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Stretching of a capillary bridge featuring a particle-laden interface: particle
sedimentation in the interface
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Abstract Colloidal particles adsorbed at fluid interfaces can be subject to external forces, for instance of mag-
netic, electrical, or gravitational origin. To develop a tool that will enable to study the effect of these forces
on interfacial particle transport, we derive a transport equation for the surface particle concentration using the
method of volume averaging. This equation is specialised to the problem of particle sedimentation induced by
external forces on an axisymmetric capillary bridge stretched with assigned constant velocity between two cir-
cular plates. The equation for the interfacial concentration is one-way coupled to the unsteady Stokes equation
in the capillary bridge, and solved in the thin-thread approximation, in the limit of small capillary and Bond
numbers and for moderate area fractions. We find that owing to the competition between particle settling in
one direction, and fluid velocity in the opposite direction, a concentration peak develops between the neck re-
gion and the moving plate. Hydrodynamic interactions, modelled through a concentration-dependent hindrance
function, have the effect of steepening the shock-like concentration gradients that develop in the interface.
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1. Introduction

Solid particles of intermediate wettability
have a tendency to adhere to fluid interfaces.
This phenomenon is purely mechanical in na-
ture, and is due to capillary forces holding the
particles at an equilibrium position in the inter-
face ([1]). The strong attachment of particles
to fluid interface is exploited in a variety of ap-
plications, from solid-stabilised emulsions and
foams, to froth flotation, to the development of
new materials, where the particles are primar-
ily used to alter the effective mechanical prop-
erties of the interface or prevent coalescence
([2, 3, 4]).

One of the most distinctive characteristics of
solid particles (as opposed to surfactants) is the
facility with which they can be designed to re-
spond to external forces. It has been suggested
that the interfacial transport of particles by ex-
ternal fields (e.g. magnetic) can be a useful
strategy to modify dynamically the mechanics
of interfaces ([5]), but so far the amount of fun-
damental work done on the topic is very limited
([6, 7, 5]). In addition, there is a need to study

the important effect of gravitational settling on
the ageing properties of particle-laden inter-
faces [6, 7]. As a step towards understanding
interfacial particle transport by external field, in
this work we consider the problem of an axi-
symmetric liquid bridge stretched between two
disks, translating parallel to each other with an
assigned constant velocity. The liquid bridge
comprises a viscous fluid immersed in a second
fluid of negligible viscosity (e.g., air). The in-
terface of the bridge is populated with rigid par-
ticles, which migrate owing to a constant ex-
ternal field directed parallel to the bridge axis
. The problem of the stretched liquid bridge
has been extensively studied in the case of clean
(see, e.g., [8, 9]), and surfactant-covered inter-
faces ([10, 11]). It therefore constitute a useful
starting point a broad investigating on the effect
of external forces on interfacial particle trans-
port.

A contribution of this work is the systematic
development of a transport equation for the par-
ticle concentration in the interface. While we
include only the term corresponding to a con-
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stant external force, the formulations is general,
and can accommodate inter particle interactions
of hydrodynamic and non-hydrodynamic ori-
gin. The transport equation for the particle con-
centration is one-way coupled to the unsteady
Stokes equation for the flow within the liquid
bridge. Both the unsteady Stokes equation and
the transport equation for the particle concen-
tration are solved in the thin-thread approxima-
tion. We are specifically interested in the com-
petition between particle settling in one direc-
tion, and stretching of the bridge in the opposite
direction, and in the effect that these competing
factors have on the particle concentration field.

2. Description of the problem

Figure 1: Sketch of the problem

We consider an axisymmetric liquid bridge
held captive between two identical circular
disks of radius R (see Fig.1). The interface of
the bridge separates an inner fluid of viscosity
µ from an outer fluid of viscosity µo � µ . It
will be assumed that the dynamical influence of
the outer fluid on the bridge is negligible. A
cylindrical coordinate system (r,z) is set fixed
to the lower disk, with the origin at the disk’s
centre and z− axis directed upwards.

The interfaces is populated with identical
spherical particles of radius a. The particles are
adsorbed making a contact angle of 90◦ with the
interface. Under this condition the particles are
half-immersed in each fluid.

Starting with a cylindrical liquid bridge of
length L0, a constant upward velocity V is ap-
plied to the top boundary, while the bottom
boundary is kept fixed. The particles are acted

upon by an external force that makes the par-
ticles sediment downwards. The inertia of the
fluid and the particles is neglected.

