
 
 

 

 

 

 

Study of acute myeloid leukaemia with known 
chromosomal translocations 

 
 
 

A Thesis Submitted for the Degree of Doctor of Philosophy 
 

By 
 

Abdulbasit Naiel 
 
 

 

Brunel Institute of Bioengineering 

Brunel University  

 

June 2014 

 



ii 

ABSTRACT 

Acute myeloid leukaemia (“AML”) is a clonal disease characterised by increased, 

uncontrolled abnormal white blood cells and the accumulation of leukaemia immature 

cells in the bone marrow and bloodstream. Chromosomal rearrangements have been 

detected in almost half of AML cases. It has been proven that the chromosomal 

rearrangements constitute a marker for the diagnosis and prognosis of AML and have 

therapeutic consequences. The discovery of these rearrangements has led to a new 

World Health Organization (“WHO”) classification system. However, small regions of 

cryptic chromosomal rearrangements have been identified among these cases. Such 

cryptic rearrangements can be explained by the identification of small regions which 

cannot be found by conventional chromosome banding techniques. Moreover, 

approximately 50% of AML cases have been found with normal karyotypes. The 

improvement of cytogenetic techniques, including fluorescence in situ hybridization 

(“FISH”) and single nucleotide polymorphism (“SNP”) platforms, have allowed the 

detection of small rearranged regions (such as copy number changes) both in normal and 

abnormal karyotype AML. This study identifies: (i) cryptic chromosomal translocations in 

leukaemia cells of AML patients; (ii) DNA copy number changes in patients with known 

chromosomal translocations; and (iii) the proliferating state of leukemic cells harbouring 

chromosomal abnormalities within a series of patients. 

In the initial study, the FISH technique was performed on 7 AML patient samples to 

validate a novel three colour probe for the detection of t(7; 12). The results demonstrated 

that the new three-colour FISH approach used in this study has enabled the detection of a 

cryptic t(7;12) translocation as part of a complex rearrangement in one patient previously 

been described as having t(7;16) and ETV6-HLXB9 fusion transcript at the molecular level. 

To date there are only two cases of a cryptic t(7; 12) translocation reported in the 

literature. Additionally, the new three-colour FISH approach also enabled identification of 

t(7; 12) in a new seven year-old AML patient (the first case of childhood leukaemia with 

an onset after infancy to be found positive for t(7; 12)). 

In the second study the FISH technique was used to validate three colour probe sets for 

the detection of 7(q22-q31) and 7(q22-q36.1) regions on several myeloid cell lines. The 

results indicate that the probes found chromosome 7 rearrangements in myeloid cell 
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lines with complex rearrangements. The three colour probe sets enabled detection of a 

new rearrangement in the k562 cell line, described as a duplication of 7q36 region, 

followed by intrachromosomal insertion of long arm material into the short arm of 

chromosome 7. The intrachromosomal insertion identified in k562 cell line is an 

uncommon form of chromosomal rearrangement in myeloid leukaemia which has not 

been previously reported.  

In the third study, the Illumina BeadArray approach was used to assess copy number 

alterations (“CNAs”) and copy number loss of hertrozygosity (“CN-LOH”) regions in 22 

AML patients samples with inv(16)(p13;q22) and t(8;21)(q22;q22) rearrangements. In 

order to distinguish between true CNAs and false-positive findings as well as to verify 

whether CNAs are present in the same clone harbouring inv (16), FISH was used on fixed 

chromosome and cell suspensions from the same patients. The results showed a low 

number of copy number losses and copy number gains in 17 (77.27%) out of 22 cases, 

with an average of 1.86 CNAs per case as well as copy neutral-LOH with an average of 

6.7% per patient. Furthermore, interphase FISH was carried out on four cases showing a 

7q36.1 deletion, 4q35.1 deletion, 16.13.11 deletion and 8q24.21-q24.3 gain identified by 

array. The FISH results confirmed CNAs in most cases while CNA was not confirmed in one 

patient. Moreover, the FISH data analysis showed that the CNAs were found in both cells 

without inv (16) and cells harbouring the inv (16) rearrangement.  

In the final study, indirect immunofluorescence (IF) was used to determine the ki67 

staining patterns in 8 stimulated and unstimulated peripheral blood samples and k562 cell 

lines. The results showed a high percentage of ki67 positive staining in the stimulated 

samples in comparison with unstimulated samples, which showed a low percentage of 

ki67 positive staining. In addition, a high percentage of proliferating cells were detected in 

the k562 cell line.  

ImmunoFISH was performed on five different patient samples and leukaemia cell lines 

using specific probes in the regions of interest to detect the chromosomal abnormalities 

and using the ki67 antibody to assess the proliferation state of the cells. The results 

showed that the proliferation state of the cells carrying chromosomal abnormalities in 

two patients was higher than the proliferation state of the cells carrying abnormalities in 

three patients; in other words, most of the cells carrying abnormalities were proliferating 

in two cases and non-proliferating in three cases. 
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CHAPTER 1:  INTRODUCTION  

1-1 Haematopoiesis 

Haematopoiesis is a normal development of different types of blood cells; the generation 

of blood cells initiates in the yolk sac during the early weeks of the foetal development 

and in the spleen and liver in the later stage. Blood cells are created throughout the bone 

in children, while in adults this process occurs in the central parts of the bones (Van 

Handel et al., 2010). All blood cell types arise from pluripotent stem cells in the bone 

marrow with the ability to re-new themselves. Hematopoietic stem cell (HSC) can 

promote the creation of more stem cells or differentiate them into two main lineages 

(myeloid and lymphoid) of blood cells. The myeloid lineage can be subdivided into 

different myeloid precursors, such as erythrocytes, megakaryocytes and myeloblast. 

Furthermore, the myeloblast progenitor can differentiate into various types of mature 

blood cells (monocytes, neutrophils, basophils and eosinophils) (see figure 1-1). The 

lymphoid lineage also divides into either B-cells or T-cells through the lymphocytes 

precursor. All mature or fully differentiated blood cells have a limited lifespan (Hoang, 

2004; Warner et al., 2004).  

All blood cell types such as erythrocytes, lymphocytes, monocytes and granulocytes play 

an important role in the human body. Erythrocytes acts as a carrier of O2 form the lung to 

the organs and CO2 from the organs to the lung. The B-lymphocytes and T-lymphocytes 

are involved in the immune system. Monocytes and granulocytes play a significant role in 

the inflammatory response that follows infection (Bellantuono, 2004). Chromosomal 

abnormalities or mutations in genes during the normal formation of blood cells 

differentiation or proliferation result in leukaemia.  
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Figure 1-1: Schematic representation of normal blood cells production process 

A hematopoietic stem cell gives rise to committed myeloid and lymphoid 
linages which differentiate all blood cell types (modified from 
Sanganalmath et al., 2011).  

 

1-2 Regulation of HSC  

 

HSC self-renewal or differentiation was argued by Till et al. (1964) to be triggered solely 

by stochastic factors, the event being known as the stochastic model. However, more 
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recent research has demonstrated that the HSC proliferative potential, and implicitly the 

HSC capacity for self-regeneration or differentiation, is determined by variables in the 

HSC environment. This is referred to as the instructive model. Currently, a consensus has 

been reached with regard to the fact that the regulation of the cell fate of HSC depends 

on the interaction between internal molecular processes and external factors of 

environment.  

 

In mammals, the HSC microenvironment that underpins the maintenance and regulation 

of HSC self-renewal is formed by the BM, which represents the primary location where 

adult hematopoiesis occurs. Conducting research on mouse long bone, Lord et al. (1975) 

were the first to observe that the concentration of colony-forming unit-spleen (CFU-S) 

was greater close to the surface of bone. Furthermore, Nilsson et al. (2001) concluded 

that the surface of the endosteum was HSC “niche” based on direct observation of the 

position of fluorescently labelled donor lin-cells in the BM endosteum following syngeneic 

transplantation. Subsequent developments in confocal microscopy imaging enabled 

Zhang et al. (2003) to prove that HSC and the spindle-shaped osteoblasts covering 

trabecular bone physically interact with each other, as well as that the number of HSC in 

BM is directly proportional to the number of osteoblasts (Calvi et al., 2003; Zhang et al., 

2003).  

 

Such findings validated the key role played by osteoblasts in the BM HSC niche. The 

interplay between osteoblasts and HSC is supported by several adhesion molecules, such 

as the ICAM-1, VCAM-1 (Simmons et al., 1994), CD44, and osteopontin (OPN) (Nilsson et 

al., 2005; Ponta et al., 2003). It is important to note that, as a transmembrane 

glycoprotein, CD44 regularly undergoes splicing into different isoforms. It binds the 

hyaluronan present in the BM endosteum, which facilitates cell-cell interactions (Avigdor 

et al., 2004). Moreover, osteoblasts and osteoclasts are responsible for the production of 

OPN, which is a phosphorylated glycoprotein (Mazzali et al., 2002). The importance of 

OPN in the maintenance of HSC quiescence and effective HSC dissemination according to 

genetic regulations was demonstrated in transplantation experimental research with 

OPN-/- recipient mice.  
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The identification of numerous stem cell regulatory genes was aided by the abnormal 

expression of these genes in leukaemia (Zhu and Emerson, 2002). For instance, many 

researchers have reported the occurrence of upregulation of the HOX gene family in AML 

(Afonja et al., 2000; Drabkin et al., 2002). Thorsteinsdottir et al. (2002) particularly 

observed that HSC expanded due to HOXA9 overexpression, leading to a 15-fold growth 

in long-term repopulating cells. On the other hand, Lawrence et al. (2005) demonstrated 

that the long-term repopulating ability in vivo and multiplication in vitro of BM cells of 

HOXA9 knockout mice were considerably diminished. HOXB4 is another HOX protein that 

displays overexpression only in hematopoietic stem and progenitor cells, not in lineage-

committed cells. The outcome of the excessive expression of HOXB4 in different tissues, 

such as the tissues of murine and human BM and UCB, is a growth in the HSC population, 

but which does not affect the mechanism of hematolymphoid differentiation (Antonchuk 

et al., 2001; Antonchuk et al., 2002; Buske et al., 2002; Sauvageau et al., 1995; 

Thorsteinsdottir et al., 1999).  However, as Brun et al. (2004) found, hematopoiesis is not 

significantly affected by suppression of HOXB4 in mice, which means that some HOX 

paralogous genes are functionally redundant. Additionally, the regulation of stem-cell 

self-regeneration has been observed to depend on genes responsible for HOX gene 

regulation, such as the Polycomb group gene Bmi-1 (Iwama et al., 2004; Lessard and 

Sauvageau, 2003) and the trithorax group MLL genes (Ernst et al., 2004b; Ernst et al., 

2004a). 

 

1-3 The cell cycle  

The cell cycle consists of a series of phases that a cell undergoes between two cell 

divisions. This division comprises G1, S phase, G2, and M phase, the first three phases 

forming the interphase. G1 is a gap where the cell division process is verified prior to the 

replication of the genetic material in the S phase, while G2 is another gap where the 

division process is verified anew prior to the cell moving into the M phase. In this latter 

phase, the cell begins to divide into two daughter cells through the processes of mitosis 

and cytokinesis (figure 1-2) (Pecorino, 2008). According to cell type, the length of time it 

takes for the cell cycle to complete is approximately sixteen hours, of which fifteen hours 

are allocated for the interphase and one hour for the mitosis. In the interphase, the 

chromosomes are condensed and therefore cannot be seen. Thus, a microscope has to be 
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used to differentiate them from other cells during the mitosis (Pecorino, 2008). Normally, 

cells in adults are known as quiescent because they do not undergo division, entering the 

G0 phase of inactivity which is excluded from the cell cycle. The mitogen inducer aids the 

cells to enter the cell cycle again, proceeding to the following stage, namely, the G1 

restriction point. The progress of the cells through the different phases of the cell cycle is 

assisted by a series of proteins referred to as cyclins and which are related to cyclin-

dependant kinases (cdks) present in the various cell cycle phases. Gene transcription and 

controlled protein decomposition are the two processes that dictate where in the cell 

cycle phases the various cyclins are concentrated. 

 

1-3-1 The G1 check point  

In this phase, the cyclin D-cdk4/6 is the primary cyclin-cdk complex. The Retinoblastoma 

(RB) protein is made by this complex to act as a molecular link for the transition between 

the G1 and S phases. Although it does not attach directly to the DNA, RB is involved in 

regulating the activity of the E2F transcription factor necessary for gene expression in the 

S phase. 

1-3-2 The synthesis phase (S phase)   

Following the G1 phase and preceding the G2 phase, the S phase of the cell cycle is 

concerned with genetic material replication. The role played by this phase in cell division 

is vital because the transmission of erroneous genetic information may result in the death 

of the cell or even genetic disorders. 

1-3-3 The G2 check point  

This phase is essential for the transition to the M phase. If a cell has not completed the S 

phase adequately, resulting in damage to its DNA, ATM and ATR tyrosine kinases will be 

activated and subsequently phosphorylate and activate Chk1 and Chk2 kinases. The target 

of these kinases is the Cdc25 tyrosine phosphatase which regulates cdk activity and is 

involved in the transition between G2 and M phases. 
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1-3-4 The M Phase   

Mitosis takes place in the M phase of the cell cycle. The phase consists of several stages, 

namely, preprophase, prophase, prometaphase, metaphase, anaphase, telophase, and 

cytokinesis. 

 

 

 

Figure 1-2: Schematic representation of cell cycle  

Shows four phases of the cell cycle G1,S,G2 and M phase and the duration 
of each phase of the cell cycle is shown in hours. The outer circle shows 
cells in different phase of cell cycle.   Modified from (Kuroiwa et al., 1977).  
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1-4 The hypothesis of Leukaemic stem cells 

One major model that has been proposed as an explanation for the development of 

leukaemia is the stochastic model. This model argues that the capacity of stochastic 

multiplication or re-generation is possessed only by a limited number of cells in a 

homogenous population, whereas the majority of underdeveloped cells in the population 

lack this property. Leukaemia evolution has also been explained in terms of the hierarchy 

model, which holds that the few LSCs contained in a heterogeneous population 

determine the onset of the condition (Jamieson et al., 2004). Up to recent times, 

xenograft transplant research, focusing on the multiplication of rare population of human 

SCID leukaemia-initiating cells (SL-ICs; 1 per 1 × 106 leukemic blasts), was the only proof 

that leukaemia stem cells (LSCs) were responsible for the development of leukaemia 

(Hope et al., 2004). This was validated by Driessens et al. (2012) by lineage tracing in 

mice. Employing clonal analysis, the researchers discovered that tumour cells exhibiting 

properties similar to those of stem cells were present in an intact solid tumour. The 

finding lends support to the cancer stem cell (CSC) model. 

1-5 Leukaemia  

The term leukaemia derived from the Greek white (leukos) and blood (haima). Leukaemia 

is a clonal disease and does not create a tumour mass. Leukaemia can be divided into two 

main categorizes, myeloid and lymphoid, based on the origin of the cell type affected. 

Each category of leukaemia subdivides into acute and chronic, depending on how mature 

the cells are.  

1-5-1 Definition and classification of acute myeloid leukaemia 

Acute myeloid leukaemia (AML), also known as acute non-lymphoblastic leukaemia or 

acute myelogenous leukaemia, is a group of different malignant disorders which is 

characterized by rapid growth of abnormal white blood cells and accumulation of 

leukaemia immature cells in the bone marrow and finally in blood stream (Smith et al., 

2004).  
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There are two most commonly used classification systems for AML, the most widely used 

of which is the French-American-British (FAB). However, the most recently established 

system is that of the World Health Organization (WHO). 

1-5-1-1The French-American-British classification of AML 

The FAB classification system was established by a group of French, American and British 

leukaemia experts in 1976. According to the FAB system, acute myeloid leukaemia can be 

divided into subtypes M0 through M7 based on morphological and cytochemical findings 

(Bennett et al., 1976). Table 1-1 shows the different subclasses of acute myeloid 

leukaemia according to the FAB classification system.  

 

Table 1-1: The different subtypes of acute myeloid leukaemia according to the FAB classification 

Subtype Description  Cytogenetics 

M0 Minimally differentiated acute myeloid 
leukaemia (AML). 

 

M1 Acute myeloid leukaemia without maturation.  

M2 Acute myeloid leukaemia with maturation. t(8;21)(q22;q22), 
t(6;9) 

M3 Promyelocytic, or acute promyelocytic leukaemia 
(APL) 

t(15;17) 

M4 Acute myelomonocytic leukaemia. inv(16)(p13q22), 
del(16q) 

M4 Eo Myelomonocytic together with bone marrow 
eosinophilia 

inv(16), t(16;16) 

M5 Acute monoblastic leukaemia (M5a) or acute 
Monocytic leukaemia (M5b) 

del (11q), 
t(9;11), t(11;19) 

M6 Acute erythroid leukemias, including 
erythroleukemia (M6a) and very rare pure 
erythroid leukaemia (M6b) 

 

M7 Acute megakaryoblastic leukaemia t(1;22) 

 

1-5-1-2 The World Health Organization classification of AML 

This classification system (WHO, 1999) was based on the immunological, cytogenetic, 

morphological and clinical findings (Moe et al., 2008). The revised (2008) World Health 

Organization classification system develops the FAB system and emphasises that the field 
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of heamato-oncology is changing towards a more comprehensive system. According to 

the WHO classification, acute myeloid leukaemias are grouped into four categories: (i) 

AML with recurrent genetic abnormalities; (ii) AML with multilineage dysplasia; (iii) 

therapy-related disorders; therapy-related AML (t-AML) and therapy-related 

myelodysplastic syndromes (t-MDS); and (iv) AML not otherwise categorized. The WHO 

classification system identified 108 new diagnostic entities in hematopathology, involving 

50 new or provisional leukaemia entries (Betz and Hess et al., 2010). Table 1-2 shows the 

WHO classification as summarized by Vardiman et al. (2011). 

Table 1-2: The WHO classification of acute myeloid leukaemia (modified from Vardiman et al., 2002) 

AML with recurrent 
genetic abnormalities 
 

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB 
MYH11 
Acute promyelocytic leukaemia with t(15;17)(q22;q12); PML-
RARA 
AML with t(9 ;11)(p22;q23); MLLT3-MLL 
AML with t(6;9)(p23;q34); DEK-NUP214 
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 
AML (megakaryoblastic) with t(1;21)(p13;q13);(RBM15-MKL1) 

AML with 
multilineage dysplasia 
 

Following MDS or MDS/MPD 
Without antecedent MDS or MDS/MPD, but with dysplasia in 
at least 50% of cells in 2 or more myeloid lineage 

AML and MDS, 
therapy-related 
 

Alkylating agent/radiation- related type 
Topoisomerase II inhibitor- related type 
Others 
 

AML not otherwise 
specified (NOS) 
 

AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukaemia 
Acute monoblastic and monocytic leukaemia 
Acute erythroid leukaemia 
Acute megakaryoblastic leukaemia 
Acute basophilic leukaemia 
Acute panmyelosis with myelofibrosis 

 

 



10 
 

1-6 Molecular mechanisms of cancer 

1-6-1 Oncogenes    

Previously, the development of all human cancers was believed to be triggered by 

oncogenes, which were considered to represent fragments of viral DNA transferred from 

retroviruses. The results of the experimental work conducted by Rous (1911) revealed 

that tumour development could be triggered in healthy chickens through the introduction 

of a cell-free extract from chicken tumour cells. It was determined that the extract 

contained the Rous sarcoma retrovirus (RSV), which was responsible for the development 

of sarcomas in chickens. However, the actual virus was not the transmissible agent, but 

rather a nucleotide sequence that encoded the gene v-src contained in the RSV and 

associated with nucleotide sequences in the DNA of healthy chickens. This helped 

Stehelin et al. (1976) to identify the first oncogene SRC. The researchers also noted that 

many organisms possessed oncogenes, which are normal genes in charge of regulation of 

cell development and division.  

The purpose of oncogenes is to encode proteins involved in the regulation of cell 

proliferation and/or apoptosis, and related products. The activation of oncogenes is 

triggered by genetic abnormalities, including translocations that give rise to new gene 

fusions, such as EWS-FLI1 and EWS-ERG, and the insertion of new enhancers or promoter 

regions to a gene region (e.g. in Burkitt’s lymphoma, the juxtaposition of MYC to the 

human immunoglobulin heavy chain enhancer regions occurs) (Joos et al., 1992). 

Furthermore, gene amplification (MYCN) or activation of mutations (RAF or RAS genes) 

may also stimulate oncogenes (Downward, 2003). The activation of oncogenes may 

promote development and/or survival, resulting in the onset of cancer. 

 

1-6-2 Tumour suppressor genes   

The notion of tumour suppressor genes was first outlined by Knudson (1971) on the basis 

of research on the prevalence of retinoblastoma. An autosomal dominant condition, 

hereditary retinoblastoma usually causes bilateral tumour to develop in children’s retina. 

Of the 60% of hereditary retinoblastoma cases, 80% affect the retina in both eyes. In 

addition, there are also cases of unilateral retinoblastoma occurring de novo. Knudson 

referred to incidence data for retinoblastoma occurring in just one eye and in both eyes 
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and succeeded in creating models to estimate the number of mutations leading to the 

onset of the condition. The researcher established that only one mutation was necessary 

in the case of bilateral retinoblastoma, as it already has a germline mutation, while two 

somatic mutations were necessary for unilateral retinoblastoma to occur. These 

observations formed the basis for the ‘two-hit hypothesis’ proposed by Knudson. 

Underpinning these data was the fact that, even though retinoblastoma might not occur 

in the children of affected parents, those individuals could nevertheless have children 

developing the condition. This led to the conclusion that, in order for tumorigenesis to 

begin, both alleles of a tumour suppressor gene have to be switched off. Friend et al. 

(1986) validated this conclusion when they discovered recessive mutations in both alleles 

of the RB gene, which was the first tumour suppressor gene that was successfully 

replicated. 

 

There are various genetic methods through which tumour suppressor genes could be 

inactivated after the ‘first-hit’. Additionally, the inactivation of these genes may also be 

induced by epigenetic modifications like DNA hypermethylation. The discovery of TP53 as 

a tumour suppressor gene was made in colorectal cancer research which employed the 

SV40 virus for cell malignant modification. The coding sequence of TP53 was 

subsequently examined. Later on, two colorectal carcinomas were observed by Baker et 

al. (1989) to display TP53 mutations; both carcinomas possessed deletions at 17p13 and 

expressed TP53 from the other allele. TP53 germline mutations are encountered in 

individuals suffering from the hereditary Li-Fraumeni syndrome which is associated with 

increased risk of breast, lung, colorectum and brain tumours. Functioning as a cellular 

check-point, the p53 protein not only coordinates responses throughout the cell cycle and 

mechanisms of DNA repair, but also harmonises cell development and apoptosis in 

keeping with both intrinsic and extrinsic signals (Knudson, 2001, Finlay et al., 1989). A 

direct correlation has been found between the occurrence of most human cancers and 

the inactivation of TP53 and RB or inactivation in their genetic pathways. TP53 is an 

integral component of a cellular system of great complexity geared towards the 

monitoring of DNA damage and halting the cell cycle to allow the completion of DNA 

repair. Apoptosis is activated in the event that damage repair fails. When TP53 is 

inactivated, accumulation of DNA damage is fostered by BRCA1 and other supposed 

“caretaker” genes, which paves the way for tumour development (Deng et al., 2003). 
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Mechanisms of Leukeamogenesis arising from Chromosomal Abnormalities 

Leukeamogenesis arises from a series of transformational events leading to chromosomal 

abnormalities during proliferation and differentiation which cause apoptotic pathways 

(Kelly and Gilliland, 2002). These abnormalities include chromosomal deletions, 

amplifications and chromosomal translocations to create a rearrangement of genes.  

1-7-1 Mechanisms of Leukeamogenesis arising from chromosomal deletions 

With regard to haploinsufficiency, loss or inactivation of a single functional copy of the 

gene caused by mutation results in an insufficient production of proteins. An alternative 

source of chromosomal deletion which causes leukeamogenesis is the inactivation or 

deletion of tumour suppressor genes responsible for cell protection. Deletion of tumour 

suppressor genes is believed to be associated with the development of leukaemia.  

1-7-2 Mechanisms of Leukeamogenesis arising from Chromosomal Translocations 

The most common chromosomal abnormalities in leukaemia are Translocations. 

Formation or reorganisation of genes as a result of translocation can create proto-

oncogenes which transform into oncogenes. Most proto-oncogenes encode transcription 

factors which are significant in the proliferation, differentiation and survival of the blood 

cells. There are several alternative mechanisms for activation of the proto-oncogenes by 

translocation. The most common mechanism is the formation of a fusion gene that 

produces abnormal proteins. For example, the BCR-ABL1 fusion gene was a result of the 

translocation of chromosome 9 and chromosome 22 in chronic myeloid leukaemia 

(“CML”). In this instance, the BCR-ABL1 fusion gene was created by the juxtaposition of 

the ABL1 gene to the area of the BCR gene which produced the BCR-ABL1 protein which 

had the higher tyrosine kinase activity than the normal ABL1 protein (Melo et al., 1996). 

An alternative mechanism for a translocation to result in leukaemia is the activation of 

proto-oncogenes by the juxtaposition with constitutionally active genes. For example, in 

t(8;14))(q24;q11) the C-MYC transcription factor gene is transferred to the promoter of 

the TcR alpha gene, which causes overexpression of the C-MYC gene. This is important in 

the regulation of cell division and cell death (Knudson, 2000). A further event which is 
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hypothesised as being linked to the causation of leukaemia is the activation of proto-

oncogenes by a positioning effect, such as the translocation of t(4;12) and t(5;12) and the 

involvement of the ETV6 gene (Cools et al., 2002).  

1-8 Chromosomal Abnormalities in AML 

Classified as numerical or structural, chromosomal abnormalities can be defined as 

disturbances in the normal composition of chromosomes. Numerical abnormalities take 

the form of an aberrant copy number of particular chromosomes. Known as chromosomal 

aneuploidy, this phenomenon occurs due to the fact that chromosome missegregation 

takes place when the cell divides, resulting in the loss or gain of specific chromosomes 

(Williams and Amon, 2009). Structural abnormalities, on the other hand, take the form of 

chromosomes with aberrant structure and are related to misrepair of DNA double strand 

breaks (DSBs) in somatic cells and especially cancer cells. Both external factors, such as 

radiation or chemicals, and internal factors, such as reactive oxygen or delay of DNA 

replication forks, can cause DSBs. They are a frequent occurrence, every cell cycle having 

multiple DSBs (Albertson et al., 2003). In response to DSBs, complex DNA repair 

mechanisms have evolved to protect the integrity of the genome. It has been observed 

that broken chromosome ends have a tendency to merge with other broken ends, and 

therefore, if DSBs are not repaired, they may give rise to chromosomal rearrangements, 

including translocations, deletions, and duplications (Albertson et al., 2003).  

1-8-1 Structural chromosomal rearrangements in AML and their prognostic significance 

Most cases of acute myeloid leukaemia are associated with chromosomal 

rearrangements. Cytogenetic analysis indicates that 50-70% of patients with de novo AML 

have shown chromosomal rearrangements such as translocation, deletion, inversion and 

duplication (Smith et al., 2004). For example, the t (1; 22) (p13; q13) is associated with 

acute megakaryocytic leukaemia subtype (M7), which translocation results in OTT-MLL 

fusion gene (Mercher et al., 2002). In some translocations such as t (6; 9) (p23; q34) the 

cytogenetic aberration is very rare, constituting 0.5% to 4% in all patients with acute 

myeloid leukaemia, and it is associated with subtypes of AML M2 (Alsabeh et al., 1979). 

However, the translocation between chromosome 8 and chromosome 21 t (8; 21) has 

been found in 5-12% of acute myeloid leukaemia. The t (8; 21) (q22; q22) is the most 

frequent chromosome translocation that is associated with acute myeloid leukaemia 
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(M2), with well-defined and specific morphological features (Ohki et al., 1993). The t (15; 

17) is always associated with acute promyelocytic leukaemia (APL also known as AML 

M3). The patients carrying the translocation t (15; 17) have distinct clinical and 

morphological features (Reiter et al., 2004). The t (15; 17) translocation is detected in 

approximately 95% of AML cases subtype M3. The translocation between chromosomes 

15 and 17 result in the expression of the PML-RARα oncofusion gene (Licht et al., 2006). 

