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Abstract  

 

In the recent decades the Fluid-Structure Interaction (FSI) problem has been of great 

interest to many researchers and a variety of methods have been proposed for its 

numerical simulation. As FSI simulation is a multi-discipline and a multi-physics 

problem, its full simulation consists of many details and sub-procedures.  On the other 

hand, reliable FSI simulations are required in various applications ranging from hemo-

dynamics and structural engineering to aero-elasticity. In hemo-dynamics an 

incompressible fluid is coupled with a flexible structure with similar density (e.g. blood 

in arteries). In aero-elasticity a compressible fluid interacts with a stiff structure (e.g. 

aircraft wing) or an incompressible flow is coupled with a very light structure (e.g. 

Parachute or sail), whereas in some other engineering applications an incompressible 

flow interacts with a flexible structure with large displacement (e.g. oil risers in offshore 

industries). Therefore, various FSI models are employed to simulate a variety of different 

applications. An initial vital step to conduct an accurate FSI simulation is to perform a 

study of the physics of the problem which would be the main criterion on which the full 

FSI simulation procedure will then be based.   

In this thesis, interaction of an incompressible fluid flow at low Reynolds number 

with a flexible circular cylinder in two dimensions has been studied in detail using some 

of the latest published methods in the literature. The elements of procedures have been 

chosen in a way to allow further development to simulate the interaction of an 

incompressible fluid flow with a flexible oil riser with large displacement in three 

dimensions in future.  

To achieve this goal, a partitioned approach has been adopted to enable the use of 

existing structural codes together with an Immersed Boundary (IB) method which would 

allow the modelling of large displacements. A direct forcing approach, interpolation / 

reconstruction, type of IB is used to enforce the moving boundary condition and to create 

sharp interfaces with the possibility of modelling in three dimensions. This provides an 

advantage over the IB continuous forcing approach which creates a diffused boundary. 

And also is considered as a preferred method over the cut cell approach which is very 

complex in three dimensions with moving boundaries.  

Different reconstruction methods from the literature have been compared with the 

newly proposed method. The fluid governing equation is solved only in the fluid domain 

using a Cartesian grid and an Eulerian approach while the structural analysis was 

performed using Lagrangian methods. This method avoids the creation of secondary 

fluid domains inside the solid boundary which occurs in some of the IB methods. In the 

IB methods forces from the Eulerian flow field are transferred onto the Lagrangian 

marker points on the solid boundary and the displacement and velocities of the moving 

boundary are interpolated in the flow domain to enforce no-slip boundary conditions. 

Various coupling methods from the literature were selected and improved to allow 

modelling the interface and to transfer the data between fluid and structure. 

In addition, as an alternative method to simulate FSI for a single object in the fluid 

flow as suggested in the literature, the moving frame of reference method has been 

applied for the first time in this thesis to simulate Fluid-Structure interaction using an IB 

reconstruction approach. 

The flow around a cylinder in two dimensions was selected as a benchmark to 

validate the simulation results as there are many experimental and analytical results 

presented in the literature for this specific case. 
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Some of the Contributions to knowledge 

 

 

 Comprehensive and comparative study of the FSI methods considering 

facilities and physics of the problem to define an algorithm to be able to: 

 

 To simulate Large displacement/deformation  

 To integrated existing fluid flow and structural codes  

 To be extendable to three dimension 

 To be able to define sharp boundaries and resolve vortices in the flow field 

 To be fitted to the existing computational facilities  

 

 Developing an FSI code based on the comprehensive study to simulate 

  

 Stationary cases 

 Forced Vibration with prescribe motion  

 Vortex Induced Vibration (VIV) 

 

 Proposing a new interpolation procedure and comparing it with literature 

 

 Characterising the domain parameters affecting Strouhal number, lift and drag 

coefficients 

 

 Explaining some of discrepancies in the results of the lift and drag coefficient 

presented in the literature based on parametric study.   

 

 Applying a moving reference frame along with an IB interpolation method to 

model FSI and VIV. 
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Chapter 1. Introduction 

Fluid-Structure Interaction (FSI) analysis is widely used to study the physical 

phenomenon which occurs in many engineering applications in which a fluid flow 

interacts with a deformable or moving structure.   

Many engineering structures are subjected to environmental fluid currents that can 

induce significant unsteady forces. For instance, wind can cause substantial forces to be 

imparted on chimney towers, cables, bridge decks and other common structures.  Ocean 

currents can similarly affect offshore platforms, submerged pipelines and riser pipes
1
. 

Without an accurate FSI analysis there will be a great uncertainty about the safety of 

these structures. 

Moreover, FSI analysis has had significant impact in biomechanics research, making 

it possible to model the interaction between biological tissues (e.g. arteries) and 

biological fluid flow (e.g. blood). 

Modelling many of these FSI problems with large displacement/deformation and 

complex geometry is quite challenging and despite extensive developments in the recent 

decades, there is still a demand for further work in this area of research. Also, FSI is a 

multi-physics and multi-disciplinary phenomenon therefore an accurate FSI modelling 

involves many detailed challenging procedures. The computation algorithms should be 

selected based on the physics of the problem and the availability of computational 

resources. In this study the main focus is on simulation of behaviour of offshore flexible 

risers and pipe lines. When a riser oscillates in the flow or is exposed to an oscillatory 

flow, the vortex shedding regime around the pipe can be changed dramatically. In a 

certain range of oscillation and amplitude, the oscillatory stream and vortex shedding 

can affect the structure’s stability which could lead to structural failure. Sophisticated 

structural studies has been carried out for risers subjected to prescribed excitation forces, 

however the motivation here is to couple the structural analysis with a more realistic 

excitation by studying FSI in a real riser condition. 

The ultimate aim of this research is to develop and test an in-house code which then 

be combined with an existing structural analysis program to simulate Fluid-Structure-

                                                 
1- The risers pipes used in the offshore industry to convey fluids (oil and gas) from the seabed to the 

sea level and vice versa. 
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Interaction (FSI) of an offshore riser in realistic circumstances. In addition, the models 

and algorithm are employed in the code in such a way that the simulations can be run in 

a reasonable time using existing computational facilities. The final goal is to simulate 

vortex induced vibration of a riser in three dimensions, at high Reynolds number and 

with large displacements.  

The first stage of this comprehensive program of work has been completed and is 

presented in this thesis. In this stage an in-house code is developed to simulate two 

dimensional flows around a flexible/deformable circular cylinder
2
. To achieve this goal, 

first FSI methods are studied in detail; The FSI algorithm elements are selected in a way 

to facilitate further developments of the code to three dimensions, high Reynolds 

numbers and large displacements/deformations in future. 

This thesis is divided in three parts. In the first part which includes chapters 1, 2 and 3 

the motivation, introduction, background and literature review of the problem is 

presented and some examples of various FSI applications are provided. In the second 

part of the thesis which include chapters 4, 5 and 6 the FSI methodology based on the 

immersed boundary (IB) method with an interpolation/ reconstruction procedure is 

discussed and the proposed algorithm is presented. The results of a parametric study for 

a stationary case are validated with bench marks as well as the results from other IB 

interpolation methods in the literature. In the final part of the thesis, chapter 7, the 

simulation of the flow around a flexible cylinder is presented. The simulation results 

with a moving and an inertial reference frame are compared with one another and with 

some results from the literature. Also, case studies of Vortex Induced Vibration analysis 

of the proposed model are presented and validated against results from the literature.    

In this introductory chapter, some fundamental topics and general parameters used in 

a full FSI analysis are briefly explained. At the beginning, the effect of the Reynolds 

number as a key parameter is discussed. This is followed by introducing some important 

terminology in the field. And finally a summary of the chapter is presented.    

1.1 Fluid-Structure interaction (FSI) 

Fluid-Structure Interaction (FSI) is a multiphasic problem which involves 

Computational Fluid Dynamics (CFD) and Computational Structural analysis. The flow 

                                                 
2- The circular cross section is use for the whole study as in the offshore industry the riser’s cross 

section are all circular due to the fact that not only these cross section has minimum stress concentration 

but also circular cross section can be manufactured and used easier in this application. 
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simulation is considered to be an FSI problem inside or around a deformable or moving 

boundary/structure when flow forces cause the structure to deform which, in turn, 

changes the boundary conditions of the fluid flow.   

Numerical simulations of the fluid field interacting with moving boundaries are 

among the most challenging problems in computational mechanics. The reason for this 

is that the fluid domain changes with time and the location of boundaries depend on 

fluid flow forces inducing deformation/motion of the boundaries (Yang et al. 2008). 

1.2 Vortex shedding and Strouhal number 

When the fluid flow passes around an object, such as a circular cylinder, a boundary 

layer will form around the cylinder. Due to an adverse pressure gradient along the 

downstream half of the cylinder, the boundary layer separates at a specific angle behind 

the cylinder depending on the flow parameter. The separated boundary layer rolls up into 

vortices in the low pressure area behind the cylinder. After a period of growth these 

vortices are shed and washed downstream by the flow. These vortices create alternating 

pressure on either side of the cylinder and the body tends to move toward the low 

pressure zone. Therefore, the vortex shedding is the oscillating flow pattern that occurs 

periodically when a fluid (e.g. air or water) passes a bluff body at specific velocities, U, 

depending on the Reynolds number, size and shape of the body. The normalised vortex 

shedding frequency for a stationary body is known as the Strouhal number, St (=fvD/U); 

in which, the parameter D is the diameter of cylinder and fv is vortex shedding 

frequency. The Von Karman vortex street is a famous vortex shedding patterns that 

forms behind a stationary cylinder. In Figure 1-1, the formation of the vortices is shown 

in the low pressure area (dash line contours) behind the cylinder. 

 

Figure 1-1: Vortex shedding and pressure contour behind a cylinder at low Reynolds 

number. Dash lines and continuous lines are negative and positive pressure contours, 

respectively. 
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1.3 Vortex induced vibration and Lock-in phenomena  

The vortex shedding process and the shed vortices themselves induce periodic 

forces on the body. If the body is compliant or elastically supported then these forces can 

cause the body to vibrate. Such a vibration is called a Vortex Induced Vibration (VIV). 

The amplitude of vibration depends on many factors including the level of structural 

damping, the relative mass of the body to the fluid, the magnitude of the fluid forces and 

the proximity of the vortex shedding frequency to the natural frequencies of vibration of 

the body. 

The fluid forces in both, the cross-stream (transverse) direction (lift), and the 

stream-wise (in-line) direction (drag) can induce VIV in their respective directions. The 

oscillatory component of the drag forces is normally far smaller than the oscillatory 

component of the lift force. Consequently in-line VIV is normally of lower amplitude 

than transverse VIV. The frequency of the in-line oscillatory force and the consequent 

vibration is normally twice that of the transverse oscillatory force and resulting motion. 

Lock-in phenomena are defined where a body is vibrating in a fluid flow and the 

oscillation frequency and vortex shedding frequency become synchronized.  According 

to the numerical and experimental results, lock-in only happens in body oscillation with 

amplitude above a specific threshold. And the range of oscillation frequencies (or 

reduced velocities) at which lock-in occurs will increase by increasing the oscillation 

amplitude.  

The experiment of Feng 1968 addresses the VIV and Lock-in phenomena and 

related parameters. In this experiment a flexibility mounted cylinder with a transverse 

degree of freedom was exposed to various air velocity streams. For a flow velocity of U, 

the vortex shedding frequency, fv, the vibration frequency, fo; the vibration amplitude, A, 

and the phase angle, φ, is measured. The phase angle is defined as the phase difference 

between the vortex shedding frequency and vibration frequency of the cylinder. The 

results are presented based on a normalised velocity known as reduced velocity Vr 

(=U/D fn). In this formula, fn is the natural frequency of the system. Figure 1-2 shows 

that there is no vibration at a reduced velocity lower than 4. For 4<Vr<5 small vibrations 

occur at the natural frequencies of the system (f/fn=1), while the vortex shedding 

frequency equals the cylinder Strouhal frequency. However according to Figure 1-2a, for 

5<Vr<7 the vortices will start to shed at the natural frequency of the system (i.e line 

f/fn=1) (instead of the Strouhal frequency). In other words the vortex shedding frequency 
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locks in to the natural frequency of the system for a range of reduced velocities from 

Vr=5 to Vr=7.  

In the lock-in range the system natural frequency, fn, the vortex shedding frequency, 

fv, and the vibration frequency, f, remain synchronised ; i.e. fn=fv=f. Therefore at this 

range of reduced velocities, the lift force contributes to the system’s natural vibration 

which could lead to vibration with high amplitude (Figure 1-2). 

 

Figure 1-2: experimental results of the cross flow response of flexibility mounted 

cylinder subject to a steady air stream. Originally presented by Feng 1968 and graphs 

reproduced by Sumer and Fredsǿe 2006.  

 

For the higher reduced velocity, Vr>7, the vortex shedding frequency unlocks from 

the natural frequency and jumps to the Strouhal natural frequency (Figure 1-2a). The 

range of lock-in period depends on the amplitude of vibration which itself depends on 
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structural damping. The lock-in range is larger for the higher amplitude of vibration 

(lower structural damping) as it may need higher Vr to unlock the shedding frequency 

from the natural frequency of the system (for more details see Sumer and Fredsǿe 2006). 

Moreover, according to Figure 1-2a, at higher reduced velocities (for instance Vr= 

7.3), while the system is vibrating at its natural frequency (f/fn=1), the vortex shedding 

occurs at the Strouhal frequency. Since the forcing frequency (vortex-shedding 

frequency) is no longer in phase with the vibration of the cylinder, there is a reduction in 

amplitude of vibration. Also at higher reduced velocities, the vortex shedding frequency 

moves further away from the natural frequency of the system, which could lead to a 

greater reduction in the vibration amplitude. The experiment shows that at Vr>8.5 the 

vibration of the system completely disappears. Figure 1-2b and c, also show a hysteresis 

effect in amplitude and phase shift variation with respect to reduced velocity. i.e. the 

amplitude and phase will be slightly different at the same reduced velocity depending on 

the direction of the experiment;  increasing the reduced velocity from low to high values 

in the course of experiment or vice-versa.  

 

Figure 1-3: Types of vortex-Shedding as a function of oscillation amplitude in 

transverse direction, A/D, and oscillation wave length, λ/D, (Williamson & Roshko 1998). 

The critical curve marks the transition from the 2S to the 2P mode of vortex shedding. The 

dashed curves marked Ι and П, from Bishop & Hassan 1964, Indicate where the fluid 

forces acting on the cylinder underwent a sudden jump, for Ι decreasing λ/D and П 

increasing λ/D. 
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In addition, the flow pattern of vortex shedding changes dramatically at different 

oscillation amplitudes (Li et al. 2002).   Figure 1-3 shows the vortex pattern changes at 

different amplitudes of vibration, A/D, and different oscillation wave-lengths, λ/D (=Vr, 

reduced velocity). These experiments were conducted for 300<Re<1000. Williamson & 

Roshko 1988 interpreted that the changes in the shedding mode that occurs across the 

critical curve is the reason of the jump in the phase angle and the lift coefficient that has 

been reported by Bishop & Hassan 1964 among others. 

Meneghini and Bearman 1995 presented the lock in region for the range of 

amplitudes, A/D, varying from 0.025 to 0.6 and the range of oscillation frequencies, f/fs, 

from 0.7 to 1.15 (Figure 1-4). This lock-in range is around the Strouhal vortex shedding 

frequency and two vortices of opposite circulation are shed per cycle (S type). When the 

frequency of the lift force was similar to the frequency of the oscillating flow lock-in 

was occurred.  

 

 

Figure 1-4: Lock -in region as a function of amplitude, A/D, and frequency, f/fs, of 

oscillation for the forced transverse vibrations of a circular cylinder. ,  lock in vortex 

shedding border and, +, unlocked vortex shedding area (Meneghini & Bearman 1995). 

 

Vortex Induced Vibrations can have serious consequences as they provide a major 

source of fatigue and can cause bodies clashing in multiple body assemblies. The 

potential implications of VIV make predicting of its occurrence and its likely amplitude 

and frequency of response imperative when designing engineering structures that are 

exposed to flow. Recently, VIV has received a great deal of attention and various 

methods for its predictions have been developed rapidly.  
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1.4 Fundamental parameter 

The two most important factors that determine the dynamics of the flow past a 

stationary bluff body
3
 are the body’s cross-sectional shape and the Reynolds number.  

