTTM recombinant RNase inhibitor 40 U/µl (Invitrogen), and finally 1µl of

SuperScript IIITM RT (200 U/µl). In a PCR machine, the reaction was incubated at

25°C for 5 minutes, and then at 50°C for 50 minutes, and finally inactivated at

70°C for 15 minutes after which the resulting cDNA could be stored at -20°C. The

quality of the synthesised cDNA samples was tested using a set of GAPH

primers― details of the method used are given below. One microlitre of each

cDNA sample was visualised by electrophoresis in a 2% agarose gel stained with

EtBr (figure 5.1). At this stage, the cDNA could then be used as a template for

amplification by RT-PCR.
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5.2.2. Primer Design

The optimal primer design and optimisation are aimed at obtaining a balance

between specificity and efficiency in a PCR experiment. Therefore, it is

fundamental to achieve proper priming between an oligonucleotide primer and the

nucleic acid template. Efficiency of a primer’s functionality ensures the

exponential amplification of the desired product after each PCR cycle.

The functionality of the oligonucleotides is strongly dependent on their melting

temperatures (Tm), the necessary temperature to unwind the dsDNA to form

ssDNA, as well as possible homology among primers. Their specificity is

controlled by the length of the primer, which is between 18 and 24 bases, as well

as the annealing temperature (Ta) of the PCR reaction, which should be set few

degrees below the primer Tm. If lacking specificity, mispriming eventually occurs

during amplification, resulting in unrelated and undesirable amplicons. It is also

important to take into consideration that the primers are not self-complementary,

specifically at their 3’ ends, as this will encourage formation of primer dimers.

Another important parameter is maintaining a reasonable GC content. In fact,

primers with a 50% G + C content generally have Tm values in the range of 56-

62°C, which provides efficient annealing condition (Dieffenbach et al., 1993).

For this study, the Primer Express Software v2.0 from Applied Biosystems

(California, USA) was used to design the primer sequences for SYBR® Green

assays.  The FASTA sequence of gene of interest was downloaded from NCBI

and loaded into the software by inserting the sense strand 5’–3’ of the gene. This
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software designs a list of oligonucleotide primers displaying the forward and the

reverse primers, length, Tm and %GC. The primer sets are listed in the table

below.

Gene Name Orientation Sequence

GAPDH Forward 5’ GAAGGTGAAGGTCGGAGT 3’

5’ GAAGATGGTGATGGGATTTC 3’Reverse

IFNA1

Forward 5’ CCTCCTGTCTGATGGACAGACA 3’

5’ CAGCTCATGGAGGACAGAGATG 3’Reverse

Forward 5’ TGCTTTACTGATGGTCCTGGTG 3’

5’ TTTGTCCCAGGAGCATCAAG 3’Reverse

Forward 5’ GAGACCCACAGCCTGGATAACA 3’

5’ TGGAGCCTTCTGGAACTGGTT 3’Reverse

Table 5.1: Primer sequences (Sigma-Aldrich) for RT-PCR and qRT-PCR. The
parameters were set as the following: primer Tm: min (57°C) – max (63°c),
optimum (60°C); primer length: min (18bp) – max (22) bp; primer GC% content:
min (45%) – max (55%); amplicon product size: min (100bp) – max (200bp).

5.2.3. Reverse-Transcription PCR

5.2.3.1. PCR Amplification of GAPDH to check the quality of the cDNA

RT-PCR is a sensitive method for enzymatically amplifying and quantifying

mRNA transcription levels. The DNA molecules are amplified exponentially via

DNA polymerase and the process usually involves 20 to 35 thermal cycles. At this

stage of the study, it was important to test the cDNA for an endogenous control.

Set 1

Set 2

Set 3

Set 4
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Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a so-called housekeeping

gene, is one of the most commonly used reference genes and a relatively stable

glycolytic enzyme that catalyses the sixth step of glycolysis, a process in which

glucose is converted into pyruvate (Rebouças et al., 2013). Because it is

constitutively expressed, GAPDH was used as an endogenous control to

compensate intra- and inter-kinetic qRT-PCR variations, such as sample-to-

sample and run-to-run variations (Pfaffl and Hageleit, 2001).

The process of amplifying the newly synthesised cDNA fragments depends on the

addition of primers, and for this purpose, a set of the previously designed primers

for GAPDH gene were used. One microlitre of cDNA template was added to 1µl

of 10µM of forward primer (5’GAAGGTGAAGGTCGGAGT 3’), 1µl of 10µM

of reverse primer (5’GAAGATGGTGATGGGATTTC 3’). The final volume was

made up to 30µl with 1.1X ReddyMixTM PCR Master Mix (Thermo Scientific).

The samples were mixed by gentle pipetting, briefly centrifuged, and placed into a

PCR machine (Tetrad, Peltier Thermal Cycler PTC-225) configured with the

following settings:

Temperature Time Number of Cycles

Initial Denaturation 94°C 5 minutes 1 Cycle

Denaturation 94°C 45 seconds

Annealing 60°C 45 seconds 35 Cycles

Extension 72°C 45 seconds

Final Extension 72°C 10 minutes 1 Cycle
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Ten microlitres product of the PCR reaction were loaded into 2% agarose gel

stained with EtBr (Figure 5.1). Further optimisation was performed to find the

correct molarity of the primers to avoid the chances of developing primer dimer

(figure 5.2).

5.2.3.2. RT-PCR Amplification of IFNA1

Limiting the variations in the applied conditions on both GAPDH and IFNA1

genes was one of my objectives in this study. Real-time PCR application requires

running the gene of interest in parallel with an endogenous control, while both are

being amplified in an automated fluorometer and under the same conditions. For

this purpose, the preparations for RT-PCR were similar to the ones applied on

GAPDH, and specifically applying the same annealing temperature on the three

designed primer sets for IFNA1 (mentioned in table 5.1), which was set at 60°C

(figures 5.3, 5.4, and 5.5).

Four controls have been used for the gene expression analysis― NB1-Tert

immortalised fibroblast cell line with a relatively ‘normal’ phenotype, PC-3

prostate cancer cell line, and two transfected UACC-903 cell lines with empty

vector: Clone 1pcDNA3, and Clone 2pcDNA3.



Chapter 5: Real-Time PCR

105

5.2.4. Quantitative real-time PCR (qRT-PCR)

SYBR® green I is a dsDNA-specific fluorogenic dye that gives a stronger signal

with DNA than excitation of EtBr with visible light, emitting 1000-fold greater

fluorescence signal upon binding to double-stranded DNA (Wittwer et al., 1997,

Morrison et al., 1998). SYBR® Green PCR master mix (Applied Biosystems) used

in this study contains SYBR® green I dye, AmpliTaq Gold® Polymerase, dNTPs

with dUTP, Passive Reference (ROX‒ a dye that provides fluorescence reference

to which the SYBR Green/dsDNA complex signal can be normalised during

analysis), and optimised buffer components. This master mix was used for the

direct detection of amplified PCR product on an ABI PRISM® 7900HT Sequence

Detection System (Applied Biosystems). These amplicons are monitored in real

time by measuring the increase in fluorescence caused by the binding of SYBR

Green dye to dsDNA.

Following the same principle of standard RT-PCR, the samples were prepared and

pipetted into a chilled MicroAmp™ Fast Optical 96-Well Reaction Plate with

barcode, 0.1 ml (Applied Biosystems). Reactions were performed in triplicates

and consisted on mixing the following:

 1µl of 10µM of forward primer

 1µl of 10µM of reverse primer

 10µl of SYBR Green (diluting the original 2X concentration of SYBR

Green to 1X concentration)
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 1µl of cDNA diluted in 7µl of DEPC-treated water giving a final volume

of 20µl.

Two triplicates were used for non-template control (NTC) to check for non-

specific signal arising from contamination or primer dimer formation, by adding

1µl of DEPC-treated water instead of the cDNA. After pipetting each sample in

the corresponding well, the plate was covered with a MicroAmpTM optical

adhesive film (Applied Biosystems) and sealed tightly over every well. The plate

was briefly centrifuged and loaded into the real-time PCR instrument (ABI

PRISM® 7900HT).

5.2.4.1. ABI PRISM® 7900HT Program Set-Up

GAPDH detector was assigned as ‘Endogenous control’ for normalisation, and

IFNA1 detector was assigned as ‘Target’. Thermal cycling conditions were

performed with the following thermal profile steps.