The t (8; 21) translocation is detected in approximately 10% of AML cases involving AML1 

(RUNX1) and ETO genes (Cameron et al., 2004). The inv (3) (q21q26) or a translocation t 

(3; 3) (q21q26) has been found in patients with AML. These abnormalities cause an 

increase of the expression of the EVI1 gene located at 3q26 (Reiter et at., 2000). The most 

common chromosomal rearrangement in acute myeloid leukaemia subtype M4Eo (with 

an incidence of 8-10%) is the inversion of chromosome 16, inv(16) (p13q22), resulting in 

gene fusion between CBFB gene located in 16q22 and the MYH11 gene located in 16p13 

(Delauney et al., 2003). Other chromosomal abnormalities of AML have been detected as 

a sole abnormality or in combination with other abnormalities, such as -5, -7, +4, +8, +11, 

+13, +19, +21, and deletions of 9q, 7q and 5q (Heim and Mitelman 2009). A complex 

karyotype involving three or more chromosome abnormalities has been identified in 10-

12% of AML patients (Mrózek, 2008). If acute myeloid leukaemia is untreated, most 

patients will die over a period of days or weeks based largely on the level of blasts in the 

blood and bone marrow. Cytogenetics is recognized as one of the most important 

valuable prognostic determinators in acute myeloid leukaemia (Byrd et al., 2002; Farag et 

al., 2006; Grimwade et al., 2001; Mrózek et al., 2001, 2004; Schoch et al., 2003; Slovak et 

al., 2000). An abnormal karyotype has been found in approximately 60% of acute myeloid 

leukaemia both in child and adult patients (Grimwade et al., 1998). Around 25% of AML 

patients have favourable cytogenetics that involve t(15;17), inv (16), t(16;16) or t(8;21): 

these patients have a complete remission (CR) rate of over 90% and five-year survival of 

65% (Grimwade et al., 1998; Grimwade et al., 2010; Moorman et al., 2001). 10% of AML 

patients carrying -7,-5del (5q) abnormalities of 3(q21; q26) or complex karyotype will 

have adverse cytogenetics. These patients can expect a CR rate of around 60% and a five-

year survival rate of 10% (Grimwade et al., 2010). 40-65% of AML patients will have 

intermediate cytogenetics, most of them with normal karyotype. The CR rate of these 

patients is about 80%, with a five-year survival rate of 30-40% (Grimwade et al., 1998; 

Grimwade et al., 2010). Table 1-3 describes the cytogentics risk groups. 
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Table 1-3: Cytogentics risk groups 

Risk group  Abnormalities 

Favourable  t(8;21) 
t(15;17) 
inv (16) 

Intermediate  +8 
+21 
+22 
del(7q) 
del(9q) 
Abnormal 11q23 
All other structural/numerical abnormalities  

Adverse  -5 
-7 
del(5q) 
Abnormal (3q) 
Complex 

 

1-8-2 Numerical chromosomal rearrangements in AML and their prognostic significance 

Of the aneuploidies associated with AML, trisomy 8 (Patel et al., 2012), trisomy 13 (Baer 

and Bloomfield, 1992) and monosomy 7 (Brozek et al., 2003) are the most common. A 

number of transcriptional effects have been attributed to the supplementary 

chromosome present in AML as modifications in gene expression have been exhibited by 

both trisomic and diploid chromosomes (Nawata et al., 2011).  

 

Unlike tetrasomy 8 which is associated primarily with AML, trisomy 8 occurs in numerous 

other haematological diseases apart from AML, either on its own or in conjunction with 

other abnormalities (Kim et al., 2008). Although the effect of trisomy 8 on AML prognosis 

has been addressed by a considerable number of researchers (Schoch et al., 2006), 

compared to other abnormalities, including the well-known t(8;21) translocation, trisomy 

8 was not observed to be involved in leukaemogenesis. Nawata et al. (2011) confirmed 

this observation based on the findings of their research in which they generated trisomic 

H35 cells but did not find evidence of trisomy 8 participation in leukaemia development. 

Discussing the biological implications of the supplementary copy of chromosome 8, 

Wolman et al. (2002) proposed that, in spite of the reduced level of C-myc amplification 

indicated in some AML cases, the larger number of copies of C-myc oncogene, positioned 

on 8q, could be involved in leukaemogenesis. However, this abnormality is unsuitable for 
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targeted therapy, since augmented gene expression is the sole apparent modification 

caused by the trisomy. Furthermore, although trisomy 8 is prevalent in cases of AML, 

tetrasomy and polysomy occur as well. The presence of this rare clonal chromosomal 

abnormality has been observed mostly in samples of AML and myelodysplastic syndrome 

that were subjected to testing with chromosome 8 centromeric probe designed to 

determine aneuploidy (Kim et al., 2008). Based on the FAB classification, myelomonocytic 

and monocytic lineages of leukaemia, the main types of leukaemia in which tetrasomy 

presence was detected, are included in the M5 subgroup AML. Moreover, Kim et al. 

(2008) also reported cases of polysomy, including pentasomy and hexasomy, and 

consequently proposed that the poor prognosis is due to the involvement of the 

oncogenes MYC in 8q24, MOS in 8q22, and RUNX1T1 in this anomaly. Shin et al. (2009) 

obtained similar results pointing to poor prognosis based on testing carried out on a 72 

years old individual with AML. 

 

 Despite occurring on a regular basis, trisomy 13 rarely takes the form of a singular 

karyotypic aberration (Silva et al., 2007). Moreover, Mehta et al. (1998) argued that 

trisomy 13, on the one hand, and the morphologic and immunophenotypic 

undifferentiated leukaemia AML-M0, on the other, are closely correlated. The majority of 

cases of trisomy 13 were associated with poor prognosis. The development of leukaemia 

is believed to be partially triggered by trisomy 13 which intensifies the expression of the 

fms-like tyrosine kinase 3 gene and causes mutations in the RUNX1 gene, while the 

additional copy of chromosome 13 determines the expression of the class III receptor 

tyrosine kinase in underdeveloped hematopoietic cells. Dicker et al. (2007) reported that, 

although each sample of trisomy 13 employed was RUNX1 mutated, the RUNX1 

mutations in AML-M0 were not exclusively related to trisomy 13. In fact, in some cases of 

AML-M0, Roche-Lestienne (2006) noted that trisomy 13 occurred together with 

tetrasomy 13, which is considered to be the outcome of extra aberrations following 

transformation. Similar to RUNX1 mutations, rather than being restricted to cases of 

trisomy 13, tetrasomy is an irregularity of great complexity associated with a clone that 

displays both numerical and structural aberrations (McGrattan et al., 2002).  

 

Based on observations of almost 40% of cases of children with poor prognosis, the 

chromosome 7 deletion has been identified as the most frequent irregularity in children 
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with AML and myelodysplastic syndrome (Hasle et al., 2007). Additionally, adults who 

were affected by the detonation of the atomic bomb at Hiroshima were also found to 

possess this irregularity Takahashi et al., 2006). This monosomy 7 often occurs in 

association with other abnormalities which dictate how severe the disease is. 

 

1-8-3 Molecular rearrangement in AML and its prognostic factors  

In addition to chromosomal rearrangement, many molecular abnormalities have been 

found in cytogenetically normal AML patients. It has been proposed that AML arises from 

the interaction of two classes of gene mutations. Class I mutations are responsible for the 

activation of genes in the kinase signalling pathways (e.g. RTK, RAS, FLT3, KIT, and 

PTPN11), leading to cell survival and proliferation, while Class II mutations (e.g. 

PML/RARA, CBFB/MYH11, RUNX1/RUNX1T1, MLL/PTD, CEBPA, and SPI1) inactivate the 

transcription factors (Gaidzik et al., 2008; Gilliland et al., 2001). The mutation in 

nucleophosmin (NPM1) has been reported in approximately 40-50% of de novo AML 

patients with normal karyotype, and is predictive of a better prognosis (Meani et al., 

2009; Schnittger, 2005). The mutations of fms-like tyrosine kinase 3(FLT3) gene are the 

second most common mutations in de novo AML and seem to be activated in one-third of 

AML cases. Internal tandem duplications (ITDs) in the juxtamembrane domain 

of FLT3 have been described in 25% of AML cases. Patients with FLT3 -ITD 

have a tendency to have a poor prognosis (Abu‐Duhier et l., 2001; Beran et al., 2004; 

Thiede et al., 2002; Gilliland et al., 2002; Kainz et al., 2002; Kottaridis et al., 2001; 

Schnittger et al., 2002; Thiede et al., 2002). Additional genetic changes in acute myeloid 

leukaemia involving dominant-negative mutation of the tumour suppressor gene CEBPA 

have been reported in 16% of AML M2 patients. AML patients with CEBPA gene mutation 

are associated with better prognosis (Fröhling et al., 2004; Pabst et al., 1999; 

Preudhomme et al., 2002). Recent studies have demonstrated prevalent mutations, such 

as DNA methyltransferase (DNMT3A) mutations and mutations in the ten-eleven-

translocation oncogene family member 2 (TET2) (Bacher et al., 2010; Delhommeau et al., 

2009; Ley et al., 2010; Takahashi et al., 2011;), as well as mutations in the isocitrate 

dehydrogenase (IDH1) gene (Green et al., 2010; Mardis et al., 2009). Moreover, the 

presence of c-KIT has been showed in AML patients (Paschka et al., 2006). Furthermore, 

ASXL1 mutations have been identified in 40 AML patient samples, and the ASXL1 gene 
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encodes protein involved in the regulation of chromatin remodelling (Gelsi-Boyer et al., 

2009). Despite the mutations of WT1 gene first being detected in haematological 

malignancies more than a decade ago, the specific roles of WT1 in normal and malignant 

haematopoiesis remain unknown. The WT1 gene has been linked to the regulation of 

differentiation, proliferation and cell survival (Owen et al., 2010). Recently, 470 patients 

with de novo non-M3 AML were examined and 63 RUNX1 mutations were identified in 62 

patients. RUNX1 is required for eventual haematopoiesis, and its functional dysregulation 

results in leukaemia (Tang et al., 2009). The genetic changes that are responsible for a 

poor outcome in most patients with AML are unknown (Ley et al., 2010). Ley et al. (2010) 

found that 62 out of 281 patients had mutations in DNMT3A gene that were proven to 

affect translation, and also 18 different mutations were identified in 37 patients that were 

proven to affect amino acid R882. Furthermore, six frameshift, six nonsense and three 

splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A were identified. In 

56 out of 166 patients, mutations were extremely strengthened in the group of patients 

with an intermediate-risk cytogenetic profile, but were absent among 79 patients with a 

favourable-risk cytogenetic profile. Table 1-4 shows the examples of chromosomal 

abnormalities in acute myeloid leukaemia that have been characterized at the molecular 

level. 

Table 1-4: Chromosomal abnormalities in AML characterized at molecular level (Mrozek et al., 2000) 

Abnormalities Gene 

Affecting the EVI1 gene at 3q26 
inv(3)(q21q26)  
t(3;3)(q21;q26) 

 
EVT1 
EVT1 

Involving the NPM gene at 5q34 
t(3;5)(q25;q34) 

 
MLF1-NPM 

Involving the MOZ gene at 8p11 
inv(8)(p11q13)  
t(8;16)(p11;p13)  
t(8;22)(p11;q13)  

 
MOZ-TIF2 
MOZ-CBP 
MOZ-EP300 

Involving the nucleoporin genes 
CAN at 9q34 or NUP98 at 11p15 
t(6;9)(p23;q34)  
t(7;11)(p15;p15)  
inv(11)(p15q22)  
t(11;20)(p15;q11)  

 
DEK-CAN 
HOXA9-NUP98 
NUP98-DDX10 
NUP98-TOP1 

Involving the ABL gene at 9q34 
t(9;22)(q34;q11) 

 
ABL-BCR 
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Abnormalities Gene 

Involving the CLTH gene at 11q14 
t(10;11)(p11-15;q13-23) 

 
AF10-CLTH 

Involving the ETV6 gene at 12p13 
t(3;12)(q26;p13)  
t(4;12)(q11-12;p13)  
t(5;12)(q31;p13)  
t(7;12)(p15;p13)  
t(7;12)(q36;p13)  
t(12;13)(p13;q12)  
t(12;22)(p12-13;q11-13)  

 
ETV6 
BTL-ETV6 
ACS2-ETV6 
ETV6 
ETV6 
ETV6 
ETV6-MN 

Involving the MLL gene at 11q23 
t(1;11)(p32;q23)  
t(1;11)(q21;q23) 
t(2;11)(p21;q23)  
t(4;11)(q21;q23)  
t(6;11)(q21;q23) 
t(6;11)(q27;q23)  
t(9;11)(p22;q23)  
t(9;11)(q21-22;q23)  
ins(10;11)(p11;q23q13-24)  
t(10;11)(p11-13;q13-23)  
t(10;11)(q22;q23)  
+11  
t(11;11)(q13;q23) 
t(11;15)(q23;q14-15) 
t(11;16)(q23;p13)  
t(11;17)(q23;q12-21)  
t(11;17)(q23;q23)  
t(11;17)(q23;q25)  
t(11;19)(q23;p13.1)  
t(11;19)(q23;p13.3)  
t(11;22)(q23;q11) 
t(11;22)(q23;q13)  
t(X;11)(q13;q23)  
t(X;11)(q22-24;q23)  

 
AF1P-MLL 
AF1Q-MLL 
MLL 
AF4-MLL 
AF6q21-MLL 
AF6-MLL 
AF9-MLL 
MLL 
MLL 
AF10-MLL 
MLL 
MLL 
MLL 
MLL 
MLL-CBP 
MLL-AF17 
MLL 
MLL-AF17q25 
MLL-ELL 
MLL-ENL 
MLL-AF22 
MLL-EP300 
AFX1-MLL 
MLL 

Involving the core binding factor genes 
CBF bat 16q22 or CBFA2 at 21q22 
inv(16)(p13q22)  
t(16;16)(p13;q22)  
t(3;21)(q26;q22) 
t(8;21)(q22;q22)  
t(16;21)(q24;q22)  
t(17;21)(q11.2;q22)  

 
 
MYH11-CBF b 
MYH11-CBF b 
EAP, MDS1,EVI1,CBFA2 
CBFA2T1-CBFA2 
MTG16-CBFA2 
CBFA2 

Involving the RAR agene at 17q12-21 
t(5;17)(q35;q12-21)  
t(11;17)(q23;q12-21)  
t(15;17)(q22;q12-21)  

 
NPM-RAR a 
PLZF-RAR a 
PML-RAR a 
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Abnormalities Gene 

Involving the ERG gene at 21q22 
t(16;21)(p11;q22) 

 
FUS-ERG 

 

 

 

1-9 The two-hit model of leukaemogenesis 

 

As previously mentioned, the multiplication, hematopoietic differentiation and death of 

AML stem cells are aberrant due to genomic damage. In keeping with the two-hit model 

of leukaemogenesis, it is possible to categorise these oncogenic events into two 

categories (Kelly and Gilliland, 2002) (Figure  1-4). The underlying concept of this model is 

that gene rearrangements and mutations that are beneficial from the viewpoint of 

proliferation and/or survival and those that disrupt hematopoietic differentiation are 

involved in a cooperative relationship (Kelly and Gilliland, 2002; Fröhling et al., 2005). In 

spite of the simplified form of this model, the proliferation and/or survival of 

hematopoietic progenitors are favoured by class I mutations (e.g. activation of mutations 

of cell-surface receptors like RAS or tyrosine kinases like FLT3), fostering their clonal 

expansion (Fröhling et al., 2005; Kosmider and Moreau-Gachelin, 2006; Moreau-Gachelin, 

2006). Hematopoietic differentiation is disrupted by another type of genomic damage, 

namely, class II mutations, such as core-binding-factor gene rearrangements caused by 

t(8;21), inv(16), or t(16;16), or by the PML–RARA and MLL gene rearrangements (Fröhling 

et al., 2005; Kosmider and Moreau-Gachelin, 2006).  

 

Both in vitro simulations of leukaemogenesis and AML molecular screening events can 

benefit from the two-hit model of leukaemogenesis, as it integrates an activating lesion of 

tyrosine kinase pathways and an event that suppresses myeloid differentiation. This 

model can provide reasonable explanations for the occurrence of t(8;21) and inv(16) AML, 

both of which are frequently associated with KIT mutations (Dash and Gilliland, 2001; 

Care et al., 2003; Park et al., 2011), as well as the occurrence of t(15;17) AML which is 

related with FLT3 aberrations (Schnittger, 2002; Thiede, 2002; Schnittger et al., 2011).  

 

The two-hit model gained acknowledgement after research on mice revealed that class I 
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and class II mutations alone do not induce AML, but only give rise to a myeloproliferative 

disorder (Renneville et al., 2008). The development of AML requires the presence of both 

classes of mutations, which are said to be cooperating. Another argument in favour of the 

two-hit model is that the frequency of class I and II mutations occurring together is 

greater than the frequency of occurrence of two class I mutations or two class II 

mutations (Dash and Gilliland, 2001; Care et al., 2003;; Schnittger et al., 2006; Renneville 

et al., 2008; Park et al., 2011). Nevertheless, as Egger et al. (2004) noted, this model is 

unable to provide a satisfactory explanation of the -5/-7 AML, although it is flexible 

enough to allow changes in order to explain the function of epigenetic factors. In AML, a 

range of supposed tumour suppressor genes undergo hypermethylation and therefore are 

inhibited; from a functional perspective, this hypermethylation is akin to a genetic 

mutation since, once it has occurred, it does not go away (Schoofs, Berdel and Müller-

Tidow, 2013). It is not unfeasible for new drug production to focus on those gene 

mutations that have been determined to influence proliferation or differentiation 

pathways. Inhibiting detection of RAS to the plasma membrane, FLT3-specific inhibitors or 

farnesyltransferase inhibitors can be used to target class I mutations at molecular level. 

Moreover, compounds promoting normal hematopoietic differentiation, such as all-trans-

retinoic acid (ATRA) used to treat acute promyelocytic leukaemia related to the PML-

RARA fusion, and even histone deacetylase (HDAC) inhibitors could be employed to target 

class II mutations (Renneville et al., 2008). 
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Figure 1-3: Schematic representation of model for collaboration between two groups of mutations  

Groups confer a proliferative and/or survival advantage and impair 
hematopoietic differentiation (modified from Gaidzik et al., 2008). 

1-10 Copy number changes in AML 

Copy number changes in AML can be either a copy number variation (CNV) which is 

defined as a loss or a gain of genetic material greater than 1kb in length (Feuk et al., 2006; 

Freeman et al., 2006) or copy number alteration (CAN) which can be either loss of genetic 

materials or gain of genetic materials that result in one or more extra copies of a genomic 

region (e.g. trisomy in the case of gain of an entire chromosome or duplication in the case 

of the presence of one additional copy of a DNA segment).  CNAs can be detected by 

cytogenetic techniques (e.g. fluorescent in situ hybridization [FISH], comparative genomic 

hybridization, array comparative genomic hybridization, and by single nucleotide 

polymorphisms [SNP] arrays).. CNAs have been identified in AML patients with normal 

and abnormal karyotypes. Walter et al. (2009) identified 201 acquired CNAs among 86 

AML patients (in 86 AML genomes) using SNP arrays. The deletions were more common 

than amplifications. Of 201 alterations, 198 included known genes and 154 loci included 

at least one gene that was previously implicated with AML or MDS. Copy-neutral loss of 

heterozygosity was identified in only 7 out of 86 AML genomes. Moreover, Kawankar et 

al. (2011) examined 86 Indian patients with AML. Of these, 40 AML patients showed an 
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abnormal karyotype and 46 patients showed no chromosome abnormalities. Of the 46 

patients without chromosomal abnormalities, 24 showed DNA CNAs, including losses and 

gains. The DNA copy number changes included chromosomes 1, 3, 6, 12, 15, 16, 17 (gains) 

and 1, 4, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 18, 20, 21 (losses) (Kawankar et al., 2011). CNAs 

and UPDs have also been identified in cytogenetically normal AML or AML with 

uncompleted karyotype (Ballabio et al., 2011); 15 large CNAs were detected in seven out 

of 23 AML samples. CN gains were found in six samples while CN losses were identified in 

three out of seven cases. 

1-10-1 Loss of heterozygosity 

Loss of heterozygosity (LOH) in cancer cells originates from a chromosomal deletion. 

However, it can also be present in a tumour without loss of DNA, and this is the case of 

copy-neutral loss of heterozygosity (CNLOH). CNLOH can include a whole chromosome 

(uniparental disomy, or UPD) when one of the homologous parental chromosomes is 

deleted and the other is duplicated, or only a part of a chromosome (partial UPD, or 

pUPD) (Heinrichs et al., 2010).  

1-10-2 Mechanisms of formation of copy number changes 

The presence of copy number changes is not restricted to specific regions of the genome, 

but rearrangements are more likely to happen in some regions than in others. Copy 

number changes can be recurrent or non-recurrent, depending on their breakpoints and 

formation methods. Recurrent copy number changes are characterised by restriction of 

breakpoints aggregation and junction to the area of low copy repeats (LCRs). Also known 

as segmental duplications (SDs), LCRs represent segments of DNA which appear over two 

times in the haploid genome, are at least 1 Kb in size but may extend to more than 300 

Kb, and their paralogous copies exhibit over 95% sequence identity (Edelmann et al., 

1999; Bailey et al., 2001). In the case of recurrent rearrangements occurring during 

meiosis as well as during mitosis at reduced frequency, LCRs support the unfolding of the 

non-allelic homologous recombination (NAHR) process which gives rise to copy number 

chages of identical size and closely similar boundaries in carriers. A connection has been 

found between a number of these recurrent copy number changes and human diseases 

(Reiter et al., 1998; Stankiewicz and Lupski, 2002). By contrast, non-recurrent copy 

number changes possess dispersed breakpoints and the nucleotide homology shared by 
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the boundaries is restricted or absent altogether. Moreover, non-recurrent copy number 

changes vary in size and their formation is induced by non-homologous end-joining 

(NHEJ) and replication-based processes, which are defined by models such as the fork 

stalling and template switching and microhomology-mediated break-induced replication 

models. As concluded by several researchers, it is these non-recurrent copy number 

changes typically developing from replication-based processes that mostly cause disease 

in humans (van Binsbergen, 2011; Hastings et al., 2009). Additionally, apart from LCRs, it 

has been acknowledged that genomic features are also involved in the development on 

non-recurrent copy number changes.  

1-11 Methods used to diagnose AML  

1-11-1 Conventional cytogenetics 

Chromosome banding methods have been used for the diagnosis of leukaemia since the 

1970s. The most commonly used chromosome banding stain is Giemsa or G-banding, 

which allows the discrimination of metaphasic chromosomes based largely on their 

specific banding patterns. While chromosome banding analysis remains a very important 

routine method at diagnostic laboratories to give an overview of chromosomal 

abnormalities in leukaemic cells, this method has several drawbacks. In some types of 

leukaemia, the leukaemic cells often fail to proliferate in the culture, resulting in an 

insufficient number of metaphase chromosomes for detailed analysis. It is also possible 

that the chromosome banding method cannot reach the resolution power to detect 

translocation between chromosome ends, such as t(7;12), and/or to identify 

chromosomal deletions where the size of the deleted region is smaller than 5-10 MB 

(Baldwin et al., 2008). It has been shown that chromosomal abnormalities can also occur 

in non-dividing or interphase cells, but not in metaphase cells, which cannot be detected 

by conventional cytogenetic method (Ballabio et al., 2011). Other weaknesses of 

chromosome banding include that it is time-consuming, and its aberrations can often be 

difficult to interpret. In recent years, the resolution of cytogenetic techniques has been 

increased to compensate the limitation of traditional cytogenetic methods.  
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1-11-2 Molecular cytogenetic methods  

Molecular cytogenetics concern the study of DNA or genes at the chromosome level, in 

which a labelled probe consisting of a specific DNA sequence binds to a specific region of 

metaphase chromosome or interphase DNA.  

1-11-2-1 Fluorescent in situ hybridization  (FISH)  

FISH is an important molecular cytogenetic method widely used in clinical laboratory to 

detect chromosomal abnormalities in solid tumours and in haematological malignancies 

(Hu et al., 2014). FISH detection relies on the use of specific probes to detect specific 

regions of interest within the chromosome, or whole chromosome paint (WCP) to detect 

structural and numerical chromosomal rearrangements and/or multi-colour probes to 

identify the cytogenetic changes in the whole of the genome. Labelled probes can be 

visualized directly if the probe is labelled with flourochorm or detected by affinity, such as 

avidin or streptavidin, or antibodies if the probe is labelled with biotin or digoxigenin 

systems (Bridger and Volpi, 2010; Morris, 2011) . FISH has the ability to identify cryptic 

translocations such as the t(12;21) in ALL (Romana et al., 1994) and cryptic deletions such 

as the 4q12 deletion that results in a PDGFRA–FIP1L1 fusion gene (Gotlib et al., 2004). It 

can also analyse both metaphase and large number of non-dividing interphase cells. The 

resolution of cytogenetic techniques has been further improved by applying genome-

wide microarrays, such as comparative genomic hybridization (CGH), CGH array and single 

nucleotide polymorphism (SNP) arrays.  

1-11-2-2 Comparative genomic hybridization (CGH)  

CGH modifies the FISH technique to allow the identification of gains or losses in the whole 

genome. This technique is based on the use of labelling DNA extracted from the patient 

with green and a normal control DNA with red. The mixture of patient DNA and normal 

DNA is hybridized into a slide containing normal metaphases preparation. The advantage 

of the CGH is that there is no need to prepare metaphase from the patient sample, but a 

significant weaknesses is the limitation of resolution, which only allows the identification 

of large gains or losses regions, and it is unable to find balanced translocations and 

inversions. The resolution of CGH application has been improved by replacing the 
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metaphase chromosome with bacterial artificial chromosomes (BACs) or oligonucleotides 

placed as spots on slides or chips. (Campbell, 2011; Le Scouarnec and Gribble, 2012). 

 

1-11-2-3 Array Comparative genomic hybridization  

At present, bacterial artificial chromosomes (BACs) and oligonucleotide arrays are the two 

main categories of array targets that are employed. Whereas at first BACs were given 

priority (Pinkel et al., 1998), in more recent times, the oligonucleotide arrays have 

attracted increased attention as they provide a wider genome coverage. The existence of 

a comprehensive human genome map and sequence enabled the formation of both types 

of arrays. As explained by Ylstra et al. (2006), the BACs may incorporate DNA extracted 

from insert clones of size ranging from 150 to 200 Kb, may be spotted straight on the 

array, or else may use the spotting of PCR products that have been subjected to 

amplification from the BAC clones. The use of this technique is based on the use of two 

different labelled DNA, one extracted from a patient labelled in red and the other 

extracted from a normal control DNA labelled in green. The two different labelled DNA 

(patient and control) are hybridized onto a glass slide containing DNA fragments (Bejjani 

et al., 2006) (see figure 1-4). The arrays are characterised by a high level of sensitivity and 

validation of results can be undertaken with FISH, the BAC DNA serving as a probe. 

However, Ishkanian et al. (2004) cautioned that producing BAC DNA is effort-consuming 

and a resolution higher than 100 Kb cannot be achieved, even on an entire genome tiling 

path array. By contrast, oligonucleotide arrays exhibit greater format flexibility which 

allows for higher resolution and customisation. Currently, oligonucleotide arrays are 

compatible with a range of platforms, either derived from genome-wide oligonucleotide 

markers based on SNP or developed from a virtual probe library covering the genome 

which affords a resolution of very high quality (Shaikh et al., 2007). The application of 

both BACs and oligonucleotide arrays in the determination of copy number modifications 

in individuals suffering from intellectual deficit (ID), multiple congenital anomalies (MCA) 

and autism has met with success. Diagnosis has been undertaken on the basis of several 

distinct methods of array design. A targeted array can be defined as consisting of 

particular genome areas, like the subtelomeres and areas in charge of recognised 

microdeletion/microduplication syndromes, but which lacks probes covering the entire 

genome ( Bejjani et al., 2006; Shaffer et al., 2006). Originally employed in postnatal 
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clinical applications, this array type has also been applied in prenatal cases to address 

irregular ultrasounds or to conduct general screening (Le Caignec et al., 2005; Sahoo et 

al., 2006). Complete genome coverage is provided by an entire genome or tiling path 

array, the resolution being influenced by the manner in which the probes are spaced. For 

instance, the resolution used in clinical testing is associated with probe spacing ranging 

from 50 Kb to 1 Mb, with extra coverage being frequently provided in the subtelomeric 

areas (Toruner et al., 2007). Furthermore, in comparison to a targeted array, the 

increased coverage offered by entire genome arrays enables the detection of 5% more 

irregularities (Baldwin et al., 2008). As far as research is concerned, oligonucleotide entire 

genome arrays possessing extremely high density and custom arrays targeting particular 

areas have been invaluable tools in the identification of new syndromes, determination of 

target gene deletions and description of breakpoint areas (Seltzer et al., 2005; Urban et 

al., 2006; Wong et al., 2008).  
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          Figure 1-4: Schematic representation of microarray-based comparative hybridization technology  

Whole DNA from a normal control labelled in green (left) and whole DNA 
from a patient labelled in red (right). The normal and patient DNA are co-
hybridized onto a solid surface in which oligonucleotides or BACs have 
been located (middle). Imaging programs evaluate the fluorescence level 
for each DNA target and data analysis software are used to visualize the 
variations (lower).  (Adopted from Bejjani and Shaffer, 2006).  

