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Abstract We consider the question of Markov chain Monte
Carlo sampling from a general stick-breaking Dirichlet pro-
cess mixture model, with concentration parameter α. This
paper introduces a Gibbs sampling algorithm that combines
the slice sampling approach of Walker (2007) and the retro-
spective sampling approach of Papaspiliopoulos and Roberts
(2008). Our general algorithm is implemented as efficient
open source C++ software, available as an R package, and is
based on a blocking strategy similar to that suggested by Pa-
paspiliopoulos (2008) and implemented by Yau et al (2011).

We discuss the difficulties of achieving good mixing in
MCMC samplers of this nature in large data sets and investi-
gate sensitivity to initialisation. We additionally consider the
challenges when an additional layer of hierarchy is added
such that joint inference is to be made on α. We introduce
a new label-switching move and compute the marginal par-
tition posterior to help to surmount these difficulties. Our
work is illustrated using a profile regression (Molitor et al,
2010) application, where we demonstrate good mixing be-
haviour for both synthetic and real examples.
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1 Introduction

Fitting mixture distributions to model some observed data is
a common inferential strategy within statistical modelling,
used in applications ranging from density estimation to re-
gression analysis. Often, the aim is not only to fit the mix-
ture, but additionally to use the fit to guide future predic-
tions. Approaching the task of mixture fitting from a para-
metric perspective, the task to accomplish is to cluster the
observed data and (perhaps simultaneously) determine the
cluster parameters for each mixture component. This task is
significantly complicated by the need to determine the num-
ber of mixture components that should be fitted, typically
requiring complicated Markov chain Monte Carlo (MCMC)
methods such as reversible jump MCMC techniques (Richard-
son and Green, 1997) or related approaches involving paral-
lel tempering methods (Jasra et al, 2005).

An increasingly popular alternative approach to para-
metric modelling is to adopt a Bayesian non-parametric ap-
proach, fitting an infinite mixture, thereby avoiding deter-
mination of the number of clusters. The Dirichlet process
(Ferguson, 1973) is a well studied stochastic process that
is widely used in Bayesian non-parametric modelling, with
particular applicability for mixture modelling. The use of
the Dirichlet process in the context of mixture modelling is
the basis of this paper and we shall refer to the underlying
model as the Dirichlet process mixture model, or DPMM for
brevity.

The idea of sampling from the DPMM is not new and
has been considered by a number of authors including Es-
cobar and West (1995), Neal (2000), Ishwaran and James
(2001), and Yau et al (2011). While the continual evolution
of samplers might implicitly suggest potential shortcomings
of previous samplers, new methods are often illustrated on
synthetic or low dimensional datasets which can mask is-
sues that might arise when using the method on problems
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of even modest dimension. In fact, it appears that little ex-
plicit discussion has been presented detailing the inherent
difficulties of using a Gibbs (or Metropolis-within-Gibbs)
sampling approach to update such a complex model space,
although there are some exceptions, for example Jain and
Neal (2007), in the context of adding additional split-merge
type moves into their sampler.

For real (rather than synthetic) data applications of the
DPMM, the state space can be highly multimodal, with well
separated regions of high posterior probability co-existing,
often corresponding to clusterings with different number of
components. We demonstrate that such highly multimodal
spaces present difficulties for the existing sampling meth-
ods to escape the local modes, with poor mixing resulting in
inference that is influenced by sampler initialisation. In the
most serious case, this can be interpreted as non-convergence
of the MCMC sampler. A primary contribution of this paper
is to demonstrate these issues, highlighting that if only cer-
tain marginals are used to determine convergence they may
fail to identify any issue. To address this we introduce the
Marginal Partition Posterior as a more robust way of moni-
toring convergence.

A secondary (and more subtle) mixing issue relates to
the mixing across the ordering of clusters in a particular
clustering process, when a stick breaking construction is used.
As we shall detail, such issues are particularly important
when simultaneous inference is desired for the concentration
parameter α, as defined in the following section. This mix-
ing issue was highlighted by Papaspiliopoulos and Roberts
(2008) who observed that the inclusion of label-switching
moves can help to resolve the problem. We demonstrate that
the moves that they propose offer only a partial solution to
the problem, and we suggest an additional label-switching
move that appears to enhance the performance of our own
implementation of a DPMM sampler.

In the following section, we present the further details
of the DPMM. Section 3 discusses some of the mixing is-
sues with DPMM samplers, including Section 3.2 where we
introduce the new label-switching move. This is followed
by Section 4 where we present a method that we have found
useful for determining sampler convergence. The implemen-
tation of our sampler is briefly summarised in Section 5 be-
fore Section 6 demonstrates some of the earlier ideas in the
context of a real data example.

2 Dirichlet process mixture models

A variety of ways have been used to show the existence of
the Dirichlet Process, using a number of different formu-
lations (Ferguson, 1973; Blackwell and MacQueen, 1973).
In this paper we focus on Dirichlet process mixture models
(DPMM), based upon the following constructive definition

of the Dirichlet process, due to Sethuraman (1994). If

P =

∞∑
c=1

ψcδΘc ,

Θc ∼ PΘ0
for c ∈ Z+,

ψc = Vc
∏
l<c

(1− Vl) for c ∈ Z+ \ {1}, (1)

ψ1 = V1, and

Vc ∼ Beta(1, α) for c ∈ Z+,

where δx denotes the Dirac delta function concentrated at
x, then P ∼ DP(α, PΘ0). This formulation for V and ψ
is known as a stick-breaking distribution. Importantly, the
distribution P is discrete, because draws Θ̃1, Θ̃2, . . . from
P can only take the values in the set {Θc : c ∈ Z+}.

