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Off-plane motion of an oblate capsule in a simple shear flow.
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Abstract: We investigate the mechanical equilibrium state of an oblate capsule when its revolution axis is
initially off the shear plane. We consider an oblate capsulewith an aspect ratio of 0.5 and a strain-hardening
membrane. The three-dimensional fluid-structure interaction problem is solved numerically by coupling a
finite element method with a boundary integral method. The capsule converges towards the same mechanical
equilibrium state whatever the initial orientation. This equilibrium depends on the capillary numberCa, which
compares the viscous to the elastic forces and on the viscosity ratioλ between the internal and external fluids.
Forλ = 1, the tumbling and swinging motions, observed when the revolution axis is initially in the shear plane,
are mechanically stable untilCa ∼ 1; whenCa is further increased, the capsule assumes the rolling motion
that is observed when its revolution axis is initially aligned with the vorticity axis. Whenλ is increased, the
tumbling-to-swinging transition appears for higherCa and the swinging-to-rolling transition for lowerCa. For
λ ≥ 5, the swinging regime completely disappears: depending onCa, it is then either the tumbling or the
rolling motion that is the mechanical equilibrium state.
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1. Introduction
Microcapsules consist of a liquid internal
medium protected within a thin membrane. The
dynamics of a spheroidal capsule in simple
shear flow has recently received a lot of at-
tention (Sui et al., 2008; Walter et al., 2011;
Dupont et al., 2013), owing to its relevance to
the motion of a red blood cell. Most studies
have modelled the capsule with the revolution
axis in the shear plane, which is a special case,
as it is an equilibrium configuration in Stokes
flow conditions. It has then been shown that the
capsule motion depends on the capillary num-
ber Ca, ratio of the viscous to elastic forces.
At low Ca, the capsule has a tumbling motion
and rotates like a solid particle. At higher val-
ues ofCa, the capsule experiences a transition
where two of its in-plane major axes are almost
equal. Then asCa is further increased, the cap-
sule takes a swinging motion where it oscillates

about the straining direction, while the mem-
brane rotates around the deformed shape (fluid-
like motion).

The off-plane motion of aprolate capsule
in shear flow has been recently studied (Dupont
et al., 2013; Cordasco and Bagchi, 2013). It is
found that the lowCa tumbling motion in the
shear plane is mechanically unstable. Indeed,
for any initial orientation, the capsule places
its revolution axis along the vorticity axis per-
pendicularly to the shear plane (rolling regime).
As Ca is increased, the capsule longest axis
moves away from the vorticity axis and pre-
cesses around it. At still higher values ofCa,
the capsule longest axis goes to the shear plane
where a stable swinging regime is observed.
Dupont et al. (2013) have shown that those sta-
ble equilibrium states do not depend on the ini-
tial orientation of the capsule revolution axis
relative to the shear plane.
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The case of oblate capsules has been con-
sidered by Cordasco and Bagchi (2013), who
find that at moderateCa, the capsule tends to
place its short axis in the shear plane where it
takes different motions from tumbling, kayak-
ing to swinging as a function ofCa and as-
pect ratio. However, as an oblate capsule takes
quite a long time to reach equilibrium, most
of the situations considered by Cordasco and
Bagchi (2013) were not time converged. Omori
et al. (2012) have also simulated the motion of
an oblate capsule with a strain-softening neo-
Hookean membrane and with short-to-long axis
ratio equal to 0.6. However, they have only con-
sidered two capillary numbers (Ca = 0.3 and
1.0) and have not studied the stability of the
tumbling motion, which takes place at lowCa.

It follows that a thorough parametric study
of the dynamics of oblate capsules is needed
to fully understand its behavior. The objective
of the paper is to investigate the influence of
the capillary number, viscosity ratio and initial
orientation on the equilibrium configurations of
an oblate capsule until an equilibrium state is
reached.

2. Method
We consider a capsule, which is oblate in its
reference undeformed state with aspect ratio
a/b = 0.5, where2a denotes the length of the
revolution axis and2b the length of the two or-
thogonal axes. We choose as length scale` =
(ab2)1/3, the radius of the sphere with the same
volume as the capsule. The capsule is filled with
a Newtonian incompressible fluid with viscos-
ity λµ and suspended in an unbounded New-
tonian incompressible fluid with viscosityµ,
whereλ is the internal to external viscosity ra-
tio. The internal and surrounding fluid have
the same density, thus excluding gravity effect.
The Reynolds number of the flow is assumed
to be very small, so that the internal and exter-
nal flows are governed by the Stokes equations.
The capsule is subjected to a simple shear flow
with shear ratėγ: the base flow velocity is

v
∞ = γ̇yex (1)

in the laboratory reference frame. The capsule
and flow centersO are identical.