1-11-2-4  Illumina bead-based microarrays 

BeadArrays are self-assembling arrays consisting of minuscule beads to which probes are 

affixed. The separate production of every array involves exposure of a random array 

surface to an extensive accumulation of pre-prepared beads. As a result, the beads are 

selected at random and put together into wells on the array surface (Fan et al., 2006). 

Every bead array is allocated a particular DNA sequence, which is copied on 

approximately 30 beads on an array. The same probe sequence is present in a large 

number of copies in every bead with a diameter of 3 microns. As specified by Kuhn et al. 

(2004), for the same type of bead, the number and the location of the copies on an array 

are random. Moreover, every bead has an additional sequence for decoding, known as 

illumiCode, which is identical for same type beads. Every IllumiCode undergoes 

hybridisation in a foreseeable manner, giving rise to a number of specifically developed 

dye-labelled sequences. According to the level of hybridisation, every bead is allocated to 

a red or green state. In this way, a binary sequence for every bead is obtained from 

several hybridisations. A unique correlation must exist between this binary sequence and 

the anticipated IllumiCode response. By conducting such decoding hybridisations, Illumina 

ensures that the arrays provided contain bead types with more than five copies. The 

Illumina technology is also useful in high-throughput experiments as it can process 

BeadArrays in parallel. A sentrix BeadChip represents a slide made of glass which supports 

a large amount of observations of this chip; the number of samples that can be processed 

at the same time ranges from 1 to 16, and for each sample an extremely high number of 

genes can be profiled. Each of the 96 arrays included in the sentrix Array Matrix 

constitutes a hexagonal fibre optic bundle consisting of about 50,000 beads and 1,500 

different types of beads. This means that just one sentrix array matrix can support the 

processing of 96 samples at the same time (figure 1-5). 
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Figure 1-5: Schematic representation of a randomly assembled gene-specific array.  

(A) An individual bead affixed in a well, a chimeric oligonucleotide is 
attached to the well by its 5’ end.   

(B) Array of 50,000 beads with a diameter of ∼ 14 mm and each bead is 
affixed in a well at the end of an individual fibre bundle.  

(C) 96 array matrix are arranged in the bundle. ( Adopted from Kuhn et al., 
2004).  

1-11-2-5   Affymetrix GeneChips microarray 

The high-density oligonucleotide-based arrays that contain small DNA                

oligonucleotides called probes are known as Affymetrix GeneChips. The chemical 

synthesis of these DNA probes takes place in particular areas on a coated quartz surface. 

A feature is defined as the precise location of a probe and the features present on just 

one array can number in the millions (Peeters and Van der Spek, 2005). In a feature, the 

synthesis of DNA probes occurs on wafers made of silicon through the process of 

photolithography. The DNA probes on the array are 11-µm in size and 25 nucleotides in 

length, 22 probes divided into 11 pairs constituting a probe set. The present U133-2plus 

GeneChip microarray consists of 54,000 distinct probe sets which account for around 

30,000 identified genes and EST sequences. Detection of the presence of the RNA or DNA 
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complementary sequence in the sample is the purpose of each probe on an Affymetrix 

GeneChip. To accurately determine the presence of the complementary molecule in a 

given sample, the probe has to be sufficiently precise to differentiate a sequence from 

other similar ones at molecular level. Since one array can contain countless features, 

every sequence expressed is associated with multiple probes which generate highly 

sensitive and reproducible results. Furthermore, a high degree of specificity is afforded by 

the 25-mer long oligonucleotide probe, as a result of which signal and background noise 

can be differentiated. The standardised biotin labelling protocol underpinning the 

Affymetrix gene expression arrays employs an Oligo(dT)-primed linear amplification 

method based on in vitro transcription. In accordance with this, the standard Affymetrix 

fluidics and scanning station follow tight protocols. GeneChip technologies present 

several attributes that make them advantageous, such as the multiple probes targeting a 

single gene which ensures that experiments are specific and reproducible, as well as 

computerised monitoring of the experimental procedure from hybridisation to 

quantification (Han et al., 2004).  
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Figure 1-6: Schematic representation of Affymetrix GeneChip oligonucleotide micorarray. 

A synthesis of DNA probes occurs on wafers made of silicon through the 
process of photolithography (Top). Ultraviolet light is shined through a 
lithographic mask that performance as a filter to either transfer or block 
the light from the microarray surface (wafer). The consecutive application 
of specific lithographic masks regulates the order of sequence synthesis on 
the surface. The chemical synthesis of these standers takes place in 
particular areas on a coated quartz surface (Bottom). The Ultraviolet light 
removes the protective groups (orange squares) from the standers (T). The 
nucleotides are washed over the microarray. The process of passing light 
through a lithographic mask, deprotection of standers and adding new 
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nucleotides are repeated many times.(Adapted from Miller and Tang, 
2009). 

1-4 Aim of study 

The general aim of this research is to study leukaemia with recurrent chromosomal 

abnormalities in order to provide better insight into genetic events underlying 

leukemogenesis. The project focuses on different types of acute myeloid leukaemia and 

will cover the following aspects: 

1. Acute myeloid leukaemias characterized by the presence of the t(7;12) 

rearrangement. Question: Can the rearrangement be accurately identified using a 

novel three-colour fluorescence in situ hybridization approach? 

2. Acute myeloid leukaemia characterized by the presence of deletion 7(q). 

Question: Can the deletion 7(q) be detected using a new three colour probe sets? 

3. Acute myeloid leukaemias characterized by the presence of inv(16). Questions: (a) 

Can CNAs be identified in these leukaemias? (b) If yes, are CNAs present in the 

same leukaemic clone harbouring the inv(16)? If not, are the CNAs present in the 

non-dividing population of cells? Do CNAs have an impact on the prognosis of this 

group of patients? 

4. Acute myeloid leukaemia characterized by the presence of specific chromosomal 

abnormalities. Question: what is the proportion of leukaemic cells in proliferative 

versus non-proliferative state?  

These questions are answered by pursuing the following objectives: 

1. To test a new probe set specifically designed by MetaSystems GmbH to target the 

t(7;12) in a three-colour fashion on a series of AML patients. 

2. To validate a new probe set for the detection of del 7(q) in a series of leukaemia 

cell lines.  

3. To analyse the data generated via an Illumina array approach on a series of inv(16) 

patients and validate the presence of CNAs by FISH. 

4. To investigate the proliferative status of leukemic cells in several patients and 

normal blood samples by immunoFISH using probes to target the specific 

chromosomal abnormality and an antibody against the proliferation marker Ki67. 
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CHAPTER 2:  MATERIALS AND METHODS 

2-1 Patient samples 

Patient samples used in this study were provided as archival methanol-acetic acid fixed 

chromosome suspensions by several cytogenetics laboratories:  

(i) Chromosome Laboratory, University Children’s Hospital, University of Giessen 

and Marburg, Germany;  

(ii) Paediatric Haematology, San Gerardo Hospital, Monza, Milan, Italy;  

(iii) St Anna Children’s Hospital, Vienna, Austria. 

2-2 Peripheral blood samples 

Stimulated and unstimulated peripheral blood cells used in this study were provided 

either as archival methanol-acetic acid fixed or a cryopreserved human peripheral blood 

lymphocytes (PBL) (Caltag Medsystems, UK).  

2-3 Leukaemia and lymphoma cell lines 

Five different cell lines were used in this study: 

Farage (CRL-2630) cell line was derived from patient who had diffuse large cell non-

Hodgkin's lymphoma (DLCL). According to Ben-Bassat et al. (1992), cytogenetic analysis 

showed trisomy of chromosome 11 in this cell line. Farage cells are positive for Epestien-

Barr Virus (EBV) and do not express cytoplasmic immunoglobulin. This cell line was 

purchased from the ATCC-LGC standard partnership. 

K562 cell line was derived from an elderly female patient with cryonic myeloid leukaemia. 

The cytogentic analysis of this cell line showed Philadelphia chromosome (Ph) and 

aneuploidy (lozzio et al., 1975). This cell line was provided by collaborators in Oxford. 

Pfeiffer (CRL-2632) cell line was established from patient with leukaemic phase of 

diffused large cell lymphoma with cleaved and non-cleaved nuclei in 1992. Pfeiffer cells 

are negative for Epestien-Barr Virus (EBV). Several chromosomal abnormalities are 
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present including the typical t(14;18)(q32;q21) translocation of follicular lymphomas. This 

cell line was purchased from the ATCC-LGC standard partnership. 

GDM1 cell line was derived from peripheral blood of 66-67 years old female patient with 

acute myelomonoblastic leukaemia. The chromosome banding analysis of this cell line 

showed various chromosomal abnormalities that involved a deletion of chromosome 6, 

trisomy 8, del (6q), add (+7q), and a deletion of short arm of chromosome 12 (Ben-Bassat 

et al., 1982). This cell line was obtained from the National Institute for Cancer Research, 

Genova, Italy.  

GF-D8 cell line was established from peripheral blood of an 82 year-old man with AML 

subtype M1. The G-banding analysis of this cell line showed monosomy 5, deletion of 

7q22, inv(7) and additional abnormalities such as add(8q), add(11q), del(12p),monosomy 

15 and monosomy 17 (Rambaldi et al., 1993). 

2-4 Probes  

The following probes were either provided by or purchased from MetaSystems GmbH, 

Altlussheim, Germany:  

1. A break-apart probe with an spectrumorange labelled hybridizing centromeric to 

ETV6 gene in 12p13, a FITC labelled probe hybridizing telomeric to ETV6; 

2. A revised version for 12p13 with an spectrumorange labelled part hybridizes 

proximal to the ETV6 gene at 12p13 and a FITC labelled probe hybridizes to the 

distal region of ETV6; 

3. A locus-specific probe which hybridizes to flanking region of the HLXB9 gene 

labelled in blue (aqua); 

4. A dual fusion probe for inv16 with an spectrumorange labelled probe spans the 

breakpoint at 16q22 and includes the CBFB region and a FITC labelled probe spans 

the breakpoint at 16p13 and includes the MYH11 region; 

5. Three-colour FISH probe for the detection of del(7q22-q31) with an 

spectrumorange labelled probe hybridizes to 7q22, a FITC labelled probe 

hybridizes specifically to 7q31 and a blue (aqua) labelled probe which spans the 

centromere of chromosome 7; 
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6. Three-colour probe for the detection of del(7q22-q36.1) with an spectrumorange 

labelled probe detects deletions at 7q22 band, a FITC labelled probe hybridizes to 

7q36 region and a blue (aqua) labelled probe which spans the centromere of 

chromosome 7; 

7. Whole chromosome 7 paint directly labelled with spectrumorange; 

8. Partial chromosome 7 paint, with a green paint (FITC) hybridizing to the short arm 

of chromosome 7 and an spectrumorange paint spanning the long arm of 

chromosome 7. 

In addition, the following probes were used in this study: 

9. Whole chromosome paint probes for chromosome 12 labelled with biotin  and 

chromosome 16 labelled with FITC (obtained from Cambio, Cambrdge, UK); 

10. Bacterial artificial Chromosomes (BACs) for 7q36.1 (RP11-504N9), 4q35.1 (RP11-

184A23), and 8q24.3 (RP11-195E4) regions (obtained from BACPAC Resources 

Center, Oakland, USA); 

11. D8Z2 probe for chromosome 8.  

2-5 Cell culture 

Cell lines (Farage, K562, Pfeiffer and peripheral blood lymphocytes) were recovered from 

liquid nitrogen and maintained in RPMI media supplemented with 15% of foetal calf 

serum (FCS) (Gibco, Glasgow, UK). 1% of penicillin and streptomycin (Gibco, Glasgow, UK) 

were also added. Cell cultures were grown at 37°C with 5% CO2. Cells were blocked in 

mitosis by treatment with colcemid (0.05mg/ml) 30 minutes before harvesting.  

2-5-1 Stimulation of peripheral blood lymphocytes  

Peripheral blood lymphocytes cells were stimulated using PHA at concentration of 

0.5ul/ml or were left untreated for controls. The cells were maintained in RPMI media 

supplemented with 15% of FCS (Gibco, Glasgow, UK) and 1% of penicillin and 

streptomycin (Gibco, Glasgow, UK). The cells then were incubated for 72 hours at 37°C 

with 5% CO2.  
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2-5-2 Harvesting of cultures  

Cells were centrifuged for five minutes at 1200 rpm (MSE, Centaur2E Centrifuge, UK). The 

supernatants were then discarded. The pellets were re-suspended in 10 ml of hypotonic 

solution (0.075 M potassium chloride - KCL) at room temperature. The samples were 

incubated for ten minutes at 37˚C. Ten drops of fixation solution (3 parts methanol: 1 part 

acetic acid) were added. Cells were centrifuged again at 1000 rpm for five minutes and 

supernatants were then discarded and the pellet re-suspended in 1 ml fixation solution by 

vortexing. Fixation solution (9 ml) was added slowly to the samples. After an incubation of 

fifteen minutes at room temperature, the samples were centrifuged for five minutes at 

1000 rpm. The supernatants were discarded, and washes with fixation solution were 

repeated several times.  

2-5-3 Preparation of slides  

The methanol/acetic acid fixed chromosomes and cells of both patient samples and cell 

lines were centrifuged for three minutes at 3000 rpm. Each sample was re-suspended in 

200 µl of fresh fixative solution. Chromosome suspension (8 µl) was dropped onto the 

centre of clean slides. Slides were labelled with the patient reference number or the cell 

line names and were then air dried. The cells suspension cytospin slide centrifuge was 

used to spin cells cultured in suspension onto slides, 300 µl of the culture was added to 

the chamber and was centrifuged at 700 rpm for five minutes. The quality of the slides 

was checked using light microscope. 

2-6 Preparation of the DNA probe 

2-6-1 Bacterial Artificial Chromosome 

Using information from the University of California, Santa Cruz Genome Browser on 

Human Feb. 2009 (GRCh37/hg19) Assembly database, BAC clones were selected for the 

long arms of chromosome 4q35.1 (RP11-184A23 and RP11-51B8), chromosome 7q36.1 

(RP11-504N9 and RP11-104H2) and chromosome 8q24.3 (RP11-195E4) from the BACPAC 

Resources Centre (BPRC). The clones were obtained as bacterial LB agar stabs culture. A 

loopful of each culture was then streaked onto an agar plates containing luria Bertani LB 

medium (1% (w/v) NacI, 1% (w/v)) bactotryptone, 0.5% (w/v) yeast extract (Fisher 
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Scientific UK), 1.5% (w/v) agar technical (Oxoid, UK) and 12.5 µg/ml chloramphenicol. 

Plates were then incubated at 37˚C overnight. One loopful from each plate was re-

suspended in 10 ml of LB broth, and 12.5 µg/ml chloramphenicol and incubated at 37˚C 

overnight on shaker. Five hundred µl of 80% glycerol in medium was added to 500 µl of 

each bacterial suspension and then stored at -80˚C. For the DNA isolation and/or DNA 

extraction from clones, BACs DNA was isolated from 10 ml of each bacterial suspension 

using 300 µl of buffer 1 (P1) solution (15 mM Tris (pH8) (Fisher Scientific), 10 mM EDTA 

(Fisher Scientific) and 100 µg/ml RNase A (sigma-Aldrich). 300 µl of buffer 2 (P2) solution 

(0.2 M NaOH and 1% SDS) was added to the mixture gently and incubated for five 

minutes at room temperature, followed by the addition of 300 µl buffer 3 solution (3M 

potassium acetate) drop by drop with gentle mix. The suspensions were then incubated 

on ice for ten minutes.  

The mixtures were centrifuged at 10000 rpm for ten minutes at 4˚C and supernatants 

(containing DNA) were transferred to 2 ml tubes containing 800 µl of ice-cold isopropanol 

and mixed (by inverting the tube several times). The mixtures were incubated overnight 

at -20˚C in order to allow DNA precipitation. After overnight incubation the tubes were 

centrifuged at 10000 rpm for fifteen minutes at 4˚C. The supernatant was removed and 

500 µl of ice-cold 70% ethanol was added to each tube. The pellets were washed by 

inverting the tube several times. The tubes were centrifuged in microcentrifuge at 10000 

rpm for ten minutes at 4˚C. The supernatants were removed and the pellets were allowed 

to dry at room temperature for two hours prior to re-suspension in 40 µl of ddH2O by 

gently occasional tapping of the bottom of the tubs.  

2-6-2 Agarose gel electrophoresis  

To validate the DNA size, the extracted BACs DNA was added to water with 1 µl of DNA 

size III marker (PeQlab, Erlangen, Germany) and 1µl of DNA dye to achieve a final volume 

of 6µl. The mixture was loaded onto 1% agarose gel stained with ethidium bromide 

(0.5µg/ml). The gel was run in TBE buffer (0.089 M Tris, 0.089 boric acid and 2Mm EDTA, 

Ph8.0) at 80 volts for one hour.  
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2-6-3 Measurement of DNA concentration  

DNA concentration was measured using Nanodrop (Nanodrop 200oC, Thermo Scientific, 

UK). 1 µl of each DNA sample was taken and placed in the sample chamber of the 

Nanodrop. The reading obtained was the concentration of DNA samples in ng/µl. For the 

DNA samples, the DNA concentration was over 1000ng/ µl.  

2-6-4 Labelling of DNA probes 

Probes were labelled using nick translation (BioNick™ DNA Labelling System, Invitrogen, 

UK), which is a technique for DNA labelling of FISH probes used in this study (table 2-1). 

 

Table 2-1: Probes labelled by nick translation 

Patient no.  Chromosome band  BACs 

26 7q36.1 RP11-504N9 and RP11-104H2 

27 4q35.1 RP11-184A23 and RP11-51B8 

30 8q24.3 RP11-195E4 

L020944 Cen 8 D8Z2 

H010340 Cen8 D8Z2 

0132108 Cen8 D8Z2 

 

1 µg of each of these probes was mixed with 5 µl of 10xdNTP mix (0.2 mM each dCTP, 

dGTP, dTTP, and 0.1mM dATP and biotin-14-dATP), 5 µl of 10x enzyme mix (DNA 

polymerase I and DNase I) and ddH2O to make up the final volume of 50 µl. the mixtures 

were mixed and incubated for two hours at 16˚C.  

2-6-5 Agarose gel electrophoresis  

To check the presence of labelled DNA, the DNA was diluted in water, 1 µl of DNA size XIII 

marker (PeQlab, Erlangen, Germany) and 1µl of DNA dye to achieve a final volume of 6µl. 

The mixture was loaded onto 2% agarose gel stained with ethidium bromide (0.5µg/ml). 

The gel was run in TBE buffer (0.089 M Tris, 0.089 boric acid and 2Mm EDTA, Ph8.0) at 80 

volts for one hour.  
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2-6-6 Purification of labelled probes 

Illustra microspin G-50 column (GE Healthcare, UK) was used to remove the 

unincorporated nucleotides, labelled probe was added to the top of the column and then 

centrifuged at 6000 rpm for one minute; 5 µl of salmon sperm DNA (11.0 mg/ml), 10 µl 3 

M NaAC and 2.25 V 100% ice-cold EtOH were added to the purified samples. The DNA was 

then precipitated overnight at -20˚C and centrifuged at 13000 rpm for 30 minutes at 4˚C. 

The pellet was washed with 200 µl of ice-cold EtOH 70% and centrifuged at 13000 rpm for 

1five minutes at 4˚C. The DNA pellet was then dried and resuspended in 20 µl of ddH2O. 

The purified samples were then stored at -20˚C until use. 

2-7 Fluorescence in situ hybridization (FISH) 

2-7-1 Denaturation of the target DNA 

The slides were washed in 2XSSC (pH7.0) with shaking for five minutes. The slides were 

then dehydrated through an alcohol series (70%, 90% and 100%) followed by air-drying 

for five minutes. The slides were placed in 70% formamide solution containing 20XSSC 

and water at 70˚C for five minutes. After the denaturation, the slides were washed with 

ice-cold 2XSSC for five minutes and then dehydrated again through an alcohol series 

(70%, 90% and 100%) and air-dried at room temperature.  

2-7-2 Probe denaturation  

Commerical probe sets and biotin labelled probes were prepared. COT 1 DNA was added 

to the latter to block the repetitive sequences of the genomic DNA (Roche Diagnostics 

GmbH, Germany). The mixture was centrifuged using speed vacuum centrifuge. All probes 

were conducted in a dark atmosphere to protect them from light. Before adding the 

probes to the slides, they were denatured at 65˚C for ten minutes in a water bath and 

then placed in a water bath for ten minutes at 37˚C. 

2-7-3 Hybridisation  

The slides were labelled with their probe names, then the denatured probes were added 

onto the slides, and the slides were covered with 22x22 mm coverslip, then the coverslips 

were sealed to the slides using bicycle glue. The slides were left to dry for a few minutes 



40 
 

and then put back into a moist chamber in a water bath at 37˚C overnight to allow the 

probes to hybridise to the target chromosomes. 

2-7-4 Post-hybridization washes and detection of labelled probe  

The slides were collected from the water bath, and the bicycle glue was carefully 

removed. The slides were washed in 2xSSC with five minutes shaking to remove the 

coverslip, then they were placed in a coplin jar containing 0.4xSSC for five minutes. The 

jar was placed in 72˚C, and after five minutes of washing the slides were washed again 

with 2xSSC for five minutes.  

For the biotin labelled probe, 3% bovine serum albumin (w/v) (BSA in 4XSSC, 

0.05%Tween20) (Sigma, UK) blocking solution was added to the slides and covered with 

parafilm, placed in a moist chamber and then into a 37˚C water bath for an hour (blocking 

solution is used to stop unspecific binding). After that the parafilms were removed gently, 

and diluted Streptavidin-Cy3 and/or Streptavidin -Cy5 solutions were added to the slides 

and covered with parafilm, then the slides were incubated for twenty minutes at 37˚C in 

water bath, then washed three times in 4xSSC/Tween20 for five minutes each in the dark. 

In order to amplify the probe hybirdisation signals the diluted biotin (anti-avidin 

conjugated) was added to the slides and they were incubated for twenty minutes at 37˚C 

in water bath. The slides then washed three times in 4xSSC/Tween20 for five minutes 

each in dark. The Streptavidin-Cy3 and/or Streptavidin-Cy5 solutions were added to the 

slides and covered with parafilm, then the slides were incubated for twenty minutes at 

37˚C in water bath, then washed three times in 4xSSC/Tween20. Finally, the slides were 

washed in 1% phosphate buffer saline (PBS)(Sigma, UK) for another five minutes in the 

dark, and a DAPI solution (Vectashield, Vector Laboratories, UK) was added to the slides, 

then they were covered with 22x40 coverslip and sealed with bicycle glue. 

2-8 Fixation methods  

Stimulated and unstimulated samples (AH, AN, GO, JS, 2,5, LU and PB) were fixed in 3:1 

methanol/acetic acid while the stimulated and unstimulated cells from (PB) were fixed in 

ice cold 4% paraformaldehyde for ten minutes and permeabilised with 0.2% Triton X-100 

(Sigma-Aldrich) for ten minutes at 4˚C. The k562 cell line was fixed in 1:1 
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methanol/acetone for ten minutes and also in ice cold 4% paraformaldehyde for ten 

minutes and permeabilised with 0.2% Triton X-100 (Sigma-Aldrich) for ten minutes at 4˚C.  

2-9 ImmunoFISH 

Methanol-acetic acid fixed chromosome suspensions were prepared for the immuno-FISH 

experiment. The inv(16) probe was directly labelled with spectrumorange and FITC used 

for direct detection. BACs biotin labelled probes were indirectly visualized with 

streptavidin Cy3 and streptavidin Cy5. These probes were used according to the 

manufacturer’s instructions with slight modifications. Slides were denatured with 70% 

formamide at 70°C for five minutes. Probe mixture was denatured at 65°C for ten 

minutes, incubated at 37°C for ten minutes, and subsequently applied to the slides. Slides 

were incubated for overnight at 37°C. After overnight incubations, slides were washed 

with 2x SSC for five minutes followed by another wash in 0.4x SSC for five minutes at 

72°C. Blocking solution (3% BSA+ 4x SSC/Tween20) was added to the slides. Biotin 

labelled probes were detected using streptavidin Cy3 streptavidin Cy5. The slides were 

then mounted in Vectashield (Vector Laboratories Ltd., Peterborough, UK) containing 49, 

6-Diamidine-29-phenylindole dihydrochloride (DAPI). The slides were washed three times 

with 1X PBS for five minutes each. Cells were then blocked with 1% NCS (Newborn Calf 

serum) in 1X PBS for one hour. 75 ul of monoclonal mouse anti-Human Ki-67 anti-body 

(mAbs) (Dako, Denmark) at the desired concentration (1: 75 in 1% NCS) was added to the 

cells. The cells were incubated in the oven for an hour. After the incubation time, the 

slides were washed three times in 1XPBS. 75 ul of the fluorescein anti-mouse secondary 

antibody (Vector Lab), diluted 1:75 in 1% NCS, was then added to the slides and incubated 

for an hour in the oven. The cells were washed again with 1X PBS three times for five 

minutes each and then were mounted using vectashield mounting medium with 4,6-

diamidino-2-phenylindole (DAPI)(Vector Laboratories,UK) to produce blue fluorescence. 

2-10 Indirect immunofluoresence (IIF) 

Cells fixed with methanol/acetone, paraformaldehyde and methanol-acetic were 

prepared for the immunofluoresence staining. The slides were washed three times with 

1X PBS for five minutes each. Cells fixed in methanol/acetic acid and methanol/acetone 

were blocked with 1% NCS (newborn calf serum) in 1X PBS for one hour, while cells fixed 
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in 4% paraformaldehyde were blocked with 1% BSA in 1X PBS and 0.2% tween twenty for 

one hour. The monoclonal mouse anti-human Ki-67 primary antibody (mAbs) (Dako, 

Denmark) was diluted in (1:75) of 1% NCS or 1% BSA blocking solution to block the non-

specific binding. The cells were covered with the diluted primary antibody and then 

incubated in the oven for an hour. After the incubation time, the slides were washed 

three times in 1XPBS. The fluoresencein anti-mouse secondary antibody (Vector Lab) was 

diluted (1:75) of 1% PBS or 1% BSA and then was added to the slides and incubated for an 

hour in the oven. The cells were washed again with 1X PBS 3 times for five minutes each 

and then were mounted using vectashield mounting medium with 4,6-diamidino-2-

phenylindole (DAPI)(Vector Laboratories,UK) to produce blue fluorescence.  

2-11 Microscope analysis and imaging 

The slides were viewed under Olympus BX41 Fluorescence Microscope (Zeiss axioplan 

epifluorescence microscope, Carl Zeiss,) and Olympus BX-51 microscope to check the 

chromosomal abnormalities. All slides were examined under 100X immersion oil 

objective. Metaphases and interphase cells were captured with a camera (Scion FW 

Camera, Merge image processor, Version 1.0) and were previewed on MAC computer 

using SmartCapture3 sofware and with a CCD camera (739 3 575, pixel size 11 3 11 mm) 

with metasystems Isis v. 5.3 software and with a JAI CVM4+ progressive-scan 24 fps B&W 

fluorescence CCD camera and Leica Cytovision Genus v7.1 software.  

2-12 Statistical analysis 

To determine the cut off level of different hybridization signals of each probe, the 

hybridization signal pattern of each probe in at least 200 hundred nuclei from three 

different normal controls and patient samples was counted and analysed independently 

by three trained observers. The average of number of hybridization signals of each probe 

from three different normal controls was also calculated by each observer. From this, the 

mean average of number of hybridization signals of each probe between the three 

observed was then calculated. Following this, statistical analysis was performed using 

mean ± 3 × SD formula. All statistical analysis was done using Microsoft excel.   
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CHAPTER 3:  A NOVEL THREE-COLOUR FLUORESCENCE IN 

SITU HYBRIDIZATION APPROACH FOR THE DETECTION OF 

T(7;12) IN ACUTE MYELOID LEUKAEMIA REVEALS A NEW 

CRYPTIC THREE-WAY TRANSLOCATION T(7;12;16)1 

3-1 Introduction 

A large number of chromosomal abnormalities have been identified in AML, one of which 

is a translocation between chromosome 7 and chromosome 12 t(7;12)(q36;p13). This 

translocation involves the ETV6 gene located on the short arm of chromosome 12. The 

ETV6 gene has been found to be involved in translocations with more than 40 partner 

genes in various types of leukaemia (De Braekeleer et al., 2012). The t(7;12) is a recurrent 

chromosome abnormality in infant leukaemia with an estimated incidence of 20-30% 

(Tosi et al., 2003; Von Bergh et al., 2006). The t(7;12)(q36;p13) is not associated with any 

specific AML subtype and to date has been associated with poor prognosis (Tosi et al., 

2003; Von Bergh et al., 2006). This translocation has been found as the only abnormality 

in two out of 44 cases reported in the literature (table 3-1 summarizes the total number 

of published t(7;12) cases in the literature).  