3. Results and discussion

3.1 Derivation of a transport model for the
particle concentration

Colloidal particles - unlike surfactant
molecules - are characterised by well-defined
boundary conditions at their surfaces, and
can be acted acted upon by external and
inter-particle forces that, in many cases, can
be calculated from first principles. Modelling
their transport does not, therefore, require to
postulate phenomenological equations: these
equations can be derived systematically, using
standard averaging techniques developed for
multiphase flows. In this section we use the
method of volume averaging to derive a trans-
port equation similar to the suspension-balance
model for bulk suspensions discussed by Nott
& Brady ([12]).

To apply volume averaging, we consider the
particle-fluid “mixture” contained within a thin
control volume that embeds the interface. For
convenience of analysis this control volume is
taken to be a rectangular prism of thickness ε

and side length lv, with ε� lv, having the wider
face parallel to the interface. The control vol-
ume is assumed to comprise a sufficient number
of particles that a continuum treatment is justi-
fied.

The continuity and momentum equations,
valid both within the region occupied by the
solid and the region occupied by the fluids, are
∂ρ

∂ t +∇ ·ρu = 0 and ∇ ·σ +b = 0, respectively,
where u is the velocity vector, σ is the stress
tensor, and b is an external force. A conve-
nient way to obtain the continuity equation for
the particle phase is to multiply the continuity
equation given above by an indicator function
X , which is one inside the particles and zero
otherwise, and then volume average over the
volume V occupied by the control volume. We
will use the notation 〈·〉 = 1/V

∫
V (·)dV to de-

note volume averaging. It is easy to show (see
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[13]) that this formal procedure leads to

∂φ

∂ t
+∇ ·φ 〈u〉p = 0, (1)

where 〈u〉p = φ−1 〈u〉 is the phase-averaged
particle velocity and φ = 〈X〉 is the particle vol-
ume fraction.

The particles are constrained to move along
the fluid interface. Since spatial derivatives are
taken along the interface, the nabla operator ∇

can be replaced by the corresponding surface
operator ∇s (the two operators applied to a tan-
gential field give the same result). Moreover,
because Eq. (1) is linear in the concentration, φ

can be replaced by the surface fraction φs, giv-
ing ∂φs

∂ t +∇s ·φs 〈u〉p = 0. This equation mod-
els the change in concentration of particles in a
control volume whose lateral area (the area ob-
tained by projecting the control volume region
onto the undisturbed interface) is fixed. This
formulation is suitable for a flat interface. When
the interface is curved the lateral area of the
control volume changes at a rate equal to KUn,
where K is the total (twice the mean) curvature
of the interface and Un is the normal velocity of
the interface ([14]). For a curved interface, Eq.
(??) should therefore be amended with a curva-
ture term, leading to

∂φs

∂ t
+KUnφs +∇s ·φs 〈u〉p = 0. (2)

Note that Eq.(2) contains the particle velocity,
not the fluid velocity; this important difference
is often overlooked in the literature on surfac-
tants.

Volume averaging the momentum equation
gives rise to the average stress inside the parti-
cles ∇ · 〈Xσ〉, the interfacial momentum source
term 〈∇X ·σ〉, and the volume average body
force acting on the particles, 〈b〉 ([12]). The
average stress within the particles can be de-
composed ([15]) as 〈Xσ〉 = Σ+ 〈xb〉 , where
Σ= 1

V
∫

Sp
xσ ·ndS is the stresslet giving rise to

the “effective viscosity” of the suspension, and
〈xb〉 is the Irving-Kirkwood tensor that mod-
els non-hydrodynamic interparticle interactions
([12]). The interfacial momentum source term,
as in a bulk suspension, is just the volume av-

erage value of the hydrodynamic and hydro-
static forces that the particles exert on the fluid
within the control volume. We denote the forces
per unit volume due to hydrostatic and hydro-
dynamic forces by Fhs and Fhd , respectively.
With this notation the momentum balance reads
∇s · 〈Σ〉+∇s · 〈xb〉+Fhs+Fhd +〈b〉= 0. Upon
multiplication by the control volume thickness
the average momentum equation for the particle
phase becomes

∇s ·Σs +∇s · 〈xb〉s +τhs +τhd + 〈b〉s = 0 (3)

where 〈·〉s = 1/A
∫

V (·)dV , with A = l2
v . The

vectors τhs and τhd are the surface stresses cor-
responding to Fhs and Fhd , respectively, and
Σs =

1
A
∫

Sp
xσ · ndS. The physical meaning of

Eq. (3) is quite clear if the term Σs is neglected.
In this case, Eq. (3) expresses a balance be-
tween the hydrodynamic, hydrostatic, and body
forces acting on the particles and the tension in
the plane of the interface owing to inter-particle
interactions of non hydrodynamic origin.

