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Abstract

Measures of central tendency have been widely used for summarising statistical

data, with the mean being the most popular summary statistic. However, in real-

life applications it is not always the most representative measure of central location,

especially when dealing with data which is skewed or contains outliers. Alternative

statistics with less bias are the median and the mode.

Median and quantile regression has been used in different fields to examine the

effect of factors at different points of the distribution. Mode estimation, on the other

hand, has found many applications in cases where the analysis focuses on obtaining

information about the most typical value or pattern. This thesis demonstrates that

mode also plays an important role in the analysis of big data, which is becoming

increasingly important in many sectors of the global economy.

However, mode regression has not been widely applied, even though there is

a clear conceptual benefit, due to the computational and theoretical limitations

of the existing estimators. Similarly, despite the popularity of the binary quantile

regression model, computational straight forward estimation techniques do not exist.

Driven by the demand for simple, well-found and easy to implement inference

tools, this thesis develops a series of new regression methods for mode and bi-

nary quantile regression. Chapter 2 deals with mode regression methods from the

Bayesian perspective and presents one parametric and two non-parametric meth-

ods of inference. Chapter 3 demonstrates a mode-based, fast pattern-identification

method for big data and proposes the first fully parametric mode regression method,

which effectively uncovers the dependency of typical patterns on a number of covari-

ates. The proposed approach is demonstrated through the analysis of a decade-long

dataset on the Body Mass Index and associated factors, taken from the Health
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Survey for England. Finally, Chapter 4 presents an alternative binary quantile re-

gression approach, based on the nonlinear least asymmetric weighted squares, which

can be implemented using standard statistical packages and guarantees a unique so-

lution.
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Chapter 1

Introduction

Processing and understanding large quantities of random data has always been

a challenging task. Descriptive statistics have been extensively used to summarise

sets of observations, in order to communicate large amounts of information in a

simplified, sensible and concise form. Such summary statistics include measures of

central tendency, distribution, and dispersion. A measure of central tendency (also

referred to as measure of central location) is a summary measure that attempts

to describe a dataset with a single value that represents the middle or the centre

of the distribution and aims at providing a representative description of the entire

distribution of scores. Although many measures of central tendency have been

recognised and used, three of these measures are of particular importance: (1) the

mean, (2) the median, and (3) the mode.

• The population mean is the average value of all the measurements in the

population. It is estimated by the sample mean which is equal to the sum of

all the values in a sample divided by the number of observations in the sample.

The sample mean is the most commonly used measure of central tendency.

• The population median is the point in the population above which and

below 50% of the scores lie. It is estimated by the sample median, which is

the middle value in an ordered sequence of observations in a sample.

• The population mode is the most likely value of the population. It is esti-

mated by the sample mode, which is the value that occurs most often (has the

1



Chapter 1. Introduction 2

highest frequency) in a sample.

Depending on the problem at hand, different measures of central tendency may

be appropriate. The choice of the most appropriate measure depends mainly on the

following three factors:

1. Level of measurement of the data: In case of interval-ratio variables, all

three measures are suitable for analysis. For ordinal variables, both the mode

and the median are appropriate whereas for nominal variables, the mode is

the only measure that can be used.

2. Shape of the distribution: In a symmetrical distribution the mean, the me-

dian and the mode coincide, thus the choice depends on the level of measure-

ment of the data and on the objective of the analysis. In a skewed distribution,

or in the presence of outliers, the mean is pulled in the direction of the tail,

dragging it away from the typical value and making it a less representative

measure of central tendency. However, both the median and the mode are ro-

bust to the presence of outliers. The mode, being the peak of the distribution

retains its position, whereas the median is influenced much less by the skewed

values. Usually, in skewed data, the median is located between the mean and

the mode.

3. Objective of the analysis/ research question: When the objective of the

analysis is to identify the average value in a dataset, then the mean is the

most appropriate measure. The median provides information on the middle

value and combined with other quantiles, can provide a complete picture of the

distribution of the data. The mode is the most appropriate measure when the

objective is to identify either the most typical value, i.e. to identify patterns,

or the value that occurs most often.

Unlike descriptive statistics, which are used to describe the characteristics of

a single variable, inferential statistics are used to make predictions or inferences

about a population on the basis of a sample. Examples of inferential statistics

include, among others, regression analysis, logistic regression, analysis of variance

(ANOVA), correlation analysis, structural equation modelling and survival analysis.
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Regression analysis is one of the most commonly used statistical techniques in

social, behavioural and physical sciences. Its main objective is to quantify the

relationship between a response variable y and a set of explanatory variables x

through a mathematical model which can be used for inference, prediction and

hypothesis testing.

1.0.1 Mean Regression

Conventional regression models aim at inferring the relationship between one

or more explanatory variables, X, and the response variable y given X = x, by

estimating a mean regression function, m(x) which provides an estimate of the

conditional expectation E(y|x). The standard mean regression function is defined

as

Y = m(x) + ϵ,

under the assumption E(ϵ|x) = 0. The aim of the analysis is to estimate the

mean regression function that provides the best fit for the data. The method of

least squares is a standard approach to determine the best fit by minimising the

sum of squared residuals. Least squares methods can provide a solution for both

linear and nonlinear functional forms of m(x). In the case of a linear functional

form, the estimation is performed through ordinary least squares (OLS) which has

a closed form solution, whereas in the case of a nonlinear functional form, a closed

form solution is not available and the problem is solved via iterative optimisation

methods.

In linear regression models the mean regression function is modelled as a linear

function of the explanatory variable, such that,

m(x) = x′β,

where β is a set of unknown parameters to be estimated. The OLS procedure is

the simplest and most common type of estimation procedure used for statistical

analysis. OLS is the Best Linear Unbiased Estimator (BLUE) under the Gauss-

Markov Assumptions:

1. The model must be linear in the parameters.
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2. E(ϵ|x) = 0

3. V ar(ϵ|x) = σ2 (homoscedasticity assumption.)

4. Cov(ϵi, ϵj|x) = 0 ∀ i ̸= j.

5. No perfect multicollinearity between independent variables.

The conditional mean E [yi|xi] = x′
iβ is estimated by solving the following min-

imisation problem:

β̂ = argmin
n∑
i=1

(yi − x′
iβ)

2
. (1.0.1)

A normality assumption is not required for the consistency of the OLS estimates.

However, under the normality assumption ϵ|x ∼ N(0, σ2I), the OLS estimator is

equivalent to the maximum likelihood estimator (MLE). The method of maximum

likelihood (ML) chooses the values of the parameters that are most consistent with

the data.

Let xi, ..., xn be a random sample of independent and identically distributed (iid)

observations and yi ∼ f(yi;β, xi), where f is a known probability density function,

then the MLE of β can be obtained by optimising the log-likelihood function, L(β|y),

where

L(β|y) = 1

n

n∑
i=1

log f(yi;β, xi).

Under the distributional assumption, the ML method can be used to estimate the

regression parameters in any given regression model. Furthermore, MLE estimates

enjoy standard large sample properties (consistency and asymptotic normality).

1.0.2 Quantile Regression

In many real-world applications, the estimation of the conditional mean proves

to be inadequate for describing the behaviour of the conditional distribution of the

response variable y. This is particularly true for asymmetric response distributions

and distributions which contain outliers. Data with such characteristics can be

found in many fields, including econometric, survival analysis and ecology.
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Quantile regression estimates either the conditional median or other quantiles

of the response variable y. It provides an alternative approach to estimate mod-

els with skewed data, as it is able to provide a complete picture of the conditional

distribution of the response variable when a set of quantiles is modelled. This is

particularly useful when the effect of the covariates on the upper or lower quantiles

of the response variable vary differently from the centre or in cases where modelling

the extremes of the conditional distribution is of special interest, e.g. in the analysis

of financial or environmental data. The main advantage of quantile regression over

least-squares regression is its flexibility for modelling data with heterogeneous con-

ditional distributions. It makes no distributional assumption about the error term

in the model and it is less sensitive to the presence of outliers in the dependent

variable.

An additional limitation of the least-squares regression is the assumption that

the covariates affect only the location of the conditional distribution of the response,

and not its scale or any other aspect of its distributional shape (homoscedasticity),

an assumption that often fails in practice. A major advantage of quantile regres-

sion is its capability of capturing both a location and a scale shift in the response

variable, by allowing the regression parameters to vary at various points of the con-

ditional distribution; thus allowing the examination of the way covariates influence

the location and scale of the entire response distribution.

Since the seminal paper of Koenker and Bassett (1978), quantile regression grad-

ually became a complimentary approach for the traditional conditional mean esti-

mation method and today it has become a dominant approach in empirical work in

several fields of study.

As introduced by Koenker and Bassett (1978), the classical quantile regression

model, corresponding to the linear model in (1.0.1) is defined as:

yi = x′
iβ(τ) + ϵi

where (0 < τ < 1) represents the quantile level.

The τ th conditional quantile function is defined as Qτ [yi|xi] = x′
iβ(τ) by assum-

ing that the Qτ [ϵi|xi] = 0 (in contrast to the assumption of E[ϵi|xi] = 0 in mean
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regression).

Estimates for β(τ) are obtained by solving the following minimisation problem:

β̂(τ) = argmin
n∑
i=1

ρτ (yi − x′
iβ(τ))

where ρτ is the quantile check function defined as:

ρτ (u) = τ uI[0,∞)(u)− (1− τ)uI(−∞,0)(u) (1.0.2)

where I(·) is the indicator function.

1.0.3 Mode Regression

Like mean, quantile and variance, mode is also an important measure of central

tendency. Many practical questions, particularly in the analysis of big data, often

focus on “which element (gene or file or signal) is the most typical among all elements

in a network?” In such cases, mode regression is able to provide a summary of

how the regressors affect the conditional mode and is completely different from

other models that are based on conditional mean, conditional quantile or conditional

variance. The mean or median of two densities may be identical, while the shapes of

the two densities can be quite different. The mode preserves some of the important

features, such as wiggles, of the underlying distribution function, whereas the mean

and the median tend to average out the data.

1.1 Motivation

The motivation behind the work in this thesis is twofold. First, it is the rein-

forcement of the importance of mode as an important measure of central tendency,

especially in light of its suitability for the big data analysis. Second, it is the lack of

simple, well-founded and easy to implement statistical methods for mode regression

and binary quantile regression. The sub-sections below describe the identified gaps

in literature in these two areas.
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1.1.1 Mode Estimation and Mode Regression

A mode estimator is often defined as the maximum of the estimated distribution

density. Conditional mode estimation is typically carried out by conditional density

estimation via different nonparametric methods. Mode estimation and regression

can play an important role in terms of identifying the typical value or pattern in a

dataset but also in terms of inference and prediction.

Despite its advantages, mode regression has not been adequately studied in the

literature. Lee (1989,1993) explored direct inference for mode regression and fo-

cused on the case where the dependent variable is truncated. This work introduced

a method of estimating the conditional mode of y given x, mode(y|x) = x′β, by

minimising with respect to β, as σ approaches 0, a loss function K(y;x′β, σ). How-

ever, this method has not been well-applied due to a lack of proper inference tools.

Recently, Kemp and Silva (2012) proposed a semi-parametric mode regression esti-

mator for the case in which the variable of interest is unbounded, continuous and

observable over its entire support and Yao and Li (2014) proposed an Expectation-

Maximisation algorithm in order to estimate the regression coefficients of modal

linear regression. However, this research involves either semiparametric or nonpara-

metric estimation of regression parameters, it has a slow rate of convergence and it is

subject to bandwidth selection; thus it has little, if any, practical use. Furthermore,

a direct Bayesian method for mode regression is not available even though, there is

clear practical motivation from this perspective.

An example of the applicability of mode estimation and regression in real life

is the analysis of big data. Big data analysis is the process of examining large

amounts of data of different types to uncover hidden patterns, unknown correla-

tions and other useful information. Big data is becoming increasingly important

in every sector and function of the global economy. Recently, there has been con-

siderable amount of research effort devoted to managing and analysing such types

of data. Often, in big data analysis, fast and accurate identification of patterns is

required. Even though this can be achieved through available data-mining/pattern-

finding algorithms, mode can serve as a quick, effective and statistically meaningful

alternative technique for pattern recognition. Identifying the typical value or pat-
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tern is an important step in big data analysis. However, this is not the sole aim

of statistical analysis or the only scientific objective. Quantifying the relationship

between the pattern and other covariates is often desirable. Mode regression, which

models the relationship between the typical value and a set of explanatory variables,

could achieve this goal.

1.1.2 Binary Quantile Regression

Quantile regression has been widely used in many areas such as economics, ecol-

ogy and finance, as an alternative to mean regression in cases of skewed data and it

has been applied to different types of models, such as time series models, survival

analysis models, censored regression and count data models.

Binary quantile regression was first introduced by Manski (1975, 1985). In these

papers the Maximum Score Estimator (MSE) was developed, which requires very

weak assumptions governing the relation of errors to regressors and can accommo-

date for heteroscedasticity of unknown form. However, this work faces important

technical drawbacks in both optimising the objective function and in making in-

ference on the regression parameters. To overcome some of these shortcomings

Horowitz (1992) developed a Smoothed Maximum Score Estimator (SMSE) for the

linear median regression case, which can be computed using standard optimisation

routines. Kordas (2006) extended this estimator to a family of conditional quantile

functions giving the opportunity for a complete understanding of the conditional

distribution of the latent response variable given covariates.

Even though both the maximum score and the smoothed maximum score estima-

tors have desirable asymptotic properties, they are difficult to implement in practice.

The maximum score estimator has a discontinuous objective function (step-function)

and hence it cannot be solved with gradient-based optimisation methods. The ob-

jective function of the smoothed maximum score estimator can have several local

maxima, thus requiring stochastic search algorithms to identify the global maximum

(e.g. the simulated annealing algorithm suggested by Horowitz (1992)). Due to the

complex structure of the objective functions of these estimators, standard optimi-

sation heuristics cannot guarantee global convergence. In addition, even though
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algorithms for solving both the MSE and the SMSE are readily available, these are

not included in standard software packages.

1.2 Contributions

In an effort to address the identified gaps in the area of mode regression and

to provide an alternative, easy to implement, quantile estimation approach for the

popular binary model, several research contributions have been achieved. The overall

aim of this work was the development of estimators that enjoy good finite and large

sample properties but also computational simplicity.

The contributions of this thesis can be summarised as follows.

• Parametric Bayesian mode regression: A parametric Bayesian mode re-

gression model has been developed, where the likelihood function is based on

a uniform probability density. Bayesian inference has the advantage of being

able to provide the entire posterior distribution of the parameters under in-

vestigation and to allow uncertainty to be taken into account when making

predictions. Furthermore, the Markov Chain Monte Carlo (MCMC) sample

can be used to estimate the covariance matrix, and other asymptotic quanti-

ties of classical estimates. The proposed estimator enjoys good finite sample

performance and large sample properties.

• Nonparametric Bayesian mode regression: The parametric Bayesian

mode regression depends on the assumption of a uniform mode distribution,

which may lead to inconsistent estimation due to model misspecification. With

the aim of relaxing the distributional assumption and enhancing the flexibility

of the model, two nonparametric Bayesian mode regression models have been

developed. In the first model the estimator is based on the characterisation of

the mode uniform distribution as a scale mixture of symmetric uniform distri-

butions using a Dirichlet process prior for the model parameter σ. The method

is nonparametric in the sense that it is not assumed that the prior belongs to

any fixed class of distributions. The second method is an alternative estima-

tion approach based on an empirical likelihood ratio. Empirical likelihood
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is a nonparametric approach which combines the reliability of nonparametric

methods with the flexibility and effectiveness of the likelihood approach and

also demonstrates good large sample properties.

• Fully parametric mode regression: A simple fully parametric mode regres-

sion model has been developed, based on the Gamma density, which has both

good theoretical properties and finite sample results and is easy to implement.

The Gamma distribution is a very flexible density which can take several dif-

ferent shapes, thus making it suitable for data-driven statistical modelling.

The estimation method involves first re-parameterising the Gamma density

in terms of the mode of y and then introducing a regression-based functional

form.

• Mode estimation and big data analysis: Big data usually includes datasets

of a substantial size, which are difficult to capture, manage and analyse using

existing software tools in a sensible amount of time. An alternative method

for the analysis of big data has been proposed, which combines mode estima-

tion and mode regression. Standard mode estimation techniques can serve

as alternative tools for quick and meaningful pattern recognition in big data.

Inference is made possible by isolating the data corresponding to these recog-

nised patterns in a separate dataset to be used for analysis. Mode regression

can then be applied to examine the relationships between the variables in this

new dataset. The proposed methodology is demonstrated via the analysis of

the results of the Health Survey for England for the years 1997-2010, which

aims at exploring the effect of socio-economic characteristics and behavioural

habits of adults in England on the typical Body Mass Index (BMI). Given the

increasing focus on big data analytics, the timeliness of the proposed method-

ology can play a significant role in finding its way towards current and future

application domains.

• Binary quantile regression: An alternative methodology for binary quantile

regression, based on iteratively reweighted least squares has been developed.

The method is computationally simple, is guaranteed to converge to a unique
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solution and can be implemented with standard software packages, as the

proposed estimator is based on standard gradient-based optimisation methods

which generally converge much faster than stochastic search algorithms.

• Variable selection for binary quantile regression: Multicollinearity and

overfitting are areas of concern in models with a large number of explanatory

variables. Variable selection plays an important role in the model-building pro-

cess. The proposed variable selection method is based on the modern adaptive

lasso approach, which allows different shrinkage weights for different regression

coefficients of independent variables. The method provides consistent variable

selection and optimal prediction and also enjoys the oracle property.

• Development of algorithms: All the methods developed in this thesis have

been implemented and tested in the free statistical software R. The algorithms

for the implementation of the methods presented in this work can be made

available to the statistical community upon request. In addition the possibility

of developing R packages will be considered.

1.3 Thesis Structure

This Chapter introduced the basic principles of descriptive and inferential statis-

tics, described the motivation for investigating new regression methods for measures

of central tendency and presented the research contributions. The remainder of this

thesis is organised as follows:

Chapter 2 - Bayesian Mode Regression: This Chapter introduces Bayesian

mode regression by developing three different approaches: a parametric Bayesian

method, a nonparametric Bayesian method and an empirical likelihood-based Bayesian

method. It also provides their theoretic properties and application.

Chapter 3 - Fully Parametric Mode Regression for Big data Analysis: This

Chapter initially demonstrates a fast mode-based pattern recognition method for

Big data, and then introduces the first fully parametric method for mode regression,

based on the Gamma density.
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Chapter 4 - Binary Quantile Regression and Variable Selection: This Chap-

ter demonstrates an alternative estimation approach for binary quantile regression

and variable selection, which is efficient and can be implemented with standard

software packages.

Chapter 5 - Conclusions and Future Work: The last Chapter concludes this

thesis by summarising the work and discussing the contributions. Future directions

of this research are also suggested.



Chapter 2

Bayesian Mode Regression

2.1 Introduction

Mode, the most likely value of a distribution, has wide applications in biology,

astronomy, economics and finance. In these fields, it is not uncommon to encounter

data distributions that are skewed or contain outliers. In those cases, the arithmetic

mean may not be an appropriate statistic to represent the center of location of the

data. Alternative statistics with less bias are the median and the mode. The mean

or the median of two densities may be identical, while the shapes of the two densities

can be quite different. The mode preserves some of the important features, such as

wiggles, of the underlying distribution function, whereas the mean and the median

tend to average out the data.

The mode has been used in modern science to identify the most frequent or the

most typical element in certain network systems (Hedges and Shah (2003), Heckman

et al. (2001), Kumar and Hedges (1998), Markov et al. (1997)). Mode estimation

has attracted significant attention in the statistics literature for decades by various

authors [Yasukawa (1926), Parzen (1962), Grenander (1965), Eddy (1980), Bickel

and Fan (1996), Birgé (1997), Berlinet et al. (1998) and Meyer (2001) among others].

Moreover, identifying the typical value or pattern could be one of the most efficient

statistical approaches for the analysis of big data.

However, mode estimation is more difficult than estimating the mean or the

median. The mode estimator is often defined as the maximum of the estimated

13
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distribution density, typically under nonparametric kernel estimation. Conditional

mode estimation is typically carried out by conditional density estimation via differ-

ent nonparametric methods [see for example Gasser et al. (1998), Hall and Huang

(2001) and Hall et al. (2001), Brunner (1992), Ho (2006), Dunson et al. (2007)].

However, these nonparametric conditional density-based mode regression models

do not provide a direct estimate of the conditional mode. The problem with these

methods is twofold: the estimation of the conditional density may suffer from the

well-known “curse of dimensionality” and, it is hard to describe and interpret the

estimated conditional mode in terms of predictors or covariates.