STEP
AmpliTaq Gold®

Polymerase
Activation

PCR

HOLD
CYCLE (40 cycles)

Denature Anneal/Extend
Temperature 95°C 95°C 60°C
Time 10 min 15 sec 1 min
Volume 20µl

Table 5.2: Thermal Cycling Parameters for the qRT-PCR reaction
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The instrument plotted the cycle number at which the product is above the

threshold (Ct) on a logarithmic scale. The amplification lasted for approximately

45 minutes.

SYBR Green chemistry is designed to generate fluorescent signal upon binding to

any double-stranded DNA molecule including primer dimers which might

interfere with the target molecules, and consequently affect the quality of the data.

For this purpose, it is important to perform a dissociation curve analysis

immediately after the run. These analyses will display dissociation data from the

PCR products, and any changes in fluorescence will be plotted against

temperature. The dissociation curve consists of increasing the temperature

progressively from 60 to 95°C.

5.2.4.2. Optimising Primer Concentration for qRT-PCR

The purpose of this procedure was to determine the forward and reverse primer

concentrations that yielded the lowest threshold cycle (Ct) and maximum ΔRn

while minimising non-specific amplification. Three different concentrations of

forward and reverse primers were tested for optimisation using real-time PCR

shown in figure 5.6, along with the dissociation curve as displayed in figure 5.7.
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5.3. RESULTS

After RNA extraction with TRIzol®, the samples were quantitated using

NanoDrop 2000c and electrophoresed on an agarose gel.

Sample Name A260/280ηm Ratio
RNA

concentration
(ηg/µl)

RNA
concentration

(µg/µl)

UACC-903 1.89 4122.1 4.1221

PC-3 1.94 1837.5 1.8375

NB1-Tert 1.97 5642.3 5.6423

Clone 1pcDNA3 1.88 4246.8 4.2468

Clone 2pcDNA3 1.90 4055.5 4.0555

Clone 1 1.95 3319.4 3.3194

Clone 2 1.89 4060.1 4.0601

Clone 3 1.80 3809.2 3.8092

Clone 4 1.91 6147.9 6.1479

Clone 5 1.91 4027.2 4.0272

Clone 6 1.90 4352.1 4.3521

Clone 7 1.91 3941.2 3.9412

Clone 8 1.94 3957.3 3.9573

Clone 9 1.91 4550.8 4.5508

Clone 10 1.94 6115.0 6.1150

Table 5.3: Sample readings from total RNA extraction. RNA concentration and
purity was measured using NanodropTM 2000c spectrophotometer by measuring
the absorption (A) of UV light at 260ηm and 280ηm. An A260/A280 ratio of 1.8-2.1 is
indicative of highly purified RNA.
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Figure 5.1: RT-PCR control gel demonstrating the quality of cDNA samples using
“Set 1” GAPDH primers. The amplified products of 226bp were electrophoresed in a
2% agarose gel at 80V. The cDNA samples are of good quality as they show no sign of
degradation or contamination.

Figure 5.2: GAPDH primer optimisation. RT-PCR gel demonstrating GAPDH primer
optimisation by setting the annealing temperature at 60°C. The gels represent the
amplified RT-PCR products using 5µM of primers (upper) and 10µM (lower).
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Figure 5.3: IFNA1 primer optimisation using Set 2. The gel displays RT-PCR
products of the 10 transfected clones using 10µM of “Set 2” IFNA1 primers by
setting Ta at 60°C. Five indistinct bands of 101bp amplicon size and some
unspecific binding showing in this gel, which suggested further optimisation
with the other set of primers.

Figure 5.4: IFNA1 primer optimisation using Set 3. RT-PCR products using
10µM of “Set 3” of IFNA1 primers. The amplicon size of this set of primer is of
116bp. However, the gel shows unspecific binding of the primers.
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Figure 5.5: IFNA1 primer optimisation using Set 4. RT-PCR gel demonstrating
IFNA1 primer optimisation using “Set 4” by setting the annealing temperature at
60°C. The gels display the amplified RT-PCR products of 144bp using 5µM of
primers (upper) and 10µM (lower). The bands seem sharp and specific, especially
in the lower gel.
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Figure 5.6: IFNA1 primer “set 4” optimisation using qRT-PCR amplification curve

Real-time PCR amplification curves using Clone 1. A| Amplification curve for GAPDH
primers at different concentrations. 10µM of primers generated the highest amplification
efficiency of GAPDH with the lowest Ct value of 15.8. B| Amplification curve for IFNA1
using primer set 4 showing the highest amplification efficiency at 5µM and 10µM with a Ct
value of 18.9. Despite the indifference between both concentrations, we have proceeded with
using 10µM as it showed sharper bands in figure 5.5.

Figure 5.7: Post-amplification dissociation curves. Each curve displays both GAPDH and
IFNA1 primers at different concentrations: A| at 2.5µM, B| at 5µM, C| at 10µM.  These
curves show a clean PCR product amplified under real-time conditions and display no sign
of secondary product formation.
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Designing a qRT-PCR experiment to measure the variation in gene expression is

attributable to biological variability and experimental error, such as sample-to-

sample variations, variation in RNA quality, sample loading, etc. Therefore, we

implemented a normalisation with an invariant endogenous control, which has

been previously established (Pfaffl, 2001). Performing a normalisation against an

endogenous control circumvents the need of accurate quantification of the starting

material, and uses a calibrator.

In this study, each sample was assayed in triplicate and the levels of IFNA1

mRNA were normalised against endogenous GAPDH and quantified using qRT-

PCR. After amplification, the data were collected and analysed by relative

quantification ΔΔCt study assay using the SDS 2.4 software tool. The

amplification plot displayed in figure 5.8 represents the measurement of the

fluorescent signal of each sample versus the cycle number.



Chapter 5: Real-Time PCR

114

Figure 5.8: Quantification of relative IFNA1 mRNA expression levels

(A)

A| A logarithmic view displaying dye fluorescence (ΔRn) as a function of cycle number,
demonstrating three phases of a typical amplification curve B| A linear scale of the
amplification plotted as Rn vs cycle number, displaying normalised reporter dye
fluorescence (Rn) as a function of cycle. The amplification curve shows different levels of
IFNA1, which have been normalised to GAPDH. C| Post-amplification dissociation curve
displaying the fluorescence vs temperature, and showing no secondary product formation.
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The amplification plot is characterised by three distinct phases. Initially, the

fluorescent signal is below the threshold of the sequence detector.  A straight line

with a slope occurs as the fluorescent signal increases proportionally to the

amount of specific amplified product during the exponential phase. Gradually, a

decrease in the slope appears during the linear phase indicating a decrease in the

amplification efficiency, and as a consequence, the amplification curves exhibit

low precision.  Eventually, the amplification plot reaches the plateau phase

displaying a steady Rn signal, where the PCR reaction is no longer generating

template (Theory of Operation, ABI PRISM® 7900HT User Guide, Applied

Biosystems).

The SDS software analyses the raw fluorescent data to establish Ct values for each

sample. As shown in figure 5.8 (B), the average Ct values for each triplicate

reaction tested for the GAPDH is ranged from 15 to 17 cycles and from 20 to 36

cycles for the samples tested for IFNA1. These Ct values reflect on the low

abundance of nucleic acid levels for IFNA1, which were relatively compared to

the abundant GAPDH, the constitutively expressed housekeeping gene. As for

verifying the absence of contamination, amplifications were performed with a

systematic negative control, containing no cDNA, illustrated in figure 5.8 (A) as

background under the threshold, marked with a red line, and in (B) these NTC

samples appeared as a flat mustard line below the plot of fluorescent signal.

