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Abstract Brownian motion plays an important role in the dynamics of colloidal suspensions. It affects rheo-
logical properties, influences the self-assembly of structures, and regulates particle transport. While including
Brownian motion in simulations is necessary to reproduce and study these effects, it is computationally in-
tensive due to the configuration dependent statistics of the particles’ random motion. We will present recent
work that speeds up this calculation for the force-coupling method (FCM), a regularized multipole approach
to simulating suspensions at large-scale. We show that by forcing the surrounding fluid with a configuration-
independent, white-noise stress, fluctuating FCM yields the correct particle random motion, even when higher-
order terms, such as the stresslets, are included in the multipole expansion. We present results from several
simulations demonstrating the effectiveness of this approach for modern problems in colloidal science and
discuss open questions such as the extension of fluctuating FCM to dense suspensions.
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1. Introduction

Brownian motion is the random movement
of particles suspended in liquid [33] resulting
from the many collisions between the particles
and the molecules that make up the surrounding
fluid. In addition to altering the motion of indi-
vidual particles, Brownian motion can also af-
fect the mechanical and rheological properties
of suspensions themselves [5, 15, 7]. Brown-
ian motion also plays a strong role in micropar-
ticle self-assembly and aggregation-based fab-
rication techniques [40, 17], as well as in the
dynamics and pattern formation of active and
field-responsive colloids [31, 36, 30, 39].

Characterising and quantifying the role of
Brownian motion in these contexts where in-
terparticle forces, hydrodynamic interactions,
and geometric constraints play a strong role
presents a current computational challenge.
Traditional techniques such as Brownian dy-
namics [12] and Stokesian dynamics [6], rely on
introducing random particle velocities at each
time step. These random particle velocities,
however, must have correlations proportional
to the hydrodynamic mobility matrix [11, 4]

and generating such random velocities requires
computing the square root of the mobility ma-
trix, an O(N3) computation, at every time step.

While several approaches [14, 8] have been
devised to overcome these speed up this calcu-
lation, we will instead utilise random flow fields
generated by a fluctuating stress [27, 16] to de-
termine random particle motion with the cor-
rect statistics. The advantage of this approach is
that the fluctuating stress is spatial white noise
and the matrix square root computation is not
required. As a result, the usage of fluctuating
stresses to resolve Brownian motion has been
demonstrated in a variety of simulation tech-
niques such as the Lattice-Boltzmann method
[22, 24, 25, 23], distributed Lagrange multiplier
(DLM) method [35], and implementations of
the immersed-boundary method [32, 2, 1, 37,
10]. The fluctuating stress approach can also be
used to resolve the fluctuations of flexible struc-
tures, even in cases where inertial effects are
present and lead to power-law tails in the time-
correlations of the particle velocities [19, 33].

We recently developed the fluctuating force-
coupling method (FCM) [20] which combines
the deterministic FCM [29, 28, 9, 41] with

- 1 -



4th Micro and Nano Flows Conference

UCL, London, UK, 7-10 September 2014

the random fluid flows produced by a white-
noise fluctuating stress. This paper presents an
overview of this new method and summarises
recent results obtained by using it. FCM itself
is based on representing particles using regu-
larised multipole expansions in the Stokes equa-
tions and recovering their motion through vol-
ume averaging of the resulting fluid motion. It
has been used in a variety of scenarios, includ-
ing microfluidic contexts, and can be enhanced
to include finite Reynolds number effects and
near-field lubrication hydrodynamics between
particles. Here, we show that when coupled
with the random fluid flows, FCM can also be
extended to Brownian simulations.

2. The fluctuating force-coupling
method

In this work, we will be considering a suspen-
sion of N rigid spherical particles, each having
radius a. Each particle n, (n = 1, . . . ,N), is cen-
tred at Yn and can be subject to external forces
Fn, and external torques τn. In the over damped,
or Brownian dynamics [12] limit, the equations
of motion of these particles is given by

dY

dt
= V + Ṽ + kBT ∇Y ·M V F (1)

where Y is the 3N × 1 vector containing the
components of Yn for all of the particles, V
holds the components of the deterministic par-
ticle velocities, and Ṽ gives the random ve-
locities of the particles due to Brownian mo-
tion. The Brownian drift term is given by
kBT ∇Y ·M V F where kB is Boltzmann’s con-
stant, T is the temperature of the system, and
M V F is the translational mobility matrix [21]
that relates particle velocities and forces. Brow-
nian drift represents the mean particle velocities
established during the inertial relaxation time
not resolved in the over damped limit.