It is possible to extend the above formulation to more
general stick-breaking formulations (Ishwaran and James,
2001; Kalli et al, 2011; Pitman and Yor, 1997).

2.1 Sampling from the DPMM

For the DPMM, the (possibly multivariate) observed data
D = (D1, D2, . . . , Dn) follow an infinite mixture distribu-
tion, where component c of the mixture is a parametric den-
sity of the form fc(·) = f(·|Θc, Λ) parametrised by some
component specific parameter Θc and some global parame-
ter Λ. Defining (latent) parameters Θ̃1, Θ̃2, . . . , Θ̃n as draws
from a probability distribution P following a Dirichlet pro-
cess DP (α, PΘ0

) and again denoting the dirac delta func-
tion by δ, this system can be written,

Di|Θ̃i, Λ ∼ f(Di|Θ̃i, Λ) for i = 1, 2, . . . , n, (2)

Θ̃i ∼
∞∑
c=1

ψcδΘc
for i = 1, 2, . . . , n.

When making inference using mixture models (either fi-
nite or infinite) it is common practice to introduce a vector
of latent allocation variables Z. Such variables enable us to
explicitly characterise the clustering and additionally facili-
tate the design of MCMC samplers. Adopting this approach
and writing ψ = (ψ1, ψ2, . . .) and Θ = (Θ1, Θ2, . . .), we
re-write Equation 2 as

Di|Z,Θ, Λ ∼ f(Di|ΘZi
, Λ) for i = 1, 2, . . . , n,

Θc ∼ PΘ0 for c ∈ Z+,

P(Zi = c|ψ) = ψc for c ∈ Z+, i = 1, 2, . . . , n. (3)

We refer to the model in Equation 3, with no variables in-
tegrated out, as the full stick-breaking DPMM or even the
FSBDPMM for conciseness.

Historically, methods to sample from the DPMM (Esco-
bar and West, 1995; Neal, 2000) have simplified the sam-
ple space of the full stick-breaking DPMM by integrating
out the mixture weights ψ. Collectively, such samplers have
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been termed Polyà Urn samplers. Ishwaran and James (2001)
presented a number of methods for extending Polyà Urn
samplers, and additionally suggested a truncation approach
for sampling from the full stick-breaking DPMM with no
variables integrated out.

More recently, two alternative innovative approaches to
sample directly from the FSBDPMM have been proposed.
The first, introduced by Walker (2007) and generalised by
Kalli et al (2011), uses a novel slice sampling approach, re-
sulting in full conditionals that may be explored by the use
of a Gibbs sampler. The second distinct MCMC sampling
approach was proposed in parallel by Papaspiliopoulos and
Roberts (2008). The proposed sampler again uses a Gibbs
sampling approach, but is based upon an idea termed ret-
rospective sampling, allowing a dynamic approach to the
determination of the number of components (and their pa-
rameters) that adapts as the sampler progresses. The cost
of this approach is an ingenious but complex Metropolis-
within-Gibbs step, to determine cluster membership. De-
spite the apparent differences between the two strategies, Pa-
paspiliopoulos (2008) noted that the two algorithms can be
effectively combined to yield an algorithm that improves ei-
ther of the originals. The resulting sampler was implemented
and presented by Yau et al (2011), and a similar version was
used by Dunson (2009).

The current work presented in this paper uses our own
sampler (described further in Section 5) based upon our in-
terpretation of these ideas, implemented using our own block-
ing strategy. Our blocking strategy may or may not be origi-
nal (we are unable to say given that the full blocking strategy
adopted by Yau et al (2011) is not explicitly detailed), but
we expect our approach to be based upon a sufficiently sim-
ilar strategy such that the mixing issues that we demonstrate
would apply equally to other authors’ implementations.

2.2 An example model

Equation 3 is of course very general, indicating that sam-
pling from the DPMM has wide scope across a variety of
applications. However, it is perhaps equally instructive to
consider a specific less abstract example, that can be used to
highlight the issues raised in later sections.

Profile regression Recent work has used the DPMM as an
alternative to parametric regression, non-parametrically link-
ing a response vector Y with covariate data X by allocat-
ing observations to clusters. The clusters are determined by
both the X and Y , allowing for implicit handling of po-
tentially high dimensional interactions which would be very
difficult to capture in traditional regression. The approach
also allows for the possibility of additional “fixed effects”
W which have a global (i.e. non-cluster specific) effect on

the response. The method is described in detail by Moli-
tor et al (2010), Papathomas et al (2011), and Molitor et al
(2011), who use the term profile regression to refer to the
approach. A similar model has independently been used by
Dunson et al (2008) and Bigelow and Dunson (2009).

Using the notation introduced earlier in this Section, the
data becomes D = (Y ,X), and is modelled jointly as the
product of a response model and and a covariate model re-
sulting in the following likelihood:

p(Di|Zi,Θ, Λ,Wi) = fY (Yi|ΘZi
, Λ,Wi)fX(Xi|ΘZi

, Λ).

Discrete covariates with binary response Consider the case
where for each observation i, Xi is a vector of J locally in-
dependent discrete categorical random variables, where the
number of categories for covariate j = 1, 2, . . . , J is Kj .
Then defining

Φc = (φc,1,1, . . . , φc,1,K1 , . . . , φc,J,1, . . . , φc,J,KJ
),

we specify the covariate model as:

P(Xi|Zi, ΦZi
) =

J∏
j=1

φZi,j,Xi,j
.

