Experimental Investigation on Performance of silver Nanofluid in Absorber/Receiver of Parabolic trough collector

D. R Waghole 1,* , R .M. Warkhedkar 2, V.S.Kulkarni3

* Corresponding author: Tel.: ++91 (0)020 25431795; Fax: ++91 (0)020 25431795; Email: waghole@yahoo.com
1 Department of Mechanical Engineering, Government College of Engineering, A’tbad, MIT Pune, India
2 Departments of Mechanical Engineering, Government College of Engineering, Karad, India
3 Department of Math’s, Mumbai University, Mumbai, India

Keywords: Nano Flow, nanocirculation, convection, Performance

This experimental investigation presents synthesis and characterizations of silver Nanoparticle. This study also deals with improvement in performance of absorber/Receiver using silver nanoparticle dispersed in DI water (De-Ionized water). The silver nanoparticle suspended in conventional fluid have superior heat transfer capabilities. The absorber of parabolic trough collector is tested for heat input ranging from 50 W²-600 W/m² in four steps which is suitable for removing heat from solar system, process industries, power plants, automobile systems marine systems etc. The effect of various operational limits and test parameters such as heat input, volume fraction, fluid temperature, heat transfer coefficient are experimentally investigated. The silver nanoparticle is tested for volume concentration in the range of 0 ≤ 0.1 %, 500 ≤ Re ≤ 6000, experimentally with average silver nanoparticle diameter 10nm-400 nm. The Characterizations of silver nanoparticle is carried out using TEM, UV and SEM methodology for required sample of silver nanoparticle. The experimental results are evaluated in terms of performance matrices by direct measurements of fluid temperature and surface temperature in the absorber. A substantial reduction in thermal resistance of 23.152% observed for 0.00011% concentration of silver nanoparticle. The Nusselt number for absorber of parabolic trough collector with silver nanofluid varied from 1.25 to 2.10 times in comparison that of water.

1. Introduction
A technique to enhance liquid thermal conductivity is the dispersion of highly conductive solid nanoparticle within the base fluid. This new generation of conductive fluid with nanoparticle is referred to as nanofluid. Taehyau Cho et.al [1] investigated thermal conductivity of fluid suspended with silver nanoparticle. The observations conclude an important increase in thermal conductivity by 10%,16% and 18% for concentration of 1000,5000and 10000 ppm. Paison Naphen et.al [2] experimentally investigated titanium nanofluid on heat pipe thermal efficiency. The heat pipe with de-ionized water,alcohol and nanofluid (Alcohol and nanoparticle) are tested. The titanium nanoparticle with diameter of 21 nm are used in the present study. The effect of % charge of amount of working fluid, heat pipe tilt angle and % nanoparticle volume concentration on thermal efficiency of heat pipe are concluded for the heat pipe with 0.1% nanoparticle volume concentration. The thermal efficiency is 10.60% higher than that with base fluid. Tsaisa et.al [3] investigated the influence of particle size on heat pipe thermal performance. The study is based on structural characteristics of Gold nanoparticle of various sizes dispersed in aqueous solution on heat pipe thermal resistance. The thermal resistance of heat pipe ranges from 0.17 to 0.215 °C/W with different nanoparticle solution. Furthermore the thermal resistance of heat pipe with nanoparticle solution is lower than that with DI water. King et.al [4] used dilute dispersion of silver nanoparticle in pure water as working fluid in a circular heat pipe. The diameter of nanoparticle used is 10 and 35 nm respectively. The results showed that the nanofluid as working fluid in heat pipe can transport heat up to 70 W and is higher than pure water by about 20W. Park et.al [5] and Shang Wen Kang et.al [6] also observed in another study that silver nanofluid grooved heat pipe thermal performance was higher than that for a conventional grooved heat pipe water as working fluid. Zhan Hua Lin ,Yan Li et.al [7] studied compositive effect of nanoparticle parameter on thermal performance of cylindrical micro grooved heat pipe using nanofluid. L Godson et.al [8] studied experimental investigation of thermal conductivity and viscosity of silver deionized water nanofluid. Lazarus Godson Asirvatham et.al [9] studied heat transfer performance of screen mesh wick heat pipe using...

2. Experimental Approach

The experimental arrangement consist of the testing receiver/absorber, Heat transfer fluid tank, pump, heater, temperature control system, data acquisition systems, valves, pipes etc. The heat transfer fluids (water and Nanofluid) are pumped through the flow meter into receiver /absorber and continued to be heated to the required experimental temperature. The receiver is heated by electrical heater (Solar radiation). The heat flux on testing receiver/absorber can be changed to the required value by changing the output of electrical heater. The Experimental setup is as shown in fig 1.

