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Abstract The fundamental physics of non-classical thermal characteristics in micro-channel gas flows is 

investigated on the basis of non-Fourier law embedded in moment equations derived from the kinetic 

Boltzmann equation. First, the effects of the force-stress coupling term on thermal behavior are examined in 

both Navier non-Fourier and non-Navier non-Fourier laws. It is shown that the ultimate source behind the 

non-monotonic temperature distribution is the force-stress coupling term in the constitutive equation of heat 

flux, irrespective of the constitutive equations of viscous stress, classical or non-classical. Second, the 

thermal characteristics such as the temperature and heat flux distributions for various Knudsen numbers are 

investigated in order to understand the complex interaction between the force and the rarefaction effects. It is 

shown that the central temperature reaches minimum in whole flow field after a critical Knudsen number in 

case of non-Navier non-Fourier law. Lastly, it is demonstrated that the force-stress coupling term in the non-

Fourier law is solely responsible for the so-called Knudsen minimum of mass flow rate in the force-driven 

compressible Poiseuille gas flow, which is against intuition obtained from classical theory and indicates a 

dominant role of non-classical thermal physics in gas flow far from thermal nonequilibrium. 
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1. Introduction 
 

 The study of flow and thermal charac-

teristics of gases associated with micro- and 

nano-devices remains as an important 

scientific topic. Previous studies (Bhattacharya 

and Lie, 1989; Tij and Santos, 1994; Mansour 

et al., 1997; Uribe and Garcia, 1999; Zheng et 

al., 2002; Xu, 2003; Karniadakis et al., 2005) 

had revealed that the fundamental physics in 

micro- and nano-scale gases is significantly 

different from the physics valid in 

conventional macro-scale flows. For instance, 

it was shown by various studies that the 

classical Navier-Fourier laws cannot predict 

the correct flow physics of the force-driven 

Poiseuille gas flow. In particular, the classical 

theory was not able to describe the non-

monotonic temperature distribution across a 

micro-channel (Tij and Santos, 1994; Mansour 

et al., 1997). 

The one-dimensional force-driven (or 

acceleration-driven) compressible Poiseuille 

gas flow depicted in Fig. 1 is defined as a 

stationary flow in an infinitely long channel 

under the action of a constant external force 

parallel to the walls. In a previous study based 

on a nonlinear coupled constitutive relation 

(NCCR) (Myong, 2011) derived from the 

Boltzmann equation via the moment method 

(Myong, 2014), it was shown that the term of 

coupling of force and viscous shear stress 

appearing in the constitutive equation of heat 

flux is responsible for the unusual feature of 

the central temperature minimum, which is in 

stark contrast with conventional monotonic 

quartic profile. However, there remain some 

unresolved issues, such as how the coupling of 

force and shear stress in the non-Fourier 

thermal law can affect the flow and thermal 

characteristics when it is combined with the 

Navier fluid dynamic law. 

In the present study, the fundamental 

physics, in particular, non-classical thermal 

characteristics in micro-channel gas flows is 

investigated on the basis of non-Fourier law 

embedded in NCCR. The effects of the force-

stress coupling term on thermal behavior are 



4th Micro and Nano Flows Conference 

UCL, London, UK, 7-10 September 2014 

- 2 - 

examined in detail in both classical Navier and 

non-classical non-Navier framework. In 

particular, an emphasis will be placed on the 

ultimate source behind the non-monotonic 

temperature distribution. In addition, the 

thermal characteristics such as the temperature 

and heat flux distributions for various Knudsen 

numbers will be investigated in order to 

understand the complex interaction between 

the force and the rarefaction (or the size of the 

channel) effects. Further, other important 

exotic features in the force-driven 

compressible Poiseuille gas flow, such as non-

uniform pressure distribution and non-zero 

normal stress, will be explained. Lastly, it will 

be demonstrated that the so-called Knudsen 

minimum in mass flow rate is directly related 

to the non-classical thermal behavior due to 

the force-stress coupling term. In other words, 

the increase of average temperature within the 

channel after a threshold Knudsen number in 

transitional regime is solely responsible for the 

minimum, indicating a dominant role of 

thermal aspects on general flow physics in 

non-classical gas flow regimes. 

 

 
 
Fig. 1. Schematic of the one-dimensional fully-

developed compressible Poiseuille gas flow driven by 

uniform force in rectangular channel between two 

pressure-regulated reservoirs. 

 

2. Non-Classical Thermal Physics in 

Force-Driven Poiseuille Gas Flows 
 

2.1 Non-Fourier law combined with Navier 

law 

   A mathematical technique for taking into 

account temperature variation of viscosity and 

thermal conductivity coefficients in rigorous 

way has been developed recently by Myong 

(Myong, 2011). The new technique is based on 

the introduction of average quantities for 

velocity and temperature profiles, a spatial 

variable scaled by the temperature, and 

subsequent auxiliary relations. It employs 

average quantities ru  and rT  defined as 
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and with the introduction of a new variable s    

defined as ( * /rs sT h ) 
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driven compressible Poiseuille gas flow, 
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are then solved first in term of the variable s  

and later transformed into the y-coordinate. 

