DEMOGRAPHICS AND FINANCIAL ASSET PRICES IN THE MAJOR INDUSTRIAL ECONOMIES

E Philip Davis and Christine Li¹
Brunel University
West London

19th March 2003

Abstract

This paper explores the relationship between demographics and aggregate financial asset prices in 7 OECD countries over the past 50 years. Unlike most extant work it adopts an international as well as US focus, and also includes non-demographic variables usually considered to influence asset prices in the econometric specification. Furthermore, we examine effects on bond yields as well as share prices. The results indicate a significant link between panel, international and US demographics on the one hand, and real stock prices and real bond yields on the other. The international results are of particular interest given their robustness and the logic of international financial integration. Generally, an increase in the fraction of middle-aged people (aged 40-64) tends to boost real asset prices. A corollary is that a decline in this cohort in coming decades will tend to weaken them. More tentative results including estimated effects of the over-65 cohort in the US suggest a more severe downturn is possible, thus underlining the potential market risks associated with sole reliance on fully funded pension schemes.

.

Keywords: Financial markets and the macroeconomy, Demographic trends, Pension funds

JEL classification: E44, H55, G23

_

¹ Davis is Professor of Economics and Finance, Brunel University, Uxbridge, Middlesex UB3 4PH, United Kingdom (e-mail 'e_philip_davis@msn.com', website: 'www.geocities.com/e_philip_davis'). He is also a Visiting Fellow at the National Institute of Economic and Social Research, an Associate Member of the Financial Markets Group at LSE, Associate Fellow of the Royal Institute of International Affairs and Research Fellow of the Pensions Institute at Birkbeck College, London. Li was at Brunel University when undertaking the work for this project – she is now at LSE. The authors thank Gabriel Fagan, Christos Ioannidis, John Hunter and participants in seminars at Brunel University and Frankfurt University for helpful comments.

Introduction

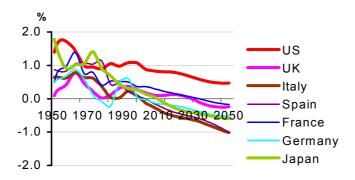
The link between changing demographic structure and macroeconomic performance has been widely studied; see for example in Turner et al (1998), Kohl and O'Brien (1998) and McMorrow and Roeger (2000). There is also an extensive literature of the impact of ageing on pension systems and public finance, see Dang et al (2001) for a recent example. Meanwhile, US researchers have put a considerable focus on links to equity markets (see Poterba (2001) for a recent survey). However, there has been more limited systematic research into changing demographic effects on financial asset prices in an international context or on bond yields. Also most extant work looks purely at bivariate relationships between demographics and equity markets. Accordingly, in this paper we focus on effects of demographics on asset prices, not only in the US but also in Europe and Japan, both country-by-country and aggregated, including standard non-demographic variables in the specification.

The intuition behind the link between changing demographics and financial asset prices is the life cycle hypothesis, which suggests young people (aged 20-39) are likely to be net borrowers. Thus financial asset prices would decline or be unaffected as the age group increases. The middle-aged (aged 40-64) are involved heavily in accumulation of net assets. This is because they are at the peak of their earnings potential, and likely to be saving for retirement. A relative increase in the size of this group would lead to a high demand for financial assets, e.g. stocks and bonds, resulting to an increase in financial asset prices. As the age group enters retirement (aged 65+), they start to decumulate their wealth. As a result, financial asset prices could come under downward pressure.

A considerable motivation for work in this area has been the pattern of share prices in recent decades. Notably, the sharp rise in US stock prices in the 1990s has prompted many authors such as Dent (1993), Shiller (2000), and Sterling and Waite (1998) to suggest that this pattern is due to the babyboom cohort which has entered their prime earning years and begun saving for retirement. This has led to an increase in demand for financial assets, and as a result financial asset prices have increased. The likelihood that asset prices overshot in the late 1990s, prompting the current bear market, need not contradict the underlying hypothesis (Davis 2003).

In this context, this paper seeks to investigate empirically the impact of demographic structure on financial asset prices. More specifically, we examine the potential links of changes in age distribution of 7 countries: US, UK, Germany, France, Italy, Spain and Japan to real stock prices and real bond yields. The structure of the paper is as follows: Section 1 examines the historical evolution of the population structure in US, EU and Japan and factors underlying it. Section 2 presents a review of the theoretical and empirical literature on demographics and financial asset demands, including aspects of the life cycle hypothesis and household asset allocation. We examine predictions of these theories for when baby boomers retire, concentrating on risk aversion and the so-called "market meltdown" hypothesis. We also survey the more limited literature on international demographics and financial

asset returns. Principally using data from 1950 to 1999, Section 3 tests empirically the relation between demographics and financial asset prices in a panel of 7 OECD countries, as well as in the US and internationally, including non-demographic variables in the specification. The conclusion summarises the main findings and notes limitations and areas for further study.


1 International demographics: past and future perspective

In this section, we examine the historical and predicted future changes in the age distribution of seven OECD countries, using data and projections from the United Nations. The objective is to provide a general historical background for assessment of demographic influences on past trends in financial asset prices and to provide some insight into future population structures.

1.1 Overview of trends

The major industrialised countries of Europe, Japan and the US have undergone dramatic demographic changes since the 1950's. Most of the seven countries witnessed an acceleration of population growth in the 1950s (see Chart 1), followed by a decline during the late 1960s. Given that most people concerned are already alive, demographic projections tend to be reliable for several decades ahead. UN projections show all the seven countries are expected to experience a continued decline in population growth after 2002. After 2003 most European countries except the UK are expected to experience a declining population.

Chart 1: Population growth rates

Fertility rates underlying population growth are shown in Table 1.1. They have declined to below 2 children per woman for all countries since 1980, except for the US in the 1990s. This is well below the

replacement level needed to maintain a stable population without immigration. Forecasts² suggest that all seven countries would be below the replacement rate on average over 2000-10.

Table 1. 1 - Total fertility rate - estimates and projections

Number of children per female	1950-60	1960-70	1970-80	1980-90	1990-2000	2000-10
Japan	2.4	2.0	1.9	1.7	1.5	1.4
UK	2.3	2.7	1.9	1.8	1.7	1.6
Italy	2.3	2.5	2.1	1.4	1.2	1.2
Spain	2.7	2.9	2.7	1.7	1.2	1.1
France	2.7	2.7	2.1	1.8	1.7	1.8
Germany	2.2	2.4	1.6	1.4	1.4	1.3
US	3.6	2.9	1.9	1.9	2.0	1.9

Source: United Nations (1998)

Separately, life expectancy has increased gradually since 1950. Table 1.2 shows, for example, that life expectancy for Japan has increased by 15 years in the last 50 years. Forecasts suggest that life expectancy at birth would rise a further 2 years in the current decade. There is a similar pattern for all 7 countries. Factors behind these patterns are better healthcare, medical advances, and improved living standards.

Table 1. 2 – Life expectancy at birth - estimates and projections

Years	1950-60	1960-70	1970-80	1980-90	1990-2000	2000-10
Japan	65.3	70.0	74.4	77.6	80.0	81.9
UK	69.8	71.1	72.4	74.5	76.8	78.6
Italy	67.2	70.4	72.9	75.4	77.8	79.0
Spain	65.8	70.9	73.6	76.2	77.8	79.0
France	68.1	71.3	73.0	75.4	77.8	79.4
Germany	68.3	70.6	71.8	74.3	76.7	78.5
US	69.3	70.2	72.4	74.7	76.1	78.0

Source: United Nations (1998)

Table 1.3 shows the elderly dependency ratio, defined as the percentage of population over 65 years old as a ratio of the economically active population aged 15-64. Although longevity is also important, the patterns are largely a consequence of changes in fertility. The table shows that the demographic transition has been remarkably uniform so far, but will become less so after 2010. Japan had a lower dependency ratio of 10.3% in 1970 compared to the US and European countries, but this is rapidly increasing and would overtake other countries by 2010. Projections show that by 2050, dependency ratios for Japan and the European countries would be above 42%, with Spain reaching the highest level of 72%. This implies that less than two economically active people would be supporting one

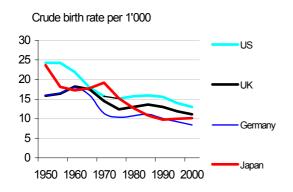
² Demographic data in this chapter beyond 2000 are projections under the assumption of medium variant fertility and no immigration.

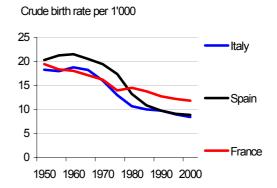
retiree, suggesting a massive shift in the age distribution towards the old. In contrast, the US ratio will be only 36% in 2050.

Table 1.3 – Elderly dependency ratio estimates and projections

	1950	1970	1990	2000	2010	2030	2050
US	12.8	15.9	18.9	19.0	19.5	33.6	35.5
UK	16.0	20.6	24.1	24.6	25.9	38.3	42.2
Germany	14.5	21.7	21.7	23.6	29.6	43.3	48.7
France	17.3	20.7	21.3	24.1	25.3	38.7	44.2
Spain	11.1	15.7	20.7	24.5	27.0	42.3	72.0
Italy	12.6	16.9	22.3	26.4	31.4	49.1	65.7
Japan	8.3	10.3	17.2	25.0	33.8	46.0	58.4

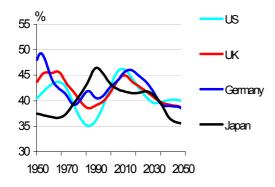
Source: United Nations (1998)

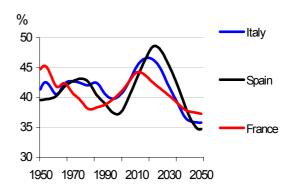

Baby booms and busts across the US, Europe and Japan³ 1.2


Given the importance to population structure of the high levels of births in the 1950s and 60s, and the subsequent decline in fertility, it is worthwhile to briefly consider underlying factors. The Great Depression and the World War caused many to postpone raising a family in the 1930s and 1940s. The prosperous full-employment decade of the 1950s gave confidence regarding the future, leading to a high birth rate. As regards the later decline in fertility, the introduction of birth control techniques in the mid 1960's in the US and across European countries caused dramatic declines in birth rates. Also, social factors including the acceptance and legalisation of abortion, advances in education, and economic aspiration levels are all contributory factors. Furthermore, the opportunity costs of having children increased as more women entered into the labour force. Finally, the sharp recession of the 1970s gave an economic disincentive to high fertility.

Using five-year average data we can observe differences in the timing and size of post-war baby booms using crude birth rates of the different countries (see Chart 2). In terms of size, the US had the most pronounced post war baby boom. The earliest baby boom occurred in Japan just after the war⁴. This was followed by the US and then the European baby booms. In several countries, there was evidence of a second upturn in births partly as a result of post-war baby boomers themselves having children. Japan had an early start to this in the late 1970's. This was again followed by the US, UK, Germany and France from 1980 to 1995. However, the second baby boom was on a much smaller scale. There was no sign of a second upturn in Spain or Italy.

³ The baby boom refers to a significant and sustained increase in the annual number of births taking place in a population for a number of years. The baby bust is defined as a sharp decline in births following a baby boom. ⁴ We only observe the peak of the baby boom in Japan in Figure 2a, as the baby boom started prior to 1950.