In this analysis, quantity of each test sample is expressed relative to a calibrator

cDNA sample. In this context, the calibrator is used as a reference sample to
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estimate the relative-fold changes in the analysis of gene expression, and it is set

to 1 and all other quantities are expressed as relative-fold difference to the

calibrator. Thus, the gene expression in test samples (PC-3, NB1-Tert, both

transfected clones with empty vector pcDNA3, as well as the transfected clones

with IFNA1 cDNA) was relatively compared to the expression levels in the

parental UACC-903 (calibrator) by measuring individual relative quantification

(RQ) values. The fold-change of IFNA1 (target) expression level in the test

samples was plotted relatively to the levels measured in the tumourigenic UACC-

903, using GAPDH as an endogenous reference gene. All statistical tests were

two-sided with α set at 0.05, and p-values < 0.05 were considered statistically

significant. The results obtained were plotted in figure 5.9.
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Figure 5.9: Relative quantification analysis showing the fold-change of IFNA1
transcript abundance in test samples relative to UACC-903. IFNA1 expression
values were first normalised to GAPDH and then calibrated to parental
tumourigenic UACC-903. Data shown is the representative of three independent
experiments, in which each qRT-PCR was done in triplicates. Error bars indicate
standard error of the mean. Differences in expression were evaluated with
Student’s two sample test (two-tailed, with unequal variances). Asterisk (*)
indicates statistically significant differences between the calibrator (UACC-903)
and the test samples where *p < 0.05 (significant); **p < 0.01 (very significant);
***p < 0.001 (highly significant).
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5.4. DISCUSSION

The findings from the soft agar colony formation assay led us to hypothesise that

IFNA1 has a tumour suppressor function. In support of this hypothesis, qRT-PCR

was used to assess IFNA1 expression levels among the transfected clones since it

provides sufficient sensitivity and specificity in detecting and comparing minute

amounts of nucleic acids in a range of samples.

Relative IFNA1 expression determinations were made with the comparative Ct

method. In brief, the 2-∆∆Ct method― where ΔΔCt = ΔCt, test – ΔCt, UACC-903,

involves comparing the normalised Ct value of the test sample (ΔCt, test) with the

normalised Ct value of the calibrator (ΔCt, UACC-903). The SDS software calculates

the RQ values to establish a comparative relationship between the changes in the

fluorescence signals, hence, it allows us to compare the spectral changes in the

expression of the target gene. Consequently, target abundance was given by

calculating RQ values for all samples relative to the calibrator, which was set to 1,

and IFNA1 expression was assessed as an increase or decrease relative to the

parental UACC-903.

The expression analysis presented in figure 5.9 clearly shows a difference in gene

expression profiles among the ten clones. As illustrated in figure 5.8 (B), the

exponential phase of some of these clones occurs later than others, signifying a

difference in mRNA expression levels between both sets. In correlation with

figure 5.8 (B), the clones expressing lower levels of IFNA1, highlighted in light

blue in figure 5.9, showed weak fluorescence signals in the amplification plot and
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yielded the highest Ct values― varying from 27 to 36. These results signify that

these clones express low copy number of the target IFNA1 mRNA sequence,

indicating a down-regulation of the target gene. Conversely, the high expressed

clones chart highlighted in purple showed high fluorescence signal amplification

peaks and yielded the lowest Ct values― varying from 20 to 23, implying a

significant up-regulation of the target gene.

The relative fold-change between clone 1 and the calibrator showed more than

18,000-fold up-regulation of IFNA1 transcription. The other highest expression

was seen in clone 8, which was up-regulated by more than 17,000-fold.

The cloning of IFNA1 cDNA into pcDNA3 expression vector, which contains the

CMV promoter that drives high level expression of transgenes while the BGH

polyadenylation signal enhances mRNA longevity, resulted in more than 18,000-

fold increase in IFNA1 transcription, which might seem extremely high. However,

Tencomnao and colleagues reported that transient transfections of pGL3-CMV

reporter construct, which contains the CMV enhancer and early promoter

elements, into the UACC-903 cell line yielded a high transcriptional potency,

which was about 4,260-fold higher than that of the parent pGL3-Basic vector

(Tencomnao et al., 2008).

Expressions of ≤ 1000-fold were considered as down-regulated, as displayed in

both PC-3 and NB1-Tert, both clones transfected with empty pcDNA3, clones 2,

4, 6, and 7. Interestingly, clone 7 displayed suppression in soft agar; however, it

showed a 0.5-fold down-regulation of IFNA1 transcription.
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CHAPTER

ASSESSMENT OF IFNA1 PROTEIN EXPRESSION

6.1. INTRODUCTION

In the previous chapters, I investigated whether IFNA1 gene expression alters the

tumourigenic behaviour of the transfected clones by analysing the variation in

mRNA expression levels. Given that protein expression is a subcomponent of

gene expression, this section of the study aimed at detecting and localising IFNA1

protein abundance in the transfected clones by means of ELISA’s sensitivity and

the detailed morphometric cellular analysis of the ImageStreamx.

Interferons represent a distinctive class of inducible cellular proteins. Unless

stimulated, their concentrations are below detectable levels in most organs and

cells in culture (Lengyel, 1982). IFNs are extracellular signalling cytokines that

produce antiviral and immunological responses by activating a cascade of

intracellular pathways (Gutterman, 1994). Among the interferons, IFN-α, product

of leukocytes, is an important group of cytokines that vary in molecular mass and

is encoded by several genes clustered in chromosome 9p [reviewed in (Feghali

6
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and Wright, 1997)]. Early characterisation studies, using sodium dodecyl

sulphate- polyacrylamide gel electrophoresis (SDS-PAGE), suggested that human

IFN-α consisted of multiple protein species with molecular weights ranging

between 16 and 27 kDa (Stewart, 1974).

Essentially, there are 14 nonallelic genes ―genes that are located at different loci

on the same chromosome and encoding differing proteins (Redei, 2008)― that

comprise the human IFN-α gene family. The amino acid sequences they encode

encompass one or two base differences, which account for the multiple alleles.

Apart from the pseudogene IFNAP22, there are 13 functional genes that express

12 different functional protein subtypes, in which IFNA13 and IFNA1 have

identical protein sequences. Predominantly, only recombinant Hu-IFNα2 protein

is used therapeutically in a variety of cancer [reviewed in (Pestka, 2007)]. The

IFNA-α proteins comprise a hydrophobic, 23-amino-acid signal peptide plus a

166-amino-acid mature peptide sequence, except IFN-α2 which encodes a 165-

amino-acid protein (Capon et al., 1985).

Enzyme-linked immunosorbent assay (ELISA) uses antibodies as specific analytic

reagents to detect and spectrophotometrically quantitate, by a colour change, the

amount of an antigen or protein in vitro. The sandwich ELISA confers high

sensitivity and specificity, whereby it measures the amount of antigen

concentration in an unknown sample between two layers of antibodies, thus

resembling a ‘sandwich’. However, the antigen to be measured must contain at

least two antigenic sites, since at least two antibodies act in the sandwich. The
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‘capture’ antibody is first coated on the microtiter plate. Next, the antigen is added

and captured by the antibody on the well. Finally, the bound antigen is detected by

adding an enzyme linked ‘detection’ antibody, whereby the extent of reaction is

proportional to the amount of antigen present (Berg et al., 2002).

The ImageStreamx system (Amnis Inc., Seattle, WA, USA) is a novel approach

that combines the capacities of flow cytometry and fluorescence microscopy in a

single platform, providing multi-spectral imaging of heterogeneous cell

populations. This technology provides quantitative analysis of cellular populations

combining morphological patterns with immunofluorescence staining (Bourton et

al., 2012). This rapid and technically simple method permits cell populations to be

quantitatively assessed for abundance and localisation of target proteins.
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6.2. MATERIALS AND METHODS

6.2.1. Sandwich ELISA

A commercially available ELISA kit for human-IFNα multi-subtypes (PBL

InteferonSource, Thermo Scientific) was used for this study to quantify IFNA1 in

media using a sandwich immunoassay. This kit detects 14 out of 15 known human

IFNα subtypes (IFN-α1, IFN-αD, IFN-α2, IFN-α4a, IFN-α4b, IFN-αA, IFN-αB2,

IFN-αC, IFN-αG, IFN-αH, IFN-αI, IFN-αJ1, IFN-αK, and IFN-αWA) with a

lower limit of detection of 156 pg/ mL. It is based on the international reference

standard for human IFN-α, which is provided by the National Institute of Health.

Exponentially growing cells were seeded at a density of 1×106 cells/ml. After 72

hours, 1 ml of each cell culture supernatant was collected and transferred into a

sterile Eppendorf tube and stored at -20°C until further analysis.