3. Synthesis and Characterizations of Nanofluid

Nanoparticle used in present study is silver. Several studies, including the earliest investigations of nanofluids, used a two-step method in which nanoparticles are first produced as a dry powder and then dispersed into a fluid in a second processing step. In contrast, the one-step method entails the synthesis of nanoparticles directly in the heat transfer fluid. A two step method is used to prepare silver –water Nanofluid. Nanoparticle is mixed with De-ionized water without addition of any surfactant [9]. In present work, one step method is used and SEM technique is used for characterizations.

4. Results and Discussion

The experiments are conducted for various heat loads 50W-600W (500 W/m²-6000W/m²) with absorber in horizontal position. The surface and fluid temperature using thermocouple connected to data logger system. The experimental results are compared between base fluid and nanofluid for all concentration and the enhancement in heat transfer performance with respect to concentration, heat load, and thermo physical properties etc are discussed in following subsection. The effect of using twisted tape inserts in absorber /receiver on heat transfer characteristics is shown in fig 2, fig 3. It shows that the Nusselt Number obtained from absorber with inserts is higher than plain absorber. It is depicted that the effect of tape inserts increased at high Reynolds Number due to the intensive mixing of fluid which increased the heat transfer rate and high flow velocity. Thus the increase in Nusselt number is low at smaller Reynolds Number while it became greater at the higher Reynolds Number. The heat transfer rate is also changed with the helix angle of the tape inserts. It is higher with minimum helix angle. The experimental data for comparison of Nusselt Number and friction factor are not available in literature for nanofluid with twisted tape insert. Hence, the present data for flow of water and Nanofluid in absorber and with twisted tape inserts is subjected to regression and the correlation function is obtained and shown in fig 4. We investigated the influence of thermic fluid properties, receiver geometries, and Heat flux on overall heat.
collection. We can see that by Numerical simulation, the velocity reaches a constant value beyond a certain distance from the inlet (fig 5.) This is the fully-developed flow region. We can see that the fully developed region is reached at $x = 0.4$ m and skin coefficient in this region is 3.25 (Fig 6)

![Fig 2 Influence of Angle of twist on Nusselt Number](image1)

![Fig 3 Influence of Angle of twist on Friction Factor](image2)

![Fig 4 Generalized heat transfer correlation for Absorber](image3)

![Fig 5 Effect of Axial velocity](image4)

![Fig 6 Effect of skin friction coefficient](image5)
5. Conclusion

It is observed that convective heat transfer coefficient increase with increase in concentration of silver nanoparticle. An experimental and Numerical study is conducted to investigate heat transfer enhancement in an absorber by means of twisted tape inserts. The study reveals that tape inserts caused an increase of heat transfer at the cost of increase of pumping power. From the experimental and Numerical results the following could be concluded:

i) The Nusselt Number for absorber with tape inserts varied from 1.25 to 2.10 times in comparison that of plain absorber.

ii) There is no significant increase in pressure drop or friction factor for silver Nanofluid in comparison to water at the same twist ratio.

iii) A substantial reduction in thermal resistance of 23.152% observed for 0.00011% concentration of silver nanoparticle

The proposed generalized correlation function for turbulent flow for water and Silver Nanofluid for flow in plain absorber and with twisted tape inserts are as follows:

\[
\text{Nu}_{\text{exp}} = 1.3167(\text{Re}^{0.2843})\text{Pr}^{0.4}(1 + \frac{H}{D})^{-0.004}(1 + \phi)^{-0.008}
\]

Valid For the range 2000 \(\leq \text{Re} \leq 6000 \), 0 \(\leq \phi \leq 0.1 \) % and 0.577 \(\leq \frac{H}{D} \leq 1.732 \)

Acknowledgement

Author would like to thank Dr. N.K. Sane, Professor, Pune University for research guidance for experimentation. Author would like to thank BCUD, Pune University for research funding for the supporting.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Diameter of absorber</td>
</tr>
<tr>
<td>H</td>
<td>Pitch of tape inserts</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt Number</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandle Number</td>
</tr>
</tbody>
</table>

Greek symbols

\(\alpha \) helix angle
\(\phi \) volume fraction

Subscripts

exp experimental

References

[7] Zhen-Hua Liu, Yuan-Yang Li, Ran Bao, “Competitive effect of nanoparticle parameter on