Additional cytogenetic features are described in almost all cases, with the presence of an 

extra chromosome 19 in 33 out of 44 cases and/or an extra chromosome 8 in twelve out 

of 44 cases. An extra chromosome 13 has been also found in two out of 44 cases. Despite 

the genomic breakpoint of 7q36 being heterogeneous, the HLXB9/ETV6 fusion transcript 

has been detected at the molecular level in some cases of t(7;12) where the exon 1 of 

HLXB9 fused with the exon 3 of ETV6 (Beverloo et al., 2001; Simmons et al., 2002; Tosi et 

al., 2003). The ectopic expression of HLXB9 has been detected at the transcript level in all 

t(7;12) cases investigated (Ballabio et al., 2009; Park et al., 2009, Von Bergh et al., 2006).  

                                                      
 

1 The contents of this chapter have been published as a scientific article: Naiel, A., Vetter, M., Plekhanova, 
O., Fleischman, E., Sokova, O., Tsaur, G., Harbott, J., and Tosi, S. (2013). A Novel Three-Colour Fluorescence 
in Situ Hybridization Approach for the Detection of t(7;12)(q36;p13) in Acute Myeloid Leukaemia Reveals 
New Cryptic Three Way Translocation t(7;12;16). Cancers, 5(1):281-295. 
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These data suggest that the presence of such ectopic expression of the HLXB9 gene might 

promote leukaemogenesis in t(7;12) cases. Several studies have shown that an 

overexpression of HLXB9 gene is present in other types of cancer, such as hepatocellular 

carcinoma and colorectal cancer (Hollington et al., 2004; Wilkens et al., 2011).  

3-2 Aim of this study 

The aim of this study is to validate a new three colour fluorescence in situ hybridization 

(FISH) approach which enables the detection of the t(7;12)(q36;p13) rearrangement. In 

order to achieve the above aim, the following objectives will be pursued: 

1. To carry out FISH experiments using the commercially available probes set to:  

i. (i) a number of samples derived from patients known to carry the t(7;12) 

rearrangement;  

ii. (ii) a number of samples derived from patients in which the presence of 

t(7;12) has not been confirmed before. 

2. To analyse the FISH data using microscopy and specialised software. 

3-3 Materials and methods  

3-3-1 Patient samples  

Seven patient samples were used in this study, of which six have previously been studied 

and one is new. Archival methanol: acetic acid-fixed cell suspensions were obtained from 

the following laboratories:  

i. Chromosome Laboratory, University Children’s Hospital, University of Giessen 

and Marburg, Germany;  

ii. Paediatric Haematology, San Gerardo Hospital, Monza, Milan, Italy;  

iii. St Anna Children’s Hospital, Vienna, Austria.  

The clinical and cytogenetic characteristics of the patients are summarized in Table 3-2. 

Patient samples were selected according to the presence of t(7;12) (cases nos. 1-4) and 

the presence of HLXB9- ETV6 fusion transcript (case no. 7).  



 
 

Table 3-1: Total number of reported t(7;12) cases 

AML, acute myeloid leukaemia; NOS, not otherwise specified, MDS, myelodysplastic syndrome; ALL, acute lymphoid leukaemia; ABL, acute bilineage or 
biphenotypic leukaemia; AMKL, acute megakaryoblastic leukaemia; Pt no. in the second column from right refers to the patient no. as indicated in the 
original report. 

No. Disease Karyotype Pt no. Reference 

1 T-ALL 48,XX,t(7;12)(q36;p13),+8,+19 116 Andreasson et al., 2000 

2 AML-M0 47,XX,t(7;12)(q36;p13),+19 1 Ballabio et al., 2009 

3 AML 48,XX,t(7;12)(q36;p13),+8,+19 2 Ballabio et al., 2009 

4 AML  46,XY,t(7;12)(q36;p13)/47,idem,+8 13 Hagemeijer et al., 1979 

5 AML-M4  47,XY,t(7;12)(q36;p13),+8 46 Hagemeijer et al., 1981 

6 AML-M2  47,XX,t(7;12)(q36;p13),+19  1 Hauer et al., 2008 

7 AML-M5a  49,XY,t(5;7;12)(q31;q36;p13),+8,+19,+del(22)(q13) 1 Park et al., 2009 

8 ABL  48,XY,t(7;12)(q36;p13),+19,+22 2 Park et al., 2009 

9 AML-M0  48,XY,t(1;7;12)(q25;q36;p13),+8,+19 3 Park et al., 2009 

10 AML-M2  47,XX,t(7;12)(q36;p13),+19/49,idem,+X,+8 63 Raimondi et al., 1999 

11 ANL-M2 47,XX,t(7;12)(q36;p13.1),+19 64 Raimondi et al., 1999 

12 AML-M6  46,XY,der(7)t(7;12)(q32;p13)del(12)(p13)/ 47,idem,+19/47,idem,+8 26 Satake et al., 1999 

13 AML-M2  48,XX,t(7;12)(q32;p13),+13,+19 27 Satake et al., 1999 

14 AML  47,XY,t(7;12)(q36;p13),+19 1 Simmons et al., 2002 

15 AML 48,XY,ins(12;7)(p13;q36;q11.1),+13,+19 2 Simmons et al., 2002 

16 AML 46,XY,t(7;12)(q36;p13) 1 Slater et al., 2001 

17 AML 47,XY,der(7)t(7;12)(q36;p13)del(12)(p13p13),der(12)t(7;12)(q36;p13),+19 2 Slater et al., 2001 

18 AML 47,XY,t(7;12)(q36;p13),+19 3 Slater et al., 2001 

19 AML 47,XX,t(7;12)(q36;p13),+19/48,idem,+19 4 Slater et al., 2001 

20 AML 47,XX,t(7;12)(q36;p13),+19 6 Slater et al., 2001 

21 AML 46,XX,t(7;12)(q36;p13) 9 Slater et al., 2001 



 
 

No. Disease Karyotype Pt no. Reference 

22 AML 46,XX,t(7;12)(q32;p13) 47,idem,+19 10 Slater et al., 2001 

23 AMKL 46,XX,add(7)(q22),del(12)(p12;p13) 1 Taketani et al., 2008 

24 MDS 46,XX,der(7)t(7;12)(q22;p13)del(7)(q22q36) 1 Tosi et al., 1998 

25 AML-M5 47,XY,del(7)(q32q35-36),t(7;12)(q36:p13),+19 2 Tosi et al., 1998 

26 AML-M1 47,XX,t(7;12)(q36;p13),+19 3 Tosi et al., 2000 

27 T-ALL  50,XX,+6,del(12)(p13),+18,+19,+22 4 Tosi et al., 2000 

28 AML-M0 47,XY,t(7;12)(q36,p13),+der(19) 5 Tosi et al., 2000 

29 AML-M4 48,XY,t(7;12)(q36;p13),+8,+19. 6 Tosi et al., 2000 

30 ALL-L2 47,XY,t(7;12)(q36;p13),+19 . 7 Tosi et al., 2000 

31 AML  
 

47,XX,t(7;12)(q36;p13),+8/48,idem,+19/ 
50,idem,+X,+19,+19/51,idem,+X,+8,+19,+19 

17 Tosi et al., 2000 

32 AML-M0 47,XY,t(7;12)(q36;p13),+19. 6 Tosi et al., 2003 

33 AML 48,XY,t(7;12)(q36;p13),+8,+19. 7 Tosi et al., 2003 

34 AML-M0  46,XX,t(7;12)(q32;p13)/47,idem,+19 1 Von Bergh et al., 2006 

35 AML-M2  47,XX,t(7;12)(q36p13),+19 4 Von Bergh et al., 2006 

36 ALL  47,XX,del(7)(q31),del(12(p13) 5 Von Bergh et al., 2006 

37 AML-M0  47,XX,+19 6 Von Bergh et al., 2006 

38 AML-M5  47,XX,t(7;12)(q36p13),+19 7 Von Bergh et al., 2006 

39 AML 48,XY,t(7;12)(q36;p13),+8,+19 2 Wildenhain et al., 2010 

40 AML-M2 47,XX,t(7;12)(q36;p13),+ 19 3 Wildenhain et al., 2010 

41 AML-M0 47,XX,t(7;12)(q36;p13),+ 19 4 Wildenhain et al., 2010 

42 AML-M0  47,XX,del(7)(q11.2~21),del(12)(p13),+mar 5 5 Wildenhain et al., 2010 

43 AML-M2 47,XX,del(12)(q12),+19 6 Wildenhain et al., 2010 

44 AML-NOS 46XY,inv(2)(p11;p13),t(7;12)(q36;p13),der(16)t(1;16)(q22;p13),add(21)(q22). 5 Wlodarska et al., 1998 
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Table 3-2: Clinical and cytogenetic date of the patients 

pt Age/ 
sex  

Disease  Karyotype  Reference  

1 7 mo/F AML 46,XX,der(7)t(7;12)(q22;p13)del(7)(q22q36)  Tosi et al. (1998, 
2003)  

2 3 mo/ 
M 

AML-
M0 

47,XY,t(7;12)(q36;p13), +der(19)  Tosi et al. (2003) 

3 5 mo/F AML-
M1 

47,XX,t(7;12)(q36;p13),+19  Tosi et al. (2003) 

4 8 mo/F AML 47,XX,t(7;12)+19  Hauer et al. (2007)  

5 7 y/F AML-
M0 

48,XX,t(7;12)+19 Present study 

6  AML 53,XY,del(2)(q31),+5,+6,+9,add(11) Wildenhain et al. 
(2010) 

7 4 mo/F  AML-
M2 

47,XX,t(7;16)(q36;q12),+mar Wildenhain et al. 
(2010) 

Pt, patient; AML, acute myeloid leukaemia; mo, months; y, years; M, male; F female. 

3-3-2 Probes  

The following probes were designed and provided by MetaSystems GmbH, Germany:  

i. A break-apart probe set with an spectrumorange labelled probe hybridizing to 

the centromeric region of ETV6 gene in 12p13 and a FITC labelled probe 

hybridizing to the telomeric region of ETV6 

ii. A probe combination made of two loci that hybridize to flanking regions of the 

HLXB9 gene labelled in blue (Aqua)(see figure 3-1); 

iii. Revised version of (i) with an spectrumorange labelled probe that hybridizes to 

a region proximal to the ETV6 gene at 12p13 and a FITC labelled probe that 

hybridizes to the distal region of ETV6 (see figure 3-9).  

In addition, the following probes were obtained from Cambio (Cambridge, UK): 

iv. Whole chromosome 16 paint (wcp16) direct labelled with FITC; 

v. Whole Chromosome 12 paint biotin labelled (Cambio, Cambridge, UK).  
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Figure 3-1: Ideograms of chromosomes 12 and 7 with details of the localization of the probes used for 
FISH 

On the right of each chromosome ideogram, the chromosomal bands of 
the 12p13 and 7q36 are indicated. On the left of the ideograms, the probes 
used and their position along the genomic sequence are indicated. 

3-3-3 FISH 

FISH analysis was performed on bone marrow metaphases from archival methanol: acetic 

acid fixed cell suspensions stored at -20°C. The three-colour custom designed probe set 

(MetaSystems GmbH, Germany) and whole chromosome 16 paint (wcp16) (Cambio, 

Cambridge, UK) directly labelled with FITC were used for direct detections. Whereas, the 

whole Chromosome 12 paint biotin labelled (Cambio, Cambridge, UK) was indirectly 

visualized with streptavidinCy3. These probes were used according to the manufacturer’s 

instructions. Slides were denatured with 70% formamide at 70°C for five minutes. Probe 

mix was denatured at 65°C for ten minutes, incubated at 37°C for ten minutes, and 

subsequently applied to the slides under a 22/22 mm cover-slip. After overnight of 

hybridization, slides were washed with 2x SSC (pH 8.0) for five minutes on shaker, 

followed by another wash in 4xSSC/tween 20 for five minutes on shaker and then one 

more wash in 1x PBS for five minutes on shaker. The slides then were mounted with 

Vectashield (Vector Laboratories, UK) containing 49, 6-Diamidine-29-phenylindole 

dihydrochloride (DAPI). FISH images were captured using a Zeiss axioplan epifluorescence 



49 
 

 

microscope (Carl Zeiss,) equipped with a CCD camera (739 3 575, pixel size 11 3 11 mm) 

and MetaSystems Isis v. 5.3 software.  

3-4 Results  

A total of seven patient samples were analysed in this study, of which six patients had 

previously been reported. Patients no. 1-4 had already been studied for the presence of 

the t(7;12) (Hauer et al., 2008; Tosi et al., 1998, 2003), whereas patients no. 6-7 failed to 

show a t(7;12) in previous reports (Wildenhain et al., 2010). Patient no. 5 was newly 

diagnosed. Clinical and cytogenetic characteristics of the patients are summarized in table 

3-1. FISH studies were carried out using a new three-colour probe set on all patients. 

Furthermore, patient no. 7 was investigated using whole chromosome 16 paint (wcp16) 

and whole chromosome 12 paint (wcp12). FISH confirmed t(7; 12)(q36; p13) in six 

patients out of seven. Four patients out of seven (no. 1-4) previously reported as having 

t(7;12) translocation were confirmed as t(7;12) positive (see figure 3-2 and 3-3). One case 

(no. 6) was t(7;12) negative (see figure 3-4). Moreover, the t(7;12) translocation was 

detected in one patient (no. 5) aged 7 years old (see figure 3-5 and 3-6) and a cryptic 

chromosome translocation t(7;12;16) was identified as part of complex rearrangement 

that involved an insertion of chromosome 12 on the der(7) and a translocation of 

chromosome 16 onto the der(7) in patient no. 7 (see figures 3-7 and 3-8). The breakpoints 

at 12p13 (in five cases: patients no. 1-5) were within the ETV6 gene between the 

spectrumorange labelled probe and the FITC labelled probe and proximal to the HLXB9 

probe targeted by the blue (aqua) probe. In patient no. 7 the breakpoints at 12p13 

occurred also within ETV6: one is in a region distal to the one reported in the other 

patients, while one is proximal to the spectrumorange labelled probe. This resulted in a 

different pattern of FISH signals, with green (FITC) signals on the der (12) whereas the der 

(7) showed blue (aqua), green (FITC) and red (spectrumorange) signals (see figure 3-7). In 

addition, the breakpoints at long arm of chromosome 7 were proximal to the HLXB9 

region in four cases and distal to the HLXB9 region in two cases. The breakpoints 

localization at 12p13 in patient no. 7 were reconsidered using revised probe for ETV6 

region. The breakpoint at 12p13 include one within ETV6 gene between the green (FITC) 

and red (spectrumorange) labelled probes (but not involved in the FITC labelled probe as 

shown in the previous probe), and one is proximal to the red (spectrumorange) labelled 
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probe, which resulted in der (7) carrying only red (spectrumorange) signal and der (12) 

only green (FITC) signals (figure 3-9).  

 

Figure 3-2: Examples of FISH performed on bone marrow metaphases from patients 1-4 

Three-colour FISH using a break-apart probe specific for ETV6 gene on 
chromosome 12 in green (FITC) and red (spectrumorange) and specific 
probe for HLXB9 gene on chromosome 7 in blue (aqua) shows the 
translocation of chromosome 12 material onto the der(7) and 
translocation of chromosome 7 segment onto der 12 as well. The chr(7) 
and chr(12) are indicated by black arrows and black arrowheads. The 
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der(7) and der(12) are shown by red arrows and red arrowheads. The DAPI 
counterstaining has been converted into grey scale. Patients no. 1-4 are 
shown in panels A-D respectively.  

 

Figure 3-3: Ideogram of the t(7;12) rearrangement occurring in patients 1- 4 

The schematic representation shows the translocation breakpoint on 
chromosome 7 and 12 with hybridization signals specific for both ETV6 
gene in green (FITC) and red (spectrumorange) and HLXB9 (in blue).  
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Figure 3-4: Example of FISH performed on metaphase chromosomes from patient 6 negative for 
t(7;12)(q36;p13) 

ETV6 probe (FITC and spectrumorange) hybridized to both normal 
chromosomes 12. The HLXB9 probe (aqua) hybridized to both the normal 
homologue of chromosome 7. The black arrows indicated HLXB9 on 
chromosome 7q36. The ETV6 on chromosome 12p14 is indicated by the 
red arrows. The DAPI counterstaining has been converted into grey scale. 
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Figure 3-5: Example of FISH performed on metaphase chromosomes from patient no. 5 

A normal chromosome 12 is detected by green and red signals and a 
normal chromosome 7 is detected by blue signal. The green and blue 
signals are seen on the derivative 7. The green, red and blue signals are 
seen on the derivative 12. Red arrows indicate derivatives 12 and 7, while 
black arrows indicate the normal chromosome 12 and 7. The DAPI 
counterstaining has been converted into grey scale. 
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Figure 3-6: Ideogram of the t(7;12) rearrangement occurring in patient no. 5 

The schematic representation shows that the translocation breakpoint on 
chromosome 7 and 12 with hybridization signals specific for both ETV6 
gene in green (FITC) and red(spectrumorange) and HLXB9 (in blue).  
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Figure 3-7: Example of FISH performed on metaphase chromosomes from patient no. 7 

(A) FISH analysis of a metaphase from patient no. 7 reveals complex 
translocation that involves an insertion of chromosome 12 as shown by 
green and red signals on the der(7). Green arrows indicate the normal 
chromosomes 7 and 12, the black arrows show: (i) the der(7) (carrying 
green and red signals for ETV6); and (ii) the der(12) showing only green 
signals for a portion of ETV6. The red arrow indicates the der(16) carrying 
blue signals close to the centromere.  

(B) FISH analysis of patient no. 7 with a translocation t(7;16) the green 
paint denotes the wcp 16 probe labelled with FITC, and the red 
(spectrumorange) paint indicates wcp 12 probe labelled with cy3. Green 
arrows show fully painted chromosomes 16, of which one is visibly shorter 
than the other, the green arrowhead shows chromosome 16 material 
translocated on the der(7). The red arrow shows chromosome 12. 
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Figure 3-8: Schematic representation of the complex rearrangements in patient no. 7 

Chromosomes 7, 12 and 16 are shown on the left side of their 
corresponding derivatives. The der(7) includes an insertion of chr 12 
material with breakpoints at 7q36 within the blue (aqua) probe. This 
results in the visualization of the three differently labelled probes very 
close to each other. The der(7) terminates with chromosome 16 material. 
The der(12) shows an interstitial deletion of the ETV6 region (due to 
translocation onto the der(7)) resulting in the presence only of the green 
(FITC) probe. The breakpoints that generated the der(12) occurred in two 
regions, one proximal to the red signal and one in the middle of the green 
signal. The region comprised within these breakpoints is inserted into the 
der(7). The blue signals on the der(16) are caused by a translocation of 
7q36 with breakpoint within the blue (aqua) probe onto the der(16). The 
location of blue signals in a region close to the centromere of the der(16) 
indicates that an inversion has also occurred. 
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Figure 3-9: FISH analysis of a metaphase from patient no. 7 using redesigned ETV6 probe 

(A) FISH image reveals a cryptic translocation that involves an insertion of 
chromosome 12 as shown by red signals on the der(7). Green arrows 
indicate the der(7) carrying red hybridisation signals and the der(12) 
carrying green hybridisation signals; the white arrow shows the normal 
chromosome 12 (carrying green and red signals for ETV6).  

(B) Chromosome ideograms of the cryptic t(7;12) rearrangement, the 
breakpoints at chromosome 12 are proximal to green (FITC) probe and also 
proximal to the red (spectrumorange) probe. This results in a der (7) 
carrying red signals and der (12) with green signals.  

(C) Schematic representation showing the revised ETV6 probe with a green 
(FITC) probe more distal to the ETV6 gene than the previous ETV6 probe.  

3-5 Discussion  

The t(7; 12) is a recurrent chromosomal abnormality in infant patients with AML who are 

younger than 18 months of age. The t(7;12) translocation is not associated with any 

specific AML subtype (Von Bergh et al., 2006). Trisomy 8 and/or trisomy 19 are described 

in almost all cases (Simmons et al., 2002; Slater et al., 2001; Tosi et al., 2000; Von Bergh et 

al., 2006). PAC and YAC clones such as PAC H_DJ1121A15 and CEPH YAC 965c12 mapping 
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to 7q36 have been used for the detection of t(7;12) translocations in previous studies 

(Beverloo et al., 2001; Slater et al., 2001; Tosi et al., 2003). A new three-colour FISH 

approach was used in this study. This enabled us to confirm that the genomic breakpoints 

at 7q36 are heterogeneous (Beverloo et al., 2001; Simmons et al., 2002; Tosi et al., 2003). 

In this study the breakpoints in four patients (1-4) were proximal to HLXB9, and were 

distal to HLXB9 in two different patients (5-7). These data are in agreement with previous 

research (Hauer et al., 2007; Tosi et al., 1998, 2003).  

The application of this new probe set also enabled the detection of a cryptic t(7;12) 

translocation as a part of a complex rearrangements in one patient previously described 

as having t(7;16) and ETV6-HLXB9 fusion transcript at the molecular level (Wildenhain et 

al., 2010). Only two cases of a cryptic t(7;12) translocation have been reported in the 

literature (Park et al., 2009). The reported cryptic t(7;12) translocations involved 

chromosomes 5 and 1, but not chromosome 16. The possible mechanism for the 

formation of the t(7;12;16) complex rearrangement involves an insertion of chromosome 

12 material into chromosome 7, a translocation between chromosome 7 and 

chromosome 16 and a subsequent inversion of chromosome 16. Furthermore, the new 

three-colour FISH approach has also enabled us to identify the t(7;12) in a new seven 

year-old patient with AML. This patient is the first case of childhood leukaemia with an 

onset after infancy positive for t(7;12). We were also able to confirm t(7;12) in four 

patients that had been previously reported as having t(7;12) translocation. Although the 

t(7;12) is considered a poor prognostic factor, it needs to be investigated whether this is 

still the case in the higher age group (seven years old and above) and the cryptic t(7;12) 

translocations. The prognosis in children aged 20 months or younger is very poor. This 

could be related to the infants, because they cannot tolerate high doses of cytotoxic 

chemotherapy in treatment regimens. The finding of a cryptic t(7;12) and the t(7;12) 

rearrangement in the seven year-old AML patient indicated that the incidence of t(7;12) 

rearrangement in AML might be higher than reported previously. 
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CHAPTER 4:  THREE-COLOUR PROBE SETS FOR THE 

DETECTION OF CHROMOSME 7 ABNORMALITIES IN 

MYELOID MALIGNANCIES 

4-1 Introduction 

Chromosome rearrangements have been observed in hematological malignancies 

including leukaemia. The presence of these abnormalities can be used as a marker for 

diagnosis and as a prognositic factor for the outcome of the disease. Several 

chromosomal rearrangements are associated with favourable prognosis, such as 

t(15;17)(q22;q12), t(8;21)(q22;q22), inv(16) and t(16;16)(p13q22), intermediate risk group 

including t(9;11)(p22;q23),del(7q), del(9q), del(11q), del(20q), +8,+11,+13,+21 and normal 

karyotypes and unfavourable prognosis; for example, inv(3)(q21;q26), t(3;3)(q21;q26), 

t(9;22)(q34;q11), t(8;16)(p11;p13),del(5q), -5 and -7 (Grimwade et al., 1998; Marchesi et 

al., 2011; Von Neuhoff et al., 2010). Some of the commonly found chromosomal 

abnormalities in leukaemia are chromosome 7 alterations (Ling et al., 2005). Brozek et al. 

(2003) observed chromosome 7 rearrangements in 18% of AML cases and in 30% of ALL 

cases (Brozek et al., 2003). In other studies, -7 and del(7q) were identified in 7.8% (Byrd et 

al., 2002), 8% (Mauritzon et al., 1999) and 12% (Perkins et al., 1997) of AML cases. FISH 

technique can help to identify and map hidden chromosome rearrangements. Several 

studies investigated chromosome 7 aberrations in human myeloid leukaemia cell lines. 

The GDM1 cell line was derived from peripheral blood of a 66-67 year-old female patient 

with acute myelomonoblastic leukaemia. Cytogenetic analysis of this cell line using G-

banded chromosomes showed a complex karyotype: 

48,XX,der(2)t(2;11)(q36;q13),t(6;7)(q23;q36),+8,del(12)(p11.2p12.2),+13,del(16)(q23) 

(Ben Bassat et al., 1982). FISH studies on the GDM1 cell line have shown a translocation 

between chromosome 6 and chromosome 7, with breakpoints at 6q23 and 7q36 regions, 

resulting in an overexpression of HLXB9 (Nagel et al., 2005). 

The GF-D8 cell line was established from the peripheral blood of an 82 year-old man with 

AML subtype M1. The G-banding analysis of this cell line showed monosomy 5, deletion 

of 7q22, inv(7) and additional abnormalities such as add(8q), add(11q), del(12p), 

monosomy 15 and monosomy 17 (Rambaldi et al., 1993). The cell line GF-D8 was later 
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characterized by Tosi et al. (1999) using molecular cytogenetic techniques such as 

multiplex FISH, FISH with subtelomeric probes and comparative genomic hybridization. 

Abnormalities of chromosome 7 were described as deletion of 7q accompanied with 

translocation between chromosome 7 and chromosome 15, and between chromosome 7 

and chromosome 12. The deletion breakpoints on long arm of chromosome 7 were at 

7q22 and 7q33 regions followed by a translocation of the terminal region of 7q on 

chromosome 12 and an insersion of chromosome 7 material into chromosome 15 (Tosi et 

al., 1999).  

FISH analysis of GF-D8 cell line identified two rearranged chromosome 7 containing a 

del(7q) and an inv(7q). The inv(7q) had proximal breakpoint localized between 7q31.1-

q31.3 and distal breakpoint at 7q35-q36 (Tosi et al., 1999). The K562 cell line was derived 

from an elderly female patient with cryonic myeloid leukaemia. The cytogentic analysis of 

this cell line showed the presence of Philadelphia chromosome (Ph) and aneuploidy 

(lozzio et al., 1975). The K562 cell line has been investigated by various cytogenetic and 

molecular cytogenetic techniques. Gribble et al. (2000) studied the chromosomal 

abnormalities in k562 cells by G-banding, M-FISH and CGH techniques. The chromsome 

banding analysis of k562 cell showed +i(7)(q10),del(7)(q31.2:q36),del(7)(q21q36). The M-

FISH analysis revealed an intrachromosomal rearrangement of chromosome 7, whereas 

the CGH analysis showed normal structure of chromosome 7. In another study, M-FISH 

analysis presented four copies of chromosome 7 with one normal copy and three markers 

(M4, M5 and M6), while G-banding analysis showd M4 inv(7), M5 del(7)(p15) and M6 

der(7)rea del(7) (Naumann et al., 2001).  

4-2 Aim of this study 

The aim of this study is to validate three-colour probe sets for the detection of 7(q22-q31) 

and 7(q22-q36.1) on several myeloid cell lines. In order to achieve the above aim, the 

following objectives will be pursued: 

1. To carry out FISH experiments using the commercially available probes set to a 

number of samples derived from leukaemia cell lines.  

2. To analyse the FISH data using microscopy and specialised software. 
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4-3 Materials and methods  

4-3-1 Cell lines  

Human cell lines used in this study included: 

i. Farage (CRL-2630) cell line derived from a patient with diffuse large cell non-

Hodgkin's lymphoma (DLCL). This cell line was used as a control; 

ii. GD-F8 cell line derived from a patient with acute myeloid leukaemia subtype 

M1; 

iii. GDM1 cell line was also derived from patient with acute myeloid leukaemia; 

iv. k562 cell line was derived from a patient with chronic myeloid leukaemia.  

4-3-2 Probes 

Probes used were:  

i. Three colour probes with an spectrumorange labelled probe hybridizing to the 

q22 region of chromosome 7, a FITC labelled probe spans the q31 region of 

chromosome 7 and aqua labelled probe hybridizing to the centromere of 

chromosome 7;  

ii. Three colour probes with an spectrumorange labelled probe hybridizing to the 

q22 region of chromosome 7, a FITC labelled probe spans the q36.1 region of 

chromosome 7 and a aqua labelled probe hybridizing to the centromere of 

chromosome 7; 

iii. Locus -specific probe made of two loci that hybridize to flanking regions of the 

HLXB9 gene labelled in aqua; 

iv. Whole chromosome 7 paint directly labelled with spectrumorange; 

v. Partial chromosome 7 paint with a green paint (FITC) hybridizing to short arm 

of chromosome 7 and an spectrumorange paint spans the long arm of 

chromosome 7.  