6.2.1.1. Preparation of reagents

 Wash buffer (stored at 4°C)

50 ml of the wash buffer concentrate

dH2O to 1L

 Human IFN-α solution (10,000 pg/ml)

An extended range standard curve (156‒5000 pg/ml) was constructed by

conducting the following serial dilution (figure 6.1).
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Figure 6.1: Extended range serial dilution (156-5000 pg/mL) of human IFN-α
(PBL Interferon Source protocol)

 IFNα detection antibody

20µl of antibody concentrate

6 ml of dilution buffer

 Secondary antibody conjugated

27µl of HRP conjugated concentrate

8 ml of concentrate diluent

6.2.1.2. Coating with antigen

Following the manufacturer’s protocol, cell culture supernatants were loaded to

the designated wells by pipetting 100µl of each tested sample, in triplicate, in a

pre-coated microtiter plate with the capture antibody. In parallel, 6 wells were

designated for IFN-α standard and 3 wells were used for blanks containing sample

diluent only. The plate was then incubated overnight at 4°C. The following day,

the contents were emptied and the plate was washed once by filling the wells with

250µl of wash solution. The plate was left on a shaker for 5 minutes. The washes
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were removed by flicking the plate over a sink and patting the plate on a clean

paper towel.

6.2.1.3. Incubation with antibodies

A total of 100µl of diluted detection antibody was added per well, thereby

forming a ‘sandwich’ consisting of capture antibody‒IFNα‒detection antibody.

The plate was sealed with adhesive plastic and incubated for 1 hour at room

temperature. At this stage, the detection antibody identified a different epitope on

the IFN-α protein than that of the coating antibody. Following incubation, the

plate was washed 3 times with 250µl of wash buffer for 5 minutes each with

shaking.

Following this step, 100µl of diluted HRP conjugated secondary antibody was

added in each well. The plate was sealed and incubated for 1 hour at room

temperature. After 4 washes, 100µl of tetramethylbenzidine (TMB) substrate

solution was added in each well and incubated in the dark for 15 minutes at room

temperature. After incubation, an equal volume of stop solution (2N H2SO4) was

added to each well. Absorbance was measured on a microplate reader at a

wavelength of 450 nm.
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6.2.2. Quantitation of intracellular IFNA1 Protein Expression Using the

ImageStreamx

This cytometric approach was used to analyse the intracellular IFNA1 protein

synthesis in the parental UACC-903 cells and the following transfected clones:

clone 1pcDNA3 empty vector, clone 4 and clone 8.

6.2.2.1. Cell Fixation

A monolayer of cells at 80-90% confluence was washed with 10 ml of cold PBS.

Cells were gently detached by trypsinisation with 1 ml of 0.25% trypsin-EDTA

and pelleted by centrifugation. In an Eppendorf, cells were washed twice with 1ml

of cold PBS before fixation in cold (-20°C) methanol:acetone (50:50% v/v) for 5

minutes at 4°C.

6.2.2.2. Antibodies Staining

Fixed cells were rehydrated with three washes of cold PBS and subsequently

permeabilised for 5 minutes at room temperature in PBS containing 0.1% Triton

X-100 (Sigma-Aldrich). In order to detect intracellular or intraorganellar antigens,

permeabilisation is required to give cell-impermeable antibodies access through

the plasma membrane, while maintaining the morphological characteristics of

cells (Jamur and Oliver, 2010).
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After blocking the cells in PBS containing 0.1% Triton X-100 and 5% goat serum

for 1 hour at room temperature, cells were incubated at 4°C overnight in 200µl

IFNA1 mouse monoclonal antibody (Santa Cruz Biotech) diluted to 1:500 in

blocking solution. The following day, cells were washed with wash buffer made

up of PBS containing 0.1% Triton X-100. Following three washes, cells were

incubated for 1 hour at room temperature in the dark in 200 µl Alexa Fluor® (AF)

488 goat anti-mouse IgG (Invitrogen, UK) diluted to 1:1000 in blocking solution.

Following antibody staining, cells were washed three times with 1 ml of wash

buffer and once with 1 ml of PBS, then re-suspended in 100µl of Accumax flow

cytometry buffer (PAA Laboratories Ltd.) containing 5µM of Draq5 (Biostatus

Ltd.). For fluorescence compensation, samples were prepared by either omitting

the secondary antibody (AF488) or Draq5 from the procedure.

6.2.2.3. Imaging Flow Cytometry

Data acquisition was performed using the InspireTM software (Amnis Inc., Seattle,

Washington), which enables images of individual cells in flow to be captured

using a maximum of six optical channels. Cells were captured on channel 1 for

brightfield (BF), which shows cell size and morphology; on channel 2 for AF488

green staining of IFNA1 protein; and on channel 5 for Draq5 red staining of the

nuclear region of each cell. Cell classifiers― an instrument threshold that

classifies obtained cellular images and differentiates them from objects that fall

outside the cell classification parameters such as debris and cell clumps― were

applied to all three channels to capture objects that range between 50 and 300
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units. This classifier range was empirically determined from previous

experimentations to capture primarily single cell images. Following excitation

with a 488nm laser set at 40mW, a total of approximately 10,000 cells were

captured at 40× magnification at a rate of ∼150-200 cell images per second.

Images of 500 positively stained cells from each fluorochrome, AF488 and Draq5,

were collected without BF illumination ―since it is critical to capture

fluorescence intensity with a single source of illumination (40 mW 488 nm laser).

6.2.2.4. Image Compensation

To ensure accurate representation of fluorescence for each captured cell, the

compensation files were digitally calculated and used to create a compensation

matrix, which subtracts fluorescence signal that leaked into adjacent channels.

After selecting the control files created from the AF488 and Draq5 samples, the

IdeasTM compensation wizard generated a table of coefficients to place the

detected light displayed by each image into the corresponding channel on a pixel-

by-pixel basis. Calculated compensation values were then applied to the

subsequent analysis.
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6.2.2.5. Analysis using IdeasTM Software

The analysis is a multistep process that comprises a series of predefined ‘Building

Blocks’. These tools generate a series of scatter and histograms plots that allow

the identification of single, focused and double-fluorescent positive cells (figure

6.2).

Figure 6.2: Snapshots of different objects that were captured in brightfield.
Heterogeneous cell populations from the BF displaying: A| single cell in focus,
B| debris, C| doublet cells and D| single cell out of focus. Debris, doublet cells,
and cells out of focus have all been excluded before further analysis.
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6.2.2.5.1. Single Cells

A population of single cells from the BF images was visually defined and gated

using the polygon region tool, once debris and doublet cells have been excluded.

Figure 6.3: A building block tool showing a scatter plot of a defined single cell
population. Each dot within the polygon region represents a single cell. Events
corresponding to debris and cell clusters, such as doublets, were eliminated.
Single cells are shown within the polygonal region.
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6.2.2.5.2. Cells in Focus

The ‘Focus’ tool was then used to distribute the single cell population in

histogram ‘bins’ based on the calculated focus of the BF images. The cells in

focus were visually defined by clicking on each individual histogram bin and were

selected using the line region tool.

Figure 6.4: A predefined building block tool showing single cells distributed
in histogram bins. Single cells in focus were defined by using the line region tool
highlighted in purple. The histogram bins outside the highlighted region define
the cells out of focus.
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6.2.2.5.3. Double Stained Cells

Finally, using the ‘Fluorescence Positive Two Colours’ tool, a scatter plot of

single cells in focus that stained for both AF488 and Draq5 were gated and

enumerated utilising a polygon tool.

Figure 6.5: A scatter of single cells in focus that have been stained with both
AF488 and Draq5. Positively stained cells were gated using the polygon tool. The
x-axis plots the fluorescence intensity of green AF488 (480-560nm) in channel 2,
while the y-axis plots the fluorescence intensity of red Draq5 (642-745nm) in
channel 5.
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6.3. RESULTS

6.3.1. ELISA Analysis

Given that interferons are extracellular signalling cytokines, ELISA was ideal for

assessing IFNA1 production in the transfected clones culture media.

Figure 6.6: ELISA standard curve using extended range serial dilution of the
IFN-α standard. This assay was performed using extended range protocol, in
which the standard curve concentrations used for the sandwich ELISA were 5000
pg/mL, 2500 pg/mL, 1250 pg/mL, 625 pg/mL, 312 pg/mL, 156 pg/mL.
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Figure 6.7: Quantitative measurement of IFNA1 production in culture media
using sandwich ELISA. The optical density (OD) or fluorescent units of the
samples was determined within 5 minutes and read at a wavelength of 450nm.
The results show no significant difference between all tested samples. Error bars
represent standard deviations from the mean values. Data shown is the
representative of two independent experiments.