With FCM, the deterministic particle veloci-
ties are found by first solving the inhomogenous
Stokes equations

−∇p+η∇
2u+ fFCM = 0

∇ ·u = 0. (2)

where fFCM = ∑n Fn∆n(x) + (1/2)τn ×
∇Θn(x) + Sn ·∇Θn(x) with Fn, τn, and Sn
being, respectively, the force, torque, and
stresslet associated with particle n and

∆n(x) = (2πσ
2
∆)
−3/2e−|x−Yn|2/2σ2

∆

Θn(x) = (2πσ
2
Θ)
−3/2e−|x−Yn|2/2σ2

Θ . (3)

The length scales σ∆ and σΘ are related to the
radius of the particles through σ∆ = a/

√
π and

σΘ = a/
(
6
√

π
)1/3. After solving Eq. (2), the

velocity, Vn, angular velocity, Ωn, and local
rate-of-strain, En, of each particle n are deter-
mined from

Vn =
∫

u∆n(x)d3x (4)

Ωn =
1
2

∫
[∇×u]Θn(x)d3x. (5)

En =
1
2

∫ [
∇u+(∇u)T ]

Θn(x)d3x. (6)

where the integration is performed over the vol-
ume occupied by the fluid. For rigid particles,
the stresslets are found by enforcing the con-
straint En = 0 for each n. This is equivalent to
stating that the local rates-of-strain can do no
work on the fluid [28].

To include the random particle velocities, we
consider the flow generated by a white-noise,
fluctuating stress, P, in the Stokes equations,

−∇p+η∇
2ũ = −∇ ·P

∇ · ũ = 0. (7)

As introduced in [27, 16], the statistics for
the fluctuating stress, in index notation, are
given by

〈
Pjl
〉
= 0 and

〈
Pjl(x, t)Ppq(x′, t ′)

〉
=

2kBT η
(
δ jpδlq +δ jqδl p

)
δ (x−x′)δ (t− t ′). We

use the brackets 〈·〉 to denote the ensemble av-
erage of a quantity. These statistics for the fluc-
tuating stress yields a velocity field [20] with
〈ũ(x, t)〉= 0 and〈

ũ(x, t)ũT (x′, t ′)
〉
= 2kBT G(x−x′)δ (t− t ′).

(8)
where G(x− x′) is the Stokeslet, the Green’s
function for the Stokes equations.

In fluctuating FCM, we combine Eqs. (2) and
(7) and determine the deterministic and random
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particle velocities simultaneously by solving

−∇p+η∇
2u = −∇ ·P− fFCM

∇ ·u = 0. (9)

As with deterministic simulations, the particle
velocities, angular velocities, and local rates-of-
strain are determined from Eqs. (4), (5), and (6)
and, again, the stresslets are determined by en-
forcing the usual constraint, En = 0. Using the
statistics of the random fluid flow, Eq. (8), and
the expressions for the particle velocities, Eq.
(4), one can show analytically [20] that fluctuat-
ing FCM yields random particle velocities with
the correct statistical properties.

3. Numerical simulations

To demonstrate that fluctuating FCM yields
the correct random particle motion, we solve
Eq. (9) in a triply periodic domain using a
Fourier spectral method to obtain the flow field.
Each side of the domain has length L = 2π and
we use M grid points in each direction, giving
a total number of Ng = M3 points. This sets
the grid spacing to be h = 2π/M and the grid
points as xα = αh for α = 0, . . . ,M− 1. The
statistics for the fluctuating stress need to be
modified for the discretised system. As done in
other methods that employ fluctuating stresses,
see for example [35, 2], at each grid point, the
fluctuating stress is an independent Gaussian
random variable with 〈Pi j(xα ,xβ ,xγ)〉 = 0
and

〈
Pi j(xα ,xβ ,xγ)Ppq(xα ,xβ ,xγ)

〉
=

(2kBT η/(h3∆t))
(
δipδ jq +δiqδ jp

)
where

∆t is the timestep. After generating the random
stress field and computing the grid values of the
regularised multipole expansion, we compute
the discrete Fourier transform (DFT) of the
total force distribution and determine the fluid
velocity field in Fourier space. After taking
the inverse DFT, we determine the particle
velocities by integrating numerically Eqs. (4
– 6) using the spectrally accurate trapezoidal
rule.

We advance the particle positions using Fix-
man’s midpoint scheme [13, 18] as it automati-
cally accounts for the Brownian drift term. With
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Figure 1: Short-time diffusion coefficient, D.
The circular markers indicate the fluctuating
FCM results, the dashed line corresponds with
DT/DT

0 = 1−1.83φ from [4] and the solid line
show DT/DT

0 = 1−1.5φ +0.75φ 2 provided by
[3]. The dash-dotted line shows DR/DR

0 = 1−
0.33φ −0.16φ 2.

this scheme, however, one must utilise the ran-
dom forces and torques that correspond to the
random velocities and angular velocities that
fluctuating FCM computes. The random forces
and torques can be computed iteratively using a
conjugate gradient scheme as described in [20].