In order to couple the average continuity
equation (2) with the momentum equation (3),
the term τhd originating from the shear forces
on the interfacial particles due to the bulk fluid
motion, must be closed. It is reasonable to pa-
rameterise τhd on the bulk fluid velocity extrap-
olated at the location of the interface, Us, be-
cause this quantity determines the magnitude
of the shear forces acting on the portion of
each particle surface in contact with the fluid
of higher viscosity. Because of Galilean invari-
ance and linearity of the governing equations,
τhd must be proportional to 〈u〉p−Us. In addi-
tion, τhd must depend on the dynamic viscosity
of the fluid µ , the particle size a, and the av-
erage inter-particle separation `. Dimensional
analysis suggests τhd =−F1(φs)

µ

a

(
〈u〉p−Us

)
where F1 is a non-dimensional function. When
the particles are widely separated at a liquid-
gas interface, the Stokes drag on each particle
is equal to half that in the bulk ([16]). The
drag force per unit area is thus approximately
3πµ

a
`2

(
〈u〉p−Us

)
, which suggest that F1 →

3φs as φs→ 0. This justifies writing

τhd '−
3φsµ

f (φs)a

(
〈u〉p−Us

)
, (4)
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where f (φs) is an hindrance function satisfying
f (0) = 1 that accounts for hydrodynamic inter-
actions. Using equations (4) and (3) the conti-
nuity equation (2) can be recast as

∂φs

∂ t
+KUnφs +∇s ·φsUs

=− a
3µ

∇s · f (∇s ·Σs +∇s · 〈xb〉s +τhs + 〈b〉s) .

(5)

For a dilute suspension of force-free Brownian
particles, Σs ∝ −φsI , where I is the identity
tensor, and (5) reduces to a convection-diffusion
equation. When a significant difference be-
tween the particle and fluid velocities occurs,
and interparticle forces of non-hydrodynamic
origin are absent, the drag and ”buoyancy”
terms dominate; thus

∂φs

∂ t
+KUnφs+∇s ·φsUs =−

a
3µ

∇s · f (τhs + 〈b〉s) .
(6)

This equation can be rewritten as

∂φs

∂ t
+KUnφs +∇s ·φs

(
Us + f Up,0

)
= 0 (7)

where

Up,0 =
a(τhs + 〈b〉s)

3µφs
, (8)

is the single-particle settling velocity In the
case of gravitational sedimentation, φ−1

s 〈b〉s is
the particle weight and φ−1

s τhs is the buoyancy
force.

3.2 Thin-thread approximation

The thin-thread approximation consists in ex-
panding all the flow variables in the slenderness
parameter R/L0 and retaining only the leading
order terms ([17]). It is easy to show that the
thin-thread approximation corresponding to Eq.
(7) is

∂φs

∂ t
+

1
2

φs
∂u
∂ z

+u
∂φs

∂ z
−Up,0

∂

∂ z
( f (φs)φs) = 0

(9)

where Up,0 = |Up,0| and u is the leading-order
z-component of the fluid velocity. We assume

Up,0 to be directed in the negative z direction.
The simulations presented in the next section
couple (9 ) with the thin-thread solution of the
incompressible unsteady Navier-Stokes equa-
tion, as formulated in Eggers and Dupont ([17]).
In contrast to these authors, we neglect the non-
linear convective term.

Marangoni stresses are not included in our
numerical solution of the interfacial dynam-
ics, the surface tension is assumed constant,
and body forces acting on the interface are
neglected. This is equivalent to a one-way-
coupling approximation, in which the effect of
the fluid on the particles is accounted for, but
the effect of the particles on the fluid and the
interface is neglected. The transport equation
(9) is solved with the velocity field u provided
by the solution of the unsteady Stokes equa-
tion. The resulting coupled system of non-
linear equations is solved on a fixed grid, us-
ing the transformation ξ = z/L(t) to map the
original problem defined on z ∈ [0,L(t)] into
an equivalent problem on ξ ∈ [0,1]. The cou-
pled equations is discretised in time using a
Crank-Nicholson scheme. The terms u∂φs

∂ z and
Up,0

∂

∂ z ( f (φs)φs) are discretised by centered dif-
ference and by a first-order upwind scheme, re-
spectively. Dirichlet boundary conditions for
the velocity are used at z= 0 and z= L. Because
the settling of the particle leaves clear fluid at
z = L, we enforce φs(z = L, t) = 0. Due to the
hyperbolic character of the sedimentation equa-
tion, we do not impose boundary conditions for
φs at z = 0, but calculate derivatives using inte-
rior points. For the simulations presented in this
paper we used 64 discretisation points.

