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Abstract We investigate electrostatically induced hydrodynamics in stratified flows. Vertical electric fields 
are used to destabilise stably stratified systems in channel geometries and generate interfacial motion. 
Efficient electrohydrodynamically actuated control processes are studied theoretically and shown to induce 
time dependent flows in small scale confined geometries without requiring an imposed velocity field or 
moving parts. Using linear stability theory, the most unstable wavenumbers for a given microscale geometry 
are identified in order to deduce electric field strengths that can be utilised to produce a required wave 
pattern. Starting from simple mechanisms, such as uniform field on-off protocols, promising results are 
presented in this context. Two-dimensional computations using the volume-of-fluid (VOF) method are 
conducted to fully validate the linear stability theory. Practical optimisation possibilities such as distributions 
of field strengths and time intervals between on and off positions are examined numerically in the nonlinear 
regime. We also propose a mechanism to induce pumping by generating a travelling wave voltage 
distribution on one or both of the electrodes. The generated flux allows for further improvement of the 
microfluidic mixing process and could have numerous other relevant ramifications. The analytical and 
numerical tools constructed enable the study of competitive alternatives in a broad spectrum of applications, 
from microfluidic mixing to electrostatically induced soft lithography. 
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1. Introduction 

 Electrostatic control mechanisms underpin 

a wide range of modern industrial applications 

and are at the forefront of contemporary 

research. The impact of fluid interface 

manipulation has proven invaluable in the 

framework of production of increasingly 

smaller structural units, as well as the related 

context of efficient microfluidic mixing.  

 Recently, electrohydrodynamic stabili-

sation (or destabilisation) mechanisms have 

become increasingly popular. It has been 

shown (Cimpeanu et al., 2014) that horizontal 

electric fields can be used to suppress and 

control the Rayleigh-Taylor instability. 

Conversely, vertical electric fields 

(perpendicular to the fluid-fluid interface) can 

be used to generate interfacial dynamics in 

stably stratified systems, as presented in the 

seminal work of Melcher (1961) and Taylor 

and McEwan (1966).  

 Ozen et al. (El. Acta, 2006) have 

performed theoretical studies on the effects of 

an electric field on a flow of immiscible fluids 

in a channel. Long-wave stability analysis of 

the electrohydrodynamic stability of the 

interface between two superposed viscous 

fluids in a very general context has also been 

carried out (Ozen et al., 2007), with findings 

confirming the importance of exploiting 

electric field effects in small scale geometries.  

 One of the key aspects of the present work 

is the efficient use of electric fields in order to 

induce mixing in small scale geometries. Lee 

et al. (2011) provide a review of the most 

successful mixing devices pertaining to 

microfluidic flows. Passive mixing techniques 

usually exploit complicated spatial structures 

that elongate the path of an injected fluid and 

allow for enhanced molecular diffusion. 

Active mixers on the other hand do not require 

intricate patterns and exotic components; they 

involve the use of external forces, such as 

magnetism, electricity, time pulsing etc., with 
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convincing degrees of success. 

 The T-mixer is among the most popular 

active devices, as it provides a simple 

geometry and remarkable possibilities for 

expansion from the multi-physics perspective. 

Glasgow et al. (2003) and Goullet et al. (2005) 

have utilised sinusoidal time pulsing as a 

technique to force mixing. El Moctar et al. 

(2003) have shown drastic improvement in the 

mixing of an oil-oil configuration (different 

dyes) in a T-mixer under the action of electric 

fields.  

 We first present our mathematical model 

and governing equations in subsection 2.1, 

while subsection 2.2 is dedicated to the linear 

stability study of the problem. Having 

identified bands of unstable wavenumbers, we 

proceed and devise electric field protocols 

aimed at achieving efficient mixing (section 3) 

or inducing pumping (section 4) via electric 

field manipulation only. We use direct 

numerical simulations not only to validate the 

theoretical investigation, but also to conduct 

fully nonlinear studies that mimic 

experimental conditions and illustrate the 

effects of the suggested techniques. Finally, 

we formulate our conclusions in section 5. 

 

2. Mathematical Model 
 We consider two immiscible, 

incompressible, viscous, perfect dielectric 

fluids of arbitrary constant densities, 

viscosities and permittivities, confined 

between parallel walls. The flow geometry is 

presented in the schematic in Fig. 1. The study 

is concentrated on horizontal channels with 

parallel walls aligned with the   axis (in 

Cartesian coordinates), assumed to be 

sufficiently long, in line with experimental 

configurations in the literature. The channel 

walls are electrodes, such that an electric field 

of magnitude  ̅  ⁄  is generated vertically, 

where   denotes the channel height (chosen 

lengthscale of the system) and  ̅  is the 

prescribed voltage potential difference across 

the channel. The interface between the two 

fluids is described by         . We use 

subscripts 1 and 2 to denote relevant quantities 

in fluid 1 (bottom, defined by    ⁄    
      ) and fluid 2 (top, defined by 

           ⁄ , respectively).  