Direct inference for mode regression was explored by Lee first in 1989, Lee (1989),

and then in 1993, Lee (1993). However, it has not been well-applied due to lack of

proper inference tools. Recently, Kemp and Silva (2012) relaxed Lee’s restriction on

truncated dependent variables and employed alternative kernel estimation. However,

their regression coefficient estimator has slow convergence rate, involves bandwidth

selection and provides only approximate Normal confidence intervals. Furthermore,

Yao and Li (2014) proposed an Expectation-Maximisation algorithm in order to

estimate the regression coefficients of the modal linear regression. These meth-

ods involve either semiparametric or nonparametric estimation methods. A direct

Bayesian method for mode regression is not available even though there is a clear

practical motivation from this perspective, given the practical and theoretical ad-

vantages of the Bayesian approach (e.g. incorporation of prior information to the

analysis, estimation of the complete density distribution for the parameters of inter-

est rather than a single point estimate as in the classical approach, delivery of exact

inferences which do not rely on large sample approximations, etc.).

In conventional regression models, the method of least squares is usually applied

to investigate the effect of the predictor variables on the conditional mean of the

response variable. However, in the presence of outliers, the mean is pulled in the

direction of the tail, making mean regression a less representative method of analysis.

Mode regression, on the other hand, is robust to the presence of outliers. Quantile

regression is an alternative approach to estimate models with skewed data, as it can

provide a complete picture of the conditional distribution of the response variable
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given the covariates. However, it cannot reveal any information about the typical

value (mode).

Take the analysis of the adult Body Mass Index (BMI) used in this chapter as

an example. BMI, defined by BMI = weight(kg)
height2(cm)

, is a measure of the relative weight

and is used in a wide variety of contexts as a simple method to assess how much

an individual’s body weight deviates from what is normal or desirable for a person

of his or her height. Such analysis is important as it is well-known that obesity

has overtaken smoking as the biggest threat to people’s health, in particular for

middle-aged and old adults.

The dataset used in this chapter to demonstrate mode regression is taken from

the Health Survey for England (HSE) 2011 teaching dataset. The Health Survey for

England is a series of annual surveys about the health of people living in England,

commissioned by the Department of Health. The sample contains observations for

4,138 individuals (1,814 males and 2,324 females) with two thirds being older than

40 years old. A BMI of 27kg/m2 for middle-aged and old adults can be classified

as the cut-off point of unhealthy weight. An interesting question is how some co-

variates, such as units of alcohol and portions of fruit/vegetables consumed keep

one’s BMI in the healthy range. It would be safe to assume that the BMI for the

majority of people in the data example falls in the desirable BMI range. Indeed, the

typical BMI for the whole sample as well as separately for men or women are below

27kg/m2 (see Table 2.1), but the corresponding mean BMI and median BMI were

near or greater than 27kg/m2. The plots in Figure 2.1 suggest that the location

of the peak can be considered as the most representative measure of central ten-

dency. Therefore, employing mode regression is preferable than mean and quantile

regression for answering this scientific question.

This chapter introduces a fully Bayesian framework for direct mode regression by

using three approaches: a parametric Bayesian method, a nonparametric Bayesian

method and a nonparametric empirical likelihood based Bayesian method. The re-

mainder of the chapter is organised as follows. Sections 2.2 and 2.3 introduce the

three approaches, describe the theoretical and computational framework of these

methods and give their mathematical justification. Section 2.4 illustrates the pro-
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Table 2.1: Summary Statistics for the BMI dataset

Variable Obs Mean SD Median Mode Min Max

Total

BMI 4138 27.7 5.13 26.9 26.1 15.9 56.0

age 4138 50.8 17.8 50 64 16 96

alcohol 4138 11.0 18.1 4.62 0 0 378.0

fruit&veg 4138 3.79 2.69 3.33 1 0 30

smoking 4138 1.22 0.58 1 1 1 3

male 4138 0.44 0.50 0 0 0 1

Male

BMI 1814 27.8 4.55 27.3 26.7 16.3 56.0

age 1814 51.5 17.7 51 64 16 94

alcohol 1814 15.0 21.4 8.57 0 0 378.0

fruit&veg 1814 3.67 2.65 3.33 1 0 29.3

smoking 1814 1.22 0.60 1 1 1 3

Female

BMI 2324 27.3 5.51 26.4 24.5 15.9 52.4

age 2324 50.17 17.8 49 64 16 96

alcohol 2324 7.84 14.4 2.48 0 0 378.0

fruit&veg 2324 3.88 2.71 3.5 2 0 30

smoking 2324 1.22 0.58 1 1 1 3

Note: age = person’s age, alcohol = the total units of alcohol con-

sumed per week, fruit&veg = the portion of fruit and vegetables

consumed the previous day, smoking = the person’s cigarette smok-

ing status (0= Non-smoker, 1= Light smokers, under 10 a day, 2=

Moderate smokers, 10 to under 20 a day, 3=Heavy smokers, 20 or

more a day).
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Figure 2.1: BMI dataset: BMI histograms for total, men and women
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posed methods through three simulated case-studies and a real example. Concluding

remarks are provided in Section 2.5.

2.2 Bayesian Mode Regression

2.2.1 Mode Estimation and Classical Mode Regression

Consider an arbitrary random variable Z, with distribution function FZ(z) and

density function fZ(z). LetK(Z; ·) be the step-loss function (Manski (1991)) defined

by,

K(Z;µ) = I

[
|Z − µ|
σ

> 1

]
, (2.2.1)

with σ > 0 and I[A] being the indicator function of event A. If fZ(z) is symmetric

around µ or if µ is the middle value of the interval of length 2σ that captures the

most probability under FZ(z), then

µ̂ = argminµE{K(Z;µ)}

is the mode of Z.

Therefore, given a sample {Z1, ... Zn} from Z, let µ̂ be the estimator of the mode

of Z, then,

µ̂ = argminµ

n∑
i=1

I [|Zi − µ| > σ] ⇔

µ̂ = argmaxµ

n∑
i=1

I [|Zi − µ| ≤ σ] ⇔

µ̂ = argmaxµ exp

(
n∑
i=1

I [|Zi − µ| ≤ σ]

)
⇔

µ̂ = argmaxµ

n∏
i=1

exp (I [|Zi − µ| ≤ σ]) .

Consider the uniform probability density function, f(u), such that

fσ(u) =
e

2σ
exp(−I[|u− µ| ≤ σ])I[|u− µ| ≤ σ], (2.2.2)

for a window parameter σ > 0. Then maximising I[|u − µ| ≤ σ] is equivalent to

minimising fσ(u).
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Lee (1989) introduced mode regression by defining the conditional mode of y

given x, as mode(y|x) = x′β based on the loss function K(y;x′β), where β is the

regression parameter. That is, given a sample {(x1, y1), ... (xn, yn)} from (x, y), as

σ approaches 0, the parameter β in the conditional model of y|x is estimated by

β̂ = argminβ
1

n

n∑
i=1

K(yi; x
′
iβ) (2.2.3)

2.2.2 Bayesian Inference and the Markov Chain Monte Carlo

(MCMC) Method

Bayesian inference is a powerful statistical method that can be used to estimate

unknown parameters in regression models by constructing posterior densities condi-

tional on observed data. Let ω be the vector of unknown model parameters to be

estimated. According to the Bayes’ Theorem, the joint posterior distribution of the

unknown parameters, f (ω|y,x), is given by:

f (ω|y,x) = f(y,x|ω)f(ω)∫
f(y,x|ω)f(ω)dω

⇒ (2.2.4)

f (ω|y,x) ∝ f(y,x|ω)f(ω)

where, f(y,x|ω) is the likelihood of the data given the unknown parameters and

f(ω) is the joint prior distribution of the unknown parameters.

Evaluating the joint or marginal posterior densities by analytic or numerical

methods can be extremely difficult. MCMC techniques can be easily applied to

obtain samples from the posterior distribution of the unknown parameters.

A MCMC scheme constructs a Markov chain whose equilibrium distribution is

the posterior distribution f(ω|y,x). After running the Markov chain for a burn-

in period, one obtains samples from the limiting distribution, provided that the

Markov chain has converged. The Metropolis-Hastings algorithm (Hastings (1970))

is one of the more prominent MCMC methods for simulating realisations from the

posterior distribution of the unknown parameters. The steps of the Metropolis-

Hastings algorithm are described in Algorithm 1.
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Algorithm 1 The Metropolis Hastings Algorithm

1: Let T be the number of MCMC iterations.

2: Set t = 0 and initialise the parameter to be estimated by setting ω(t) = ω(0).

3: Generate a proposal value, ωnew from a chosen proposal density q(·|ω(t))

4: Calculate the acceptance probability

5: r = min
{
1, q(ω(t)|ωnew)

q(ωnew|ω(t))

f(y,x|ωnew)f(ωnew)

f(y,x|ω(t))f(ω(t))

}
.

6: Sample u from the uniform distribution U(0, 1).

7: Set ω(t+ 1) = ωnew if u < r, otherwise ω(t+ 1) = ω(t)

8: Set t = t+ 1, if t < T then return to step 2.

Given that the chain has converged, the posterior distribution of ω is given by

the frequency of appearance of the parameters in the Markov chain. This provides

the complete density distribution of the estimated model parameters, rather than a

single point estimate as in the classical approach. This is one of the major advantages

of Bayesian inference.

Let S be the Markov chain drawn from the posterior distribution, f(ω|y,x), such

as S = (ω(1),ω(2), ...,ω(N)) where N is the number of draws after burn-in. Then, it is

possible to compute the parameter estimates ω̂, by calculating a descriptive statistic

of the Markov chain, S, e.g. the posterior mean is computed as: β̂ = 1
N

∑N
i=1ω

(i).

Chernozhukov and Hong (2003) showed that under general regularity conditions

the posterior distribution concentrates at a rate 1√
n
around the true parameter ω0,

that the estimators are consistent and asymptotically Normal and that the poste-

rior quantiles or other relevant quantities provide asymptotically valid confidence

intervals.

2.2.3 Parametric Bayesian Method

The conditional linear mode regression, denoted as mode(y|x) = x′β, can be

formulated as a standard regression model:

y = x′β + ϵ

with mode(ϵ|x) = 0.
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Lee (1989,1993) showed that, given a sample {(x1, y1), ... (xn, yn)} from (x, y),

the classical mode regression estimator, β̂ is given by:

β̂ = argmaxβ
1

n

n∑
i=1

I[|yi − x′
iβ| ≤ σ]. (2.2.5)

Therefore, using equation (2.2.2), β̂ can be regarded as the maximum likelihood

estimator of the “working” likelihood function

L(y|β, σ) = en

(2σ)n

n∏
i=1

exp (−I[|yi − x′
iβ| ≤ σ]) I [|u− µ| ≤ σ] . (2.2.6)

Therefore, under a Bayesian framework, the joint posterior distribution of the

unknown model parameters, β and σ, is given by

π(β, σ|y) ∝ L(y|β, σ) π(β, σ), (2.2.7)

where π(β, σ) is the joint prior distribution of β and σ.

The Bayesian mode regression estimates, denoted as β̂B can be obtained using

the marginal posterior distribution of β, given by

π(β|y) =
∫
π(β, σ|y)dσ, (2.2.8)

In a similar manner, an estimate of σ, denoted as σ̂, can be obtained using the

marginal posterior distribution of σ,

π(σ|y) =
∫
π(β, σ|y)dβ, (2.2.9)

Although a standard conjugate prior distribution is not available for the mode

regression formulation, Markov Chain Monte Carlo (MCMC) methods may be used

for extracting the posterior distributions of both β and σ.

2.2.4 Estimation of Covariance Matrix of Classical Estimates

Under the classical approaches of Lee (1989, 1993) and Kemp and Silva (2012),

the covariance matrix, Σ(β̂) of the classical estimator β̂ and its inverse are often

required but difficult to estimate or compute numerically, especially under a small

or moderate sample size.
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As mentioned in Section 2.2.2, an additional advantage of the proposed Bayesian

approach is the ability of obtaining a natural and efficient estimator of Σ(β) and

other asymptotic quantities of β, using the MCMC posterior sample. A consistent

estimate of the inverse of the covariance matrix can be obtained by multiplying by

n the variance-covariance matrix of this MCMC sequence (Chernozhukov and Hong

(2003)).

A 95% Confidence interval (CI) for β̂ can then be easily derived from this pos-

terior distribution by taking the 0.05th and 0.95th quantiles of the Markov chain

S.

2.2.5 Prior Selection and Proper Posteriors

In this sub-section, first it is demonstrated that almost all priors for (β, σ) could

be used and yield a proper joint posterior. Then one practical selection for a prior

for σ is provided.

Consider the following theorem.

Theorem 2.2.1. Given the mode regression (2.2.3) and the ‘working’ likelihood

(2.2.6), if the joint prior distribution π(β, σ) follows one of the following three

choices:

(1) π(β, σ) ∝ 1 (totally non-informative prior)

(2) π(β, σ) = π(β)π(σ|β) and one of π(β) and π(σ|β) ∝ 1 and the other is a

proper prior,

(3) π(β, σ) = π(β)π(σ|β) and both π(β) and π(σ|β) are proper priors,

then the posterior distribution of β and σ, π(β, σ|y), will be a proper distribution.

In other words

0 <

∫
π(β, σ|y) dβ dσ <∞,

or, equivalently,

0 <

∫
L(y|β, σ) π(β, σ) dβ dσ <∞.

The proof can be found in Appendix A.1.

In practice one usually assumes that the components of β have independent

improper uniform prior distributions which is a special case of the above theorem.
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One Practical Selection of Prior on σ

If the conditional distribution is strictly unimodal and symmetric or if the re-

gressors affect only the location of the distribution, then a consistent estimate of

the mode can be obtained with a fixed σ (Lee (1989)). In practice, however, data

with such characteristics is relatively rare. In addition, in such cases the added

value of mode regression is rather limited as the mode coincides with the mean and

the median. To extend mode regression to more interesting applications σ must be

allowed to approach zero as the sample size goes to infinity.

A suitable prior distribution for σ would be one with a positive support. To this

end it is proposed to use either a Uniform(w1, w2) or a Gamma distribution with

mean w, where, in both cases ws can be determined using one of the following options,

commonly used in bandwidth selection methods for kernel density estimation:

• The empirical rule, which states that, given a symmetric distribution, approx-

imately 99.7% of the data values fall within three standard deviations (sd) of

the mean, therefore, w = 3sd;

• Variations of Silverman’s plug-in estimate for the bandwidth (Silverman (1986)),

in which w = 1.3643δn−0.2[min(sd, IQR/1.349)], where, IQR is the sample in-

ter quantile range and δ = 1.3510 for a uniform kernel. To cover data with

large number of outliers IQR/1.349 can be replaced by 1.4826MAD, where

MAD is the median absolute deviation.

Alternatively, as the next section demonstrates, a more flexible model can be de-

veloped by relaxing the distributional assumption on the prior for σ using a Dirichlet

process prior. This leads to a flexible nonparametric mixture model. The method

is nonparametric in the sense that it is not assumed that the prior belongs to any

fixed class of distributions.

2.3 Nonparametric Bayesian Methods

In this section, two nonparametric Bayesian mode regression models are pre-

sented to avoid critical dependence on the assumption of a uniform distribution.
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The methods allow the application of a likelihood approach without assuming that

the data comes from a known family of distributions, thus reducing the possibil-

ity of inconsistent estimation due to misspecification, which may arise under the

parametric Bayesian method.

2.3.1 Nonparametric Uniform Mixture Model

A nonparametric extension of the mode regression model can be constructed in

the framework of finite mixture models. Under appropriate mixing and a sufficient

large number of mixing components, any continuous density function on the real

line can be approximated by a weighted sum of mixture distributions, such that,

f(y) =
k∑
j=1

πjfj(·) (2.3.10)

where fj(·) are densities on R and πj are mixing weights with
∑k

j=1 πj = 1.

A strong unimodal density, f(·)(with mode θ) is one that is non-decreasing on

(−∞, θ) and non-increasing on (θ,∞) (Brunner (1992)). A density f(·) on R+ is non-

increasing if and only if there exists a distribution function G such that f(x|G) =∫
σ−1I[0<x<σ]dG(σ) (Feller (1971)). Therefore, any unknown density f(·) (with mode

θ), symmetric or not, can be represented as a scale mixture of symmetric uniform

distributions, that is

f(x|θ,G) =
∫

1

2σ
I[−σ<x−θ<σ]dG(σ), (2.3.11)

where G is the mixing distribution supported on R+.

This one-to-one mapping between f and G enables a nonparametric model for f

through a nonparametric prior on G. A scale uniform Dirichlet process mixture for

f(·, G) can be constructed by placing a Dirichlet prior on G (Kottas and Fellingham

(2012)).

The Dirichlet Process (DP) was introduced by Ferguson (1973) and since then,

it has been widely used in Bayesian nonparametric modelling. A DP (M,G0) is

defined in terms of two parameters: G0, which is the mean of the process, and the
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concentration parameter M . The most commonly used representation of the DP is

the “stick-breaking” representation (Sethuraman (1994)),

G(·) ∼
∞∑
i=1

wiδµi(·),

where µi
iid∼ G0 and wi = vi

∏
j<i(1− vj), where vj

iid∼ Beta(1,M).

This representation states that each realisation of the DP can be represented as

an infinite weighted sum of point masses. These points are a random sample from

G0 and the weights are constructed using the “stick-breaking” algorithm.

A nonparametric Bayesian mode regression model can be expressed in the hier-

archical form:

yi|β, σi
iid∼ f(yi − x′

iβ; σi), i = 1 · · ·n

σi|G
iid∼G, i = 1 · · ·n

G|M,d ∼ DP (M,G0(·, d))

β,M, d ∼ p(β), p(M), p(d),

(2.3.12)

where, G is the mixing distribution, with base distribution G0 and concentration

parameter M and

f(yi − x′
iβ; σi) =

1

2σ
I
[−σ<yi−x′iβ<σ]

is the density of a uniform distribution on (−σ, σ).

2.3.2 Empirical Likelihood-based Bayesian Method

In addition to parametric and nonparametric likelihood, an empirical likelihood

based method could be an alternative for Bayesian mode regression. The Empirical

Likelihood (EL) method, introduced by Owen (1988, 1990), is a semi-parametric

method of inference based on a data-driven likelihood ratio function. The method

can be employed as an alternative to the bootstrap for constructing nonparametric

confidence regions or hypothesis tests. Instead of re-sampling with equal proba-

bility weights like the bootstrap, the EL profiles a multinomial likelihood under a

set of constraints which reflect the characteristics of the quantity of interests. EL
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methods are known to enjoy good asymptotic properties, especially if the associ-

ated moment restrictions are of a sufficient smoothness. Like many estimation and

inference procedures, e.g. Ordinary Least Square (OLS), Instrumental Variables

(IV), and Generalised Method of Moments (GMM), EL is also based on the moment

conditions:

E[g(·)] = 0 (2.3.13)

which can be estimated by ĝ(·) =
∑
pig(·) = 0, where pi is called the implied

probability associated with the observation xi and g(·) is a vector of estimating

functions. It can be shown that a solution to ĝ(·) = 0 exists for some choice of

probabilities pi such that
∑

i pi = 1.

To derive an empirical likelihood for mode regression it is necessary to define some

notations and a moment restriction. Lee (1993) generalised the mode regression

estimator of Lee (1989), β̂ = argminβE{L(Y − x′β)}, by using the rectangular

kernel

L(Y ;µ) = {(σ2 − (Y − µ)2)I[|Y − µ| < σ]}.

Therefore, the moment restriction for the empirical likelihood can be obtained by

the derivative
∂

∂µ
L(Y ;µ) = 2(Y − µ)I[|Y − µ| < σ].

Let l(Y ;µ) be the derivative of L(.;µ) with respect to µ, then the mode, µ, of Y

satisfies the moment restriction E(l(Y ;µ)) = 0.

Thus, under an empirical likelihood for mode regression µ = x′β, for any pro-

posed β, to estimate the true p dimensional β0 the vector estimating functions

g(X, Y,β) with component gj(X, Y,β) = l(Y ;β′X)Xj for j = 1, .., p is used. Then,

the profile empirical likelihood ratio is given by:

R(β) = max

{
n∏
i=1

(n pi)|
n∑
i=1

pi g(Xi, Yi,β) = 0, pi ≥ 0,
n∑
i=1

pi = 1

}
.