The x-momentum equation in conservation 

laws, together with the equation of state, 

p RT , is reduced as follows: 
*
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In the present problem, the following 

dimensionless variables and parameters are 

introduced: 
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where the subscripts  r , w  and m  denote 

the reference state, the state at the wall, and 
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the state at the middle of a slab, respectively. 

Here a denotes the external force. The 

parameters ,h ,M ,N Kn, and Ec  are 

dimensionless hydrodynamic numbers: a 

force-related number (similar to the 

Richardson number), Mach number, a 

composite number, Knudsen, and Eckert 

numbers, respectively. The composite number 

N  is related to other numbers such that 

2 /   Kn.N M    With the assumption of 

Maxwell molecules, that is, ( ) /w wT T T  , 

and the Navier law of viscous stress, 
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the velocity profile may be obtained: 
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With the Langmuir slip velocity condition 

(Myong, 2004; Myong et al., 2006; Chen and 

Tian, 2007; Veltzke and Thöming, 2012), 

 * * * *( 1/ 2) 1 ( 0)Vu s u s    ,    (8) 

the resulting velocity profile can be expressed 

as 
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The coefficient V  plays a very similar role 

to that of the slip coefficient in the Maxwell 

slip model and may be assumed 1. 

Non-Fourier constitutive equation of 

normal heat flux within linear Navier 

framework can be written 

y xy

p

dT ak
Q k

dy pC
            (10) 

where the force-stress coupling term 

/ ( / )xy pa pC k  originates from the 

acceleration term v fa  in the Boltzmann 

equation. And the energy equation in 

conservation laws (4) is reduced to 
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When it is combined with equation (5) and is 

integrated once, the normal heat flux in the y-

direction can be written as 
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With the assumption of Maxwell molecules for 

the thermal conductivity, (10) becomes an 

ordinary differential equation of 
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The following temperature solution can be 

obtained 
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With the dimensionless temperature jump at 

the wall surface in the Langmuir model 

defined as 
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the centerline temperature is then calculated 

using the third equation in the auxiliary 

relations (3): 
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The average temperature *

wT  can be 

determined by combining it with equation (15): 
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The unknown value *

wT can be easily 

determined in terms of initial data Kn and 
wh  

by a simple method such as the bisection 

method. Similar to the case of temperature, 

together with equation (16), the centerline 

velocity can be determined from the second 

equation in the auxiliary relations (3): 
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Notice that the centerline velocity depends on 

the average temperature *

wT . With these 

centerline values, the slip velocity and the 

temperature jump can be determined from 

equations (8) and (15), respectively. From the 

equation of state, the density profile and the 

average density can also be determined: 
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Furthermore, the mass flow rate can be 

expressed as 
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Finally, through equation (2), that is, 
*
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0
( )

s

y T s ds  , all the solutions can be 

transformed into the domain of the distance 

from the wall surface 
*y : 
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2.2 Non-Fourier law combined with non-

Navier law 

   The full analytical solutions of non-

classical non-Navier non-Fourier case were 

already derived and validated by 

comprehensive DSMC results in a previous 

study (Myong, 2011). It was shown that the 

non-Navier non-Fourier theory captures all the 

non-classical features predicted by the DSMC 

calculation. The important solutions are 

summarized here with special emphasis on 

thermal features of the flow. By combining the 

x, y momentum equations of the conservation 

laws (4) and the kinematic stress constraint 

identified in the velocity shear flow, 
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where 
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Note that, owing to the non-classical non-

Navier law, the cross-stream pressure 

distribution is no longer uniform and normal 

stress has non-zero value. In the case of non-

Navier non-Fourier laws, the constitutive 

equation of normal heat flux can be written 
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The resulting temperature profile can be 

expressed as 
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With the temperature jump at the wall surface 

(15), the temperature profile can be 

determined as follows 
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and 
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The equation (27) is an algebraic equation of 

odd degree 5 with real coefficients. The 

unknown value *

wT  for given values of Kn 

and 
wh  can be determined uniquely by using 

the bisection method. Interestingly, the 

tangential heat flux 
xQ  can exist from the 

constitutive relation of tangential heat flux 
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The mass flow rate can then be expressed as 
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(29) 

 

3 Results and Discussion 
 

Equations (5)-(21) represent a complete set 

of analytical solution for the Navier non-

Fourier law. There exist three major 

shortcomings in the Navier non-Fourier law in 

comparison with more accurate non-Navier 

non-Fourier law. First, the normal stress 
yy  

(or 
xx ) in (23) vanishes in the case of Navier 

law and, as a result, the kinematic stress 

constraint (22) does no longer exist. Second, 

the cross-stream pressure in the case of Navier 

law becomes uniform from the y-momentum 

equation in the conservation laws (4). Third, 

the tangential heat flux 
xQ  vanishes since the 

coupling term 
xxa  in x-component of the 

constitutive equation of heat flux (28) 

disappears. Note that the first and second 

terms in the right-hand side of the constitutive 

equation of tangential hear flux (28) are of 

high order and therefore will disappear in the 

spirit of the linear Navier law. 