3.3 Numerical simulation of particle trans-
port

The following parameters were used
for the flow simulation: L0/R =
2.0,ρV R/µ = 0.03,µV/γ = 0.115, and
∆ρgR2/γ = 0, where ρ is the density of the
inner fluid and ∆ρ is the density difference
between the inner and outer fluids. These
values approximate the conditions found in
one set of experiments by Kroger et al. ([18]),
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and the parameters used by Gaudet et al. ([9])
for one of their simulations. For these param-
eters, the flow and the interface are perfectly
symmetric about the bridge midpoint location.
Interface profiles are shown in Fig. 2 (a) and
the corresponding axial velocities in Fig. 2
(b). Figure 3 shows the time evolution of the
minimum radius, comparing with the work of
Kroger et al. ([18]) and Gaudet et al ([9]). The
agreement is reasonably good, in spite of the
thin-thread approximation being applied to a
short liquid bridge.
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Figure 2: Radial interface profiles (a) and ax-
ial velocity profiles (b) vs axial coordinate for
tV/R = 0.0,0.4,1.2,2.0,2.4 and 2.66

Figure 4 shows the concentration profile, so-
lution of Eq. (9), corresponding to Up,0 = 0 and
φs,0 = 0.1, for selected times corresponding to
those in Fig. 2 (a). The parameter φs,0 is the ini-
tial concentration, which for all the simulations
in this paper is chosen to be uniform. Unless
specified, the hindrance function f is set to 1.

It is seen that the curves in Fig. 4 and the
corresponding ones in Fig. 2 (a) have the same
shape. This is due to the fact that, for Up,0 = 0,
Eq. (9) is identical to the equation governing
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Figure 3: Minimum liquid bridge radius vs
time, comparing with the experiment of Kroger
et al. ([18]) and the simulation of Gaudet et al.
([9])
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Figure 4: Time evolution of the concentration
profile for φs,0 = 0.1 and Up,0 = 0. The curves
correspond to those in Fig. 2 (b)

the interface profile h(z, t), i.e.

∂h
∂ t

+
1
2

h
∂u
∂ z

+u
∂h
∂ z

= 0. (10)

While the two governing equations are identi-
cal, the boundary conditions are not. However,
we notice that the solution φs appears to be prac-
tically pinned to its initial value at z = 0 and
z = L. This feature can be understood by notic-
ing that, near z= 0, u' 0 and ∂u

∂ z ≈ 0 (see Fig. 2
b) because of the no-slip condition and the com-
paratively small curvature of the interface near
z = 0. Because of these two conditions, Eq.9
yields ∂φs

∂ t ' 0. The solution is thus approxi-
mately stationary near z = 0. A similar argu-
ment holds for the boundary at z = L.

The fluid velocity relative to the velocity of
the neck is symmetric with respect to the neck
location. It is expected that force-free particles
follow the flow as passive scalars. The fact that
a symmetric concentration profile corresponds
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to a symmetric velocity profile is therefore a
confirmation of the quality of the numerical so-
lution.

Figure 5 (a) shows the effect of choosing a fi-
nite value Up,0/V = 0.1 on the time-dependent
concentration profile. Owing to settling the par-
ticles leave a zero-concentration clear fluid re-
gion, whose width increases slowly with time,
near the boundary at z = L. Adjacent to the
clear-fluid region a concentration maximum oc-
curs. The concentration value corresponding
to this maximum initially decreases, as the liq-
uid bridge stretches producing more interfacial
area. However, at later times the maximum
value increases, because the particles are re-
suspended by the relatively large positive fluid
velocity induced by the necking of the bridge.
For the parameters considered the concentration
profile away from the clear-fluid region is al-
most symmetric.

Figure 5 (b) shows the concentration profile
corresponding to tV/R= 2.66 and different val-
ues of Up,0. A concentration peak develops
in the region between the neck and the mov-
ing boundary. It is expected that this region of
particle accumulation will be present in the in-
terface even after pinch-off (in our simulation
tV/R = 2.66 is close to the pinch-off time). For
Up,0/V larger than about 0.8-0.9, the peak dis-
appears, because in this case the settling veloc-
ity is large enough that the resuspension mecha-
nism described above becomes negligible. The
concentration profile to the left of the neck ap-
pears to be only mildly affected by the value of
the settling velocity.