By a standard Lagrange multiplier argument,

R(β) =
n∏
i=1

{n pi(β)}, (2.3.14)
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with the weights pi(β) =
1

n(1+λ̂(β)′g(Xi,Yi,β))
, where the Lagrange multiplier λ̂(β) is

the solution of λ to the following equation:

n∑
i=1

g(Xi, Yi,β)

1 + λT g(Xi, Yi,β)
= 0. (2.3.15)

According to Qin and Lawless (1994), among others, the existence and unique-

ness of λ̂(β) are guaranteed when the following two conditions are satisfied: (1)

zero belongs to the convex hull of {g(Xi, Yi,β), i = 1, ..., n} and (2) the matrix∑n
i=1{g(Xi, Yi,β)g(Xi, Yi,β)

′} is positive definite.

Under Bayesian inference, the empirical likelihood functionR(β)/nn =
∏n

i=1{pi(β)}

can be combined with a prior specification π(β) on the parameter β to obtain the

posterior distribution:

π(β|data) ∝ π(β)R(β).

2.3.3 Asymptotic Properties of Bayesian Empirical Likeli-

hood

Before establishing the asymptotic normality of the empirical likelihood-based

Bayesian mode regression parameter estimates, the consistency of the empirical like-

lihood estimator must be established, which is a necessary condition for the asymp-

totic normality of the posterior. Since the criterion function g(X,Y,β) results in a

non-smooth estimating equation, a similar method to the one used by Molanes Lopez

et al. (2009), among others, is employed to derive the asymptotic results.

Let β̂ = argmaxβR(β) be the maximum empirical likelihood estimator (MELE)

in a compact set of parameter space which contains the true parameter β0. Then

note that the criterion function g(X,Y,β) can be regarded as a special case of

M-estimators as discussed in Chapter 5 of Van der Vaart (1998) and satisfies the

conditions of theorem 5.7 in the book. Under some regularity conditions imposed

on the marginal distribution of X and on the conditional distribution of Y given

X, such as uniformly continuous and bounded, and since both E{g(X,Y,β)} and

E{g(X, Y,β) g(X,Y,β)′} > 0 are sufficiently smooth in a compact set of parameter

space, which contains β0, the consistency condition C3 of Molanes Lopez et al.
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(2009) holds. Then the consistency of empirical likelihood estimates is established.

Specifically, a rigorous statement of the conditions and theorem is as follows:

Assumption 1. There exists a neighbourhood N of β0 such that P (R(β) > 0) → 1

for any β ∈ N , as n→ ∞.

Assumption 2. The distribution function GX has bounded support X .

Assumption 3. The conditional distribution FX(t) of Y given X is twice continu-

ously differentiable in t for all X ∈ X .

Assumption 4. At any X ∈ X , the conditional density function F ′
X(t) = fX(t) > 0

for t in a neighbourhood of β′
0X.

Assumption 5. E{g(X, Y,β0) g(X,Y,β0)
′} > 0 is positive definite.

Assumption 6. log{π(β)} has bounded first derivative in a neighbourhood of β0.

Theorem 2.3.1. Under Assumptions 1–5, the MELE β̂ is a consistent estimator

of β0.

Assumptions 1-5 are standard conditions in this kind of asymptotic problems.

For example, these conditions are similar to Assumptions 3.1-3.5 of Yang and He

(2012, pp. 1110) for Bayesian empirical likelihood quantile regression. Assumption

1 guarantees that the interior of the convex hull of {g(Xi, Yi,β) : i = 1, · · · , n} for

β ∈ N contains the vector of zeros with probability tending to one. Assumption

4 ensures that β0 is indeed the unique solution for Eg(X, Y,β) = 0. The proof of

Theorem 2.3.1 is sketched in Appendix A.1.

The asymptotic normality of the posterior distribution π(β|data) could be estab-

lished using the fact that the empirical log-likelihood ratio for β is well approximated

by certain quadratics in the sense of Lemma 6 of Molanes Lopez et al. (2009) so

that,

Γn(β) ≡ −n−1

n∑
i=1

log(1 + λ̂(β)′g(Xi, Yi,β)) (2.3.16)

= −1

2
(β − β0)

′V ′
12V

−1
11 V12(β − β0) + n−1/2(β − β0)

′V ′
12V

−1
11 Wn

− 1

2
n−1W ′

nV
−1
11 Wn + oP (n

−1), (2.3.17)

with matrices

V11 = (E{gj(X, Y,β0) gk(X,Y,β0)
′})pj,k=1
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,

V12 = (− ∂

∂βk
E{gj(X,Y,β)}|β=β0

)pj,k=1,

and vector Wn = n−1/2
∑n

i=1 g(Xi, Yi,β0)).

Then,

Theorem 2.3.2. Under Assumptions 1-6 and from logR(β) = nΓn(β), the poste-

rior density of β has the following expansion on any sequence of sets {β : β−β0 =

O(n−1/2)},

π(β|data) = π(β)R(β) ∝ exp{−1

2
(β − β̂)′In(β − β̂) +Qn} (2.3.18)

with In = nV ′
12V

−1
11 V12 and empirical likelihood estimate β̂ and Qn = op(1). When

In is positive definite, I
1/2
n (β − β̂) is converging in distribution to N(0, I).

The proof of Theorem 2.3.2 is sketched in Appendix A.1.

Finally, similarly to quantile regression, by Remark 3.2 of Yang and He (2012,

pp. 1110), the posterior will be improper for flat priors on β in the Bayesian empirical

likelihood approach for the proposed mode regression, and therefore flat priors on

β should be avoided.

In the case of a prior distribution shrinking with n, it is possible to use a πn(β)

which satisfies conditions similar to Assumption 3.7 of Yang and He (2012) as pri-

ors for the proposed mode regression (see Theorem 3.3 of Yang and He (2012) for

details).

2.4 Numerical Experiments

In this section the proposed approaches to Bayesian mode regression are demon-

strated through three simulated and one real examples. The first simulation example

demonstrates the applicability of the proposed approach to mode estimation and the

other two simulation examples are dedicated to mode regression. The real example

investigates how factors such as gender, age, consumption of alcohol, consumption

of fruit and vegetables and smoking can affect the body mass index (BMI).
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2.4.1 Simulation Example 1

Mode estimation

In this sub-section the applicability of the proposed parametric Bayesian ap-

proach to mode estimation is demonstrated. The proposed methodology was applied

to estimate the mode for samples generated from a series of distributions featuring

different characteristics.

Specifically, the following five distributions were considered:

1. A symmetric distribution: Normal distribution, with mean 2 and standard

deviation 0.5, with true mode at 2.

2. A symmetric distribution with heavy tails: Cauchy distribution, with location

parameter 0 and scale parameter 2, with true mode at 0.

3. A symmetric distribution: Beta distribution with α = β = 2, with true mode

at 0.5.

4. An asymmetric distribution with heavy tails: χ2 distribution with 4 degrees

of freedom, with true mode at 2.

5. A discrete distribution: Poisson distribution with rate 2, with true mode at 1.

For each of these distributions n random observations for n = 50 and n = 100

were generated. Each simulation experiment was replicated 100 times. Realisations

were simulated from the posterior distributions by means of a single-component

Metropolis-Hastings algorithm. The parameter estimates were obtained using a

random-walk Metropolis algorithm with a Gaussian proposal density centred at the

current state of the chain. Convergence was assessed using time series plots and

convergence diagnostics measures contained in the R package boa (Smith (2007)).

Table 2.2 compares the MCMC posterior means (PM) with the value of the true

mode (TM) of each of the distributions under investigation. Standard deviations

(SD) and 95% Bayesian credible intervals (BCI) are also provided. All the three

quantities computed were averaged over the 100 data sets.
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Table 2.2: Simulation Example 1: True Mode (TM), Posterior Means (PM), Stan-

dard Deviations (SD) and 95% Bayesian Credible Intervals (BCI)

Sample Normal Cauchy Beta χ2(4) Poisson (2)

size (2,0.5) (0,2) (2,2)

50

T.M 2 0 0.5 2 1

P.M 2.05 0.11 0.52 1.88 1.04

SD 0.37 0.49 0.17 0.23 0.34

95%BCI (0.31,2.62) (-1.00,0.84) (0.23,0.82) (0.51,1.49) (1.00,2.81)

100

T.M 2 0 0.5 2 2

P.M 1.91 0.21 0.46 1.91 1.52

SD 0.22 0.46 0.16 0.13 0.32

95%BCI (1.51,2.27) (-0.57,1.16) (0.20,0.73) (1.01,1.96) (0.70,1.27)

As it can be seen from Table 2.2, the estimated results are very close to the true

mode in all the cases considered in the simulation experiments.

2.4.2 Simulation Example 2

Data for the second simulation example was generated from the following regres-

sion model:

yi = β0 + β1xi + ϵi, (2.4.19)

where xi ∼ N(0, 1), i = 1, ..., n for n = 50, 100, 200 and β = (1, 2). The following

three specifications were considered for the model error ϵ (for relevant plots see

Figure 2.2):

• Case 1: the standard Normal distribution, ϵi ∼ N(0, 1) - a symmetric error

distribution.

• Case 2: a Fisher’s Z distribution, ϵi ∼ 1/2logZ with Z ∼ F2,2 - a skewed error

distribution.
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• Case 3: a Normal distribution with normally distributed outliers (contam-

inants) centred at twice the distance between the true mode and the 99th

percentile of the original Normal distribution and accounting for 20% of the

total data points, ϵi ∼ 0.80N(0, 1
4
) + 0.20N(2.5, 1

4
) (Hedges and Shah (2003))

- an asymmetric error distribution.
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Figure 2.2: Density Plots of the three Distributions used in the Simulation Study

First, the parametric Bayesian mode regression (labelled PBMR) was fitted for

all the three cases. Then, for demonstration and comparison purposes, the empirical

likelihood based Bayesian mode regression (labelled ELBMR) and the nonparametric

Bayesian mode regression (labelled NPBMR) were also fitted for the model under

the asymmetric error specification (Case 3).

For the PBMR and ELBMR models, independent Normal distributions were

used as priors of each component of β, where the mean and standard derivation of

the Normal prior are given by the classical estimator of Lee (1989, 1993) and its es-

timated standard error respectively. Realisations were simulated from the posterior

distributions by means of a single-component Metropolis-Hastings algorithm. Each

of the parameters was updated using a random-walk Metropolis algorithm with a

Gaussian proposal density centred at the current state of the chain. The estimates
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for the NPBMR model were obtained by fitting a truncated Dirichlet Process (DP)

mixture model, which leads to a computationally straightforward approximation

and can be easily implemented in the freely available WinBUGS software. Two par-

allel chains of equal length with different initial values were run for the model. The

results were based on 10,000 iterations which followed a burn-in period of 40,000 for

each chain.

The variance of the proposal density was chosen to provide an acceptance rate

close to the optimal acceptance rate as defined in Roberts and Rosenthal (2001).

Convergence was assessed using time series plots and convergence diagnostics mea-

sures contained in the R package boa (Smith (2007)). The estimates are posterior

means using 10,000 iterations of the MCMC sampler (after 10,000 burn-in itera-

tions). Figure 2.3 demonstrates the posterior trace plots for the model parameters

estimated under the three proposed methods (for sample size n=50) and indicates

good convergence of the chains.
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Figure 2.3: Asymmetric Distribution: Posterior Trace Plots for Model Parameters
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Table 2.3: Simulation Example 2 - True Parameter Values (T.V.) and their Posterior

Means, Standard Deviations (S.D.) and 95% Bayesian Credible Intervals (BCI)

PBMR ELBMR NPBMR

Normal Skewed Asymmetric Asymmetric Asymmetric

n β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

50

T.V 1 2 1 2 1 2 1 2 1 2

Mean 1.04 2.00 1.02 1.99 1.01 1.98 1.15 2.07 1.09 1.94

S.D. 0.22 0.24 0.17 0.19 0.19 0.19 0.07 0.08 0.24 0.19

95%BCI(0.60,1.46)(1.54,2.46)(0.68,1.35)(1.62, 2.36)(0.65,1.37)(1.62,2.35)(1.03, 1.30)(1.94, 2.27)(0.71,1.52) (1.5,2.3)

100

T.V 1 2 1 2 1 2 1 2 1 2

Mean 1.00 2.02 0.98 2.00 1.00 2.00 0.89 2.04 1.06 2.00

S.D. 0.14 0.15 0.12 0.13 0.12 0.13 0.07 0.07 0.14 0.12

95%BCI(0.73,1.27)(1.73,2.31)(0.76,1.22)(1.75,2.27)(0.78,1.24)(1.75,2.24)(0.76, 1.01)(1.91,2.17)(0.82,1.31)(1.84,2.21)

200

T.V 1 2 1 2 1 2 1 2 1 2

Mean 1.00 1.99 1.00 2.00 1.02 2.00 0.95 1.97 1.04 1.91

S.D. 0.09 0.10 0.09 0.09 0.09 0.09 0.05 0.04 0.07 0.06

95%CI (0.83,1.18)(1.81,2.18)(0.82,1.17)(1.83,2.18)(0.85,1.19)(1.83,2.17)(0.83, 1.06)(1.89, 2.05)(0.92,1.19)(1.78,2.03)

Each simulation experiment was replicated 100 times. Table 2.3 compares the

posterior means with the true values of β0 and β1 and gives standard deviations

(SD) and 95% Bayesian credible intervals (BCI) for each of the cases considered in

this example. In all the examples the three quantities computed were averaged over

the 100 data sets. Figures 2.4, 2.5 and 2.6 show the posterior histograms of β̂0 and

β̂1 respectively for the three simulation cases for different sample sizes, under the

PBMR.

The results of the analysis indicate that the PBRM works well for the three

cases considered, as all the absolute biases for the estimated parameters turn out

to be in the range [0.00, 0.04]. Furthermore, under both ELBMR and NBRM, the

true values for both β0 and β1 were recovered successfully. The standard deviation,

and accordingly the BCI, decrease with increasing sample sizes in all the experi-

ments. Comparing the results for the asymmetric error example, for which all the

three methods were tested, it can be concluded that the PRMR works best in re-

covering the true values of the regression parameters, as both the ELBMR and the
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Figure 2.4: Posterior Histograms - Symmetric Error Distribution



2.4. Numerical Experiments 36

beta_0

F
re

qu
en

cy

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0
15

00

n=50

beta_1
F

re
qu

en
cy

1.5 2.0 2.5

0
10

00

beta_0

F
re

qu
en

cy

0.6 0.8 1.0 1.2 1.4 1.6

0
15

00

n=100

beta_1

F
re

qu
en

cy

1.6 1.8 2.0 2.2 2.4

0
15

00

beta_0

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2 1.3

0
30

00

n=200

beta_1

F
re

qu
en

cy

1.6 1.8 2.0 2.2

0
20

00

Figure 2.5: Posterior Histograms - Skewed Error Distribution
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Figure 2.6: Posterior Histograms - Asymmetric Error Distribution
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NPBMR demonstrate larger absolute biases. Regarding the estimated SD and BCI,

the ELBMR demonstrates the best performance as the estimated SD is the very

low, even in the smallest dataset. The NPBMR demonstrates similar results to

the PBMR in terms of SD and BCI. In conclusion, the results indicate that all the

proposed methodologies work well for mode regression in finite samples, with the

PBMR to outperform in terms of recovering the true values and the ELBMR in

terms of the magnitude of the estimated SD.

Figure 2.7 exhibits the empirical samples from the joint posterior distributions of

the PBMR parameters, which were obtained using the output of the MCMC sampler

for the regression parameters β̂0 and β̂1. These samples can be used to obtain

a consistent estimator of the covariance or correlation structure of the parameter

estimators, which is difficult to estimate under the classical approach. For example

in case (a), with sample size n=100, the estimate is:

Ĉov

(
β̂0

β̂1

)
=

 3 −1

−1 6

 .

2.4.3 Simulation Example 3

In this sub-section the results of a third simulation example are presented which

was performed with the aim of comparing the performance of the proposed approach

with the classical mode regression approach. Specifically, the simulation study in

Kemp and Silva (2012) was replicated, but only for a sample of size 250, to give the

opportunity to compare their results with the results obtained under the proposed

Bayesian mode regression approach.

Simulation data was generated by the simple linear model:

yi = β0 + β1xi + (1 + vxi)ϵi, (2.4.20)

where β0 = 0 and β1 = 1, xi ∼ χ2
(3) distribution, scaled to have variance 1, and ϵi

were generated as independent draws from a re-scaled log-Gamma random variable,

ϵi = −λ ln(Zi), (2.4.21)
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Figure 2.7: Plots showing the Empirical Samples from the Joint Distributions of

Mode Regression Parameters
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where Z follows a Gamma distribution with mean 1 and scale parameter 1
α
, to

ensure that ϵi has zero mode. Furthermore, λ = [(1 + 2E(xi)v + E(x2i )v
2)ψ(α)],

where ψ(·) is the trigamma function, to ensure that the unconditional variance of

the error (1 + vxi) is equal to one.

The study was performed for α ∈ {0.05, 5} and for v ∈ {0, 2}. Each simulation

experiment was replicated 100 times. Table 2.4 demonstrates the estimated val-

ues (E.V.), the 95% Bayesian credible intervals (BCI) and Root mean square error

(RMSE) for the estimates obtained under PBMR and NPBMR (convergence was

assessed using time series plots and convergence diagnostics measures contained in

the R package boa (Smith (2007)))and provides a comparison with the E.V., the

95% classical confidence intervals (CI) and RMSE obtained under the two classi-

cal mode regression models: Mode 1.6 and Mode 0.8. Mode 1.6 and Mode 0.8

correspond to k = 1.6 and k = 0.8 respectively in the bandwidth selection rule,

bandwidth=kmadn−0.143, where mad is the median of the absolute deviation from

the median of ordinary least squares regression residuals.

The results of the analysis suggest that the Bayesian mode regression estimates

are strong competitors of the classical mode regression estimates. This is evident

from the precision of the estimated parameter values, the length of the BCI and the

values of the estimated root mean square (RMSE). In all the scenarios, both the

PBMR and the NPBMR successfully recover the true values of the model parameters

and also, in most of the cases provide shorter BCI as compared to the CI estimated

for the parametric approaches. In addition, the RMSE indicates a high goodness

of fit for all models fitted by the Bayesian approaches, with the PBMR method to

demonstrate a comparable or lower RMSE than the parametric approach in all the

scenarios considered and the NPBMR approach to outperform in terms of goodness

of fit the classical approach in the heteroscedastic scenarios.

Finally, it should be noted that the selection of the value/prior for σ plays an

important role on the precision of the parameters, something also evident from Kemp

and Silva (2012).
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2.4.4 The Body Mass Index (BMI) Data Example

Following the introduction of the BMI example in Section 2.1, the proposed

methodology was applied to investigate the research question: “What is the effect

of factors such as gender, age, consumption of alcohol, consumption of fruit and

vegetables and smoking on the typical body mass index (BMI)?”

A person’s typical BMI was modelled as a function of the person’s age, agei,

the total units of alcohol consumed per week, alcoholi, the portion of fruit and

vegetables consumed the previous day, fruit&vegi the person’s cigarette smoking

status, smokingi (0= Non-smoker, 1= Light smokers, under 10 a day, 2= Moderate

smokers, 10 to under 20 a day, 3=Heavy smokers, 20 or more a day), and of a gender

indicator, malei (1=male, 0=female):

bmii = β0+β1agei+β2alcoholi+β3fruit&vegi+β4smokingi+β5genderi+ϵi (2.4.22)

The BMI range is from 15.9 to 56.0 (range =40.1) indicating a significant dis-

parity between high and low BMI scores. The average BMI is 27.75 with standard

deviation of 5.13 (Table 2.1 in section 2.1). The high levels for range and standard

deviation suggest the presence of outliers which cause the mean to be pulled in the

direction of the tail. As a consequence, the mean, median, and mode do not coincide

and it can be easily concluded that the distribution of the data is positively skewed.

Figure 2.1 in section 2.1 demonstrates the density of BMI for the total, males and

females, verifying that all three distributions are positively skewed. The mode rep-

resents the most typical value and is the value at the peak of the distribution. Even

though, mean regression and quantile regression could have been applied to model

BMI these methods cannot reveal any information about the mode, or about the

effect of the covariates on the most typical case.

Table 2.5 presents the estimation results obtained with the traditional mean,

quantile and the parametric bayesian mode regressions. The analysis was performed

for the total of responders but also for males and females separately. For the PBMR

and ELBMR models, an independent improper uniform prior was chosen for all

the components of β and a gamma prior with mean 3sd(bmi) for σ. Realisations
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were simulated from the posterior distributions by means of a single-component

Metropolis-Hastings algorithm. Each of the parameters was updated using a random-

walk Metropolis algorithm with a Gaussian proposal density centred at the current

state of the chain. The estimates for the NPBMR model were obtained by fitting

a truncated Dirichlet Process (DP) mixture model, with independent independent

improper Normal priors for all the components of β. Two parallel chains of equal

length with different initial values were run for the model.