Suppose also that Yi is a binary response, such that

logit{P(Yi = 1|θZi
, β,Wi)} = θZi

+ βTWi,

for some vector of coefficients β.
This is simply an example of profile regression, with

Θc = (Φc, θc) and Λ = β, such that

fY (Yi|ΘZi , Λ,Wi) = P(Yi|θZi , β,Wi), and

fX(Xi|ΘZi , Λ) = P(Xi|Zi, ΦZi).

We use this specific profile regression model to illustrate
our results in this paper, both for the simulated dataset and
the real-data example. Suitable prior distributions for mak-
ing inference about such a model are discussed in Molitor
et al (2010) and we adopt the same priors for the examples
presented below. We note however that our conclusions and
the behaviour we report typically hold more broadly across
the range of models that we have tested.

Simulated datasets One of the key messages of our work is
that DPMM samplers can perform well on simulated datasets
but this does not necessarily carry through to real-data ex-
amples. We present in-depth results for a real-data example
in Section 6, but to highlight the contrasting performance
two simple simulated dataset are also used. Our first simu-
lated data is from a profile regression model with 10 discrete
covariates and a binary response variable. The dataset has
1000 observations, partitioned at random into 5 groups in
a balanced manner. The covariate and response distributions
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corresponding to each partition were selected to be well sep-
arated. The second simulated dataset is also from a profile
regression model, but uses 10 discrete covariates, each with
5 categories, as well as 10 fixed effects and a Bernoulli out-
come. However, in this case, the data is sampled by mixing
over values of α from its Gamma prior, Gamma(9, 0.5). An
explicit description of the simulation methodology is pro-
vided in the Supplementary Material.

3 Mixing of MCMC algorithms for the DPMM

Sampling from a DPMM is a non-trivial exercise, as evi-
denced by the number of different methods that have been
introduced to address a wide array of issues. For Polyà Urn
samplers, with mixture weights ψ integrated out, a primary
limitation is that the conditional distribution of each cluster
allocation variable depends explicitly upon all other clus-
ter allocation variables. This means that the commonly used
Gibbs samplers which typically update these variables one
at a time suffer from poor mixing across partition space. Us-
ing Metropolis-within-Gibbs steps and bolder split-merge
moves (Jain and Neal, 2004) can improve results, but in
high dimensional real-data applications, designing efficient
moves of this type is far from straightforward.

The challenges associated with methods which sample
from the FSBDPMM (most recently Yau et al, 2011 and
Kalli et al, 2011) have been perhaps less well documented.
This is partially because the innovative and ingenious meth-
ods that have facilitated such sampling have required signif-
icant attention in their own right, with the consequence that
the methods are often illustrated only on relatively simple
datasets.

The purpose of the remainder of this Section, and the
main contribution of our work, is to use our practical expe-
rience to further understanding of the behaviour of this new
type of samplers, with particular emphasis on some of the
challenges of sampling from the FSBDPMM for real data
problems.

3.1 Initial number of clusters

A difficulty that persists even with the inclusion of the inno-
vative techniques that allow MCMC sampling directly from
the FSBDPMM is being able to effectively split clusters and
thereby escape local modes. This is partially due to the in-
trinsic characteristics of partition spaces and the extremely
high number of possible ways to split a cluster, even if it
only has a small number (for example, 50 or more) sub-
jects in it. Although sampling directly from the FSBDPMM
(rather than integrating out the mixture weights) does im-
prove mixing when updating the allocation variables, any

Gibbs moves that update allocations and parameters individ-
ually (or even in blocks) struggle to explore partition space.
On the other hand, constructing more ambitious Metropolis-
Hastings moves that attempt to update a larger number of
parameters simultaneously is also a very difficult task due to
the difficulty in designing moves to areas of the model space
with similar posterior support.

Rather than subtly ignoring the problem and reporting
over confident inference when analysing case studies, we
suggest that, if used with caution, a FSBDPMM sampler still
provides a useful inferential tool, but that its limitations must
be realised and acknowledged. For example, because of the
difficulty that the sampler has in increasing the number of
clusters for situations involving data with weak signal, it is
important to initialise the algorithm with a number of clus-
ters which is greater than the anticipated number of clusters
that the algorithm will converge to. This necessarily involves
an element of trial and error to determine what that number
is, where multiple runs from different initialisations must be
compared (for example using the ideas presented in Section
4). This is demonstrated in Section 6.

3.2 Cluster ordering, α and label-switching

A secondary area where mixing of a full DPMM sampler re-
quires specific attention is the mixing of the algorithm over
cluster orderings. In particular, whilst the likelihood of the
DPMM is invariant to the order of cluster labels, the prior
specification of the stick breaking construction is not. As
detailed by Papaspiliopoulos and Roberts (2008), the defi-
nition of ψc in terms of Vc, imposes the relation E[ψc] >
E[ψc+1] for all c. This weak identifiability, discussed in more
detail by Porteous et al (2006), also manifests itself through
the result P (ψc > ψc+1) > 0.5 for all c, a result that we
prove in Appendix A.1.

The importance of whether the FSBDPMM algorithm
mixes sufficiently across orderings depends partially upon
the object of inference. Specifically, since P (ψc > ψc+1)

depends upon the prior distribution of α, if inference is to
be simultaneously made about α (as is the scenario consid-
ered in this paper), it is very important that the algorithm ex-
hibits good mixing with respect to α. If this was not the case,
the posterior marginal distribution for α would not be ade-
quately sampled, and since α is directly related to the num-
ber of non-empty clusters (see Antoniak,1974 for details),
poor mixing across ordering may further inhibit accurate in-
ference being made about the number of non-empty clus-
ters. This situation would be further exaggerated for more
general stick breaking constructions (of the sort mentioned
in the introduction). While it is possible to set a fixed value
of α, more generally we wish to allow α to be estimated.