 Fluid densities, viscosities and 

permittivities are written as           and     , 

while velocity fields and pressures are 

represented by      (         )  and       
To retain generality, we preserve gravitational 

effects via acceleration   and surface tension 

effects via the constant coefficient  . 

Fig. 1. Problem schematic. 

 

2.1. Governing Equations 

 We first note that the fluids have constant 

electrical properties and there are no charges 

present in the flow, therefore hydrodynamic 

and electrostatic effects are coupled by 

nonlinear boundary conditions at the interface 

only. This translates into the following form 

for the momentum and continuity equations: 

                    

                            ,  (1) 

                    

                            ,  (2) 

                                   (3) 

 Using the electrostatic approximation (see 

section 3 for further discussion), Maxwell’s 

equations can be expressed as           

and               , allowing us to define 

voltage potentials as            , in each of 

the fluids. The potentials satisfy Laplace’s 

equation      ⁄      ⁄        . 

 We define Dirichlet boundary conditions 

for bottom         ⁄       and top 

        ⁄      ̅  electrodes, producing 

the desired voltage potential difference.  

 At the sharp interface,         , the 
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following conditions are imposed: 

                                           (4) 

[     ] 
                 (5)      

 [     ] 
                          (6) 

      [ ] 
                          (7) 

   [    ] 
                          (8) 

      [ ] 
                          (9)  

which are, in order of appearance, kinematic 

conditions, the normal stress balance, the 

tangential stress balance, continuity of 

velocities, voltage displacement field (Gauss’s 

Law) and voltage. We use [   ] 
            

to denote jumps across the interface, while the 

unit normal and tangent to the interface are 

defined as                 
     ,    

            
     and            

      

is the expression for interfacial curvature. For 

the stress tensor in each of the regions 1 and 2, 

the reader is referred to Saville (1997). In our 

notation, the tensorial expression is 

           (
   

   
 

   

   
)   

                              
 

 
              (10) 

 We nondimensionalise by means of using a 

reference velocity   and reference 

lengthscale  , which translates to time being 

scaled by   ⁄  and pressures by    
   We 

use fluid 1 as reference and introduce the 

following dimensionless parameters: 

 ̃         ⁄   ̃         ⁄  

       ̃       ⁄         √    ⁄   (11) 

corresponding to an inverse Reynolds number 

(dimensionless viscosity), an inverse Weber 

number, an inverse square Froude number and 

a voltage scaling. The permittivity of free 

space is denoted as     We also define 

relevant ratios in the model as  

        ⁄         ⁄         ⁄   (12) 

 The dimensionless governing equations are 

   ̃     ̃     ̃   

               ̃   ̃  ̃   ̃ ,    (13) 

   ̃     ̃     ̃   

                ̃    ̃   ̃   ̃ , (14) 

              ̃                    (15) 

while the corresponding boundary conditions 

at the walls are now 

      ̃     ̅    at      ⁄       (16) 

            ̃     ̅   ̅ at      ⁄       (17) 

with  ̅   ̅    ⁄  Interfacial boundary 

conditions (4)-(9) and the stress tensor (10) are 

also transformed in a straightforward manner. 

 

2.2. Linear Stability Theory 

  In the present subsection we consider 

linear perturbations about the base state 

solution, described by a flat interface, zero 

velocities and a uniform electric field. There is 

also an electrically induced pressure difference 

across the interface 

         
  ̅ 

      
       

    

and this is accounted for in the theory. We 

linearise with respect to    : 

 ̃      ̂   ,  ̃    ̂  

 ̃    ̃    ̂ ,  ̃   
 ̃ 

 
      ̂   

 ̃  
 ̅

   
         ̂   

 ̃  
 ̅

   
          ̂   

and assume normal mode solutions of the form 

 ̂            ̆       
             

 ̂            ̆       
             

 ̂            ̆       
             

          ̂       ̆            , 
where      is the notation used for complex 

conjugates. With the appropriate boundary 

conditions, the eigenfunctions are determined 

in closed form. The interfacial and boundary 

conditions then give rise to a system of 

homogeneous linear equations for the 

unknown constants appearing in the 

eigenfunctions. With given parameters 

(densities, viscosities, permittivities, electric 

potential difference etc.) we derive a 

transcendental eigenrelation for the growth 

rate       which is calculated numerically. 