The Reynolds number is a dimensionless number that gives a measure of the ratio of 

inertial forces to viscous forces and consequently, quantifies the relative importance of 

these two types of forces for a given flow condition. A laminar flow occurs at low 

Reynolds numbers, where the viscous forces are dominant, and is characterized by 

smooth, constant fluid motion. A turbulent flow, on the other hand, occurs at high 

Reynolds numbers and is dominated by inertial forces, which tend to produce random 

eddies, vortices and other flow fluctuations. A Reynolds number is meaningless without 

the selection of proper characteristic length and velocity scales. For the flow problem 

over a circular cylinder, the diameter of the cylinder is selected as the characteristic 

length scales which the free-stream velocity is chosen as the characteristic velocity scale. 

Practically, matching Reynolds numbers do not guarantee a similar flow, as very small 

changes in the parameters such as shape, roughness could result in very different flow 

regimes. 

If the Reynolds number is large enough then the regions of recirculating flow can 

become detached from the body (separation). The re-circulating flow in these detached 

regions, which is referred to as an eddy or vortex, generally comprises of low speed 

(relative to the free stream flow speed) vortices. Once shed, or detached, the vortices are 

convected downstream of the body by the main flow. If the flow past the bluff body is 

fully developed then a wake instability mechanism causes vortices to be shed in a 

periodic fashion from alternating sides of the body. The body’s resulting wake structure 

comprises a staggered array of vortices that trails downstream of the body. Such a wake 

is referred to as a von Karman vortex street. 

1.5 Flow regimes and vortex formation 

The dynamics of the flow past a stationary circular cylinder are dependent on many 

factors of which the Reynolds number is the most important. The effect of increasing the 

Reynolds number is firstly to initiate flow separation, then vortex shedding and at higher 

Reynolds numbers a gradual transition to turbulence, which starts in the far wake and 

moves upstream and eventually into the attached boundary layers with increasing 

                                                 
3- The engineering bodies those are non-streamlined, such as those that have square or circular 

cross-sections in the plane of the fluid flow are referred to as bluff bodies. 
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Reynolds number. Roshko 1954 was amongst the first to categorise the flows observed 

at different Reynolds numbers into various flow regimes 

The knowledge of the flow regimes that exist for the flow past a stationary circular 

cylinder, and the Reynolds numbers at which these regimes begin and end, has 

undergone a continuous development since Roshko’s initial categorisation of the 

regimes. This section discuss the current knowledge of these flow regimes in terms of 

the topology of the cylinder’s wake, the state of the flow; laminar or turbulent and where 

appropriate the transition point, and certain key global parameters. The first of these key 

parameters is the Strouhal number,𝑆𝑡 = 𝑓𝑠 𝐷 𝑈∞⁄ , which is a non-dimensional measure 

of the vortex shedding frequency. Roshko found that the Strouhal number behaves 

differently in each of the three regimes he identified. In the stable regime it rises rapidly, 

in the irregular regime it is approximately constant and in the transition regime he found 

it to be unstable, i.e. erratic. 

 Non-separation regime; 0<Re<4 to 5 

At very low Reynolds numbers, 0<Re<4 to 5, the flow is laminar and is dominated 

by viscous effects. It remains fully attached to the cylinder, as sketched using 

streamlines in Figure 1-5, this regime is often referred to as creeping or Stokes flow. 

 Laminar steady regime; 4 to 5<Re<47 

As the Reynolds number is increased beyond Re≈5 the boundary layers separate 

symmetrically from both sides of the cylinder. The separated shear layers roll up and 

form a pair of standing vortices (recirculation cells) in the cylinder’s near wake, (see 

Figure 1-5) and the wake behind the cylinder is steady and symmetric about the wake 

centreline. Hence in this regime there are no fluctuating forces exerted on the cylinder 

and the Strouhal number is zero (St=0). As the Reynolds number increased through this 

regime the separation points, which are located towards the rear of the cylinder at Re≈5, 

move forward and the standing vortices grow in size. The length of the recirculation 

cells increases approximately linearly with Reynolds number.  

 Laminar shedding regime; 45<Re<180  

At a Reynolds number of approximately 47, disturbances in the flow become 

amplified, resulting in cross-stream oscillation of the downstream end of the 

recirculation cells and a sinusoidal oscillation of the wake-trial downstream of the 

recirculation cells. As the Reynolds number is increased the recirculation cells shorten 
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and the amplitude of the oscillation increases until it is large enough to cause the trial to 

roll up at its troughs and crests, resulting in a staggered array of laminar vortices. 

 

 

0<Re<4 to 5 

 

 

 

Creeping or stokes flow 

 

5< Re < 45 

 

 

A pair of stable vortices  

 

45 < Re < 180 

 

 

 

Laminar vortex 

shedding 

 

200< Re <300 

 

 

Transition to turbulent 

in the wake 

 

300< 

Re<3×10
5 

 

 

Up to the separation 

point the boundary remains 

laminar; however wake 

Completely turbulent. 

 

3×10
5
< Re 

<4×10
6
 

 

Turbulent Boundary 

layer separation, the 

boundary layer partly 

turbulent partly laminar  

 

Re>4×10
6
 

 

Boundary layer and 

wake completely turbulent, 

however wake street is 

narrower than laminar flow. 

Figure 1-5 Flow regime at various Reynolds number (Sumer & Fredsoe 2006). 
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As the Reynolds number is increased further the oscillating recirculation cells 

(vortices) detach themselves in a periodic fashion from the rear of the cylinder. The 

vortex street is now generated by a laminar instability of the near wake through a mutual 

instability of the two free shear layers. The flow throughout this laminar and unsteady 

shedding regime remains two-dimensional. As the Reynolds number is increased 

through this regime the Strouhal number increases, and the cylinder is subjected to 

fluctuating forces in both the streamwise and cross-flow directions. The rms lift 

coefficient and the base drag coefficient rise continuously with increasing Re. 

 Wake transition regime; 180 <Re<350 to 400 

This regime sees the development of large scale three-dimensionally in the cylinder’s 

wake and is the regime that Roshko 1954 labelled as the transition regime. At 

180<Re<194 the wake develops three-dimensionality in the form of vortex loops and 

streamwise vortex pairs at a span wise wavelength of about 3 to 4 diameters, see 

Williamson(1996a). This change to three-dimensional shedding is hysteretic and is 

accompanied by a sudden fall in the Strouhal number and the base drag coefficient. At 

230<Re<250 there is a second more gradual change, which has finer scale streamwise 

vortices and a span-wise wavelength of about a diameter. This change is accompanied 

by a shift to a higher Strouhal number. The large scale three-dimensionality seen in this 

regime does not in itself imply that the wake is turbulent. The transition to turbulence 

first occurs in this regime in the far wake and gradually moves upstream with increasing 

Reynolds number.  

 Shear layer transition regime; 350 to 400<Re<2×105 

In this regime, which is also called the sub-critical regime and was labelled by Roshko 

1954 as the irregular regime, the attached boundary layers remain laminar, transition 

occurs in the free shear layers and the wake is fully turbulent. The transition waves first 

appear in the free shear layers at 350<Re<400. As the Reynolds number is increased the 

formation length (the length of vortex formation region) increases until at 

1×10
3
<Re<2×10

3
 chains of transition eddies are observed in the free shear layers. 

Further increasing the Reynolds number results in a decrease in the formation length and 

a movement of the transition points upstream towards the separation points. At 

2×10
3
<Re<4×10

3   
the transition eddies disappear, the formation length stops decreasing, 

and transition to turbulence occurs close to the cylinder. Throughout the remainder of 

the shear layer transition regime (up to Re≈2×10
5
) the transition points, the formation 
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length, the separation points (θ≈80°, where θ is measured from the front stagnation 

point), and the Strouhal number (St≈0.2) remain relatively constant. The forces 

experienced by the cylinder are closely related to the formation length. As the formation 

length increases (350<Re< 1×10
3
) both 𝐶𝐿 𝑟𝑚𝑠 and −𝐶𝑃𝑏 decrease, whilst as the 

formation length decreases (1×10
3
<Re< 2×10

4
) both 𝐶𝐿 𝑟𝑚𝑠 and−𝐶𝑃𝑏 increase, and 

whilst the formation length is relatively constant (2×10
4
<Re< 2×10

5
) so are 

𝐶𝐿 𝑟𝑚𝑠 and−𝐶𝑃𝑏. The dramatic fall and rise in 𝐶𝐿 𝑟𝑚𝑠 for 0.5×10
3
<Re< 5×10

3
 is often 

referred as the ‘lift crises’, which should not be confused with the ‘drag crises’, of the 

critical regime, see below. 

 Critical regime; 2×105<Re< 1×106 

In this regime the initial flow separation is laminar; transition to turbulence occurs in the 

free shear layers which then reattach, resulting in the formation of thin separation-

reattachment bubbles on either side of the cylinder. The turbulent boundary layer is able 

to withstand a higher adverse pressure gradient than a laminar boundary layer and final 

turbulent separation is delayed until θ=140°. The postponement of final separation 

results in a much narrower wake than in the shear layer transition regime and a 

consequent reduction in the mean drag coefficient, 𝐶�̅�, from 𝐶�̅� ≈ 1.2 at the end of the 

shear layer transition regime to 𝐶�̅� ≈ 0.3 in the critical regime. The dramatic fall in the 

drag coefficient is known as the ‘drag crisis’. Bearman (1969) found a regime, in which 

there is a separation-reattachment bubble on only one side of the cylinder, resulting in 

large mean lift forces, 𝐶�̅� ≈ 1. 

 Boundary layer transition regime; Re> 1×106 

As the Reynolds number is increased further the separation-reattachment bubbles 

disappear as the transition point move further upstream ahead of the separation points 

and into the boundary layers. The turbulent boundary layers do not separate until 

θ=120°, resulting in a narrow wake and a low drag. As the Reynolds number is increased 

the transition points and the separation points gradually move further upstream and the 

base suction coefficient increases. 

1.6 Aims and objective 

This research is mainly concerned with the numerical FSI prediction of the Vortex 

Induced Vibration (VIV) of elastically supported and flexible circular cylinders that are 

subjected to steady fluid currents, and in particular with perspective to simulate the 
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flexible deep-water marine riser pipes
4
 that are subjected to ocean currents. The 

objectives of this research can be summarised as follows: 

 To study the physics of the FSI problems and the parameters that affects the 

VIV, especially in the context of circular cylinder and oil risers. 

 To study numerical methods suitable for FSI simulation which, on the one hand, 

should be able to simulate the main physics related to the riser problem, and on 

the other, the methods should be suitable for applications in which there is 

limited computational power and limited simulation time.   

 To apply and validate the selected methods from the previous stage for a two 

dimensional flow around a stationary cylinder at low Reynolds number. This 

initial stage includes the development and validation of an in-house code to solve 

this CFD problem. 

 To apply and validate the FSI simulation for a two dimensional flexible cylinder 

using the selected methods from the second stage. This stage consists of the 

development and validation of an in-house FSI code to simulate forced and free 

vibrations of a flexible cylinder in a uniform flow based on the CFD code 

developed in the previous stage. 

 To further develop the CFD and FSI codes to enable the analysis of the flow at 

realistic Reynolds numbers around stationary and flexible cylinders by addition 

of a turbulence modelling capability to the algorithm. 

 To develop the in-house code to enable modelling of FSI for a long flexible riser 

in a flow field with a high Reynolds number by applying the “strip theory” 

features.  In this stage the existing structural code will be coupled with the fluid 

flow to form a quasi-three dimensional FSI simulation. 

To achieve these goals in this thesis, an immersed boundary method based on an 

interpolation/reconstruction procedure is developed; various interpolation methods 

                                                 
4- Riser pipes typically have axial lengths, L, of up to a few thousand meters and have outer diameters, 

D, of less than one metre, yielding length to diameter ratios, L/D, of O(10^3). Risers are exposed to a 

variety of ocean currents with current speeds, U∞, of up to about 2 m/s and current profiles that can vary 

greatly with depth. The Reynolds numbers, Re= U∞D/ν, where ν is kinematic viscosity of water, for these 

flows are typically of O(10^5) to O(10^6). As the offshore industry moves into increasingly deeper waters 

(>2000m depth), the riser pipes used have become longer and effectively more flexible, and are being 

excited into increasingly higher vibrational modes (>40
th

 say). 
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which are presented in the literature are compared with a newly proposed method and 

the results are validated against some bench marks. In addition, a moving frame-of-

reference methodology with an immersed boundary method is presented to simulate the 

flow around a flexible cylinder. Moreover, a moving cylinder with the newly developed 

interpolation method is modelled using an inertial frame of reference and the results are 

compared with the bench marks and the moving frame reference methodology. Finally, 

the Vortex-Induced-Vibration of a flexible cylinder using Aitken relaxation is modelled 

and the results are compared with those from the literature. Note that the last two 

objectives were not addressed in this thesis and will be the subject of future research.  

1.7 Summary  

In this chapter the physical aspects and fundamental concepts of the problem are 

explained and various parameters in an FSI simulation are discussed. The motivation 

and the goal of the research are outlined and the contribution made through this work to 

the knowledge is outlined. To simplify the simulation and to avoid high computational 

demands the models used in this thesis are limited to two dimensions and at low 

Reynolds numbers. However, the numerical algorithm adopted allows further 

development of the analysis to three dimensions and high Reynolds number flows in the 

future development of the work. 

In the next chapter the background material and preliminary challenges common in 

FSI simulations are addressed. Also the application of the FSI simulation in engineering 

and scientific problems is explained. In addition the main approaches in the literature 

which are related to this research are reviewed. The main objective of the next chapter is 

to explain the advantages of a partitioned approach as compared to a monolithic 

approach. In addition, the advantages of an immersed boundary (IB) method in 

comparison with an Arbitrary-Eulerian-Lagrangian (ALE) methodology are briefly 

discussed. 
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Chapter 2. Background and preliminary study 

 

 

Researchers have studied fluid dynamic for several centuries, numerous new ideas, 

tools and methods have been developed to solve a various fluid problems in a variety of 

engineering applications. Significant advances in the recent decades in computational 

power have enabled engineers to simulate very challenging fluid problems which were 

not deemed possible previously.  Specifically the ability to accurately simulate complex 

fluid-solid interaction problems marks a revolution in the field of computational fluid 

mechanics. In this chapter some background information on state-of-the art research on 

FSI is presented and the reasoning behind the chosen methodology and algorithm for the 

riser problem is given whilst the principle approach and the main obstacles for a realistic 

FSI simulation are briefly addressed. Also some state-of-the-art Fluid-Structure 

interaction applications are introduced to demonstrate the importance of the research 

carried out in this field of science. In addition, at the end of the chapter the layout of the 

thesis is presented. 

2.1 Main technical difficulties of a FSI simulation  

In the recent years Fluid solid interaction has become an attractive area of research 

as it offers the potentials of simulating a physical phenomena as closely as possible to 

the that it actually occurs in nature which involves the interaction of fluid flow with a 

complex deformable body. As the fluid-structure interface moves in time, the spatial 

domain of the fluid flow will change, and the numerical simulation has to be able to 

handle this problem. In the conventional approach, the mesh needs to be updated in 

order to accurately track the interface and to represent the flow field near the boundary. 

Especially, in 3D problems with a complex geometry this process is quite complicated. 

Another challenge is to solve the fluid and structure equations simultaneously. There are 

some important factors that require attention when choosing the solution method for a 

coupled fluid-structure problem; including, a) how complex is the solid boundary?; b) 

how large is the structure-deformation?; c) how sensitive is the structure to a variation of 
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fluid dynamic of forces?; d) how accurate does the required solution need to be for FSI 

problems?; e) how much experienced is the researcher with FSI simulation?. In the 

following sections, the main approaches adopted followed to address these difficulties 

are discussed.     

2.2 Two fundamental computational approaches 

The numerical simulation of a FSI problem could be classified broadly in 

partitioned and monolithic approaches (see, Figure 2-1). Although, these expressions 

could be understood slightly differently in other fields of science, here the focus is 

mainly on the engineering applications. 

  

 

 

a) monolithic approach 

 

 

 

 

 

 

b) partitioned approach 

Figure 2-1: a) Schematic Monolithic approach, b) Schematic Partitioned approach.  