In interpreting the results, one should take
into account that, because the model does not
include terms that enforce the no-overlapping
condition between the particles and hydrody-
namic diffusion terms, a large-concentration
sedimentation layer of zero thickness must de-
velop at z = 0. This concentration peak is not
included in the plots, although its value can be
easily computed from mass conservation.

Hydrodynamic interactions manifesting
themselves in a concentration dependent set-
tling velocity should have a significant effect
on particle transport. The hindrance function
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Figure 5: (a) Time evolution of the concen-
tration profile for φs,0 = 0.1 and Up,0 = 0.1;
(b) concentration profile for tV/R = 2.66 and
different values of the single-particle settling
speed

for particles immersed between a viscous
fluid and a fluid of negligible viscosity can
be estimated by noting that Eq. (4) corre-
sponds to a Navier slip boundary condition
with slip length λ (φs) = a f (φs)

3φs
in a frame

of reference moving with velocity 〈u〉p. In
their study of superhydrophobic surfaces,
Davis and Lauga ([19]) calculated analytically
the slip length for shear-flow over a square
array of circular no-slip regions obtaining
f (φs) = 9π

16 − 9
2
√

π
ln((1 +

√
2))
√

φs, an
expression valid from small to moderate values
of φs. The value 9π

16 originates from the fact
that the Stokes drag force on an isolated disk
embedded in a shear-free interface is exactly
9π

16 times as small as the Stokes drag for a
half-immersed sphere having the same radius
[20]. Therefore, a reasonable estimate for the
hindrance function for spheres can be obtained
by dividing Davis and Lauga’s expression by a
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factor 9π

16 :

f (φs)' 1− 8
π3/2 ln((1+

√
2))
√

φs. (11)

The dependence on area fraction predicted by
Eq. (11) is quite strong. For instance, the set-
tling velocity of particles at φs = 0.1 is approxi-
mately 40% smaller than the single-particle set-
tling velocity.

Figure (6) shows the effect of modelling hy-
drodynamic interactions with Eq. 11 as op-
posed to simply assuming f = 1. Including hy-
drodynamic interactions has the effect of steep-
ening the concentration gradients developing
near the moving boundary. The steepening is
more pronounced the larger the value of φs,0.
The particle settling velocity is a decreasing
function of concentration. Particles near the
clear fluid therefore move faster than those lo-
cated at smaller values of z, leading to a steep-
ening of the shock-like concentration profile.
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Figure 6: Effect of including hydrodynamic
interactions (HI) on the concentration profile,
tV/R = 2.66

4. Summary and conclusions

A transport equation for the surface concen-
tration field for particles adsorbed on curved
surfaces has been systematically derived, and
applied to a numerical study of colloidal par-
ticles adsorbed on the interface of a stretched
liquid bridge, held captive between a stationary
circular disk and one moving at constant veloc-
ity V . The conditions are of small Reynolds,

capillary, and Bond numbers. The particle dy-
namics is studied in the one-way coupling ap-
proximation in which the presence of the parti-
cles does not alter the evolution of the interface
and the motion of the fluid. An expression is
proposed for the hindrance function quantifying
the dependence of the particle settling velocity
on the surface particle concentration. Of inter-
est is the evolution of the axial concentration
profile when the particles are acted upon by an
external force, whose magnitude is proportional
to a single-particle settling velocity directed to-
wards the stationary disk.

We find that the combined effect of the par-
ticle sedimentation and of the large extensional
velocity during necking leads to particle strati-
fication. In addition to the expected concentra-
tion peak near the stationary disk, a second con-
centration peak develops between the neck and
the moving disk. There exist a critical settling
velocity for which this peak crosses the neck
before pinch-off. We propose an expression
for the hindrance function modelling the depen-
dence of the particle settling speed on the par-
ticle concentration. Analogously to bulk sedi-
mentation, this models predicts a sharpening of
the concentration gradients.

The form of the transport equations for the
particle phase discussed in this paper does not
rely on phenomenological assumptions. Upon
suitable closure, it can be applied to study non-
trivial hydrodynamic and non-hydrodynamics
(e.g. electrostatic) forces between particles on
generally curved interfaces. Studying these in-
teractions with the formulation presented here
represents a fruitful avenue of research. The
main limitation of the current study is the one-
way coupling assumption. A large body force
on the particles should give appreciable defor-
mations of the interface. It is possible to model
this effect by suitably modifying the thin-thread
equation for the fluid in the liquid bridge. This
modification is the subject of current work.
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