The results indicate that gender has a statistically significant effect on the BMI

both on the mean and median, but also for the mode. On average, the BMI is 0.42

units lower for women than for men. However, as indicated by quantile regression,

the effect of gender differs at different quantile levels. More specifically, at the 25%

level, the BMI of women is around 1.36 units lower than the corresponding BMI for

men but this gap is smaller for the median case (0.75). Mode regression reveals that

the gender differential on the most typical BMI is higher than both the mean and

the median. According to the results, the typical BMI for women is 0.83 units lower

than the corresponding BMI for men.

Age has a positive and statistically significant effect on the BMI, both on the

mean and on the estimated quantiles, for the total, but also for men and women

separately. In the case of mode regression age has also a positive significant effect,

but the effect is stronger, as compared to the mean and the estimated quantiles, in

the case of the total population and for women, whereas it is weaker in the case of

men.

Furthermore, additional consumption of fruits and vegetables has a negative and

statistically significant effect on the BMI on the mean, median and mode, as well

as on the 75% quantile level for the total population. The results indicate that the

negative effect on the mean, median and mode is similar (-0.06), whereas the effect

at the 75% level is higher. The results for females are not much different, although

the effect of additional consumption of fruits and vegetables is more pronounced,

and in this case it is not statistically significant for the median level. The results

for men indicate that the effect of additional consumption of fruits and vegetables

is not statistically significant at any estimated statistic.
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In addition, the results of the analysis suggest that, for the total population and

for men, smoking has also a negative and statistically significant effect on the BMI

on the mean, the median and the 25% quantile level, but not on the mode, whereas,

for women, smoking has a negative statistically significant effect on the BMI only

on the mode. Finally, the effect of alcohol is very small to be reported even for when

it is statistically significant.

In conclusion, the results of the analysis indicate that mode regression is a useful

statistical technique, especially when analysing data with outliers. In this example,

even thought in many cases the overall effect of covariates on the response variable

was similar under the three regression methods, this was not always the case and

in addition often the marginal effects of the covariates were different under different

regression methods. This justifies the usefulness of mode regression as an alternative

analysis tool.

2.5 Conclusions

Identifying the typical value or pattern could be one of the most efficient statis-

tical methods of data analysis, in particular, for big data analysis. In this chapter

a novel Bayesian mode regression framework has been presented which includes

three approaches: a parametric method, a nonparametric method and an empirical

likelihood-based method. It should be noted that, in the area of mode regression,

there is no literature from a Bayesian perspective. The chapter demonstrates that

the estimates are consistent and asymptotically Normal under fairly standard con-

ditions and even under misspecification of the likelihood function. The numerical

studies suggest that the proposed Bayesian mode regression estimates are strong

competitors to the classical mode regression estimates.



Chapter 3

Fully Parametric Classical Mode

Regression: An illustration via Big

Data Analysis

3.1 Introduction

As it has been mentioned before, despite its advantages, limited work exists in

the literature in the area of mode regression. In the classical literature work on mode

regression was carried out by Lee (1989,1993), Kemp and Silva (2012) and Yao and

Li (2014) whereas no work exists in this area from the Bayesian perspective.

Motivated by the latter, in Chapter 2 a novel Bayesian mode regression frame-

work has been presented which includes three approaches: a parametric method, a

nonparametric method and an empirical likelihood-based method.

On the other hand, research from the classical perspective involves either semi-

parametric or nonparametric mode regression methods, which have a slow rate of

convergence and are subject to bandwidth selection; thus have little, if any, prac-

tical use. To this end in this Chapter a fully parametric mode regression method,

based on the Gamma density is introduced with good theoretical properties and

finite sample results, as well as easy and fast implementation.

In addition, this chapter demonstrates a quick and effective methodology for

identifying patterns in big data and for exploring the effect of different factors on

46
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the typical value. As it is always beneficial to demonstrate the applicability of a new

approach within a valid domain, the approach is demonstrated through the analysis

of an almost a decade-long dataset from the Health Survey for England. The aim of

the analysis is to explore the effect of socio-economic characteristics and behavioural

habits of adults in England on the typical Body Mass Index (BMI).

The proposed method is a 2-step approach. In the first step, mode estimation is

used to identify the mode BMI for each of the years considered in the analysis and

accordingly the intervals containing the most typical BMI observations are selected.

This first step is easy and quick to carry out. Although data-mining pattern-finding

algorithms are already available, the mode could be a quick and effective alternative

for pattern-finding, and at the same time it is statistically meaningful, as it facilitates

selecting the most typical observations in a dataset. Then, all the collected data for

the typical BMI intervals and the associated factors are merged to construct a new

(smaller) dataset which will be used for the second step of the analysis: the mode

regression. In the case of multi-modal distribution, the data corresponding to all

identified modes will be collected. This will increase the size of the resulting dataset

to be used for mode regression.

It should be noted that mode estimation has already been used in modern science

for data analysis (Hedges and Shah (2003), Heckman et al. (2001), Kumar and

Hedges (1998), Markov et al. (1997)) and mode-based clustering techniques have

also been developed (Li et al. (2007)).

The proposed methodology includes a data reduction step. In general, as data

reduction is accomplished by throwing away some data, such techniques reduce the

richness and quality of the data and may lead to a reduction of the information

content in the data. However, even though such techniques are often criticised

by many practitioners and researchers, the proposed methodology retains data that

explain much of the variance and omits data that explain little of the variance, as the

methodology ensures that the after data reduction the remaining sample contains

the most typical observation.

The chapter is structured as follows. Section 3.2 details the fully parametric

mode regression method. Section 3.3 introduces the concept of big data and presents
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the analysis steps of The Health Survey for England data and explores the depen-

dency of BMI on other covariates. Concluding remarks are provided in Section

3.4.

3.2 Fully Parametric Mode Regression

The Gamma distribution, which covers a wide range of skewed, even heavily

skewed distributions, has been widely used and successfully applied to parametric

quantile regression (Noufaily and Jones (2013)). Moreover, the expression of the

mode of the Gamma distribution is fairly tractable and provides an ideal method to

develop a fully parametric mode regression.

Let Y be a positive response variable according to the Gamma distribution with

a density function as follows:

f(y|α, β) = βα

Γ(α)
yα−1e−βy, y > 0, (3.2.1)

where, Γ(α) is the Gamma function, α > 0 determines the shape of the distribution

and β > 0 is the rate parameter.

The Gamma distribution is very flexible and its density can have different shapes

depending on the values of the two distribution parameters, including the exponen-

tial distribution with rate λ when α = 1 and β = 1
λ
, the χ2(κ) distribution when

α = κ
2
and β = 1

2
, while it attends a Normal distribution at the limit as α → ∞.

This evident flexibility makes the Gamma distribution an attractive candidate for

data-driven statistical modelling. Figure 3.1 shows a few different Gamma densities

corresponding to different values of (α, β).

The mode of the Gamma distribution with α > 1 is given by:

µ = mode(y) =
α− 1

β
. (3.2.2)

The fully parametric mode regression (PMR) is developed by first re-parameterising

the Gamma density in equation (3.2.1) in terms of the mode (µ) of Y and then in-

troducing a regression-based functional form. To obtain a regression structure for

the mode of the response variable, let µ = α−1
β

and set ϕ = α − 1, i.e. α = 1 + ϕ



3.2. Fully Parametric Mode Regression 49

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

y

de
ns

ity

Figure 3.1: Gamma Densities for Different Combinations of α and β

and β = ϕ
µ
. It follows from equation (3.2.1) that

f(y|µ, ϕ) =
(ϕ
µ
)(1+ϕ)

Γ(ϕ)
yϕe(−

ϕ
µ
y), y > 0, (3.2.3)

where, µ > 0 and ϕ > 0.

3.2.1 Regression and Model Fitting

Estimation of the unknown parameters is obtained via maximum likelihood, in a

similar manner as for generalised linear models, and like regular maximum likelihood

estimators they feature standard asymptotic properties.

Let y1, ..., yn be a random sample such that yi ∼ Γ(µi, ϕ), i = 1...n. The Gamma

regression model is introduced through a link function which defines the mode of yi

as:

g(µi) = x′b˜= ηi, (3.2.4)

where, b˜= (b1, ..., bk), is a k × 1 vector of unknown regression parameters, x′ =
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(x1, ..., xk)
T is the vector of k regressors and ηi is a linear predictor. Finally, g(·) is

a strictly monotonic and twice differentiable link function.

There are several choices for the link function g(·), however a particularly useful

link function is the logarithmic link function, g(µ) = log(µ), in which case,

µi = ex
′b .̃ (3.2.5)

Thus, the density function of y conditional on b˜ and ϕ is given by

f(y|b˜, ϕ) = ϕ(1+ϕ)e−(1+ϕ)(x′b˜)
Γ(ϕ)

yϕe−ϕe
(−x′b˜)y.

Given a sample of n independent observations (xi, yi), i = 1...n, the likelihood func-

tion is given by

L(b˜, ϕ|xi, yi) = ϕn(1+ϕ)

Γn(ϕ)

n∏
i=1

yϕi e−(1+ϕ)
∑n

i=1 x
′
ib˜ e−ϕ

∑n
i=1 yie

−x′ib

,̃ (3.2.6)

and the corresponding log-likelihood function is defined as

l(b˜, ϕ) = n(1+ϕ)log(ϕ)−nlog(Γ(ϕ))+ϕ
n∑
i=1

log(yi)− (1+ϕ)
n∑
i=1

x′ib˜−ϕ
n∑
i=1

yie
−x′i˜b .̃

(3.2.7)

This model is a standard maximum likelihood problem for which there is no closed-

form solution. Maximum likelihood estimates of b˜ and ϕ can be obtained by direct

numerical optimisation of the log-likelihood function in equation (3.2.7), which can

be easily computed using any statistical software for linear programming, for exam-

ple, the optim function in R.

The optimisation algorithm requires the specification of initial values to be used

in the iterative scheme. The initial values are set as the estimates of b˜ obtained from

a linear regression of the transformed response (g(y1), ..., g(yn)) on x. A number of

randomly chosen initial values for the parameter ϕ were used and the one that gave

the maximum log-likelihood value was selected.

3.2.2 Asymptotic Properties

Given that parameter estimation is performed by maximum likelihood, the esti-

mators enjoy standard asymptotic properties. In this sub-section the score function
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and the Fisher information matrix for (b˜, ϕ) are derived. Details of the derivations

are given in Appendix A.2.

The score function, obtained by differentiating the log-likelihood function with

respect to the unknown parameters is given by (Sβ, Sϕ), where,

Sβ =
∑n

i=1

(
− (1+ϕ)

µi
+ ϕyi

µ2i

)
∂µi
∂η
xik,

Sϕ =
∑n

i=1
1
ϕ
+ log(ϕ) + 1− log(µi)− ψ(ϕ)

Γ(ϕ)
+ log(yi)− yi

µi
,

(3.2.8)

where ψ(ϕ) is the digamma function, and, from equation (3.2.5), η = log(µ) and

∂µi
∂η

= eη.

Under standard regularity conditions for maximum likelihood estimation as n→

∞,

√
n

(
b̂˜− b˜0
ϕ̂− ϕ0

)
∼ Nk+1

((
0

0

)
, I−1

)
, (3.2.9)

where, I is the Fisher information matrix, b˜0 and ϕ0 are the true values of b˜ and ϕ

respectively and

I =

Ibb Ibϕ

Iϕb Iϕϕ,

 (3.2.10)

where, Ibb = XTWX, Ibϕ = XTTwbϕ, Iϕb = ITbϕ and Iϕϕ = tr(D) and,

W = diag(wbb1 , ..., wbbn) with wbbi =
(

(1+ϕ)

µ2i
− 2ϕyi

µ3i

)(
dµi
dη

)2
,

T = diag
(
dµi
dη

)
, wbϕ = (wbϕ1 , ..., wbϕn) with wbϕi = − 1

µi
+ yi

µ2i
,

D = diag(wϕϕ1 , ..., wϕϕn) with wϕϕi = − 1
ϕ2

+ 1
ϕ
− ψ′(ϕ)Γ(ϕ)−(ψ′(ϕ))2

(Γ(ϕ))2
,

(3.2.11)

where, ψ′(ϕ) is the trigamma function and dµi
dη

= eη (from equation (3.2.5)).

3.2.3 Estimation of Confidence Intervals

Having obtained the maximum likelihood parameter estimates and using their

asymptotic properties, it is possible to construct confidence intervals for the esti-

mated parameters b̂˜. The expected Fisher informatics matrix, I can be transformed

into the asymptotic variance of b̂˜, Σ(b˜). Then the estimated asymptotic variance ma-

trix Σ̂(̂b˜) can be used to obtain a 100(1− α)% confidence interval for the estimated

parameters:

b̂˜± z1−α
2

√
Σ̂(̂b˜), (3.2.12)
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where z1−α
2
is the 1− α

2
quantile of the Normal distribution.

3.2.4 Finite Sample Experiments

In this sub-section the accuracy and robustness of the fully parametric mode

regression is demonstrated through a Monte Carlo simulation.

The experiment is designed in such a way to examine the performance of the

proposed approach under a series of different underlying density functions, including

both monotone and unimodal density shapes, with both light and heavy tails.

Specifically, n = 100 observations for the response variable y were generated

from the following three different density functions:

1. Gamma distribution with y ∼ Gamma(ϕ+ 1, ϕ
µ
) and ϕ = 8,

2. Log-normal with y ∼ LogN(log(µ) + σ2, σ) and σ = 0.25,

3. Chi-square distribution with y ∼ χ2(µ+ 2),

where, x ∼ Uniform(0, 2) and

µ = eη with η = b0 + b1x.

Furthermore, for each density function, the following two sets of parameter values

were considered:

a) b0 > 0, b1 > 0: b0 = 3, b1 = 1,

b) b0 > 0, b1 < 0: b0 = 3, b1 = −1

Each simulation experiment was replicated 100 times. In the analysis the esti-

mated parameters were compared to the true parameter values. For each dataset

two statistics were computed: the bias for each regression parameter and the root

mean squared error for η, which were averaged over the 100 data sets from each

scenario.

Table 3.1 reports the mean biases and the mean root mean squared errors taken

over the 100 simulations. Figure 3.2 presents a series of boxplots which summarise

the parameter estimates for the three error distributions in the simulation example.
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Table 3.1: Simulation Example - Mean Biases for b0 and b1 and Root Mean Squared

Errors for η

f(·) b0 b1 η

b0 > 0, b1 > 0

Gamma 0.06 0.003 0.07

LogN 0.06 0.002 0.07

χ2 0.02 -0.008 0.03

b0 > 0, b1 < 0

Gamma 0.06 0.007 0.07

LogN -0.003 0.03 0.04

χ2 0.01 0.05 0.10

Examining these results it can be concluded that generally the mean biases and

the root mean squared errors are quite small, which implies that, even under the

small sample size of n = 100 the proposed method performs well. For most of the

cases the bias is less than 0.1 and only in a couple of cases (both for b0) it increases

to 0.2. The simulation experiment was repeated with a larger dataset n = 500 but

the differences in the estimated parameters were not significant.

3.3 Big Data

According to IBM, every day, 2.5 quintillion bytes of data are being created1.

These data come from different sources: sensors that gather climate information, so-

cial media sites, digital pictures and videos, purchase transaction records, and mobile

phone GPS signals, among others. These data can be structured, semi-structured

or unstructured. New big data technologies and tools (big data analytics) have

been developing during the last years. Big data analytics assist in understanding

the information contained within the data and in identifying the most important

1http : //www.ibm.com/software/data/bigdata/what− is− big − data.html
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information. Sectors in which big data has received increasing attention include,

the financial markets, medicine, meteorology, biology and physics. However, un-

derstanding and utilising big data is a daunting task. Also, there is a high cost

associated with the capture, storage, processing, and analysis of such data.

Data could be the realisations of a random variable or variables, or the signals or

symbols of events. Statistically, patterns in data are commonly described in terms

of their centre, spread, shape, and unobserved features. If the random variables fol-

low a symmetric distribution, the mean and variance are good measures of central

tendency and variability. However, often data and variables do not follow a symmet-

rical distribution. In particular, big data often contains asymmetric variables and

complex correlations. Furthermore, uncovering meaningful patterns in an efficient

way is often required in big data analysis.

For example, the Body Mass Index (BMI) is a measure of body fat based on

individual height and weight which indicates obesity. Given that more people are

dying in England due to being overweight or obese than anywhere else in Europe2

analysis of this data is of particular importance. Data on the BMI and other relevant

variables is available from the Health Survey for England (HSE) which is an annual

survey since 1991 designed to measure health and health related behaviours in adults

and children living in private households in England. Measured height and weight

data are recorded as part of a core data set. It can be assumed that this type of

data is available from many different sources, e.g. from hospitals for different periods

of time. Finding patterns over the population and time could be the first step in

analysing such data.

Moreover, while identifying the typical value or pattern is an important part

in big data analysis, this is not the only scientific objective of interest. Usually,

quickly identifying the unknown correlations and/or complex relationships among

variables is desirable. For example, the BMI data from the HSE also includes data

on general health, smoking, drinking, fruit and vegetable consumption, blood pres-

sure measurements, blood and saliva samples and other topic-specific health indica-

2www.noo.org.uk/NOOaboutobesity/mortality
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tors. It is interesting to examine how different environmental exposures and lifestyle

choices (smoking, alcohol status, medication status, fruit and vegetables consumed

and region individuals live in) as well as genetic factors (gender, age, and ethnicity)

influence the BMI. Data-mining pattern-finding algorithms may not be suitable for

this purpose. Mode regression, which models the relationship between the pattern

and other covariates could achieve this objective.

3.3.1 Big BMI Data Analysis

The dataset used for the analysis is taken from the Health Survey for England for

the years 1997-2011, excluding the years 2000 and 2001 as data were not available

from the survey for all the variables considered in the analysis. Figure 3.3 displays

the histograms of the BMI density for each of the years considered in the analysis.

This dataset consists of data from independent cross-sectional surveys and covers

observations for 13 years. The dataset contains data on 195,173 individuals, hence

it can be classified as an example of a big data dataset. Based on the data the

aim is to identify BMI patterns, unknown correlations and other useful information

efficiently. Following the proposed methodology, the analysis consists of two steps.

The first step involves identifying the pattern in the data. For each year, mode

estimation was used to identify the range of modes (typical values) of the BMI

variable and it was found that all BMIs follow a unimodal pattern; although the

method can also be used for multimodal cases. Several methods for mode estimation

exist in the literature. This thesis proposes the use of the Parzen’s kernel mode

estimation method, in which the mode is obtained by maximising the kernel density

estimate.

Parzen (1962) discussed the problem of estimating a probability density func-

tion and estimating the mode of this density: Let X1, X2, ...Xn be iid random vari-

ables with an absolutely continuous distribution function F (x) = P (X ≤ x), then

F (x) =
∫ x
−∞ f(x)dx, where f(x) is the probability density function. An estimate of

the distribution function F (x) can be obtained by taking the sample distribution

function, F (x) = 1
n
(no of observations ≤ x amongX1, X2, ...Xn), which is a binomi-

ally distributed random variable. An estimate of the probability density function
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Figure 3.3: BMI Densities for the 13 years considered in the analysis

f(x) can be obtained by

f(x) = (Fn(x+ h)− Fn(x− h))/(2h), where 0 < h < 1. (3.3.13)

The estimate in equation (3.3.13) can be written as a weighted average over the



3.3. Big Data 58

sample distribution function:

f̂(x) =

∫ ∞

−∞

1

h
K

(
x− y

h

)
dFn(y) =

1

nh

n∑
j=1

K

(
x−Xj

h

)
(3.3.14)

where, K(y) can be any function which satisfies the following properties

K1 : sup−∞<y<−∞|K(y)| <∞

K2 : limy→∞ |yK(y)| = 0

K3 :
∫∞
−∞K(y)dy = 1

(3.3.15)

and limn→∞ hn = 0.

This estimator of f(x) is consistent and asymptotically normal. An estimate of

the mode can be obtained by maximising the estimated probability density function

f(x)

mode = arg max
−∞<x<−∞

f(x)

This estimator can be obtained using the parzen function in the “modeest” pack-

age in R.