All probes were used to detect chromosome 7 abnormalities and were commercially 

obtained from Metasystems GmbH, Germany.  
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4-3-3 FISH 

The FISH experiments were performed on methanol: acetic acid fixed suspenstion cells of 

four different human cell lines. All probes in these experiments were used for direct 

detection of chromosome 7 abnormalities. These probes were used according to the to 

the manufacturer’s instructions. The slides were washed in saline-sodium citrate (2XSSC 

pH=7.0) while shaking for five minutes (SSC buffer in 20Xconcentration, Sigma, UK). They 

were then dehydrated through an alcohol series (70%, 90% and 100% ethanol) followed 

by air-drying for five minutes. The slides were denatured in 70% formamide denaturing 

solution containing 2XSSC at 70o C for five minutes. Following the denaturation, the slides 

were washed again with 2XSSC for five minutes, then dehydrated again through an 

alcohol series (70%, 90% and 100% ethanol) and air dried at room temperature. All 

probes were denatured at 80°C for 2 minutes and incubated at 37°C for ten minutes to 

allow re-annealing of repetitive sequences. The denatured probes were added to the 

denatured cells on the slides and incubated at 37°C overnight. After the incubation time, 

the slides were washed in 2XSSC for five minutes. They were then washed in phosphate-

buffered saline (PBS) for five minutes. The slides then were mounted in Vectashield 

(Vector Laboratories) containing 49, 6-Diamidine-29-phenylindole dihydrochloride (DAPI). 

Fluorescent images were captured with a Zeiss axioplan epifluorescence microscope (Carl 

Zeiss,) equipped with a CCD camera (739 3 575, pixel size 11 3 11 mm) and MetaSystems 

Isis v. 5.3 software.  

4-4 Results  

FISH was performed on four different human cell lines to detect chromosome 7 

abnormalities using different probes for region of interest.  

4.4.1 Verification and validation of 7(q22-q31) and 7(q22-q36.1) probes on Farage cell 

line 

This human lymphoma cell line was used as a normal control in this study. The FISH 

analysis of 7q22-7q31 probe shows both normal chromosomes 7 harbour signals on 7q22 

in red (spectrumorange) colour, 7q31 in green (FITC) and on centromere in light blue 

(aqua) (see figure 4-1). Our FISH results of 7q22-q36.1 also show normal pattern of FISH 

signals on 7q22 in red (spectrumorange), 7q36.1 in green (FITC) and on centromere 7 in 
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light blue colour (see figure 4-2). Results from both 7(q22-q31) and 7(q22-q36.1) probes 

show the expected signals on chromosome 7.  

4.4.2 Verification of 7 q22-q31 and 7q22-q36.1 probes in GF-D8 cell line 

FISH was conducted using 7q22-q31 and 7q22-q36.1 probes. Our FISH results of 7q22-q31 

probe set show three copies of chromosome 7. Normal chromosome 7 with red signals on 

q22 region, green signals on q31 region and light blue signals on the centromere. The 

second copy has a paracentric inversion of a fragment of chromosome 7 with potiental 

breakpoints distal to q22 region and distal to q31 region result in change in the postion of 

q31 region which located more distally close to the chromosome’s telomere. There is a 

deletion of segment of a long arm in the third copy of chromosome 7, and two potiental 

breakpoints within the long arm; one is proximal to q22 region and one is distal to the 

q31 region, making it an interstitial deletion (see figure 4-3). Our FISH results of 7q22-

q36.1 also show three copies of chromosome 7. Normal chromosome 7 with red signals 

on q22, green signals on q36.1 and blue signals on centromere. The FISH signals on the 

second copy of chromosome 7 show normal position of q22 (red signals) and q36.1 (green 

signals) regions confirming that the breakpoints of inv(7) occurred distal to q22 and q31 

regions. The chromosome carrying 7q36 region in green signals is the der(12) as this cell 

line had a translocation between chromosome 7 and 12 (see figure 4-4).  

4.4.3 Verification of 7 q22-q31 and 7q22-q36.1 regions in GDM1 cell line 

FISH was also performed on this cell line to validate the 7q22-q31 and 7q22-q36.1 probes. 

The FISH results of the two probes show normal copies of chromosome 7 in this cell line 

as well as normal localisation of signals on q22 (in red), q31 (in green FITC) and q36.1 

(also in green FITC) regions on the long arm of chromsome 7 (see figure 4-6).  

4.4.4 Verification of 7q22-q31 and 7q22-q36.1 regions in k562 cell line 

FISH using 7q22-q31 and 7q22-q36.1 probes identified four copies of chromosome 7 in 

the K562 cell lines. Images of multi-colour FISH performed on the same cell line were 

provided for analysis and comparison (see figure 4-7). These also showed the presence of 

four copies of chromosome 7. The localisation of FISH singals of 7q22-q31 probe were 

normal, with red signals on q22 band, green signals on q31 band and light blue signals on 
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centromeric 7 (see figure 4-8); however, the distribution of FISH signals of 7q22-q36.1 

probe were different. The FISH result shows that three copies of chromosome 7 have 

normal patterns of FISH signals (red signals at 7q22 band, blue signals at the centromeric 

region and green signals at the q36.1 region), whereas the fourth copy has green signals 

on both arms of the chromosome 7, suggesting that there is a duplication of the q36.1 

region followed by an intrachromosomal translocation involving both ends of 

chromosome 7 (see figure 4-9).  

In order to understand the intrachromosomal rearrangements of chromosome 7, FISH 

analysis was carried out using WCP7 and locus-specific probe flanking the HLXB9 gene at 

q36 region of chromosome 7. FISH results confirmed that from four copies of 

chromosome 7, one had four blue FISH signals on both arms (see figure 4-10). 

Chromosome 7 was also investigated to confirm the duplication and the 

intrachromosomal translocation using partial chromosome 7 paint. Our FISH analysis 

confirmed the duplication of q36.1 region and either an insertion of long arm material 

into short arm of chromosome 7, or an intrachromosomal translocation between two 

ends of chromosome 7 (see figure 4-11).  
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Figure 4-1: Example of FISH using probe 7(q22-q31) in Farage cell line 

(A) metaphase chromosome obtained from Farage cell line showing the 
FISH signals using a specific locus probe target long arm of normal 
chromosome 7 at band 2 sub band 2 (q22) in red (spectrumorange), 
specific locus probe spans the q31 region on normal chromosome 7 in 
green (FITC) and specific locus probe hybridize the chromosome 7 
centromere in light blue (aqua). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q31) probe on normal chromosome 7.  

A B 
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Figure 4-2: Example of FISH using probe 7(q22-q36.1) in Farage cell line 

(A) metaphase chromosome obtained from Farage cell line showing the 
FISH signals using a specific locus probe target long arm of normal 
chromosome 7 at band 2 sub band 2 (q22) in red (spectrumorange), 
specific locus probe spans the q36.1 region on normal chromosome 7 in 
green (FITC) and specific locus probe hybridize the chromosome 7 
centromere in light blue (aqua). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q36.1) probe on normal chromosome 7. 

A B 
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Figure 4-3: Example of FISH using probe 7(q22-q31) in GF-D8 cell line 

(A) Metaphase chromosome image obtained from GF-D8 cell line shows (i) 
three FISH signals (light blue, red and green) on normal chromosome 7 
(orange arrow), (ii) three FISH signals (light blue, red and green) on 
inverted chromosome 7 (white arrow) and (iii) blue signal on derivative 
chromosome 7 (arrowhead). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q31) probe on (i) normal chromosome 7 on the left side, (ii) 
inverted chromosome 7 in the middle and (iii) derivative chromosome 7 in 
the right side.  

A 
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Figure 4-4: Example of FISH using probe 7(q22-q36.1) in GF-D8 cell line 

(A) Metaphase chromosome image obtained from GF-D8 cell line shows (i) 
three FISH signals (light blue, red and green) on normal chromosome 7 
(Orange arrow), (ii) three FISH signals (light blue, red and green) on 
inverted chromosome 7 (white arrow) and (iii) green signal on derivative 
chromosome 12 (white arrow). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q36.1) probe on (i) normal chromosome 7 on the left side, (ii) 
inverted chromosome 7 in the middle and (iii) derivative chromosome 12 
in the right side.  
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Figure 4-5: Example of FISH using probe 7(q22-q31) in GDM1 cell line 

 (A) Metaphase chromosome obtained from GDM1 cell line showing the 
FISH signals using a specific locus probe target long arm of normal 
chromosome 7 at band 2 sub band 2 (q22) in red (spectrumorange), 
specific locus probe spans the q31 region on normal chromosome 7 in 
green (FITC) and specific locus probe hybridize the chromosome 7 
centromere in light blue (aqua). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q31) probe on normal chromosome 7.  

A B 
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Figure 4-6: Example of FISH using probe 7(q22-q36.1) in GDM1 cell line 

(A) metaphase chromosome obtained from GDM1 cell line showing the 
FISH signals using a specific locus probe target long arm of normal 
chromosome 7 at band 2 sub band 2 (q22) in red (spectrumorange), 
specific locus probe spans the q36.1 region on normal chromosome 7 in 
green (FITC) and specific locus probe hybridize the chromosome 7 
centromere in light blue (aqua). Chromosomes are counterstained in DAPI 
(blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q36.1) probe on normal chromosome 7.  

A B 
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Figure 4-7: Example of M-FISH karyotype of k562 cell line 

M-FISH revealed complex rearrangments of chromosomes involved 
numerical and structural chromosomal abnormalities such as trisomies of 
chromosomes 2, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19 and 20. Four copies 
of chromosomes 1, 5, 7 and 15 were observed. One copy of chromosome 7 
is longer in comparison with the other three copies of chromosome 7 in 
brown colour (Figure generated by others in the Tosi’s laboratory and 
provided to me by my supervisor).  
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Figure 4-8: Example of FISH using probe 7(q22-q31) in k562 cell line 

(A) metaphase chromosome obtained from k562 cell line showing FISH 
signals on four copies of chromosome 7 using a specific locus probe target 
long arm of normal chromosome 7 at band 2 sub band 2 (q22) in red 
(spectrumorange), specific locus probe spans the q31 region on normal 
chromosome 7 in green (FITC) and specific locus probe hybridize the 
chromosome 7 centromere in light blue (aqua) (orange arrow). 
Chromosomes are counterstained in DAPI (blue colour).  

A 

B 
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(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q31) probe on normal chromosome 7.  

 

 

Figure 4-9: Example of FISH using probe 7(q22-q36.1) in k562 cell line 

(A) metaphase chromosome obtained from k562 cell line showing a 
specific locus probe target long arm of chromosome 7 at band 2 sub band 
2 (q22) in red (spectrumorange), specific locus probe spans the q36.1 
region on chromosome 7 in green (FITC) and specific locus probe hybridize 
the chromosome 7 centromere in light blue (aqua). The orange arrows 
show the normal patterns of 7(q22, q36.1) probe on three copies of 
chromosome 7 and the white arrow shows the fourth copy of chromosome 

A 

B 
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with green signals on both arms of the chromosome. Chromosomes are 
counterstained in DAPI (blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of del 
7 (q22, q36.1) probe on four copies of chromosome 7.  

 

 

Figure 4-10: Example of dual colour FISH on K562 metaphase 

(A) FISH experiment was performed using WCP 7 in red (spectrumorange) 
and a specific locus probe flanking the HLXB9 gene at q36.3 in light blue 
(aqua). The orange arrows indicate three copies of chromosome 7 with 
one blue signal each and while the white arrow shows the fourth copy of 
chromosome 7 with blue signals on both arm of the chromosome. 
Chromosomes are counterstained in DAPI (blue colour).  

A 

B 
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(B) Ideograms of chromosome 7 showing the hybridization patterns of 
HLXB9 and WCP 7 probes on four copies of chromosome 7.  

 

 

Figure 4-11: Example of dual colour paint FISH on K562 metaphase 

(A) FISH was performed using partial chromosome 7 paint (short arm in 
green and long arm in red (spectrumorange)). The orange arrows indicate 
three copies of chromosome 7 with green paint (FITC) on short arm and 
red (spectrumorange) paint on long arm. The white arrow shows the 

A 

B 
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fourth copy of chromosome 7 with both green (FITC) and red paint on 
short arm and red (spectrumorange) paint on long arm of the 
chromosome. Metaphase is counterstained in DAPI (blue colour).  

(B) Ideograms of chromosome 7 showing the hybridization patterns of 
partial chromosome 7 paint on four copies of chromosome 7.  

4-5 Discussion  

The detection of chromosomal abnormalities in leukaemia is very important in the 

diagnostic setting, as information on cytogenetics enables clinicians to make informed 

decisions on the type of therapy to be given to a patient. Abnormalities of chromosome 7 

are generally considered indicators of poor prognosis (Von Neuhoff et al., 2010). It is 

therefore important to be able to detect those abnormalities during diagnosis to allow 

appropriate treatment. In the 1990s, many studies focused on the identification of critical 

regions in del(7q), hoping to map a potential tumor suppressor gene (Dohner et al., 1998; 

Fischer et al., 1997; Johnson et al., 1996; Liang et al., 1998; Tosi et al., 1999). It was 

concluded that different regions on chromosome 7 were prone to breakage giving rise to 

deletions of different size and location (Curtiss et al., 2005; Dohner et al., 1998; Liang et 

al., 2005; Nagel et al., 2005; Tosi et al., 1999). Several commercial probes have been 

designed to cover the most commonly reported deleted regions on chromosome 7 to 

enable diagnostic labs to detect chromosome 7 abnormalities accurately and in a timely 

fashion (Andersen et al., 2004; Bajaj et al., 2011).  

In the present study, FISH localization of (i) 7q22 and 7q31, (ii) 7q22 and 7q36.1 and (iii) 

7q36 regions have been investigated in several human leukaemia cell lines using 

appropriate three-colour probe sets for the detection of del(7)(q22-q31) and del(7)(q22-

q36.1) and locus-specific probe for HLXB9 gene. Whole and partial chromosome 7 paint 

have also been used to verify the intrachromosomal rearrangements of chromosome 7. 

The three-colour probe sets for del(7q22-q31) and del(7q22-q36) were validated on 

Farage cell line which is known to have no chromosomal rearrangements, thus it was 

used as a normal control. The FISH results show normal pattern of FISH signals of 7(q22-

q31) and 7(q22-q36). Our investigation of chromosome 7 rearrangements in GDM1 cell 

line also shows normal loclization of 7(q22-q31) and 7(q22-q36) regions. The GDM1 cell 

line known to have a t(6;7) (q23; q36) translocation with breakpoint proximal to HLXB9 

gene at 7q36.3 (Nagel et al., 2005). The three-colour probe set for 7(q22-q31) hybridised 
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to metaphase chromosome of GF-D8 cell line has enabled us to confirm trisomy 7, 

deletion of 7(q22-q31) with breakpoints within q22 and distal to q31 regions and an 

inv(7), corroborating the findings of Tosi et al. (1999a, 1999b) (figure 4-12).  

However, the inv(7) breakpoints (distal to q22 and distal to q31) of GF-D8 observed in this 

study differed from those of Tosi et al. (1999a), who repored the proximal breakpoint of 

the inv(7) between 7q31.1 and 7q31.3 and the dstial breakpoint between 7q35-q36 and 

7q36. Nevertheless, the observation of the proximal breakpoint of inv(7) (distal to 7q22) 

is very much in agreement with Johnson et al. (1996), who found a constitutional 

inversion of 7q in two patients, one with MDS and one with BM hypoplasia; the proximal 

breakpoint was mapped at 7q22.1. Moreover, the inv(7) breakpoints in GF-D8 cell lines 

were further confirmed by 7(q22-q36) probe, which showed normal position of 7q22 and 

7q36. The 7q22-q36 probe also confirmed the the deletion of 7q22-7q33 region and 

translocation or insertion of chromosme 7 q36 material onto short arm of chromosome 

12, as previously described by Tosi et al. (1999a). The 7(q22-q31) deletion was previously 

identified in MDS and AML cases (Dohner et al., 1998; Fischer et al., 1997). These studies 

suggested that this region might contain specific genes (e.g. tumor suppressor gene, TSG), 

which contribute to MDS or AML development. Recently, McNerney et al. (2013) 

performed transcriptome sequencing and SNP array analysis on de novo and therapy-

related myeloid neoplasms with either -7 or del(7q). They detected a deletion of the 

7q22.1 regions containing the CUX1 gene, and further examined the TSC activety of CUX1 

gene using in vivo models. They concluded that the CUX1/cut is a conserved, 

haploinsufficient TSG that plays a critical role in the regulation of haematopoiesis.  

The structure of chromosome 7 in k562 cell line was previously investigated using M-FISH, 

CGH, Locus-Specific FISH (Gribble et al., 2000; Naumann et al., 2001); the rearrangements 

of chromosome 7 in both studies were described as tetrasomy 7, del 7q, inv(7)(p11-q). 

Our FISH results of K562 cell line showed normal localization of 7(q22-q31) regions on 

four copies of chromosome 7, but the distribution of FISH signals of 7(q22-q36) probe 

were different. The FISH results showed three copies of chromosome 7 have normal 

patterns of FISH signals. 
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Figure 4-12: Schematic representation of the abnormalities involving chromosomes 7, 12, Y, and the 
der(5;15) 

The arrows indicate to the deletion breakpoints at 7q and 12p and also the 
translocation between chromosome 7, 12 and 15 (Tosi et al., 1999 b).  

Interestinglly, the three colour probes enable the detection of a new rearrangement in 

k562 cell line, which is described as a duplication of 7q36 region followed by either an 

intrachromosomal insertion of long arm material into short arm of chromosome 7, or an 

intrachromosomal translocation between two ends of chromosome 7. This finding was 

further investigated using HLXB9 probe in combination with WCP 7. The results showed 

four copies of chromosome 7 were fully painted, and four signals of HLXB9 probe on both 

arms of one copy of chromosome 7. Furthermore, the partial chromosome 7p and 7q 

paint was used to understand whether the four signals of 7q36 region were observed on 

both arms of one copy of the chromosome as a result of an inversion or due to hidden 

rearrangements. The result of the partial paint showed a 7q paint on 7p arm which 

confirmed the duplication of 7q36 region followed by an intrachromosomal insertion of 

7q36 material into short arm of chromosome 7.  

Moreover, this result showed that no pericentric inversion 7 was detected in this cell line 

as previously described. It has been reported that the cytogenetic discrimination of the 

intrachromosomal insertion and peicentric inversion abnormalitis can be difficult (Madan, 
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1995). Consequently, these results suggest that the intrachromosomal 7 insertion that 

identified in this cell line might be misdiagnosed as a pericentric inversion 7. The 

intrachromosomal insertion identified in k562 cell line is uncommon forms of 

chromosomal rearrangement; only 41 cases have been reported in the literature, none of 

which had myeloid malignancy (Ardalan et al., 2005; Farrell and Chow, 1992; Kim et al., 

2011; Lybaek et al., 2009; Madan and Menko, 1992). The other observation is the 

detection of a duplication of 7q36 region, known as a common deleted region in myeloid 

malignancy. To the best of our knowledge, this is the first case found with 7q36 

duplication in myeloid malignancy.  
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CHAPTER 5:  STUDY OF DNA COPY NUMBER CHANGES IN 

INV(16) LEUKAEMIA 

5-1 Introduction  

As mentioned in chapter 1, various chromosomal rearrangements have been found in 

AML, including translocations, duplications, inversions, insertions and deletions. These 

rearrangements are well known to contribute to leukaemia. Genetic aberrations are 

widely used as markers for diagnosis and prognosis. One of the most frequent 

chromosomal rearrangement in AML is the inversion of chromosome 16, inv(16)(p13;q22) 

which is detected in approximately 8% of patients diagnosed with AML subtype M4eo 

(Byrd et al., 2002; Grimwade et al., 2010). This translocation fuses the myosin heavy 

chain11 gene (MYH11) at 16p13 to the core-binding factor beta subunit gene (CBFB) at 

16q22, resulting in fusion gene (Berger et al., 1985; Betts et al., 1992). However, several 

mouse model studies have shown that the CBFB-MYH11 fusion causes a block in myeloid 

differentiation and is insufficient to initiate leukaemia, suggesting that additional genetic 

mutations are required for leukaemic transformation (Castilla et al., 1996; Kogan et al., 

1998; Kundu et al., 2002). Gilliland (2001) proposed that at least two classes of mutations 

are required to form leukaemia: class I mutations, which increase cell proliferation 

affecting genes such as RAS, c-KIT or FLT3; and class II mutations, which cause a block in 

haematopoiesis differentiation and involve genes such as CBF fusion genes. The 

association of AML with the inv(16) rearrangement has a favourable prognosis (Arthur et 

al., 1983, 1989; Bloomfield et al., 1987; Holmes et al., 1985; Le Beau et al., 1983). 

Nevertheless, It has been reported that the inv(16) patients with KIT exon 8 mutations are 

associated with an increased relapse rate (Care et al., 2003; Kim et al., 2013; Mrozek et 

al., 2008; Schwind et al., 2013). Paschka et al. (2013) showed that trisomy 8, KIT 

mutations and FLT3 mutations have an impact on the outcome of AML patients with 

inv(16) and therefore these alterations can be used as a prognostic marker to allow the 

identification of patients at high risk of relapse. They also showed that trisomy 22 has no 

impact on patient outcomes.  

The assessment of karyotypic abnormalities remains a valuable tool for prediction of 

outcome of patients with AML. Chromosome banding is routinely used to detect 
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chromosomal rearrangements, including balanced chromosomal abnormalities 

(translocations and inversions) and unbalanced chromosomal abnormalities (trisomies, 

duplications and deletions). However, it has limited resolution power, amounting to less 

than <10 Mb (Grimwade et la., 2009). The use of molecular cytogenetic methods such as 

FISH or higher resolution approaches such as single-nucleotide-polymorphism (SNP) 

platforms have improved the detection of DNA CNAs in AML (Maciejewsk et al., 2008). 

Recently, a few studies have reported CNAs in AML cases with abnormal karyotype. Kuhn 

et al. (2012) found low CNAs in 300 diagnostic and 41 relapse acute myeloid leukaemia 

cases, with t(8;21)(q22;q22) and inv(16) (p13;q22) or t(16;16)(p13;q22) using Affymetrix 

6.0 SNP microarrays; the mean of CNAs per case was 1.28 at diagnosis and 3.17 at 

relapse. Kuhn et al. (2012) also detected recurrent minimally deleted regions at 7q36.1, 

9q21.32, 11p13, and 17q11.2 and focal gain at 8q24.21 and 11q25. CN-LOH was detected 

in 7% of cases. A study of 111 paediatric de novo AML cases using single-nucleotide-

polymorphism microarrays showed a low number of CNAs in the leukaemia cells of these 

cases with an average of 2.38 per patient. In additional, the rare recurrence of CNAs was 

observed in these cases (Radtke et al., 2009).  

Cosat et al. (2013) studied 15 confirmed inv(16) and t(8;21) cases using a single-

nucleotide polymorphism-array. Of these, four cases showed trisomy 22, 9p13 

duplication, trisomy 9 and terminal deletion of 9q22 by G-banding. They found that 

trisomy 22 was not detected by array, whereas 9p13 duplication interpreted by G-

banding was defined as 1q25.2 gain by array, and trisomy 9 detected by G-banding was in 

fact trisomy 8 revealed by array, while terminal 9q22 deletion identified by G-banding 

was found as interstitial 9q22 deletion by array. Moreover, they identified recurrent 

submicroscopic regions at 4q28, 9p11, 16q22.1 and 16p23 and CN-LOH regions in these 

patients. In a different study, CNAs were found in a case of an isolated del(20q) 

abnormality using whole-genome single nucleotide polymorphism array (SNP-A)-based 

karyotyping. The additional genomic alterations detected were described as copy neutral 

loss of hetrozygosity (CN –LOH) of 11q13, 1-q25 and copy number gain of 20q. The gain of 

20q was also confirmed by FISH analysis. It was suggested that the presence of CNAs in 

this type of abnormality might be associated with poor prognosis (Hahm et al., 2012).  

Mullighan et al. (2009) described the presence of copy number loss of the IKZF1 gene in 

acute lymphoblastic leukaemia with t(9;22) translocation. This cytogenetic group is 
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associated with poor outcomes, suggesting that deletion of the IKZF1 gene might be used 

as a prognostic marker to identify patients with high risk of relapse. In addition to AML 

with rearrangements, several published studies have reported CNAs in karyotypically 

normal AML cases. Barresi et al. (2010) investigated 19 normal karyotype AML cases using 

high resolution SNP array. A low number of CNAs per patient was observed, with an 

average of one CNA per patient, and also few recurrent CNAs were identified. Other 

studies also detected CNAs in normal karyotype AML. Akagi et al. (2009) identified CNAs 

in nine out of 38 normal karyotype samples, while Ballabio et al. (2011) found CNAs in 

AML patients with normal and incomplete karyotype using whole genome array 

comparative genome hybridization (aCGH). Among these CNAs, loss and gain of large 

chromosome regions were detected by array and confirmed by FISH; these CNAs were 

found in interphase rather than metaphase. Moreover, it was found that cells carrying 

these CNAs involving large chromosomal regions were cells in a non-proliferative status.  

Walter et al. (2009) found CNAs in both normal karyotype AML and AML with abnormal 

karyotype cases using SNP array. They stated that CNAs were more common in AML 

patients associated with poor prognosis in contrast to normal karyotype AML, which is 

associated with intermediate risk of relapse. The identification of CNAs has led to the 

improvement of treatment and clinical outcomes of some cases of AML patients with 

normal and abnormal karyotypes (Fenaux et al., 1993). Therefore, it is important to 

understand more about the genetic basis of leukaemia and its implications for clinical 

practice so that evidence-based practice (e.g. treatment strategies) can be developed.  

5-2 Aim of this study 

In this study, Illumina beadarray approach was used to assess CNAs and CN-LOH regions 

in 22 AML patients samples with inv(16)(p13;q22) and t(8;21)(q22;q22). In order to 

distinguish between true CNAs and false-positive findings and to verify whether CNAs are 

present in the same clone harbouring inv(16), FISH was used on fixed chromosome and 

cell suspensions from the same patients. We further investigated whether the cells 

carrying the abnormalities were proliferating or non-proliferating/quiescent using indirect 

immunofluorescence method with an antibody specific to the proliferation marker (Ki-

67). The proliferation studies mentioned here are described in detail in chapter 6. 
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5-3 Materials and methods 

5-3-1 Patient samples  

Genomic DNA samples from 22 AML patients with confirmed inv(16) and t(8;21) were 

provided to us by collaborators at the Children’s Hospital, University of Giessen and 

Marburg, Germany, and at the Paediatric Haematology Clinic, Ospedale San Gerardo, 

Monza, Italy. Four inv(16) patient samples out of 22 were selected for FISH study on the 

basis of: (i) presence of CNAs as proven by array data; and (ii) availability of material in 

the form of fixed chromosomes and cell suspensions. Inv (16) was the only abnormality in 

two patients (no. 29 and 30), while two cases had additional chromosomal 

rearrangement, including trisomy 22 in case no. 26, and t(X;1) in case no.27. Median age 

was five years (range 1-17 years), and the sample comprised four females and one male. 

Clinical and cytogenetics details of the patients are given in table 5-1 

Table 5-1: Clinical and cytogenetic data of the patients reported in this study 

Pt Age Disease  Reported Karyotype  

26 5y 4mo AML-M4 47~48,XX,inv(16)(p13q22),+?20,+22[10] 

27 17y 4mo AML 46,XX,inv(16)(p13q22)[8]/46,idem, 
der(1)?t(X;1)(p?11;q21),?der(X)?t(X;1)(p?11;q21 

29 4y 8mo AML-M4eo 46,XX,inv(16)(p13q22) 

30 11y 4mo AML-M4 46,XY,inv(16)(p13q22) 

Y: years, mo: months. All patient samples in the table were provided by 
Professor J. Harbott, Children’s Hospital, University of Giessen and 
Marburg, Germany. 

5-3-2 Cell line 

Three different commercially available cell lines were used as a normal control to test the 

specificity and efficiency of BACs biotin labelled probes used for FISH: 

1. Farage (CRL-2630) cell line was derived from patient who had diffused large cell 

non-Hodgkin's lymphoma (DLCL). 

2. GM17878B Lymphoblastoid cell line derived from normal peripheral blood of 

healthy individual cell line. 

3. GM17208B Lymphoblastoid cell line derived from normal peripheral blood of 

healthy individual. 
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The cell lines were purchased from Coriell Institute for Medical Research.  

5-3-3 Probes 

FISH analyses were performed using probes for the inv(16)(p13;q22) (MetaSystems 

GmbH, Altlussheim, Germany). The same probe was used to detect the deletion of 

16p13.11 region in one of the patients. In addition, the following BACs were used to 

confirm other CNAs detected by Illumina array analysis: RP11-504N9 (7q36.1; 

151,254,565 to 151,424,079); BAC RP11-184A23 (4q35.1; 184,483,495 to 184,649,497); 

BAC RP11-195E4 (8q24.3; 141,431,223 to 141,608,396) (BACPAC Resources Center, 

Oakland, USA).  