Chart 2 Birth rates per 1000 population



The baby booms mean there will be a remarkable increase in the number of people having already reached middle age or reaching it in the near future. Chart 3 shows the projected effects of the baby boom generation on the age distribution of 40-64 years olds across Europe, Japan and the US, which shows the ratio of 40-64 years old to the adult population aged 20+.

Chart 3 40-64 year olds as a percent of the adult population

Europe and the US will have similar shifts in terms of increases in the proportion of those aged 40-64 in the coming decades. For the US, the ratio in 2009 will be 49%, followed by the UK and Germany in 2014 at 44% and 46% respectively. Japan had the highest percentage of the population within the age range in the 1990s, which peaked in 1993 at 46% due to an earlier baby boom. Later, Spain would have the highest proportion of those aged 40-64 peaking at 49% in 2022. It is interesting to note that the percentage of those aged 40-64 is not yet at its peak in countries other than Japan – and that the Japanese stock market has been sluggish throughout the 1990s as the share of 40-64s began to decline.

2. Theoretical background and literature review

In the light of the demographic data, this section aims to survey research on the theoretical and empirical link between demographic structures and financial asset prices.

2.1 Household life cycle consumption and savings behaviour

Theory suggesting a link between an individual's age, consumption and saving decisions originated with the permanent income hypothesis (Friedman 1957), and the later life cycle hypothesis (Modigliani and Brumberg (1954), and Ando and Modigliani (1963)).

The permanent income hypothesis, while not explicitly basing consumption on age, has the insight that an individual's consumption is likely to depend on permanent rather than current disposable income. People will only consume if they believe their income is sustainable. Consequently, if increases in their income are expected to be temporary, they will save rather then increase their consumption. The underlying assumption is that people seek to avoid fluctuations in their consumption when income fluctuates. Following this insight, the life cycle theory of consumption suggests that early in one's life, consumption may well exceed income as individuals may be making major purchases related to buying a new home, starting a family, and beginning a career. At this stage in life, individuals may borrow based on their expected labour income in the future (human wealth).⁵ In mid-life, these expenditures begin to level off while labour income increases. Individuals at this point will repay debts and start to save⁶ for retirement in stocks, bonds, pension schemes, etc. At retirement, income normally decreases, and individuals may start to dis-save. This involves selling off some of their financial assets. Both theories of optimal consumption imply consumption will be smoothed out through an individual's lifetime.

As regards empirical evidence, at a macroeconomic time series level, Disney (1996) noted that, consistent with the life cycle, savings rates tend to decline in countries where there are a larger number of retired people. The changes in savings lead to changes in demand for financial assets. Econometrically, a strong effect of demographics on private saving is found by many studies, with for example Masson et al (1995) finding the total dependency ratio to have a significant negative effect on private saving in a panel of both advanced and developing countries. Modigliani (1986) shows life-cycle savings follow a hump shaped pattern where an investor's asset holdings increase with age and decline after retirement. Goyal (2001), using aggregate stock market data, found that outflows from the equity market (defined as the difference between the value weighted stock market return (NYSE,

⁵ Total wealth is made up of human wealth, which describes the ability to generate future income based on skills, talent and initiative and non-human wealth, which describes the ownership of income producing assets.

⁶ That is, save on a net basis. It is important to note that individuals may save on a gross basis throughout their lives, but may not save on a net basis, taking account of debt.

AMEX and NASDAQ) including dividends and the percentage increase in stock market capitalisation) are related to a rise in the size of the cohort aged 65 and over, and inflows are linked to the size of the cohort aged 45-64.

Asset allocation by households over the life cycle using unadjusted US cross-sectional data has been studied by authors such as Bergantino (1998) and Yoo (1994b). For example, Bergantino (1998), looking at cross sections derived from the US Survey of Consumer Finances, found young households under 40 usually draw credit from the financial markets via taking out mortgages for buying houses, consistent with the life cycle. Bergantino showed that households aged 40–60 tend to provide credit to financial markets, via employer and personal pension accounts. Those households which are over the age of 60 tend to withdraw from the financial markets as a result of using accumulated assets to fund consumption at retirement. Mankiw and Weil (1989) found housing demand is high for those aged 25-40. Thus, their borrowings tend to exceed their purchases of financial assets.

While the life cycle hypothesis focuses on the overall household asset demand, empirical evidence also suggests household portfolio allocation across specific asset classes would vary with age. On an individual household level, Yoo (1994b) found demand for risky assets, bonds and equities increases with age and decreases after individuals retire. Bergantino (1998) showed that households with heads under the age of 35 generally have near zero ownership of bonds and stocks. However he finds a divergence in stock and bond holding of older households. Ownership of stocks for those over 55 tends to decrease more rapidly than for bonds. He attributes this to possible cohort effects and risk aversion. It is also noteworthy that financial assets make up only 37% of household's total assets, of which 15% are held directly in stocks. Thus, total assets are mostly non-financial assets, e.g. primary residences and vehicles.

Although such findings are consistent with the life cycle hypothesis on average, a study by Poterba (1998) suggests the life cycle hypothesis cannot be proven by focus on average cross-section based asset accumulation profiles. First, average figures are distorted by the wealthiest 10 percent of households who hold approximately 70 percent of financial assets. If equities are included, this will raise the number to 90 percent, see Poterba and Samwick (1997). Second, micro data typically omit social security wealth and wealth in defined benefit pension funds. Third, there is a problem in using cross-section data to evaluate the life cycle hypothesis or project asset demands, in the style of Yoo (1994b) and Bergantino (1998) since they mix age and cohort effects, as discussed by Poterba (2001). The associated problems can be described using equation (1) where A is individual asset holdings of age α at time t:

⁷ On a microeconomic level, Bergantino (1998) found in his data sample stocks only make up 22% of households' total financial assets. Although there is variation in the data samples given, they do suggest a small amount of household wealth are held in stock markets.

$$A_{at} = \alpha_a + \beta_t + \delta_{t-a} \tag{1}$$

If α_a is the age-specific asset demand at age a. β_t is the time-period-specific shift in asset demand and δ_{t-a} is the cohort-specific effort for asset demand for those born in the period t-a. 'Cohorts' are a linear combination of age and time. With panel or repeated cross-section data, it is possible to estimate two effects, but it is impossible to estimate all three effects.

Poterba and Samwick (2001) estimated the effects of ageing using the US Survey of Consumer Finances data, allowing for this critique. They found the hump shape for net worth but not for net financial assets, which level off in old age. The levelling off of net financial assets could link to precautionary saving or a bequest motive (Hurd (1990), Bernheim (1991)). On the other hand, Poterba (1998) shows that equities decline in old age even if age and cohort effects are allowed for. Ameriks and Zeldes (2000), who also correct for age and cohort effects using data from the US pension fund TIAA-CREF noted a rapid increase in the proportion of household owning equities, from 33% in 1989 to 49% in 1998 as the baby boom generation increased in size. This is consistent with high equity holding by the high-saving middle age group. But they also note that half of Americans do not hold any wealth in the stock market.

2.2 Demographics and asset returns

Many authors, including Dent (1993), Shiller (2000), and Sterling and Waite (1998) have suggested that the rise in the US stock market during the 1990's was at least partly due to the post-war baby boom cohort who had entered into their prime earning years and begun saving for their retirement. This explanation can be formalized using a simple model presented in Poterba (2001),

$$p*K = N_y*s$$
 (2)

whereby if individuals work for 2 periods, they work when young (Y), and retire when old (O). N_y *s is the demand for assets in any given period; cohorts work for one unit of good and production is normalised; the fixed supply of the durable good does not depreciate and (s) is the fixed savings rate out of labour incomes for young workers N_y . K is the fixed supply of durable assets. The relative price of assets in terms of one unit of the good is (p). Increases in the size of working cohorts will drive up asset prices, while a decrease of working cohorts will have the opposite effect. As the large cohort work through their life cycle, they will purchase assets at high prices and sell them at low prices. This framework leads to a low return earned on investments, although this may be muted by variations in the supply of the durable asset, or more so by changes in productivity. Also the saving ratio of young workers might be expected to vary with expectations of future asset returns rather than being fixed.

Among empirical studies, Bakshi and Chen (1994) estimated an Euler equation linking consumption to the returns on various assets, and found that a variable capturing the average age of the population had a positive effect on the equity premium, indicating declining risk tolerance with age. Yoo (1994b) related real returns on stocks, bonds and treasury bills to five demographic variables and found a higher fraction in the high-savings middle-aged group is linked to a lower real return on Treasury Bills. Macunovitch (1997) included 12 demographic variables and fitted well the post-war real return on the US stock market. Erb et al (1997) found that there was a positive correlation between the population aged 25-45 and US real stock returns over 1970-95. The argument is that the middle aged hold more equity than other groups, owing to a riskier portfolio and a longer time horizon than the elderly but also more wealth to invest than the young.

Brooks (1998) looked at the determination of the level of equity prices in 14 OECD countries using the share of the 40-65 age group in the population as an independent variable, and found it to be significant for 11 countries. Brooks (1998) calls the positive correlated relationship between asset prices and the size of the cohorts as the 'aggregate saving hypothesis'. Bergantino (1998) studies house prices and stock prices in the US using age-specific asset demands derived as above from cross sectional data. There is found a clear relation between the level of age-specific asset demand and the level of stock prices, notably over multi-year horizons. Goyal (2001) concentrating on equity returns, found a relative increase in the fraction of middle-aged cohorts aged 45-64 leads to an increase in equity prices and also returns, given its impact on net payouts from the corporate sector. But he also notes this would lead to a decrease in future equity returns.

On the other hand, Poterba (2001), after estimating a range of bivariate relations linking demographics to asset prices on US data, suggests that at a macro level, there is little evidence of a 'robust' historical relationship between demographic structure and financial asset returns. He critically reviewed the above studies and found many faults with the empirical model specifications, attributed to the limitation of statistical tests, poor data construction, lack of testing for unit roots (e.g. in the level of asset prices), "overfitting" with too many demographic variables, and few effective degrees of freedom (only one baby boom in the US). This prompts the question of whether demographic effects are significant enough to be detectable in historical data, which we investigate in this study.

One answer to the lack of degrees of freedom is to look at international data, as we do in this study. Erb et al. (1997) looked at 18 developed and 45 developing countries. They found that although demographics influenced regional prices of financial markets, no significant relationship existed between world average measures and expected returns. They argue this could be due to lack of market integration. Poterba (2001) was not surprised by the results. He argued there are only a small number of countries which have had a long history of established liquid and developed equity markets.

Ownership of stocks is small for the majority of countries. Furthermore, there are difficulties in treating cross-sectional data of individual countries in the same way, due to the differences in the size of capital markets. Poterba looked at Canada and UK, and found no support for the relationship of demographics on asset returns, although for Canada, there was a significant positive relationship between long-term bond yields and the size of the age group 40-64. For the UK, this was not the case.

On the other hand, Brooks (1998) study showed the coefficient which represents those aged 40-64 for UK, Japan and US taken together is highly significant against real stock prices. He thus found that support for the 'aggregate portfolio effect' is strong. Ang and Maddeloni (2002), in a recent contribution, offer transnational empirical evidence favouring the hypothesis that demographic variables - notably the change in the proportion of the population over 65 – predict excess returns on equity relative to the short term interest rate. An increase in the proportion of the population over 65 tends to reduce the risk premium, especially in countries with well-developed social security systems and less developed financial markets. This is the case both for long pooled samples since 1920 for the G-5 countries and for shorter samples covering the period since 1970 for 15 countries.