 

2.2.1 Partitioned approach  

In the partitioned or interaction approach (Hou et al. 2012) the fluid and structure 

are treated as separate entities which are solved separately with their own respective 

discretisation and algorithm. Interface conditions are used to communicate information 

between the fluid and structural solvers. The main advantages of this approach is that it 

allows the use of traditional solvers and advanced procedures for both the standard fluid 

flow and elasticity problems which simplifies the code development procedure by 

allowing the usage of existing simulation codes as a part of a FSI algorithm. As a result, 

the validation process of the code can remain limited to the validation of interface 

tracking. The main drawback in this approach is the implementation of the interaction of 

the fluid and structure and to find a converged solution; especially as the interface 

Fluid & structure Fluid & structure solution 

Fluid solution (tn) 

Structure solution 

Fluid & structure 

Fluid solution (tn+1) 

Fluid & structure interface 

Structure solution (tn+1) 
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location is not known and usually changes in time. In this approach, the interface 

location and its related parameters should be tracked and updated. This is a complicated 

process and may cause divergence errors in the simulation. Due to these issues, normally 

the partitioned approach tends to have a very slowly time converging time-step and is 

harder for parallel computing implementation.  

The partitioned approach may be classified into weak and strong coupling 

approaches. In both of these approaches the fluid and structure are solved separately in 

time. In the weak coupling approach the parameters are not updated iteratively between 

fluid and structure to find a converged solution for the interface at each time step. In the 

strong coupling approach, however sub iterations at each time step force the fluid flow 

variables (velocity and pressure) to be coupled with structural parameters 

(deformation/displacement) and vice versa. 

 

a) 

 

b) 

 

Figure 2-2: Left, Schematic of body in a fluid flow with body conforming mesh. Right, 

Schematic of body in a fluid flow with body non-conforming mesh method.  𝛀𝒔 is the solid 

domain, 𝛀𝐟  is the fluid domain and 𝚪𝐬 is the solid boundary 

2.2.2 Monolithic approach 

In the monolithic approach (Hubner et al. 2004, Ryzhakov et al. 2010, 2012,  2013), 

both fluid and structure are treated in the same mathematical framework. In this 

approach, a unique formulation and algorithm is used to simulate the whole fluid and 

structure domain. This is a unified approach and the main advantage is that there is no 

need for further coupling and dealing with its assocaited interface tracking difficulties. 

Also, the method can be parallelized and can be solved using a unified space-time 

discretization method. 
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The main disadvantages of the monolithic methods are that they are typically hard 

to be treated numerically and it is not possible to use existing fluid and structural codes.  

It is also generally difficult to find a uniform formulation to solve complex problems. 

2.3 Discretisation approach 

Another general classification of the FSI solution procedure is based on 

discretisation and mesh methods which are braodlly divied into the conforming mesh 

and non-conforming mesh methods.  

2.3.1 Body conforming mesh methods-moving grid method 

In the body conforming approach, the interface boundary corresponds to the 

physical boundary (Figure 2-2(a)). In this case, the interface location is part of the 

solution and the mesh needs to conform to the interface. Therefore, by advancing the 

solution in time, re-meshing is necessary due to the deformation/displacement of the 

structure (Borazjani et al. 2008 classified this method as a moving mesh method). In 

order to solve an FSI problem with a conforming mesh method on a structured grid 

using a finite difference approach, the differential form of fluid flow governing 

equations are transformed to curvilinear coordinates aligned with the grid lines (Ferziger 

and Peric 2002). Therefore, the solid boundary can be defined easily in the discretised 

governing equations as the grids conform to the structure geometry.  For finite volume 

methods, the integral form of the fluid flow governing equations could be discretised for 

both structured and unstructured grids; and the geometrical information of the solid 

boundary can be used directly in the discretised equations.  An important feature of this 

kind of FSI method is its interface tracking requirement.  In this technique, the 

shape/position of the fluid domain is changed by the structure deformation/displacement. 

Therefore, the mesh moves/deforms to capture this new shape/position and to follow 

(track) the fluid-structure interface.  The most famous example of this is the Arbitrary 

Lagrangian-Eulerian (ALE) interface tracking method which has gained a great deal of 

attention in the recent years. (Ohayon 2001, Wall 1999, Dettmer 2004, Dettmer and 

Peric 2006a and b, Bazilevs et al. 2006, Khurram & Masud 2006, Kuttler et al. 2006, 

Masud et al. 2007,  Wall et al. 2007, Lohner et al. 2006, Wall et al. 2006, Bletzinger et 

al. 2006  among others).  



19 

 

2.3.2 Non-conforming mesh methods-fixed grid method 

In Figure 2-2(b) a non-conforming grid is used for the flow domain. In this 

approach, the boundary location and interface conditions are imposed as constraints to 

the governing equation, and the fluid and structure equations can be solved separately on 

their own respective grids without any re-meshing procedure (Borazjani et al. 2008 

classified this method as fixed grid method) . As the solid boundary cuts the Cartesian 

grid, to define the proper constraints (solid boundary) the fluid governing equations 

should be modified around the immersed boundary.  These modifications of the 

governing equation are the subject of the immersed boundary method and will be 

reviewed in this thesis.  

Clearly, in comparison with the body conforming mesh method, the main drawback 

of IB methods is the imposition of the boundary conditions on the solid-fluid interface 

(Mittal & Iaccarino 2005). In the conforming methods the solid boundaries are aligned 

with the grid lines. Therefore the boundary conditions (e.g. no-slip conditions) can be 

applied directly to the fluid governing equations. Also the grid size near the solid 

boundary can be chosen easier. 

However, IB methods use a simple Cartesian grid to discretise the solution domain. 

Therefore, by using a Cartesian grid rather than a curvilinear sytem, the body 

conforming grids, can significantly reduce the number of computational processing 

operations due to coordinate transformations. Also, multi-grid techniques can be 

implemented easier when using Cartesian grids rather than curvilinear coordinate 

systems. 

In addition, the primary advantage of the IB method is the ease of grid generation, 

which especially for complex geometries can be a cumbersome task in the case of the 

conforming mesh methods (Ferizeger and Peric 2002). 

The main advantages of the IB method in comparison with the body confirming 

method is the ease with which moving boundaries (particularly in cases involving large 

displacements) are dealt with. The body conforming grid method requires the generation 

of a new mesh at each inner and outer time steps; also a procedure is required to map the 

solution from the previous grid to the new grid following the grid regeneration.  As a 

result using a conforming mesh method could affect simplicity, accuracy and 

computational costs of the simulation (Tezduyar 2001).  
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2.4 Some FSI applications 

In the recent decades Fluid-Structure Interaction (FSI) has become an important 

method of computational simulation. The main reason is that most of the engineering 

applications involve some sort of FSI problem and FSI algorithms have been used to 

successfully model various applications ranging from civil engineering to 

biomechanical, geophysical, and aero-dynamical applications. In the following section 

some of the main FSI applications will be introduced briefly to show the motivation and 

importance of this study.  

2.4.1 Engineering application 

Full scale wind turbine simulations (Figure 2-3a) are one of the FSI engineering 

applications which are performed to obtain accurate and reliable modelling as well as 

blade fraction prediction and design optimisation.  Due to technical challenges only a 

few researchers (Gomez-Iradi et al. 2009, Hsu et al. 2013, Li et al. 2012) were able to 

recently perform a full scale wind turbine simulation. Bazilevs et al. 2013b used a 

partitioned approach along with the ALE-VMS finite element technique (Bazilevs et al. 

2013a) for the aero-dynamical formulation and the Kirchhoff shell theory (Bazilevs et al. 

2011, kiendl et al. 2009, Korobenko et al. 2013) for the blade in order to simulate a full 

scale wind turbine. Based on the numerical FSI analysis, they achieved a detailed 

structural model of the actual wind turbine with 32 different material zones, which was 

characterised by a distinct composite layout. With this special construction, they were 

able to design and built a blade with desirable natural frequencies. Also, they have 

validated their simulation results experimentally. 

Another FSI application is the design of the cable-stayed bridges (suspension 

bridge) with highly nonlinear characteristics. In this simulation the deck is supported on 

several points by cables and the cables are connected to the support column. The 

Takoma Narrows Bridge (Figure 2-3b) is a famous example of the kind of structures that 

failed due to the resonance caused by a 64km/h wind condition on November 7, 1940 in 

US.  Recently Hernández and Valdes 2013 used a partitioned approach to model 

Viaducto Zaragoza Bridge (Puebla, Mexico). For the fluid simulation, an incompressible 

Navier-Stokes eq. with Arbitrary Lagrangian Eulerian (ALE) formulation (Belytschko et 

al. 2000) is solved with the fractional step method proposed by Codina 2001. For the 

structural analysis a geometrically nonlinear model based on a finite element approach is 
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used. Also an Aitken scheme [Wüncher 2006] is used to facilitate the fluid structure 

interaction. Hernández and Valdes 2013 identified the resonance for some cables. To 

solve the problem, they suggested changing the operation conditions by adding frictional 

dampers at the cable connection points with the deck. Using this method, on the one 

hand due to the added mass the natural frequencies of cables were changed, whilst the 

dampers caused a reduction in the displacement amplitude which could potentially 

hinder the occurrence of resonance in the bridge.   

 

 
a)Wind turbine 

(Bazilevs 2013b) 

 
b) Tacoma Cable 

bridge(1940) 

 
c)Automobile weather 

strip analysis (Kim et al. 2013) 

 
d)Parashute flow field 

model (Takizawa 2011) 

 
e)Blood flow model in 

arteries (Tezduyar et al. 2008) 

 
f) Left ventricle 

simulation (Le & Sotiropoulos 

2013) 

Figure 2-3: a few example of Fluid-Structure interaction (FSI) in different application 

 

The FSI analysis is used to predict and improve the automotive weather-strip. The 

weather-strip (Figure 2-3c) is an important part that is employed in order to isolate the 

passenger compartment from water, dust and especially noise. There should be a large 

enough contact area of the weather-strip and the door and the body frame to minimize 

the wind noise level. Kim et al. 2013 implemented an FSI analysis to study the weather-

strip deformation and the gap changes between the door and the frame body due to the 

external pressure drop that occurs when the  vehicle is moving at high speed. They found 
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that the permanent deformation of the door weather-strip was the major factor 

responsible for the sound isolation performance. 

Another famous and sophisticated study of the FSI technique is the comprehensive 

research carried out to develop the computation of spacecraft parachutes (especially for 

the Orion spacecraft, see Figure 2-3d) by the Tezduyar group (T_AFSM)
5
. Their preference 

is to use the Deforming-Spatial-Domain/Stabilized Space Time (DSD/SST) formulation 

(Tezduyar et al. 1992a,b,c) as interface-tracking technique, the quasi-direct FSI coupling 

method (Tezduyar et al. 2004 and 2006), and the stabilized space-time FSI technique 

(Tezduyar & Sathe 2007). Using a symmetrical FSI technique they managed to compute 

the parachute shapes and improve the parachute structural mechanics solutions. 

2.4.2 Biomechanics applications 

In spite of major developments in image processing techniques for hemodynamical 

studies (Hong et al. 2008, Lee et al. 2009 and Faludi et al. 2010), nowadays in vivo 

techniques only measure large scale blood flow characteristics. Understanding flow 

patterns, however, requires using very high resolutions to establish a link between heart 

disease and the patient’s hemodynamics, an area of research which still attracks a great 

deal of attention(Kvitting et al. 2010). Very accurate numerical simulations could be the 

only option in order to better understand cardiac hemodymamics. Many researches 

focused on research in these areas. In the following part some of them are introduced. 

Le and Sotiropoulos 2013 developed a novel model for simulating the left ventricle 

(LV) valve to study the FSI between the blood flow and a mechanical heart valve 

implant. They used a lumped type kinematic model along with Fitzhugh-Nagums frame 

work (Fitzhugh 1961) to simulate the motion of LV wall in response to the heart 

pressure wave. For FSI modelling they used a curvilinear immersed boundary 

(CURVIB) method developed by Borazjani et al. 2008 with a domain decomposition 

approach. Their results were in good agreement with in vivo measurements.  

Accurate FSI modelling between the deformable arteries walls and the blood flow is 

one of major challenges in the computational studies of cardiovascular fluid mechanics 

(Bazilevs et al. 2007 and Torii et al. 2007 among others). The coupled mathematical 

equations governing the blood flow and the structural blood arteries should be solved 

simultaneously to satisfy physical kinematic and kinetic conditions. Tezduyar et al. 2008 

                                                 
5
 Team for Advanced Flow Simulation and Modeling (T_AFSM), Mechanical Engineering, Rice University — MS 

321, 6100 Main Street, Houston, TX 77005, U.S.A. 
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presented arterial problems with the stabilized space-time FSI (SSTFSI) technique to 

increase the accuracy, robustness and efficiency of FSI modelling. They assumed that 

the arterial deformation during a heartbeat cycle is caused by blood pressure. As the 

arteries image geometries are based on time-averaged blood pressure value for patient-

specific cases; they had to assume an estimated zero-pressure arterial for their further 

simulation. The arterial walls were modelled with geometrically nonlinear hyperplastic 

material (Figure 2-3e). 

2.5 Summary and layout of thesis 

An outline of motivation and wider possible applications of this study was provided 

in this chapter. The main objectives and difficulties of FSI simulations were discussed. 

The major classification of the FSI approaches were reviewed from different aspects. 

Finally, it was shown how FSI simulations are used to resolve real engineering and 

scientific problems by presenting a selection of research that was recently conducted.  

It can be concluded that FSI problems occur in a very wide range of research 

ranging from the study of the behaviour of the suspension bridge, the performance and 

mechanics of Parachutes and wind turbines to diagnosing diseases and cardiovascular 

problems. Also, it is briefly explained why a specific FSI method is chosen among the 

other numerous versions of FSI methods which have been presented in the literature. 

The choice depends on the researcher’s expertise, computational facilities and other 

features such as the required accuracy and type of the problem to be simulated.  In the 

present study the motivation is to investigate the effect of VIV on the behaviour of 

flexible risers used in the offshore industry which requires a full FSI simulation. 

Considering the existing limitation on time and computational facilities, it was decided 

to study a 2D model of the riser which can easily be extended to a full three dimensional 

simulation, using a partitioned approach and an Immersed Boundary (IB) method. The 

main objective of this thesis is the implementation and validation of the IB approach 

using an interpolation approach in order to enforce non-grid conforming boundary 

condition. The future work comprises quasi 3D-simulations of long oil risers by 

applying the Strip theory and to add LES modelling to enable using the proposed 

approach in turbulent flows (higher Reynolds numbers). The layout of the rest of the 

chapters are as follows: 

In chapter 3, a review of IB methods with a partitioned approach is presented. The 

Fluid-Structure Interaction (FSI) methods that are related to Immersed boundary (IB) 
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methods using interpolation / reconstruction are discussed in more detail.  The focus will 

be mainly on methods for interpolation and interface tracking.  

Chapter 4 discusses the methodology of the research and involves the following 

parts; First, the governing equations of the fluid flow and the structure are discussed 

briefly. This is followed by the presentation of the discretisation procedure used for the 

governing equations on the Cartesian grid. The IB interpolation procedure for the 

boundary conditions is shown in detail and also the FSI algorithm to model the problem 

is presented. In addition, the calculation of the lift and drag coefficients is explained 

using two different approaches. Finally, the coupling strategy between the fluid and 

structures is discussed in more details.   

In Chapter 5, a parametric study and validation of the proposed algorithm is 

presented. In this chapter, the effects of the flow domain size in the transverse direction 

and behind the bluff body are presented. Also, the results of the mesh refinement study 

are discussed. In addition using a parametric study it will be discussed why the aspect 

ratio and stretching coefficient could affect the accuracy of the simulation results. 

Finally the influence of different mesh patterns around the solid boundary that are used 

in the simulation of the FSI methods is studied.    

The proposed IB interpolation method is presented in chapter 6. The algorithm of 

this method is explained along with 4 other interpolation methods which are presented in 

the literature. The Strouhal number, lift and drag coefficient obtained by this method is 

compared with other interpolation method. The results show a good agreement with 

other second order accurate interpolation methods.  

The results of a forced vibration and Vortex Induced Vibration (VIV) of a body in 

the transverse direction are presented in the chapter 7. In this chapter simulation results 

obtained in both a moving reference frame and an inertial frame are compared to each 

other and to the results presented in literature. Also a parametric study is conducted to 

show the appropriate mesh size.  

Chapter 8 presents the conclusion and future research. In this chapter, the main 

results and achievements are summarised and discussed briefly and the future research is 

explained. 