On the other hand, the Navier non-Fourier 

theory turned out to be able to describe two 

other important features: the central 

temperature minimum and the Knudsen 

minimum in mass flow rate. This indicates that 

the force-stress coupling term, ,xya  in non-

Navier non-Fourier constitutive relation (10) is 

solely responsible for the minimums in central 

temperature minimum profile and mass flow 

rate. 

 

 
 
Fig. 2. Cross-stream temperature distribution 

*
( ) / (0)T y T  in the force-driven compressible 

Poiseuille gas flow for various Knudsen numbers 

( 0.6
w

h
 ). The solid line represents the compressible 

Navier non-Fourier result, while the (●) and (○) 

symbols represent the non-Navier non-Fourier and 

DSMC (Kn=0.1; Uribe and Garcia, 1999) results. 
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The existence of the central temperature 

minimum is clearly shown in Fig. 2 for three 

Knudsen numbers 0.1, 0.25, 5.0. The low 

Knudsen number case (Kn=0.1) shows a 

temperature profile similar to the classical 

Navier-Fourier quartic function with a 

minimum at the center. Then around Kn=0.25 

the temperature becomes almost uniform in 

whole domain. As the Knudsen number 

increases further, the central temperature 

minimum portion occupies all the domains, 

resulting in complete reversal of temperature 

profile; minimum at the center and maximum 

at the wall, in the case of Kn=5.0. This was 

possible by two effects: the force-stress 

coupling and the temperature jump at the wall. 

A difference is nonetheless found near the wall 

between Navier and non-Navier results for 

high Knudsen number because the Navier law 

cannot describe the concave pressure profile 
* * 2 *( ) 1 tanp S S  , which is the gist of the 

non-Navier theory. 

 

 
 
Fig. 3. Normal heat flux distribution 

 * 2
( ) (0) /

y w
Q y hp   in the force-driven compressible 

Poiseuille gas flow for various Knudsen numbers 

( 0.6
w

h
 ). The solid line represents the compressible 

Navier non-Fourier result, while the (●) and (○) 

symbols represent the non-Navier non-Fourier and 

DSMC (Kn=0.1) results. 

 

Normal heat flux and stream-wise velocity 

profiles are also depicted in Figs. 3 and 4, 

respectively. The non-dimensional normal heat 

flux in general increases with an increasing 

Knudsen number. Both of Navier non-Fourier 

and non-Navier non-Fourier theories show 

qualitatively similar results. The velocity 

profiles become more flat with an increasing 

Knudsen number owing to the increasing 

velocity slip at the wall. Again the difference 

between Navier non-Fourier and non-Navier 

non-Fourier results is shown to be small. 

 

 
 

Fig. 4. Velocity distribution 
*

( ) / (0)u y u  in the force-

driven compressible Poiseuille gas flow for various 

Knudsen numbers ( 0.6
w

h
 ). The solid line represents 

the compressible Navier non-Fourier result, while the (●) 

and (○) symbols represent the non-Navier non-Fourier 

and DSMC (Kn=0.1) results. 

 

 
 
Fig. 5. Average velocity, average temperature, and mass 

flow rate (0) / ,  / ,
r w r

u u T T    2
r w

m h RT   

versus the Knudsen number in logarithmic scale in the 

force-driven compressible Poiseuille gas flow for 

various Knudsen numbers ( 0.6
w

h
 ). The solid line 

represents the compressible Navier non-Fourier result, 

while the (●) symbols represent the non-Navier non-

Fourier result. 
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   Finally, the mass flow rate, along with the 

average temperature and the average velocity, 

are depicted with respect to the Knudsen 

number (from 0.01 to 10.0) in Fig. 5. Both 

theories predict a minimum in mass flow rate 

near Kn=1.0. Interestingly, it can be observed 

that this minimum is actually due to the 

average temperature 
2*

wT  appearing in 

equations of mass flow rate (20) and (29).  

This astonishing result means that the non-

Fourier thermal law is solely responsible for 

the Knudsen minimum of mass flow rate in the 

present force-driven compressible Poiseuille 

gas flow, which is totally at odds with intuition 

obtained from conventional theory. 