Other recent studies of the effects of shifts in demographic structure on equilibrium asset returns and/or asset prices have used calibrated intertemporal general equilibrium models, generally based on overlapping-generations models (OLG); these include Yoo (1994a), Brooks (1998), and Abel (2000, 2001). These studies typically do not directly address the empirical question of whether the recent rise in US asset values can be linked to demographic structure, but look more closely at issues of whether demographic shifts can conceptually affect equilibrium asset prices and returns. The common thread to these studies does suggest a relationship between changing demographics and asset returns is plausible.

For example, Yoo (1994a) simulated a baby boom by using an overlapping generations model, where consumers live for 55 periods and work for the first 45 years. He found a negative relationship between the size of the middle aged group (45-54) and the low frequency returns on financial assets including: common and small corporate stocks, long corporate bonds, long government bonds, intermediate government bonds and T-bills. This is due to the age group which has the highest increment of wealth⁹, having the largest impact on the supply of savings, resulting in a rise in prices and hence a fall of those asset returns ex ante. The rise in share prices is 33% with a fixed capital stock but is attenuated to 15% if capital is endogenous.

⁸ Brooks (1998) suggests at the turning point of a baby boom and baby bust, the relative return on stocks and bonds widens. As the supply for risky assets will exceed demand, and the demand for less risky assets will exceed supply, the price of bonds will increase. This will lower the return on bonds as compared to return on equity, this is known as the 'aggregate portfolio effect'.

⁹ Changes in wealth are nearly \$80,000 for this age group. Also, Bergantino (1998) found the maximum level of household income achieved is between the ages of 45-50 years old.

Consistent with Yoo (1994a), Brooks (1998) in his OLG model suggests ex ante real asset returns move positively with real interest rates and negatively with aggregate savings, thus real return on bonds and equities move inversely with the size of cohorts aged 40-64 relative to those over 65 years. This is because the real rate of interest rate will factor into the discounted future income streams. But as noted in terms of prices, real bond and stock prices are positively related to the size of the cohorts, given excess demand for securities and relatively fixed supply of capital (see also Poterba 2001). Furthermore on a backward looking ex post basis as adopted by many empirical studies, looking at total return adding capital appreciation to dividend yield or bond yield, it is likely that asset prices and asset returns go in the same direction.

In another OLG study, Brooks (2000) focused on future switches between riskless and risky assets as individuals age, and found that the bond yield would rise from 4.5% to 4.8% as the baby boomers buy equity then fall to 4.1% as they retire. Abel (2000, 2001) allowed for a variation in the price of capital owing to adjustment costs and found that a baby boom would again impact on asset prices, even if bequests are allowed for. He notes that demographic structure can affect the ability of agents in an economy to share risk. Finally Ang and Maddaloni (2003) show how the population growth rate may affect the risk premium on equity in an OLG framework.

Overall, there is a broad consistency in econometric and OLG research, which suggests the potential existence of relationship between demographics and asset prices but also a number of pitfalls in identifying the effect empirically.

2.3 Construction of demographic structure and asset returns variables

The theoretical models do not give clear guidance as to the appropriate measure of population. However, the empirical literature suggests there are two broad approaches to the construction of the demographic structure. One approach is to estimate the demand for assets based on a combination of the projected demographic trend and the expected household demand for financial assets. The approach of Bergantino (1998), and Yoo (1994b), involves the use of cross-sectional age-wealth profiles to construct asset demand profiles. These represent average asset holdings of individuals of different ages at a point in time. The data are combined with the age distribution of the US population to construct time series data.

As noted, there are problems with this approach; Poterba (2000) argues this method distorts the evolution of asset demand in the changing population structures in terms of 'cohort effects', as discussed above. For example, Bergantino (1998) looked at the life cycle asset holdings of baby boomers, parent of baby boomers and children of the baby boomers. This led Poterba (2001) to comment that there is heterogeneity in the composition of different cohorts found in his empirical

studies, which Poterba corrects for in his own empirical work, where he derives a measure of projected asset demand. Ameriks and Zeldes (2000) show examples of age-wealth profiles over time where there are different underlying patterns of asset accumulation over the life cycle as a result of different combinations of cohort and time effects. This is known as 'intergenerational effects', see Wang and Sherman (1997), another example of which was the baby boom generation born between 1897 and 1924 in the US which went through a major stock market crash in 1929 and the great depression. They held a different composition of financial assets relative to the next generation of cohorts. In his own work (Poterba (2001), Poterba and Samwick (2001)), Poterba derives measures of projected asset returns which seek to correct for age and cohort effects. This of course requires detailed micro data as is available for the US but not for most other countries. Meanwhile, Goyal (2001) uses net outflows from stock markets in addition to financial asset returns.

More simply, Bakshi and Chen (1994), and Erb et al. (1997) use the average age¹⁰ as a demographic variable¹¹. The latter argued that changes in average age would predict asset returns, as demographic fluctuations are persistent i.e. slowing moving and highly predictable. However, this approach although less complex, is not without its problems. Poterba (1998) argues it is not clear why average age as opposed to other demographic measures would capture the profile of lifetime asset accumulation. In a later study, Poterba (2001) argued that in developing countries, the use of average age largely captures changes in morbidity and mortality. In Yoo (1997)'s theoretical research, average age does not capture the age distribution; in the steady-state average age remains constant as the asset price increases. Additionally, there are several periods where the average age and asset prices move in opposite directions.

Rather than the average age, most recent macroeconomic studies use aggregate age groups as a proportion of the total population. For example, Poterba (1998, 2000) and Brooks (1998) use the group aged 40–64 as one of their variables. A variable based on the size of the retired generation is used in studies by Goyal (2001), Yoo (1994a) and Ang and Maddeloni (2002). Yoo (1994b) and Macunovitch (1997) use a large number of share variables, prompting criticisms of "overfitting" by Poterba (2001). Whereas most studies focus on the level of the share of age groups, Goyal (2001) and Ang and Maddeloni (2002) maintain that changes are more relevant.

The most commonly used asset classes are corporate stocks, bonds and 3-month treasury bills. Authors tend to use real annual price or returns data adjusted for inflation, for example Goyal (2001), Brooks (1998), Bergantino (1998), Yoo (1994a, 1997), Erb et al. (1997), and Poterba (1998, 2001). Ang and

¹⁰ The variable is also evaluated in the study by Ang and Maddaloni (2003).

¹¹ Bakshi and Chen (1994) constructs average age as: Age_t = $\sum_{(i=1...12)} A_i (N_{i,t}/N_t)$, where N_t is the total population over 20 years old in year t. N_{i,t} is the total populations over 20 in age group i in year t, and A_i represents middle age of *i*th age group. Erb et al. (1997) use another measure of average age, which is the sum of proportion of population in each age category (age weight) multiplied by the age.

Maddeloni (2002) evaluate the performance of the premium of total returns on equity over the short rate. In most cases, real returns are backward looking in empirical studies, although OLG studies often highlight the relevance of forward looking measures. Besides the need to allow for inflation, use of annual real returns highlights the importance of using low frequency data when investigating the relationship between financial assets and demographics, which is likely to be more detectable over the long term given the volatility of short-term asset prices. Studies often note that when asset returns are smoothed, it increases the significance of the relationship. For instance, Bergantino (1998) notes over a five-year period, demographics can explain 38% of variation in bond price appreciation, in contrast to only 12% in annual data. Ang and Maddeloni (2002) also use overlapping observations (the equity premium up to 5 years ahead), correcting standard errors with the Hodrick (1992) procedure.

Poterba (2001) notes that most extant work, including his own, ignores a range of nondemographic variables¹² that may affect equilibrium asset returns and asset prices, and that the results of these may also have policy implications. We accordingly seek to include a range of such variables in our own work below.

2.4 Baby boomers and retirement

So far we have discussed estimation of past relationships between demographics and asset returns, but another equally important and related question is what will happen to overall asset returns when the large baby boom cohorts retire. The arguments surrounding the 'asset meltdown hypothesis' theory as coined by Poterba (2001) relate to the situation where the retirement of baby boomers leads to a sell-off of large amounts of assets that have been accumulated during their prime working years. The sell-off of assets is used to support their retirement consumption.

Brooks (2000) argues that because there is a smaller generation of investors to sell their assets to, this would put downward pressure on asset prices. Also there will be excess demand for bonds and excess supply of equities in coming decades, with a marked decline in the returns on the retirement savings of baby boomers held in equities. Shieber and Shoven (1994) developed a similar argument suggesting that in the future, defined benefit pension systems will become net sellers, with the structure and pattern of flows from defined benefit pension plans means asset prices will be depressed.

On the other hand, Poterba (1998) argues that the meltdown hypothesis is inconsistent with empirical survey data. Consumers decumulate assets at a less rapid rate than the life cycle suggests. This is because the life cycle model takes no account of the bequest motive and lifetime uncertainty. Hence, although asset demands have risen to fuel the recent boom, they will not fall in the future. However,

¹² One exception is Ang and Maddeloni (2002) who use growth in consumption and the term structure as supplementary variables to forecast the risk premium.

Abel (2001) using a rational expectations model, which took account of the bequest motive, found stock prices are still expected to fall when baby boomers retire despite high projected asset demands owing to shifts in the supply of capital in response to changes in its price.

2.5 Factors weakening the link between demographics and asset prices

In this section we consider factors that might weaken the link between demographic structure and financial assets returns and prices.

One is rational expectations. Against the 'asset meltdown hypothesis' is the view that financial markets tend to be efficient and forward looking, and because demographic changes are slow moving and predictable, this would not result in a market meltdown as predicted. This is illustrated by Poterba (1998) who suggests that if capital goods lasted longer than one period and as demographic shifts are predictable as soon as the size of a birth cohort is revealed, a well-functioning asset market would price these capital goods so that their current market price would equal the expected present discounted value of future earnings. Furthermore, adjustment to asset prices will have taken place when the cohort became public information, i.e. when they were born in early 1960's, rather than when they reach middle age in the 1990's. This also poses a challenge to the view that demographic structures are an important factor in the determination of asset returns and prices.

Again, Yoo (1997) criticises existing empirical studies as they do not include forecasts based on expectations. Results may be biased as to the magnitude of demographic effects on asset prices and the turning points of the likely effect. This is illustrated in his work. A static expectations OLG model produced a rise in asset prices of 32% in the first 15 years whilst a 'perfect foresight' model produced a rise of only 19%. The retirement of baby boomers depresses asset prices sooner at 8 years earlier i.e. around 2002 rather than 2010 – indeed, quite close to the current bear market. Nevertheless, asset prices also deviate from the no baby boom path under the assumption of 'perfect foresight'. Most recent research by Brooks (2000) and Abel (2001) sought to incorporate the role of rational expectations into their models, which still imply a boom and bust in asset prices.

Second, researchers disagree on the rate at which assets are decumulated during retirement. This raises the issue of the bequest motive for savings. Studies by Darby (1979), Kotlikoff and Summers (1981) and White (1978) all suggest bequests account for a large proportion of the capital stock owned by households. However, Hurd (1987) and Bergantino (1998)'s findings show little support for the bequest motive, arguing that the elderly save little for bequest purposes. Poterba (2001) suggests the relative importance of bequest motive is still an open question.

Third, the liberalisation of financial systems since the 1970's has given rise to rapid international integration of financial markets even in a large market such as the US. This could break any domestic link between demographic structure and financial asset prices and imply that only global demographics and asset prices are relevant. In this context, the "meltdown" highlighted above might be attenuated by the growing maturing and wealth of populations of emerging market economies such as China in the coming decades.