  



25 

 

 

 

Chapter 3. Literature review 

 

An accurate solution for Fluid-Structure Interaction (FSI) problems is of interest in 

many engineering and scientific applications. A FSI problem often involves simulating 

complex geometries with large displacement/deformation. Based on the mesh 

discretisation approach FSI methods can be classified into: boundary-conforming and 

non-boundary-conforming mesh methods (Hou et.al 2012). A well-known conforming 

mesh method is the Arbitrarily Lagrangian-Eulerian method (ALE). ALE methods use a 

grid that adapts and deforms with the moving boundary (section 2.3.1). Most of the 

industrial FSI applications typically have high Reynolds numbers, complex geometries 

and moving boundaries and need turbulence modelling and mesh deforming grid 

regenerating to solve the problem. Therefore, simulating FSI problems with moving grid 

methods (e.g. ALE method) requires significant computational power and a high storage 

capacity. A non-conforming mesh method (fixed grid method) is an alternative 

numerical approach which efficiently handles some of these complications. The 

Immersed Boundary (IB) method is an example of a non-conforming mesh method. This 

type of discretisation recently has received much attention in relation to solution of FSI 

problems. The non-conforming Immersed boundary (fixed grid) method is the subject of 

this review. 

3.1 Immersed boundary methods (IB) 

The immersed-boundary (IB) method is a technique for solving flow problems in 

regions with irregular boundaries using a simple and fixed structured grid solver. The 

term “immersed boundary” was initially used for a method developed by Peskin 1972 to 

simulate blood flow in a cardiovascular system. It was specifically designed to handle 

deforming (elastic) boundaries interacting with low Reynolds number flow. The 

simulation was carried out on a Cartesian grid. At locations where the boundary did not 

align with a grid line the solution algorithm was locally modified. The modifications 

were down in a way to enforce the desired boundary conditions on the flow domain. 

Enforcing the moving boundary on the governing equation is one of the most important 
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challenges in an IB algorithm. To do so; generally an additional forcing term is added to 

the governing equation ((3-1) to enforce the correct velocity boundary conditions. This 

term can be defined before and after discretisation of the governing equation (directly or 

indirectly, respectively). One of the main challenges is the definition of this forcing term 

which leads to various versions of IB methods. In the original immersed boundary (IB) 

method the effects of the moving boundaries on the flow field are applied through 

continuous functions, which cause diffusion of the boundary interface across a number 

of grid points. Due to this characteristic the method is known as the diffused method. 

Therefore, such IB methods require a high resolution mesh around the immersed 

interface to produce accurate results (Borazjani et al. 2008). Recently, numerous 

modifications and refinements have been proposed to enhance the accuracy, stability, 

and application range of the IB method (Mittal & Iaccarino 2005).  For instance, a class 

of sharp-interface immersed boundary was introduced to remedy the diffusion of the 

boundary conditions at the interface. In some references “sharp interface methods” are 

classified as “Cartesian grids” which was originally designed for inviscid flows (Berger 

and Aftosmis 1998; Clarke et al. 1986 among others); In these methods the immersed 

boundary is modelled as a sharp interface and the effect of a moving boundary on the 

fluid is considered either locally by modifying the shape of the meshes to conform to the 

boundary (cut cell methods, Udaykumar et al. 1999); or by using a discrete delta 

function directly (instead of using a smooth function) into the system of discretised 

equations (immersed interface method, Le et al. 2006, Xu and Wang 2006 among 

others); or by reconstructing immersed conditions around the immersed boundary using 

an interpolation scheme (hybrid Cartesian/immersed boundary methods, HCIB, 

Gilmanov and Sotiropoulos 2005 among others); or even by combing the immersed 

boundary and a curvilinear body confirming mesh (Curvilinear- Hybrid 

Cartesian/Immersed boundary, CURVIB, Borazjani et al. 2008). In this thesis the term 

of “Immersed Boundary” (IB) is used to address all of the methods (including the 

Cartesian method). The common part in all of the methods is that the solution algorithm 

involves simulating viscous flows on a fix grid with (immersed or embedded) 

boundaries that do not conform to the grid lines. 

As for the moving boundaries, also the solid boundaries do not necessarily conform 

to the grid lines. Fixed grid, non-confirming boundary methods can be generally 

classified by the way that the immersed boundary conditions are imposed on the solution 

domain or governing equations. In the traditional IB methods, the immersed boundaries 
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are imposed to the solution domain by introducing a source term (a forcing function, f ) 

to the fluid governing equations (3-1) and (3-2).  

∂u

∂t
+ u ∙ ∇u = −

1

ρ
∇P + ϑ∇2u + 𝑓 

𝑓 = 0 in the fluid domain 

𝑓 ≠ 0 in the solid domain and at the immersed boundary 

  

(3-1) 

∇ ∙ u = 0 or 
∂ui
∂xi

= 0  in the fluid domain and the solid domain 
(3-2) 

 

The forcing functions reproduce the effect of boundary condition on fluid solution 

domain. This source term or forcing function can be applied to the governing equations 

in two ways: the continues forcing approach and discrete forcing approach. In the 

former, the forcing term is added to the governing equation before discretization of the 

whole physical domain and the forcing terms do not depend on the grid discretization 

method. In addition, the source term for the continuous forcing approach depends on the 

type of immersed boundary, which could be either an elastic or a rigid boundary. On the 

other hand; in the discrete forcing approach, the forcing term is implemented after the 

discretization and the source term highly depends on the discretization method. In this 

category (discrete forcing approach) the forcing term could be implemented either 

directly to the computational domain or indirectly to the governing equations by adding 

a discrete source term to the equations. 

In the following section, some of the immersed boundary methods are briefly 

introduced and their advantages and disadvantages are discussed. The objective is to 

clarify the difference between these methods and the class of IB method that is presented 

in this thesis.  

3.1.1 Original immersed boundary method- applicable for elastic IB 

Forcing approaches are normally categorised into continuous and discrete forcing 

approaches. In the continuous forcing method, a forcing function is applied to the 

Navier-Stokes equation (3-1) in order to enforce the correct boundary condition on the 

structure (e.g. enforcing a no-slip boundary condition on a stationary body). The most 

important issue in this method is the definition of the continuous forcing function. As the 

solid boundaries do not coincide with the grid lines, these functions needs to enforce the 

correct boundary condition to the solution domain.   
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Several different functions have been developed by Peskin 1972, Saiki and Biringen 

1996, Beyer and Leveque 1992, and Lai and Peskin 2000, among others. As illustrated 

in Figure 3-1, in all cases, a distributed function was used rather than a sharp function. 

The reason behind this is that firstly the solid boundaries do not coincide with the 

Cartesian grid and, secondly, in this way the Gibbs’ oscillations phenomenon (Briscolini 

& Santangelo 1988) adjacent to the solid boundaries could be suppressed.  

 

a) 

 

 

 b) 

 

Figure 3-1a) Transferring the boundary force Fk from each material point 

(Lagrangian coordinate) 𝐗(𝒔, 𝒕) to the fluid. Shaded area shows the area which force effect 

will be distributed in the fluid domain; b) various forcing function distribution (Mittal & 

Iaccarino 2005). 

 

Implementation of the boundary conditions with a continuous forcing function is 

attractive for elastic boundaries; as on the one hand, it has a physical interpretation for 

elastic boundaries and on the other, the force can be implemented easily. However, 

implementation of this method for rigid boundaries is relatively cumbersome due to the 

nature of the method as the definition of this force is based on elastic deformation of the 

boundary, in the linear elastic case, this is a direct application of Hook’s law. When 

using a smooth forcing function, another problem is that the method cannot sharply 

represent the immersed boundaries and the effect of the boundary is distributed in the 

fluid domain (Figure 3-1a). As the boundary is not sharp (it is blurred) this method is not 

recommended for flows with a high Reynolds number (Mittal & Iaccarino 2005).  

The source function, f, in equation (3-1) is defined by equation (3-3). Suppose a 

simple closed immersed boundary is defined parametrically by 𝐗(𝑠, 𝑡), 0 ≤ 𝑠 ≤ 𝐿𝑏 and 

𝐗(0, 𝑡) = 𝐗(𝐿𝑏, 𝑡) where 𝑠 is a material point on the immersed boundary. 𝐅(𝑠, 𝑡) is the 

boundary force at each segment 𝑑𝑠 of the material points. These boundary forces satisfy 

a generalised Hooke’s law for an elastic boundary both in time, t, and space, 𝐗(0, 𝑡). 

According to equation (3-4), the force function, F, explicitly depends on the simulation 
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time. This definition resembles an active boundary like a muscle whose elasticity varies 

with time. For instance, in a two dimensional circular cylinder with several material 

points on its border, these forces at each material point try to preserve the circular shape 

of the boundary.  

𝑓(𝐱, 𝑡) = ∫ 𝐅(𝑠, 𝑡)𝛿(𝐱 − 𝑠)𝑑𝑠
𝐿𝑏

0

 
(3-3) 

 

𝐅(𝑠, 𝑡) = 𝐒(𝐗(0, 𝑡), 𝑡) (3-4) 

 

𝜕𝐗(𝑠, 𝑡)

𝜕𝑡
= 𝐮(𝐗(𝑠, 𝑡), 𝑡) = ∫ 𝐮(𝐱, 𝑡)𝛿(𝐱 − 𝐗(𝑠, 𝑡))𝑑𝐱

𝐿𝑏

0

 
(3-5) 

 

To apply this method, in the first place, the boundary force 𝐅(𝑠, 𝑡) is calculated 

based on the displacement of material points on the boundary from the initial 

configuration 𝐗(0, 𝑡) according to equation (3-4). Then these forces are integrated over 

all material points to calculate the force from the immersed boundary on the fluid 

domain, equation (3-3). 

The definition of 𝛿(𝐱 − 𝑠) charactirises different versions of these methods. For 

instance, Lai and Peskin 2000 defined 𝛿(𝐱) = 𝑑ℎ(𝑥)𝑑ℎ(𝑦)  in each coordinate direction 

in the vicinity of the material point on the immersed boundary, as shown in equation 

(3-6). 

𝑑ℎ(𝑥) =

{
 
 

 
 1

8ℎ
(3−

2|𝑥|

ℎ
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4|𝑥|

ℎ
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|𝑥|

ℎ
)

2

),           where |𝑥| ≤ ℎ; 

1

8ℎ
(3−

2|𝑥|

ℎ
+√1+

4|𝑥|

ℎ
−4(

|𝑥|

ℎ
)

2

), where ℎ ≤ |𝑥| ≤ 2ℎ;

0                                                            otherwise.

 

(3-6) 

 

In the second step, the Navier-Stokes equations (3-1) and (3-2) are solved to find 

the updated velocity at the new time step. In these equations the force term, f, is the force 

from the boundary on the fluid domain described by equation (3-3) which has been 

calculated in the previous step. Finally, equation (3-5) is solved with new velocity to 

find the new configuration of the structure. The process will be repeated in time to 

eventually find the developed solution for the problem. The key point in this type of 

immersed boundary methods is that the structure should be elastic (not rigid solid) as the 

force at each material point is calculated from a “Hook’s law” equation. For rigid bodies 

the method described below is suggested by a number of researchers.  
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3.1.2 Feedback forcing approach- applicable for rigid IB 

According to the studies by Goldstein et al 1993 and Saiki and Biringen 1996, an 

analytic expression for the force 𝑓(𝑥𝑠, 𝑡) acting on the boundary 𝑥𝑠 at time t can be 

specified by the feedback forcing equation (3-7): 

𝑓(𝑥𝑠, 𝑡) = 𝛼𝑓∫ [𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�)]
𝑡

0

𝑑�́� + 𝛽𝑓[𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�)] 
(3-7) 

 

Where 𝑉(𝑥𝑠, �́�) is the velocity of the moving boundary, 𝑢(𝑥𝑠, �́�) is the velocity of 

the fluid on the boundary, and 𝛼𝑓 and 𝛽𝑓 are constants. The above equation is a feedback 

based on the velocity difference 𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�) which imposes the flow velocity on 

the immersed boundary, u, to match the velocity of the immersed boundary, V, at the 

same point. The major drawback for the feedback forcing is that this method requires 

very small time steps 𝐶𝐹𝐿 = 𝑂(10−3 − 10−2). More details can be found on Fadlun et 

al. 2000.  

3.1.3 Physical Virtual Model (PVM) approach 

Introducing the boundary force, f, in equation (3-1) is the main challenge in an 

immersed boundary method. Lima E Silva et al. 2003 proposed a PVM approach to 

calculate the interfacial forces without an ad hoc constant that usually depends on 

domain and numerical model. In this method, the force is calculated over a sequence of 

Lagrangian points, representing the interface, using the updated velocity and pressure 

from the Navier-Stokes equation in the fluid domain. Silva implemented the 

conservation of momentum theorem in an arbitrary control volume included each 

Lagrangian points to calculated the interfacial force. One of the advantages of this 

method is that the forces due to friction and pressure is calculated separately, which are 

important factors in a vortex induced vibration context. This method is called the 

Physical Virtual Model as it is only based on the conservation laws. The simulation 

results for the flow around a stationary cylinder were found to match the numerical and 

experimental data in the literature. 

3.1.4 Immersed interface approach 

Using several grid nodes in the vicinity of the immersed boundary to spread the 

forcing function is an inherent feature of the original immersed boundary method. This 

issue complicates the extension of this method to high Reynolds number flows in 
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practical applications (Gilmanov and Sotiropoulos 2005). However, LeVeque and Li 

1994 proposed a type of IB method, called the Immersed Interface Method (IIM) to 

overcome this issue. IIM only modifies the grid nodes in the immediate vicinity of the 

immersed boundary to enforce a set jump condition at the interface by adding the forcing 

function. This method maintains the interface sharpness for the immersed boundary and 

is second order accurate. In the method proposed by Lee and LeVeque in 2003 the 

boundary force is decomposed into a tangential and a normal component. The tangential 

forces were added to the momentum equations, while the normal component is applied 

to the pressure Poisson equation in terms of a pressure jump condition over the interface. 

3.1.5 Fictitious domain method  

Glowinski et al. 1999 proposed a different method by applying a fictitious domain 

method
6
. In this method the fluid governing equations were enforced inside of the rigid 

body as well as outside in the fluid domain. The fluid velocity inside the solid body is 

enforced by a Distributed Lagrange Multiplier (DLM) to behave like a rigid body 

(boundary) motion in the fluid domain. In fact, the multiplier creates additional body 

force inside the particle to maintain the rigid body motion for the solid body. Baaijens 

2001 developed a DLM based on the Mortar Element
7
 (ME) method to impose the no 

slip boundary conditions as an equation for the Lagrange multiplier. He applied this 

method to simulate the behaviour of a two dimensional flexible slender body in a 

channel flow with fluctuating inlet velocities. Yu 2005, extended the fictitious domain 

method to three dimensional simulation and non-slender bodies. He used the continuum 

equations for the general material rather than Newton’s equation for rigid body motions.  

Like the DLM in the rigid body motion, where a pseudo body force introduces the rigid 

body motion to the fluid domain, in his method the Lagrange multiplier forces the 

fictitious fluid (inside the solid) to move with the same velocity as the solid. 

However, due to the need for an accurate representation of the boundary layer in 

high Reynolds number flow, the use of distributed, smooth forcing functions near the 

immersed boundary is not desirable. In these cases it is recommended to use a sharp 

                                                 
6 -fictitious domain methods, also known as domain-embedding methods, are one type of solution 

methods for partial differential equations. The main idea is to replace a simple but larger domain (the 

fictitious domain) in a problem with a complex time dependent geometry (see, Glowinski et al. 2000). 

7 -Mortar methods are discretization methods for partial differential equations, which use separated 

discretisation, in non-confirming subdomains and the meshes in subdomains do not match at the 

interfaces, however, the equality of parameters on the interface is enforced by Lagrange multipliers to 

preserve the accuracy of the solution (Maday et al 1989).  
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interface with a higher local accuracy near the boundary. This goal can be achieved by 

imposing the boundary conditions directly on the immersed boundary. There are two 

well-known methods that fit into this category: the Ghost-Cell Finite-Difference 

Approach and the Cut-Cell Finite-Volume Approach. 

3.1.6 Ghost-Cell approach 

In the Ghost-Cell approach the immersed boundary is implemented by using ghost 

cells. Ghost cells are cells inside the solid boundary which have at least one neighbour 

on the fluid side. The parameters (imaginary velocity and pressure) in the ghost cell 

inside the solid are defined by an interpolation method which implicitly enforces the 

correct boundary condition for the immersed boundary. In this approach, there is a 

possibility of loosing accuracy as this method is based on the mirrored velocity with 

respect to the solid body (as discussed by Kang 2008). 