After testing the supernatant of each transfected clone, the analysis revealed a

reading ranging from 0.48 to 0.54 OD 450nm― equivalent to 132.5pg/mL to

148pg/mL, which implies that IFNA1 levels were below 156 pg/ mL, the

detection limit of this ELISA kit.
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Since we could not detect high circulating levels of this cytokine, imaging flow

cytometry was the ultimate method to localise IFNA1. This technology allows

different cell populations to be quantitatively assessed for differences in sub-

cellular localisation of target proteins.

6.3.2. Analysis of protein levels using the ImageStreamx

Figure 6.8: Representative images derived from imagining flow cytometry
displaying brightfield images along with AF488 and Draq5 staining. The above
images have been depicted in the first column for BF (Ch01) to display cell
morphology, the second column (Ch02) for AF488 stained UACC-903 cell
variants, and finally the third column (Ch05) for Draq5 staining of the nuclear
region.  Row (A) represents parental UACC-903; row (B) shows Clone 1pcDNA3;
and row (C) represents Clone 4. While Draq 5 clearly stains the nuclei in red,
IFNA1-AF488 immunoreactivity seems weak, resulting in poorly stained cells.
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Figure 6.9: Representative ImageStream flow cytometry images showing
IFNA1 protein expression in clone 8. The captured images, taken from different
enumerated cells of clone 8, were stained with anti-IFNA1 antibody conjugated
with AF488 (green) to identify the target protein, and Draq 5 (red) to identify the
nucleus. While the nuclei are clearly stained in red, the observed green
fluorescence vividly appears in the cellular membrane, suggesting the
localisation of IFNA1.
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Figure 6.10: Relative fluorescence levels of IFNA1 expression in UACC-903 cell
variants. Relative fluorescence of IFNA1 expression, ranging from 0.7-3.55, was
calculated by dividing the fluorescence levels of each clone by the fluorescence
exhibited in the parental cell line (control). Error bars represent standard
deviations from the mean values. Data shown is the representative of two
independent experiments in which approximately 10,000 cells were collected and
analysed.
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6.4. DISCUSSION

As previously demonstrated, IFNA1 cDNA was stably transfected in UACC-903

cells; therefore, it seemed critical to assay the levels of IFNA1 protein. Using a

double-antibody sandwich ELISA, wherein the antibodies are directed against two

or more distinct epitopes, cell culture supernatants were tested for IFNA1

production in a quantitative manner, in which the optical density of the tested

samples was interpolated into a standard curve, prepared from a serial dilution of

human IFN-α standard solution, provided at 10,000pg/mL.

Given that IFNA1 is secreted extracellularly, it appeared promising to detect high

levels of this cytokine in media. The lower end of the extended range of the IFN-α

ELISA was 156pg/mL; however, IFNA1 could only be detected at lower levels,

between 132.5pg/mL and 148pg/mL; hence, below the detection limit of the used

kit. It is well-established that gene mutations can result in a malfunctioning or

missing protein. OD values demonstrated no significant variation between the

tested samples and the tumourigenic controls. Altogether, this indubitably implies

that the target protein could not be detected, which either would suggest that

IFNA1 mRNA was produced but not translated, or that the translated mRNA

yielded an inactive product as the result of a mutation.

It may seem paradoxical that mRNA expression levels did not correlate with

protein abundance, however, high interferon gene expression without detectable

secretion of the protein has been previously reported by Shuttleworth and

colleagues, in which the treatment of human lymphoblastoid (Namalwa) cells
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with Sendai virus induced the IFN-β gene expression without protein secretion

(Shuttleworth et al., 1983).

Although mRNA is eventually translated into protein, this does not signify that

there should be a direct correlation between the levels of mRNA and protein

abundance. Initially, post-transcriptional modifications are vital for the final

synthesis of the native protein, however, there are several complicated and varied

post-transcriptional mechanisms involved between transcription and translation

which can affect the post-translational modifications. On the other hand, proteins

can differ substantially in their half-lives as a result of varied protein synthesis

and degradation (Greenbaum et al., 2003). Therefore, the general lack of

correlation between mRNA levels and protein abundance could be attributed to

experimental challenges, and/or the complex fundamental biological factors that

take place between transcription and translation processes.

Since we could not detect the target protein extracellularly, imaging flow

cytometry was the alternative method to assess IFNA1 protein levels

intracellularly. Based on the morphometric cellular analysis that depicts the

fluorescence features of the two-dimensional images, and the statistical analysis

of their fluorescence features, ImageStream enabled us to detect and localise the

target protein.

Using the parental UACC-903, clone 1pcDNA3 empty vector, and clone 4―

which exhibited the highest growth ability (98%) for anchorage independence in

soft agar and displayed very low mRNA expression levels in qRT-PCR, as

controls, we tested clone 8 for intracellular IFNA1 protein expression. The latter
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has previously showed significant suppression (0%) in soft agar and considerably

the highest mRNA expression levels.

After running the test samples through the ImageStreamx, the system generated an

automated quantitation of events (figure 6.10). All the analysed images depicted

clearly stained nuclei with Draq 5, and while IFNA1-AF488 immunoreactivity

seemed very weak in the controls (figure 6.8), the green fluorescence in clone 8

(figure 6.9) appeared briskly within the cellular membrane, which suggests the

localisation of the target protein. The intracellular IFNA1 protein expression was

3.55-fold higher in clone 8 than the tumourigenic controls.

The endoplasmic reticulum (ER) is essential for the folding and processing of

proteins. In order for secretory proteins to fold properly, this protein-folding

machinery should maintain a dynamic balance between the ER protein load and

the ER folding capacity. However, perturbations to ER homeostasis cause

accumulation of unfolded or misfolded proteins in the ER (Oslowski and Urano,

2011).

Attempts to detect IFNA1 protein by imaging flow cytometry were successful,

since the antibody recognised the target protein and generated a vivid green

fluorescence. Since the extracellular signalling cytokine appeared to be

accumulated within the cells, this could suggest that the cells suffer from

endoplasmic reticulum stress. The accumulation of misfolded or unfolded proteins

in the ER trigger ER stress, eliciting the unfolded protein response (UPR), which

subsequently lead to a major reduction of protein synthesis (Cohen-Cymberknoh

et al., 2013).
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CHAPTER

THE RELATIONSHIP BETWEEN IFNA1

EXPRESSION AND INDUCTION OF APOPTOSIS

IN UACC-903

8.1. INTRODUCTION

Although IFN-α antitumour effects have been widely documented, the precise

mechanisms that trigger and potentiate this behaviour are not fully elucidated.

Given that some of the transfected clones failed to grow colonies in soft agar, I

investigated the possible pro-apoptotic effects of IFNA1 in mediating the growth

inhibition in these clones. In this study, I have examined the relationship between

IFNA1 expression and apoptosis induction in the transfected UACC-903 clones by

monitoring the process through imaging flow cytometry using annexin V-FITC

assay.

Cellular homeostasis is maintained through an orchestrated balance between cell

proliferation and cell death. This latter typically follows one of two types, namely

apoptosis and necrosis, both involving a series of biochemical and morphological

7
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events ultimately leading to cell death. In 1972, Kerr et al. introduced the concept

of apoptosis to describe distinct form of cell death by necrosis with fundamentally

different morphological features [reviewed in (Teraki and Shiohara, 1999)]. The

morphological characteristics of apoptosis are manifested by the formation of

apoptotic bodies, which involve chromatin condensation of nucleus and

cytoplasm, nuclear fragmentation, and separation of protuberances on the cell

surface. These apoptotic bodies are rapidly phagocytosed and degraded by other

cells without any inflammatory phenomena (Kerr et al., 1972)

The apoptotic process can be triggered through two main pathways, either the

extrinsic pathway or the intrinsic pathway (figure 7.1). The extrinsic pathway is

initiated by a signal of death receptors on the cell surface, which are activated

upon binding to their respective ligands― such as TNF-α (tumour necrosis factor-

α) or FasL (Fas ligand). A signalling cascade is mediated, which in turn recruits

adaptor proteins leading to the death-inducing signalling complex (DISC)

formation and the subsequent activation of the initiator caspase-8 or caspase-10.