 In order to validate the theory, we use 

direct numerical simulations performed in 

Gerris (Popinet, 2003), described in more 

detail in section 3. The initial interfacial shape 

is given by                   , where 

    is used to manipulate the wavenumber 

of the perturbation and            is the 

initial amplitude. An example computation for 
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               ̃         ̃     and 

voltage potential differences  ̅ varying from 

2.0 to 5.0 is shown in Fig. 2. Excellent 

agreement is found between theoretical 

predictions and numerical results (an extended 

version of this analysis is shown in Cimpeanu 

and Papageorgiou (2014)). An increase in the 

imposed voltage potential difference translates 

to a larger band of instability and higher 

growth rates. These findings encourage us to 

direct our efforts towards practical problems in 

microfluidic mixing (section 3) and pumping 

phenomena (section 4). 

 
Fig. 2. Example dispersion relation curve 

computation, for various values of voltage 

potential difference   ̅. Curves originate from 

theoretical stability computations, while 

symbols are deduced from direct numerical 

simulations. 

 

3. Microfluidic Mixing 

 Our aim is to model efficient control 

procedures in small scale geometries, where 

physical experiments are often difficult to 

construct, manipulate and analyse. The 

presented stability theory allows us to identify 

the most unstable wavenumbers in relevant 

flows and we use this information to tailor 

electric field protocols for enhanced mixing.  

 For the numerical experiments we use 

Gerris (Popinet, 2003; Lopez-Herrera et al., 

2011), a volume-of-fluid package with 

tremendous capabilities. Mesh adaptivity, 

accurate multiphase fluid representation, 

parallelisation and multi-physics features are 

just a few of the reasons why the package is an 

ideal choice for our study. 

 One of the simplest ways to initiate 

interfacial motion in the fluid-fluid systems 

considered here is a sequence of on and off 

positions of the electric field. The instability 

caused during the on-times produces dynamics 

that enhance mixing. We switch the electric 

field off before interfacial touchdown occurs 

on the walls (beyond the scope of the present 

work) and allow the interface to retreat close 

to its initial position. We repeat this procedure 

to sustain oscillations in the flow that greatly 

improve mixing effects in small scale 

geometries. Furthermore, the proposed on-off 

protocols are easy to design from a practical 

perspective. 

 Despite the fact that the proposed control 

mechanism involves a time-dependent electric 

field, the induced magnetic field is negligible 

(estimated to be of          Teslas or less) 

due to the length scales involved. Secondly, 

with a period of oscillation of         s or 

more, the frequency is of at most        Hz, 

well below the kHz range where the 

electrostatic approximation still holds. Fig. 3 

describes a series of six on-off protocols, 

where the horizontal axis represents 

dimensionless time. The shaded regions in 

each of the plots illustrate the time intervals 

when the electric field is turned on and the 

flow is subjected to a vertical electric field. 

For this set of experiments we use       
          ̃       ̃      and a voltage 

potential difference  ̅  of 15.0. The 

parameters correspond to a system of size 

      mm, for a duration of roughly     s 

in total. Fluid 1 has properties representative 

of a typical oil (olive oil has been selected), 

while the ratios in density, viscosity and 

permittivity of      pertain to a wide range 

of choices for the second fluid. A strong 

contrast in density is preferred from the 

computational standpoint due to the faster 

relaxation time of the interface position during 

the intervals when the electric field is switched 

off. A droplet of dimensionless radius 

       is constructed in the upper fluid 

within our computational domain (Fig. 1). The 

droplet carries the same properties as the upper  
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Fig. 3 Six imposed on-off protocols, where shaded regions represent the times when the electric 

field is kept on with a constant voltage, enabling the destabilisation of the fluid-fluid interface. 

 

fluid, replicating the effect of a dye of 

different colour. By observing the 

concentration field   of this passive tracer in 

time, we deduce the level of mixing induced 

by the action of the electric field. Sample 

evolutions of the passive tracer field are 

produced in Table 1, where protocols 3 and 5 

are shown at different times of the simulation. 

 There are various ways to quantify the 

degree of mixing (Glasgow et al., 2003; Lu et 

al., 2002). We chose the statistical expression 

of Jha et al. (2011), where a mixing index 

     is defined as              
    

  with    〈  〉  〈 〉   Brackets 〈 〉 
stand for spatial averaging over our dynamic 

domain.      
  is the variance for the fully 

segregated state.     then translates to a 

perfectly mixed system, while     depicts 

a completely segregated environment. Using 

this type of measurement, Fig. 4 shows the 

dynamics of the mixing index in time for each 

of the six constructed protocols. Efficient 

mixing usually occurs when a strong 

destabilizing electric field persists for a 

moderate amount of time, such that the active 

interface is close to reaching the channel walls. 

After this spread has occurred, successive on-

off switches of short duration will sustain 

interfacial oscillations and lead to highly 

efficient mixing, with indexes exceeding 0.7, 

which are very competitive against other forms 

of induced mixing.  

 We note that numerical artifacts in the 

passive tracer advection lead to minor 

breaches through the interface (observable in 

Table 1); a careful study reveals that this does 

not affect the calculated degree of mixing (the 

amount of dyed fluid outside the desired 

region is negligible and this numerical process 

is restricted to the passive tracer, computed by 

approximating the velocity field). 