To ensure adequate mixing across orderings, it is impor-
tant to include label-switching moves, as observed by Pa-
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paspiliopoulos and Roberts (2008). Without such moves, the
one-at-a-time updates of the allocations Zi, mean that clus-
ters rarely switch labels, and consequentially the ordering
will be largely determined by the (perhaps random) initial-
isation of the sampler. For all choices of α, the posterior
modal ordering will be the one where the cluster with the
largest number of individuals has label 1, that with the sec-
ond largest has label 2 and so on. However, α affects the
relative weight of other (non-modal) orderings, and a prop-
erly mixing sampler must explore these orderings according
to their weights.

We adopt the label-switching moves suggested by Pa-
paspiliopoulos and Roberts (2008), and details can be found
therein. However, in our experience, while these moves may
experience high acceptance rates early on in the life of the
sampler, once a “good” (in terms of high posterior support)
ordering is achieved, the acceptance rates drop abruptly (see
Section 6, Figure 7) . This means that there is little further
mixing in the ordering space. Our concern is that while these
label-switching moves appear to encourage a move towards
the modal ordering, once that ordering is attained, the sam-
pler rarely seems to escape too far from this ordering.

Our solution is to introduce a third label-switching move
that we describe here. In brief, the idea is to simultaneously
propose an update of the new cluster weights so they are
something like their expected value conditional upon the
new allocations. Specifically, defining Z? = max1≤i≤n Zi
and A = {1, . . . , Z?} the move proceeds as follows: first
choose a cluster c randomly from A \ {Z?}. Propose new
allocations

Z ′i =


c+ 1 i : Zi = c

c i : Zi = c+ 1

Zi otherwise.

(4)

and switch parameters associated to these clusters such that

Θ′l =


Θc+1 l = c

Θc l = c+ 1

Θl otherwise.

(5)

Additionally, propose new weightsψ′c andψ′c+1 for com-
ponents c and c+ 1 such that

ψ′l =


ψc+1

ψ+

Ψ ′
E[ψc|Z′,α]
E[ψc+1|Z,α] l = c

ψc
ψ+

Ψ ′
E[ψc+1|Z′,α]
E[ψc|Z,α] l = c+ 1

ψl otherwise,

and (6)

where ψ+ = ψc + ψc+1 and

Ψ ′ = ψc+1
E[ψc|Z ′, α]
E[ψc+1|Z, α]

+ ψc
E[ψc+1|Z ′, α]
E[ψc|Z, α]

,

by setting

V ′l =


ψ′

c∏
l<c(1−Vl)

l = c
ψ′

c+1

(1−V ′
c )

∏
l<c(1−Vl)

l = c+ 1

Vl otherwise.

(7)

All other variables are left unchanged. Assuming that there
are nc and nc+1 individuals in clusters c and c + 1 respec-
tively at the beginning of the update, the acceptance proba-
bility for this move is then given by min{1, R} where

R =

(
ψ+

ψc+1R1 + ψcR2

)nc+nc+1

R
nc+1

1 Rnc
2 , where (8)

R1 =
1 + α+ nc+1 +

∑
l>c+1 nl

α+ nc+1 +
∑
l>c+1 nl

, and (9)

R2 =
α+ nc +

∑
l>c+1 nl

1 + α+ nc +
∑
l>c+1 nl

. (10)

More details can be found in Appendix A.2.

4 Monitoring convergence

Accepting that the challenge of convergence persists, it is
clearly important that the user has diagnostic methods to as-
sess whether convergence can be reasonably expected. Due
to the nature of the model space, many traditional techniques
cannot be used in this context. For our hierarchical model, as
described in Equations 1 and 3, there are no parameters that
can be used to meaningfully demonstrate convergence of
the algorithm. Specifically, parameters in the vector Λ tend
to converge very quickly, regardless of the underlying clus-
tering, as they are not cluster specific and therefore are not
a good indication of the overall convergence. On the other
hand the cluster parameters Θc, cannot be tracked, as their
number and interpretation changes from one iteration to the
next (along with the additional complication that the labels
of clusters may switch between iterations). While the con-
centration parameter α may appear to offer some informa-
tion, using this approach can be deceiving, since a sampler
that becomes stuck in a local mode in the clustering space
will appear to have converged. Hence, monitoring the dis-
tribution of α across multiple runs initialised with different
numbers of clusters is advisable, but in our experience find-
ing a broad enough spectrum of initialisations is not easy
to determine in advance. Therefore, relying solely on α to
monitor convergence might lead to misplaced confidence.

Based upon our experience with real datasets, we sug-
gest that to better assess convergence, it is also important to
monitor the marginal partition posterior in each run, a cal-
culation that we detail in the following section.
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Fig. 1: Log marginal partition posterior for the first simu-
lated dataset with different initial number of clusters.

4.1 Marginal partition posterior

We define the marginal partition posterior as p(Z|D). This
quantity represents the posterior distribution of the alloca-
tions given the data, having marginalised out all the other
parameters.

In general computation of p(Z|D) is not possible in closed
form, and requires certain assumptions and approximations.
One such simplification is to fix the value of α in the calcula-
tion, rather than integrating over the distribution. Typically,
we advise choosing one or several values of α to condition
on, based on experimental runs on the dataset under study
with α allowed to vary.