On the other hand, evidence from research of US equity markets by Brennan and Cao (1997) found investors have a strong 'home bias' towards holding domestic equity portfolios¹³, despite advantages of the international diversification in equity markets. This implies markets are still segmented, because domestic investors possess cumulative advantages¹⁴ over foreign investors in terms of their domestic markets. Although such a home bias towards domestic equities exists, Poterba (1998) suggests there is vast cross border flows for fixed income assets, suggesting a weak link from domestic asset prices to demographics for bonds. Moreover, correlations between stock markets have grown in recent years (Davis 2002b).

3. Demographics and financial asset prices: an empirical investigation

Section 1 showed the past and future parallel shifts in age distribution in the US, Japan and Europe, while Section 2 noted that whereas work on US equity markets has been voluminous, there is more limited empirical research at a macro level within an international context, as well as on bond yields. Accordingly, this section empirically investigates the effects of demographic shifts on several financial asset prices in seven OECD countries and internationally. Our analysis provides estimates using the most recent data from 1950-1999¹⁵ and on a wider range of countries than previous work with disaggregated demographic variables have covered. Following Poterba's suggestion, we include non-demographic variables in the specification. We principally undertake panel estimation, as well as testing for effects in the US to ensure comparability with earlier work. But also we test for effects on aggregates of the seven countries (labelled "international"). This has generally accounted for a high proportion of world GDP and financial assets and hence can be seen as approximating "global" shifts.

¹³ The total of US-held foreign equities are small, for example, Tesar and Werner (1995) suggest US holdings of Canadian equities amounted to 10.4% of the total Canadian equity market in 1990. Kang and Stulz (1994) estimate that total foreign ownership of Japanese equities fluctuates around 4% to 11% between 1989 and 1994. Foreign stock ownership is also small for other countries, e.g. Davis and Steil (2001) found ownership of foreign corporate sector equities in 1998 were: UK, 29.9%; US, 7.2%; Germany, 15.6%, Japan, 13.1%; Canada, 20.3%; France, 27.3% and Italy, 11.9%.

¹⁴ There is a number of possible reasons: Cooper and Kaplanis (1994) and French and Poterba (1991), suggest differential taxation of foreign investments, Uppal (1993) argues deviations from purchasing power parity, which leads international investors to choose portfolios that hedge varying inflation, and Low (1992), and Kang and Stulz (1994) suggest asymmetric information between domestic and foreign investors.

¹⁵ The most recent data used for empirical analysis is by Poterba (2001), in the US only, for the period 1926-1999. Most empirical studies relevant for the research use data prior to 1999 see Erb et al. (1997), Goyal (2001), Bergantino (1998), Brooks (1998), and Yoo (1994a).

The weighting used was GDP weights, implicitly allowing for differing income and wealth levels. We also ran estimates with population weights, and found the results comparable.

As a preliminary, Table 3.1 shows unit root tests for the variables used in the bond and equity equations. Besides the individual country data, we include the international aggregates and the panel unit root tests (undertaken according to the method of Im et al (1997), to average out the individual ADF statistics)

Table 3.1 Unit root tests (ADF)

	DDIFY	DYHP	DLCPI	DLRSP	RLR	VOL	DY
Germany	-7.1**	-1.0	-3.5**	-5.4**	-11.4**	-7.8**	-2.6*
France	-5.4**	-2.4	-2.7*	-5.2**	-3.8**	-3.4**	-1.9
Italy	-6.5**	0.0	-1.8	-4.6**	-2.8*	-4.8**	-2.2
Spain	-8.0**	-4.2**	-2.7*	-3.2**	-2.4	-4.0**	-1.9
Japan	-5.9**	-2.4	-2.0	-5.6**	-9.7**	-3.9**	-1.6
UK	-5.9**	-4.0**	-2.1	-5.9**	-3.1**	-4.0**	-3.1**
US	-5.9**	-4.0**	-3.0**	-5.6**	-3.0**	-6.5**	-1.6
Panel unit	-6.4**	-2.6*	-2.5*	-5.1**	-5.2**	-4.9**	-2.1
root							
International	-6.1**	-1.5	-2.1	-5.0**	-3.5**	-5.7**	-1.5
	AGE20	AGE40	AGE65	DSR	TS	DDLCPI	
Germany	-7.4**	-5.7**	-0.5	-6.5**	-3.9**	-8.4**	
France	-3.7**	-5.2**	-1.1	-3.8**	-3.1**	-6.0**	
Italy	-4.8**	1.5	-0.2	-5.1**	-3.2**	-6.8**	
Spain	-7.5**	3.2	0.5	-3.7**	-2.2	-5.8**	
Japan	-5.1**	-4.3**	-1.6	-4.8**	-4.8**	-6.4**	
UK	-4.6**	-5.0**	-1.1	-3.7**	-3.7**	-5.8**	
US	-22.5**	-7.9**	-2.5	-4.0**	-4.0**	-7.8**	
Panel unit	-7.9**	-3.3**	-0.9	-3.5**	-3.6**	-6.7**	
root							
International	-6.1**	-1.5	-2.1	-5.7**	-5.9**	-6.5**	

Key: DDIFY difference of log difference of real GDP from HP filter; DYHP trend growth derived from HP filter on log difference of real GDP; DY dividend yield; DLCPI log difference of CPI index; DLRSP log difference of real share prices; RLR real bond yield; VOL real equity price volatility; DY dividend yield; AGE20 population aged 20-39 as a percent of the total; AGE40 population aged 40-64 as a percent of the total; AGE65 population 65+ as a percent of the total, DSR is the first difference of the nominal short term interest rate, TS is the term structure (long rate less short rate) and DDLCPI is the acceleration of the CPI index (log second difference). Tests are run without trend. Critical values for a unit root, 95% -2.9, 90% -2.6 hence ** indicates stationarity at 95% and * and 90%. See Appendix for data sources.

In general, all the variables are stationary except the AGE65 cohort (which is unsurprising given the ageing of the population), while inflation, dividend yields and the HP filter on trend growth are also often borderline. In fact AGE65 is only on the borderline of stationarity in the US.

Whereas the logic of non stationarity is to use differences of the relevant variables, Poterba (1998) argues that the use of differences of demographic shares is hard to base in rational expectations, since changes in the share of a given population group are not "news". Following this argument, in the current exercise, we consider it appropriate to estimate our main results in levels of population shares.

Accordingly, and also to avoid the possibility of "overfitting", we only use the stationary AGE20 and AGE40 cohorts in our main results. We test the US with AGE65 as a variant.

3.1 Specification for equities

Our aim is to provide appropriate specifications for share prices and bond yields within which to test for the separate effects of demographic variables. By this method we can ensure that our results are not subject to omitted variables bias.

A helpful way of considering equity price determination is in terms of the Gordon's (1962) growth model (see Bodie et al 2000). This highlights expected dividend growth (g) as well as real long term interest rates (rr) and share price volatility as a proxy for the risk premium (pr) as key determinants of share valuations (V). Equation (1) shows that the value of a share depends on the dividend and the future price. The latter, as shown in equation (2) depends on future dividends suitably discounted. As shown in equation (3), if dividend growth, the long rate and the risk premium are expected to be constant, a series of discounted dividends can be simplified to an expression in dividend growth, the real long rate, the risk premium and the level of dividends:

$$V_o = (D_t(1+g) + P_{t+1})/1 + (rr_{t+1} + pr_{t+1})$$
(3)

$$V_{o} = D_{t+1}/(1 + (rr_{t+1} + pr_{t+1})) + D_{t+2}/(1 + (rr_{t+2} + pr_{t+2}))^{2} + D_{t+3}/(1 + (rr_{t+3} + pr_{t+3}))^{3}....$$
(4)

$$V_o = D_{t+1} / ((rr+pr) - g)$$
 (5)

To implement this structure, data for the estimated real long term interest rate and share price volatility are directly available. However, there are ambiguities in the relation with inflation, which may affect the reaction to real long rates also. In theory, share prices should be set in real terms and not affected by inflation. If real interest rates fall in inflationary periods, share prices could even be boosted. On the other hand, some theorists (Modigliani and Cohn 1989) have suggested that inflation could interact with taxation systems to reduce corporate profitability. This would be particularly the case when there is fiscal drag, with lack of appropriate indexation of tax bands. Lack of indexed allowances for stock relief was a particular problem in countries such as the UK in the 1970s, with firms being held to profit from the rise in value of their inventories, although the impact on profits was wholly offset by rising costs. Equally, inflation might be expected to increase uncertainty and hence the risk premium required for holding equities. Accordingly, since the long rate is defined as the nominal long rate less inflation, it may also be affected by inflation's negative effect on share prices.

As regards growth in dividends, since capital's share of GDP is bounded, GDP growth itself gives a helpful proxy for dividend growth. The most relevant variable is trend growth, although cyclical influences are also likely to influence prices. We can include both by estimating a Hodrick Prescott

filter on GDP growth with a smoothing factor of 100^{16} and deducting it from actual GDP growth. Thus, the trend itself is given by the smoothed estimates and the cyclical effect by the difference between actual GDP growth and the trend (a positive value thus indicates growth in excess of trend). An alternative measure of expected dividend growth is capital productivity, as argued in Davis and Madsen (2001).

The level of dividends is straightforwardly entered via the lagged dividend yield. Note that this also follows the extensive empirical literature that finds dividend ratios to be able to predict equity returns (see Campbell and Shiller (1989), (Fama and French 1988) and the survey in Cochrane (1997))¹⁷. Furthermore, it can be seen as a form of error-correction term also in that there may plausibly be a "normal" relation between share prices and dividends; a high dividend yield should make share price increases more likely if associated real dividends are regarded as sustainable.

Following this discussion, the basic regression models used to test the statistical significance of correlations between demographic structures and real stock prices takes the form of a regression of the difference of real share prices (Δ ln RSP) on trend GDP growth (DYHP), differences from trend (DDIFY), the real long rate (RLR), monthly average real share price volatility (VOL), and the lagged dividend yield (DIVY), with the demographic effects tested using the share of ages 20-39 and 40-64 in the total population (AGE20 and AGE40).

$$\Delta \ln RSP = \alpha + \beta_{1}AGE20 + \beta_{2}AGE40 + \beta_{3}DYHP + \beta_{4}DDIFY + \beta_{5}RLR$$

$$+ \beta_{6}VOL + \beta_{7}DIVY (-1)$$
(6)

Definitions are as set out in Table 3.1; sources and data definitions as well as descriptive statistics are in the Appendix. Regressions use annual data and are for 1950-1999. The demographic variables in the specifications are similar to Yoo (1994a)'s model, with a similar rationale, that the age distribution indicates the demand for financial assets, which in turn drives asset prices and yields over and above other key variables. However, Yoo used different age groups and only estimated the relation between US demographics and financial asset prices. He did not use the range of additional determining variables employed here. He split the age groups evenly for population demographics and used 5 demographic variables. Demographic variables in our estimated equations are split into 2 age groups as a proportion of the total population based upon empirical research findings in sections 2.1 and 2.2 and results showing non-stationarity of the over-65s¹⁸. Obviously the end-points of each cohort are

¹⁶ Note that we included IMF World Economic Outlook forecast data for 2002-5 in the HP filter estimation to avoid the estimate for 2001 being distorted by the end point problem.

¹⁷ Note that more recent work has cast doubt on some of the earlier confidence about the predictive power of dividend ratios (Goyal and Welch 2002).