 

4 Conclusions 
 

In this study, it was shown that two 

important exotic features in the force-driven 

compressible Poiseuille gas flow, non-uniform 

pressure distribution and non-zero normal 

stress, are due to the non-Navier law. In 

addition, the minimums in central temperature 

profile and mass flow rate are shown due to 

the force-stress coupling effect in non-Fourier 

law. Further it was shown that both of non-

Navier and non-Fourier laws contribute to the 

existence of tangential heat flux. 

In conclusion, the present study clearly 

demonstrates that non-classical thermal 

physics play a dominant role in gas flow far 

from thermal nonequilibrium and consequently 

thermal aspects of the problem must be treated 

very carefully. Even with isothermal wall 

condition, it was shown that the exotic 

temperature profile generated by the non-

Fourier law is solely responsible for the 

Knudsen minimum in mass flow rate, which is 

totally against intuition. Further, theoretical 

and experimental investigation on the whole 

flowfields, such as cross-stream pressure and 

temperature distributions, beyond usual 

reduced quantities like the mass flow rate is 

needed to deeper understanding of micro- and 

nano-scale gas flows. 

The present study is limited to the force-

driven Poiseuille gas flow so that there may 

remain a question of whether the main results 

of non-classical thermal characteristics will 

carry over to non-Poiseuille configurations. 

Nevertheless, by considering the existence of 

non-classical cold-to-hot conductive heat flux 

in a micro-cavity gas flow (Mohammadzadeh 

et al., 2012), it is expected that most of non-

classical results such as non-zero normal stress 

and tangential heat flux will hold in non-

Poiseuille configurations as well. 
 

Acknowledgements 
 

This work was supported by the National 

Research Foundation of Korea funded by the 

Ministry of Education, Science and 

Technology (Basic Science Research Program 

NRF 2012-R1A2A2A02-046270 and Priority 

Research Centers Program NRF 2009-009414), 

South Korea. 
 

References 
 

Bhattacharya, D.K., Lie, G.C., 1989. 

Molecular-dynamics simulations of non-

equilibrium heat and momentum transport 

in very dilute gases. Phys. Rev. Lett. 62, 

897-900. 

Chen, S., Tian, Z., 2007. Simulation of thermal 

micro-flow using lattice Boltzmann 

method with Langmuir slip model. Int. J. 

Heat Fluid Flow 31, 227-235. 

Karniadakis, G., Beskok, A., Aluru, N., 2005. 

Microflows and Nanoflows: Funda- 

mentals and Simulation. Springer. 

Mansour, M.M., Baras, F., Garcia, A.L., 1997. 

On the validity of hydrodynamics in plane 

Poiseuille Flows. Physica A 240, 255-267. 

Mohammadzadeh, A., Roohi, E., Niazmand, 

H., Stefanov, S., Myong, R.S., 2012. 

Thermal and second-law analysis of a 

micro- or nanocavity using direct-

simulation Monte Carlo, Phys. Rev. E 85-

5, 056310. 

Myong, R.S., 2004. Gaseous slip model based 

on the Langmuir adsorption isotherm. 

Phys. Fluids 16-1, 104-117. 

Myong, R.S., 2011. A full analytical solution 

for the force-driven compressible 

Poiseuille gas flow based on a nonlinear 

coupled constitutive relation. Phys. Fluids 

23, 012002.  



4th Micro and Nano Flows Conference 

UCL, London, UK, 7-10 September 2014 

- 8 - 

doi: 10.1063/1.3540671 
http://acml.gnu.ac.kr/e-home/index.htm  
(07/2014) 

Myong, R.S., 2014. On the high Mach number 

shock structure singularity caused by 

overreach of Maxwellian molecules. Phys. 

Fluids 26-5, 056102. 

Myong, R.S., Lockerby, D.A., Reese, J.M., 

2006. The effect of gaseous slip on 

microscale heat transfer: An extended 

Graetz problem. Int. J. Heat Mass Trans. 

49, 2502-2513. 

Tij, R., Santos, A., 1994. Perturbation analysis 

of a stationary nonequilibrium flow 

generated by an external force. J. Stat. 

Phys. 76, 1399-1414. 

Uribe, F.J., Garcia, A.L., 1999. Burnett 

description of plane Poiseuille flow. Phys. 

Rev. E 60, 4063-4078. 

Veltzke, T., Thöming, J., 2012. An 

analytically predictive model for 

moderately rarefied gas flow. J. Fluid 

Mech. 698, 406-422. 

Xu, K., 2003. Super-Burnett solutions for 

Poiseuille flow. Phys. Fluids 15-7, 2077-

2080. 

Zheng, Y., Garcia, A.L., Alder, B.J., 2002. 

Comparison of kinetic theory and 

hydrodynamics for Poiseuille flow. J. Stat. 

Phys. 109-3/4, 495-505. 

http://acml.gnu.ac.kr/e-home/index.htm