With the value of α fixed, whether or not p(Z|D) can be
computed directly depends upon whether conjugate priors
are adopted for all other parameter that must be integrated
out. For the example of profile regression with logistic link
introduced above this is typically not possible, as there is no
natural conjugate for this response model. In such cases, in-
tegrating out such variables can be achieved using Laplace
approximations. Using such an approximation appears to be
sufficient for discerning differences between runs that per-
haps indicate convergence problems. Details on the compu-
tations of p(Z|D) can be found in the Supplementary Mate-
rial.

Figure 1 demonstrates that the strong signal in our first
simulated dataset means that the sampler converges regard-
less of the initial number of clusters. In contrast, Section 6
(Figure 3) demonstrates that for our real dataset convergence
is not always achieved.

Computing the marginal partition posterior for each run
of the MCMC and comparing between runs has proven to
be a very effective tool for our real examples, particularly
to identify runs that were significantly different from others,
perhaps due to convergence issues.

Whereas comparing the marginal distribution of a pa-
rameter such as α between MCMC runs might help diag-
nose non-convergence if used with a wide range of initiali-
sations, it gives no indication of which run has explored the
regions of higher posterior probability. On the other hand,
comparing the marginal partition posterior between two dif-
fering runs immediately indicates which run explored the
higher posterior probability regions. This means that even
if we are not able to make fully Bayesian inference about
the parameters, we are able to draw some conclusions about
those parameters which are more likely.

5 Our implementation of a DPMM sampler

To demonstrate the behaviour discussed within this paper,
we have used our own implementation of a Gibbs sampler
(with Metropolis-within-Gibbs steps) for the FSBDPMM.
The core of the sampler is implemented as efficient C++
code, interfaced through the PReMiuM R package (Liverani
et al, 2013).

The sampler was originally written specifically for anal-
ysis of profile regression problems (as presented in Section
2.2) across a variety of applications. For such models, the
package includes Bernoulli, Binomial, Poisson, Normal and
categorical response models, as well as Normal and dis-
crete covariates. It is also possible to run the sampler with
no response model, allowing the consideration of more tra-
ditional mixture models. Additionally, the sampler imple-
ments a type of variable selection, allowing inference to be
made in the case of data where the clustering might be de-
termined with reference to only a subset of covariates This
type of problem is discussed in detail by Papathomas et al
(2012).

Extensive details of the algorithm can be found in (Liv-
erani et al, 2013), including the blocking strategy that is in-
tegral for allowing sampling from the FSBDPMM. We note
some brief details that are relevant to the current work be-
low.

5.1 Post processing

An optimal partition Given a sample of partitions from the
posterior distribution of a Bayesian cluster model (for exam-
ple from a DPMM sampler where the sample is the output
of an MCMC algorithm) it is often desirable to summarise
the sample as a single representative clustering estimate. The
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benefits of having a single estimate of the partition often suf-
ficiently outweigh the fact that the uncertainty of the cluster-
ing is lost by such a point estimate, although it should always
be communicated that this uncertainty may be considerable.

One benefit of using an optimal partition is that ques-
tions of how to account for unambiguous labelling of clus-
ters between MCMC sweeps can be avoided, which would
not be the case if we wished to provide certain kinds of dis-
tributional summary of the partition space. We emphasise
that the term label-switching is often used in this context
to refer to the complicating impact on inference of not hav-
ing ways of “tracking” clusters between iterations. This is
in contrast to the deliberate label-switching moves as intro-
duced in Section 3.2 which use label-switching as a tech-
nique to better explore partition space and avoid undue influ-
ence of the ordering. Note that our inferential methods (e.g.
determining an optimal partition or the predictive method
described in the following section) are not affected by label-
switching.

There are many different ways to determine a point es-
timate of the partition, for example something as simple as
the maximum a posteriori (MAP) estimate (the partition in
the sample with the highest value of the marginal partition
posterior). We prefer methods based on the the construction
(as a post-processing step) of a posterior similarity matrix, a
matrix containing the posterior probabilities (estimated em-
pirically from the MCMC run) that the observations i and
j are in the same cluster. The idea is then to find a par-
tition which maximises the sum of the pairwise similari-
ties. We find that methods based on the posterior similarity
matrix are less susceptible to Monte Carlo error, especially
when the optimal partition is not constrained to be in sample,
but might be obtained using additional clustering methods,
such as partitioning around medoids, that take advantage of
the whole MCMC output. Note that once a representative
partition is chosen, full uncertainty about its characteristic
features can be recovered from postprocessing of the full
MCMC output. See (Molitor et al, 2010) for a full discus-
sion.

Making predictions While an optimal partition can be very
helpful in some cases (particularly when it is the cluster-
ing itself that is the primary object of inference) difficulties
are faced in understanding or conveying the uncertainty of
the partitioning. Due to the complexity and sheer size of the
model space, the optimal partitions tend to differ between
runs of the MCMC, and it is not an easy task to assess
whether convergence has been achieved based on this ap-
proach alone.

A common target of inference is not necessarily the par-
tition itself, but how the estimated parameters might allow us
to make predictions for future observations. For example we
might want to group new observations with existing obser-

vations, or, in the case of profile regression, make a predic-
tion about the response if only the covariates of a new obser-
vation had been observed. One way to do this is to use poste-
rior predictions, where posterior predictive distributions for
quantities of interest can be derived from the whole MCMC
run, taking the uncertainty over clustering into account.

Depending on the quantity of interest, the posterior pre-
dictive distribution can often be relatively robust even across
runs with noticeably different optimal partitions. While this
may not help us to determine if the algorithm has suffi-
ciently explored the partition-space, if the purpose of the
inference is to make predictions, this robustness can be reas-
suring. Moreover, by allowing predicted values to be com-
puted based on probabilistic allocations (i.e. using a Rao-
Blackwellised estimate of predictions) results can be further
desensitised to a single best partition.