¹⁸ A variable based on the population of 65 and over is used in studies by Goyal (2001) and Yoo (1994a).

open to debate – in some countries activity may begin later than 20 and retirement is earlier than 65. Another issue is that labour force participation and longevity have changed over the sample, which might affect savings behaviour, albeit potentially in offsetting ways.

The smaller number of demographic variables should avoid the problem of "overfitting" met by Yoo (1994a) and Macunovitch (1997). Poterba (1998, 2000) and Brooks (1998) also use the group aged 40–64 as one of their variables. It is not possible to use measures based on projected asset returns due to lack of survey data allowing breakdown of age and cohort effects for most countries. Also, it avoids a critique of such approaches, namely that the underlying survey data typically omit valuation of defined benefit pension assets and implicit responses to social security wealth.

3.2 Results for equities

Table 3.2 displays results from the estimation of the change in real stock prices using panel estimation for all 7 countries. In the specifications, we regressed country-specific demographic and dummy variables for fixed effects against real stock prices. The methodology was GLS, with fixed effects and cross section weights. Brooks (1998) adopted a similar approach, arguing that cross section weights allow for a global cycle in non-demographic fundamentals, providing more precise estimates of demographic variables. Standard errors are White heteroscedasticity consistent¹⁹.

Table 3.2 – Panel estimation results for change in real share prices (1950-1999)

GLS, Fixed effects, Cross section weights, White heteroscedasticity adjusted standard errors. * Indicates significant at 90% and ** at 95%. Standard errors in parenthesis.

Independent variables	Seven countries	Excluding US
AGE20	0.017 (0.0045)**	0.032 (0.0085)**
AGE40	0.031 (0.0069)**	0.034 (0.008)**
DYHP	2.75 (0.85)**	2.71 (0.8)**
DDIFY	0.703 (0.48)	1.43 (0.64)**
RLR	0.013 (0.0036)**	0.011 (0.0035)**
VOL	-0.306 (0.476)	-0.20 (0.7)
DY (-1)	0.033 (0.0083)**	0.036 (0.0075)**
Fixed effects		
US—C	-1.5	
UK—C	-1.6	-2.2
JР—C	-1.6	-2.1
DE—C	-1.7	-2.2
FR—C	-1.6	-2.2
IT—C	-1.6	-2.2
ESC	-1.6	-2.2
R squared	0.158	0.16
SE of regression	0.21	0.22
Wald test for exclusion of	25.0 (0.0)**	21.1 (0.0)**
AGE20 and AGE40		
No of observations	350	300

¹⁹ This is a partial attempt to correct for variances. Hence we are able to interpret the coefficients and undertake t-tests subject to there being no other forms of misspecification.

_

Looking at the panel results for all seven countries, the non-demographic specification is satisfactory with generally signs as expected. The trend in income has a strong positive effect on share price growth, as does the lagged dividend yield. The volatility and cyclical variables are not significant. What is more surprising is that the real interest rate has a positive sign. This is an indication that the negative inflation effect on share prices is greater than the negative effect of the long rate itself. The demographic variables are highly significant despite inclusion of these standard determinants and display a positive sign, which is consistent with empirical findings found in sections 2.1 & 2.2. The AGE20 variable has a smaller coefficient than AGE40, consistent with a lower effect given the lesser wealth of this age group, suggesting a relative increase in those aged 40–64 year leads to an increase in the annual percentage change in real stock prices. The Wald test indicates that exclusion of the AGE20 and AGE40 variables is not warranted.

Note that the second column in Table 3.2 shows that even without the US, the panel results remain robust. And indeed we now capture a significant cyclical effect on share prices. This suggests that the results are not purely dependent on the demographic effect in the US, but rather a wider global effect is being captured. Following these panel results, we undertook further tests to split out the country specific effects, as shown in Table 3.3. The two sets of results correspond to estimation with and without the US.

Table 3.3 – Panel estimation results for change in real share prices (1950-1999) – country-specific demographic effects

GLS, Fixed effects, Cross section weights, White heteroscedasticity adjusted standard errors. * Indicates significant at 90% and ** at 95%. Standard errors in parenthesis.

Independent variables	Coeff	SE	Coeff	SE
USUSAGE20	0.011	(0.0043)**		
UKUKAGE20	0.025	(0.024)	0.029	(0.023)
JPJPAGE20	0.0083	(0.020)	0.0074	(0.016)
DEDEAGE20	0.013	(0.025)	0.013	(0.024)
FRFRAGE20	0.044	(0.022)**	0.048	(0.024)**
ITITAGE20	0.029	(0.033)	0.035	(0.028)
ESESAGE20	0.058	(0.017)**	0.062	(0.017)**
USUSAGE40	0.065	(0.010)**		
UKUKAGE40	0.0071	(0.023)	0.009	(0.024)
JPJPAGE40	0.025	(0.013)*	0.025	(0.013)*
DEDEAGE40	0.037	(0.019)**	0.039	(0.019)**
FRFRAGE40	0.058	(0.020)**	0.061	(0.021)**
IT—ITAGE40	0.058	(0.031)*	0.06	(0.031)*
ES—ESAGE40	0.031	(0.030)	0.041	(0.038)

In the seven-country equations, 8 out of 14 coefficients on demographic variables are significant suggesting that it is not just a question of spillovers from the US. The US, France and Spain have a

significant AGE20 and the US, Japan, Germany, France and Italy have AGE40 significant. It is interesting to note that apart from the US these are generally classed as "bank dominated countries" where equity prices would not be expected to be sensitive to domestic variables such as demographics²⁰. The coefficients for these countries are also stable when the US is excluded.

Following the panel work, we went on to estimate OLS equations with a similar specification for the US and for the aggregate of the seven countries, where variables were weighted by annual GDP weights. We label the latter "international". The former allows comparison to be made with extant work cited above, while the latter gives a view of the global effects of ageing (given we have the majority of global wealth included in our seven countries). Results are shown in Table 3.4

Table 3.4 Demographics and real stock prices for the US and international samples (1950-1999)

Independent variables	US real stock prices	International real stock prices
Constant	-2.97 (0.64)**	-1.78 (0.81)**
AGE20	-0.0024 (0.0098)	-0.018 (0.027)
AGE40	0.108 (0.02)**	0.076 (0.024)**
DYHP	-3.4 (6.5)	-1.44 (4.3)
DDIFY	-1.28 (0.97)	0.99 (1.7)
RLR	0.03 (0.009)**	0.02 (0.009)**
VOL	-1.19 (0.62)*	-1.19 (0.89)
DY (-1)	0.092 (0.026)**	0.086 (0.035)**
R^2	0.54	0.41
RSS	0.58	0.62
SE of regression	0.12	0.12
F-statistic (7,50)	6.0 (0.0)**	4.07 (0.0)**
Wald test for exclusion of AGE40	15.2 (0.0)**	9.6 (0.0)**
R-bar-squared	0.45	0.31
Serial correlation (2)	1.1 (0.36)	0.9 (0.4)
Normality	1.53 (0.28)	1.0 (0.6)
Heteroscedasticity	0.53 (0.47)	0.31 (0.58)
Stability (RESET)	2.4 (0.09)*	2.1 (0.11)
Stability (Chow forecast)	0.81 (0.62)	1.1 (0.41)
Unit root test	-5.9	-5.6

Note: Standard errors in parentheses, except for diagnostics where the P values are shown. * indicates significance at 90% and ** at 95%. Equation 1 uses US demographic variables. Equations 2 & 3 use International demographic variables. Serial correlation test is the LM (2) test; normality is the Jarque Bera statistic; heteroskedasticity is ARCH (1); stability is the RESET (3) test and the Chow forecast test over 1990-99; unit root is the ADF, critical values as in Table 3.1.

Results for the US are consistent with the panel estimation. We find that the real long rate, the lagged dividend yield and also share price volatility are significant. However, unlike the panel the HP filter on GDP growth is not significant. In terms of demographics we have a significant positive coefficient for the AGE40 variable but not for AGE20. This result is in line with empirical studies by Yoo (1994a),

²⁰ Ang and Maddaloni (2003) found sensitivity of equity risk premia to the change in the share of retired people in bank dominated countries with generous social security.

Bergantino (1998), Poterba (1998, 2001) and Brooks (1998). Note that the US equation includes dummies for the years 1953 and 1957, with a value of -0.29 and a standard error of 0.09.

Similar results are found when we allow for full integration of international capital markets and regress international demographics against the international percentage change in real stock prices, with all variables GDP-weighted. Again the AGE40 variable is significant at the 95% level with correct signs. Note however that the AGE40 in the international sample is non-stationary, which lends less credence to this result than the US and panel work.

OLS estimation allows a much wider range of diagnostic statistics to be provided than for the panel. Most US studies do not provide detailed diagnostics so it is hard for us to evaluate whether we have superior results. In the table we provide the Lagrange multiplier test for second order serial correlation, the ARCH test for heteroskedasticity, the Jarque-Bera normality test, Ramsey's RESET test with three fitted terms, the forecast Chow test over the period 1990-99 and the ADF unit root test for stationary residuals. We also show the F-test for the significance of all variables jointly and a Wald test for exclusion of the AGE40 variable. For both the US and international data, we find that all the test are passed, with the exception of the RESET test for the US which is marginally significant at the 10% level. Meanwhile the Wald test shows that exclusion of the demographic variable would be unjustified. We contend that these results underpin the validity of the inference that demographics have a significant effect on share prices in an international as well as US arena. The Chow test is of particular interest, since it shows that a specification for the US and the international sample estimated solely up to 1990 can forecast the difficult period of the 1990s successfully. When the demographic variable is omitted the results for this test are much poorer.

Meanwhile, the R bar squared for equations 1–2 shows demographic variables along with the other independent variables can explain 30-50% of the total variation in the dependent variables. Results produced by other studies found a lower R bar squared, for example, Yoo (1994a) found for large corporate, common, and small company stocks, the adjusted R squared is 15%, 0% and –7% respectively.

3.3 Specification for bonds

Turning to bonds, in our proposed specification the real long-term bond yield is partly derived from the expectations theory of the term structure (which applies strictly to the nominal long rate with zero inflation). As is well known, this suggests that the long-term interest rate is based on future expected short rates. If the future short rate exceeds the current one the term structure will be upward sloping. We use a change of the short rate to proxy monetary tightening, which if there is positive serial correlation in monetary decision making would lead to higher expected future rates. We also allow for

some mean reversion in the term structure by including a lag of the term structure differential (long versus short rates). Since we are modelling the real long rate some additional variables are needed. We add the lag and acceleration of inflation to allow for possible deviations from the Fisher identity whereby the real (long or short) interest rate is normally constant but may be reduced in the short term by unexpected inflation. Finally we allow for cyclical and trend-growth effects on the real rate by including the HP filter of GDP growth and the difference of actual growth from this (i.e. a proxy for the output gap). These should capture effects of the demand for loanable funds, as well as potentially helping to forecast future interest rate changes. Note that the specification does not allow for changes in monetary policy regime, which is an issue discussed below for the US. Given that short rate data were only available from 1960, the estimation period is 1960-99.

$$RLR = \alpha + \beta_{1}AGE20 + \beta_{2}AGE40 + \beta_{3}DSR + \beta_{4}TS(-1) + \beta_{5}\Delta \ln CPI(-1) + \beta_{6}\Delta\Delta \ln CPI + \beta_{7}DYHP + \beta_{8}DDIFY$$

$$(7)$$

3.4 Results for bonds

As above, in the panel specifications, we regressed country-specific demographic and dummy variables for fixed effects against real bond yields. The methodology was GLS, with White standard errors and cross section weights. Basic results are shown in Table 3.5.