Furthermore, stringent error tolerances and 

increased grid refinement levels can be 

imposed to completely eliminate such effects.  

 The level of improvement in mixing is also 

quantified in the light of comparing results to 

molecular diffusion. Using Fick’s law in two 

dimensions, the radius of diffusion of particles 

is described by       , where   is the self-

diffusion coefficient inside a given fluid, 

which ranges within               for 

fluids of interest such as oil and water 

(Denkova et al., 2004; Holz et al., 2000). 

Measuring the spread via molecular diffusion 

within a fluid with self-diffusion coefficient 

of        , we notice that it is no larger 

than          m in the time frame of the 

numerical  experiments in the            m 
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Table 1. The passive tracer field and active fluid-fluid interface highlighted in white under the 

action of protocol 3 (left) and protocol 5 (right) at four different time steps: t=0.0 (top row), t=5.0, 

t=10.0 and t=20.0 (bottom row). The succession of plots shows the gradual mixing of the passive 

tracer under the action of the electric field. 
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channel, which is several orders of magnitude 

less than the displacement of particles under 

the action of electrohydrodynamic control. The 

evolution of the mixing index solely via 

molecular diffusion has been computed for 

reference (see Fig. 4) and evolves from 0.0369, 

the starting value given by the discretisation of 

the concentration field, to 0.0377 by the end of 

the numerical experiments. Therefore the 

action of the imposed electric field protocols 

produces a striking impact in the dynamics of 

the flow. 

 
Fig. 4. Evolution of mixing index      under 

the action of electrohydrodynamic control. 

 

4. Induced Pumping  

    We use a similar type of analysis to 

model pumping in microgeometries. Instead of 

a uniform electric field, we consider a 

spatiotemporally varying voltage on one of the 

electrodes (taking care that the electrostatic 

approximation is still valid within the range of 

physically relevant frequencies). Such a model 

can be constructed in the form of a travelling 

disturbance, which replicates the structure of a 

sequence of parallel strip electrodes on a 

substrate, switched on and off in successive 

order. The reader is referred to Cimpeanu and 

Papageorgiou (2014) for a more detailed 

insight in this direction. We use such a 

rationale for the bottom electrode and consider 

a boundary condition of the form 

        ⁄      ̅     given by 

           ̅      
   

 
[     (

        

  
)  

                                         (
        

  )].    

    The boundary condition produces a 

uniform voltage of magnitude  , with a 

superimposed hump of magnitude     
travelling with velocity    in a prescribed 

direction. The size of the transition region 

from   to      is of order        . 

We can add several such humps in order to 

match the structure of the most unstable 

wavenumber with given parameters of the 

flow. The pumping is induced by first 

switching on a uniform electric field of 

magnitude  , such that the most unstable 

wavenumber is excited and grows until the 

interface is in close vicinity of the channel 

walls. The time-dependent voltage is then 

prescribed and a voltage travelling wave forms 

at the boundary. The flow field is steered into 

a desired direction and the procedure can be 

optimised by tuning parameters    and   . 

 
Fig. 5. Flux evolution for different amplitudes 

and velocities of the travelling wave voltage 

distribution in 12 different configurations. 

  

We design 12 direct numerical 

simulations, with chosen values    
{            }    {                 }. The 

reasoning behind these values is the following. 

If the amplitude of the hump is too small, the 

effect of the travelling wave is not transmitted 

to the flow and interfacial wall touchdown 

occurs. On the other hand, prescribing strong 

amplitudes may produce interfacial rupture 

(droplet formation) and cause unwanted 

phenomena in the flow. Velocity    is only 

limited by physical (experimental) constraints.  

We quantify the success of the 

method by examining the flux in the 
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microchannel at       by 

      ∫            
    

    

 

 The results are described in Fig. 5, where 

during the period of the spatiotemporally 

varying voltage (between       and 

      ), the flow exhibits leftward 

movement in a manner that is directly 

proportional to the amplitude   , while the 

velocity    plays a secondary role. An 

extensive analysis of the flow, including the 

evolution of the fluid velocity fields during the 

period of the spatiotemporally varying voltage, 

is provided by Cimpeanu and Papageorgiou 

(2014). We note a possible extension to a 

similar construction on the top electrode, to be 

calibrated with an adjusted phase. 

 

5. Conclusion 

 The methods described in the present study 

have been proven successful in the context of 

electrohydrodynamic control in microchannels. 

We have identified powerful mixing 

mechanisms, as well as a technique to induce 

pumping at small scales without the necessity 

of moving parts or imposed velocity fields. 

Driven solely by electric field dynamics, the 

interfacial behaviour can be customised for 

typical industrial applications and further 

optimised for added efficiency. 
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