3.1.7 Cut-Cell method – Cartesian method 

All of the immersed boundary methods discussed so far are not designed to consider 

the conservations laws near the solid boundary. However, the Cut-Cell method in 

combination with a Finite-Volume approach is designed in order to preserve the 

conservation of momentum and mass near the boundary. In this method, the cells which 

have been cut by the immersed boundary are reshaped or absorbed by neighbouring cells 

in order to form a new trapezoidal control volume cell shape. In this method, the 

governing equations are not modified. This method has been used by Mittal et al. 2003& 

2004 to simulate vortex-induced vibration around a stationary and a moving body and 

for free falling objects. Although considered to be consistent, this method suffers from 

slow convergence (due to small cells) and is regarded as being too complex which are its 

major disadvantages. Also, the extension of this method to 3D is not straightforward and 

needs complex polyhedral cells, which complicate the discretization of the Navier-

Stokes equations (Ghias et al. 2007). 

3.1.8 Direct forcing approach 

The Navier-Stokes equations usually cannot be integrated analytically to define the 

forcing functions. Therefore, often, it is not possible to derive an analytical forcing 

function to enforce specific boundary conditions. To tackle this problem, a method has 

been suggested by Mohd-Yusof  1997 and Verzicco et al. 2000. In this method, which is 
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known as the direct forcing approach, the forcing functions are subtracted from the 

numerical solution after discretizing the Navier-Stokes equations. The important 

advantage of this method is that there is no need to define the forcing function 

parameters prior to solving the Navier-Stokes equations and there is no stability 

constraint due to the use of continuous forcing functions (Gibb’s oscillation). However, 

it is still required to implement the distributed forcing functions which strongly depend 

on the discretization algorithm. Mohd-Yusof 1997 developed an expression for the 

forcing function, which does not have the time steps restriction. In this method, the 

discretized form of the Navier-Stokes equation is used directly to calculate the force 

expression by imposing the velocity of the immersed boundary (equation (3-9)).  

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
= 𝑅𝐻𝑆𝑛+

1
2⁄ + 𝑓𝑛+

1
2⁄  

(3-8) 

 

In equations (3-8) and (3-9), the 𝑅𝐻𝑆 comprises the convective, viscous and 

pressure terms of the Navier-Stokes equation. Therefore, the forcing term, 𝑓𝑛+
1
2⁄ , is 

simply calculated to enforce the immersed boundary condition on the fluid domain and 

the governing equations by using equation (3-9). 

𝑓𝑛+
1
2⁄ = −𝑅𝐻𝑆𝑛+

1
2⁄ +

𝑉𝑛+1 − 𝑢𝑛

∆𝑡
 

(3-9) 

 

Another important issue in the direct forcing approach is the interpolation 

procedures. As the immersed boundary does not necessary coincide with the fluid 

parameters on the grid especially in a staggered arrangement, it is necessary to calculate 

and enforce the forcing function interpolation. Fadlun et al. 2000 have implemented 

three different interpolation schemes and compared their accuracy. As one of the main 

parts of this research relates to the interpolation procedures, various interpolation 

schemes have been studied in detail in the latter part of this review.   

3.1.9 Interpolation or reconstruction method 

In the interpolation method, the forcing function, f, equation (3-1) is not directly 

calculated to enforce boundary conditions. Instead, the flow velocity is interpolated at 

the interface cells and the forcing term is imposed indirectly to the discrete equations or 

directly to the computational domain. In other words, at the interface cells an 

interpolation formula replaces the Navier-Stokes equations. The interface points are 

defined as the points in the fluid domain near the solid boundary for which one of the 

neighbouring points in the discretized equations is inside the solid domain. Therefore, 
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the parameters related to these points cannot be updated through solving the governing 

equation. Any cells that contain one or more interface points are called interface cells. 

Figure 3-2 (left) shows the interface cells around a circular cylinder in which at least one 

of the points’ parameters cannot be updated directly using the governing equations. For 

instance, in Figure 3-2(right), to update the velocity at point A using the governing 

equations its 8 neighbouring velocities are needed; however two of 8 velocity-

components are inside the solid boundary. Therefore, the velocity at point A should be 

interpolated between the boundary points and other points inside the flow field.  

Besides its simplicity, this method has a few advantages. There are no severe 

limitations on the time steps as the velocities on the boundary are implicitly or explicitly 

applied to the governing equation (fluid domain). In addition, the velocities in the fluid 

domain are separated from the non-physical velocity inside the solid boundary. As in the 

most of immersed boundary methods, due to its nature a secondary non-physical flow is 

created inside the solid boundary.  

  

Figure 3-2: A 2D Cartesian mesh with a solid boundary (circle). Interface points, that 

require interpolation, are identified by arrows. Points A1 to A8 are all neighbouring points 

of A. Note that A2 and A7 are inside the solid domain.  

 

One of the disadvantages of the interpolation or reconstruction method is the 

decoupling of pressure and conservation of mass at the interface. Iaccarino and Verzicco 

2003 showed that a linear interpolation method is acceptable for those cases in which the 

first points of the interpolation in the fluid are inside the viscous sub layer. Several 

interpolation methods have been introduced by Ghias et al. 2004, Fadlun et al. 2000, 

Kang et al. 2009, Choi et al. 2007 among others. In the next section some of these 

interpolation methods are discussed in more detail.    
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3.2 Defining the interface cells  

The general key feature for any sharp immersed boundary method is that the 

governing equations are solved on a grid that does not conform to the immersed solid 

boundary (moving or stationary). The governing equations are solved only on the fluid 

domain nodes in which all of the neighbouring points are located entirely in the fluid 

domain and the fluid nodes in immediate vicinity of the immersed boundary are updated 

by interpolation. In other word, the interface points are not updated inside of the 

governing equations. Instead, they are used as boundary conditions for the governing 

equations. Therefore one of initial steps in applying this immersed boundary (IB) 

method is to classify the nodes in the background grid in three categories; the cells that 

are thoroughly within the fluid domain, the cells completely within the solid domain and 

the interface cells. The interface cells are the cells in which the immersed boundary 

crosses or in which the parameters cannot be updated using the governing equation. This 

classification of the grid cells can be performed in several ways. It is a straightforward 

procedure to identify them in a simple or analytically well described geometry. 

However, a complex computational geometry tool is required to identify the interface 

cells for a complex geometry (Iaccarino and verzicco 2003). Gilmanov et al. 2003 

presented an algorithm to identify interface nodes that is only applicable to simple 

convex bodies. Another algorithm, presented by Gilmanov & Sotiropoulos 2005, is 

applicable to identify the interface nodes for an arbitrary geometry. Borazjani et al. 2008 

used the classical method of the point-in-polyhedron problem for their computational 

geometry. In the following part the methods of Borazjani et al. 2008, Gilmanov and 

Sotiropouls 2005 are briefly disused. 

3.2.1 Point-in-polyhedron algorithm  

Classifying the Cartesian grid into fluid and solid parts is a classical problem of the 

point-in-polyhedron procedure in computational geometry. A point and a polyhedron, 

whose geometry is introduced by its sides are defined in space, It is then required to 

establish whether the point is contained inside or outside of the polyhedron. In a two 

dimensional geometry the problem is downgraded to a point-in-polygon problem; with 

two major solution methods, the so called ray-casting method and the winding number 

method (Haines 1994). In the ray-casing method, a half infinite ray is drawn from a 

point in the domain and the number of intersections between the half infinite ray and the 
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polygon edges is counted. If the number is odd (point A in Figure 3-3b) than the point is 

inside the polygon (on the immersed solid), otherwise it is located outside of the polygon 

(in the fluid domain). 

a) 

 

b) 

 

c) 

 

Figure 3-3: a) background Cartesian grid with a polygon immersed boundary 

classified to fluid, solid and interface nodes, b) a ray casting test method for a polygon; 

point A is inside and point B is outside the polygon, c) a ray casting test method for a 

polyhedron (Borazjani et al 2008). 

 

Expanding the ray-caste-polyhedron method to 3D is straightforward and is briefly 

described as follows. Suppose that the surface of polyhedron is discretised with an 

unstructured triangle mesh and a point p(x,y,z) is defined in space. A line is casted from 

the point p to the point S(x,y,z) outside of polyhedron, the number of intersection of the 

ray with the triangle elements on the surface of polyhedron shows if the point p is 

outside (fluid node) or inside (solid node) of the polyhedron (Figure 3-3c).  The core of 

the ray-triangle intersection algorithm is explained by Moller and Trumbore 1997 (for 

more details, see Borazjani et al. 2008).  

3.2.2  Interfacial marker at the interface discontinuity algorithm 

This methodology was initially proposed by Udaykumar et al. 1997. The fluid-

structure interface is tracked as a discontinuity. The algorithm is very robust and is 

applied in a variety of problems, especially in FSI problems with a sharp immersed 

boundary method. The detailed algorithm is presented in the papers published by 

Udaykumar et al. 1997. Key features of this method are presented here to facilitate 

further discussion about the immersed boundary method with a sharp interface. 

In this method an open or closed immersed boundary with an arbitrary shape is 

represented by interfacial markers which are defined by their arc length coordinates X(S) 

in Figure 3-4. The markers are equally spaced with a spacing size of the same order of 

the background Cartesian grid. The start point is defined such that with increasing s, the 

fluid is always on the left hand side. By fitting quadratic polynomial with each point 
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through and its two immediate neighbours, the unknown coefficients in equation (3-10) 

are calculated to obtain a local parameterisation of the immersed boundary at each 

interfacial point.  

𝑥(𝑠) = 𝑎𝑥𝑠
2 + 𝑏𝑥𝑠 + 𝑐𝑥  𝑎𝑛𝑑  𝑦(𝑠) = 𝑎𝑦𝑠

2 + 𝑏𝑦𝑠 + 𝑐𝑦  (3-10) 

Using this calculating the normal vector to the immersed boundary is 

straightforward by employing the following equations.   

𝑛𝑥 =
−𝑦𝑠

√(𝑥𝑠2 + 𝑦𝑠2)
 𝑎𝑛𝑑 𝑛𝑦 =

−𝑥𝑠

√(𝑥𝑠2 + 𝑦𝑠2)
 

(3-11)  

 

a) 

 

b) 

 

c) 

 

Figure 3-4 a)Definition of the immersed boundary topology by interfacial markers, 

arc length vector and normal vector; b) Identification of fluid nodes from solid nodes using 

a normal vector; c) Demonstration of interface nodes (o) and marker points (●), (Balaras 

2004).    

 

Having a local parameterization of the immersed boundary around each marker 

points, it is possible to identify the grid point closest to each marker point in the 

background Cartesian by using an iterative method, like the Newton-Raphson method. 

According to Figure 3-4b, a line (vector) is defined from each Cartesian point in the 

vicinity of the marker point perpendicular to the local approximation of the immersed 

boundary. The inner product of these vector and normal vector, equation (3-11), of 

immersed boundary at each marker point shows that if the grid point on the Cartesian 

background is on the fluid domain or in the solid domain. If the inner product is positive 

the point is outside (for closed solid boundaries) or on the left hand side (for the open 

boundaries) of the solid interface. (see Balaras 2004 for more details). Figure 3-4c shows 

the interface cells (black circle) which need special treatment to enforce the solid 

boundary condition in a sharp interface IB method. 
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3.3 Boundary Reconstruction/Interpolation  

It is well known that the majority of immersed boundary approaches need some sort 

of interpolation procedure. For instance, the forcing method discussed earlier was based 

on the assumption that the unknown (velocity) positions on the grids exactly match with 

the immersed boundary location. In this case the boundary coincides with the grid lines 

especially with moving boundaries, which is not the case for complex geometries. In 

particular, for staggered arrangement, even if the grid lines and boundary location 

coincide together for one unknown (e.g. velocity in x direction) they will not coincide 

for the other unknowns. Therefore interpolation is needed in the IB solution procedure to 

enforce the immersed boundary in the presence of non-matching grid lines.  

Due to the forcing method, the interpolation procedure would be different and can 

be categorised by two main approaches. In the first approach; the forcing function is 

spread in the vicinity of the immersed boundary, which in the original IB approach 

introduced by Peskin 1972 is achieved using a discrete Dirac delta function (section 

3.1.1). The main drawback for this approach is that this spreading acts as extra 

dissipation close to the IB which could lead to an inaccurate prediction of the boundary 

layer. In the second approach a local solution of the unknown (velocity) is reconstructed 

to enforce the IB as a sharp interface with a relatively high degree of accuracy (depends 

on its procedure). This method of interpolation is widely used in the indirect forcing 

approaches. In other words, in the vicinity of the immersed boundary the flow governing 

equations are replaced by an interpolation equation. In this way, the unknown at the 

interface cells are determined and these values will be used as the boundary values for 

the governing equation. This process is repeated at each time step and the flow 

parameters in the interface cells are updated by direct interpolation and used as boundary 

conditions for the flow solver. Various interpolation methods have been developed to 

address this issue.  

In this review, a number of interpolation procedures which could potentially be 

used in indirect discrete forcing approaches (interpolation or reconstruction) are 

categorized, explained and compared briefly in the following section.   

3.3.1 Stepwise geometry -No interpolation 

The simplest possible method is to identify edges of the interface cells as the solid 

boundaries to define the solid domain. In fact, in this way there is no interpolation 
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needed and the solid boundary will have a stepwise shape (Figure 3-5a). Also, the 

boundary itself will be somewhat diffused, as in the staggered methods the boundary 

conditions for the different velocity components are applied at different sides of an 

element. Fadlun et al. 2000 proposed this method for calculating and imposing forcing 

functions, respectively, from and to the velocities around immersed boundaries. As 

interpolation is not needed, this method will be less expensive while still giving 

acceptable results. The disadvantage of this method is that (especially on course meshes) 

the shape and size of the enforced boundary is different from the real solid boundary 

which could affect the lift and drag forces. Also, this method is only first order accurate 

in space. 

a) 

 

b) 

 

c) 

 

Figure 3-5 interpolation procedure sketch for u velocity in an staggered arrangement 

a) without interpolation b) weighted interpolation c) linear interpolation 

3.3.2 Weighted method 

This method is similar to the one discussed above. The major difference is that the 

boundary values (force term) for those cells that are crossed by the IB are corrected 

based on the volume/surface of cell that is occupied by the structure (Figure 3-5b). For 

each of the force and velocity components a coefficient is determined that corresponds 

to the ratio of the fluid part of the cell to the whole area of the cell, which is a first order 

accurate method in space. Fadlun et al. 2000 used this method to scale the forcing of the 

velocities closest to the boundaries.  

3.3.3 Linear interpolation method   

In this method, the velocities in the interface cells are calculated by a linear 

interpolation between the velocity at the solid boundary (applying the no slip condition) 

and in one point inside the fluid. Fadlun et al. 2000 suggested this interpolation method 
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to enforce the boundary condition to the fluid domain.  Also, Kang et al. 2009 used this 

interpolation method for the immersed boundary but applied it in a direction parallel to 

the grid lines. In Figure 3-5c, the interpolation procedure for an IB cell velocity, Ui,j,  in 

the vertical direction using the Usolid and Ui,j+1 (inside the fluid domain) is shown.  

Application of this approach for a complex geometry could lead to a possible 

ambiguity in choosing the interpolation direction. Figure 3-6a, illustrates such 

ambiguities as the interface (IB cell) velocity, Ui,j could be interpolated either in the 

horizontal or vertical direction (Kang  et al. 2009). Balaras 2004 suggested using the 

linear interpolation scheme in a direction perpendicular to the boundary to overcome this 

problem.  According to Figure 3-6b he suggested to calculat Uvirtual in the fluid domain at 

a location where h1=h2; therefore the interface velocity, Ui,j is obtained from Usolid and 

Uvirtual using  

𝑈𝑖,𝑗 =
ℎ2
ℎ
𝑈𝑠𝑜𝑙𝑖𝑑 +

ℎ1
ℎ
𝑈𝑣𝑖𝑟𝑡𝑢𝑎𝑙, where h = h1 + h2   (3-12) 

 

a) 

 

b) 

 

Figure 3-6:  calculating the interface cell velocity by linear interpolation; a) ambiguity 

in the direction of interpolation, Fadlun et al. 2000 model b) linear interpolation 

perpendicular to the IB, Balaras 2004 model. 