Table 3.5 – Panel estimation results for change in real bond yields (1960-1999)

GLS, Fixed effects, Cross section weights, and White heteroscedasticity adjusted standard errors. * Indicates significant at 90% and ** at 95%. Standard errors in parenthesis.

Independent variables	Seven countries	Excluding US
AGE20	0.249 (0.045)**	0.157 (0.066)**
AGE40	-0.434 (0.074)**	-0.52 (0.086)**
DSR	0.181 (0.054)**	0.188 (0.057)**
TS(-1)	-0.083 (0.061)	-0.095 (0.066)
DLCPI(-1)	-64.4 (3.1)**	-66.0 (3.4)**
DDLCPI	-92.7 (4.7)**	-91.4 (4.8)**
DYHP	-65.5 (9.0)**	-75.0 (9.8)**
DDIFY	1.3 (5.7)	0.037 (6.3)
Fixed effects		
US—C	11.7	
UK—C	14.3	19.8
ЈР—С	12.7	18.7
DE—C	14.0	19.6
FR—C	13.3	18.7
IT—C	14.9	20.6
ESC	13.3	18.8
R squared	0.84	0.85
SE of regression	1.8	1.9
Wald test for exclusion of	64.6 (0.0)**	43.8 (0.0)**
AGE20 and AGE40		
No of observations	273	234

Variables are significant other than the output gap and the lagged term structure. Most signs are as expected, with for example a rise in the short rate boosting the real long rate, and high and accelerating inflation reducing the real long rate. Interestingly, lower trend growth tends to boost the real long rate. Both the demographic variables are significant at 5% and cannot be excluded by the Wald test. The younger age group tends to raise bond yields, consistent with heavy demand for mortgage borrowing. It is the 40-64 group that reduces yields, implicitly raising bond prices owing to heavy net demands for financial assets from this age group. In assessing the size of the coefficients it is worth noting that changes in one variable may accompany offsetting changes in another. Hence the implied changes in yields as the population ages may be relatively small. Meanwhile results excluding the US are very similar to those for the seven countries together.

Table 3.6 – Panel estimation results for real bond yields (1960-1999) – country-specific demographic effects

GLS, Fixed effects, Cross section weights, and White heteroscedasticity adjusted standard errors. * Indicates

significant at 90% and ** at 95%. Standard errors in parenthesis.

significant at 7070 and at 7570. Standard cirols in parchalesis.									
Independent variables	Coeff	SE	Coeff	SE					
USUSAGE20	0.424	(0.061)**							
UKUKAGE20	-0.277	(0.135)**	-0.230	(0.137)**					
JPJPAGE20	-0.368	(0.232)	-0.396	(0.235)*					
DEDEAGE20	0.161	(0.171)	0.173	(0.173)					
FRFRAGE20	0.836	(0.130)**	0.830	(0.131)**					
ITITAGE20	-1.012	(0.339)**	-0.979	(0.342)**					
ESESAGE20	-0.051	(0.324)	-0.024	(0.325)					
USUSAGE40	-0.374	(0.155)**							
UKUKAGE40	-1.311	(0.188)**	-1.258	(0.192)**					
JPJPAGE40	-0.533	(0.172)**	-0.553	(0.174)**					
DEDEAGE40	-0.420	(0.142)**	-0.415	(0.144)**					
FRFRAGE40	-0.865	(0.193)**	-0.845	(0.198)**					
IT—ITAGE40	0.690	(0.355)**	0.697	(0.356)**					
ES—ESAGE40	2.078	(1.023)**	2.007	(1.024)**					

Looking at the separate country coefficients in Table 3.6, it can be seen that the result is not at all driven solely by the US. Of the AGE20 coefficients, four are significant, namely the US, UK, France and Italy although Italy has a negative sign (this may link to the low level of mortgage financing in that country, see Byrne and Davis (2003)). All of the AGE40 coefficients are significant, although those for Italy and Spain have a negative sign. This may link again to housing finance, but could also be due to different patterns of ageing relative to global trends in real rates, and possibly omitted fiscal effects. In the estimate excluding the US, results are very similar, with the Japanese AGE20 coefficient also becoming significant.

Table 3.7 Demographics and real bond yields in the US and international samples (1960-1999)

Independent variables	US real bond yields (US demographics)	International real bond yields (international demographics)
Constant	12.3 (4.0)**	33.8 (22.6)
AGE20	0.266 (0.052)**	0.487 (0.29)
AGE40	-0.239 (0.084)**	-1.29 (0.4)**
DSR	0.628 (0.1)**	0.504 (0.14)**
TS(-1)	-0.73 (0.125)**	-0.72 (0.23)**
DLCPI(-1)	-109.1 (9.7)**	-116.4 (19.1)**
DDLCPI	-142.6 (10.0)**	-143.3 (15.9)**
DYHP	-197.3 (58.9)**	-99.3 (69.5)
DDIFY	-5.8 (6.4)	-8.67 (15.9)
R^2	0.98	0.96
RSS	4.9	9.1
SE of regression	0.4	0.58
F-statistic (12,39)	102.9 (0.0)**	53.9 (0.0)**
Wald test for exclusion of AGE20 and AGE40	16.2 (0.0)**	44.9 (0.0)**
R-bar-squared	0.97	0.94
Serial correlation (2)	1.8 (0.19)	0.93 (0.41)
Normality	0.045 (0.97)	0.91 (0.63)
Heteroscedasticity	0.06 (0.81)	2.3 (0.14)
Stability (RESET)	1.98 (0.14)	1.5 (0.25)
Stability (Chow forecast)	0.74 (0.67)	0.75 (0.67)
Unit root test	-3.7	-3.5

Notes: See Table 3.4. The US equation includes dummies for the years 1982, 1983, 1984 and 1985, while the international equation includes dummies for 1982 1984 and 1986

We then went on to estimate results for the US and the International aggregate by OLS, shown in Table 3.7. Unlike the panel results, the term structure is significant with a negative sign, suggesting that a large differential of long rate over short rate leads to a diminution of the real long rate. For the US, both AGE20 and AGE40 are significant with expected signs, while in the international aggregate it is only the AGE40 which is significant. The R bar squared for all regressions is sizeable, suggesting explanatory variables can collectively explain 80-90% of total variation in the dependent variables. The SE of the regression is low and F tests show one cannot reject significance of the independent variables. As for equities, the estimated results for each equation pass all diagnostic tests, namely for autocorrelation, normality of residuals, heteroskedasticity, stability and forecasting ability over the 1990s. Note that we required some dummy variables for the early 1980s, with the variables being unable to fully capture the high level of real rates in that period.

3.6 Summary of principal results

The main empirical findings are as follows; we detect a significant relationship between panel, international and US age distributions and the change in panel, international and US real stock prices. This is especially true for those aged 40-64. Variables for equities were significant despite use of a specification with the key variables from the Gordon growth model, including separate terms in trend

and output gap and also a lagged dividend yield. Our evidence provides support for existing theoretical and empirical studies, mentioned in Section 2, while extending them outside the US to a panel of seven countries, a panel of six excluding the US, and an aggregate international grouping. Both US and global results for share prices show sound statistical properties, including ability to forecast over the 1990s. Meanwhile, results for bond yields also give evidence of a relationship between demographics and real bond yields for the panel, US and internationally, with the OLS results again having satisfactory statistical properties. This is despite inclusion of variables capturing the key macroeconomic determinants of long rates. When we allow separate coefficients in the panel, our analysis shows most coefficients for the demographic variables are highly significant when regressed on real stock price levels and real bond yields.

3.7 Variants and projections

In order to check the robustness of the results, we ran a number of variants on the basic equations (that is, the seven-country panel equation with fixed effects, the US OLS equation, and the international OLS equation). These were as follows:

- (1) We estimated only up to 1990, in order to assess whether the results are driven by the 1990s when asset prices have risen along with demographic shifts.
- (2) We estimated the equity price equations for ex post real returns including dividends and not only the rise in real share prices.
- (3) We excluded the lagged dividend yield from the equity price equation, given it is at most borderline stationary in most countries.
- (4) We sought to include the AGE65 cohort, while bearing in mind that only in the US is this variable is close to stationary over the sample.

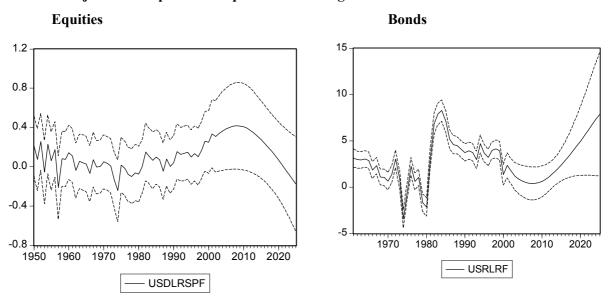
In Table 3.8, we do not provide full details on the variants but only the coefficients on the demographic variables and their standard errors.

Results for excluding the 1990s are more consistent for the panel than for the US and international regressions. In the panel all the coefficients remain significant at the 95% level for real returns on both bonds and equities. In the US results, there remains a strong AGE40 effect for equities but neither demographic coefficient is significant for bonds. All variables are insignificant in the international regressions except AGE40 for bonds. As regards replacing the change in equity prices with the total return, there remain strong demographic effects for the panel and US but again not for the international regression. Excluding the lagged dividend yield leaves the panel result unchanged, while the AGE20 variable is now significant for the US, while AGE40 remains significant for the international regression, albeit only at the 90% level.

Table 3.8 – Variants – demographic effects only

Variant	Variable	Panel (fixed effects)	US (US demographics)	International (international
(1) 1050 00	A CE20	0.011 (0.05)**	0.002 (0.015)	demographics)
(1) 1950-90, equity	AGE20	0.011 (0.05)**	0.002 (0.015)	-0.006 0.035)
prices	AGE40	0.029 (0.008)**	0.127 (0.07)**	0.071 (0.066)
(2) 1960-90, bond	AGE20	0.286 (0.053)**	0.17 (0.16)	0.84 (0.6)
yields	AGE40	-0.39 (0.089)**	-0.53 (0.72)	-1.87 (0.66)**
(3) Real return on	AGE20	1.85 (0.5)**	-0.029 (1.02)	2.6 (1.96)
equity	AGE40	3.5 (0.089)**	11.4 (2.9)**	2.9 (1.9)
(4) Lagged dividend	AGE20	0.013 (0.005)**	0.019 (0.009)**	0.018 (0.018)
yield excluded	AGE40	0.014 (0.007)**	0.036 (0.021)*	0.031 (0.017)*
(5) AGE65 included	AGE20	0.029 (0.006)**	-0.027 (0.02)	-0.011 (0.029)
for equities	AGE40	0.037 (0.009)**	0.10 (0.028)**	0.071 (0.036)**
	AGE65	0.016 (0.0097)	0.064 (0.046)	0.0098 (0.057)
(6) AGE65 included	AGE20	0.012 (0.005)**	0.031 (0.011)**	0.072 (0.017)**
for equities without	AGE40	0.014 (0.007)**	0.076 (0.03)**	0.083 (0.035)**
dividend yield	AGE65	0.001 (0.001)	-0.057 (0.057)*	-0.075 (0.045)*
(7) AGE65 included	AGE20	0.28 (0.04)**	-0.7 (0.43)	0.84 (0.71)
for bonds	AGE40	-0.43 (0.073)**	-2.35 (1.06)**	-1.86 (1.3)
	AGE65	-0.19 (0.08)**	1.72 (0.8)**	-0.02 (1.6)

Turning to the estimates including AGE65, it must be borne in mind that only for the US are the results statistically sound owing to non-stationarity of this variable elsewhere. That said, we find that there is no significant effect for equities in the US unless the dividend yield is excluded, in which case all of the demographic variables are significant at least at the 90% level. In the US bond equation, both AGE40 and AGE 65 are significant. AGE65 tends to put downward pressure on equity prices and upward pressure on bond yields, consistent with a low level of saving and some decumulation of existing assets by pensioners. As regards the panel and international results, in the panel we find a significant AGE65 with a positive sign for equities when the dividend yield is included, but an insignificant coefficient when it is excluded. The international equity equation with no dividend yield has a negative effect of AGE65 as in the US, at the 90% level. In the bond yield equations, no AGE65 effect is detectable for the panel or international samples.