5-3-4 Fluorescence in situ hybridization  

Methanol-acetic acid fixed chromosome suspensions were prepared for the FISH 

experiment. Importantly, the cell preparations used for FISH were derived from samples 

obtained at the same time as those used for karyotyping and DNA extraction for Illumina 

array experiment. The inv(16) probe directly labelled with spectrumorange and FITC was 

used for direct detection of the inversion in all samples. These probes were used 

according to the manufacturer’s instructions with slight modifications. BACs biotin 

labelled probes were indirectly visualized with streptavidin Cy5. Slides were denatured 

with 70% formamide at 70°C for five minutes. Probe mixture was denatured at 65°C for 

ten minutes, incubated at 37°C for ten minutes, and subsequently applied to the slides. 

Slides were incubated overnight at 37°C. After overnight incubations, slides were washed 

with 2x SSC for five minutes followed by another wash in 0.4x SSC for five minutes at 

72°C. Blocking solution (3% BSA+ 4x SSC/Tween20) was added to the slides. Biotin 

labelled probes were detected using streptavidin Cy5. The slides were then mounted in 

Vectashield (Vector Laboratories Ltd., Peterborough, UK) containing 4, 6-Diamidine-29-

phenylindole dihydrochloride (DAPI).  

5-3-5 Microscope analysis  

Hybridized chromosomes and nuclei were viewed and images were captured using: (i) a 

Zeiss axioplan epifluorescence microscope (Carl Zeiss, Cambridge, UK) equipped with a 

CCD camera and MetaSystems Isis v. 5.3 software; and (ii) an Olympus BX41 Fluorescence 
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microscope (Zeiss) equipped with a charge-coupled device (CCD) camera (Scion FW 

camera, Merge image processor, Version 1.0) and SmartCapture3 sofware; and (iii) an 

Olympus BX-51 microscope equipped with a JAI CVM4+ progressive-scan 24 fps B&W 

fluorescence CCD camera and Leica Cytovision Genus v7.1 software. 

5-3-6 Statistical analysis 

Cut off levels were calcuated using the mean ± 3 × SD formula in order to establish the 

normal reference ranges against abnormal cut off percentage (Ballabio et al., 2011). 

Calculation of cut off value was done using Microsoft Excel.  

5-4 Results 

5-4-1 Illumina array analysis 

Illumina array data for 22 patient samples with inv(16) were generated in collaboration 

with Dr. Samantha Knight at the Wellcome Trust Centre of Human Genetics, Oxford. CNAs 

were identified in 17 out of 22 cases (77.27%). In total, 41 losses and gains events with an 

average of 1.86 CNAs per patient were identified. Losses were more common than gains, 

with 27 regions of loss (size range: 303.696-58356.271 kbp) and 14 regions of gain (size 

range: 469.961- 63262.461 kbp) detected. Most of them were submicroscopic alterations. 

Among the detected CNAs, two recurrent affected regions were observed having losses at 

7q36.1 (3.42 Mb) in two cases and at 9q13-q33.1 in two cases. Moreover, Copy Neutral 

Loss of Heterozigosity (CN-LOH) was detected in 19 cases out of 22 (86.4%), with an 

average of 6.7% per patient. The detected size of CN-LOH ranged from 19.427 to 

6758.432 kbp. Recurrent CN-LOH regions were also found, including the following 

chromosome regions: 2p16.1, 2p21, 2q13, 6p12.3, 7q11.21, 7q11.22, 8q21.3, 8q23.3, 

9q13, 12q24.11-q24.13 and 20q11.21. Some of these altered regions contain genes 

known to be associated with AML such as MYC, MLL, IDH1, ASXL1 and RUNX1 genes. Four 

regions were selected to be confirmed by FISH including three regions of loss in 7q36.1 

(3.42 Mb), 16p13.11 (491.204 kbp), 4q25.1 (907.338) and one gain of 8q24.21-q24.3 

(18.629476 Mb). No class I gene mutations (c-KIT, FLT3 and RAS) were observed in these 

cases.  
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5-4-2 Comparison of Illumina array data and chromosome banding data 

Karyotypes were assessed according to chromosome banding analysis was available in 

only four cases (no. 26, 27, 29 and 30). As proof of concept, additional gain of 

chromosome 22 materials (n=26) as reported in the karyotype was also observed by 

Illumina array. However, the translocation between chromosome X and 1 (patient no.27) 

reported in the karyotype, was not confirmed by Illumina array. This was expected 

because this type of array identifies loss or gain of material and not balanced 

rearrangements. In two cases (no.26 and no.31) a deletion of 7q36.1 was detected by 

Illumina array in two cases and was not seen by chromosome banding analysis. This is due 

to the size of the deleted regions being in both cases less than 5 Mb. However, in case no. 

30 Illumina array identified a large amplified region > 18 Mb at 8q24.21-q24.3, which was 

missed by cytogenetics. Furthermore, in three cases small deletions ranging from 0.9 to 

4.76 Mb on 13q21.33, 7q33-q34, 4q35.1, 16p13.11 and 16q22.1 were observed by 

Illumina array but invisible by cytogenetics. 

5-4-3 Confirmation of Illumina array data by FISH  

Five different BAC clones were chosen for regions of 7q36.1 (RP11-504N9 and RP11-

104H2), 4q35.1 (RP11-184A23 and RP11-51B8) and 8q24.21-q24.3 (RP11-195E4). Each 

BAC clone was hybridized to interphase and metaphase spread of normal controls to 

determine the hybridization efficiency and specificity. At least 200 hundred nuclei for 

each probe were counted and analysed by two independent observers. The RP11-504N9 

probe for the 7q36.1 region spanning 169,515bp over the PRKAG2 gene showed a high 

percentage (95.3%) of cells with two hybridization signals, while the RP11-104H2 probe 

for the same region spanning 149,873bp over the RHEB gene showed 90.75% of cells with 

two hybridization signals (figure 5-1). FISH was performed on metaphase and interphase 

cells obtained from the lymphoblastoid cell line GM17878B used as control. 
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Figure 5-1: An example of FISH image using probes for the 7q36.1 region 

(A) Interphase nuclei and a metaphase spread display two hybridization 
signals of RP11-504N9 probe to target PRKAG2 gene on 7q36.1.  

(B) Interphase nuclei and a metaphase spread show two hybridization 
signals of RP11-104H2 probe to target RHEB gene on 7q36.1. FISH signals 
are visible in green (FITC). Nuclei and chromosomes are counterstained in 
DAPI (in blue). 

Furthermore, the RP11-184A23 and RP11-51B8 probes for the 4q35.1 region hybridized 

166,003bp and 187,959bp over the RWDD4 gene showed 93% and 90.5% respectively of 

the cells with two hybridization signals (figure 5-2). FISH was performed on metaphase 

and interphase cells obtained from the lymphoblastoid cell line GM17878B used as 

control. 
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Figure 5-2: An example of FISH image using probes for the 4q35.1 region 

(A) Interphase nuclei and a metaphase spread display two hybridization 
signals of RP11-184A23 probe to target RWDD4 gene on 4q35.1.  

(B) Interphase nuclei and a metaphase spread show two hybridization 
signals of RP11-51B8 probe to target RWDD8 gene on 4q35.1. FISH signals 
are visible in green (FITC). Nuclei and Chromosomes are counterstained in 
DAPI (in blue). 

For the RP11-195E4 which spans 177,174bp region over the CHRAC1 gene on 8q24.3, the 

percentage of cells with two hybridization signals was 94.1% (see figure 5-3). FISH was 

performed on metaphase and interphase cells obtained from the lymphoblastoid cell line 

GM17878B used as control. 
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Figure 5-3: An example of FISH image using probes for the 8q24.21-q24.3 region 

(A) Interphase nuclei display two hybridization signals of RP11-195E4 
probe to target 8q24.1-q24.3 region.  

(B) A metaphase spread shows two hybridization signals of RP11-195E4 
probe to target 8q24.21-q24.3 region. FISH signals are visible in green 
(FITC). Nuclei and Chromosomes are counterstained in DAPI (in blue). 

In addition, three BACs with high hybridization efficiency were selected and each of these 

BAC probes were combined individually with the inv(16) probe. Each of the three probe 

mixtures were hybridized to interphase and metaphase spreads of three different normal 

controls (CRL-2630, GM 17808B and GM 17878B). The hybridization signal pattern of at 

least 200 hundred nuclei from each cell line and patient samples were counted and 

analysed independently by three trained observers in order to establish cut-off levels.  

5-4-3-1 Detection of homozygous copy loss of 7q36.1 region in patient no. 26 

For the PRKAG2 gene at 7q36.1 region, the RP11-504N9 probe in combination with 

inv(16) probe was hybridized to interphase and metaphase spread of CRL-2630, GM 

17208B and GM 17878B and patient no. 26. The majority of cells (81.55%) from the three 

cell lines showed high percentage of two copies of the gene and normal chromosome 16 . 

Examples of FISH performed on the normal controls are shown in figure 5-4. 

 

B 
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Figure 5-4: FISH performed on CRL-2630, GM17208B and GM17878B using a three colour FISH approach 

Probes used were: a probe set for inv(16) (spectrumorange and FITC) in 
combination with RP11-504N9 probe specific for PRKAG2 gene at 7q36.1 in 
each cell line in purple(Cy5). (A, B and C) Two signals for the PRKAG2 gene 
at 7q36.1 in the presence of normal chromosome 16.  

While the majority of cells without inv(16) rearrangements and cells harbouring inv(16) 

rearrangements from patient 26 were found to have complete loss of PRKAG2 gene, a 

few cells without inv(16) rearrangements and cells with inv(16) rearrangements showed 

either one or two copies of the gene. No trisomy or tetrasomy were observed in both 

normal chr16 and inv(16) cells. Examples of FISH performed on patient no. 26 are shown 

in figure 5-5. 
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Figure 5-5: Images of interphase nuclei from patient no. 26 hybridized using a three colour FISH 

Probes used were: a probe set for inv(16) (spectrumorange and FITC) in 
combination with RP11-504N9 probe specific for the PRKAG2 gene at 
7q36.1 in purple (Cy5).  

(A) Two signals of PRKAG2 gene in the presence of normal chromosome 
16.  

(B) No signals of PRKAG2 gene shows loss of two copies in the presence of 
normal chromosome 16.  

(C) Two signals of PRKAG2 gene in the presence of inv(16).  

(D) No signals of PRKAG2 gene shows complete loss in the presence of 
inv(16).  

(E) Schematic representation of the hybridization patterns observed in the 
nuclei to show the inv(16) and RP11-504N9 probes observed in this patient 
sample. Nuclei are counterstained in DAPI (in blue). 

The average of cells carrying 0, 1, 2, 3, 4 copies of PRKAG2 gene in the three cell lines 

counted by three observers was 3%, 12.11%, 81.55%, 2.5% and 0.84% respectively. In 

patient no. 26, the average of cells with 0, 1, 2, 3, and 4 copies of the gene was 92.17%, 

5.66%, 2.17%, 0% and 0% respectively. The cell counts produced by the three observers 

are shown in appendix 1. The percentages of cells with number of hybridisation signals of 

the RP11-504N9 probe analysed by three observers is described in table 5-2.  
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Table 5-2: Percentages of cell with number of hybridisation signal of the RP11-504N9 probe for 7q36.1 

No of hybridisation 
signals on NCs and pt26 

0 1 2 3 4 

AB- NC 2.5 11.5 83 2 1 

VA-NC 3.33 12 81 2.33 1.33 

AI-NC 3.17 12.83 80.66 3.17 0.17 

Mean of NC 3 12.11 81.55 2.5 0.84 

Cut off value (mean ± 3 × 
SD) 

3 ± 3×0.44 12.11 ± 3 
× 0.67 

81.55 ± 3 
× 1.265 

2.5 ± 3 × 
0.6 

0.84 ± 3 × 
0.96 

Mean for patient 26 92.17 5.66 2.17 0 0 

AB, VA and AI are the initials of the three observers; NC: normal control; 0, 
1, 2, 3 and 4: percentages of cells with 0, 1, 2, 3 and 4 signals respectively. 

The analysis reveals no significant difference between the three normal controls, and the 

majority of cells were found to have two signals. In the patient sample, the majority of 

cells showed complete loss of the gene (no signals of the probe). It is important to note 

that only 3% of control cells showed 0 signals of the probe. There was a large deviation of 

75.33% between the cut off value and the percentage of patients’ cells with two 

hybridisation signals. It is also clear that the percentage of cells with no hybridization 

signals in patient 26 was greater than the mean ± 3×SD of the control. There was a 

complete loss of PRKAG2 gene at 7q36.1 in this patient in the majority of the cells (figure 

5-6).  
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Figure 5-6: Bar graph showing percentage of hybridisation signals of RP11-504N9 probe from normal 
controls and patient 26 obtained from analysis of three observers 

The X axis represents the average of hybridization signals of normal 
controls for each observer, the average of the three observers for the 
normal controls and the average of the three observers for the patient no. 
26. The Y axis shows the percentage of nuclei. Error bars represent 
standard deviation.  

5-4-3-2 Detection of mosaic loss of 4q35.1 region in patient 27 

RP11-184A23 probe for 4q35.1 region containing the RWDD4 gene was performed on 

both interphase and metaphase spread of CRL-2630, GM 17878B, GM 17208B cell lines 

and patient no. 27. All three cell lines were found to have high percentage of two copies 

of the RWDD4 gene (two signals of probe). Examples of FISH performed on the normal 

controls are shown in figure 5-7.  

However, the majority of patient’s cells without inv(16) rearrangements and cells with 

inv(16) rearrangements had one copy of the RWDD4 gene, whereas a few cells either 

without inv(16) rearrangements or inv(16) rearrangements showed two copies of the 

gene (two hybridization signals for the BAC probe). Examples of FISH performed on 

patient no. 27 are shown in figure 5-8.  
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Figure 5-7: Images of interphase and metaphase cell of CRL-2630, GM17208B and GM17878B respectively 
using a three colour FISH approach 

Probe used were: a probe set for inv(16) (spectrumorange and FITC) in 
combination with RP11-184A23 probe specific for RWDD4 gene at 4q35.1 
in each cell line in purple (Cy5). (A, B and C) Two signals for the RWDD4 
gene at 4q35.1 in the presence of normal chromosome 16.  
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Figure 5-8: Images of interphase nuclei from patient no. 27 hybridized using a three colour FISH 

Probes used were: a probe set for inv(16) (spectrumorange and FITC) in 
combination with RP11-184A23 probe specific for the RWDD4 gene at 
4q35.1 in purple(Cy5).  

(A) Two signals of RWDD4 gene in the presence of normal chromosome 16. 

(B) One signal of RWDD4 gene shows loss of one copy in the presence of 
normal chromosome 16.  

(C) Two signals of RWDD4 gene in the presence of inv(16).  

(D) One signal of RWDD4 gene shows loss of one copy in the presence of 
inv(16).  

(E) Schematic representation of the hybridization patterns observed in the 
nuclei to show the inv(16) and RP11-184A23 probes observed in this 
patient sample. Nuclei are counterstained in DAPI (in blue) 

In the three normal controls, the percentages of cells with 0, 1, 2, 3, 4 copies of the 

RWDD4 gene which evaluated by the three observers were 2.346%, 8.28%, 80.63%, 7.63% 

and 0.94% respectively while the percentages of patient’s cells having 0, 1, 2, 3, 4 copies 

of the gene were 9.15%, 64.9%, 25.7%, 0.25% and 0% respectively. The cell counts 
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produced by the three observers are in appendix 2. The percentages of cells with number 

of hybridisation signal of the RP11-184A23 probe for 4q35.1 region analysed by three 

observers is described in table 5-3. 

Table 5-3: Percentages of cell with number of hybridisation signal of the RP11-184A23 probe for 4q35.1 
region 

No. of hybridisation 
signals on NCs and pt27 

0 1 2 3 4 

AB- NC 1.84 8 80.5 8.66 1 

VA-NC 2 8.34 79.5 8.33 1.33 

AI-NC 3.2 8.5 81.9 5.9 0.5 

Mean of NC 2.346 8.28 80.63 7.63 0.94 

Cut off Value (mean ± 3 
× SD) 

2.346 ± 3 
× 0.741 

8.28 ± 3 × 
0.253 

80.63 ± 3 
× 1.206 

7.63 ± 3 
× 1.50 

0.94 ± 3 × 
0.416 

Mean of Patient 27 9.15 64.9 25.7 0.25 0 

AB, VA and AI are the initials of the three observers, NC: normal control, 0, 
1, 2, 3 and 4: Percentages of cells with 0, 1, 2, 3 and 4 signals respectively. 

There was no significant difference between the three normal controls, which were found 

to have high percentage of cells with two copies of the RWDD4 gene (two signals of the 

probe). In comparison with patient sample, the percentage of cell with two copies of the 

gene was 25.7. Loss of one copy of the gene was found in 64.9% of the patient’s cells, 

which was greater than the mean ± 3 × SD of the normal controls, where only 8.28% of 

normal controls cells had one copy of the gene. This confirms that the patient had loss of 

one copy of the gene at 4q35.1. Also 9.15% of the cells were found to have no copies of 

the gene while only 2.34% of control cells had no copies of the gene (figure 5-9).  
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Figure 5-9: Bar graph showing percentage of hybridisation signals of RP11-184A23 probe from normal 
controls and patient 27 obtained from analysis of three observers 

The X axis represents the average of hybridization signals of normal 
controls for each observer, the average of the three observers for the 
normal controls and the average of the three observers for the patient no. 
27. The Y axis shows the percentage of nuclei. Error bars represent 
standard deviation. 

5-4-3-3 Detection of loss of 16p13.11 region in patient no. 29 

The inv(16) probe, which spans the at 16p13 region over the MHY11 and NDE1 genes 

and CBFB gene at 16q22 region, was hybridized to interphase of CRL-2630, GM 

17208B, GM 17878B cell lines and patient no. 29. Approximately 100% of the normal 

controls' cells showed normal pattern of the probe, with two hybridization signals. 

None of the controls were found to have loss of 16p13 region. A total of 55.3% of the 

patient’s cells were without inv(16). Of these, 5% showed loss of one copy of the 

16p13 region. The cells without inv(16) and loss of 16p13 region showed three 

hybridisation signals of the probe (two red and one green signals). The inv(16) 

rearrangement was detected in 44.7% of the patient’s cells, of these 7.5% of the cells 

were found to have one copy of the 16p13 region. The cells with inv(16) and loss of 

16p13 region showed four hybridisation signals of the probe (3 red and one green 

signals). Examples of FISH performed on patient no. 29 are shown in figure 5-10. 

Probes used were: a probe set for inv(16) (spectrumorange and FITC), the 
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spectrumorange labelled probe hybridize CBFB gene on 16q22 and the FITC labelled 

probe targets the MYH11 and NDE1 genes on 16p13.11. 

 

Figure 5-10: Images of interphase nuclei from patient no. 29 hybridized using dual colour FISH 

(A) Two signals of MYH11 gene in the presence of normal chromosome 16. 

(B) One signal of MYH11 gene shows loss of one copy in the presence of 
normal chromosome 16.  

(C) Two signals of MYH11 gene in the presence of inv(16).  

(D) One signal of MYH11 gene shows loss of one copy in the presence of 
inv(16).  

(E) Schematic representation to show the inv(16) probe FISH patterns in 
this patient sample. Nuclei are counterstained in DAPI (in blue). 

5-4-3-4 Detection of gain of 8q24.21-q24.3 regions in patient no. 30  

The RP11-195E4 probe hybridized the CHRAC1 gene at 8q24.3 was performed on 

interphase and metaphase cells of CRL-2630, GM17878, GM17208 lines and patient no. 

30. The analysis of the three normal controls showed that the majority of cells had two 

copies of the gene (two identical signals of the probe). Examples of FISH performed on 

the normal controls are shown in figure 5-11.  
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Figure 5-11: Images of interphase and metaphase cell of CRL-2630, GM17208B and GM17878B 
respectively using a three colour FISH approach 

(A, B and C) Two signals for the CHRAC1 gene at 8q24.3 in the presence of 
normal chromosome 16.  

In the patient sample, the majority of cells without inv(16) rearrangements and cells with 

inv(16) rearrangements were also detected with two copies of the CHRAC1 gene at 

8q24.3 (two identical probe signals), while a few cells showed three copies of the gene 

(three signals of the probe). Examples of FISH performed on patient no. 30 are shown in 

figure 5-12. Probes used were: a probe set for inv(16) (spectrumorange and FITC) in 

combination with RP11-195E4 probe specific for the CHRAC1 gene at 8q24.3 in 

purple(Cy5). 
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Figure 5-12: Images of interphase nuclei from patient no. 30 hybridized using a three colour FISH 

(A) Shows two nuclei from the same patient. The left nucleus shows two 
signals of equal intensity for RP11-195E4 probe in the presence of normal 
chromosome 16, the right nucleus shows two signals of equal intensity for 
RP11-195E4 probe in the presence of two fusion signals to indicate the 
inv(16) rearrangement.  

(B) Schematic representation of the hybridization patterns observed in the 
nuclei to show the inv(16) and RP11-195E4 probes observed in this patient 
sample. Nuclei are counterstained in DAPI (in blue). 

The percentages of cells with 0, 1, 2, 3, 4 copies of the CHRAC1 gene in the three cell lines 

evaluated by the three observers were 1.33%, 6.28%, 86.61%, 5.326% and 0.44% 

respectively, while the percentages of patients’ cells having 0, 1, 2, 3, 4 copies of the gene 

were 2%, 3.33%, 85.5%, 9.17% and 0% respectively. The cell count produced by the three 

observers is in appendix 3. The percentages of cell with number of hybridisation signals of 

the RP11-195E4 probe for 8q24.3 region analysed by three observers are described in 

table 5-4. 
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Table 5-4: Percentages of cell with number of hybridisation signal of the RP11-195E4 probe for 8q24.3 
region 

No of hybridisation 
signals on NCs and pt30 

0 1 2 3 4 

AB- NC 1 6.36 89 3.3 0.34 

VA-NC 1.16 6 88.33 3.85 0.66 

AI-NC 1.83 6.5 82.5 8.83 0.34 

Mean of NC 1.33 6.28 86.61 5.326 0.44 

Cut off value (mean ± 3 
× SD) 

1.33 ± 3 × 
0.44 

6.28 ± 3 × 
0.257 

86.61 ± 3 
× 3.756 

5.326 ± 3 
× 3.04 

0.44 ± 3 × 
0.184 

Mean of patient 30 2 3.33 85.5 9.17 0 

AB, VA and AI are the initials of the three observers, NC: normal control, 0, 
1, 2, 3 and 4: Percentages of cells with 0, 1, 2, 3 and 4 signals respectively. 

According to the analysis of RP11-195E4 probe, there was no significant difference 

between the normal controls cells carrying two copies of CHRAC1 gene (two signals of the 

probe) and patients’ cells with two copies of the gene (two signals of the probe); both had 

a similar level of two copies of the gene. Only a small proportion of cells in the normal 

controls and the patient showed one copy of the gene. The percentage of patients’ cells 

with three copies of the gene (three signals of the probe) was within the three standard 

deviation interval around the normal controls mean. This indicates that the amplification 

of 8q24.21-q24.3 is not confirmed in this patient (figure 5-13).  
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Figure 5-13: Bar graph showing percentage of hybridisation signals of RP11-195E4 probe from normal 
controls and patient 30 obtained from analysis of three observers 

The X axis represents the average of hybridization signals of normal 
controls for each observer, the average of the three observers for the 
normal controls and the average of the three observers for the patient no. 
30. The Y axis shows the percentage of nuclei. Error bars represent 
standard deviation. 

5-4-4 Verification of CNAs in normal chromosome 16 cells and cell harbouring inv(16) 

rearrangement 

As mentioned previously, a combination of BACs and inv(16) probes were performed on 

cells of four patient samples to confirm the Illumina array findings and to verify whether 

the CNAs can be found in cell with normal chromosome 16 or in cells carrying 

chromosome 16 inversion. Copy number loss was found both in normal chromosome 16 

and inv(16) cells in the three patient samples. In patient no. 26, complete loss of RPKGA2 

gene at 7q36.1 was found in 92% of cells, of which 51.5% were carrying inv(16) 

rearrangement, while 43% of cells were without inv(16) rearrangements. In addition, 

there was a low percentage of cells without inv(16) rearrangements and cells inv(16) 

rearrangements had two copies of the gene (figure 5-14).  
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Figure 5-14: Bar chart illustrating the percentage of copy number of PRKAG2 gene at 7q36.1 region in cells 
without inv(16) and cells with inv(16) from patient no. 26 

The X axis represents the percentage of copy number of the PRKAG2 gene 
in cells with normal chromosome 16 and cells with inv(16) rearrangement. 
The Y axis shows the percentage of nuclei.  

The loss of RWDD4 gene at 4q35.1 was apparent in 64.9% of the cells in patient 27. 31% 

of cells carrying loss of the gene were harbouring inv(16) rearrangement, whereas 33.9% 

of cells with loss of the gene were found to have normal chromosome 16. Moreover, 

11.2% of cells with two copies of the gene were without inv(16) rearrangements, while 

14.5% of cells with two copies of the gene were with inv(16) rearrangement (figure 5-15).  
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Figure 5-15: Bar chart illustrating the percentage of copy number of RWDD4 gene at 4q35.1 region in cells 
with normal chromosome 16 and cells with inv(16) from patient no. 27 

The X axis represents the percentage of copy number of the RWDD4 gene 
in cells without inv(16) and cells with inv(16) rearrangement. The Y axis 
shows the percentage of nuclei.  

In patient 29, the copy number loss was also found both in cells with normal chromosome 

16 and cells with inv(16) rearrangement. The percentage of cells with loss of MHY11 gene 

was 12.5%, 5% of these cells were without inv(16) rearrangements, while 7.5% of cells 

were carrying inv(16) rearrangement. The percentage of both cells without inv(16) and 

with inv(16) with two copies of the MYH11 gene was 87.5% (figure 5-16).  
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Figure 5-16: Bar chart illustrating the percentage of copy number of MHY11 gene at 16p13.11 region in 
cells with normal chromosome 16 and cells with inv(16) from patient no. 27 

The X axis represents the percentage of copy number of the MHY11 gene 
in cells with normal chromosome 16 and cells with inv(16) rearrangement. 
The Y axis shows the percentage of nuclei. 

5-5 Discussion  

To gain better insight in the genetic basis of leukaemia and its implication in the clinical 

practice, the Illumina beadarray approach was used to determine CNAs and CN-LOH 

regions in 22 AML patients samples with inv(16)(p13;q22) and t(8;21)(q22;q22).  

Firstly, we identified low number of CNA losses and CN gains in 17 (77.27%) out of 22 

cases. In total, 41 losses and gains events with an average of 1.86 CNAs per patient. 

Losses were more common than gains, with 27 loss regions (size range, 303.696-

58356.271 kbp) and 14 gain regions (size range, 469.961- 63262.461 kbp). CN- LOH were 

also detected with an average of 6.7% per patient. Low recurrence of CNA regions was 

detected, including losses of 7q36.1 and 9q13-q33.1 and CN- LOH of 2p16.1, 2p21, 2q13, 

6p12.3, 7q11.21, 7q11.22, 8q21.3, 8q23.3, 9q13, 12q24.11-q24.13 and 20q11.21. These 

results are in agreement with previous studies (Akagi et al., 2009; Barresi et al., 2010; 

Cosat et al., 2013; Kuhn et al., 2012; Redtke et la., 2009), which showed a low number of 

CNAs and low recurrent regions, including 7q36.1 and 9q13-q33.1 found in AML cases.  
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Secondly, chromosome banding analysis of four cases (no 26, 27, 29 and 30) showed 

additional gain of chromosome 22 materials (n=26), translocation between chromosome 

X and 1 (n=27), and in two cases (n=26 and n=30) the inv(16) rearrangement was the only 

abnormality observed. However, arrays identified deleted regions in 7q36.1, 4q35.1 and 

16p13.11 in three cases were not observed by chromosome banding. Furthermore, a 

large amplified region >18 Mb was detected by array, while it was missed by G-banding. 

The trisomy 22 observed by G-banding in pt 26 was confirmed by array while the t(X;1) 

did not involve any deletion of amplification of genomic material.  

Thirdly, to validate the CNAs in four cases showing a 7q36.1 deletion, 4q35.1 deletion, 

16.13.11 deletion and 8q24.21-q24.3 gain, interphase FISH was performed using three 

BACS in a combination with inv(16) probe for the 7q36.1, 4q35.1 and 8q24.21-q24.3 

regions and inv(16) (MHY11-CBFB) probe for 16p13.11 region. The homozygous copy loss 

of 7q36.1 was confirmed in 92% of the cells. In case 27 a mosaic Loss of 4q35.1 region 

was also confirmed in 64.9% of nuclei. In case 29 a copy number loss of 16p13.11 region 

was confirmed in 12.5% of cells. However, in case 30 a large gain of 8q24.21-q24.3 was 

not confirmed by FISH, as the results showed no significant difference between the 

normal controls and the patient’s cells.  