 

Balaras predicted three possibilities for calculating Uvertual from U1 to U4 in fluid 

domain. According to Figure 3-7a) if none of the U1 to U4 is an interface velocity the 

Uvertual can be calculated by equation (3-13); where αi is the standard bilinear 

interpolation coefficient. 

𝑈𝑖,𝑗 =∑𝛼𝑖𝑈𝑖

4

1

 

 

 

(3-13) 
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a)

 

b) 

 

c) 

 

Figure 3-7: interpolation scheme in direction perpendicular to the IB, Balaras 2004; 

three boundary options depends on the immersed boundary geometry and local grid size. 

 

Figure 3-7b) shows that if one of velocities around the Uvirtual is the interface 

velocity, Ui,j, the Uvirtual is interpolated from U1 to U3. In addition, if more than one of 

the velocities around the Uvitual is an interface velocity (Figure 3-7c), in this case h2 is 

chosen larger than h1 in a way that at least three neighbouring velocities of Uvirtual do not 

coincide with the interface velocities, Ui,j . Linear interpolation is a second order 

accurate scheme (for more detail see Balaras 2004, Kang et al. 2009). 

Gilmanov et al. 2003 presented and applied the Balaras interpolation method to 

three dimensional problems. As explained earlier in the reconstruction/interpolation 

method, the entire fluid domain is solved using the boundary values specified at the 

interface cells, and the immersed bodies are excluded from the computation. Suppose at 

time step, n, all the velocities and pressures in the fluid domain (for example point α, β, 

δ and γ at Figure 3-8) are known and also suppose that the boundary conditions are 

known at all vertices of the unstructured grid at the same time step. To advance the flow 

governing equations to the next time step the values of the immersed cells (for example 

point b at Figure 3-8) are interpolated linearly between point a on the structure and point 

c inside fluid domain. Gilmanov et al. 2003 used another interpolation, equation (3-14), 

to calculate the value of the parameters (velocities) in Figure 3-8 (points c & a). 

𝑈𝑎 = ( ∑ 𝑈𝑚 𝑆𝑚⁄

𝑚=1,3

) ( ∑ 1 𝑠𝑚⁄

𝑚=1,3

)⁄  
(3-14) 

 

Where m=1,3 are the three vertices of the triangular element which include point a, 

and 𝑠𝑚 are the distances between point a and each of the three vertices of the triangular 

element.  The same method is used to calculate the boundary condition at point c by 

interpolating the values defined at α, β, δ and γ in Figure 3-8. Also, the pressure gradient 

U

3 
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is calculated as a Dirichlet condition in a similar way at point b (see Gilmanov et al. 

2003 for more detail). 

 

Figure 3-8: Schematic reconstruction of the IB unknown “b” with interpolation in the 

wall-normal direction. The triangle represents an unstructured element of the IB. The dash 

line is the intersection of the body with the Cartesian grid (Gilmanov et al. 2003).  

3.3.4 Bilinear interpolation method 

Kang et al. 2009 introduced this method as a linear interpolation method, (Standard 

Reconstruction Method, SRM).  Two adjacent velocities in the horizontal and vertical 

directions and the velocity of the solid boundary are used to obtain the interpolated 

velocity at each interface point near the immersed boundary (Figure 3-9). Equation 

(3-15) is the interpolation formula for the velocity, where the coefficient w represents 

the interpolation weight for each of the velocities. 

 

  

Figure 3-9: Standard Reconstruction Method (SRM) for velocity in vertical (left) and 

horizontal (right) direction 

 

𝑈𝑖,𝑗 = 𝜔𝑖+1,𝑗𝑈𝑖+1,𝑗 + 𝜔𝑖,𝑗+1𝑈𝑖,𝑗+1 + 𝜔𝑠𝑜𝑙𝑖𝑑𝑈𝑠𝑜𝑙𝑖𝑑 (3-15) 

To solve the governing equations in a fractional-step method, after each time step 

𝑈𝑖,𝑗 is calculated from the momentum interpolation, �̂�𝑖,𝑗, followed by projection onto each 

divergence-free field. The intermediate velocity itself, �̂�𝑖,𝑗 is calculated using an 

interpolation formula for the cells near the solid boundary. 
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3.3.5 Revised interpolation method 

 In spite of the various advantages in standard interpolation/Reconstruction methods 

(SRM) that have been discussed so far, there are several short-comings as well. An 

important issue is the decoupling between the pressure field and the local velocity near 

the immersed boundaries. Also, there is no explicit contribution of the velocity or 

pressure gradient at the previous time steps in the interpolation formula which could 

cause abnormal pressure gradients near the immersed boundary (Kang et al. 2009). 

Kang et al. 2009 has revised the above interpolation methods to use the velocity 

field in the previous time step to obtain a more accurate interpolation for the next time 

step. To do so, the explicit difference between the velocities at two consecutive time 

steps is used to calculate the interface velocities at the new time step. In a fractional step 

strategy to solve the Navier-Stokes equations this difference could be defined as ∆𝑈𝑖,𝑗 =

 �̂�𝑖,𝑗
𝑘
− 𝑈𝑖,𝑗

𝑘−1 ; where �̂�𝑖,𝑗
𝑘

 is the intermediate velocity before the pressure (conservation of 

mass) projection step. In this case the interpolation formula based on the previous 

velocity is defined as, 

∆𝑈𝑖,𝑗 = 𝜔𝑖+1,𝑗∆𝑈𝑖+1,𝑗 +𝜔𝑖,𝑗+1∆𝑈𝑖,𝑗+1 + 𝜔𝑠𝑜𝑙𝑖𝑑∆𝑈𝑠𝑜𝑙𝑖𝑑 (3-16) 

Or alternatively it can be expressed as: 

�̂�𝑖,𝑗
𝑘 = 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘 +𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘 +𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘

+ 𝜂(�̂�𝑖,𝑗
𝑘−1 − 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘−1 − 𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘−1 − 𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘−1 ) 

Where 𝜂 = √(𝜔𝑖+1,𝑗 + 𝜔𝑖,𝑗+1) 𝜔𝑠𝑜𝑙𝑖𝑑⁄  𝑎𝑛𝑑 (𝜂 ≤ 1) 

(3-17) 

In addition, to compensate for the decoupling between the velocity and the local 

pressure, Kang et al. 2009 explicitly added the effect of the pressure gradient to the 

interpolation equation. 

�̂�𝑖,𝑗
𝑘 = 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘 +𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘 +𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘

+ 𝜂(�̂�𝑖,𝑗
𝑘−1 − 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘−1 − 𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘−1 − 𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘−1 )

− 𝛿𝑘∆𝑡 (
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗

− 𝜔𝑖+1,𝑗
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖+1,𝑗

− 𝜔𝑖,𝑗+1
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗+1

− 𝜔𝑠𝑜𝑙𝑖𝑑
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑠𝑜𝑙𝑖𝑑

) 

(3-18) 

 

In equation (3-18), instead of the pressure gradient at the solid boundary, 
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑠𝑜𝑙𝑖𝑑

 , 

the pressure gradient at the interface cell, 
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗

, is used, which is not affecting the 

second order accuracy of the formula. In the above formula the easiest choice is to select 
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𝛿𝑘 = 1, in which case the pressure gradients at the interface cell and the momentum 

equation are the same.   

3.3.6 Quadratic interpolation method 

In addition, Kang et al. 2009 introduced a quadratic interpolation formula to 

improve the Revised Linear Interpolation Method (RLIM). In this method the local 

pressure gradient is incorporated in the velocity interpolation to compensate the 

decoupling between the pressure and the velocity near the solid boundary, however there 

is no extra user defined parameter like the RLIM method in the interpolation formula. 

Figure 3-10a&c illustrate their interpolation method in the two-dimensional case in 

horizontal and vertical directions. Four adjacent velocities are used to enforce the 

momentum equation by a quadratic interpolation.  For those interface points where the 

quadratic interpolation is not applicable (see, Figure 3-10b) due to geometry and 

curvature of the immersed boundary, it is replaced with the linear interpolation.  

Equation (3-19) is another version of the quadratic interpolation formula, where the 

origin of the local coordinate system is located at the interface velocity, �̂�𝑖,𝑗. Though this 

interpolation formula has a third order accuracy, the overall accuracy of the flow solver 

is second order. Therefore, a quadratic interpolation only gives more degrees of freedom 

(more flexibility) to the velocities near the immersed boundary rather than higher order 

accuracy (more than two) to the problem. 

�̂�𝑖,𝑗
𝑘 = 𝑎𝑖+1,𝑗

𝑘  𝑥𝑖+1
2 + 𝑏𝑖+1,𝑗

𝑘 𝑥𝑖+1 + 𝑎𝑖,𝑗+1
𝑘  𝑦𝑗+1

2 + 𝑏𝑖,𝑗+1
𝑘 𝑦𝑗+1 + �̂�𝑖,𝑗 (3-19) 

 

 

a) 

 

b) 

 

c) 

 

Figure 3-10: Quadratic interpolation method for an interface velocity in the 

horizontal (left) and the vertical (right) directions. The middle pane shows that it is not 

always possible to use this type of quadratic interpolation. 

 

Moreover, in the quadratic interpolation there is no user defined parameter. Kang 

reported that this method could become unstable in some cases. Two remedies are 
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suggested; using a cubic interpolation instead of a quadratic one, which increases the 

number of coefficients and therefore the complexity of the method.  Another suggestion 

is to use a linear interpolation when the two velocities on the immersed boundary (Usolid1 

and Usolid2 or Vsolid1 and Vsolid2) are nearer than some threshold to each other (more detail 

see Kang et al. 2009). 

3.3.7 Higher order interpolation methods 

Choi et al. 2007 also introduced a higher order interpolation method. It has been 

shown that a power law interpolation is better than a linear interpolation method, for 

higher Reynolds number. They introduced the concept of tangency correction by 

resolving the velocity into the normal and the tangential direction to the immersed 

boundary. The velocity profile in the tangential direction is written as a general power 

law in terms ~n
k
, rather than assuming a linear trend (n is the normal coordinate). Small 

value of power k, (k=1/7 or 1/9) preserve the expected logarithmic distribution near the 

wall region which is necessary for application of a turbulent model. The normal velocity 

profile is defined in such a way that its second derivative is maintained at the immersed 

surface (n=0) to satisfy the Neumann boundary condition for the wall normal pressure 

gradient. Choi’s numerical results shows that for Reynolds numbers less than 1000 a 

linear distribution of the velocity profile (k=1) is required, however, in problems with 

Reynolds numbers greater than 10,000 using the law power (k=1/7 or 1/9) gives a more 

realistic flow separation result (more detail see Choi et al. 2007).  

3.4 Interface tracking methods 

An important challenge faced when using immersed boundary methods is to 

maintain stability in the FSI simulation, which may lead to very small time steps (Fauci 

and Fogelson 1993, Peskin 2002). It is possible to improve the numerical stability by 

calculating the boundary forces implicitly (strong coupling) in advance (time). Also, in 

the presence of very strong interaction between the fluid flow and structure (eg. blood 

flow in arteries), a strong coupling between the solvers is required to stabilise the 

simulation in a partitioned approach. This is due to the additional flow acceleration that 

is acting on the solid which is known as the added mass effect (Causin et al. 2005 and 

Idelsohn et al. 2009 among others).                                                                                                         

Another challenge in the FSI modelling is the interface tracking between the fluid 

and the structure. Sub-iterations (strong coupling) between the fluid and the structure 
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solution increase the numerical stability of the interface tracking methods. Wood et al. 

2010 explained that the FSI method becomes unstable in absence of sub-iteration steps 

between flow and structure solutions at each time step (weak coupling). They showed 

that one additional sub-iteration can reduce the numerical error by two orders of 

magnitude without adding a substantial over head to the program; more sub-iterations 

could achieve an even better convergence.  

In this context, the IB partitioned approaches are classified into strong (Farhat et al. 

2006) and weak (Quarteroni et al 2000) coupling methods. Weak coupling could 

produce acceptable results when the coupling (interaction between the fluid and the 

structure) is not strong like in aero-elasticity problems (Farhat et al. 2006). However, 

weak coupling may lead to instabilities when the density of the fluid and the structure 

are similar, for example in simulating blood flow in arteries. 

Although many methods were developed to improve the treatment of the interface 

to gain a better accuracy, efficiency and stability for the FSI simulation (Tu and peskin 

1992, Mayo and peskin 1993, Fauci and Fogelson 1993, LeVeque and Li 1997, Lee and 

LeVeque 2003, Mori and peskin 2008, Newren et al. 2008, Hou and Shi 2008, Ceniceros 

et al. 2009 among others), it remains a challenge to produce a computationally efficient 

IB method (Hou et al. 2012).  

Due to the coupling of the interface configuration and the boundary forces with the 

fluid flow simulation, solving a FSI problem implicitly requires solving a very large 

system of nonlinear equations. Finding a converged solution to such a large system is a 

very challenging problem. Due to these challenges, most of the simulations were 

originally based on explicit methods. Recently, however, implicit methods have been 

developed that exploit the improved computational power. Newren et al. 2008 presented 

an unconditionally stable procedure with a second order Crank-Nicolson formulation 

where inertia forces are neglected, assuming a linear and self-adjoint force at the 

interface. Mori and Peskin 2008 suggested a similar scheme and proposed a fully 

implicit method. Cenicero et al. 2009 designed a cost-effective algorithm to solve the 

linear system arising from the implicit discretization. Also Wang 2006, 2007 and 2010 

employed a fully implicit time integration algorithm along with a matrix free 

combination of Newton-Raphson and General Minimal RESidual (GMRES) solvers.     

In addition, Badia et al. 2008 proposed a method to estimate the interface location 

and to replace Neumann and Dirichlet boundary conditions by a general Robin 

transmission method in a new FSI iteration. Having a better prediction of the fluid 
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structure interface, Farhat et al. 2006 proposed a FSI model with a second order 

accuracy in time. Another second order FSI method was developed by Zhang et al. 2007. 

In their model the CFD code was considered as a black box. A reduced-order method 

was introduced by Vierendeels et al. 2008 in an attempt to improve the computational 

efficiency. In the following section some of these methods are studied and compared in 

more detail. 

3.4.1 Second-order accuracy without sub-iteration (loosely coupled, weak 

solution) 

Li et al. 2002 proposed a loose coupling between the fluid flow and the structure for 

simulating an FSI problem in a relative frame of reference method. In the first step the 

force at t
n+1

, F
n+1

 is calculated explicitly from the forces F
n
 and F

n-1
 using extrapolation 

or relaxation factors (equation ((3-20))).  The parameter 𝜗 can be either a relaxation or 

extrapolation factor. 𝜗 = 3
2⁄    results in a second order extrapolation . In the second 

stage, the structural governing equation is solved to find the displacement, X
n+1

, 

velocity, V
n+1

, and acceleration, a
n+1

 at t
n+1

 by a second order, trapezoidal scheme 

((3-21))). In the third step, the fluid governing equation is updated from time t
n
 to t

n+1
 

with respect to the velocity, V
n+1

, and the displacement, X
n+1

, using a new boundary 

condition at time t
n+1

. These steps are repeated for the whole range of FSI simulation 

problems in time domain.  

𝐹𝑛+1 = 𝜗𝐹𝑛 + (1 − 𝜗)𝐹𝑛−1  (3-20) 

𝑋𝑛+1 = 𝑋𝑛 +
1

2
 ∆𝑡(𝑉𝑛 + 𝑉𝑛+1) (3-21) 

𝑉𝑛+1 = 𝑉𝑛 +
1

2
 ∆𝑡(𝑎𝑛 + 𝑎𝑛+1) (3-22) 

𝑎𝑛+1 +
𝐶

𝑚
𝑉𝑛+1 +

𝐾

𝑚
𝑋𝑛+1 =

𝐹𝑛+1

𝑚
 

(3-23) 

In addition, Li et al. 2002 suggested using an implicit method so that F
n+1

 is updated 

with the newly calculated flow field velocity, V
n+1

, to fulfil a convergence criterion 

according to equation ((3-24),  

‖𝐹𝑗+1
𝑛+1 − 𝐹𝑗

𝑛+1 𝐹𝑗+1
𝑛+1⁄ ‖ < 𝜀 (3-24) 

In equation ((3-24), j is the sub-iteration index and  𝜀 is a prescribed small constant. 

