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Abstract We study a model suspension consisting of a monolayer of identical spheres in a viscous medium
without Brownian effects. In the absence of inertia, and under the influence of finite forces, perfectly smooth
spheres will never come into contact because of the strength of the lubrication interaction. Indeed, an interaction
between two spheres is perfectly reversible. However, this ideal is not achieved in practice: careful experiments
with just two spheres show that some irreversible interaction occurs. We treat this interaction as a simple contact
between the spheres: we assume that they are microscopically rough and have surface asperities which are too
sparse to affect the hydrodynamics of the system, but which prevent the particles from approaching beyond
some nominal surface separation.

For a dilute suspensions in steady shear flow, a calculation to order c2 in the particle area concentration shows
that roughness actually lowers the viscosity of the suspension relative to its value for smooth spheres; this is
because the excluded parts of configuration space are those with very close particles, where the lubrication
layers cause high dissipation. Negative normal stress differences are also introduced by the roughness.

At higher concentrations we use Stokesian Dynamics to simulate the suspension dynamics. We find that rough-
ness increases the viscosity above an area concentration of around 40% and the normal stress differences be-
come very sensitive to particle configuration, and fluctuate strongly with time.
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1. Introduction

It is well known that Stokes flow, the zero-
inertia limit of Newtonian fluid flow, is re-
versible: if all the external forces on a flow-
ing system are instantaneously reversed, in this
limit the system should exactly reverse its pre-
vious motion and return to its initial configura-
tion. Engaging demonstrations of this in simple
flow are readily available, (De Moss and Cahill,
2007). However, when particles are present,
experimental evidence (Arp and Mason, 1977;
Zeng et al., 1996) shows that flow may not, in
practice, be reversible.

The cause here is microscopic surface asper-
ities which can cause contact between particles
when their nominal (smooth) surfaces are still
a small distance apart. This contact is an irre-
versible effect. As an example, consider two
identical spheres lying in the plane of a shearing
flow. If their trajectory is such that their closest

approach is close enough for contact to occur,
then at the contact point they are pushed apart
by the contact; if the shear flow driving the or-
bits is reversed, the spheres will not return to
their original positions but will have moved fur-
ther apart in the flow-gradient direction.

In this paper we discuss the effects that such
contacts have on the overall rheology of an ideal
model suspension. The particles are identical
spheres of radius a; there is no inertia and no
Brownian motion; the matrix fluid is Newto-
nian; and the contact is modelled as simply as
possible. Our contact model treats the asperi-
ties as being sufficiently sparse to have no effect
on the hydrodynamics, but simply applying an
interparticle force. This force (equal and oppo-
site on the two spheres in contact) is specified
in terms of components. The component par-
allel to the line of centres of the two spheres
is sufficient to exactly halt their approach, and
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has magnitude Fn. The perpendicular compo-
nent opposes the shearing motion between the
sphere surfaces, and has maximum magnitude
νFn. The contact model has two parameters: the
friction coefficient ν and an effective roughness
height h = aζ . This is the surface separation at
which the force comes into action.

Much of this work was presented in an ear-
lier paper (Wilson and Davis, 2002); however,
that work omitted all calculation of the second
normal stress difference N2 and had additional
small quantitative errors in some of the numeri-
cal results. These errors and omissions are cor-
rected here.

2. Dilute Suspensions

We consider a monolayer of spheres of area
concentration c in an infinite volume of fluid
having viscosity µ . The layer undergoes shear-
ing flow (in the plane of the layer) at shear rate
γ̇ . Because the true volume fraction is zero, we
normalise stresses by the effective volume of
the layer (Brady and Bossis, 1985): that is, its
area multiplied by a nominal width 2a. Using
this convention, the leading-order correction to
the suspension viscosity η is

η = µ
(

1+
5
3

c
)
. (1)

This is the equivalent of Einstein’s (Einstein,
1906; 1911) well-known three-dimensional vis-
cosity correction η3D = µ(1+ 5

2C) for a suspen-
sion at volume fraction C.

When we continue this expansion to order c2,
the result can no longer be represented by a sin-
gle scalar viscosity. Instead we must calculate
the average stress tensor

Σi j = 2µEi j +
c

2πa3 Si j (2)

where Ei j is the symmetric part of the back-
ground flow gradient tensor and Si j is the av-
erage stresslet:

Si j =
∫

A
Si j(r)P(r)d2r (3)

where Si j(r) is the stresslet induced by a pair
of particles at positions x0, x0 + r and P(r) is

the probability of finding two particles in that
configuration given that our test particle is at x0
(scaled such that P(r)→ 1 as |r| → ∞).