The issue of whether the AGE65 effect is statistically supported is an important one for the market meltdown hypothesis (Section 2.4). We can assess this by using estimated coefficients from US equity equations in Table 3.4 and Table 3.8 variant 6 to project potential effects of changing demographics on US stock markets. We also use those from Table 3.7 and Table 3.8 variant 7 for US bond markets. UN median variant estimates of population are used as our source of demographic projections for the period 2000-2025. We assumed GDP growth and CPI inflation in the US is 3%. As shown in Chart 4, our main results with AGE65 excluded do not indicate a substantial weakening of asset prices in coming decades. The share price rises sharply in the period up to 2010, then increases fall back while remaining above zero. The bond yield falls to remain around 2% up to 2025. On the other hand, Chart

5 shows that with AGE65 included, the equity price is set to decline from 2015 onwards, while the real interest rate rises to historic peaks only previously seen in the early 1980s.

Chart 4: Projected asset prices for equations excluding AGE65

Chart 5: Projected asset prices for equations including AGE65

Even if the Chart 5 projections were seen as plausible, there are a number of reasons why asset price declines might be attenuated. We have assumed variables such as GDP and inflation are exogenous, which is unlikely to be the case. The increasing level of development of the emerging market economies will lead to an offsetting demand for financial assets when their population reaches the high-saving period in the mid-21st century. Reisen (1998) points to both the offsetting patterns of saving and the diversification benefits arising from EMEs as helpful in ensuring adequate returns on OECD pension funds that invest in EMEs, not least in the light of the tendency for returns in OECD

countries to fall in coming decades. Furthermore, productivity changes as the population ages could offset declines in the return on equity owing to demand side factors, as suggested by Cutler et al (1990). Monetary policy may be expected to respond to high real interest rates by an appropriate loosening, which will help attenuate the peaks (Poterba 2001). Investor demand would be likely to switch in the light of relative returns, for example to buy high-yield bonds in the later years. Pension reform in Europe and Japan may boost the global demand for equities with a given demographic structure. Sufficient immigration from emerging markets could change the overall demographic pattern in OECD countries. Finally, Neuberger (1999) argues that the increase and subsequent decrease in flows will be balanced by rises and falls in equity issues, with little effect on prices and returns.

Despite all these caveats, the projections shown in Chart 5, especially if they were reproduced across the OECD, do identify potential pressures on asset prices that will have to be taken into account by policy makers. Moreover, some credence is given to the results here by projections from a Japanese equation up to 1990 including AGE65 (not illustrated), which show that population ageing in that country was projected to sharply weaken share prices in that country, even if GDP growth had remained strong. The slump in share prices in Japan in the 1990s may hence have been linked to demographics as well as other macroeconomic and financial factors.

4 Implications for pensions policy

Since the 1980's, major OECD countries have been undergoing major pension reforms; whilst it is beyond the scope of the paper to discuss them²¹; it is useful to draw attention to policy implications for pension reforms in the light of our analyses. The fundamental reasons for such reforms are due to profound shifts in international demographic structures and aging of developed countries discussed in Section 1. This implies a massive debt burden as a result of existence of pay-as-go-pension systems (PAYG), notably for Europe and Japan. The net present value of PAYG schemes' liabilities as a percentage of GDP given current trends in demographics and taxation is as much as 100% for France, Germany and Japan (Chand and Jaeger 1996). As a result there are calls for a move towards funded pension schemes.

Whilst there are benefits from funded pension schemes, see Davis (1998), the forecasts in Chart 5 highlight market risks associated with a move towards funding, notably through defined contribution funds. These suggest that ageing could put downward pressure on expected returns. In effect, adverse movements in stock prices and bond yields as pension funds become net sellers while the high saving cohort is small would have repercussions for retirement wealth, leaving retirees with smaller than expected net assets. Funding finds it difficult to allow for the risk of extreme market volatility when

_

²¹ For a review of recent pension reforms, see Zanni (2001).

expectations and investors' asset allocations change. Other types of financial instability may arise in a period of instability, e.g. collapses of market liquidity and issuance, see Davis (1994, 2002a).

Brooks (2000) argues that governments should take an insurance role to eliminate the 'cohort-specific risk'²² that comes from demographic changes by borrowing over time to stabilize the risk free return. Given there also may be substantial transition costs from PAYG to a fully funded scheme, with one generation "paying twice", it may also be prudent for a partial switch to funding to take place as in the case of the US, so that PAYG pensions are retained to provide a 'safety net' and to reduce the inherent market, and diversification risks associated with funding. Although PAYG pensions are subject to "political risk" that future generations will not be bound by past commitments, these are unlikely to be perfectly correlated with market risks.

5. Conclusion

Summarising, in Section 1, we observed a persistent influence of baby boomers and increasing life expectancy on the overall past and future demographic landscape of major OECD countries. Against this background, in Section 2 we outlined the theoretical literature, which suggests a potential link between demographics and asset prices supported by past US empirical studies, and we have sought to follow best practice given limitations of international data.

We looked at the panel effects of international demographics on real stock price level and bond yields on average and country-by-country using panel data. A significant number of countries other than the US show a significant linkage of demographics to ageing. The empirical results presented in this paper also provide evidence that changes in panel, US and international demographics have had a significant impact on US and international stock prices and bond yields, even in the presence of standard additional independent variables. The international results are of particular interest, given their robustness and the logic of international financial integration. They may also link to the superiority of aggregate data as was observed in the case of Euro-Area wide monetary aggregates whereby the benefits in reducing residual variance from statistical averaging offsets any aggregation bias (Fagan and Henry 1998). More tentative results including estimated effects of the over-65 cohort in the US suggest a more severe downturn is possible, thus underlining the potential market risks associated with sole reliance on fully funded pension schemes.

There remain limitations to the work presented here. Other factors may influence financial asset prices. For example, we could allow for fiscal deficits to have an impact on real bond yields. Real bond yields themselves could be specified differently from the traditional approximation of long rates

²² This risk relates to the baby-bust cycle. When the baby boom retires, at the turning point of a baby-bust cycle, a shift from stocks to bonds will occur and this will result in excess demand for bonds. Bond returns will fall sharply relative to returns on capital.

less current inflation, although lack of inflation survey data for most countries limits such possibilities. Also our regression models fail to consider the role of rational expectations, which some studies have incorporated in their models in section 2.5. Further research could quantify such effects in a 'calibrated' asset market equilibrium model, or use an overlapping generations simulation model incorporating rational expectations²³. However, it is beyond the scope of our current research. We have conducted much of our analysis in an international context and assumed stock markets are highly integrated; however, there is still the issue of the evolving extent of world capital market integration over the sample that can be allowed for in estimation. Use of GDP weights for global variables could be challenged, with an alternative being population. Attempts could be made to deal better with non-stationarity of the elderly cohort outside the US, for example in an error correction framework. In further work, modelling could be elaborated, possibly with real bond yields and share prices jointly determined in a VAR or VECM framework. It could also be extended to allow for capital productivity as a long run determinant of share prices, as in the model of Davis and Madsen (2001).

References

Abel, Andrew B. (2000). "The Effects of a Baby Boom on Stock Prices and Capital Accumulation in the Presence of Social Security". The Wharton School of the University of Pennsylvania and NBER.

Abel, Andrew B. (2001). "Will Bequests Attenuate the Predicted Meltdown in Stock Prices When Baby Boomers Retire?". Working paper no: 01-2, The Wharton School of the University of Pennsylvania and NBER.

Ameriks John and Zeldes, Stephen P. (2000). "How Do Households Portfolio Shares Vary with Age?". Working paper: Columbia University and TIAA-CREF.

Ang Andrew and Maddaloni Angela (2003), "Do demographic changes affect risk premiums? Evidence from international data", ECB Working Paper No 208

Ando, Albert and Franco Modigliani (1963). "The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests". American Economic Review, Vol 53, pp 55-84.

Bakshi, Gurdip S. and Chen Zhiwu (1994). "Baby Boom, Population Aging, and Capital Markets". Journal of Business, Vol. 67, no.2 (April): 165 – 202.

Bergantino, Steven M. (1998). "Life Cycle Investment Behavior, Demographics, and Asset Prices". PhD Dissertation, MIT.

Bernheim D (1991) "How strong are bequest motives; evidence based on estimates of the demand for life insurance and annuities", Journal of Political Economy, 99, 899-927

Bodie Z, Kane A and Marcus A J (1996), "Investments", Irwin, Homewood, Illinois...

Brennan, Michael J. and Cao, Henry H. (1997). "International Portfolio Investment Flows". The Journal of Finance, Vol LII, no.5 (Dec): 1851 – 1880.

Brooks, Robin (1998). "Asset Markets and Savings Effects of Demographic Transitions". Doctoral Dissertation, Yale University, Department of Economics.

Brooks, Robin (2000). "What Will Happen to Financial Markets When the Baby Boomers Retire?". IMF Working Paper: WP/00/18.

Campbell John Y and Shiller Robert J (1989), "The dividend-price ratio and expectations of future dividends and discount factors", Review of Financial Studies, 1, 195-227

Chand, Sheetal and Jaeger, Albert (1996), "Ageing population and public pension schemes", Occasional Paper No 147, IMF, Washington DC

²³ See Brooks (2000).

Cochrane John H (1997), "Where is the market going? Uncertain facts and novel theories", Federal Reserve Bank of Chicago Economic Perspectives, 21(6), 3-37

Cooper, Ian A. and Kaplanis, Evi (1994). "Home Bias in Equity Portfolios, inflation hedging, and International Capital Market Equilibrium". Review of Financial Studies, vol: 7, pp 45 - 60.

Cutler, D., Poterba, J., Sheiner, L. and Summers, L. (1990), 'An aging society, opportunity or challenge?', Brookings Papers on Economic Activity, 1, 1-56.

Dang T T, Antolin P and Oxley H (2001), "Fiscal implications of ageing; projections of age-related spending", Economics Department Working Paper No 305, OECD, Paris

Darby, Micheal (1979). "The Effects of Social Security on Income and the Capital Stock". Washington: American Enterprise Institute, 1979.