When applying mode regression for the analysis of big data, in addition to the

estimation of the mode, it is also necessary to identify the intervals containing most

of the observations. Given that the mode can be also defined as the centre of an

interval of a given length containing the majority of observations, and given that the

mode estimator is asymptotical normal, having obtained an estimate of the mode

it is possible to obtain the required intervals by applying a simple rule of thumb,

based on the empirical rule. The rule states that, given a symmetric distribution,

approximately 99.7% of the data values fall within three standard deviations (sd)

of the mode, therefore, interval = 3sd. It should be noted here, that there is an

element of subjectivity in choosing the criterion for identifying the ranges containing

most of the observations, which is also applies to the identified ranges themselves.

Having identified these intervals, the next step is to collect the associated values

of the covariates corresponding to these BMI values. Clearly, this first step is easy

and quick to carry out. Then, all the collected data for the BMI and the associated



3.3. Big Data 59

factors are merged to construct a new (smaller) dataset which will be used for the

second step of the analysis: the mode regression.

Table 3.2 demonstrates the identified BMI mode intervals for each of the years

considered in the analysis. The resulting dataset contained 14,272 observations

for the BMI and the corresponding 11 covariates. The analysis was performed to

provide a quick answer to the scientific question “what is the effect of factors such as

gender, age, ethnic origin, income, waist hip ratio, number alcohol units consumed,

consumption of fruit and vegetables as well as smoking on the typical BMI?”

Table 3.2: Typical BMI Values for the years 1997-2011

Year Typical BMI range

1997 24-26

1998 24-26

1999 23-26

2002 22-27

2003 25-27

2004 23-28

2005 24-28

2006 24-27

2007 24-27

2008 24-27

2009 24-28

2010 22-24

2011 24-28

3.3.2 Regression Analysis

To answer the scientific question, a person’s typical BMI is modelled as a func-

tion of the person’s gender, sexi (1=men, 0 =women), age, agei (divided by 10),

ethnic origin, origini (1=white, 2=mixed, 3=asian or asian-british, 4=black or black-
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british, 5=other), the total household income, incomei, the person’s waist-hip ratio,

waisthipi, the frequency of drinking alcohol in the past 12 months, alcoholi (0=non

drinker, 1=once or twice per year, 2=once every couple of months, 3=once or twice

per month, 4=once or twice per week, 5=three of four days per week, 6=five or six

days per week, 7=almost every day), the portion of fruit and vegetables consumed

the previous day, fruit&vegi, and the number of cigarettes smoked per day, cigsi.

The logarithmic link function based mode regression is given by:

log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani

+β5blacki + beta6otheri + β7incomei + β8waisthipi + β9alcoholi

+β10fruit&vegi + β11cigsi + ϵi

(3.3.16)

The analysis was carried out for the total sample and for men and women sep-

arately. Parameter estimates were obtained via the parametric mode regression

method described in section 3.2. Table 3.3 presents parameter estimates and the

corresponding 95% confidence intervals.

The results of the analysis indicate that (in terms of the logarithmic BMI) in

the case of the total sample, the gender, the age, the total household income, the

waist-to-hip ratio and smoking are the variables that have a statistically significant

effect on the typical BMI at the 95% level. Specifically, typically men have a 1%

lower BMI compared to women and the BMI increases with age (a year increase in

age causes a 0.14% increase in the typical BMI). The waist-to-hip ratio, has a strong

positive effect on the typical BMI, as a unit increase in the waist-to-hip ratio would

result in a 19% increase in the typical BMI. Furthermore, smoking is negatively

correlated with the typical BMI, as typically 1 extra cigarette smoked per day would

result in a 0.03% decrease in the typical BMI. Finally, the total household income

is positively correlated with typical BMI, as a unit increase in the total household

income would result in an increase of 0.03% in the typical BMI. Similar results were

obtained both for men and women, although, in the case of men age, and in the

case of women income, did not appear to have a statistically significant effect on the

typical BMI. Furthermore, the effect of the waist-to-hip ratio on the typical BMI is

more pronounced in the case of men, as a unit change in the waist-to-hip ratio of

men would result in a 25% increase in the typical BMI, compared to a 15% increase
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in the case of women.

Table 3.3: BMI Big Data (Dataset 1) - Parameter Estimates and 95%Corresponding

Confidence Intervals (CI)

parameter Total 95% CI Men 95% CI Women 95% CI

const 3.07 (3.04,3.09) 3.00 (2.96,3.05) 3.10 (3.07,3.13)

men -0.01 (-0.014, -0.005) - - - -

age 0.0014 (0.0003,0.003) 0.0002 (-0.001,0.002) 0.002 (0.001, 0.004)

mixed 0.00 (-0.02,0.02) 0.001 (-0.03,0.03) 0.0002 (-0.03, 0.03)

asian -0.002 (-0.01, 0.009) -0.003 (-0.02,0.01) 0.0006 (-0.02,0.02)

black 0.004 (-0.01,0.02) 0.002 (-0.02,0.02) 0.009 (-0.01,0.03)

other -0.01 (-0.03,0.002) -0.01 (-0.03,0.008) -0.01 (-0.03,0.008)

income 0.0003 (0.00004,0.0006) 0.001 (0.0002, 0.001) 0.00005 (-0.0003,0.0005)

waisthip 0.19 (0.16,0.22) 0.25 (0.20,0.30) 0.15 (0.11,0.19)

alcohol -0.001 (-0.001,0.0003) -0.0004 (-0.002,0.001) -0.0008 (-0.002,0.0005)

fruit&veg 0.0002 (-0.0004,0.0009) -0.0002 (-0.001,0.0008) 0.0007 (-0.0002,0.002)

smoking -0.0003 (-0.0006,-0.0001) -0.0004 (-0.0007, -0.0001) -0.0002 (-0.0006,0.0002)

3.3.3 Effect of Physical Activity

The second step in the analysis focused on examining the effect of physical ac-

tivity on the typical BMI. To perform this analysis a subset of the dataset was

used, consisting of 8 years for which data on physical activity was available. The

analysis involved the investigation of the effect of physical activity, p.activity (1=no

exercise, 2=light exercise, 3=moderate exercise, 4=vigorous exercise), together with

the above covariates on the typical BMI. In the first example the variable physical

activity was treated as a numerical variable according to the following scale:1=no

exercise, 2=light exercise, 4=moderate exercise, 9=vigorous exercise. The resulting

dataset contained 7,130 observations for the BMI and the corresponding covariates.

First, the effect of 12 independent variables on the typical BMI was estimated
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according to the model below:

log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani

+β5blacki + β6otheri + β7incomei + β8waisthipi + β9alcoholi

+β10fruit&vegi + β11cigsi + β12pactivityi + ϵi

(3.3.17)

Table 3.4: BMI Big Data (Dataset 2) - Parameter Estimates and 95% Corresponding

Confidence Intervals (CI) - Regression Analysis (1)

parameter Total 95% CI Men 95% CI Women 95% CI

const 2.99 (2.96,3.03) 2.91 (2.85,2.97) 3.03 (2.98,3.07)

men -0.016 (-0.022,-0.010) - - - -

age 0.01 (0.07,0.011) 0.01 (0.004,0.01) 0.01 (0.009,0.013)

mixed -0.003 (-0.03,0.03) 0.001 (-0.04,0.04) -0.004 (-0.04,0.04)

asian 0.004 (-0.01,0.02) 0.0004 (-0.02,0.02) 0.01 (-0.01,0.03)

black 0.01 (-0.01,0.03) 0.005 (-0.02,0.03) 0.01 (-0.01,0.04)

other -0.01 (-0.03,0.01) -0.01 (-0.03,0.02) -0.01 (-0.03,0.02)

income 0.001 (0.0004,0.001) 0.001 (0.0002,0.001) 0.001 (0.0003,0.002)

waisthip 0.21 (0.17,0.26) 0.30 (0.23,0.37) 0.15 (0.10,0.21)

alcohol 0.0001 (-0.001,0.001) 0.0002 (-0.002,0.002) 0.00001 (-0.002,0.002)

fruit&veg 0.001 (0.0004,0.002) 0.001 (-0.0002,0.002) 0.002 (0.0002,0.003)

smoking -0.0001 (-0.0004,0.0002) -0.0002 (-0.001,0.0002) 0.0001 (-0.0004,0.001)

p.activity 0.0002 (-0.001,0.001) 0.0003 (-0.001,0.002) 0.0002 (-0.001,0.002)

Table 3.4 presents the parameter estimates and the corresponding 95% confidence

intervals. Again, the analysis was performed for the total sample and separately for

men and women. The results of the analysis indicated that in the case of the

total sample, but also for men and women separately, the gender, the age, the total

household income and the waist-to-hip ratio are the variables that have a statistically

significant effect on the typical BMI at the 95% level. Specifically, typically men

have a lower BMI than women, the BMI increases with age and the waist-to-hip

ratio has a strong positive effect on the BMI. In addition, the results also indicate

that in the case of women, the consumption of additional fruits and vegetables also
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has a positive statistically significant effect on the typical BMI. Finally, given the

results, it can be concluded that the effect of the physical activity (treated as a

numeric variable) does not have a significant effect on the typical BMI.

Evidence in the literature suggests that habitual physical activity plays a bigger

role in attenuating age-related weight gain, rather than in promoting weight loss

(Dipietro (1999)) and that increased physical activity reduces the magnitude of the

age-related increase in the BMI and has an important and protective effect against

weight gain (Bottai et al. (2014)).

Table 3.5: BMI Big Data (Dataset 2) - Parameter Estimates and Corresponding

90% Confidence Intervals (CI) - Regression Analysis (2)

parameter Total 95% CI Men 95% CI Women 95% CI

const 2.96 (2.93,2.98) 2.87 (2.82,2.91) 3.00 (2.96,3.04)

men -0.03 (-0.03,-0.02) - - - -

mixed -0.01 (-0.03,0.01) -0.002 (-0.04,0.03) -0.01 (-0.05,0.02)

asian -0.003 (-0.02,0.01) -0.003 (-0.02,0.01) -0.002 (-0.02,0.02)

black 0.003 (-0.01,0.02) 0.01 (-0.02,0.03) 0.003 (-0.02,0.03)

other -0.02 (-0.03,-0.001) -0.01 (-0.03,0.009) -0.020 (-0.04,0.002)

income 0.0004 (0.0001,0.0008) 0.0005 (0.00003,0.001) 0.0004 (-0.0001,0.0008)

waisthip 0.32 (0.29,0.35) 0.39 (0.34,0.44) 0.26 (0.22,0.31)

alcohol 0.0009 (-0.0002,0.002) 0.0007 (-0.0009,0.002) 0.0009 (-0.0007,0.002)

fruit&veg 0.002 (0.0007,0.002) 0.001 (0.0001,0.002) 0.002 (0.0008,0.003)

smoking -0.0005 (-0.0007,-0.0002) -0.0005 (-0.0008,-0.0001) -0.0004 (-0.0008,-0.00001)

p.activity -0.0008 (-0.002,-0.00004) -0.0004 (-0.001,0.0007) -0.001 (-0.002,0.00004)

To examine the relationship between the typical BMI and age-related weight

gain, first the regression in equation (3.3.17) was re-run, excluding the variable age

from the model. The results of the analysis are shown in Table 3.5. According

to these results, in the case of the total sample, the variable physical activity has

a negative and statistical significant effect on the typical BMI. Specifically, a unit

change in physical activity would result in a 0.08% decrease in the typical BMI. This
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indicates a strong relationship between age and physical activity on the typical BMI

and suggests further investigation.

To examine the combined effect of physical activity (treated as a numerical vari-

able) and age an interaction term (between age and physical activity) was added to

the model 3.3.17:

log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani + β5blacki

+β6otheri + β7incomei + β8waisthipi + β9alcoholi + β10fruit&vegi

+β11cigsi + β12pactivityi + β13agei ∗ pactivityiϵi

(3.3.18)

Table 3.6: BMI Big Data (Dataset 2) - Interaction between Age and Physical Ac-

tivity (1)

parameter Total 95% CI Men 95% CI Women 95% CI

const 3.03 (2.99,3.06) 2.97 (2.91,3.03) 3.05 (3.00,3.10)

men -0.01 (-0.02,-0.01) - - - -

age 0.002 (-0.001,0.01) -0.003 (-0.01,0.002) 0.01 (0.002,0.01)

mixed -0.001 (-0.03,0.03) 0.004 (-0.04,0.05) -0.003 (-0.04,0.04)

asian 0.004 (-0.01,0.02) 0.001 (-0.02,0.02) 0.01 (-0.01,0.03)

black 0.01 (-0.01,0.03) 0.01 (-0.02,0.03) 0.01 (-0.02,0.04)

other -0.01 (-0.03,0.01) -0.01 (-0.03,0.02) -0.01 (-0.04,0.02)

income 0.001 (0.0003,0.001) 0.001 (0.0000.0.001) 0.001 (0.0003,0.001)

waisthip 0.21 (0.16,0.25) 0.28 (0.21,0.35) 0.16 (0.10,0.21)

alcohol -0.0001 (-0.001,0.001) -0.0002 (-0.002,0.002) -0.0001 (-0.002,0.002)

fruit&veg 0.001 (0.0002,0.002) 0.001 (-0.001,0.002) 0.001 (0.0001,0.003)

smoking -0.0001 (-0.0005,0.0002) -0.0003 (-0.001,0.0001) 0.00004 (-0.0005,0.001)

p.activity -0.01 (-0.01,-0.003) -0.01 (-0.01,-0.004) -0.004 (-0.01,-0.0001)

p.activity ∗ age 0.001 (0.001,0.002) 0.002 (0.001,0.003) 0.001 (0.0001,0.002)

Table 3.6 presents parameter estimates and the corresponding 95% confidence

intervals. Again, the analysis was performed for the total sample and separately for

men and women. The results of the analysis indicated that in the case of the total
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sample, but also for men and women separately, the gender, the total household

income, the waist-to-hip ratio and smoking have a statistically significant effect on

the typical BMI at the 95% level. As before, typically men have a lower BMI than

women, the BMI increases with age, the waist-to-hip ratio has a strong positive

effect on the typical BMI and smoking is negatively correlated with the typical BMI.

In addition, the results again indicate that in the case of women, the consumption of

additional fruits and vegetables also has a positive statistically significant effect on

the typical BMI. Concerning the effect of the age and the physical activity, the results

indicate that when the two variables are taken separately, the variable physical

activity has a negative statistically significant effect on the typical BMI, for the

total sample, but also for men and women separately, whereas, age has a positive

statistical significant effect on the typical BMI for women. In addition, treated

jointly it can be concluded that they have a positive, statistically significant effect

on the typical BMI, indicating that the marginal effect of physical activity on the

typical BMI in not the same for all the individuals. As indicated by the coefficient

of the interaction term there is a positive heterogeneous effect of a unit increase in

physical activity across age.

In last two examples, the categorical variable physical activity is assumed to

be and treated as a numeric variable. This involves making the assumption that

distances between each consecutive pair of points on the observed variable can be

quantified by a number, i.e. either they are assumed equidistant or a different ratio

is being chosen. This is often a reasonable but simplifying assumption, however, the

chosen scale does not necessary lead to an optimal interpretation and information

about the ordering is being lost or is based on an unrealistic assumptions.

To avoid this criticism, in the next example the variable physical activity is

treated as a categorical variable with four levels (1=no exercise, 2=light exercise,

3=moderate exercise, 4=vigorous exercise). Thus, in equation (3.3.17), the variable

p.activity was replaced by three dummy variables.
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log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani

+β5blacki + β6otheri + β7incomei + β8waisthipi + β9alcoholi

+β10fruit&vegi + β11cigsi + β12ligthi + β13moderatei + β14vigorousi + ϵi
(3.3.19)

The results of the analysis (Table 3.7) suggest that the effect of the variable

physical activity (treated as a categorical variable) is not statistically significant for

the typical BMI.

Table 3.7: BMI Big Data (Dataset 2) - Parameter Estimates and 95%Corresponding

Confidence Intervals (CI) - Regression Analysis (3)

parameter Total 95% CI Men 95% CI Women 95% CI

const 2.99 (2.95,3.02) 2.91 (2.85,2.97) 3.02 (2.97,3.07)

men -0.016 (-0.022,-0.010) - - - -

age 0.009 (0.007,0.011) 0.006 (0.004,0.009) 0.011 (0.009,0.013)

mixed -0.003 (-0.032,0.026) 0.001 (-0.042,0.044) -0.004 (-0.043,0.036)

asian 0.004 (-0.011,0.019) 0.0003 (-0.020,0.021) 0.009 (-0.012,0.030)

black 0.007 (-0.01,0.03) 0.004 (-0.02, 0.03) 0.01 (-0.014,0.041)

other -0.007 (-0.03,0.01) -0.006 (-0.03,0.02) -0.009 (-0.04,0.02)

income 0.001 (0.0004,0.001) 0.001 (0.0002,0.001) 0.001 (0.0003,0.002)

waisthip 0.21 (0.17,0.26) 0.30 (0.23,0.37) 0.16 0.10,0.21)

alcohol 0.000 (-0.001, 0.001) 0.0002 (-0.002,0.002) 0.0002 (-0.002,0.002)

fruit&veg 0.001 (0.0004,0.002) 0.001 (-0.0002,0.002) 0.002 (0.0002,0.003)

smoking -0.0001 (-0.0004, 0.0002) 0.001 (-0.0002,-0.001) 0.0002 (0.0001,0.001)

light 0.005 (-0.008,0.018) -0.0004 (-0.018,0.017) 0.011 (-0.008,0.03)

moderate 0.004 (-0.008,0.015) -0.001 (-0.016,0.015) 0.009 (-0.008,0.03)

vigorous 0.005 (-0.007,0.017) 0.001 (-0.014,0.017) 0.009 (-0.008,0.03)

Next, the combined effect of physical activity and age on the typical BMI was

investigated by adding 3 interaction terms between physical activity and age to the

regression model in 3.3.19. This enabled an investigation of whether the age-related

increase in the typical BMI is different for people with different habitual physical
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activities according to the model below:

log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani

+β5blacki + β6otheri + β7incomei + β8waisthipi + β9alcoholi

+β10fruit&vegi + β11cigsi + β12ligthi + β13moderatei + β14vigorousi+

β15age ∗ ligthi + β16age ∗moderatei + β17age ∗ vigorousi + ϵi

(3.3.20)

Table 3.8: BMI Big Data (Dataset 2) - Interaction between Age and Physical Ac-

tivity (2)

parameter Total 95% CI Men 95% CI Women 95% CI

const 3.00 (2.96,3.05) 2.95 (2.87,3.02) 3.03 (2.97,3.09)

men -0.014 (-0.02,-0.008) - - - -

age 0.008 (0.002,0.013) 0.005 (-0.003,0.013) 0.010 (0.002,0.018)

mixed -0.001 (-0.03,0.03) 0.004 (-0.04,0.05) -0.003 (-0.04,0.04)

asian 0.004 (-0.01,0.02) 0.001 (-0.02,0.02) 0.009 (-0.01,0.03)

black 0.006 (-0.01,0.02) 0.004 (-0.02,0.03) 0.01 (-0.02,0.04)

other -0.008 (-0.03,0.01) -0.008 (-0.03,0.02) -0.009 (-0.04,0.02)

income 0.001 (0.0003,0.001) 0.001 (0.00001,0.001) 0.001 (0.0002,0.001)

waisthip 0.207 (0.16, 0.25) 0.28 (0.21,0.35) 0.16 (0.10,0.21)

alcohol -0.0001 (-0.001,0.001) -0.0002 (-0.002,0.002) -0.0001 (-0.002,0.002)

fruit&veg 0.001 (0.0002,0.002) 0.001 (-0.001,0.002) 0.001 (0.0001,0.003)

smoking -0.0001 (-0.0005,0.0002) -0.0003 (-0.0007,0.0001) 0.00002 (-0.0005,0.001)

light 0.007 (-0.029,0.04) 0.01 (-0.04,0.07) 0.002 (-0.05,0.05)

moderate 0.009 (-0.02,0.04) 0.008 (-0.04,0.05) 0.01 (-0.03,0.06)

vigorous -0.028 (-0.06,0.004) -0.04 (-0.08,0.006) -0.015 (-0.062,0.03)

light ∗ age -0.001 (-0.008,0.006) -0.003 (-0.013,0.007) 0.002 (-0.008,0.01)

moderate ∗ age -0.001 (-0.007,0.005) -0.002 (-0.01,0.007) -0.001 (-0.009,0.008)

vigorous ∗ age 0.008 (0.002,0.02) 0.010 (0.001,0.02) 0.006 (-0.003,0.015)

The results of the analysis (Table 3.8) suggest that, as in previous examples, gen-

der, age, income, waist-to-hip ratio and consumption of fruits and vegetables are the

variables that have a statistically significant effect on the typical BMI. Concerning
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the effect of the physical activity, the results indicate that when the variables are

taken separately, age has a positive significant effect on the typical BMI, whereas,

none of the 3 levels of physical activity can be considered as significantly different

from zero at the 95% level. However, treated jointly, it can be concluded that vig-

orous activity has a positive, statistically significant effect on the typical BMI, for

the total sample and for men and women separately, indicating that the vigorous

activity has a heterogeneous effect on the typical BMI across age.