On the other hand, the intrinsic pathway is tightly triggered by the interacting pro-

and anti-apoptotic members of Bcl-2 (B cell lymphoma-2) protein family, which

regulates the integrity of the outer mitochondrial membrane. The activation or up-

regulation of the latter leads to mitochondrial outer membrane permeabilisation,

and results in the activation of initiator caspase-9 (Rodrigues et al., 2012).
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Figure 7.1: A model for p53-mediated apoptosis in the intrinsic and extrinsic
pathways. p53 target genes are shown in red. In response to diverse cellular
insults, such as DNA damage, p53 activates the intrinsic mitochondrial apoptotic
pathway by inducing the expression of at least three Bcl-2 pro-apoptotic
members (Bax, Bak, Bid, NOXA, and PUMA), shifting the balance toward pro-
apoptotic effects. p53 can activate the extrinsic pathway through the induction of
genes encoding Fas, DR5, and PERP transmembrane proteins, which in turn
promotes cell death through caspase-8 (Haupt et al., 2003).

The malignant transformation of normal cells is attributed to the malfunctioning

of apoptosis. Inactivation of pro-apoptotic signalling, or activation of anti-

apoptotic pathways confer a survival advantage to tumour cells (Ghavami et al.,

2009). Several reports have implicated mutations within caspase family proteases

in cancer development. For instance, Soung and colleagues screened 162 cases of
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gastric carcinomas, 185 non–small cell lung cancers, 93 breast carcinomas, and 88

acute leukemias to explore the possible contribution of caspase-8 mutation in the

development of malignancy. Their results suggested that caspase-8 mutation

strongly contribute to the pathogenesis of gastric cancers, especially at the late

stage of gastric carcinogenesis (Soung et al., 2005). In addition, Bernstorff et al.

suggested that pancreatic cancer cells become resistant to apoptosis by evading

immune surveillance in vivo. In pancreatic adenocarcinomas, partial or complete

loss of Fas expression has been associated with the malignant phenotype

(Bernstorff et al., 2002). Moreover, there is evidence indicating that

polymorphisms in the promoter region of the caspase-9 gene are significantly

associated with the risk of developing lung cancer in smokers (Park et al., 2006).

Life and death of cells is determined based on a delicate balance between pro-

apoptotic and anti-apoptotic mechanisms. Malignant melanoma is notoriously

resistant to treatment, although the mechanisms by which melanoma cells bypass

the apoptotic machinery are still unclear. To identify survival-apoptosis molecular

signalling pathways in melanoma, Zhang and colleagues used UACC-903 and

chromosome 6-mediated suppressed cell line UACC-903(+6). These genetically

linked cell lines exhibit distinctive phenotypic characteristics along with different

levels of resistance to apoptosis, in which UACC-903 is highly resistant and

UACC-903(+6) is sensitive. This study identified 154 differentially expressed

genes, including pro-apoptotic and anti-apoptotic, underlying resistance and

sensitivity to apoptosis. Interestingly, expression of 10 pro-apoptotic genes―

FDX1, BCAP31, BNIP1, VDAC1, FDXR, BAK1 [encoded by 6p21.3], TNFSF10,
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FAS, CASP6 and CASP3― were up-regulated in UACC-903(+6) and down-

regulated in UACC-903 before UV treatment. Conversely, in response to the UV

treatment, UACC-903 displayed up-regulation of all 10 genes. In addition, the

expression patterns of the anti-apoptotic genes ― CLN3, MCL1 and BCL2L1 ―

were up-regulated in UACC-903(+6) and down-regulated in UACC-903 before

UV treatment. However, once induced with UV treatment, the UACC-903(+6)

displayed down-regulation of MCL1 and BCL2L1, wherein UACC-903 displayed

up-regulation of all 3 genes. Taken together, the apoptotic differences between

these two cell lines strongly suggest the presence of differential molecules that

regulate survival and apoptosis (Zhang et al., 2008).

Interferon-alpha is a pleiotropic cytokine that has been extensively used in the

treatment of a variety of cancers, though its antitumoural activity and mechanism

of action are incompletely characterised (Thyrell et al., 2002). It has been

suggested that IFNα exerts its apoptotic pathways as a possible anti-tumour

mechanism (Luchetti et al., 1998). In addition, it has been previously established

that IFNα can directly induce apoptosis on human squamous cancer (Rodriguez-

Villanueva and McDonnell, 1995). Furthermore, a study by Sangfelt et al.

reported that IFNα is a direct inducer of apoptosis, stating that this biological

phenomenon occurs independently of cell growth inhibition (Sangfelt et al.,

1997).

Stimulating the apoptotic sensitivity with IFN treatment has been previously

documented. For instance, investigation on myeloma and glioma cell lines
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suggested that long term treatment with IFN sensitised cells to Fas-induced

apoptosis. Furthermore, effects of IFNα2 in basal cell carcinoma may mediate

apoptosis. In fact, injection of IFNα2 into basal cell carcinomas induces FasR and

leads to tumour regression [reviewed in (Caraglia et al., 2005)].

The biological responses of cells to the clinical anti-tumour effects of IFN

treatment are pleiotropic. IFNα therapy is beneficial for some neoplasms whereas

other types could be partially or completely resistant. In vitro studies suggested

that the alteration of JAK-STAT (Janus kinases-signal transducers and activators

of transcription) components of the IFNα-induced signalling could most possibly

be the mechanism behind drug resistance. In fact, the resistance to the

antitumoural effects of IFNα has been correlated to altered signal transduction

pathways of STAT protein in several types of cancer. Wong et al. established that

the non-responsiveness of melanoma cell lines to the antiproliferative effects of

IFNs arises from STATs deficiency, and this may represent a general mechanism

underlying IFN resistance that many cancers develop [Reviewed in (Caraglia et

al., 2005)].
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7.2. MATERIALS AND METHODS

The ImageStreamx technology was employed to accurately analyse the prevalence

of apoptotic cells using a commercial kit of Annexin V-FITC assay (BD

Biosciences, San Diego, CA).

7.2.1. Cell Staining

Cells were routinely cultured in growth medium supplemented with 10% foetal

bovine serum and 2mM L-glutamine, and grown as monolayers at 37°C in a

humidified atmosphere of 10% CO2 air. For staining, cells were washed twice

with cold Dulbecco's PBS (with Ca2+ and Mg2+) and then gently detached by

adding 1ml of AccutaseTM (PAA) to each culture dish. Rather than using Trypsin-

EDTA, Accutase seemed to be a better alternative since it is less damaging to the

cell membranes and surface epitopes, leaving the structure and function of the

surface proteins intact. Thus, reducing the chances of developing false positive

staining.

The 10X binding buffer (0.1 M Hepes/NaOH (pH 7.4), 1.4 M NaCl, 25 mM

CaCl2) (BD Pharmingen) contains optimal calcium concentration that is required

for annexin V binding to phosphatidylserine (PS) on the cell surface. The 10X

binding buffer was diluted 1:10 in ddH2O and kept at room temperature. The cells

were re-suspended in 1X binding buffer at a concentration of 1×106 cells/ml. Then

100µl of re-suspended solution was transferred to an Eppendorf tube. Annexin V-

FITC/PI staining solution was prepared by adding 5µl of fluorescein
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isothiocyanate (FITC) and 5µl of propidium iodide (PI) to the cell suspension.

Two other samples were prepared for fluorescence compensation, in which either

FITC or PI was omitted from the process. All 3 tubes were gently vortexed and

incubated in the dark for 15 minutes at room temperature. After the incubation

period, 100µl of 1X binding buffer was added to each tube and analysed using the

ImageStreamx within 1 hour.

7.2.2. Imaging Flow Cytometry

Using the InspireTM data acquisition software, images of 5000 cells were captured

on channel 1 for brightfield (BF), which shows cell size and morphology; on

channel 2 for FITC green staining; and on channel 4 for PI orange staining of the

nuclear region. Subsequently, images of 500 positively stained cells with FITC

only and PI only were captured without the BF illumination and used for

generating the compensation matrix.