If the newly calculated 𝐹𝑗+1
𝑛+1 is converged then the program goes to the next time step. 

Farhat et al. 2006 suggested two second-order temporal accuracy algorithms. These 

procedures are second-order accuracy for both the flow and the structures fields. Farhat 
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proposed a three-point backward difference method for solving the flow field and the 

structure in the following steps. a) Predicting the interface velocity based on the second-

order accurate structural solution. b) Calculating the interface location based on the 

structural governing equation. c) Solving the fluid governing equation based on the new 

boundary conditions (interface location). d) Calculating force, pressure and shear stress, 

acting on the fluid-structure interface to be used to predict the interface velocity as 

described in for the first step. 

The second method of Farhat was a half time step procedure; using the following 

steps: a) Predicting the interface velocity based on the governing structural equations in 

half of the time step; b) Calculating the interface position based on the velocity and 

governing structural equation in half of the time step; c) solving the fluid governing 

equation based on the velocity and location of the interface in half of the time step; d) 

Calculating the force from the fluid flow at half of the time step to find the velocity and 

location of the interface at the full time step by solving the governing structural 

equations.  

Zhang et al. 2007 studied the accuracy, stability and efficiency of their two 

proposed FSI algorithms for an aero-elastic flutter benchmark. Their first algorithm 

solves structural dynamic equations under hydrodynamic forces. Those forces are 

calculated by a black box CFD simulation.  

The structural equations are solved with a standard fourth order accurate Runge-

Kutta method. The discretised equation uses the fluid pressure at 𝑝(𝑡) and 𝑝(𝑡 + ∆𝑡

2
), in 

which the latter is predicted by a second order backward extrapolation procedure 

(equation ((3-25)). 

𝑝(𝑡 + ∆𝑡) ≈
1

8
(3𝑝(𝑡 − 2∆𝑡) − 10𝑃(𝑡 − ∆𝑡) + 15𝑝(𝑡)) 

(3-25) 

 

In the next step, the structural equations are solved to find the new position of the 

boundary. Once the new boundary position is predicted, the CFD code solves the fluid 

governing equations to generate a new pressure distribution based on the new boundary 

location. The new pressure distribution is applied to the structural equations in the next 

time step.  

The second algorithm of Zhang is based on a multi-step, implicit second order 

Adams Bashforth method to solve the structural equations, in which the predictor is an 

explicit second-order Adams scheme. The forces from the fluid flow in the predictor step 
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at time n+1 can be approximated by a second order accuracy (equation (3-26)) or a forth 

order accuracy (equation (3-27)). 

𝑝(𝑡 + ∆𝑡) = 2𝑝(𝑡) − 𝑃(𝑡 − ∆𝑡) (3-26) 

𝑝(𝑡 + ∆𝑡) = 4𝑝(𝑡) − 6𝑃(𝑡 − ∆𝑡) + 4𝑃(𝑡 − 2∆𝑡) − 𝑝𝑃(𝑡 − 3∆𝑡) (3-27)  

 

Both Zhang algorithms require to call the CFD code only once per time step. They 

presented the result for a flutter benchmark. The simulation results confirm that their 

algorithms are superior to the conventional algorithm in which the fluid flow and 

structure equations are solved alternately.  

3.4.2 Fixed point FSI coupling algorithm with dynamic relaxation 

One of the most basic yet efficient approaches is the fixed point algorithm with 

dynamic relaxation which was suggested by Kuttler & Wall 2008, Mok & Wall 2001 

and Wall 1999. This algorithm calculates the FSI interface within an incompressible 

fluid flow (of a body placed with a flexible structure). A Dirichlet-Neumann scheme is 

used to apply the algorithm to the FSI interface and to couple the nonlinear equation of 

flow to the structures. In this scheme, the flow becomes the Dirichlet part of the problem 

by the defining the flow velocity at the interface and the structure becomes the Neumann 

part of the scheme by describing the forces on the interface. This technique couples two 

black boxed field solvers (fluid and structure solvers) and predicts the FSI solution. 

In the first place, a suitable location is predicted for the interface, 𝑦Γ
𝑛+1. Then, the 

interface velocity, 𝑢Γ
𝑛+1 =

 𝑦Γ
𝑛+1− 𝑦Γ

𝑛

Δ𝑡
, is calculated for the flow domain based on the 

predicted location at the new time step,  𝑦Γ
𝑛+1, and the previous location, 𝑦Γ

𝑛. In the next 

step, the flow governing equation is solved based on this new velocity boundary 

condition (Dirichlet) to find the coupling forces on the interface. Finally, the governing 

structural equation is solved based on the calculated force (pressure) to obtain the 

structural displacement 𝑦Γ
𝑛+1. At this stage it is possible to define an iterative cycle to 

find a converged value of the structural displacement. A stopping criterion (equation 

((3-28)) is introduced to check the convergence of the results. 

𝑟Γ,𝑖+1
𝑛+1 = 𝑦Γ,𝑖+1

𝑛+1 − 𝑦Γ,𝑖
𝑛+1 

(3-28) 

 

In this equation, i, is the iteration index, and the residual, 𝑟Γ,𝑖+1
𝑛+1 , should be less than 

a certain value (Deparis 2004) to achieve convergence. To accelerate convergence, a 

relaxation coefficient is introduced.  
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𝑦Γ,𝑖+1
𝑛+1 = 𝑦Γ,𝑖

𝑛+1 + 𝜔𝑖𝑟Γ,𝑖+1
𝑛+1 = 𝜔𝑖𝑟Γ,𝑖+1

𝑛+1 + (1 − 𝜔𝑖)𝑑Γ,𝑖
𝑛+1 

(3-29) 

As a result, the fixed-point algorithm to solve the FSI problems consists of a relaxed 

FSI cycle with appropriate relaxation factor and convergence criteria. The relaxation 

parameter should be small enough to guarantee the convergence of the FSI simulation, 

while avoiding unnecessary iterations. Also, it should be as large as possible to use as 

much as possible of the new solution for the next iteration.  Kuttler & Wall 2008 

suggested two methods to define the relaxation parameter; Aitken relaxation and 

steepest descent relaxation. 

The main idea in the Aitken method (equation (3-30)) is to use the values from two 

previous iterations to calculate the current coefficient; therefore, there is no possibility to 

calculate the relaxation parameter after only one iteration. 

𝜔𝑖+1 = −𝜔
𝑟Γ,𝑖+1

𝑟Γ,𝑖+2 − 𝑟Γ,𝑖+1
 

(3-30) 

3.4.3 Reduced-order modelling (ROM) and interface location prediction 

Vierendeels et al. 2008 proposed a ROM procedure to solve the FSI problem for a 

heart valve as a bench mark. The heart valve was modelled with series of rigid links, 

connected by hinges along with a torsional stiffness. The sets of implicit FSI equations 

for the discretised fluid and structure are represented symbolically by equations (3-31) 

and (3-32) respectively. 

𝐺(𝑥𝑛+1, 𝑃𝑛+1) = 0 
(3-31) 

𝑃𝑛+1 = 𝐹(𝑥𝑛+1) 
(3-32) 

A sub-iteration can performed to find the interface at the new time step (𝑥𝑛+1) as 

equation (3-33).  

0 ≈ 𝐺(𝑥𝑛+1,𝑘, 𝑃𝑛+1,𝑘)

= 𝐺(𝑥𝑛+1,𝑘−1, 𝑃𝑛+1,𝑘−1) × ∆𝑥 +
𝜕𝐺

𝜕𝑝
]
𝑥𝑛+1,𝑘−1,𝑃𝑛+1,𝑘−1

× ∆𝑝 

Where ∆𝑝 ≈ 𝑝(𝑥𝑛+1,𝑘−1 + ∆𝑥) − 𝑝(𝑥𝑛+1,𝑘−1) 

(3-33) 

3.5 Moving frame of reference  

As it has been mentioned earlier, one of the main problems for simulating flow 

around a flexible structure is the moving boundaries. The two main techniques to tackle 
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this problem are classified as: deforming grid methods similar to the Arbitrary-

Lagrangian-Eulerian (ALE) approach (Donea et al. 1982) and fixed grid methods, such 

as the Immersed Boundary (IB) method (Peskin 1972).  

An alternative approach for solving the moving-boundary flow problem for a 

flexibly mounted, non-deforming (rigid) body is to attach the coordinate system to the 

body, and solve the Navier–Stokes equations in a moving frame of reference. The 

advantage of such an approach is that an optimized direct solver for the fluid can be 

efficiently applied. This is particularly important when considering the very long 

simulation time typically required to capture the instability of the fluid-structure 

interaction. Newman and Karniadakis 1988 applied a coordinate transformation to a 

flexible cable in the (x, y) direction; but did not include a rotational degree of freedom in 

their simulation, which is of great significance in some problems. Li et al. 2002 used a 

similar approach as Newman and Karniadakis for a single body undergoing both 

translation and rotation. They introduced a coordinate transformation attached to the 

transforming/rotating body. This formulation proved to be very flexible in handling 

every possible motion of a body in two dimensional plane. In the following section their 

method is briefly explained. In the Chapter 7 this method combined with the immersed 

boundary interpolation method will be used to simulate the flow around a flexible 

circular cylinder. 

3.5.1 Moving frame Formulation 

Assume that instantaneously the body translates by 𝑑 =  (𝑔(𝑡), ℎ(𝑡))𝑇 and rotates 

by an angle 𝜃 =  𝜃 (𝑡), in the absolute frame of reference(�́�, 𝑦’). Then a corresponding 

moving frame of reference (x, y) can be attached to the body using the transformation. 

�́� = 𝑔(𝑡) + 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 

�́� = ℎ(𝑡) − 𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃 

(3-34) 

 

 

Here, the prime denotes the absolute frame of reference, and the coordinates 

𝒙 = (𝑥, 𝑦)𝑇 denote the moving frame of reference whilst 𝑑 =  (𝑔(𝑡), ℎ(𝑡))𝑇 is the 

coordinate of the origin of the moving frame of reference in the absolute frame of 

reference. The rotational angle 𝜃 (𝑡) is defined to be consistent with the aeronautical 

sign convention for the angle of attack, i.e., rotating the model clockwise in a flow from 

left to right increases the angle (Figure 3-11). 
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Figure 3-11 : Coordinate transformation 

Li et al. 2002 have derived the Navier-Stokes equations in a moving reference for a 

two dimensional case using the above transformation, and obtained: 

 

∇. V = 0 (3-35) 

∂V

∂t
+ V. ∇V = −∇p + ϑ∇2V + G(v, t) 

(3-36) 

𝐺(𝑣, 𝑡) = 2�̇�𝐼0𝑉 + (�̇�)
2
𝑋 + �̈�𝐼0𝑋 − 𝐴

𝑇�̈� (3-37) 

Where A is the rotation matrix: 

𝐴 = (
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
−𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

) , 𝐴𝑇 = 𝐴−1 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) 
(3-38)  

 

And the velocity V in the moving frame reference is defined by: 

𝑉 = �̇�𝐼0𝑋 + 𝐴
𝑇(𝑉 ́ − �̇�) ,      𝑤ℎ𝑒𝑟𝑒            𝐼0 = (

0 −1
1 0

) 
(3-39) 

The term 2�̇�𝐼𝜃𝑉 is related to the deflecting or Coriolis force and (�̇�)
2
𝑋 is related to 

the centrifugal force. The terms 𝐴𝑇�̈� and �̈�𝐼𝜃𝑋 are related to the forces due to unsteady 

translation and rotation. 

The pressure is kept unaltered. This not only simplifies the implementation of the 

pressure boundary condition for the splitting scheme in the moving frame of reference, 

but is also convenient when coupling the flow solver with a structural equation which is 

primarily driven by the pressure forces in the absolute frame of reference. 
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For a non-accelerating motion this formulation is effectively stating that the 

problem of a moving body in a uniform flow is equivalent to that of a stationary body in 

a moving flow. For example, when a body is fixed in a flow and has an angle θ with the 

free stream velocity, then according to the above formulation:�̇� = 0, 𝜃 ≠ 0 . Therefore, 

the problem becomes flow around a body with not slip boundary conditions where the 

inlet velocities are 𝑉 = 𝐴 �́� = (𝑐𝑜𝑠𝜃;−𝑠𝑖𝑛𝜃)𝑇. 

3.5.2 Moving frame reference boundary conditions  

The far field Dirichlet boundary condition for the transformed Navier–Stokes 

equations can be specified using equation (3-41), i.e., 

𝑉 = �̇�𝐼0𝑋 + 𝐴
𝑇(𝑉 ́ − �̇�);  (3-40) 

𝑉 ́  is velocity in the far field in the absolute frame of reference. 

For many numerical schemes, a far field Neumann boundary condition for the far 

field is typically defined in the absolute frame of reference, such that: 

∇́�́�. �́� = 𝑔𝑁
�́� , ∇́�́�. �́� = 𝑔𝑁

�́�  (3-41) 

Where �́� is the outward normal to the boundary and 𝑔𝑁
�́�  , 𝑔𝑁

�́�  are known functions. 

Therefore it is necessary to transform this condition into the moving frame of reference. 

Li et al. 2002 derived the corresponding Neumann boundary conditions in the 

moving frame of reference as:  

∇𝑢. 𝑛 = 𝑔𝑁
�́� − �̇�𝑛𝑦  , ∇𝑣. 𝑛 = 𝑔𝑁

�́� + �̇�𝑛𝑥 (3-42) 

3.6 Freshly cleared nodes 

An important issue arises when the movement of an immersed interface (boundary) 

relative to the fixed background grid expose new nodes to the fluid domain that were 

originally in the solid body. The new fluid nodes need to be addressed carefully when 

using an FSI sharp interface method. Udaykumar et al. 2001 resolved this issue by 

introducing a cell-merging formulation along with a quadratic interpolation among 

neighbouring points in the fluid for the cut cell approach. Gilmanov and Sotiropolus 

2005 reported that in the direct forcing approach or reconstruction method, as long as the 

new grid point in the fluid is considered as an immersed cell, there should not be any 

problem as according to the definition of the immersed or interface cell, the values of the 

parameters at these points are interpolated before updating the fluid governing equation. 

In other words, this implies that the movement of the immersed boundary at each time 
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step should be less than a computational cell. To enforce the above conditions they have 

introduce the following restriction on the time step. 

∆𝑡 ≤
ℎ

max
𝑚=1,𝑀

(|𝑈𝑚
𝑛 |, |𝑉𝑚

𝑛|, |𝑊𝑚
𝑛|)

 
(3-43) 

Where in equation (3-43) U, V and W are the Cartesian components of the velocity 

and h is the minimum grid size near the immersed boundary. Gilmanov and Sortirpolous 

explained that in the dual time step approach (with extra inner iterations to achieve a 

strong coupling at each time step) the above criterion is less restrictive in comparison 

with to the Courant condition for the stability of the simulation.   

3.7 Mass conservation and pressure treatment near IB 

Conservation of mass is a very important factor for the calculation of the pressure as 

pressure is a Lagrange multiplier for the continuity equation. There are few methods to 

conserve mass near an immersed boundary depending on the IB method. Figure 3-12(a) 

shows that in the continuous forcing approach the mass conservation is implemented for 

all the cells in the fluid and solid domains by assuming there is no IB. The primary 

advantage of this method is that there is no need to take extra measures in order to fulfil 

the mass conservation near the IB. However, few other issues need to be addressed. 

According to the equations (3-1) and (3-2) the gradient of the pressure in the fluid side 

of IB, ΓIB-fluid, and at the immersed boundary ΓIB (and/or solid domain) can be calculated 

by equations (3-44) and (3-45), respectively. Where in the equation (3-44), 𝑢𝑓𝑙𝑢𝑖𝑑 is the 

flow velocity on the fluid side of domain; while in equation (3-45), the velocity could be 

either for the fluid or the solid domain around the IB. Practically, it has not been proven 

that the pressure gradients from these two equation are always the same at the IB; unless 

the f is zero or there is a discontinuity in the velocity near the immersed boundary (jump 

condition). Therefore, applying equations (3-1) and (3-2) to the whole domain (fluid and 

solid, Figure 3-12(a)) may not be sufficient to accurately predict  the pressure around the 

immersed boundary (Kang et al. 2009). 