The last part of the analysis involved running separate single variable models

(1 covariate: age) for people performing no physical activity, light physical activity,

moderate physical activity and vigorous physical activity, respectively. According

to the results of the analysis, for people who performed no physical activity a unit

change in age causes a 0.11% increase in the typical BMI. The increase in the typical

BMI is lower for people who perform light or moderate physical activity (0.098% and

0.093% respectively), whereas the respective effect for people who perform vigorous

physical activity is larger (0.20%).

This result verifies the results often found in the literature, which suggest an

inverse association between physical activity and age-related weight gain. A possible

explanation for the positive coefficient of the interaction term between age and

vigorous physical activity in model (3.3.20) as well as the larger coefficient of age

in the single variable model for the vigorous activity dataset could be attributed

to the nature of the physical activity variable, which only captures the intensity.

Current physical activity recommendations refer to frequency, intensity and duration

of physical activity as factors influencing healthy weight. Including only the intensity

may capture gain in muscle mass associated with more intense physical activity

rather than weight loss, which is more likely to occur with longer durations.

In summary, the analysis suggests that regular physical activity plays a role in

attenuating age-related weight gain and that increasing physical activity may be

necessary to effectively maintain a constant body weight with increasing age.
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3.3.4 Data Reduction step: Out-of-sample Validation

As it has been mentioned before the proposed methodology involved a data

reduction step which is accomplished by throwing away some data. Such techniques

have been criticised for reducing the richness and quality of the data and may lead

to a reduction of the information content of the data. In this section a comparison

of the predictive power of the reduced-data model to the predictive power of the full-

data model is performed, using an independent validation data set. The validation

data set contained 1.316 observations from the 2012 Health Survey for England

on the following 11 variables: the body mass index, bmii, gender, sexi, age, agei,

ethnic origin, origini (1=white, 2=mixed, 3=asian or asian-british, 4=black or black-

british, 5=other), the total household income, incomei, the person’s waist-hip ratio,

waisthipi, the frequency of drinking alcohol in the past 12 months, alcoholi (0=non

drinker, 1=once or twice per year, 2=once every couple of months, 3=once or twice

per month, 4=once or twice per week, 5=three of four days per week, 6=five or six

days per week, 7=almost every day) and the number of cigarettes smoked per day,

cigsi.

log(bmii) = β0 + β1sexi + β2agei + β3mixedi + β4asiani

+β5blacki + beta6otheri + β7incomei + β8waisthipi

+β9alcoholi + β10cigsi + ϵi

(3.3.21)

The model in 3.3.21 was fitted both under the reduced-data dataset and the

full-data dataset. The predictive power of each model was accessed using the root

mean square error (rmse) which obtained by

rmse =

√√√√ 1

n

n∑
1=1

(
b̂mii − bmi(validation)i

)
(3.3.22)

In addition for each of the datasets the computational time was recorded.

The results indicate that the predictive power of the reduced-data model (rmse=0.19)

is very similar to the predictive power of the full-data model (rmse=0.16), indicat-

ing that the proposed methodology retains data that explain much of the variance

and omits data that explain little of the variance. However, the results for the com-
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putation time indicate that the reduced model performs much better in terms of

computation time (0.47 sec) as compared to the computation time of the full-data

model (1.75 sec)

Combining the results it can be concluded that using the reduced-data model

contributes to a 73% reduction in the computational time at the expense of a small

decrease in predictive power.

3.4 Conclusions

In this chapter a fully parametric mode regression methodology, based on the

Gamma distribution, is developed and a simple and quick 2-step methodology for the

analysis of big data is proposed. The method is demonstrated through the analysis

of the BMI big data dataset. Initially mode estimation is used for uncovering the

typical pattern of a decade-long BMI dataset and then mode regression is applied

for exploring the effect of a number of factors on the typical BMI. A fully parametric

mode regression method is proposed which provides a quick and meaningful tool for

big data analysis. The method demonstrates both good finite sample and asymptotic

results.



Chapter 4

Binary Quantile Regression and

Variable Selection

4.1 Introduction

Applications of regression models for binary response variables are quite common

and models such as logistic regression and probit regression, are widely used in many

fields and applications. However, these conventional binary regression models, focus

on the estimation of the conditional mean function, which is not always the prime

interest for a researcher. Also, they assume that the errors are independent of the

regressors, which is rarely the case in practice. Quantile regression extends the mean

regression model to conditional quantiles of the response variable and can provide

estimation for a family of quantile functions that describe the entire underlining

distribution of the response variable. Furthermore, quantile regression parameter

estimates are not biased by a location-scale shift of the conditional distribution of

the dependent variable. Quantile regression has been used by many researchers

in different fields and has also been extended to censored data, count data and

proportions.

The potential benefits of binary quantile regression have been recognised by

several authors (e.g. Manski (1975), Horowitz (1992), Kordas (2006) and Benoit

and Van den Poel (2010)) who developed different estimation techniques for the

binary quantile regression model.

71
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The general binary regression model is defined as:

y∗ = x′β + ϵi,

y = I{y∗ ≥ 0},
(4.1.1)

where, y∗i is a continuous, scalar latent variable, y is the observed binary outcome

of this latent variable, I(·) is the indicator function, x is a p×1 vector of explanatory

variables, β is a p×1 vector of parameters and ϵ is a scalar random error term. If the

distribution of ϵ conditional on x is known up to a finite set of parameters, β can be

estimated by different techniques, including maximum likelihood. If it is assumed

that ϵ has a Normal distribution then the binary probit model arises, whereas, if

a logistic distribution is assumed then the model (4.1.1) becomes the binary logit

model. Specifying the distribution of ϵ a priori, will yield inconsistent estimators if

the distribution of ϵ is misspecified. A more flexible model is obtained by imposing

only one assumption on ϵ, the quantile restriction Qτ (ϵi|xi) = 0.

Let Qτ (y
∗|x) denote the conditional quantile of the latent variable y∗ given x,

defined as:

Qτ (y
∗|x) ≡ F−1

y∗ (τ |x) ≡ x′β(τ),

where F (·) is the distribution function of the latent variable y∗ and τ ∈ [0, 1].

By the equivalence property to monotone transformations of the conditional

quantile function (Powell (1986)), the τ th conditional quantile function of the ob-

served variable yi in the model (4.1.1) can be expressed as:

Qτ (y|x) = I{x′β(τ) ≥ 0}. (4.1.2)

Binary quantile regression was first introduced by Manski (1975, 1985). In these

papers he introduced the Maximum Score Estimator (MSE), which requires very

weak assumptions on the relation of errors to regression variables and can accommo-

date for heteroscedasticity of unknown form. Estimates of the regression parameters

in model (4.1.1) can be obtained by:

β̂(τ) = arg max
{β:∥β∥=1}

n∑
i=1

[yi − (1− τ)]I{x′
iβ(τ) ≥ 0}, (4.1.3)
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where, (xi, yi, i = 1, ..., n) is a random sample of observation and 0 < τ < 1 is

the τ th regression quantile. Identification of β is only possible up to a scale, thus

to make estimation possible a scale normalisation is necessary. Manski (1975, 1985)

used the normalisation ||β|| = 1, where || · || denotes the Euclidean norm.

Manski (1985) provided the conditions under which the maximum score and

binary quantile regression estimators are consistent. However, this work faces im-

portant technical drawbacks in both optimising the objective function and inferring

the regression parameters. The rate of convergence of β̂(τ) and its asymptotic distri-

bution were derived by Cavanagh (1987). Kim and Pollard (1990) showed that it is

not asymptotically normal, but the estimator converges in distribution to the maxi-

mum of a complicated multidimensional stochastic process. Furthermore, the model

is nonlinear in parameters thus its estimation is computationally more demanding

than conventional linear quantile regression models. Delgado et al. (2001) attempted

to solve the problem by using sub-sampling methods to form confidence intervals.

They provided simulation evidence that suggests inconsistency of the bootstrap, a

result that was later proved by Abrevaya and Huang (2005).

The maximum score estimator has a slow rate of convergence and a complicated

asymptotic distribution because it is obtained by maximising a step function. To

remedy some of these shortcomings Horowitz (1992) developed a smoothed max-

imum score estimator (SMSE) under a linear median regression specification for

the latent variable in the binary model, which can be computed using standard

optimisation routines. Kordas (2006) extended this estimator to a family of condi-

tional quantile functions giving the opportunity for a complete understanding of the

conditional distribution of the latent response variable given covariates:

β̂smse(τ) = arg max
{β:|β1|=1}

n∑
i=1

[yi − (1− τ)]K

(
x′
iβ(τ)

hn

)
(4.1.4)

where K is a smooth continuous function and hn is a sequence of real positive

constants converging to zero as the sample size increases. Identification of β up

to scale requires that x has at least one component whose probability distribution

conditional on the remaining components is absolutely continuous with respect to the

Lebesgue measure (Manski (1985)). To make estimation possible Horowitz (1992)
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imposes the normalisation, |β1| = 1. This requires to arrange the components of x

appropriately, so that x1, satisfies this condition and accordingly, to re-arrange the

components of β so that β1 is the coefficient corresponding to x1. Kordas (2006)

discusses two possible normalisation methods ||β|| = 1 or |βp| = 1. In this work the

latter normalisation method was chosen.

Horowitz’s approach is computationally simpler than the maximum score esti-

mator. Also, under stronger conditions than in Manski (1975, 1985), Horowitz’s

estimator converges at a faster rate and is asymptotically normally distributed.

Benoit and Van den Poel (2010) provided numerical evidence for the usefulness

of Bayesian quantile regression for binary response models based on the Asymmetric

Laplace distribution.

Although both the maximum score and smoothed maximum score estimators

have desirable asymptotic properties, they are difficult to implement in practice,

and most importantly, they do not necessarily guarantee convergence and a unique

solution. Specifically, the objective function in the maximum score estimator is dis-

continuous (step-function) therefore it cannot be solved using a gradient-based opti-

misation method, whereas, the objective function of the smoothed maximum score

estimator can have several local maxima, therefore stochastic search algorithms are

necessary to identify the global maximum (e.g. the simulated annealing algorithm

suggested by Horowitz (1992)). Even though algorithms for solving both the MSE

and the SMSE are readily available these are not included in standard software

packages. Furthermore, the non-standard structure of their objective functions can-

not always guarantee global convergence. These practical limitations motivate the

development of the estimator described in this chapter. An alternative estimation ap-

proach is proposed, based on a nonlinear asymmetrical weighted loss function, which

can be implemented by an iteratively reweighted least square algorithm (IRLS). The

IRLS algorithm is computationally simple and guarantees convergence to a unique

solution (Kokic et al. (1997)).

The remainder of the chapter is organised as follows. Section 4.2 introduces

the Binary quantile regression, provides the asymptotic properties of the estimator

and describes the proposed estimation approach and the corresponding algorithm
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for binary quantile regression. Section 4.3 introduces the method of variable selec-

tion via the modern adaptive lasso technique and describes how this method can

be implemented in the framework of the binary quantile regression. An estimation

approach and the algorithm for variable selection using a penalised binary quan-

tile regression objective function are provided. Section 4.4 illustrates the proposed

methods through a Monte Carlo study and a real example. Concluding remarks are

provided in Section 4.5. Technical proofs can be found in Appendix A.3.

4.2 Binary Quantile Regression

The estimator in equation (4.1.3) can be viewed as a τ − quantile version of

the general linear binary quantile regression problem (Koenker and Bassett (1978)),

which is obtained by solving:

β̂(τ) = arg min
{β:|β1|=1}

Ru(x) (4.2.5)

where,

Ru(x) =
n∑
i=1

wi(τ)|yi − I{x′
iβ(τ) ≥ 0}|

and

wi(τ) =

 τ if yi − I{x′
iβ(τ) ≥ 0} ≥ 0;

(1− τ) if yi − I{x′
iβ(τ) ≥ 0} < 0.

A smoothed version of the model (4.2.5) can be contracted by replacing the indi-

cator function with a smooth cumulative distribution function (cdf), K(·) (Horowitz

(1992)), such as:

β̂smse(τ) = arg min
{β:|β1|=1}

n∑
i=1

wi(τ)

∣∣∣∣yi −K

(
x′
iβ(τ)

hn

)∣∣∣∣ (4.2.6)

where,

wi(τ) =

 τ if yi −K
(
x′

iβ(τ)

hn

)
≥ 0;

(1− τ) if yi −K
(
x′

iβ(τ)

hn

)
< 0.
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and K(·) satisfies the following properties,

K1 : |K(v) < M | for some finite M and v ∈ (−∞,∞)

K2 : limv→−∞K(v) = 0 and limv→∞K(v) = 1.
(4.2.7)

4.2.1 Estimation of the Smoothed Binary Quantile Regres-

sion Model

In this sub-section an alternative estimation approach for estimating binary quan-

tile regression models is developed, which is simple, is guaranteed to converge to a

unique solution and can be implemented with standard software packages.

In a recent paper, Blevins and Khan (2013) demonstrated that for binary data the

maximum score objective function in equation (4.2.5) is equivalent to the quadratic

loss objective function under the median restriction, i.e for w = 0.5. Since quantile

regression can be viewed as a generalisation of median regression, in this chapter this

work is extended to the estimation of binary regression quantiles using a nonlinear

least asymmetric weighted squares (LAWS) approach. For any given quantile the

estimator in model (4.2.5) is mathematically equivalent to the nonlinear LAWS

estimator. Hence, the binary quantile regression objective function in equation

(4.2.5), under Kordas (2006) normalisation can be written as:

β̂laws(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ) (yi − I{x′
iβ(τ) ≥ 0})2 (4.2.8)

where, β̂laws(τ) = (β̂′, 1)′ and

wi(τ) =
Ru (yi − I{x′

iβ(τ) ≥ 0})
(yi − I{x′

iβ(τ) ≥ 0})2
(4.2.9)

In the case of binary data it can be shown that equation (4.2.9) is equal to

wi(τ) =

 τ if yi − I{x′
iβ(τ) ≥ 0} ≥ 0;

(1− τ) if yi − I{x′
iβ(τ) ≥ 0} < 0.

(4.2.10)

The concept of LAWS was first introduced by Newey and Powell (1987), who

used the so-called regression expectiles to investigate the underlying conditional dis-

tribution. Recently LAWS re-gained interest in the context of semiparametric or
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geoadditive regression (see for example Schnabel and Eilers (2009) and Sobotka and

Kneib (2010)). Breckling and Chambers (1988) proposed a M-quantile regression

based on an asymmetric loss function and Jones (1994) showed that expectiles are

quantiles of a transformation of the original distribution. Nonparametric estimation

of regression expectiles was considered by Yao and Tong (1996) who used a kernel

method based on a locally linear fit. Compared to quantile regression, the LAWS

is reasonably efficient under normality conditions (Efron (1991)). Confidence inter-

vals for expectiles based on an asymptotic Normal distribution were introduced by

Sobotka et al. (2013).

4.2.2 Estimation Algorithm

The algorithm to estimate the model (4.2.8) is a nonlinear weighted least squares

algorithm. However, since the weights are determined by the residuals that vary from

iteration to iteration, a nonlinear IRLS approach is implemented.

To enable estimation, following Horowitz (1992), the standard Normal distribu-

tion, with cdf Φ(·) is taken as the Kernel density and a customary normalisation

βn = 1 is imposed. Then, the nonlinear binary regression estimator is obtained by

minimising the nonlinear smoothed LAWS function (slaws):

β̂slaws(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ)

(
yi − Φ

(
x′
iβ(τ)

hn

))2

(4.2.11)

where, β̂slaws(τ) = (β̂′, 1)′ and

wi(τ) =

 τ if yi − Φ
(
x′

iβ(τ)

hn

)
≥ 0;

(1− τ) if yi − Φ
(
x′

iβ(τ)

hn

)
< 0.

(4.2.12)

The steps of the algorithm for fitting the binary quantile regression model are

described in Algorithm 2. These steps can be easily implemented using standard

software packages such as R or Stata.
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Algorithm 2 Binary quantile regression via nonlinear LAWS

1: Obtain an initial estimate of β by running standard nonlinear OLS regression.

2: Obtain an initial estimate of the residuals ϵ0i = yi − Φ

(
x′

iβ̂(τ)

hn

)
.

3: Construct the weights, w0
i (τ) using equation (4.2.12) and estimate equation

(4.2.11) via nonlinear WLS regression.

4: Obtain new estimates of the residuals, ϵ1i = yi − Φ

(
x′

iβ̂slaws(τ)

hn

)
.

5: Update the weights to obtain w1
i (τ) using equation (4.2.12).

6: Estimate equation (4.2.11) by nonlinear WLS regression.

7: Repeat steps 4 to 6 until convergence.

4.2.3 Asymptotic Properties

Regarding the asymptotic properties of the estimator, it can be shown that,

under the following assumptions, Theorem 4.2.1 can be established.

Assumption 1. The vectors (x′i, ϵ
′
i) are identically and independently distributed

random variables.

Assumption 2. Fϵi(·) is a distribution function with F (0) = τ and Qτ (ϵi|xi) = 0

for τ ∈ (0, 1).

Assumption 3. βn ∈ B, the closure of an open convex set of ℜp−1.

Assumption 4. The support of xi is not contained in any proper linear subspace

of ℜp.

Assumption 5. The density function, fϵi|xi(·) is positive in a neighborhood of 0.

Assumption 6. The weights wi(τ) are independent of the regression parameters.

Assumption 7. The n vectors xj, j = 1...p− 1 are independently distributed with

the first component of xi1 ≡ 1 for all i almost surely.

Assumption 8. 0 < P (yi = 1|xi) < 1 for almost every xi.

Theorem 4.2.1. (proof is provided in Appendix A.3)

If hn → 0, then β̂(τ)− β0(τ)
p→ 0.

Furthermore, under regularity conditions identical to the ones in Horowitz (1992),

the estimator enjoys asymptotic properties similar to those of the maximum score

estimator Manski (1975, 1985). In particular, the rate of convergence can be as fast

as the O(n−1/3) and it has a non-Gaussian limiting distribution.
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The slower rate of convergence relative to the smoothed maximum score estima-

tor in Horowitz (1992) is due to a bias condition, where the bias of the estimator

converges at the rate of hn. This is in contrast to the rate of h2n for the smoothed

maximum score estimator. However, according to Blevins and Khan (2013) this bias

condition can be easily corrected, e.g. by using a different kernel function to the

Normal cdf, or via other bias-reducing mechanisms, such as jackknifing.

4.3 Variable Selection via Penalised Binary Quan-

tile Regression

Variable selection plays an important role in the model-building process. A com-

mon problem when constructing a predictive model is the large number of candidate

predictor variables. Identifying the smallest set of relevant variables has many ad-

vantages: (i) the process is cost-effective, usually simpler, and potentially faster, (ii)

it improves the prediction performance of the predictors (iii) knowledge about the

relevant variables can enhance the understanding of the underlying problem. Fur-

thermore, multicollinearity and overfitting are areas of concern when a large number

of independent variables are incorporated in a regression model.

The problem of overfitting also arises in quantile regression models. First, Koenker

(2004) developed a L1-regularisation quantile regression method to shrink individual

effects in longitudinal data towards a common value and Li and Zhu (2008) consid-

ered the L1-norm (LASSO) regularised quantile regression. The lasso is a regularised

technique for simultaneous estimation and variable selection (Sobotka et al. (2013)).

Even though the lasso is generally able to provide consistent variable selection and

optimal prediction, scenarios exist in which the lasso selection cannot be consistent.

To solve this problem Zou (2006) developed a new version of the lasso, the

adaptive lasso. This is a weighted L1 penalty which allows different penalisation

parameters for different regression coefficients. The weights are determined by an

initial estimator, β̂(τ), e.g. the classical quantile regression estimator, and are used

to construct weights based on the importance of each predictor. The most important

advantage of the adaptive lasso is its oracle property, which estimators based on the
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classical lasso do not enjoy. The oracle property requires that as the sample size

increases the coefficient of non-relevant terms approaches zero and the probability

of selecting the correct model goes to 1. Also, it requires that consistent model

selection does not come at the expense of efficiency: the asymptotic distribution

of the non-zero components of β̂ must be the same as the “oracle model”, when y

is regressed only on the relevant variables. Wu and Liu (2009) considered variable

selection through penalised quantile regression with adaptive lasso penalties in the

framework of a linear model.