Davis E P (1994), "Market liquidity risk", in eds. Fair D. and Raymond R., "The Competitiveness of Financial Institutions and Centres in Europe", Kluwer Academic Publishers

Davis E Philip (1998), "Funding's advantages over pay-as-you-go", Investment and Pensions Europe, January

Davis E Philip (2002a), "Ageing and financial stability", in eds Auerbach A and Herrmann H, "Ageing, monetary policy and financial markets", Springer, Berlin

Davis E Philip (2002b), "Pension fund management and international investment; a global perspective", paper presented at the Senior Level Policy Seminar, Caribbean Centre for Monetary Studies, Trinidad

Davis E Philip (2003), "Comparing bear markets, 1973 and 2000", National Institute Economic Review, 183, 78-89

Davis E Philip and Madsen Jakob (2001), "Productivity and equity returns; a century of evidence for 9 OECD countries", Working Paper 01-12, Brunel University

Davis, E Philip and Steil, Benn (2001). "Institutional Investors". MIT Press.

Dent, Harry S. (1993). "The Great Boom Ahead: Your Comprehensive Guide To Personal and Business Profit in the New Era of Prosperity". Hyperion.

Disney, Richard (1996). "Can we afford to grow older?". MIT Press.

Erb, Claude B., Harvey, Campbell R. and Viskanta Tadas E. (1997). "Demographics and International Investments". Financial Analysts Journal, 14-28

Fagan G and Henry J (1998), "Long run money demand in the EU; evidence for area wide aggregates", Empirical Economics, 23, 483-506

Fama, Eugene., and French Kenneth. (1998). "Dividend Yields and Expected Stock Returns". Journal of Financial Economics, vol: 22, pp 3-25.

Feldstein Martin and Samwick Andrew (1998), "The transition path in privatising social security", in ed M Feldstein "Privatising social security", University of Chicago Press

Feldstein Martin and Samwick Andrew (2001), "Potential paths of social security reform", NBER Working paper No 8592

FSA (2002), "Financing the future: mind the gap!", UK Financial Services Authority, London, May 2002

French, Kenneth R. and Poterba, James M. (1991). "Investor Diversification and International Equity Markets". American Economic Review, Papers and Proceedings, vol: 81, pp 222-226.

Friedman, Milton (1957). "A Theory of the Consumption Function". Princeton University Press.

Goyal, Amit (2001). "Demographics, Stock Market Flows, and Stock Returns". Working Paper: Anderson Graduate School of Management, UCLA.

Goyal Amit and Welch, Ivo (2002), "Predicting the equity premium with dividend ratios, NBER Working Paper No 8778

Hodrick R J (1992), "Dividend yields and expected stock returns; alternative procedure for inference and measurement", Review of Financial Studies, 5, 357-386

Hurd, Michael D. (1987). "Savings of the Elderly and Desired Bequests". The American Economic Journal. June, pp 299-312.

Im, K S; Pesaran, M H; Shin, Y (1995)., "Testing for Unit Roots in Heterogeneous Panels", University of Cambridge, Department of Applied Economics Working Paper, Amalgamated Series: 9526. p 49. June 1995

Jagannathan Ravi, McGrattan Ellen and Scherbina Anna (2000), "The declining US risk premium", Federal Reserve Bank of Minneapolis Quarterly Review, 24/4, 3-19

Kang, Jun-Koo and Stulz, Rene M. (1994). "Why is there a Home Bias? An Analysis of Foreign Portfolio Equity Ownership in Japan". Journal of Financial Economics

Kohl, Richard and O'Brien Paul (1998). "The Macroeconomics of Ageing, Pensions and Savings: A Survey". OECD, paper: AWP 1.1.

Kotlikoff, Laurence and Summers, Lawrence (1981). "The Role of Intergenerational Transfers in Aggregate Capital Accumulation". Journal of Political Economy.

Low, Aaron (1992). "Essays on Asymmetric Information in International Finance". PhD dissertation. University of California, Los Angles.

Macunovitch Diane (1997), "Discussion of social security; how social and secure should it be?", in eds Steven Sass and Robert Triest, "Social security reform, links to saving investment and growth", Federal Reserve bank of Boston, 64-76

Mankiw, Gregory N. and Weil, David, N. (1989). "The Baby Boom, The Baby Bust and the Housing Market". Regional Science and Urban Economics, vol. 19, pp 235-258.

Mantel, J. (1999). "European Pension Reforms". Merrill Lynch publications.

Masson, P., Bayoumi, T. and Samiei, H. (1995), 'International evidence on the determinants of private saving', IMF Working Paper No. W95/51

Modigliani, F. (1986). "Life cycle, individual thrift, and the wealth of nations". American Economic Review, vol: 76, pp 297-312.

Modigliani, Franco and Brumberg, Richard (1954). "Utility Analysis and the Consumption Function: An Interpretation of Cross-Section Data", in K. Kurihara, ed.: Post-Keynesian Economics. Rutgers University Press.

McMorrow, K. and Roeger, W. (2000), "The Economic Consequences of Ageing Populations (A Comparison of the EU, US and Japan)" Directorate-General for Economic and Financial Affairs (ECFIN) of the European Commission.

Neuberger A. 1999. "Long term savings flows and the capital market", Morgan Stanley Dean Witter Global Pensions Quarterly, January 1999

Poterba, James, M. and Samwick, Andrew A. (1997). "Stock Ownership Patterns, Stock Market Fluctuations, and Consumption". Brookings Paper on Economic Activity, vol.2, pp 295-371.

Poterba, James, M. and Samwick, Andrew A. (1997). "Household Portfolio Allocation Over the Life Cycle". NBER Working Paper 6185.

Poterba, James, M. (1998). "Population Age Structure and Asset Returns: An Empirical Investigation". NBER Working Paper 6774.

Poterba, James, M. (2001). "Demographic Structure and Asset Returns", Review of Economics and Statistics, 83, 565-584

Reisen H. 1998. "Warning; past pension fund performance is no guarantee for future performance", in eds H Blommestein and N Funke, "Institutional investors in the new financial landscape", OECD, Paris.

Schieber, S. J. and Shoven, J. B. (1994) "The Consequences of Population Aging on Private Pension Fund Saving and Asset Markets". NBER Working Paper 4665.

Shiller, J. Robert (2000). "Irrational Exuberance". Princeton University Press.

Shomera, R. Sylla (1991). "A History of Interest Rates". Rutgers Unw Press.

Siegel, Jeremy (1998). "Stocks for the Long Run". Second Edition, New York: Mcgraw Hill

Sterling, William and Waite, Stephen (1998). "Boomernomics: the Future of Your Money in the Upcoming Generational Warfare". The Ballantine Publishing Group.

Tesar, Linda L. and Werner Ingrid (1995). "Home Bias and High Turnover". Journal of Finance, vol: 48, pp 529-554.

Thomas, R. L (1997). "Modern Econometrics". Addison Wesley Longman.

Turner D, Giorno C, De Serres A, Vourch A and Richardson P. 1998. "The macroeconomic implications of ageing in a global context", Economics Department Working Paper No 193, OECD, Paris

Uppal, Raman (1993). "A General Equilibrium Model of International Portfolio Choice". Journal of Finance, vol: 48, pp 467-492.

Wang, Hui and Sherman Hanna (1997). "Does risk tolerance Decrease With Age?". Financial Counselling and Planning. Volume 8(2).

White, Betsey (1978). "Empirical Tests of the Life Cycle Hypothesis". American Economic Review. 1978, vol: 68, pp 547-60.

Yoo, Peter S. (1994a). "Age Distribution and Returns of Financial Assets". Federal Reserve Bank of St. Louis. Working Paper 94-002B.

Yoo, Peter S. (1994b). "Age Dependent Portfolio Selection". Federal Reserve Bank of St. Louis. Working Paper 94-003A.

Yoo, Peter S. (1997). "Population growth and Asset Prices". Federal Reserve Bank of St. Louis. Working Paper: 97-016A.

Zanni, Giovanni (2001). "Re-centering the debate on pensions: Part 1 – 4. Euro area Special". Credit Suisse First Boston.

Appendix: Variable and data descriptions:

DLRSP = log difference of annual average level of real stock price index excluding dividends. Source: various issues of IMF Financial Statistics yearbooks (IFS) for the period 1950-2000. The nominal historical data series for specific countries are spliced and rebased to 1975. It is divided by the relevant CPI index to get real stock price index, and then converted to % changes.

RLR = Real bond yield. Sources: Shomera (1991) for the period 1952-1965 and IFS for the period 1966-2000. Nominal series is converted to real terms by subtracting annual CPI inflation rate from the nominal series.

AGE20 = Fraction of those between 20 - 39 year olds as a % of total population. Data for all demographic variables are from UN population database (1998). Data after 1998 are based on UN projections in the medium – fertility variant.

AGE40 = Fraction of those between 40 - 64 year olds as a % of total population.

AGE65 = Fraction of those over 65 years old as a % of total population.

GDP Real Gross Domestic Product. Source: IFS.

DYHP Hodrick-Prescott filter on log difference of real GDP

DDIFY Log difference of real GDP less DYHP

CPI = Consumer price index. Source: IFS.

DLCPI Log difference of CPI

DDLCPI Log second difference of CPI

VOL = Real share price volatility (annual standard deviation of monthly changes in real share prices)

DY.... = Dividend yield on market index

TS = Term structure, nominal long term interest rate less money market rate

SR = Short rate money market rate Source: IFS.

Table A1: Descriptive statistics for demographic variables, 1950-1999

		US	Japan	Germany	France	Italy	Spain	UK	Inter- national
AGE20	mean	29.44	30.97	28.53	28.21	29.23	29.32	27.60	29.19
	stdev	3.10	2.56	1.80	1.61	1.28	2.04	1.46	1.57
AGE40	mean	26.32	27.35	31.10	28.32	29.42	27.26	30.01	27.97
	stdev	1.16	5.17	1.91	1.51	1.47	1.01	1.45	1.14
AGE65	mean	10.57	8.78	13.62	13.08	12.10	10.76	13.65	11.31
	stdev	1.44	3.36	1.92	1.25	2.87	2.77	1.84	1.75

Table A2: Descriptive statistics for non demographic variables, 1950-1999

		US	Japan	Germany	France	Italy	Spain	UK	Inter- national
DLRSP	mean	5.06	6.23	6.26	4.43	1.54	1.52	3.28	4.52
(*100)	stdev	16.09	24.09	23.19	22.86	25.37	24.52	22.96	14.72
RLR	mean	2.49	2.12	4.32	2.14	2.38	-0.24	2.60	2.47
	stdev	2.57	4.11	1.92	3.77	3.39	5.59	3.02	2.36
VOL	mean	5.37	7.86	7.76	7.66	9.03	7.73	7.03	6.64
	stdev	3.06	4.39	4.40	4.06	5.16	4.49	4.75	2.41
DLCPI	mean	3.89	4.06	2.67	5.41	6.56	7.84	5.56	4.33
(*100)	stdev	2.89	4.42	2.33	4.12	5.19	5.14	4.70	3.01
DLGDP	mean	3.18	5.87	3.97	3.61	3.73	4.37	2.46	3.62
(*100)	stdev	2.34	3.69	3.18	2.03	2.43	3.70	1.91	1.87
DY	mean	3.74	3.21	3.44	4.21	3.54	5.46	5.00	3.74
	stdev	1.21	2.93	1.20	1.79	1.37	3.23	1.48	1.12
SR	mean	5.27	6.19	5.13	6.94	8.55	8.71	7.23	6.63
	stdev	2.83	2.80	2.25	3.35	4.85	4.37	3.56	2.38
TS	mean	1.16	0.03	1.68	0.40	-0.08	0.04	0.78	0.84
	stdev	1.21	1.57	1.50	1.25	1.92	1.51	1.77	0.84