3.1 Short-time Diffusion of a Random Sus-
pension

Using fluctuating FCM, we compute the
short-time diffusion coefficient

DT =
∆t
6N

N

∑
n=1

〈
Ṽn · Ṽn

〉
. (10)

for a random suspension of N = 50− 400 par-
ticles, corresponding to volume fractions φ =
0.0285− 0.23. The short-time diffusion co-
efficient was calculated for low volume frac-
tions by Batchelor [4] who found DT/D0 = 1−
1.83φ +O(φ 2) with D0 = kBT/(6πaη). This
result has been subsequently confirmed exper-
imentally and theoretically and a summary of
these results is presented by Ladd [26]. For
each volume fraction, we perform the ensem-
ble average over 104 realisations of the fluctu-
ating stress field. For these simulations, there
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are no forces or torques on the particles, though
there are particle stresslets that are induced by
the fluctuating stress field.

Fig. 2 shows the results from these simula-
tions using a correction for the periodicity of the
domain [26, 3]

DT = DT
PER +

kBT
6πaη̄

(1.7601(φ/N)1/3−φ/N)

(11)
where DT

PER is the short-time self-diffusion co-
efficient for the periodic domain and η̄ is the
bulk suspension viscosity given by FCM. Fig. 2
also shows results from far-field Stokesian Dy-
namics calculations [3] and Batchelor’s asymp-
totic result. We see that the values given by
fluctuating FCM coincide with those given by
far-field Stokesian Dynamics as both provide
the same approximation to the mobility matrix.
There is a discrepancy, however, with Batche-
lor’s result which includes the near-field lubri-
cation hydrodynamics neglected in both fluctu-
ating FCM and far-field Stokesian Dynamics.
In Fig. 2, we also show the short-time rotation
self-diffusion coefficient

DR =
∆t
6N

N

∑
n=1

〈
Ω̃n · Ω̃n

〉
(12)

determined by fluctuating FCM and far-field
Stokesian dynamics. As with DT , we again
see correspondence between these two methods
with the slight discrepancy attributed to the pe-
riodicity of the domain.

3.2 Concentration profiles in an external po-
tential

In this set of simulations, we consider a sus-
pension of particles subject to the periodic ex-
ternal potential

Φ(x) = Φ0 cosx. (13)

For non-interacting particles, the equilibrium
concentration profile will be given by the Boltz-
mann distribution

c(x) =
1
Z

exp(−Φ0 cosx/kBT ) (14)
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Figure 2: Concentration profiles for a suspen-
sion subject to the external potential Φ(x) =
Φ0 cosx (a) The solid line shows the Boltz-
mann distribution, see Eq. (14), while the bars
show the concentration given by stresslet-free
fluctuating FCM with no particle interactions.
(b) Concentration profiles given by fluctuat-
ing FCM simulations with Yukawa interactions.
The open bars correspond to stresslet-free simu-
lations, while the closed bars show results from
simulations where the particle stresslets are in-
cluded.
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where Z =
∫ 2π

0 exp(−Φ0 cosx/kBT )dx. We
performed simulations with N = 183 particles
in the external potential. Fig. 2(a) shows the
time-averaged concentration from a fluctuating
FCM simulation without the stresslets. Here,
we recover the Boltzmann concentration pro-
file, Eq. (14) for non-interacting particles. The
concentration profile changes when we also in-
clude repulsive interactions between the parti-
cles. We do this here using the Yukawa poten-
tial

V (r) =
U0σY

r
exp(−λ (r−σY )/σY ) (15)

from DLVO theory [38, 34]. In the simula-
tions, we set U0 = kBT , σY = 2a, and λ = 8.
Fig. 2(b) shows the resulting equilibrium con-
centration when the Yukawa interactions are in-
cluded. Our simulations with and without the
particle stresslets coincide which indicates that
the time-integration scheme is recovering the
Brownian drift term.

4. Conclusions

We presented a summary of fluctuating FCM,
a new approach for the efficient computation
of Brownian motion in suspensions of hydrody-
namically interacting particles. This technique
relies on randomly forcing the fluid, rather than
the particles, and using the framework of FCM
to recover the motion of the particles. It can
be shown that this yields random particle ve-
locities with the correct statistics and conse-
quently, a simulation with the correct diffusiv-
ity. To demonstrate the effectiveness of fluctuat-
ing FCM, we have presented a numerical imple-
mentation of the scheme and compared results
with those from previous numerical and analyt-
ical studies.

While fluctuating stress based methods such
as fluctuating FCM represent a significant ad-
vancement in the inclusion of Brownian effects
in continuum level simulations, there are still
several outstanding challenges in the field. The
successful inclusion of near contact hydrody-
namics and their effect on the random veloc-
ity statistics have yet to be incorporated into

these methods. In addition, time-integration
schemes that incorporate Brownian drift, but
avoid the computation of random forces and
torques would aid in increasing the speed of
these simulations. Recently, there has been
some successful work in this direction [10].
We aim to pursue both of these challenges in
the context of the fluctuating FCM, moving to
devise a simulation technique appropriate for
large scale simulations of dense Brownian sus-
pensions.
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