7.2.3. Image Compensation

Compensation files were digitally calculated and were applied to all subsequent

analysis as appropriate.
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7.2.4. ImageStream Analysis

Initially, single cells from the BF images were visually identified from a

heterogeneous population of single and doublet cells as well as cellular debris,

and were gated using the polygon region tool. Subsequently, single cells were

distributed in histogram bins and the ones in focus were defined based on visual

inspection of the images within each individual bin and were selected using the

line region tool. Finally, the ‘Fluorescence Positive Two Colours’ tool generated a

scatter of stained single cells in focus whereby a polygon tool was used to gate

and enumerate the cells stained with both FITC and PI. Staining patterns in these

apoptotic cells were visually confirmed by assessing their appearance in the image

gallery (figures 7.2, 7.3, 7.4).

Figure 7.2: Gating for single cell population. The scatterplot single cell region
was gated using the polygon tool after visually validating the BF images. The
cells outside the polygon represent debris and doublet cells.
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Figure 7.3: Gating for single cells in focus. The figure represents a population
of single cells that were distributed in histogram bins based on the calculated
focus of the BF images. Single cells in focus were visually validated and then
gated using the line region tool highlighted in purple.

Figure 7.4: Gating for single cells in focus stained for both FITC and PI.
Apoptotic cells (FITC and PI +ve) were gated using the polygon tool highlighted
in blue. The fluorescence intensity of green FITC (480-560nm) is plotted on the x-
axis, while the fluorescence intensity of orange PI (595-642nm) is plotted on the
y-axis.
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7.3. RESULTS

InspireTM analysis software identified and quantitated apoptotic cells based on the

intensity of the double-positive staining as a result of annexin V-FITC detection

of the exposed phosphatidylserine and the increased uptake of PI caused by cell

membrane permeability. Figure 7.5 shows different stages of apoptosis.

Figure 7.5: Illustrative Images derived from imagestream analysis showing BF
images along with annexin V-FITC and PI staining. (A) Represents a normal
non-apoptotic cell and (B to D) showing cells at different stages of apoptosis with
increased intracellular staining with annexin V-FITC and PI, ranging from early
apoptotic cells with light fluorescence to late apoptotic cells with membrane
blebbing and intense fluorescence.
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Apoptotic populations expressing the given markers were relatively assessed to

two controls; unirradiated NB1-Tert cells, and treated cells with 2Gy gamma

radiation from a 60Coblat source. The IC50 for this cell line has been previously

defined as the therapeutically relevant radiation dose of 2Gy (Ulus-Senguloglu et

al., 2012).

Figure 7.6: Apoptosis levels in the transfected clones. These levels were
determined by annexin V-FITC and PI staining, and data were derived from
analysing ≤ 5000 cells. The difference in apoptosis levels between the non-
apoptotic controls (NB1-Tert unirradiated, UACC-903 and both transfected with
empty pcDNA3) and the transfected clones was evaluated with Student’s two
sample test (two-tailed, with unequal variances). The results revealed a
statistically significant difference in apoptosis levels (p = 0.024).
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7.4. DISCUSSION

Loss of membrane integrity is one of the earliest changes in apoptotic cells,

wherein the membrane phospholipid phosphatidylserine (PS) is externalised on

the outer leaflet of the plasma membrane. Annexin V is a 35-36 kDa calcium

dependent phospholipids-binding protein that has a high affinity for PS. An

annexin V conjugate labelled with a fluorochrome such as FITC can be used to

identify apoptotic cells by binding to the exposed PS. In cytometric analysis,

staining with Annexin V-FITC is conjugated with a vital dye such as PI to

discriminate viable from apoptotic cells (Sutton and Tchounwou, 2007).

According to the protocol provided by the manufacturer, viable cells with intact

membranes are both Annexin V-FITC and PI -ve; early apoptotic cells are

Annexin V-FITC +ve/ PI -ve; and cells both Annexin V-FITC and PI +ve are

either in end stage apoptosis or already dead. The latter highlights the fact that this

assay does not discriminate cells that have undergone apoptotic death from those

that died of a necrotic pathway, as in both cases the dead cells will stain PI +ve.

However, in the present study the movement of cells through these three stages

indicated an apoptotic phenomenon and not necrotic.

The imagestreamx provides multi-spectral imaging of heterogeneous cell

populations by combining the capacities of fluorescent microscopy and flow

cytometry in a single platform. In this study, I have analysed a total of 5000 cells

per clone in one empirical set. In comparison with the immunocytochemistry

procedure, which analyses a total of 100 cells spread on a microscopic slide and
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generally requires repeats, the robustness of the system we used coupled with the

high analysed number did not require repeating the process multiple times.

Our data display variable levels of apoptosis in the transfected clones which were

comparatively measured to the irradiated NB1-Tert cells. Since this assay was

designated to investigate the possible pro-apoptotic effects of IFNA1 in inhibiting

growth in soft agar, I have conducted a correlation to establish the relationship

between the two phenomena.

Figure 7.7: A scatter diagram showing a weak negative correlation between
anchorage-independence growth in soft agar and apoptosis levels. Growth in
soft agar was expressed as percentage of colony formation, and apoptosis was
measured by gating the apoptotic populations.
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The diagram above shows a moderate relationship between reduced efficiency of

anchorage-independent growth in soft agar and high apoptotic levels. However,

this correlation is rather unpersuasive in comparison with the previously

documented magnitude effects of IFNα, and it probably reflects the fact that

growth inhibition could well be associated with another pathway. Although our

findings are not conclusive, it seems that apoptosis might not be the pathway

controlling the growth in soft agar.

Although the molecular mechanisms underlying IFNα anti-tumour activity are not

fully understood, Fiddler and collaborators demonstrated that IFNα-mediated

antiangiogenic mechanisms may well influence the anti-tumour effects

(Eggermont, 2001). In fact, IFNs exert selective effects on tumour vasculature and

decrease formation of capillary-like structures in vitro by inhibiting collagen

synthesis and ECM formation. Moreover, IFNα was reported to block tumour

necrosis factor alpha (TNFα) or Interleukin-1 (IL-1)-stimulated IL-8 (angiogenic

chemokine) production in human malignant melanoma cell lines (Lindner, 2002).

Altogether, this postulate that IFNA1 expression could have been influenced by

the presence of angiogenic factor expression, causing growth inhibition in soft

agar rather than exerting its actions through an apoptotic pathway.
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CHAPTER

CONCLUSION AND FURTHER RESEARCH

8.1. GENERAL DISCUSSION AND CONCLUSION

Cutaneous malignant melanoma is the least common yet the most lethal form of

skin cancer. It has been known to mankind since antiquity and is increasing at an

alarming rate globally despite the high level of awareness. Because of its

capricious behaviour, the mechanisms underlying melanoma development and

progression have not been fully elucidated. Nevertheless, the aetiology of

melanoma is heterogeneous and complex, whereby both environmental insults and

genetic predisposition are the major well established causative factors. Allelic

deletions at chromosomes 1p, 6q, 9p or 10q, 11q and 17q have been frequently

observed during the development and progression of CMM; therefore, suggesting

that several putative tumour suppressor genes and oncogenic factors reside in

these regions.

Loss or structural rearrangement of chromosome 9 during early stages of

melanoma fuelled considerable debate at the possibility that this region harbours

8
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tumour suppressor loci. Reports demonstrated that one of the most frequently

targeted regions in melanoma was within the vicinity of the IFNA gene cluster on

9p22-pter (Fountain et al., 1992). Moreover, studies of melanoma-prone families

reported that susceptibly to melanoma is partially controlled by a locus known as

MLM, located on chromosome 9p. Genetic predisposition for melanoma in these

families is inherited as a dominant Mendelian trait closely linked to the IFNA

gene family. Therefore, it has been proposed that a putative tumour suppressor

gene lies within a region of less than 40 kb centromere-proximal to the IFNA gene

cluster (Weaver-Feldhaus et al., 1994).

Parris and colleagues provided the first functional evidence of a novel melanoma

tumour suppressor gene(s) that resides in the vicinity of the INK4 locus. By means

of transferring two chromosome 9 derivatives into tumourigenic UACC-903 cell

line, they have demonstrated that the region spanning between IFNA (telomeric)

to D9S171 (centromeric) harbours tumour suppressor(s) that functions

independently of the INK4 locus and would confer tumourigenicity if deleted.