6 Investigation of the algorithm’s properties in a large
data application

In this section, we report the results of using our FSBDPMM
sampler in a profile regression application with discrete co-
variates and a binary response, applied to a real epidemio-
logical dataset with 2,639 subjects.

The analysis of real data presents a number of challenges:
it requires care in ensuring convergence, as the signal is
not as strong as in a simulation study. However, these are
challenges that might be encountered more widely by users
wishing to apply the methods to real data, and by presenting
an example it allows us to highlight and discuss the issues
that arise.

6.1 The data

Our dataset is a subset taken from an epidemiological case-
control study, the analysis of which has provided the moti-
vation of most of the work presented in this paper (see ?, ?).
In the illustrative example we have 2,639 subjects, and use
6 discrete covariates each with 5 categories, and 13 fixed
effects. The response is binary and we use the model speci-
fications detailed in Section 2.2 to analyse this data set. The
low signal contained in the data poses issues with conver-
gence of the MCMC, as we illustrate below.

Our results are based upon running multiple chains each
for 100,000 iterations after a burn-in sample of 50,000 itera-
tions. In some cases, behaviour within this burn-in period is
illustrated.

6.2 Results

Marginal partition posterior and number of clusters As dis-
cussed in Section 3 we run multiple MCMC runs, starting
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Fig. 2: Log marginal partition posterior for the real epidemi-
ological dataset with different initial number of clusters.

each with very different numbers of initial clusters. For this
dataset, initialising the sampler with fewer than 20 clusters
results in marginal partition posterior distributions that are
significantly different between runs. This is illustrated in
Figure 2, where initialisations with small number of clusters
result in much lower marginal partition posterior values than
can be achieved with a higher initial number of clusters. It is
apparent that there is a cut-off at 20 clusters, where increas-
ing the number of initial clusters further does not result in an
increase in the marginal partition posterior, suggesting that
with 20 clusters or more the sampler is able to visit areas of
the model space with the highest posterior support.

Posterior distribution ofα Figure 3 shows the boxplot of the
posterior distribution of α as a function of the initial num-
ber of clusters. For each different initial number of clusters,
three different runs with random initialisations of other pa-
rameters were performed. We can see that the posterior dis-
tribution of α only stabilises when the initial number of clus-
ters is high, around 50 in our case. Thus, we would recom-
mend carrying out such checks as part of the investigation of
convergence strategy. Note that while it is advisable to start
with a large number of initial clusters, starting with many
more clusters than necessary can result in a larger number
of iterations required for convergence.

Posterior distribution of the number of clusters The need to
initialise the sampler with a sufficiently high number of clus-
ters is also supported by looking at the posterior distribution
of the number of clusters. Figure 4 contrasts the behaviour
of the sampler between the first 500 iterations of the burn in
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Fig. 3: Posterior distribution of α for different number of
initial clusters with three repetitions per initialisation: box-
plots for the distribution for 50,000 sweeps after a burn-in
of 50,000 samples.

period and 500 iterations after the first 15,000, for a run with
31 initial clusters.

In the initial iterations, the space is explored by modify-
ing and merging clusters, with the number of clusters chang-
ing frequently, in a general downward trend. On the other
hand, once the MCMC has converged to the model space
around a mode, the algorithm attempts to split clusters reg-
ularly, but the number of changes in the number of clusters
are few, and increases in the number of clusters are almost
immediately reversed in the following iteration.

The posterior distributions for the number of clusters is
shown in Figure 5 for runs with different initial numbers of
clusters. Five chains have been ran, initialised with 1, 5, 10,
30 and 50 clusters respectively. The size and shading of each
circle in Figure 5 represents the posterior frequency of the
number of clusters for each of the chains. As can be seen
from this figure, with 30 or more initial clusters the sampler
has converged to a common area of posterior support, but
with fewer than this the sampler might not visit this region
of the model space, despite it having increased posterior sup-
port. Taken together, the plots in Figures2, 3 and 5 provide
concurring evidence that for our real data case, starting with
50 or more clusters leads to reproducible conclusions.

Label-switching moves This example also demonstrates the
need for the new label-switching move discussed in Sec-
tion 3.2 to ensure good mixing. Figure 6 demonstrates the
decrease in acceptance rate that is evidenced for the label-
switching moves, if only the moves that Papaspiliopoulos
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Fig. 5: The posterior distribution of the number of clusters
for 50,000 sweeps after a burn-in of 50,000 iterations.

and Roberts (2008) propose are included. For the first of the
moves that Papaspiliopoulos and Roberts (2008) propose,
where the labels of two randomly selected clusters are ex-
changed, we observed acceptance rates below 10% for any
sample of 500 sweeps. For the second of the moves, where
the labels of two neighbouring clusters are swapped, along
with the corresponding Vc, Vc+1 the acceptance rate drops
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Fig. 6: Acceptance rate for intervals of 500 sweeps for the
two label-switching moves proposed by Papaspiliopoulos
and Roberts (2008) and comparison with samples from the
posterior distribution of α (bottom).

considerably after initially being very high. This decrease
can be explained by the observation (made by the original
authors) that the second move type is always accepted if
one of the clusters is empty, which can happen often in ini-
tial cluster orderings with low posterior support. Note that
α stabilises after 5,000 iterations for the example shown. If
only the first of the two moves is implemented, α moves ex-
tremely slowly (more than 50,000 iterations are not enough
to have a stable trace; not shown) while if only the second
of the two moves is implemented, for this example, 17,000
iterations are necessary for α to stabilise (not shown).