2.1 Pair distribution function

In the absence of Brownian motion, the pair
distribution function P(r) evolves according
to a simple advection equation (the Liouville
equation):

∇ · [PV] = 0 (4)

where V(r) is the velocity of a sphere centred at
x0 + r relative to one centred at x0. This equa-
tion is first-order, and may be solved using the
method of characteristics, which essentially re-
lates P at one point on a particle’s trajectory to
its value at any other point on the trajectory. If
the trajectory comes from infinity, our imposed
boundary condition P(r)→ 1 as |r|→∞ is suf-
ficient to specify the distribution function every-
where on the particle path.

In a simple shear flow containing two solid
spheres, some initial configurations cause the
spheres to perform orbits (Batchelor and Green,
1972): that is, they periodically move around
one another such that the trajectories of one rel-
ative to another are closed. These trajectories
never see the boundary condition at infinity, and
so their pair distribution function P is not de-
fined1. So for perfectly smooth spheres, we
cannot calculate the suspension viscosity to or-
der c2. However, the largest of these orbits has
a closest approach separation of 2.1 × 10−4a,
which is lower than many estimates of the size
of particle roughness. If the roughness height
is larger than this value, then the effect of con-
tact is to break all closed trajectories. Particles
which would have carried out closed orbits are
moved outwards by contact and eventually be-
come well separated. The pair distribution func-
tion is now well-defined everywhere, and takes
the form illustrated schematically in figure 1.
We are defining the x-direction as the flow di-
rection and the y-direction as the flow gradient

1The inclusion of weak Brownian motion would cause
P to be defined everywhere, but at the expense of the
simplicity that allows us to calculate most of the quanti-
ties in this paper.
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Figure 1: Schematic of the pair distribution
function in the case where contact breaks all
closed orbits. Particles which would otherwise
have been in the white region are on trajectories
which come closer than contact. At close ap-
proach, they are moved onto the contact surface
(high P , thick-lined portion of the outer circle)
which they then leave at x = 0 onto a sheet of
high P . Thus the black regions of very high
particle density contain all the particles missing
from the white regions. Taken from figure 1 of
Wilson and Davis (Wilson and Davis, 2002).

direction in this shearing flow.
In the bulk (grey) region, the pair distribution

is unaffected by contact, and is given by2

P(r) = (1−A(s))−1φ−2(s) (5)

φ(s) = exp
[∫ ∞

s

A(s′)−B(s′)
1−A(s′)

ds′

s′

]
(6)

in which we have defined the scalar separa-
tion s = |r|/a, and the functions A(s) and B(s)
are two-sphere hydrodynamic functions (Kim
& Karrila, 1991).

On the contact surface (black arc), the distri-
bution function must be calculated numerically;
and since this provides the upstream boundary
condition for the sheet region (black curve) the
contribution from the sheet, too, is dependent
on one numerically calculated data point.

In the wake (white) region, we have P = 0
so this region does not contribute to the stress
integral of equation (3).

2There was a typographical error in the definition of
φ(s) in equation (2.8) of Wilson and Davis (Wilson and
Davis, 2002); the form given here is correct.

2.2 Stresslet calculation

There are two possible sources of stresslet for
a given configuration of two particles. There is
the hydrodynamic stresslet, given by their direct
interaction with the fluid:

SH
i j =

20
3 πa3µ

{
(1+K(s))Ei j

+L(s)(niE jknk +n jEiknk − 2
3nkEklnlδi j)

+M(s)(nin j − 1
3δi j)nkEklnl

}
, (7)

and, if the particles are in contact, there is an
additional stresslet induced by the contact force
Fc:

SC
i j =

1
2as(1−A)Fc

k nk(nin j − 1
3δi j)

+ 1
4as(1−B−2(yh

11 + yh
12))

× (Fc
i n j +niFc

j −2nin jFc
k nk), (8)

where K, L, M, yh
11 and yh

12 are also two-
sphere hydrodynamic functions (Kim & Kar-
rila, 1991).

The contact forces can also be calculated in
terms of two-sphere hydrodynamic functions;
they depend additionally on the friction coef-
ficient ν .