Our previous research group study has pursued several approaches in attempt to

identify genes that are responsible for tumour suppression in melanoma. Microcell

mediated chromosome transfer (MMCT) was used to develop several

monochromosome hybrids. This panel of hybrids was created by transferring a

variant 9a chromosome derived from a normal human fibroblast primary cell line

(1BR3) and maintained in a murine A9 cell background that was then transferred

into UACC-903 cell line. The derivative of chromosome 9 carried a deletion at the
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INK4 locus only. After selection with hygromycin B, a total of 22 resistant hybrid

constructs have been assessed for anchorage-independent growth in soft agar to

evaluate any suppression activity in the presence of single chromosome 9 deleted

for the INK4 locus. Interestingly, ten of these hybrids showed segregation (non-

suppressors), whereas twelve of them demonstrated growth suppression

(suppressors).

RT-PCR was used to evaluate the gene expression of all the functional genes

mapped between markers IFNA and MTAP (figure 8.1), as previously described

in Parris et al., 1999. According to the NCBI search, some of the genes in this

region were pseudogenes, which are defined as non-functional copies of genes

that lost their protein-coding ability. To detect any differences in gene expression

patterns between the segregant and suppressor hybrids, a total of 23 functional

genes were assessed. Interestingly, IFNA1 was the only gene that was expressed

in all the suppressor hybrids and in only one of the non-suppressors. This

expression was further evaluated using real-time PCR, which revealed that

expression of IFNA1 gene is higher in the suppressor than its expression in the

non-suppressor hybrids. Altogether, this study suggested IFNA1 as a candidate

tumour suppressor gene in CMM development.
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Figure 8.1: Chromosomal region 9p21 showing all the genes mapped between
the markers D9S1846 and D9S171. Functional genes are in black and
pseudogenes are in grey

To further validate its tumour-suppressive function, IFNA1 cDNA was cloned

into pcDNA3 vector and transfected into UACC-903 cell line. Stably IFNA1-

expressing clones were selected to further study their anchorage-independent

growth in soft agar. The ability to thrive in a semi-solid medium was variable;

however, two populations were observed; (a) clones that preserved their

tumourigenic phenotype and demonstrated a high number of large colonies, and

(b) clones that displayed a reduced ability for anchorage-independence and

demonstrated few and small-sized colonies or clones that failed to grow, a rather

reversed tumourigenic phenotype.

QRT-PCR was used to determine whether IFNA1 gene expression would correlate

with the tumourigenicity in soft agar. Interestingly, the analysis revealed that the

gene expression patterns reflect the level of tumourigenicity in these clones,

where the expression was low in the highly tumourigenic clones and substantially



Chapter 8: Conclusion and Further Research

160

higher in the less tumourigenic clones, reaching its peak in those clones that failed

to grow. However, there were particular exceptions to this observation when

clones 7 and 10 were assessed. Their growth in soft agar and gene expression

demonstrated an inverse correlation pattern compared to the other clones. In other

terms, clone 7 displayed no growth and low gene expression and clone 10

displayed growth in soft agar and high IFNA1 expression.

Figure 8.2: A scatter graph showing a strong correlation between anchorage-
independent growth in soft agar and IFNA1 expression in qRT-PCR. Growth in
soft agar was expressed as percentage of colony formation, and real-time PCR
analysis assessed the fold-change of IFNA1 expression relative to parental
UACC-903.  The present trendline has a negative gradient showing that the more
IFNA1 is expressed, the less growth is observed. This correlation excluded clones
7 and 10.



Chapter 8: Conclusion and Further Research

161

IFNA1 protein expression was also tested using ELISA and imaging flow

cytometry. Absent extracellular IFNA1 protein expression was observed in all

clones using ELISA; nevertheless, the imaging flow cytometry analyses detected

and localised the target protein intracellularly. These analyses showed that

intracellular IFNA1 protein expression in clone 8 was 3.55-fold higher than in the

tumourigenic controls. While this cytokine is expected to localise in extracellular

spaces, the findings derived from these approaches demonstrated that the target

protein is retained intracellularly, which could suggest that the transfected cells

suffer from endoplasmic reticulum stress, due to the accumulation of misfolded or

unfolded proteins in the ER, and subsequent reduction of protein synthesis.

IFN-α has been employed extensively in the treatment of a variety of cancers,

although its antitumoural mechanisms are incompletely characterised. It has been

previously reported that IFN-α can directly induce apoptosis on human squamous

cancer (Rodriguez-Villanueva and McDonnell, 1995). Hence, it has been

proposed that IFN-α exerts pleiotropic actions through apoptosis (Luchetti et al.,

1998).

Given that UACC-903 cells are highly resistant to apoptosis, I have examined

whether IFNA1 could sensitize this resistance in the transfected clones. The

process was monitored through imaging flow cytometry by using annexin V-FITC

assay. This quantitative assay measures apoptosis by annexin V-FITC and PI

staining by analysing approximately 5000 cells per clone.
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The analysis displayed variable levels of apoptosis in the transfected clones

relative to treated NB1-Tert cells with 2Gy gamma radiation. Growth in soft agar

and apoptosis levels in the transfected clones showed a moderate negative

correlation demonstrating that apoptosis levels get higher with reduced ability of

anchorage-independence. Due to the weak correlation, the findings derived from

this approach suggested that apoptosis might not be the pathway controlling

anchorage-dependent growth in the suppressed clones.

Alternatively, reduced proliferation and invasion could be manipulated by the

presence angiogenic factor expression. These findings, although inconclusive due

to the use of only one highly tumourigenic melanoma cell line, suggest that

IFNA1 might not entirely exert its actions through apoptosis but it could also

modulate angiogenesis.

8.2. RESEARCH LIMITATIONS AND FUTURE WORK

Like any research project, this study was limited by several constraints that may

serve as a starting point for further research. Initially, although anchorage-

independent growth in soft agar is a well-established method for assessing

tumourigenicity in vitro, animal studies would have provided a robust and

efficient way for evaluating the antitumourigenic potency of IFNA1 in the

transfected clones.

This study was carried out using only one melanoma cell line, UACC-903, which

was another constraint. Considering a panel of different melanoma cell lines and



Chapter 8: Conclusion and Further Research

163

melanoma tumour samples at different stages would be useful for further

investigation.

Detecting ER stress in the transfected clones, by examining the enlargement of the

ER lumen using electron microscopy (Oslowski and Urano, 2011), could lead us

to understand if the target protein is retained intracellularly instead of being

expressed extracellularly.

The functional complementation of MMCT documented in our previous research

group along with gene expression analysis and functional characterisation in the

present study lend weight to strongly suggest IFNA1 as a candidate tumour

suppressor gene in melanoma pathogenesis. However, it is appealing to consider

testing the gene expression status of miR-31, a neighbouring gene of IFNA1

(figure 8.1), wherein the parent gene is located on 9p21.3 within the intron of a

long non-coding RNA.

MicroRNAs (miRNAs) are central in regulating gene expression at the

posttranscriptional level in the cytoplasm as well as in the nucleus (Kim et al.,

2008). Some miRNAs are aberrantly expressed in human cancers, suggesting that

they may play significant roles in carcinogenesis. A functional study has reported

that miR-31 is overexpressed in murine lung cancers. LATS2 and PPP2R2A were

identified as tumour-suppressive mRNA targets in human and mouse lung cancer

cell lines. Both of these target mRNAs were downregulated by miR-31, and the

expression of each was augmented by engineered knockdown, which in turn

conferred marked repression of lung cancer growth in vitro and in vivo. Notably,
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miR-31 and these target mRNAs were inversely expressed. Altogether, these

findings revealed that miR-31 acts as an oncogenic miRNA in lung cancer by

causing repression of specific tumour suppressors (Liu et al., 2010).

Down-regulation by both genomic deletion and epigenetic silencing of miR-31

gene expression is a common event in melanomas. In fact, transient

overexpression of miR-31-mediated attenuation on migration and invasion was

reported in various melanoma cell lines; however, its inhibitory effects have been

accounted for only a subset of melanoma cell lines. Moreover, miR-31 targets

multiple oncogenic kinases, which include SRC, MET, NIK (MAP3K14), and

RAB27A. These findings suggested a role for miR-31 as a tumour suppressive

miR in melanoma, emphasising a novel therapeutic target and a promising anti-

neoplastic agent (Asangani et al., 2012).

Taken together, it would be intriguing to assess the expression of miR-31 for

inhibitory effects or potential oncogenic role in the transfected clones. This

analysis would sequentially elicit any antitumour responses and in turn generates

a conclusive answer.
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