It should be noted that in Bayesian terms, the lasso procedure can be interpreted

as a posterior mode estimate under independent Laplace priors for the regression

coefficients (Tibshirani (1996), Park (2008)). Based on this principle Li (2010) pro-

posed a Bayesian regularized quantile regression model by assuming that the model

residuals come from the skewed Laplace distribution. The Laplace distribution has

the attractive property that it can be represented as a scale mixture of normals

with an exponential mixing density which leads to the development of a hierarchical

Bayesian interpretation of the Lasso, which can be easily estimate by a Gibbs sam-

pling algorithm. Benoit (2013) extended this work to bayesian lasso binary quantile

regression.

In this section the modern adaptive lasso variable selection technique is extended

to Binary quantile regression, in the framework of the nonlinear LAWS approach.

Suppose that β̂(τ) is a consistent estimator of β(τ), the binary quantile regression

estimator in equation (4.2.5). Then the τ − quantile version of the adaptive lasso

binary quantile regression estimator, β̂
∗
, is given by:

β̂
∗
(τ) = arg min

{β:|β1|=1}

n∑
i=1

wi(τ) |yi − I{x′
iβ(τ) ≥ 0}|+ λn

p∑
j=1

wlassoj

∣∣βj∣∣ (4.3.13)

where, wi(τ) is defined in equation (4.2.10), wlasso = 1

|β̂(τ)|
is a known weights

vector (Zou (2006)) and λ is a nonnegative regularisation parameter which controls

the level of penalisation, with greater values implying more aggressive model selec-

tion. The second term in equation (4.3.13) is the adaptive lasso binary quantile

regression penalty function, that is crucial for the success of the lasso.
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4.3.1 Estimation Algorithm

In this sub-section the estimation approach to obtain the penalised binary quan-

tile regression estimator in equation (4.3.13) is presented. The approach is simple

and has the advantage of being implementable in standard software packages such

as R or Stata.

Like the estimator for non-penalised binary quantile regression, developed in

section 4.2, the estimator of the adaptive lasso binary quantile regression in equation

(4.3.13) is mathematically equivalent to the penalised nonlinear LAWS estimator

given:

β̂
∗
adapt.lassolaws

(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ) (yi − I{x′
iβ(τ) ≥ 0})2 + λn

p∑
j=1

wlassoj

∣∣βj∣∣
(4.3.14)

where, β̂laws(τ) is a consistent estimator of β(τ) in equation (4.2.8), wi(τ) is

defined as before, wlasso = 1

|β̂laws(τ)|
and λ is a nonnegative regularisation parameter.

Again, as in the non-penalised binary quantile regression estimator, to enable

estimation the Indicator function is replaced by the standard Normal kernel den-

sity, Φ(·). Then, the nonlinear adaptive lasso smoothed binary quantile regression

estimator is defined as:

β̂
∗
adapt.lassoslaws

(τ) = arg min
{β:∥βp∥=1}

n∑
i=1

wi(τ)

(
yi − Φ

(
x′
iβ(τ)

hn

))2

+λn

p∑
j=1

wlassoj

∣∣βj∣∣
(4.3.15)

where, wi(τ) is defined in equation (4.2.12), β̂slaws(τ), is a consistent estimator

of the binary quantile regression estimator in equation (4.2.11), wlasso = 1

|β̂slaws(τ)|
and λ is a nonnegative regularisation parameter.

The estimator can be obtained by an iteratively re-weighted least square al-

gorithm (IRLS). The steps of the algorithm for fitting the adaptive lasso binary

quantile regression model are described in Algorithm 3.

Choice of λ

The selection of the tuning parameters λ should be based on a data-driven ap-

proach to allow for increasing flexibility with the sample size. The most common
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Algorithm 3 Variable Selection via Penalised Binary quantile regression

1: Obtain an initial estimate for non-penalised binary quantile regression, β̂slaws(τ),

via Algorithm 2.

2: Calculate wlasso = 1

|β̂slaws(τ)|
.

3: Use the initial estimates β̂slaws(τ) to obtain an initial estimate of the residuals

ϵ0i = yi − Φ

(
x′

iβ̂slaws(τ)

hn

)
.

4: Construct the initial weights, w0
i (τ) using equation (4.2.12).

5: Use wlasso and w0
i (τ) to optimise the objective function in equation (4.3.15) via

direct numerical optimisation.

6: Obtain new estimates of the residuals, ϵ1i = yi − Φ

(
x′

iβ̂salaslaws(τ)

hn

)
.

7: Update the weights to obtain w1
i (τ) using equation (4.2.12).

8: Re-estimate equation (4.3.15) via direct numerical optimisation.

9: Repeat steps 6 to 8 until convergence.

way for its selection is the method of K-fold cross-validation. This is a measure of the

out-of-sample estimation error under different configurations for tuning parameters,

without collecting additional data.

The first step of the approach involves selecting a grid of candidate values for

λ and dividing the data into K roughly equal folds. For each candidate value of λ

the model is fitted K-1 times, each time leaving out one of the folds and the model

prediction error of computed using the Kth fold by:

Ek(λ) =
∑

i∈Kthfold

(
yi − ŷ(−i)(λ)

)2
, (4.3.16)

where, ŷ(−i)(λ) is the fitted value from the model that excludes the fold containing

i.

This gives the cross-validation error

CV (λ) =
1

K

K∑
k=1

Ek(λ) (4.3.17)

The selected tuning parameter is the one that minimises the cross-validation

error.
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4.4 Numerical Experiments

In this section the proposed approach for binary quantile regression and variable

selection is demonstrated through two simulated and one real examples. The first

simulation example is carried out to examine the performance of the proposed binary

quantile regression estimator, using a nonlinear least asymmetric weighted squares

(LAWS) approach. The second simulation example demonstrates the proposed ap-

proach for variable selection in binary quantile regression models. The real example

is based on the widely studied transport-choice dataset described in Horowitz (1993).

All programs were written and executed in the free statistical package R.

4.4.1 Simulation Example 1 - Binary Quantile Regression

In the first simulation experiment the following model was considered for simu-

lating data:

y∗i = β0 + β1x1i + β2x2i + ϵi, (4.4.18)

where xpi ∼ N(0, 1), i = 1, ..., n and n = 500 and β = (−0.1,−1, 1).

For the model error ϵi the following three specifications were considered:

• a homoscedastic symmetric error specification: ϵi ∼ N(0, 1).

• a homoscedastic asymmetric error distribution: ϵi ∼ χ2(1), minus its median.

• a heteroscedastic error distribution: ϵi ∼ (2 + x1i)N(0, 1).

The model parameters were estimated using the proposed binary quantile re-

gression approach. For each case 150 Monte Carlo simulations were run. Table 4.1

summarises the estimated parameters and the standard errors for β0 and β1 under

all three error specifications1. The results of the analysis indicate that even in a

relatively small sample size the estimator works relatively well, especially in the ho-

moscedastic cases. Therefore, it can be concluded that the proposed binary quantile

1The value of β2 has been normalised to 1.
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Table 4.1: Simulation Example 1 - Estimated Parameters and (Standard Deviations)

Normal Heteroscedastic Asymmetric

τ β0 β1 β0 β1 β0 β1

0.10 -1.21 -0.97 -2.09 -1.90 -0.52 -1.01

(0.05) (0.05) (0.11) (0.12) (0.03) (0.04)

0.25 -0.66 -0.91 -1.1 -1.36 -0.33 -0.99

(0.04) (0.05) (0.06) (0.09) (0.03) (0.04)

0.50 -0.09 -0.89 0.01 -0.83 -0.02 -0.94

(0.03) (0.04) (0.04) (0.05) (0.03) (0.04)

0.75 0.48 -0.90 0.96 -0.49 0.61 -0.86

(0.04) (0.04) (0.05) (0.05) (0.04) (0.05)

0.90 1.01 -0.94 1.87 -0.27 1.54 -0.87

(0.05) (0.05) (0.08) (0.07) (0.07) (0.06)

regression estimator is a viable alternative to the smoothed maximum score estima-

tor given that its implementation simplicity does not come at the expense of finite

sample performance.

4.4.2 Simulation Example 2 - Variable Selection

In this sub-section the performance of the proposed penalised binary quantile

regression approach is investigated through a simulated example.

In this example data was simulated from the following regression model:

y∗i = x′
iβ(τ) + ϵi, (4.4.19)

where xi ∼ N(0, 1), i = 1, ..., n, n = 200 and

β = (0.5, 1.5, 0, 0, 2, 0,−1, 1)

.

20 validation and 20 training and 200 testing observations were simulated from
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the model and three homoscedastic and one heteroscedastic specifications for the

model error ϵi were considered,

• a homoscedastic symmetric error specification: ϵi ∼ N(0, 1)

• a Laplace distribution: ϵi ∼ Laplace(0, 1)

• a mixture of two Normal distributions: ϵi ∼ 0.1N(0, 1) + 0.9N(0, 9)

• a heteroscedastic error distribution: ϵi ∼ (2 + x1i)N(0, 1)

The model was fitted using the generated data set. The experiment was repeated

100 times. All the penalised quantile regression estimates were obtained via direct

numerical optimisation using the R function optim. The penalty parameter in lasso

λ was chosen using the a cross-validation method.

In the analysis the estimated parameters were compared to the true parame-

ter values. For every data generating process the bias was calculated, which was

averaged over the 100 generated datasets from each scenario.

The results of the simulations are summarised in Table 4.2. It can be observed

that, in general, the proposed method performs well when comparing the estimates

β̂j with the true values βj as the majority of the estimated biases are around or

smaller than |0.1|.

4.4.3 Work-trip Mode-Choice Data Example

In order to assess the practical applicability of the proposed approach the method

was tested on a previously published maximum score dataset (Horowitz (1993)).

Mode choice modelling and prediction relate closely to transportation policies and

can be useful for estimating travel demand and for mitigating traffic congestion.

The dataset contains 842 observations sampled randomly from the Washington, D.C.

area transportation study for each of the following four dependent variables: (i) the

number of cars owned by traveller households, CARS, measured in car units; (ii)

the transit out-of-vehicle travel time minus automobile out-of-vehicle travel time,

DOVTT, measured in minutes; (iii) the transit in-vehicle travel time minus automo-

bile in-vehicle travel time, DIVTT, also measured in minutes; and (iv) the transit
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Table 4.2: Simulation Example 2 - Estimated Bias for Model Parameters

τ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

Normal (0,1)

0.10 0.30, 0.09 0.03 -0.004 0.05 -0.02 -0.03

0.25 0.08 0.03 -0.0009 -0.02 0.04 -0.01 -0.04

0.5 -0.05 0.01 -0.02 -0.03 0.008 -0.02 0.009

0.75 -0.09 -0.02 -0.01 0.007 0.07 -0.03 -0.04

0.90 -0.26 0.099 0.008 0.003 0.11 -0.007 -0.06

Laplace(0, 1)

0.10 0.08 0.08 0.04 0.05 0.09 -0.004 -0.04

0.25 -0.01 -0.08 -0.07 -0.01 -0.08 0.009 0.001

0.5 -0.003 -0.03 -0.04 -0.04 -0.02 -0.02 -0.03

0.75 0.06 0.02 -0.07 -0.06 0.04 -0.1 -0.11

0.90 -0.07 -0.12 -0.08 -0.11 -0.09 -0.03 -0. 13

Normal mixture

0.10 0.34 0.09 -0.01 -0.04 0.20 -0.009 -0.09

0.25 0.18 0.06 -0.01 0.02 0.09 -0.004 -0.06

0.5 -0.04 0.0008 -0.04 -0.01 0.02 -0.03 -0.04

0.75 -0.18 0.04 -0.03 -0.01 0.04 -0.03 -0.08

0.90 -0.35 0.02 -0.04 -0.04 0.09 -0.02 -0.06

Heteroscedastic model

0.10 0.05 0.40 0.06 -0.08 0.09 -0.05 -0.06

0.25 0.12 0.05 0.02 0.005 -0.22 -0.01 0.08

0.50 -0.29 -0.22 -0.03 -0.06 -0.17 -0.04 -0.02

0.75 0.03 0.03 -0.05 -0.07 0.01 -0.09 0.10

0.90 -0.10 -0.03 -0.09 0.16 0.13 -0.0002 -0.17

fare minus automobile travel cost, DCOST, measured in US dollars. The depen-

dent variable of the resulting binary choice model was CHOOSE, which equals to

1 if the car is used and 0 otherwise, representing the latent variable “willingness to

use a car”. All continuous variables were standardised to have zero mean and unit
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standard deviation for better comparison with results in the literature. Scale nor-

malisation is achieved by setting the coefficient of DCOST equal to 1, as in Horowitz

(1993), to enable the comparison of the obtained results to previous research.

Table 4.3 provides estimates of the model parameters for the median case (τ =

0.5) as well as a comparison with the results obtained by three different estima-

tion approaches, namely the smoothed maximum score estimator (Horowitz (1993)),

a mixed integer optimisation (MIP) method (Florios and Skouras (2008)) and a

Bayesian binary quantile regression (BBQR) approach based on the asymmetric

Laplace distribution (Benoit and Van den Poel (2010)).

Table 4.3: Mode-Choice Data: Model Parameters Estimates

AUTHOR INTERCEPT CARS DOVTT DIVTT DCOST Method

Horowitz (1993) -0.276 0.052 0.011 0.005 1 MSCORE

Florios and Skouras (2008) 5.122 3.916 0.962 0.401 1 MIP

Benoit and Van den Poel(2010) 4.825 3.375 1.018 0.282 1 BBQR

Current study -1.493 3.545 0.455 0.274 1 LAWS

The analysis suggests that the results obtained by Horowitz (1993) are quite

different from the ones obtained by Florios and Skouras (2008), and Benoit and

Van den Poel (2010). According to Horowitz (1993), DCOST and CARS are the

most important variables influencing the work-trip mode choice, with DCOST being

by far the most important variable. In contrast, the results obtained by the other two

methods, which are very similar between them, show that the variable CARS is by

far the most important variable with the other variables having a small impact. The

difficulty in computing maximum score estimates, discussed in Section 4.1, has been

identified by many authors. In the context of computing estimators such algorithms

are problematic because the statistical properties of such procedures can differ from

those of exact estimates, e.g. as the ones provided by (Florios and Skouras (2008)).

The proposed LAWS approach delivers very similar estimates to the ones ob-

tained both under MIP and BBQR. Furthermore, the technique is able to provide a

more in-depth view of the relationship of the dependent variable and the covariates,

as it allows to estimate the relationships at different parts of the distribution of
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the response variable. Figure 4.1 illustrates the effect of covariates on the response

variable at 0.10, 0.25, 0.50 , 0.75 and 0.90 quantile levels. The solid line represents

the point estimates of the regression coefficients for the different quantiles and the

dotted lines represent the upper and lower levels of a 95% confidence interval.

Figure 4.1: Mode-choice Dataset: Quantile Curves for Model Parameters

These results indicate that the effect of CARS and DOVTT on the unobserved

willingness to take the car become stronger for higher conditional quantiles. This

means that the effect of these variables is not constant across various quantiles of

the latent variable. Specifically, commuters who have a low willingness to use the

car are less affected by the number of cars whereas commuters with high willingness

to use a car are more affected by the number of cars. Furthermore, commuters

with increasing willingness to use a car are more affected by increasing out-ofvehicle

trasportation time. In addition the results indicate that CARS is the most important

variable as it has three times higher effect than the second variable, followed by the

variable DCOST. The effect of DOVTT on the unobserved willingness to take the

car is much lower than both CARS and DCOST, whereas, the respective effect of

DIVTT is very small as compared to all the other variables.
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4.5 Conclusions

In this chapter an alternative estimation approach to binary quantile regression

and variable selection is proposed. The approach is based on a nonlinear asymmet-

rical weighted loss function which can be implemented by an iteratively reweighted

least square algorithm (IRLS). Existing algorithms for fitting quantile regression

models are not computational straight forward, hence they do not necessarily guar-

antee convergence and a unique solution. Also, due to their non-standard objective

functions they cannot be computed using standard software packages. The main

advantage of the proposed approach is that the IRLS algorithm is guaranteed to

converge to a unique solution, whereas its computational simplicity makes it an at-

tractive alternative to conventional methods. The results of the simulation study

indicate that the ease of implementation does not come at the expense of finite

sample performance.



Chapter 5

Conclusions and Future Work

5.1 Summary

Despite being an important measure of central tendency with potential benefits

in data analysis, mode, and specifically mode regression, has been neglected in the

statistical literature. This is mainly due to the lack of tools for implementing the

existing mode regression methods, but also due to the limitations of the proposed

estimators in terms of consistency and accuracy. A similar phenomenon is observed

in the area of binary quantile regression, where, despite the popularity of binary

models, there are no simple estimation techniques available that can be implemented

with standard statistical packages.

This thesis presented a number of new regression methods for mode and binary

quantile regression. The main objective of this work was to develop models which

are simple, perform well in finite samples, have good large sample properties and

can be implemented using standard statistical software. Furthermore, the thesis

demonstrated the applicability of mode estimation and mode regression in big data

analysis, which is currently a topic of increasing interest and importance in many

fields of the global economy, for example, medicine, market research, finance, mete-

orology, environment and biology.

A Bayesian approach to mode regression was described in Chapter 2, where three

distinct methods of estimation were presented. The first method involved a para-

metric Bayesian mode regression method, which was based on a uniform likelihood

90
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function. The other two methods approached the problem in a nonparametric way

with the aim of increasing flexibility and addressing the possibility of misspecifica-

tion. The first method aimed at relaxing the distributional assumption on the prior

of σ by employing a Dirichlet process prior. The second method aimed at avoiding

the critical dependence on the parametric uniform distribution using the method

of empirical likelihood, which combines the reliability of nonparametric methods

with the flexibility and effectiveness of the likelihood approach. A fully parametric

mode regression method, based on the Gamma density was introduced in Chapter

3. In addition, as it is always beneficial to demonstrate the applicability of a new

approach within a valid domain, Chapter 3 also demonstrated how mode estimation

and mode regression can be used for big data analysis through the analysis of the

Health Survey for England data for the years 1997-2010. The aim of the analysis

was to explore the effect of socio-economic characteristics and behavioural habits of

adults in England on the typical Body Mass Index (BMI).

The proposed method for binary quantile regression was presented in Chapter

4. Although binary quantile regression has been previously studied in the literature,

the existing methods involve complex estimation techniques. In contrast, the pro-

posed method is simple and can be implemented with standard statistical packages.

Furthermore, the method has been extended to accommodate variable selection via

the modern adaptive lasso technique.

5.2 Discussion and Future Research Directions

The work presented in Chapters 2 and 3 paves the way for future research in the

area of mode regression, and especially towards its application to big data analysis.

The Bayesian mode regression approach described in Chapter 2 was based on

a parametric mode regression, which may lead to inconsistent estimators due to

misspecification. Even though two new nonparametric approaches were presented

in this chapter, there is room for further work in this area. Thompson et al. (2010)

presented a nonparametric alternative to the Bayesian parametric quantile regres-

sion model of Yu and Moyeed (2001), using natural cubic splines, which provides
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more flexible modelling. Similarly, developing spline-based nonparametric mode re-

gression could be an extension of the proposed Bayesian inference of parametric

mode regression.

Furthermore, an additional limitation of the proposed Bayesian inference method

is the dependence on prior selection. Prior selection is very important in Bayesian

modelling; the appropriate choice of priors, however, is a challenging task. Chapter

2 provided a number of suggestions for suitable priors for the model parameters β

and σ, however, alternative options could further improve the performance of the

model.

In Chapter 3 the proposed new fully parametric mode regression model is based

on the Gamma distribution. However, the choice of the Gamma distribution is not

binding for mode regression modelling. Extensions of the model can investigate

the exploitation of other distributions for the response variable y which may allow

increased flexibility and improved applicability. A natural first choice is the flexible

generalised Gamma distribution, which is a generalisation of the two-parameter

Gamma distribution. However, flexible mixtures of Gamma distributions are also

worth exploring.

In addition, the inference approach described in Chapter 3 can be extended to

a Bayesian framework. Put in a Bayesian framework, this approach will inherit the

merits of mode regression in a modelling approach that takes into consideration

uncertainty when making predictions.

Finally, an additional area that has not been addressed in the existing literature

is variable selection for mode regression models. The proposed inference methods,

both from the classical and the Bayesian perspective, can be extended to incorporate

variable selection techniques. The application of modern adaptive lasso techniques,

but also conventional methods based on either the Bayesian or the Akaike Informa-

tion Criterion are available options for further research.