2.3 General form of the stress

The most general possible form of the devi-
atoric part of the stress tensor in a shear flow
u = γ̇yx̂ (after taking into account flow symme-
tries) is:

Σ=

 Σxx ηγ̇ 0
ηγ̇ Σyy 0
0 0 −Σxx −Σyy

 . (9)

The diagonal elements may be expressed in
terms of normal stress differences3: by con-
vention, N1 = Σxx −Σyy and N2 = Σyy −Σzz =
Σxx +2Σyy.

For a dilute suspension, the three rheological
functions may in turn be expressed as

η = µ
(
1+ 5

3c+ kc2) (10)

N1 = µc2γ̇Ñ1 (11)
N2 = µc2γ̇Ñ2. (12)

3Wilson and Davis (Wilson and Davis, 2002) erro-
neously stated that N2 ≡ 0 for a monolayer flow.
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Figure 2: Plot of the O(c2) contribution to vis-
cosity against roughness height ζ . The lower
(solid) curve represents the case of no friction,
ν = 0, and the upper (dotted) curve the opposite
extreme, ν → ∞.

2.4 Results for dilute suspensions

For roughness heights less than the closest
approach of a closed orbit, ζ < 2.11×10−4, we
cannot calculate the suspension viscosity to or-
der c2 because of the indeterminacy of P , as
discussed in section 2.1. However, by symme-
try the closed orbits do not contribute to the nor-
mal stress differences, so N1 and N2 may be cal-
culated for all possible values of ζ .

Figure 2 shows the O(c2) coefficient of vis-
cosity for a range of roughness heights ζ >
2.11× 10−4, for the two extreme cases of fric-
tion coefficient ν = 0 and ν → ∞. There is very
little dependence on friction coefficient, but it
is clear that increasing roughness decreases the
suspension viscosity. This is because the parti-
cles are excluded from configurations with very
small interparticle gaps, which are precisely
those configurations in which lubrication inter-
actions cause strong dissipation.

In figure 3 we show the first normal stress dif-
ference N1, normalised by µc2γ̇ , again plotted
against roughness height. Roughness is shown
to induce a negative value of N1, and again we
find that the friction coefficient is rather unim-
portant.

Finally, in figure 4 we show the normalised
second normal stress difference Ñ2 = N2/µc2γ̇ ,
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Figure 3: Plot of the normalised first nor-
mal stress difference Ñ1 against the roughness
height ζ . The solid curve represents the case
of no friction, ν = 0, and the dotted curve the
opposite extreme, ν → ∞. The curves are al-
most indistinguishable, indicating that friction
is a negligible component of the first normal
stress difference.

again plotted against roughness height. Rough-
ness is shown to induce a negative value of N2,
and again we find that the friction coefficient is
rather unimportant. N2 is smaller in magnitude
than N1, but only by a factor of around 3–5.

3. Concentrated Suspensions

We are also carrying out simulations of
monolayers of rough spheres at higher area
fractions. We use the Stokesian Dynamics
paradigm, which is essentially a truncated mul-
tipole expansion.

For viscosity, our results for concentrated
suspensions show two distinct trends. At
moderate concentrations, they are in line with
our dilute results: roughness reduces viscos-
ity while the coefficient of friction is largely
unimportant. Above an area fraction of around
0.4, however, each particle becomes (on aver-
age) “close” to more than one neighbour and
the dilute theory ceases to be helpful. At around
this value, the viscosity begins to increase with
roughness height; in addition, the viscosity now
rises sharply with increasing coefficient of fric-
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Figure 4: Plot of the normalised first nor-
mal stress difference Ñ2 against the roughness
height ζ . The lower (solid) curve represents the
case of no friction, ν = 0, and the upper (dotted)
curve the opposite extreme, ν → ∞.

tion.
The normal stress results are less clear. They

depend very strongly on particle configuration
and as a result they are strongly oscillatory dur-
ing a given simulation. It is difficult to be cer-
tain of even the sign of the mean normal stress
as concentration increases, but our results do
suggest the mean is negative for both N1 and
N2, in accord with the dilute theory for both
two and three dimensional systems (Wilson &
Davis, 2000).

Quantitative results for concentrated suspen-
sions will be presented at the meeting.
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Moleküledimensionen. Annalen Physik 19,
289–306.

Einstein, A., 1911. Berichtigung zu meiner
Arbeit: “Eine neue Bestimmung der
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