At time γ̇t = 0, the capsule revolution axis
makes an angleζ0 with the vorticity axis and its
projection in the shear plane is aligned with the
x-axis (Fig. 1).
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Fig. 1: Reference configuration of the oblate
capsule subjected to a simple shear flow atγ̇t =
0. The initial capsule orientation is given byζ0,
the angle between the capsule revolution axis
e
′

z and the flow vorticity axisez.

The capsule has a very thin membrane,
modeled as an isotropic hyperelastic surface
with shear modulusGs and area dilatation mod-
ulusKs. The bending resistance of the capsule
membrane is neglected. We consider that the
capsule membrane behaviour is described by
the Skalak law, a strain-hardening constitutive
law, initially proposed by Skalak et al. (1973)
to model the red blood cell membrane. In this
case, the principal Cauchy elastic tensionsτ1
andτ2 are given in terms of the in-plane prin-
cipal stretch ratiosλ1 andλ2 by

τ1 =
Gs

λ1λ2

[

λ2

1
(λ2

1
− 1) + C(λ1λ2)

2
(

(λ1λ2)
2 − 1

)]

.

(2)

with the corresponding expression forτ2. The
surface shear modulusGs and area dilatation
modulusKs are related byKs = Gs(1 + 2C),
whereC is a constant such thatC > −1/2. The
capsule motion and deformation are thus gov-
erned by the membrane constitutive law, the ra-
tio Ks/Gs, the capsule initial orientationζ0, the
capillary numberCa = µγ̇`/Gs, which mea-
sures the ratio between the viscous and the elas-
tic forces and the viscosity ratioλ between the
internal and surrounding fluids. In this study,
we considerC = 1 and we focus on the influ-
ence ofζ0, Ca andλ on the capsule dynamics.
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The problem is solved numerically by cou-
pling a boundary integral technique to compute
the fluid flows (inside and outside the capsule)
to a finite element method (for the mechanics
of the capsule wall). A Lagrangian tracking of
the position of the membrane material points is
performed over time (Walter et al., 2010; Foes-
sel et al., 2011). One of the advantages of this
numerical method is that all the problem un-
known quantities need to be determined on the
capsule surface only. The latter is meshed by
subdividing sequentially the 20 triangular faces
of an icosahedron inscribed in a sphere until the
desired number of elements is reached. Nodes
are then added at the middle of all the ele-
ment edges and projected onto the sphere in
order to generate second order (P2) elements.
This mesh is then deformed into an ellipsoidal
mesh with the desired axis ratio. Here we use
a mesh with 2562 nodes and 1280 triangular
curved elements. The numerical method is sta-
ble when the time step satisfies the condition
γ̇ 4 t < O(hCa), whereh is the typical non-
dimensional mesh size (Walter et al., 2010). We
useγ̇4t = 5×10−3 for Ca ≥ 0.5 and decrease
the time step proportionally for lowerCa.

The global geometry of the capsule is eval-
uated by means of the ellipsoid of inertia of the
deformed shape. We denoteLi the half lengths
of the principal axes of the ellipsoid of inertia
(L1 > L2 > L3). The capsule global motion is
measured from the position of the short axis tip
M t

3
at timet, computed from the ellipsoid of in-

ertia at each time step. The membrane rotation
is measured from the motion of the pointM0

3
, a

specific mesh node initially located on the cap-
sule short axis (Fig. 1). In order to identify
clearly the motion of the short axis in space, we
introduce the anglēζ between the capsule short
axisOM t

3
and the shear plane.

3. Results and discussion
As for prolate capsules (Dupont et al., 2013),
we find that the capsule converges towards a
unique equilibrium motion, which does not de-
pend on the initial orientationζ0 ∈]0o, 90o[. For
example, Fig. 2 shows, forCa = 0.01, that the
angle ζ̄ tends to zero for three different initial
positionsζ0. The equilibrium motion of the cap-

sule then depends only on the capillary number
Ca and viscosity ratioλ. We first focus on the
equilibrium states which are obtained forλ = 1.