Ballabio et al. (2011) demonstrated that large CNAs identified in normal karyotype AML 

cases by aCGH analysis were confirmed by FISH and found in interphase but not in 

metaphase cells. Their hypothesis was that the abnormalities was confined to the non-

dividing cells, therefore they could not be observed by chromosome banding analysis or 

by metaphase FISH. They demonstrated this by conducting immuno-FISH experiments 

using ki-67, a proliferation marker, and showing that the CNAs were detected only in ki-67 

positive cells in the majority of cases. Based on this evidence, we decided to carry out 

further analyses of FISH data, to investigate whether CNAs are present in the same clone 

harbouring inv(16) or/and in the cells without inv(16); and to verify whether the CNAs 

were present in non-dividing population of cells.  

Our results showed that the CNAs were found both in cells without inv(16) and cells 

harbouring the inv(16) rearrangement in all cases except case no. 30. In addition, a 

proportion of cells without inv(16) and with inv(16) were found to have a normal number 

of copies of 7q36.1 (no 26), 4q35.1 (no 27) and 16p13.11 (no 29). In cases no. 26, 27 and 

29 the CNAs detected were invisible by G-banding and were too small to be seen by 
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chromosome banding methods. In two cases the CNAs occurred only in a proportion of 

cells, as shown in case 27 (64.9%) and case 29 (12.5%). This variance of the copy number 

loss of the gene detected in patient cells can be explained by somatic mosaicism of the 

patients, by which one copy of the gene was found in only 64.9% and 12.5% of the cells. 
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CHAPTER 6:  PROLIFERATION STUDIES IN ACUTE MYELOID 

LEUKAEMIA 

6-1 Introduction  

Hematopoietic stem cells have the ability to self-renew and differentiate into different 

linages and mature blood cells. HSC is a very rare cell population in the bone marrow and 

generally arrested in G0 phase of cell cycle, but upon stimulation they can enter into cell 

cycle and proliferate (Bonnet, 2005). The developmental process of the stem cells is 

controlled by several transcriptional factors. Dysregulation of this program can therefore 

lead to initiate leukaemia proliferation (Lecuyer and Hoang, 2004). 

Ki67 is a nuclear protein that is expressed in the proliferating cells during G1, S, G2 and M 

phases of the cell cycle (Bridger et al., 1998). Gerdes et al. (1983) reported that the ki67 

antigen was produced by injecting of L428 cells derived from Hodgkin’s disease to mice. 

The functions of ki67 remain unknown. The localization of ki67 antigen has been assessed 

in cells during interphase by immunofluorescence using normal human dermal fibroblasts 

(HDF) (Bridger et al., 1998). In this study, the ki67 antigen was localized or distributed in 

relation to the different phases of the cell cycle. The ki67 antigen was detected in nuclear 

foci in early G1 referred to it as pattern type I, whereas in late G1, S and G2 the ki67 

antigen was located in the nucleolus showing a different patterns of ki67 staining referred 

to as pattern type II. The ki67 antigen was also seen surrounding metaphase 

chromosomes during mitosis, while it was not detected in the G0 phase of the cell cycle, 

when the cells exist in a quiescent state (Bridger et al., 1998; Kill, 1996).  

Few studies have reported results for ki67 in normal blood cells. Gerdes et al. (1983) 

demonstrated that more than 80% of phytohaemagglutinin (PHA)-stimulated normal 

blood cells reacted with ki67 antibody, while unstimulated normal blood lymphocytes and 

monocytes did not. Moreover, ki67 was also found to react with the majority of cells from 

cancer cell lines, such as L428, Daudi, Raji, HL-60, U937 and k562. It has been shown that 

proliferating lymphoid cells have been identified in tonsils, adult bone marrow and 

thymus (Campana et al., 1988; Gerdes et al., 1986). Ki67 protein can be expressed by 

stimulating T lymphocytes in culture with PHA for 72 hours (Gerdes et al., 1983). Since 

1983, Ki67 antibody has been widely used for the determination of the proliferative state 
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in different types of cancers including hematopoietic malignancies. The assessment of the 

proliferative state of the cancer cells before treatment may provide potential index for a 

better or worse prognosis and can assist the treatment strategy (Gerdes et al., 1986: Le 

Doussal et al., 1989; Querzoli et al., 1996; Trihia et al., 2003).  

Nowicki et al. (2006) showed that a high percentage of ki67 positive cells among the 

leukaemic blasts, ranging from 88.4-99.8%, was detected in all samples taken from 46 

patients with leukaemia on day 0 (baseline) of induction treatment; by day 15, 36 out of 

46 patients responded to treatment and reached remission. In these patients, the level of 

blasts was 5% and linked to low risk, while the remaining 10 patients did not respond to 

the treatment and the number of blasts was higher than 5% (and associated with high 

risk). In four out of ten cases assigned to the high-risk group, the ki67 expression was 

found in 40% of blasts on day 15. However, the percentage of ki67 negative cells was 

identified in 60% of blasts among the remaining six patients. The authors concluded that 

patients found with a high percentage of ki67 negative blasts are associated with a poor 

prognosis. Lowenberg et al. (1993) treated 91 of 114 newly diagnosed AML patients with 

chemotherapy to determine the rate of cell proliferation. Of the 114 patients, 37, 39 and 

38 had a low, intermediate and high level of cell proliferation (respectively). The prospect 

of three-year survival rate was for 36% of patients with low level of proliferation, and only 

3% among patients with high level of growth fraction. Their data suggested that the 

higher proliferation level in leukaemic cells, the worse the outcome of patients.  

Ballabio et al. (2011) showed that CNAs identified by FISH were found in interphase cells 

but were not seen in the metaphases of leukaemia patients within the same samples 

because they remain confined to non-proliferating cells. The authors explained that the 

majority of leukaemic cells (average 96.75%) carrying abnormalities were non-

proliferating cells compared with an average of 72.25% of cells which did not carry 

abnormalities. Sun et al. (2003) investigated the growth fraction of samples obtained 

from 21 cases with AML type M4eo, 15 cases of other AML types and two normal cases. 

The authors reported that the growth fraction of cells with AML type M4eo (median 91%) 

was higher than the growth fraction of other AML types (median 80%).  
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6-2 Aims of this study  

Little is known about the localization of ki67 antigen, staining patterns of ki67 and the 

proliferation status of normal peripheral blood cells and leukaemia cells and cell lines. The 

main of this study is to gain some knowledge on (i) the staining pattern of Ki67 (ii) to 

determine the localization of ki67 antigen (iii) to assess proliferation status of the above 

cells (iv) to determine the proportion of proliferative and non-proliferative of cells derived 

from patients with leukaemia. In order to achieve the above goal, the following objectives 

are outlined: 

1. To use indirect immunofluorescence (IF) using anti-ki67 antibody in order to 

determine the localization of ki67 antigen and the proliferation satatus of 

stimulated and unstimulated peripheral blood cells and k562 cell line.  

2. To use immuno-FISH using specific probes for regions of interest and Ki67 

antibody to determine the proportion of proliferative and non-proliferative cells 

carrying specific chromosomal abnormalities. 

6-3 Material and methods 

6-3-1 Normal blood samples  

Eight normal peripheral blood samples were used in this study, comprising two samples 

of untreated peripheral blood cells from healthy individuals (samples 2 and 5), and six 

samples of peripheral blood cells that have been stimulated to proliferate using PHA 

(samples AH, AN, GO, JS, PB and LU). 

6-3-2 Patient samples 

Five patient samples were selected for this study on the basis of: (i) presence of trisomy 8 

in patients (L020944, H010340 and 0132108), deletion of 7q36.1 and inv(16) in one 

patient (no. 26) and deletion of 4q35.1 and inv(16) in another patient (no. 27); and (ii) 

availability of material in the form of fixed chromosomes and cell suspensions suitable for 

immune-FISH. 
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6-3-3 Cell lines 

Three cell lines were used in this study: 

1. Farage (CRL-2630) cell line was derived from patient who had DLCL. 

2. K562 cell line was derived from a female patient with cryonic myeloid leukaemia. 

3. Pfeiffer (CRL-2632) cell line was established from patient with lymphoma. 

6-3-4 Probes  

Probes used in this study were:  

i. (D8Z2) for centromeric 8;  

ii. RP5-1173K1 for Nup98 at 11p15 region;  

iii. inv(16) probe (MetaSystems….);  

iv. RP11-504N9 For 7q36.1; and  

v. RP11-184A23 For 4q35.1.  

Probes iii-v were used as part of the experimental work described in chapter 5 of this 

thesis.  

6-3-5 Antibodies 

Antibodies used for IIF in this work were anti-ki67 monoclonal mouse primary antibody 

(Dako, Denmark) and anti-Mouse (FITC) secondary antibody (Vector Laboratories,UK), in 

addition to the reagents for detection of FISH probes described in previous chapters.  

6-3-6 Indirect immunofluorescence 

Indirect immunofluorescence (IIF) using ki67 antibody was performed on normal 

peripheral blood cells from 8 different healthy individuals and k562 cell line to assess the 

proliferation state in stimulated (treated with PHA for inducing T lymphocytes cells to 

proliferate) and unstimulated (untreated with PHA and most of cells are non-dividing 

cells) normal blood cells and one leukemic cell line. Of these, five samples (AH, AN, GO, 

JS, and LU) were already stimulated and two samples (2 and 5) were unstimulated, these 

samples were provided by Brunel University. PB sample was stimulated in the present 

study. The IIF procedure is described in detail in chapter 2.  
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6-3-7 Immuno-FISH 

The immunoFISH procedure is described in detail in chapter 2, section 2-9.  

6-3-8 Microscope analysis 

The slides were viewed using Olympus BX41 Fluorescence microscope (Zeiss) and Zeiss 

axioplan epifluorescence microscope (Carl Zeiss). All slides were examined under 100X 

immersion oil objective. Metaphases and interphase cells were captured with a camera 

(Scion FW camera, image processor: Merge, and Version 1.0) and previewed on MAC 

computer using SmartCapture3 sofware and with a CCD camera (739 3 575, pixel size 11 3 

11 mm) with metasystems Isis v. 5.3 software.  

6-4 Results 

6-4-1 Indirect immunofluorescence 

IIF was performed on eight different stimulated and unstimulated normal peripheral 

blood samples and k562 cell line. The proliferation states of AH, AN, GO, JS, 2, 5, LU and 

k562 were observed and analysed by two independent observers, while the proliferation 

state of PB normal blood sample was analysed by one observer. Table 6-1 summarizes the 

number of stimulated and unstimulated samples, the total cell count, ki-67 positive and 

negative cells as assessed by first observer (i.e. the researcher).  

Table 6-1: Number of stimulated and unstimulated samples, the total cell count, ki-67 positive and 
negative analysed by first observer 

Samples ID Fixation methods Ki67 positive Ki67 negative Total cell 
count 

Stimulated peripheral blood cells 

AH  M/ acetic acid 208 (74%) 73 (26%) 281 

AN M/ acetic acid 172 (81%) 41 (19%) 213 

GO M/ acetic acid 195 (84%) 38 (16%) 233 

JS M/ acetic acid 53 (24%) 167 (76%) 220 

LU  M/ acetic acid 131 (74.5%) 45 (25.5%) 176 

PB  M/ acetic acid 90 (79.7%) 23 (20.3%) 113 

PB 4% PFA 134 (77.5%) 39 (22.5%) 173 

Unstimulated peripheral blood cells 

2 M/ acetic acid 39 (11.7%) 295 (88.3%) 334 

5 M/ acetic acid 51 (16.5%) 258 (83.5%) 309 

PB  M/ acetic acid 10 (5.7%)  166 (94.3%) 176 
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Samples ID Fixation methods Ki67 positive Ki67 negative Total cell 
count 

PB 4% PFA 14 (7.5%) 172 (92.5%) 186 

Leukaemia cell line 

K562  4%PFA 200 (100%) 0 (0%) 200 

K562  Methanol/acetone 135 (70%) 58 (30%) 193 

6-4-1-1 Ki67 staining of unstimulated samples 

From sample 2, 334 cells were counted; 88.3% of the cells were ki67 negative, while 

11.7% were ki67 positive. For sample 5, the majority of cells were ki67 negative (83.5%) 

with 16.5% positive cells (see figure 6-1). Of 176 PB lymphocyte cells fixed with 

methanol/acetic acid analysed, 94.3% were ki67 negative and 5.7% were positive. Of 186 

total PB lymphocyte cells fixed with 4% PFA, 170 (92.5%) were ki67 negative whereas 

7.5% were positive (see figure 6-2).  
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Figure 6-1: Examples of IIF images of unstimulated peripheral blood cells from normal individual samples 

(A) Ki67 positive (left) and negative (right) staining of nuclei from sample 2.  

(B) Ki67 positive (left) and negative (right) staining of nuclei from sample 5. 
Cells in both cases were prepared using standard methanol:acetic acid 
fixation used for the preparation of cell and chromosome suspensions. 
Nuclei are counterstained in DAPI (in blue). 
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Figure 6-2: Examples of IIF images of unstimulated peripheral blood cells from normal individual samples 
using different fixation methods 

(A) Ki67 positive (left) and negative (right) staining of nuclei of PB normal 
blood cells fixed with methanol/acetic acid.  

(B) Ki67 positive (left) and negative (right) staining of nuclei of PB normal 
blood cells fixed with 4% PFA. Nuclei are counterstained in DAPI (in blue). 

6-4-1-2 Ki67 staining of K562 cell line 

Two-hundred k562 cells fixed with 4% paraformaldehyde were analysed, and 100% of 

them were found to be proliferating cells (i.e. ki67 positive). 193 k562 cells fixed with 

methanol/acetone were counted, and positive staining of ki67 was observed in 70% of 

them, while 30% showed negative staining (see figures 6-3 and 6-4).  
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Figure 6-3: Examples of IIF performed on k562 cell line fixed with 4% PFA 

 (A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 in green (FITC) and also the localization 
of ki67 antigen during late G1 (type II) phase of the cell cycle. Images on 
the left show antibody staining in green (FITC). Nuclei are counterstained 
with DAPI (in blue) and these are visible in the merge images on the right.  
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Figure 6-4: Examples of IIF performed on k562 cell line fixed with methanol/acetone 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 in green (FITC) and the localization of 
ki67 during late G1 (type II) phase of the cell cycle. Images on the left show 
antibody staining in green (FITC). Nuclei are counterstained with DAPI (in 
blue) and these are visible in the merge images on the right.  

6-4-1-3 Ki67 staining of stimulated samples  

281 interphase cells were analysed for AH sample. The percentage of ki67 positive cells 

was 74%, while 26% were negative (see figure 6-5). 213 cells of AN sample were counted 

and analysed, and ki67 positive staining was observed in 81% of cells, with 19% negative 

(see figure 6-6). 233 interphase cells were counted from GO sample, of which 84% were 

ki67 positive and 16% negative (figure 6-7). Of 220 cells of JS samples, 24% were ki67 

positive and 76% were negative (see figure 6-8). Of 176 cells from the LU sample 74.5% 

were proliferating cells (i.e. ki67 positive) while 25.5% were non-proliferating (i.e. ki67 
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negative) (see figure 6-9). 113 cells of PB sample fixed with methanol/acetic acid were 

analysed, and 79.7% of the cells were proliferating cells (ki67 positive) whereas 20.3% of 

cells were non-proliferating (ki67 negative) (see figure 6-10). The total cells counted for 

the PB sample fixed with 4% paraformaldehyde was 173; the percentage of cells with 

positive ki67 staining was 77.5% while 22.5% were negative (see figure 6.11). Various 

patterns of ki67 antigen were observed in the proliferating cells of all samples, including 

type I pattern typical of G1 phase of the cell cycle, type 2 typical of late G1 and S phase of 

the cell cycle and around chromosomes in M phase of the cell cycle.  
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Figure 6-5: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (AH sample) 

A and B show positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle. (C) Shows 
positive staining of ki67 and the localization of ki67 during M phase of the 
cell cycle. Images on the left show antibody staining in green (FITC). Nuclei 
are counterstained with DAPI (in blue) and these are visible in the merge 
images on the right.  
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Figure 6-6: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (AN sample) 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 antibody in green (FITC) and the 
localization of ki67 during late G1 (type II) phase of the cell cycle.  

(C) Shows positive staining of ki67 and the localization of ki67 during M 
phase of the cell cycle. Images on the left show antibody staining in green 
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(FITC). Nuclei are counterstained with DAPI (in blue) and these are visible 
in the merge images on the right.  

 

Figure 6-7: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (GO sample) 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 antibody in green (FITC) and the 
localization of ki67 during late G1 (type II) phase of the cell cycle. Images 
on the left show antibody staining in green (FITC). Nuclei are 
counterstained with DAPI (in blue) and these are visible in the merge 
images on the right.  
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Figure 6-8: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (JS sample) 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle. 

(B) Shows positive staining of ki67 antibody in green (FITC) and the 
localization of ki67 during late G1 (type II) phase of the cell cycle. Images 
on the left show antibody staining in green (FITC). Nuclei are 
counterstained with DAPI (in blue) and these are visible in the merge 
images on the right.  
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Figure 6-9: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (LU sample) 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 antibody in green (FITC) and the 
localization of ki67 during late G1 (type II) phase of the cell cycle.  

(C) Shows positive staining of ki67 and the localization of ki67 during M 
phase of the cell cycle. Images on the left show antibody staining in green 
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(FITC). Nuclei are counterstained with DAPI (in blue) and these are visible 
in the merge images on the right.  

 

Figure 6-10: Examples of IIF performed on methanol/acetic acid fixed stimulated peripheral blood cells 
from normal individual (PB sample) 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 antibody in green (FITC) and the 
localization of ki67 during late G1 (type II) phase of the cell cycle.  
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(C) Shows positive staining of ki67 and the localization of ki67 during M 
phase of the cell cycle. Images on the left show antibody staining in green 
(FITC). Nuclei are counterstained with DAPI (in blue) and these are visible 
in the merge images on the right.  

 

Figure 6-11: Examples of IIF performed on 4% PFA fixed stimulated peripheral blood cells from normal 
individual (PB sample 

(A) Shows positive staining of ki67 antibody in green (FITC) and also the 
localization of ki67 antigen during G1 (type I) phase of cell cycle.  

(B) Shows positive staining of ki67 in green (FITC) and the localization of 
ki67 during late G1 (type II) phase of the cell cycle. Images on the left show 
antibody staining in green (FITC). Nuclei are counterstained with DAPI (in 
blue) and these are visible in the merge images on the right.  

6-4-1-4 Comparison of the evaluation of the two observers 

A summary of number of samples and the results of ki67 analysed by second observer are 

shown in table 6-2. The percentage of ki67 positive of the stimulated normal blood cells 

analysed by the first observer was 74% (AH), 81% (AN), 84% (GO), 24% (JS) and 74.5% 
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(LU), whereas the percentage of ki67 positive observed by the second observer was 86% 

(AH), 77% (AN), 88% (GO), 20% (JS) and 81% (LU) (see figure 6-12). The number of 

proliferating cells in JS stimulated sample was lower than non-proliferating cells among 

the other stimulated samples (AH, AN, GO and LU) both in first and second observation. 

The percentages of unstimulated proliferating cells in samples 2 and 5 observed by the 

first observer were 11.7% and 16.5% respectively, while 18% and 15% of the unstimulated 

cells in samples 2 and 5 were proliferating cells investigated by the second observer. A 

hundred percent of k562 cells fixed with 4% paraformaldehyde were proliferating cells, as 

assessed by both the first and second observers. 70% of k562 cells fixed with 

methanol/acetone analysed by the first observer were proliferating cells, whereas 69% of 

proliferating cells were observed by the second observer.  

Table 6-2: Proportion of ki67 positive and negative cells in unstimulated and stimulated samples analyzed 
by second observer 

Cell sample Total cell 
count 

Ki67 positive  % of Ki67 
positive  

Ki67 negative  % of Ki67 
negative  

Unstimulated cells 

 Sample 2   307 
 

56 18%  
 251 

82% 

Sample 5 389 59 15% 330 85% 

Stimulated cells 

AH 287 246 86% 41 14% 

AN 268 206 77% 62 23% 

GO 223 198 88% 25 12% 

JS 223 45 20% 178 80% 

LU 197 160 81% 37 19% 

Leukemic cells 

K562+4%PFA 203 203 100% 0 0% 

K562+Methanol/Ac
etone 

202 140 69% 62 31% 
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Figure 6-12: Graph shows the percentage of ki67 positive versus ki67 negative in stimulated normal 
peripheral blood samples, unstimulated normal peripheral blood samples and K-562 cell line 

The X axis represents the percentage of Ki-67 positive nuclei and the Ki-67 
negative nuclei evaluated by two observers. The Y axis refers to the 
percentage of cells analysed. 

6-4-2 Immuno-FISH results  

Immuno-FISH was performed on archival cells and chromosome suspensions from five 

different patient samples and three cell lines (normal and leukaemia cell lines) using 

specific probes for regions of interest and ki67 proliferation marker to determine the 

proliferation status of cells. The proliferative state of cells in the cell lines CRL-2630, 

CRL2632 and K562, and patient samples 020944, 010340, 0132108, 26, and 27 was 

analysed and evaluated by two independent observers. Table 6-3 summarizes the 

percentage of major abnormalities detected in five patient samples and three cell lines 

and the percentage of ki67 positive and ki67 negative cells in both patient samples and 

cell lines analysed by first observers. 

Ki67+ Ki67 - Ki67+ Ki67-

First observer Second observer

AH 74 26 86 14

AN 81 19 77 23

GO 84 16 88 12

JS 24 76 18 83

LU 74.5 25.5 81 19

2 11.7 88.3 18 82

5 16.5 83.5 15 85

K562 4% PFA 100 0 100 0

K562 M/AC 70 30 69 31
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6-4-2-1 Immuno-FISH in lymphoma and leukaemia cell lines 

Approximately 200 images were taken for each cell line, two copies of chromosome 8 

were detected and cells were 100% proliferating in both CRL-2632 (Pfeiffer) and CRL-2630 

(Farage) cell lines (see figures 6-13 and 6-14). In the K562 cell line, Nup98 probe was used 

to detect the presence of chromosome 11; all cells were found to have two copies of 

Nup98 gene, and 94.25% of cells were proliferating cells while 5.75% of the cells were 

non-proliferating cells (see figure 6-15). Moreover, two copies of 7q36.1 and/or 4q35.1 

regions were observed in CRL-2630 cell line and the proportion of proliferating cells were 

93% and 94.6% respectively (see figure 6-16). Different patterns of ki67 staining were 

observed in the cell lines including the typical patterns associated with G1, G2, S and M 

phase of the cell cycle. 

6-4-2-2 Proliferation status of patient samples  

Different cytogenetic abnormalities were found in the five different patient samples: 

nullisomy 7q36.1, monosomy 4q35.1, trisomy 8 and tetrasomy 8. 210 interphase cells 

were analysed in patient no. L020944; tetrasomy 8 was observed in 79% of the cells. Of 

these, 65.57% were non-proliferating while ki67 staining was positive in 34.43% of cells 

(see figure 6-17). In patient no. H010340, trisomy 8 was identified in 69.5% of the 200 

interphase cells scored, 70% of which were positive for the ki67 proliferation marker, 

while 30% were negative for staining with ki67 antibody (see figure 6-18). 166 cells were 

also analysed for patient no. L0132108, and trisomy 8 was found in 35% of the cells, 

79.3% of which were ki67 positive and the remaining 20.7% of which were negative (see 

figure 6-19). The proliferation status of patient no. 26 cells carrying nullisomy 7q36.1 and 

patient no. 27 harbouring monosomy 4q35.1 was determined; in the former, nullisomy 

7q36.1 region was observed in 21% of cells without inv(16) and in 79% of cells with 

inv(16). The majority of cells (88%) including both clones was ki67 negative with only 12% 

of cells found to have positive staining of ki67 proliferation marker (see figure 6-20). 

Additionally, monosomy 4q35.1 region was detected in 89% of cells in patient 27. 7% of 

cells without inv(16) were found to have monosomy 4q35.1, whereas 93% of cells 

harbouring the inv(16) rearrangement were with monosomy of the 4q35.1 region. The 

percentage of ki67 negative cells with and without inv(16) was 87%, while 13% of cells 

were found to be negative for ki67 antibody (see figure 6-21).  



 
 

 

Table 6-3: Type and percentage of major abnormalities detecting in five patient samples and three cell lines and the percentage of ki67 positive and ki67 negative analysed by first 
observer 

Samples Chromosome 
region 

%Nullisomy %Monosomy  % Disomy 
 

% Trisomy  % Tetrasomy  % ki67 + in 
abnormal cells  

% ki67 - in abnormal 
cells 

CRL-2630 Chromosome 
8 centromere  

- - 100 - - 100 0 

CRL-2630 7q36.1 - - 100 - - 93 7 

CRL-2630 4q35.1 - - 100 - - 94.6 5.4 

CRL-2632 Chromosome 
8 centromere 

- - 100 - - 100 0 

K562 11p15 - - 100 - - 94.5 5.5 

020944 Chromosome 
8 centromere 

- - 9 
 

- 79 34. 3 65. 7 

010340 Chromosome 
8 centromere 

- - 18.5 69.5 - 70 30 

0132108 Chromosome 
8 centromere 

- - 62 35 - 79.3 20.07 

26 7q36.1 94.5 - 4.5 - - 12 88 

27 4q35.1 - 89 6.5 - - 13 87 
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Figure 6-13: Examples of Immuno-FISH performed on cells from Pfeiffer cell line 

(A) Shows two hybridisation signals of centromeric 8 in red (Cy3), ki67 
positive staining for the both nuclei and the localization of ki67 antigen 
during late G1 (type II) phase of the cell cycle.  

(B) Shows two hybridisation signals of centromeric in red (Cy3), ki67 
positive staining for the both nuclei and the localization of ki67 antigen 
during G1 (type I) phase of the cell cycle. Nuclei are counterstained with 
DAPI (in blue). 
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Figure 6-14: Example of Immuno-FISH performed on cells from CRL-2630 cell line 

(A) Shows two hybridisation signals of centomoeric 8 in red (Cy3).  

(B) Shows the ki67 positive staining visible in green (FITC) and the 
localization of ki67 antibody during late G1 (type II) phase of the cell cycle. 

(C) Shows merge images. Nuclei are counterstained with DAPI (in blue). 

 

Figure 6-15: Example of Immuno-FISH performed on cells from k562 cell line 

(A) Shows nucleus with two hybridisation signals of Nup98 probe in red 
(Cy3).  

(B) pki67 positive staining visible in green (FITC).  

(C) Shows merge image as it was taken under the fluorescence microscope. 
Nucleus is counterstained with DAPI (in blue). 
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Figure 6-16: Examples of Immuno-FISH performed on cells from CRL-2630 cell line 

(A) chromosome 16 hybridisation signals shown in red (Cy3), RP11-504N9 
probe signals at 7q36.1 shown in pink (Cy5) and the localization of ki67 
antigen in both nuclei during late G1 (type II) phase of the cell cycle (B and 
C) metaphase chromosome and interphase cell show chromosome 16 
hybridisation signals in red (Cy3), RP11-184A23 probe signals at 4q35.1 
shown in pink (Cy5) and the localization of ki67 antigen in both during late 
G1 (type II) and M phase of the cell cycle. The blue is the DAPI staining. 
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Figure 6-17: Examples of Immuno-FISH performed on cells from 020944 patient 

(A) Anti-ki67 is shown in green (FITC), whereas the red signals correspond 
to the tetrasomy 8.  

(B) The two FISH signals in the proliferating cell (ki67 positive) 
corresponding to the normal chromosome 8. Anti-Ki67 is shown in green 
(FITC).  

(C) Shows non-proliferating nucleus with three FISH signals that 
corresponding to the trisomy 8. Anti-ki67 is shown in green (FITC). Nuclei 
are counterstained in DAPI (blue colour).  
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Figure 6-18: Examples of Immuno-FISH performed on cells from 010340 patient 

(A) The hybridisation signals are shown in red (Cy3) corresponding to the 
normal chromosome 8 in proliferating cell, anti-ki67 is show in green 
(FITC). 

(B) Shows two nuclei with trisomy 8, one is ki67 positive whereas, the 
another one is ki67 negative. Nuclei are counterstained in DAPI (blue 
colour).  
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Figure 6-19: Examples of Immuno-FISH performed on cells from 032108 patient 

(A) Hybridisation signals shown in red (Cy3) corresponding to normal 
chromosome 8 in proliferating nucleus.  

(B) Trisomy 8 shown in the proliferating nucleus, the red (Cy3) signal 
corresponding to the centromeric 8 probe. Anti-pki67 is shown in green 
(FITC).  

(C) Metaphase shows normal chromosome 8 with two red signals. The 
metaphase is ki67 positive. Nuclei are counterstained in DAPI (blue colour).  
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Figure 6-20: Examples of Immuno-FISH performed on cells from patient no. 26 

(A) Shows non-proliferating nucleus with loss of 7q36.1 region, 
hybridisation signals shown in red (Cy3) and green (FITC) corresponding to 
normal chromosome 16.  

(B) Proliferating nucleus with loss of 7q36.1 region, the red (Cy3) signal 
corresponding to the normal chromosome 16. Anti-pki67 is shown in green 
(FITC).  