Chapter 4 described a new estimation technique for binary quantile regression for

modelling a single quantile. Koenker (2005) notes that, in the case of binary response

variables, the conditional probabilities cannot be estimated from a single binary

quantile regression, thus the estimation of multiple conditional quantile functions is
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of particular importance. Empirical likelihood provides the means for simultaneous

estimation of multiple binary regression quantiles. Yang and He (2012) presented

a method for empirical likelihood estimation for quantile regression models, which

can form the basis of further research in the area of binary quantile regression.

In this paper, Yang and He present the advantages of simultaneous estimation of

multiple quantiles: the approach avoids the problem of crossing quantiles but also

allows quantiles to share strength between them, thus leading to more accurate

estimation. Furthermore, approaching the problem from the Bayesian perspective

has the additional advantage of exploring commonality across quantiles through the

use of informative priors.



Bibliography

Abrevaya, J. and Huang, J. (2005). On the bootstrap of the maximum score esti-

mator. Econometrica, 73(4):1175–1204.

Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous

response data. Journal of the American statistical Association, 88(422), 669-679.

Amemiya, T. (1985). Advanced econometrics. Harvard university press.

Benoit, D. F. and Van den Poel, D. (2010). Binary quantile regression: a bayesian

approach based on the asymmetric laplace distribution. Journal of Applied Econo-

metrics, 27(7):1174–1188.

Berlinet, A., Vajda, I., and Van der Meulen, E. (1998). About the asymptotic

accuracy of barron density estimates. Information Theory, IEEE Transactions,

44(3):999–1009.

Bickel, P. and Fan, J. (1996). Some problems on the estimation of unimodal densities.

Statistica Sinica, 6:23–46.
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Appendix A

Proofs of Theoretical Results

A.1 Proofs of Main Results: Chapter 2

Proof of theorem 2.2.1

The γth moments of marginal posterior distribution of β is given by

E[|β|γ|σ,y] =
∫

1

(2σ)n

n∏
i=1

I[|yi − x′iβ| < σ]π(β, σ)dβ dσ.

Note that
∏n

i=1 I[|yi − x′iβ| < σ] provides joint bands for all components βj

(j = 0, 1, ..., p) of β. Assume 0 < |βj| < Bj < ∞ (j = 0, 1, ..., p), even if some of

|yi − x′iβ| < σ are true and some are not.

Therefore,

E[|β|γ|σ,y] =
∫

1

(2σ)n
dσ

∫ B0

−B0

∫ B1

−B1

...

∫ Bp

−Bp

p∏
j=0

|βj|rj π(β, σ) dβ,

which is clearly finite.

Similarly, for the γth moment of marginal posterior of σ with γ < n is defined

as E[|σ|γ|β,y], and can be provided finite in the same way.

Proof of theorem 2.3.1

We will show Theorem 2.3.1 by applying a generic consistency lemma, Lemma 4.1,

of Lu et al. (2007). For convenience of statement, we defineRn(λ,β) ≡ n−1
∑n

i=1 log(1+

λ′g(Xi, Yi,β)) andR(λ,β) ≡ E{log(1+λ′g(Xi, Yi,β))}. Then note thatRn(λ̂(β),β) =

−Γn(β) and β̂ = argminβ∈BRn(λ̂(β),β), where λ̂(β) and Γn(β) are defined in

(2.3.15) and (2.3.16), respectively, and B is a compact subset of Rp containing the
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true parameter vector β0 as an interior point. Further, we denote byHn(λ,β) for the

left-hand side of (2.3.15) divided by n, that is Hn(λ,β) ≡ n−1
∑n

i=1{g(Xi, Yi,β)/[1+

λ′g(Xi, Yi,β)]}, and hence for any β ∈ B, λ̂(β) is the solution of λ to the equation

Hn(λ,β) = 0.

We will need the following lemma on the continuity for the quantities related.

Lemma A.1.1. Under Assumptions 2 and 3, we have the following results:

(L1) E{g(X,Y,β)} and E{g(X, Y,β)g(X, Y,β)′} are twice continuously differ-

entiable with respect to β.

(L2) There exist p dimensional compact neighborhoods Cλ and Cβ around 0, in

which H0(λ,β) = E[g(X,Y,β)/{1 + λ′g(X, Y,β)}] is twice continuously differen-

tiable in β ∈ Cβ and λ ∈ Cλ, and E[g(X, Y,β)g(X,Y,β)′/{1 + λ′g(X,Y,β)}] is

uniformly continuous with respect to β ∈ Cβ and λ ∈ Cλ.

The proof of this lemma is similar to that of Lemma A.1 of Yang and He (2012,

pp. 1121). We only need to notice g(Xi, Yi,β) = (Yi−β′Xi)I{|Yi−β
′
Xi|<σ}

Xi and ap-

ply Assumptions 2 and 3. As an illustration, we provide the proof for E[g(Xi, Yi,β)]

here. Note that

Eg(Xi, Yi,β) = EX

∫
(y − β′X)I{|y−β′

X|<σ}XfX(y)dy

= EX

∫ β′
X+σ

β′
X−σ

(y − β′X)XfX(y)dy,

where EX stands for the expectation with respect to the distribution GX of the

random variable X. Then the first order derivative of Eg(Xi, Yi,β) with respect to

β, through simple algebraic calculations, is

∂Eg(Xi, Yi,β)

∂β
= EX{σX(fX(β

′X+σ)−fX(β′X−σ))−XX ′(FX(β
′X+σ)−FX(β′X−σ))}.

Now by Assumptions 2 and 3, clearly
∂Eg(Xi,Yi,β)

∂β
is further differentiable with respect

to β. The remaining parts of this lemma can be proven similarly with details omitted.

‡

We further define λ0(β) to be the solution of λ to the equation H(λ,β) ≡

E{g(Xi, Yi,β)/[1 + λ′g(Xi, Yi,β)]} = 0. By Lemma A.1.1, Assumption 5 and the
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implicit function theorem, λ0(β) uniquely exists in the neighbourhood Cλ of 0 ∈

Rp. By this uniqueness, as Eg(X, Y,β0) = 0, we have λ0(β0) = 0. Therefore it

follows that R(λ0(β0),β0) = E{log(1 + (λ0(β0))
′g(Xi, Yi,β0))} = 0. Note that

under Assumptions 1–5, β0 = argminβ∈BR(λ0(β),β).

To show the consistency of β̂ to β0, we will apply a lemma below that is a

special case of Lemma 4.1 of Lu et al. (2007). Here we need to define a uniform

metric ∥ · ∥B for the distance of any continuous function λ : B 7→ Rp from λ0(·), that

is ∥λ(·) − λ0(·)∥B = supβ∈B ∥λ(β) − λ0(β)∥ with ∥ · ∥ standing for the Euclidean

norm of Rp.

Lemma A.1.2. Suppose β0 ∈ B (a compact subset of Rp) satisfies R(λ0(β0),β0) =

infβ∈BR(λ0(β),β), and that the following hold.

(i) Rn

(
λ̂(β̂), β̂

)
≤ infβ∈BRn

(
λ̂(β),β

)
+ oP (1).

(ii) For all δ > 0, there exists ϵ(δ) > 0 such that

inf
∥β−β0∥>δ

R (λ0(β),β) ≥ R (λ0(β0),β0) + ϵ(δ).

(iii) Uniformly for all β ∈ B, R (λ(β),β) is continuous [with respect to the uniform

metric ∥ · ∥B] in λ(β) at λ0(β).

(iv) ∥λ̂(·)− λ0(·)∥B = oP (1).

(v) For all {δn} with δn = o(1),

sup
β∈B

sup
∥λ(β)−λ0(β)∥B≤δn

|Rn (λ(β),β)−R (λ(β),β)| = oP (1).

Then β̂ − β0 = oP (1).

The proof of this lemma is omitted; see that of Lemma 4.1 of Lu et al. (2007,

pp. 186).

The consistency of β̂ can be proven by checking the conditions in Lemma A.1.2

step by step: As β̂ and β0 are the minimizers of Rn(λ̂(β),β) and R(λ0(β),β),
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respectively, (i) and (ii) hold obviously. By noting Lemma A.1.1, simple algebraic

calculations lead to

R(λ,β) = EX

∫ β′
X+σ

β′
X−σ

log{1 + λ′X(y − β′X)}fX(y)dy, (A.1.1)

H(λ0(β),β) = EX

∫ β′
X+σ

β′
X−σ

X(y − β′X)

1 + (λ0(β))′X(y − β′X)
fX(y)dy = 0, (A.1.2)

and therefore (iii) also holds clearly by the following fact: as ∥λ(·)− λ0(·)∥B → 0,

sup
β∈B

|R(λ(β),β)−R(λ0(β),β)|

≤ sup
β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[log{1 + (λ(β))′X(y − β′X)} − log{1 + (λ0(β))
′X(y − β′X)}] fX(y)dy

∣∣∣∣∣
≤ sup

β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[
(λ(β)− λ0(β))

′X(y − β′X)

1 + (λ0(β))′X(y − β′X)

− (λ(β)− λ0(β))
′XX ′(y − β′X)2(λ(β)− λ0(β))

[1 + (λ0(β) + ξ(λ(β)− λ0(β)))′X(y − β′X)]2

]
fX(y)dy

∣∣∣∣
≤ ∥λ(·)− λ0(·)∥2B sup

β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[
∥XX ′∥(y − β′X)2

[1 + (λ0(β))′X(y − β′X)]2

]
fX(y)dy

∣∣∣∣∣→ 0,

(A.1.3)

where |ξ| < 1, the last inequality follows from equality of (A.1.2), and the last limit

from the compactness of B together with the continuity of the integration part as

a function of β on the RHS of the last inequality in (A.1.3). (iv) follows from a

standard argument of the Z-estimator λ̂(β), which is the solution to Hn(λ,β) = 0,

uniformly converging to λ0(β), which is the solution to H(λ,β) = 0, in Chapter

5.1 of Van der Vaart (1998); see also the argument on uniform convergence in the

second paragraph on Yang and He (2012, pp. 1124). For (v), letting δn = o(1) and

∥λ− λ0∥B ≤ δn, we notice that

Rn(λ(β),β)−R(λ(β),β)

= {Rn(λ(β),β)−Rn(λ0(β),β)}+ {Rn(λ0(β),β)−R(λ0(β),β)}

+ {R(λ0(β),β)−R(λ(β),β)}

= I + II + III,
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where by (A.1.3) III tends to 0, uniformly for β ∈ B and with λ satisfying ∥λ −

λ0∥B ≤ δn. That I tends to 0, uniformly for β ∈ B and λ with ∥λ− λ0∥B ≤ δn, can

be proven in the same way as for III, because in fact E[I] = III; II can also be

proven easily to tend to zero.

Proof of theorem 2.3.2

Based on the consistency in Theorem 2.3.1, Theorem 2.3.2 can be proven sim-

ilarly to Theorem 3.2 of Yang and He (2012) by noticing the difference of mode

regression in this paper from quantile regression in Yang and He (2012). First, un-

der Assumptions 2–4, it is easy to show as done in Lemma A.5 of Yang and He

(2012) that

(C1)∥
∑n

i=1[g(Xi, Yi,β) − Eg(Xi, Yi,β)]∥ = Op(n
1/2), uniformly in β in a o(1)-

neighborhood of β0.

(C2) ∥
∑n

i=1[g(Xi, Yi,β)g(Xi, Yi,β)
′ − Eg(Xi, Yi,β)g(Xi, Yi,β)

′]∥ = op(n), uni-

formly in β in a o(1)-neighborhood of β0.

(C3) ∥
∑n

i=1[g(Xi, Yi,β)−Eg(Xi, Yi,β)−g(Xi, Yi,β0)+Eg(Xi, Yi,β0)]∥ = op(n
−1/2),

uniformly in β for β − β0 = Op(n
−1/2).

These (C1)-(C3) together with Assumptions 1–5 ensure (2.3.17) holds true (c.f.,

Lemma 6 of Molanes Lopez et al. (2009)).

Further, maximizing the main terms on the RHS of (2.3.17) with respect to β,

we have

β̂ − β0 = n−1/2(V ′
12V

−1
11 V12)

−1V ′
12V

−1
11 Wn + oP (n

−1/2), (A.1.4)

where β̂ is the maximum empirical likelihood estimator of β0.
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Then it follows from (2.3.17) and (A.1.4) that

π(β|data) = π(β)R(β)

= π(β)× exp
{
−n
2
(β − β0)

′V ′
12V

−1
11 V12(β − β0) + n1/2(β − β0)

′V ′
12V

−1
11 Wn

−1

2
W ′
nV

−1
11 Wn + oP (1)

}
= π(β)× exp

{
−n
2
(β − β0)

′V ′
12V

−1
11 V12(β − β0) + n(β − β0)

′V ′
12V

−1
11 V12(β̂ − β0)

−1

2
W ′
nV

−1
11 Wn + oP (1)

}
= π(β)× exp

{
−n
2
(β − β0)

′V ′
12V

−1
11 V12(β − 2β̂ + β0)−

1

2
W ′
nV

−1
11 Wn + oP (1)

}
= π(β) exp{−n

2
(β − β̂)′In(β − β̂) +Qn}, (A.1.5)

where, by (A.1.4),

Qn = −n
2
(β̂ − β0)

′V ′
12V

−1
11 V12(β − 2β̂ + β0) +

n

2
(β − β̂)′V ′

12V
−1
11 V12(β̂ − β0)

− 1

2
W ′
nV

−1
11 Wn + oP (1)

=
n

2
(β̂ − β0)

′V ′
12V

−1
11 V12(β̂ − β0)−

1

2
W ′
nV

−1
11 Wn + oP (1)

=
n

2
(n−1/2(V ′

12V
−1
11 V12)

−1V ′
12V

−1
11 Wn + oP (n

−1/2))′V ′
12V

−1
11 V12

× (n−1/2(V ′
12V

−1
11 V12)

−1V ′
12V

−1
11 Wn + oP (n

−1/2))− 1

2
W ′
nV

−1
11 Wn + oP (1)

=
1

2
W ′
nV

−1
11 Wn + oP (1)−

1

2
W ′
nV

−1
11 Wn + oP (1) = oP (1). (A.1.6)

Therefore (2.3.18) follows from (A.1.5) and (A.1.6) together with log(π(β)) = log(π(β0))+

O(n−1/2) for β − β0 = O(n−1/2) owing to Assumption 6.

The remaining part of Theorem 2.3.2 can be proven, by using Assumption 6, as

shown in the corresponding proof of Theorem 3.2 of Lu et al. (2007, pp. 186). The

details are therefore omitted.

A.2 Proofs of Main Results: Chapter 3

Derivation of the Fisher Information

Note that, given a sample of n independent observations the log-likelihood sample
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in (3.2.7) can also be obtained via

l(b˜, ϕ) =
n∑
i=1

l(µi, ϕ), (A.2.7)

where, l(µi, ϕ) = (1 + ϕ){log(ϕ)− log(µi)} − log(Γ(ϕ)) + ϕlog(yi)− ϕ
µi
yi.

Hence it follows that

∂l(b˜, ϕ)
∂b˜k =

n∑
i=1

∂l(µi, ϕ)

∂µi

dµi
dη

∂ηi
∂b˜k , (A.2.8)

where,
∂l(µi,ϕ)
∂µi

= − (1+ϕ)
µi

+ ϕyi
µ2i

∂ηi
∂b˜k = xik.

(A.2.9)

Thus the score function for b˜ is given by,

∂l(b˜, ϕ)
∂b˜k =

n∑
i=1

(
−(1 + ϕ)

µi
+
ϕyi
µ2
i

)
∂µi
∂η

xik.

Similarly it can be shown that the score function for ϕ is given by

∂l(b˜, ϕ)
∂ϕ

=
n∑
i=1

1

ϕ
+ log(ϕ) + 1− log(µi)−

ψ(ϕ)

Γ(ϕ)
+ log(yi)−

yi
µi
, (A.2.10)

where, ψ(ϕ) is the digamma function.

Hence we arrive at the matrix expression (Sβ, Sϕ).

From (A.2.8), the second derivative of l(b˜, ϕ) with respect to b˜s is given by

∂2l(b˜,ϕ)∂bk˜bl˜ =
∑n

i=1
∂
∂µi

(
∂l(µi,ϕ)
∂µi

dµi
dη

)
dµi
dη

∂ηi
∂b˜kxikxil

=
∑n

i=1

(
∂2l(µi,ϕ)

∂µ2i

dµi
dη

+ ∂l(µi,ϕ)
∂µi

∂
∂µi

dµi
dη

)
dµi
dη
xikxil.

(A.2.11)

Since E
(
∂l(µi,ϕ)
∂µi

)
= 0, then

E

(
∂2l(b˜, ϕ)
∂bk˜ bl˜

)
= E

(
∂2l(µi, ϕ)

∂µ2
i

)(
dµi
dη

)2

xikxil. (A.2.12)

From (A.2.9)-1,
∂2l(µi, ϕ)

∂µ2
i

=
(1 + ϕ)

µ2
i

− 2
ϕyi
µ3
i

,

then

E

(
∂2l(b˜, ϕ)
∂bk˜ bl˜

)
= −E

((
(1 + ϕ)

µ2
i

− 2
ϕyi
µ3
i

)(
dµi
dη

)2

xikxil

)
= −XTWX.
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Similarly, from (A.2.8), the second derivative of l(b˜, ϕ) with respect to b˜ and ϕ can

be written as

E

(
∂2l(b˜, ϕ)
∂b˜ϕ

)
= −E

((
− 1

µi
+
yi
µ2
i

)(
dµi
dη

)
xik

)
= −XTTwbϕ.

Finally, from (A.2.10),

E

(
∂2l(b˜, ϕ)
∂ϕ2

)
= −E

(
− 1

ϕ2
+

1

ϕ
− ψ′(ϕ)Γ(ϕ)− (ψ′(ϕ))2

(Γ(ϕ))2

)
= −tr(D).

The Fisher information matrix is obtained from combining the results above.

A.3 Proofs of Main Results: Chapter 4

Proof of theorem 4.2.1

Proof. To establish consistency we use the results of Blevins and Khan (2013), who

applied the standard consistency theorem of Newey and McFadden (1994) (Theorem

2.1). The proof is similar to those in Manski (1985) and Horowitz (1992).

Let Sτ (β(τ)) = [(2Pr(y = 1|xi)− 1)− (1− 2τ)] I(x′
iβ(τ) ≥ 0) be the popula-

tion score function. Under Assumptions 4 and 5, for any 0 < τ < 1, Sτ (β(τ)) ≤

Sτ (β0(τ)) with equality only if β(τ) = β0(τ) (Manski (1985)’s Lemma 3 and Corol-

lary 2).

As in Blevins and Khan (2013) the observations are iid by Assumption 1, com-

pactness of B is established by Assumption 3 and the objective function is a sample

average of bounded functions that are continuous in the parameters. Continuity of

the objective function follows from Assumption 5.

To establish consistency it is necessary to show that as n → ∞ the stochastic

objective function Sτ (β(τ)) converges in probability to a limit function Sτ (β0(τ)).

Since β̂(τ) maximises Sτ (β(τ)) by definition it follows that β̂(τ) − β0(τ)
p→ 0

(Amemiya (1985), Theorem 4.2.1).

Blevins and Khan (2013) proved that under the above assumptions Sτ (β(τ))
p→

Sτ (β0(τ)) by showing that, under the assumption hn → 0 the component of the

limiting objective function that depends on β(τ) is

E [[1− 2(Pr(y = 1|xi))](I{x′
iβ(τ) ≥ 0} − I{x′

iβ0(τ) ≥ 0})] ,
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which is clearly 0 for β(τ) = β0(τ).

In a similar manner, under Assumption 6, the component of the limiting objective

function that depends on β(τ) in this case is

E [[1− 2(Pr(y = 1|xi)) + (1− 2τ)](I{x′
iβ(τ) ≥ 0} − I{x′

iβ0(τ) ≥ 0})] ,

which is also clearly 0 for β(τ) = β0(τ). By the strict monotonicity of K(·) and

Assumptions 2, 4 and 5, it follows that this component is also strictly positive if

β(τ) ̸= β0(τ) for all 0 < τ < 1. Therefore it is also minimised at β0(τ). Moreover,

let S∗
n,τ denote the objective function in (4.2.8). Under Assumptions 3 and 7 by

Lemma 4 of Horowitz (1992) |Sn,τ − S∗
n,τ |

p→ 0 a.s. uniformly. Thus, consistency is

established.