For small to moderate flow strengths cor-
responding toCa < 0.9, the short axis mi-
grates towards the shear plane for any initial
orientationζ0 (Fig. 2, 3). Some oscillations
of ζ are still observed in Fig. 2 at equilibrium
state. Although they do not completely dis-
appear, they remain of very small amplitude.
ForCa = 0.01, it is difficult to determine pre-
cisely which axis corresponds to the short axis
at equilibrium, asL2 ≈ L3. Like Omori et al.
(2012), we therefore also find that the pointM0

3

migrates to the shear plane. It follows that the
situation is identical to the one considered by
Walter et al. (2011) where the capsule revolu-
tion axis is initially positioned in the shear plane
(ζ0 = 90◦). Walter et al. (2011) find that at low
Ca (Ca < 0.02), the capsule takes a quasi-
solid tumbling motion. ForCa ∈ [0.02, 0.05],
the capsule has a transition motion: it takes a
nearly isotropic shape in the shear plane with
nearly equal in-plane principal axes. For higher
values ofCa (Ca > 0.5), the capsule takes a
swinging motion, where the axisOM t

3
has a

slightly varying length and orientation with re-
spect to the flow streamlines. Note that the time
the capsule takes to realign itself with the shear
plane is quite long and increases with the initial
distance of the capsule tip from the shear plane
as shown for example in Fig. 2.
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Fig. 2: Time evolution of the anglēζ between
the capsule small axisOM t

3
and the shear plane

for three initial orientationsζ0 at Ca = 0.01
(λ = 1).
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WhenCa is further increased (Ca ≥ 0.9),
the principal axes, which were in the shear
plane, exhibit small oscillations both about and
within the shear plane: the equilibrium state of
the capsule thus experiences a transition from
a swinging to a swinging-oscillating motion,
where the pointM0

3
precesses around the vor-

ticity axis with a constant mean inclination.
Then, forCa > 1.1, the pointM0

3
converges

towards the vorticity axis and the capsule takes
a rolling motion that is identical to the one ob-
served when the short axis is initially aligned
with the vorticity axis (ζ0 = 0◦). The membrane
tank-treads around a steady shape as shown
in Fig. 4. This motion was also observed by
Omori et al. (2012) forCa = 1. Note that when
the capsule is initially positioned withζ0 = 0◦,
the rolling motion is in principle a solution of
the problem for any value ofCa. However, the
present results demonstrate that this rolling mo-
tion is unstable forCa ≤ 1.1.
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Fig. 3: Time evolution of the anglēζ between
the capsule small axisOM t

3
and the shear plane

for different values ofCa and initial orientation
(λ = 1).
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Fig. 4: Rolling motion over one half period at
steady state forCa = 1.2 andζ0 = 85◦ (λ = 1).
The pointsM0

1
(�) andM0

3
(•) were initially at

the tip of a long and the short axis respectively
(Fig. 1)

In conclusion, forλ = 1 and depending
on Ca, the capsule aligns its axis in the shear
plane where it takes a quasi-solid tumbling mo-

tion (Ca < 0.02), a transition motion (Ca ∈

[0.02, 0.05]) and a swinging motion (Ca < 0.9).
For higher values ofCa, the capsule starts mov-
ing out of the shear plane and finally, forCa ≥

1.1, it aligns its axis with the vorticity direction
and takes a rolling motion.

As the viscosity ratio increases, theCa lim-
its of the different regimes evolve withλ (Fig.
5):

• The minimum value ofCa for which the
rolling motion is mechanically stable, de-
creases.

• The transition between the tumbling and
swinging motions in the shear plane ap-
pears for higherCa.

• For λ > 5, the swinging motion com-
pletely disappears and the mechanical
equilibrium states are only the swinging
and the rolling motions.
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Fig. 5: Capsule shape evolution over one half
period at steady state forCa = 1.2 andζ0 =
85◦ (λ = 1).

4. Conclusion
We have investigated the motion of an

oblate capsule in shear flow and found that it
depends on the flow strength and the viscosity
of the capsule internal liquid as compared to the
suspending one, but not on the initial inclina-
tion. We have shown that oblate capsules may
exhibit only three possible equilibrium states
(tumbling, swinging, rolling). There is there-
fore no procession motion at equilibrium. It
is important to note that the time required to
reach an equilibrium state is quite large. For
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λ = 1, it is of orderγ̇t = 200 and can increase
significantly whenλ increases. In practice, the
time window to observe the motion of artificial
capsules or red blood cells experimentally is
between 10 s and 50 s (Abkarian et al, 2007,
2008). At low shear rates, the capsules move
slowly, which facilitates the recording of their
dynamics in a shear flow. However, the non-
dimensional time of observatioṅγt is too small
for the capsules to reach the mechanical equi-
librium state: only the transition motion can be
observed in vitro at low shear rates. When the
shear rate is increased, the time windowγ̇t be-
comes larger. Thus the higher the shear rate, the
easier it becomes to design experiments where
equilibrium is reached. The price to pay is that
the capture of capsule dynamics is more diffi-
cult and requires even more sophisticated visu-
alization means than for low shear experiments.
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