(C) non-proliferating nucleus with loss of 7q36.1 region, two fusion signals 
shown in red (Cy3) and green (FITC) corresponding to inversion 
chromosome 16 rearrangement.  

(D) Shows proliferating nucleus with loss of 7q36.1, three red (Cy3) FISH 
signals that corresponding to the inv(16) rearrangement. Anti-ki67 is 
shown in green (FITC). Nuclei are counterstained in DAPI (blue colour). 
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Figure 6-21: Examples of Immuno-FISH performed on cells from patient no. 27 

(A) Shows non-proliferating nucleus with loss of one copy of 4q35.1 region 
in pink (Cy5) colour, hybridisation signals shown in red (Cy3) and green 
(FITC) corresponding to normal chromosome 16.  

(B) Shows proliferating nucleus with two copies of 4q35.1 region in pink 
(Cy5) colour, the two red (Cy3) signals corresponding to the normal 
chromosome 16. Anti-pki67 is shown in green (FITC).  

(C) Shows non-proliferating nucleus with loss of one copy of 4q35.1 region 
in pink (Cy5) colour, fusion signals shown in red (Cy3) and green (FITC) 
corresponding to inv(16) rearrangement.  
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(D) Shows proliferating nucleus with loss of one copy of 4q35.1 region in 
pink (Cy5) colour, three red (Cy3) FISH signals that corresponding to the 
inv(16) rearrangement. Anti-ki67 is shown in green (FITC).  

(E) Metaphase shows normal chromosome 16 with two red (Cy3) signals 
and two copies of 4q35.1 region in pink (Cy5) colour. The metaphase is 
ki67 positive.  

(F) non-proliferating nucleus with two copies of 4q35.1 region shown in 
pink (Cy5) and normal chromosome 16 shown in red (Cy3) and green (FITC) 
colour. Nuclei are counterstained in DAPI (blue colour). 

6-4-2-3 Comparison of the evaluation of two observers  

A summary of the number of samples and the results of ki67 analysed by the second 

observer are shown in table 6-4. The percentage of ki67 positive staining of cell lines 

analysed by the first observer was 100% (CRL-2630- chr8), 93% (CRL-2630- 7q36.1), 94.6% 

(CRL-2630- 4q35.1), 100% (CRL-2632- chr 8) and 94.5% (k562- 11p15), whereas the 

percentage of ki67 positive observed by the second observer was 99% (CRL-2630-), 91.5% 

(CRL-2630- 7q36.1), 94.5% (CRL-2630- 4q35.1), 100% (CRL-2632- chr 8) and 94.2% (k562- 

11p15) (see figure 6-22). The percentage of proliferating cells was high in the three cell 

line. The results of proliferating cells analysed by two observers were very similar. The 

percentages of ki67 positive staining of patient cells carrying abnormalities observed by 

first observer was 34.3% (L020944), 70% (H010340), 79.3% (L0132108), 12% (26) and 13% 

(27), while the percentage of ki67 negative staining was 65.7%, 30%, 20.7% 88% and 87% 

respectively. However, when considering the cells carrying chromosomal abnormalities, 

the numbers of proliferating and non-proliferating cells in patient samples observed by 

second observer were very similar. The counts of ki67 negative cells were high in three 

patient samples, whereas in two patient samples the percentage of cells with ki67 

negative staining was low (see figure 6-23).  



 
 

 

Table 6-4: Type and percentage of major abnormalities detected in five patient samples and three cell lines and the percentage of ki67 positive and ki67 negative 
analysed by the second observer 

Samples 
 

Chromosome 
region 

%Nullisomy %Monosomy  % Disomy 
 

% Trisomy  % Tetrasomy  % ki67 + in 
abnormal cells  

%ki67 – in 
abnormal cells  

CRL-2630 Chromosome 
8 centromere  

- - 100 - - 99 1 

CRL-2630 7q36.1 - - 100 - - 91.5 8.5 

CRL-2630 4q35.1 - - 100 - - 94.5 5.5 

CRL-2632 Chromosome 
8 centromere 

- - 100 - - 100 0 

K562 11p15 - - 100 - - 94.2 5. 8 

L020944 Chromosome 
8 centromere 

- - 5 
 

- 79 34.5 65.5 

H010340 Chromosome 
8 centromere 

- - 15.7 69.5 - 70 30 

L0132108 Chromosome 
8 centromere 

- - 59 35.5 - 79.5 20.5 

26 7q36.1 91.5 - 4.7 - - 15 85 

27 4q35.1 - 88 7.5 - - 13 87 
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Figure 6-222: Graph showing the percentage of ki67 positive versus ki67 negative different cell lines 

The X axis represents the percentage of Ki-67 positive nuclei and the Ki-67 
negative nuclei evaluated by two observers. The Y axis refers to the 
percentage of cells analysed. 

Ki67+ Ki67 - Ki67 + Ki67 -

First observer Second observer

CRL-2630 chr 8 100 0 99 1

CRL-2630  7q36.1 93 7 91.5 8.5

CRL-2630 4q35.1 94.6 5.4 94.5 5.5

CRL-2632 chr 8 100 0 100 0

K562 11p15 94.5 5.5 94.2 5.8
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Figure 6-23: Graph showing the percentage of ki67 positive versus ki67 negative in patient samples 

The X axis represents the percentage of Ki-67 positive nuclei and the Ki-67 
negative nuclei evaluated by two observers. The Y axis refers to the 
percentage of cells analysed. 

6-5 Discussion  

In the present study, IIF was performed on normal peripheral blood cells from eight 

different healthy individuals and k562 cell line to assess the proliferation state of ki-67 

protein in stimulated and unstimulated normal blood cells and leukemic cell line using 

anti-ki67 antibody. Different fixation methods were used in these experiments to assess 

efficiency of antibody staining. Our ki67 staining results show a high percentage of ki67 

positive staining (ranged 74%-84%) in five out of six stimulated samples when 4 fixed only 

with methanol/acetic acid (AH, AN, GO,LU) and one sample fixed with methanol/acetic 

acid and 4% PFA (PB) while a low percentage of ki67 positive was observed in the three 

unstimulated samples (sample 2 and sample 5 fixed with only methanol/acetic acid and 

sample PB fixed with both methanol/acetic acid and 4% PFA). Because the fixation 

methods were the same in the two groups of samples, the different proportion of Ki67 

Ki67+ Ki67- Ki67+ Ki67-

First observer Second observer

20944 34.3 65.7 34.5 65.5

10340 70 30 70 30

132108 79.3 20.7 79.5 20.5

26 12 88 15 85

27 13 87 13 87
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positive cells can be attributed to the fact that normal peripheral blood cells are non-

proliferating, but they can be stimulated using phytohaemagglutinin in culture. Our 

results show high percentage of ki67 positive cells in four out of five stimulated samples, 

whereas one stimulated peripheral blood sample shows a low percentage of ki67 positive 

cells (24%). A high percentage of proliferating cells was detected in k562 cells fixed with 

methanol/acetone and 4% PFA (70%-100% respectively) our results of ki67 staining of 

normal peripheral blood cells and k562 cell line are in agreement with Gereds et al. 

(1983). Despite most of the k562 cells fixed with both fixation methods being ki67 

positive, there was variation in the percentage of ki67 positive staining of cells (70% of 

cell fixed with methanol/acetone and 100% of cells fixed with 4% PFA). Our results 

showed that there was little difference between the percentages of ki67 positive cells in 

PB normal blood cells fixed with both methanol and 4% PFA fixation methods. Conversely, 

in k562 cells, there was a difference between the percentages of ki67 positive cells fixed 

in methanol compared to the ones fixed with 4% PFA. It is known that PFA acts as cross-

linker, therefore the biological structures within the cells remain better preserved when 

other fixation methods are used.  

Immuno-FISH was performed on five different patient samples using specific probes for 

the regions of interest to detect the chromosomal abnormalities, and ki67 antibody was 

used to assess the proliferation state of the cells. It was found that the proliferation state 

of the cells carrying chromosomal abnormalities in patients 010340 and 0132108 was 

higher than that of the cells carrying abnormalities in patient 020944, 26 and 27. In 

patients no 010340 and 0132108 the percentage of proliferating of cells carrying trisomy 

8 was 70% and 79.3% respectively, while 30% and 20.7% of the same cells carrying 

trisomy 8 were non-proliferating cells. In patients no. 020944, 26 and 27 the percentage 

of non-proliferating cells carrying teatrosomy 8, loss of 7q36.1 region and loss of 4q35.1 

region (65.57%, 88% and 87%) respectively was higher than the percentage of the 

proliferating cells (34.43%, 12% and 13%). Our data showed that there is a variation in the 

proliferation state of cells that carrying abnormalities. In other words, most of the cells 

carrying abnormalities were proliferating in two cases (010340 and 0132108) and non-

proliferating in three cases (020944, 26 and 27).  

The proportion of ki67 positive cells is particularly low for patients 26 and 27. As 

suggested by Ballabio et al. (2011), this might be the reason why the additional 
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abnormalities detected by array methods were not seen cytogenetically. As Ballabio 

demonstrated, in some cases the majority (94–100%) of nuclei carrying the abnormality 

were negative for the proliferation marker in all patients reported in their study. It should 

be noted that our selected cases were karyotypicllay abnormal, whereas all samples used 

by Ballabio et al. (2011) study were with normal or incomplete karyotype. Some of our 

data are similar to those presented by Nowicki et al. (2006), who showed that a high 

percentage of proliferating cells were identified in leukaemia blasts at day 0 (baseline) of 

diagnosis.  

According to our data, it can be observed that chromosomal abnormalities can be found 

in both proliferating and non-proliferating cells. By way of explanation, our data do not 

fully support the hypothesis that the cells carrying abnormalities are largely confined to 

non-proliferating cells. However, the presence of a population of leukaemic blasts in non-

proliferative state might be the reason why in a proportion of cases abnormalities are not 

detected by conventional chromosome banding analysis.  

The majority of cells of human cell lines (k562, CRL-2630 and CRL-2632) used in this study 

were found to be stained with ki67 antibody, this ki67 results coincided well with data on 

reactivity of ki67 with various human cell lines (Gerdes et al., 1983).  

Ki67 is a nuclear protein that is expressed in the proliferating cells during G1, S, G2 and M 

phases of the cell cycle. The ki67 antigen was detected in nuclear foci in early G1 referred 

to it as pattern type I whereas in late G1, S and G2 the ki67 antigen was located in the 

nucleolus showing different patterns of ki67 staining referred to it as pattern type II. The 

ki67 antigen was presented surrounding metaphase chromosomes during mitosis while it 

was not detected in G0 phase of cell cycle as the cells exist in the quiescent state (Bridger 

et al., 1998; Kill, 1996). Our data show different patterns of ki67 staining in stimulated 

normal peripheral blood cells, patient samples and human cancer cell lines. The patterns 

observed were similar to those previously described by other researchers (Bridger et al., 

1998; Kill, 1996), and indicative of the presence of cells in all phases of the cell cycle. It 

was interesting to note that the proliferation rate in the human cancer cell lines was 

extremely high even compared to stimulated peripheral blood of healthy individuals, 

reaching 100% positive for ki67 staining in the K562 cell line in optimal fixation conditions.  
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CHAPTER 7:  GENERAL DISCUSSION  

7-1 A novel three-colour fluorescence in situ hybridization approach for the 

detection of t(7;12) 

To validate a new three colour probe which enables the detection of the t(7;12)(q36;p13) 

rearrangement, FISH was performed on bone marrow form archival methanol/acetic acid 

fixed cell suspensions of seven patient samples. The results indicated that the new three-

colour FISH approach used in this study has enabled the detection of a cryptic t(7;12)  

translocation as a part of a complex rearrangements  in one patient that had previously 

been described as having t(7;16) and ETV6-HLXB9 fusion transcript at the molecular level 

(Wildenhain et al., 2010). To date, only two cases of a cryptic t(7;12) translocation  have 

been reported in the literature (Park et al., 2009), neither of which involved chromosome 

16 translocation. The possible mechanism for the formation of the t(7;12;16) complex 

rearrangement involves an insertion of chromosome 12 material into chromosome 7, a 

translocation between chromosome 7 and chromosome 16 and a subsequent inversion of 

chromosome 16. Further investigation of the mechanism of the formation of the 

t(7;12;16) complex rearrangement could be carried out in future studies using telomeric 

probe of chromosome 7 to verify whether this complex rearrangement involved a 

translocation between chromosome 7 and 12, or whether it is an inversion of 

chromosome 12 material into chromosome 7. Furthermore, the new three-colour FISH 

approach also enabled us to identify the t(7;12) in a new seven year-old patient with 

AML. This patient is the first case of childhood leukaemia with an onset after infancy 

positive for t(7;12). The results suggest that the use of the sensitive new three-colour 

probe approach might help to significantly improve the detection of t(7;12) 

rearrangement in AML cases. One-third of infant leukaemia cases were found to have 

t(7;12) rearrangement (Tosi et al., 2003; Von Bergh et al., 2006). The discovery of such a 

cryptic t(7;12) and the t(7;12) rearrangement in a seven year-old AML patient indicates 

that the incidence of t(7;12) rearrangement in AML might be higher than previously 

reported. 
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7-2 Three-colour probe sets for the detection of chromosome 7 

abnormalities in myeloid malignancies 

In this study, three-colour probe sets for del(7q22-q31) and del(7q22-q36) were validated 

on Farage (CRL-2630), GDM1, GF-D8 and K562 cell lines. The investigation of chromosome 

7 rearrangements in GDM1 cell line shows normal localization of 7(q22-q31) and 7(q22-

q36) regions. The GDM1 cell line known to have a t(6;7) (q23; q36) translocation with 

breakpoint proximal to HLXB9 gene at 7q36.3 (Nagel et al., 2005). Furthermore, the FISH 

results of GF-D8 cell line show trisomy 7, deletion of 7(q22-q31) with breakpoints within 

q22 and distal to q31 regions and an inv(7) as previously reported by Tosi et al. (1999a, 

1999b).  

However, the inv(7) breakpoints (distal to q22 and distal to q31) of GF-D8 observed in this 

study were different from Tosi et al. (1999a), who reported the proximal breakpoint of 

the inv(7) between 7q31.1 and 7q31.3 and the distal breakpoint between 7q35-q36 and 

7q36. Nevertheless, the observation of the proximal breakpoint of inv(7) (distal to 7q22) 

is very much in agreement with Johnson et al. (1996), who found a constitutional 

inversion of 7q in two patients one with MDS and one had BM hypoplasia, the proximal 

breakpoint was mapped at 7q22.1. Moreover, the inv(7) breakpoints in GF-D8 cell lines 

were further confirmed by 7(q22-q36) probe, which shows normal position of 7q22 and 

7q36. The 7q22-q36 probe also confirmed the deletion of 7q22-7q33 region and 

translocation or insertion of chromosome 7 q36 material onto the short arm of 

chromosome 12, as previously described by Tosi et al. (1999a). The 7(q22-q31) deletion 

was previously reported in MDS and AML cases (Dohner et al., 1998; Fischer et al., 1997). 

These studies proposed that this region might contain specific genes such as TSG that 

might contribute to MDS or AML development.  

The structure of chromosome 7 in k562 cell line was previously investigated using M-FISH, 

CGH and Locus-Specific FISH (Gribble et al., 2000; Naumann et al., 2001); the 

rearrangements of chromosome 7 in both studies were described as tetrasomy 7, del 7q, 

inv(7)(p11-q). Interestingly, the three colour probe enabled the detection of a new 

rearrangement in k562 cell line, described as a duplication of 7q36 region followed by 

either an intrachromosomal insertion of long arm material into short arm of chromosome 

7 or an intrachromosomal translocation between two ends of chromosome 7. This finding 
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was further confirmed using locus-specific probe for 7q36.1 in combination with WCP 7 

and partial chromosome 7 p and 7q paint. The results showed that no pericentric 

inversion 7 was detected in this cell line, as previously described. It has been reported 

that the cytogenetic discrimination of the intrachromosomal insertion and peicentric 

inversion abnormalities can be difficult (Madan, 1995). Consequently, these results 

suggest that the intrachromosomal 7 insertion that identified in this cell line might be 

misdiagnosed as a pericentric inversion 7.  

The intrachromosomal insertion identified in k562 cell line is uncommon form of 

chromosomal rearrangement; to date, there are only 41 cases reported in the literature, 

none of which had myeloid malignancy (Ardalan et al., 2005; Farrell and Chow, 1992; Kim 

et al., 2011; Lybaek et al., 2009; Madan and Menko, 1992). The other observation is the 

detection of a duplication of 7q36 region, which is known as a common deleted region in 

myeloid malignancy.  

7-3 Study of copy number changes in inv(16) leukaemia 

To identify CNAs and CN-LOH regions, Illumina beadarray approach was performed on 22 

AML patient samples with inv(16)(p13;q22) and t(8;21)(q22;q22) rearrangements. The 

results showed a low number of copy number losses and copy number gains in 17 out of 

22 cases (77.27%), with an average of 1.86 CNAs per case as well as copy neutral LOH 

with an average of 6.7% per patient. The results show that low recurrent CNAs regions 

were detected, including losses of 7q36.1 and 9q13-q33.1 and CN- LOH of 2p16.1, 2p21, 

2q13, 6p12.3, 7q11.21, 7q11.22, 8q21.3, 8q23.3, 9q13, 12q24.11-q24.13 and 20q11.21. 

This results concur with previous literature (Akagi et al., 2009; Barresi et al., 2010; Cosat 

et al., 2013; Kuhn et al., 2012; Redtke et al., 2009), which identified a low number of CNAs 

and low recurrent regions, including 7q36.1 and 9q13-q33.1 in AML cases.  

Furthermore, the array results were compared with chromosome banding analysis of four 

cases. The results show that three deleted regions in 7q36.1, 4q35.1 and 16p13.11 

identified by array in three cases were not observed by chromosome banding. In addition 

to that, a large amplified region >18 Mb was detected by array in one case was missed by 

G-banding. Therefore, interphase FISH was carried out to validate the CNAs in four cases, 

showing a 7q36.1 deletion, 4q35.1 deletion, 16.13.11 deletion and 8q24.21-q24.3 gain. 

The FISH results confirmed homozygous copy loss of 7q36.1 in 92% of case 26 cells, a 
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mosaic loss of 4q35.1 region in 64.9% of case 27 nuclei and a copy number loss of 

16p13.11 region in 12.5% of case 29 cells. However, in case 30 a large gain of 8q24.21-

q24.3 was unconfirmed by FISH, as the results showed no significant difference between 

the normal controls and the patient’s cells.  

Ballabio et al. (2011) demonstrated that large CNAs identified in normal karyotype AML 

cases by aCGH analysis were confirmed by FISH, and found in interphase but not in 

metaphase cells. Their hypothesis was that the abnormalities were confined to the non-

dividing cells and therefore could not be observed by chromosome banding analysis or 

metaphase FISH. They demonstrated this by conducting immuno-FISH experiments using 

ki-67, a proliferation marker, and showing that the CNAs were detected only in ki-67 

positive cells in the majority of cases. Based on this evidence, further analysis of FISH data 

were carried out to investigate whether CNAs are present in the same clone harbouring 

inv(16) or/and in the cells without inv(16), and also to verify whether the CNAs were 

present in non-dividing population of cells. The results showed that the CNAs were found 

both in cells without inv(16) and cells harbouring the inv(16) rearrangement in all cases 

except case no. 30.  

In addition, a proportion of cells without inv(16) and with inv(16) were found to have 

normal number of copies of 7q36.1 (no. 26), 4q35.1 (no. 27) and 16p13.11 (no. 29). In 

cases no. 26, 27 and 29 the CNAs detected in this study were invisible by G-banding 

because they were too small to be seen by chromosome banding methods. In two cases 

the CNAs occurred only in proportion of cells as shown in case 27 (64.9%) and case 29 

(12.5%). This variance of the copy number loss of the gene detected in patient’s cells can 

be explained by somatic mosaicism of the patients in which one copy of the gene found in 

only 64.9% and 12.5% of the cells. It has been shown that the CNAs have an impact on the 

clinical outcome of patients. Therefore, it would be of particular interest to understand 

whether the presence of CNAs together with the inv(16) has an impact on the prognosis 

of this specific subset of patients, who are generally characterized by a relatively good 

clinical outcome, in future studies.  

7-4 Proliferation studies in leukaemia 

Indirect immunofluorescence was used to determine the ki67 staining patterns in eight 

stimulated and unstimulated peripheral blood samples and k562 cell line. Different 
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fixation methods were used in these experiments to assess the efficiency of antibody 

staining. The results showed a high percentage of ki67 positive staining (74-84%) in five 

out of six stimulated samples, when 4 fixed only with methanol/acetic acid and one 

sample fixed with methanol/acetic acid and 4% PFA while low percentage of ki67 positive 

was observed in three unstimulated samples when two samples fixed with only 

methanol/acetic acid and sample one sample fixed with both methanol/acetic acid and 

4% PFA). Because the fixation methods were the same in the two groups of samples, the 

different proportion of Ki67 positive cells can be attributed to the fact that normal 

peripheral blood cells are non-proliferating, but they can be stimulated using 

phytohaemagglutinin in culture. Moreover, a high percentage of proliferating cells was 

detected in k562 cells fixed with methanol/acetone and 4% PFA (70-100% respectively); 

our results of ki67 staining of normal peripheral blood cells and k562 cell line are in 

agreement with Gereds et al. (1983), who reported that more than 80% of PHA-

stimulated normal blood cells reacted with ki67 antibody, while unstimulated normal 

blood lymphocytes and monocytes did not react with ki67 antibody, and ki67 was also 

found to react with a majority of cells in cancer cell lines.  

Immuno-FISH was performed on five different patient samples and leukaemia cell lines 

using specific probes for the regions of interest to detect the chromosomal abnormalities 

and ki67 antibody was used to assess the proliferation state of the cells. The results 

showed that the proliferation state of the cells carrying chromosomal abnormalities in 

patients 010340 and 0132108 was higher than the proliferation state of the cells carrying 

abnormalities in patient 020944, 26 and 27. The results showed that there is a variation in 

the proliferation state of cells that carrying abnormalities. In other words, most of the 

cells carrying abnormalities were proliferating in two cases (010340 and 0132108) and 

non-proliferating in three cases (020944, 26 and 27). The proportion of ki67 positive cells 

is particularly low for patients 26 and 27. As suggested by Ballabio et al. (2011), this might 

be the reason why the additional abnormalities detected by array methods were not seen 

cytogenetically. As Ballabio et al. (2011) demonstrated, in some cases the majority (94–

100%) of nuclei carrying the abnormality were negative for the proliferation marker in all 

patients reported in their study. Moreover, some of our data are similar to the findings 

presented by Nowicki et al. (2006), who showed that a high percentage of proliferating 

cells were identified in leukaemia blasts at day 0 (baseline) of diagnosis.  
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According to the results, our observation is that chromosomal abnormalities can be found 

in both proliferating and non-proliferating cells. Consequently, this study does not fully 

support the hypothesis that the cells carrying abnormalities are largely confined to non-

proliferating cells. However, the presence of a population of leukaemic blasts in non-

proliferative state might be the reason why in a proportion of cases abnormalities are not 

detected by conventional chromosome banding analysis. The majority of cells of human 

cell lines (k562, CRL-2630 and CRL-2632) used in this study were found to be stained with 

ki67 antibody, which coincides with data on the reactivity of ki67 with various human cell 

lines (Gerdes et al., 1983). The results have shown that different patterns of ki67 staining 

were observed in stimulated normal peripheral blood cells, patient samples and human 

cancer cell lines. The patterns observed were similar to those previously described by 

others (Bridger et al., 1998; Kill, 1996). It was interesting to note that the proliferation 

rate in the human cancer cell lines was extremely high even compared to stimulated 

peripheral blood of healthy individuals, reaching 100% of cells positive for ki67 staining in 

the K562 cell line in optimal fixation conditions.  

7-5 Conclusion and future studies  

The work carried out during my PhD focused on the study of leukaemia cases 

characterized by the presence of chromosomal translocations. I have analysed a number 

of samples mainly using molecular cytogenetics methods and immunofluorescence. In 

many cases, this study uncovered the presence of cryptic abnormalities in the form of 

three way translocation (chapter 3), intrachromosomal rearrangement (chapter 4), DNA 

copy number changes either of submicroscopic entity or confined to the non-dividing cell 

population (chapter 5 and 6).  Altogether this work adds new information to the 

understanding of the growing complexity at the basis of cancer genetics. Some of this 

work has already been published during the course of my studies (chapter 3; Naiel et al., 

2013), whereas some other aspects of my project are currently being organized for 

further manuscripts (chapters 4 and 5), that are planned to be submitted in the short 

term. My work has shown that a relatively simple and straightforward technique such as 

fluorescence in situ hybridization, has been able to unravel hidden chromosomal 

abnormalities in leukaemia that conventional methods of chromosome banding did not 

reveal. The same FISH technique has been able to confirm abnormalities detected by 

more modern molecular techniques involving arrays and further refine the proportion of 
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cells affected. Overall, my work has paved the basis for further functional studies aimed 

at understanding the biological meaning of these changes. The findings here reported 

concern loss and gain of genomic material that could harbour tumour suppressor genes 

or proto-oncogenes. Translocations might lead to the formation of fusion genes. More 

complex rearrangements might simply indicate clonal evolution and might be associated 

with worsening of the disease. Confirmation of the above will be topic for future studies. 
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Appendix 1: Cell counts of three observers of patient no. 26 and normal 
controls 

 

AB, VA and AI are the initials of the three observers, 0, 1, 2, 3 and 4: Percentages of cells 
with 0, 1, 2, 3 and 4 signals respectively 

 

AB, VA and AI are the initials of the three observers, NCs: normal controls, 0, 1, 2, 3 and 4: 
Percentages of cells with 0, 1, 2, 3 and 4 signals respectively 

No of 

hybridisation 

Signals 

AB-patient 

26 

VA-patient 26 AI--atient 26 Mean from  

Pt 26 

0 90 % 90 % 96.5 % 92.17 

1 7 % 7 % 3 % 5.66 

2 3 % 3 % 0.5 % 2.17 

3 0 % 0 % 0 % 0 

4 0 % 0 % 0% 0 

No of hybridisation 

Signals 

AB-NC VA-NC AI-NC Mean from NCs 

0 2.5 % 3.33 % 3.17 % 3 

1 11.5 % 12 % 12.83 % 12.11 

2 83 % 81 % 80.66 % 81.55 

3 2 % 2.33 % 3.17 % 2.5 

4 1 % 1.33 % 0.17 % 0.84 
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Appendix 2: Cell counts of three observers of patient no. 27 and normal 
controls 

 

AB, VA and AI are the initials of the three observers, 0, 1, 2, 3 and 4: Percentages of cells 
with 0, 1, 2, 3 and 4 signals respectively 

 

 

AB, VA and AI are the initials of the three observers, NCs: normal controls, 0, 1, 2, 3 and 4: 
Percentages of cells with 0, 1, 2, 3 and 4 signals respectively 

No of hybridisation 

Signals 

AB-patient 27 VA-patient 27 AI-patient 27 

0 10.15 % 8.8 % 8.5 % 

1 67.2 % 64 % 63.5 % 

2 22.65 % 26.45 % 28 % 

3 0 % 0.75 % 0 % 

4 0 % 0 % 0% 

No of hybridisation 

Signals 

AB-NC VA-NC AI-NC Mean of NCs 

0 1.84% 2 % 3.2 % 2.4 % 

1 8 % 8.34 % 8.5 % 8.3 % 

2 80.5 % 79.5 % 81.9 % 80.66 % 

3 8.66 % 8.83 % 5.9 % 7.64 % 

4 1 % 1.33 % 0.5 % 1 % 
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Appendix 3: Cell counts of three observers of patient no. 30 and normal 
controls 

 

AB, VA and AI are the initials of the three observers, 0, 1, 2, 3 and 4: Percentages of cells 
with 0, 1, 2, 3 and 4 signals respectively 

 
 

AB, VA and AI are the initials of the three observers, NCs: normal controls, 0, 1, 2, 3 and 4: 
Percentages of cells with 0, 1, 2, 3 and 4 signals respectively 

 

No of hybridisation 

Signals 

AB-patient 30 VA-patient 30 AI-patient 30 

0 2.5 % 2 % 1.5 % 

1 3.5% 4 % 2.5 % 

2 86.5 % 87.5 % 82.5 % 

3 7.5 % 6.5 % 13.5 % 

4 0 % 0 % 0% 

No of hybridisation 

Signals 

AB-NC VA-NC AI-NC Mean of NCs 

0 1 % 1.16 % 1.83 % 2.4 % 

1 6.36 % 6 % 6.5 % 8.3 % 

2 89 % 88.33 % 82.5 % 80.66 % 

3 3.3 % 3.85 % 8.83 % 7.64 % 

4 0.34 % 0.66 % 0.34 % 1 % 
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