Comparing Figure 7 to Figure 6, we can see that the new
label-switching move suffers from no drop off in acceptance
at any point throughout the run. Figure 8 shows the accep-
tance rate for our new label-switching move, when the other
two switching label is not implemented. While the perfor-
mance is worse than using all three moves, it is the most
effective single label-switching move (see Section 3.2).
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Fig. 7: Acceptance rates with the new label-switching move.

To further assess how the new label-switching move af-
fects mixing and the ability to recover the posterior distri-
bution of α, we used our second simulated dataset. Start-
ing with 100 clusters, we performed 10 runs of the sampler
using only moves 1 and 2 for label-switching, and 10 runs
adding in our third label-switching move. In each case we
ran the chain for 100,000 iterations after a burn-in sample
of 100,000 iterations. Figure 9 shows the performance of
the sampler in retrieving the distribution of α that was used
to simulate the data with and without using our new label-
switching move. It is clear that this distribution is not well
recovered when using exclusively moves 1 and 2, while the
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Fig. 8: Acceptance rates for the new label-switching move.
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Fig. 9: Recovered posterior density of α from multiple
MCMC runs with and without the new label-switching move
compared with generating density of α for the second simu-
lated dataset.

addition of our third label-switching move is clearly benefi-
cial.

7 Conclusions

By demonstrating some of the challenges that occur when
sampling from the DPMM, we hope to have raised aware-
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ness that continued research into the DPMM sampling method-
ology is required. Our implementation of a FSBDPMM sam-
pler, synthesises many of the most recent and innovative
techniques introduced by other authors, such as parameter
blocking, slice sampling, and label-switching. However, due
to the complex model space that is inherent with the FSB-
DPMM, many issues persist.

In previous work by other authors, considerable progress
has been made evolving the samplers through innovative
strategies and approaches. Nonetheless, discussion of many
of the residual difficulties is avoided through demonstrat-
ing the methods only on simulated data, or for datasets with
strong signal. In practice however, with real datasets, the
user does not have the option of simply avoiding these is-
sues, as illustrated by our analysis of the mixing perfor-
mance of an epidemiological data set with low signal to
noise ratio.

In this paper we have attempted to highlight the difficul-
ties that a user may face in practice. We have added a new
feature in the form of an additional label-switching move to
build upon this previous research and further alleviate some
of the challenges that are involved when trying to sample
such a complex posterior space. We have also provided prac-
tical guidelines based on our experience, on how to make
useful inference in the face of these limitations.

As a consequence of discussing these challenges explic-
itly, we hope that our work will motivate further develop-
ments in this area to take additional steps to improve sam-
pler efficiency. The challenge of designing MCMC moves
that are able to escape local well-separated modes is consid-
erable, but equally, so is the imagination and innovation of
many researchers developing new MCMC sampling method-
ologies. Encouragingly research continues, and drawing on
alternative techniques which might be better designed for
multi-modality, such as sequential Monte Carlo (see for ex-
ample Ulker et al, 2011) may yield further improvements.

In the meantime, practitioners may benefit from observ-
ing the difficulties we have presented here, allowing them
to recognise and communicate potential limitations of their
analyses.
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A Appendices

A.1

We provide the following proposition concerning the relationship be-
tween the ordering and α.

Proposition 1 Suppose that we have a model with posterior as given
in Equation 1. Then P(ψc > ψc+1|α) is a function of α, and further-
more P(ψc > ψc+1) > 0.5.

Proof If ψc > ψc+1 then Vc > Vc+1(1−Vc), which implies Vc+1 <
Vc/(1− Vc). Thus

P( ψc > ψc+1|α) = P(Vc+1 < Vc/(1− Vc)|α)

=

∫ 0.5

0

∫ V1/(1−V1)

0

α2(1− V1)α−1(1− V2)α−1dV2dV1

+

∫ 1

0.5

∫ 1

0

α2(1− V1)α−1(1− V2)α−1dV2dV1

=

∫ 0.5

0

[
α(1− V1)α−1 − α(1− V1)α−1

(
1− 2V1
1− V1

)α]
dV1

+

∫ 1

0.5

α(1− V1)α−1dV1

=

∫ 1

0

α(1− V1)α−1dV1

−
∫ 0.5

0

α
(1− 2V1)α

1− V1
dV1

= 1−
∫ 0.5

0

α
(1− 2V1)α

1− V1
dV1.

Now since, (1− 2V1)α/(1− V1) < (1− 2V1)α−1

α

∫ 0.5

0

(1− 2V1)α

1− V1
dV1 < α

∫ 0.5

0

(1− 2V1)
α−1dV1 = 0.5.

So P(ψc > ψc+1|α) > 0.5 for all α. Finally,

P(ψc > ψc+1) =

∫
P(ψc > ψc+1|α)p(α)dα

>

∫
0.5p(α)dα = 0.5.

A.2

Proposition 2 Consider the label-switching move defined in Equa-
tions 4 to 7 in Section 3.2. Then:

(i) (ψ+)′ := ψ′c + ψ′c+1 = ψc + ψc+1 = ψ+;
(ii) (1− V ′c )(1− V ′c+1) = (1− Vc)(1− Vc+1);

(iii) The proposal mechanism is its own reverse;
(iv)

E(ψc|Z′, α)
E(ψc+1|Z, α)

=
1 + α+ nc+1 +

∑
l>c+1 nl

α+ nc+1 +
∑
l>c+1 nl

and

E(ψc+1|Z′, α)
E(ψc|Z, α)

=
α+ nc +

∑
l>c+1 nl

1 + α+ nc +
∑
l>c+1 nl

; and

(v) the acceptance probability for this move is given by min{1, R},
where the acceptance ratio R is given in Equation 8.
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Proof (i) By definition
(ψ+)′ := ψ′c + ψ′c+1

=
ψ+

Ψ ′

(
ψc+1

E[ψc|Z′, α]
E[ψc+1|Z, α]

+ ψc
E[ψc+1|Z′, α]
E[ψc|Z, α]

)
=

ψ+

Ψ ′
Ψ ′ = ψ+;

(ii) From (i),
ψ′c + ψ′c+1 = ψc + ψc+1

implies[
V ′c + V ′c+1(1− V ′c )

] ∏
l<c

(1− V ′l )

= [Vc + Vc+1(1− Vc)]
∏
l<c

(1− Vl).

By Equation 7, V ′l = Vl for all l < c,
⇒ V ′c + V ′c+1(1− V ′c ) = Vc + Vc+1(1− Vc)
⇒ (1− V ′c )(1− V ′c+1) = (1− Vc)(1− Vc+1).

The importance of this result is that it provides confirmation that
our proposed ψ′ in Equation 6 can be achieved with the V de-
fined in Equation 7. In particular, with this choice of V ′, the only
weights that are changed are those associated with components c
and c+ 1, as desired.

(iii) Suppose that the Markov chain is currently in the proposed state
defined in Equations 4 to 7 i.e. (V ′,Θ′,Z′,U , α, Λ). We show
that applying the proposal mechanism to this state, for component
c and c+ 1, the proposed new state is the original state

(V ′′,Θ′′,Z′′,U , α, Λ) = (V ,Θ,Z,U , α, Λ.)

The parameters U , α and Λ are unchanged by design of the pro-
posal mechanism. Also, by design, the allocations Z and clus-
ter parameters Θ are simply swapped for the selected compo-
nents, so trivially Z′′ = Z and Θ′′ = Θ. Since V ′′l is un-
changed for l 6∈ {c, c + 1}, it remains only to show V ′′c = Vc
and V ′′c+1 = Vc+1, or equivalently ψ′′c = ψc and ψ′′c+1 = ψc+1.
To confirm,

ψ′′c = ψ′c+1

(ψ+)′

Ψ ′′
E[ψc|Z′′]

E[ψc+1|Z′, α]

= ψc
ψ+

Ψ ′′
ψ+

Ψ ′
E[ψc+1|Z′, α]
E[ψc|Z, α]

E[ψc|Z′′, α]
E[ψc+1|Z′, α]

(by (i) and Equation 6) (11)

= ψc

(
ψ+
)2

Ψ ′′Ψ ′
since Z′′ = Z. (12)

However,

Ψ ′′ = ψ′c+1

E[ψc|Z′′]
E[ψc+1|Z′, α]

+ ψ′c
E[ψc+1|Z′′, α]
E[ψc|Z′, α]

=
ψ+

Ψ ′
(ψc + ψc+1)

(from Equation 6 and since Z′′ = Z)

=

(
ψ+
)2

Ψ ′
.

Substituting this into Equation 12 we get ψ′′c = ψc. The result for
ψ′′c+1 can be shown by simply following identical logic.

(iv) From Equation 1, we have
E[ψc|Z, α] = E[Vc

∏
l<c

(1− Vl)|Z, α]

= E[Vc|Z, α]
∏
l<c

E[(1− Vl)|Z, α]

=

(
1 + nc

1 + α+ nc +
∑
l>c nl

)
(13)

×
∏
l<c

(
α+

∑
l′>l nl′

1 + α+ nl +
∑
l′>l nl′

)
. (14)

Similarly,

E[ψc+1|Z, α] =

(
1 + nc+1

1 + α+ nc+1 +
∑
l>c+1 nl

)

×
(

α+
∑
l>c nl

1 + α+ nc +
∑
l>c nl

)
(15)

×
∏
l<c

(
α+

∑
l′>l nl′

1 + α+ nl +
∑
l′>l nl′

)
.

By definition of Z′ in Equation 4, we have

n′l =


nc+1 l = c

nc l = c+ 1

nl otherwise.
(16)

This means from Equations 13 and 15 we have

E[ψc|Z′, α]
E[ψc+1|Z, α]

=

(
1 + n′c

1 + α+ n′c + n′c+1 +
∑
l>c+1 nl

)

×
(
1 + α+ nc+1 +

∑
l>c+1 nl

1 + nc+1

)
(17)

×

(
1 + α+ nc + nc+1 +

∑
l>c+1 nl

α+ nc+1 +
∑
l>c+1 nl

)
Substituting Equation 16 into 17 and simplifying gives the desired
results. The result for E[ψc+1|Z′,α]

E[ψc|Z,α]
follows in the same fashion.

(v) By (iii) and the deterministic nature of the proposal mechanism,
the only random feature of the proposal is the choice of component
c. The probability of this choice is the same for the move and its
reverse and so cancels. Therefore the only contribution to the ac-
ceptance ratio is the ratio of posteriors. By design, the likelihood
is unchanged, and by (ii) the only change in posterior is down to
the change in weights of components c and c + 1. Therefore we
have,

R =
(ψ′c)

n′
c(ψ′c+1)

n′
c+1

ψnc
c ψ

nc+1

c+1

(18)

=

(
ψ′c+1

ψc

)nc ( ψ′c
ψc+1

)nc+1

by Equation 16. (19)

Substituting in Equation 6 and the results in (iv), we obtain the
desired acceptance ratio.
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