∇𝑃|ΓIB−fluid = [− 
𝜕𝑢𝑓𝑙𝑢𝑖𝑑

𝜕𝑡
− 𝑢𝑓𝑙𝑢𝑖𝑑. ∇𝑢𝑓𝑙𝑢𝑖𝑑  

+ 𝜗∇2𝑢𝑓𝑙𝑢𝑖𝑑]
ΓIB−fluid

 𝑤ℎ𝑒𝑛 ∇. 𝑢𝑓𝑙𝑢𝑖𝑑 = 0 

(3-44) 
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∇𝑃|ΓIB = [− 
𝜕𝑢

𝜕𝑡
− 𝑢. ∇𝑢 + 𝜗∇2𝑢 + 𝑓]

ΓIB

 𝑤ℎ𝑒𝑛 ∇. 𝑢 = 0 
(3-45) 

Another example to show the need for an additional pressure treatment near ΓIB is 

the case of very thin IB layer between two channels with a steady laminar flow in 

opposite directions. In this case, the pressure gradients at each side of the ΓIB can be 

calculated by applying equation (3-44) which results in an independent (decoupled) 

solution across ΓIB (more detail see Kang et al. 2009). 

 

Figure 3-12: Various methods for conservation of mass depending on the IB method 

a) mostly for the continuous forcing approach (standard approach) b) mostly for the cut 

cell approach with a reshaped control volume c) mostly for the reconstruction method, 

conservation of mass only in fluid domain (Kang et al. 2009). 

The decoupling of the solid domain from the fluid domain across the ΓIB is similar 

to the immersed interface method that uses “jump conditions” at the immersed boundary 

(Lee and LeVeque 2003). Also Kim et al. 2001 suggested implementing a modified 

continuity equation in the solid domain or at ΓIB in order to remove the unwanted 

coupling of the non-physical flow field in the solid domain to the actual flow field 

domain. The parameter ‘q’ in this equation is known as the mass forcing term. 

∇. 𝑢 = q             in solid domain and ΓIB (3-46) 

In addition, when the immersed boundary, ΓIB, is forced inside the fluid domain 

either directly by using a Dirac delta function, f, in equation (3-1) or indirectly, by 

reconstructing the velocity at the interface nodes (the nodes on the fluid domain which 

have one neighbour in the solid domain) the forcing function and the reconstructed 

velocity should satisfy conservation of momentum. 

Figure 3-12(b) shows another method to conserve mass around the immersed 

boundary, ΓIB. In this method the cells which are crossed by the immersed boundary are 

divided into the fluid region which is solved purely by applying the Navier-Stokes 

equation, and the solid region which does not need any solution. In this case, ΓIB 
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separates these two regions. Conservation of mass is satisfied in the reshaped control 

volumes similar to the Finite volume Method (FVM) for an unstructured grid. A Similar 

method was used by Udaykumar et al. 2001 among others in the cut cell approach. The 

advantages of this method are that the conservation of mass is automatically enforced at 

ΓIB and the pressure gradient and velocity in the fluid region are independent of the 

parameters in the solid region. However, this method is very complicated for a moving 

complex geometry especially in three dimensions (Iaccarino and Verzicco 2003). 

Another shortcoming presented by Kirkpatrick et al. 2003 is that when the size of the 

reshape mesh is very small, the matrix condition number rises significantly. 

In the final method, according to the Figure 3-12(c), the control volumes which are 

in the solid region and the ones crossed by the immersed boundary, ΓIB, are excluded 

from the computational region and the mass conservation is only implemented in the 

fluid domain. This method does not create a pressure coupling problem between the 

fluid and solid region. Also, this method does not suffer from reshaping issues and other 

complexities of the cut cell method.   

3.7.1 Fictitious adding mass effect 

The added mass effect rises only when an immersed body in an oscillatory stream 

experiences an oscillatory hydrodynamic force in the direction of the stream. Morison et 

al. 1950 modelled this oscillatory force as being composed of an inertial and a drag 

force. The inertial force is in phase with the flow’s acceleration whilst the drag force is 

in phase with the velocity.  

Inertial forces consist of two parts: a ‘buoyance force’ which account for the 

pressure gradient required to accelerate the flow past the body and the ‘added mass’. The 

added mass is the fictitious mass of the fluid that is considered to be attached to the 

structure, and if the structure is permitted to vibrate, it moves with the structure and 

therefore adds to its inertia. The contribution of the added mass force to the inertial 

forces acting on a vibrating structure is proportional to the relative acceleration of the 

fluid with respect to the structure. 

3.8 Calculation of force on immersed boundary 

Generally, the forces on the immersed boundary can be classified as drag and lift 

forces if the component of force is in line with the flow or in transverse direction to the 

flow, respectively. Also, the force on a body in a fluid flow arises from two parts; the 
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pressure distribution and the shear stress along the submerged body. Depending on the 

type of the immersed boundary method, the calculation of the force on the immersed 

boundary is performed in different ways. In the continuous forcing approach (original IB 

and feedback forcing method), the force on the IB is calculated directly with a 

continuous function to be added to the Navier-Stokes equation which is not subject of 

this thesis. In the sharp boundary approach, either using the cell deformation (cut cell 

method) or the reconstruction method, calculating the immersed boundary forces is a 

challenging task and despite  a great number of publications this subject has rarely been 

explained properly (Balaras 2004). Lai and Peskin 2000 suggested three methods to 

calculate the drag force on an immersed boundary for the continuous forcing approach. 

Balaras 2004, based on Lai and Peskin method, suggested to employ conservation of 

momentum to calculate the immersed boundary forces in the sharp interface IB methods. 

In addition, Choi et al. 2007 used the method proposed by Balaras in their simulation. 

Moreover, there are other direct methods presented in literature to integrate the force due 

to the pressure as well as the force due to friction. For instance, Li et al. 2002 used a 

direct integration of the force on an immersed boundary in a moving reference frame 

method.  In the section below some of these methods will be discussed in more detail.  

3.8.1 Integrating continuous force  

This method is only applicable in combination with the continuous forcing 

approach. The force, f, in the right hand side of equation (3-1) is integrated in the fluid 

domain or the force F (in equation (3-4)) is integrated over the material points at the 

immersed boundary (equation (3-47)). In this equation the negative sign can be 

explained by Newton’s third law and Lb is the number of material points on the 

immersed boundary. 

𝐹 = −∫ 𝑓𝑑𝐱 = −∑𝐅𝒊𝑑𝑠𝑖

𝐿𝑏

𝑖=1𝑓𝑙𝑢𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛

 

(3-47)  

 

3.8.2 Direct calculation of surface forces 

The aerodynamical force exerted on a body by the flow is the integral of the local 

stress. Equation (3-48) expresses, σ, the local stress in terms of the pressure (normal 

stress) and τ, tangential stress (shear stress). The local stress can be integrated over the 

immersed boundary to calculate the forces from the fluid on the body (equation (3-49)).  
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𝜎 = −𝑝I + 𝜏 (3-48) 

𝐹 = ∫ 𝝈𝐧𝑑𝑠
Γ(𝑡)

= −∫ 𝑝𝐧𝑑𝑠
Γ(𝑡)

+∫ 𝝉𝐧𝑑𝑠 = 𝐹𝑝 + 𝐹𝑣
Γ(𝑡)

 
(3-49) 

Where 𝐧 is the outward unit normal on the body, 𝐹𝑝  refers to the pressure force and 

𝐹𝑣 refers to the viscous force. The above integration is defined in the absolute frame of 

reference. 

3.8.3 Application of momentum conservation 

When the under-laying Cartesian mesh for the flow, in an IB method is not aligned 

with the material points of the structure in a Lagrangian frame work; it is difficult to 

calculate interface forces in an immersed boundary method. To solve this problem, 

Balaras 2004 suggested a method based on the conservation of momentum for an 

optional control volume around the immersed body. Suppose Γ0 is the boundary of a 

fixed control volume surrounding the immersed boundary, Γb. The conservation of 

momentum is applied to the bonded surface, Γ= Γ0  Γb. Using this, the force from the 

fluid on the immersed boundary is calculated by equation (3-50) in vector notation or by 

equation (3-51) in index notation for a two dimensional problems (for more details see 

Lai and Peskin 2000 and Balaras 2004). 

�⃗� =
𝑑

𝑑𝑡
∫ 𝜌�⃗⃗�𝑑𝐴
𝑏𝑜𝑢𝑛𝑑𝑎𝑒𝑑 𝑎𝑟𝑒𝑎

−∫ (𝜌�⃗⃗��⃗⃗� + 𝑝𝐈 − 𝛕)
Γ0

. 𝐧𝑑𝑠 
(3-50) 

𝐹𝑖 =
𝑑

𝑑𝑡
∫ 𝜌𝑢𝑖𝑑𝐴
𝑏𝑜𝑢𝑛𝑑𝑎𝑒𝑑 𝑎𝑟𝑒𝑎

−∫ (𝜌𝑢𝑖𝑢𝑖 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗)
Γ0

𝑛𝑗𝑑𝑠 
(3-51) 

3.8.4 Direct forcing method 

Another method to calculate the force from the fluid to the structure is the direct 

forcing approach which was introduced initially by Mohd-Yusof 1997. In this method, 

after discretization, the force is added to the Navier-Stokes equations. Equation (3-52) 

describes the semi-discretisation of equation (3-1). Equation (3-52) is explicitly 

rearranged to find the force, f, with respect to the other parameters. Finally, in this 

equation 𝑢𝑛+1 is replaced by 𝑉𝑠𝑜𝑙𝑖𝑑𝑛+1 (equation (3-53)). In this equation, f represents 

the force of fluid on the immersed boundary (more details see Mohd-Yusof 1997 and 

Fadlun et al. 2000) 

un+1 − un

∆t
+ u. ∇u = −

1

ρ
∇P + ϑ∇2u + f 

(3-52) 



59 

 

f =
Vsolidn+1 − un

∆t
+ u. ∇u +

1

ρ
∇P − ϑ∇2u 

(3-53) 

3.9 Some related Bench mark studies   

The flow around a cylinder has been extensively studied both numerically and 

experimentally for several decades and several cases have been reviewed by Williamson 

1996 and Williamson & Govardhan 2004 and 2008. The flow problem, is sufficiently 

simple to be analysed in great detail while, it is still retains the physics of more complex 

flows. Separation of the boundary layer from the surface makes the flow around a 

cylinder an interesting benchmark for immersed boundary method. In addition, as the 

main goal for this research is to simulate FSI for cylindrical oil risers, a study of the flow 

around a 2D cylinder is very relevant. In this section some of the numerical and 

experimental results which describe the flow field around a moving/stationary cylinder 

are presented.  

Corbalan and de Souza 2010 suggested using an Eulerian method to predict the 

forcing term which is added to Navier-Stokes equations in the continuous force IB 

method. To validate and verify the method, four cases have been presented as bench 

marks; flow over a stationary cylinder, flow over cylinder with a force oscillation in the 

transverse direction to the flow, flow over a cylinder forced to oscillate in line with the 

flow and flow over a cylinder with a forced rotational movement. In all cases the flow 

was laminar and the amplitude of the oscillation was 0.4 and 0.2 times the cylinder 

diameter. The frequency of the oscillation was selected to be 0.6 and 1.05 times of 

frequency of the vortex shedding around a stationary cylinder. The lift and drag forces 

for the above cases have been reported and compared with were compared the literature. 

Choi et al. 2007 proposed a more general IB method that is valid for all Reynolds 

numbers and can be implemented for various grid topologies. The immersed boundary 

objects are represented by clouds of structured or unstructured nodes rendered as level 

sets in the computational domain which can be used to categorise the computational 

nodes as being in, near and outside of the flow domain. In addition, they have 

decomposed the velocity near the immersed boundary into a component normal to the IB 

and a tangential component. The tangential component near the boundary surface is 

calculated by using a power-law function of the wall normal distance. They also used 

general interpolation/reconstruction techniques to impose the immersed boundary. Five 
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different problems were simulated to verify their methods, including the flow over a 

stationary cylinder and over a cylinder oscillating in line with the flow direction.  

3.10 Discussion  

In a complete Fluid-Structure interaction simulation the main challenges are to 

address the complex boundary and large displacement of the immersed boundary. In the 

previous chapters the physics and importance of these kinds of study were presented. 

Also the general principles of the methodologies to tackle FSI problems are briefly 

described. In this chapter the main focus was to explain and compare Immersed 

boundary methods, their advantages and disadvantages. In additions, several technical 

issue related to this problem were addressed. 

It was briefly discussed, that IB methods were originally based on adding an extra 

forcing term to the governing equations in order to enforce the boundary conditions. The 

way in which this source term was defined was the main difference between various 

versions of the IB methods. 

As discussed earlier, in the discrete forcing approach the IB is imposed on the flow 

domain after the discretization of Navier-Stokes equations. this means that introducing 

the boundary conditions and forcing functions is not as straightforward as in the 

continuous forcing approach and depends on the discretization method and its 

implementation. Also, in the discrete forcing approach the definition of the pressure on 

the boundary is not as straightforward as in the continuous forcing approach and requires 

special treatment. The advantages of the discrete forcing approach are that the boundary 

conditions can be introduced sharply without any extra stability constraint, while the 

fluid and solid domains are clearly separated and the equations that describe the flow are 

only solved in the fluid domain.      

Cut-cell methods for fluid-structure interaction problems with moving boundaries 

take significant amount of computational time (Udaykumar et al. 1999, 2001), while the 

Ghost-Cell approach will create non-physical results when solving the fluid equations in 

the solid domain.   

Fadlun et al. 2000, studied the effect of three interpolation methods in the direct 

forcing approach for a few different problems. The simulation process has been repeated 

on various grids and the solution on the finest grid was assumed to be exact. It has been 

shown that in the “step geometry” (without interpolation) the error deceases slower than 

first order.  Weighting the forcing by the fraction of volume occupied by the structure 
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better results with a nearly first order behaviour were obtained. The results obtained with 

a flat boundary showed that the weighting methods underestimate the velocities so the 

results are not entirely satisfactory. The linear interpolation method was the best among 

these three and showed a second order accuracy. In the linear interpolation, the velocity 

profile is assumed to vary linearly very close to the wall and this requires a sufficiently 

fine grid near the immersed boundary. This issue could be improved by using a local 

refinement with embedded grids (Kravchenko et al. 1996). However, the benefit and 

costs of this kind of improvement should be compared with the boundary conforming 

mesh method. Also Fadlun et al. 2000 claimed that interpolation methods have the same 

effect on both stationary and prescribed moving boundary problem simulations.   

Methods for calculating the hydrodynamical forces from the fluid on the structure 

were explained as starting points to study the coupling between the fluid and the 

structure in an FSI simulation. Some of the coupling strategies introduced were used as 

part of solutions in the literature.  

In the final section, some important concepts like fictitious mass and treatment of 

pressure at immersed boundaries are discussed briefly. Also some of the studies of flow 

around a cylinder are introduced. This problem will be used as bench mark later in the 

thesis. 

In the next chapter the immersed boundary method based on the 

interpolation/reconstruction methodology is explained. The focus of the Chapter will be 

to explain the details of the procedure and the programming in order to address the key 

points that have been discussed thus far.  



62 

 

 

 

 

Chapter 4. Methodology 

 

Simulating the flow around a moving boundary has been the subject of study during 

the recent decades. The moving boundary is one of the main issues that need to be 

solved in order to simulate the flow around a flexible structure. The two main techniques 

to tackle this problem are: moving grid methods such as the Arbitrary Lagrangian 

Eulerian (ALE) approach (Donea et al. 1982) and the fixed grid methods, such as the 

Immersed Boundary (IB) method (Peskin 1972). 

 ALE methods employ a grid that adapts to, moves and deforms with the moving 

boundary. Such methods have been applied to study the transient aero-elastic response 

of airfoils (Farhat et al. 1998), the FSI problem of a shock absorber [Le and Mouro 

2001], the blood flow through compliant aortas (Fernandez & Moubachir 2005), etc. A 

significant limitation of the ALE approach, however, stems from the fact that the mesh 

conforms to the moving boundary and, as such, needs to be constantly displaced and 

deformed following the motion of the boundary. The mesh moving step could be quite 

challenging and expensive for complicated 3D problems. This situation is further 

exacerbated in problems involving large structural displacements for which frequent 

remeshing might be the only feasible approach to ensure a well-conditioned mesh at 

each time step of the simulation. Because of this inherent limitation, the ALE approach 

is only applicable to FSI problems involving relatively small structural displacements. 

 In fixed grid approaches, on the other hand, the entire computational domain 

including both the fluid and structure domains is discretized with a single, fixed, non-

boundary conforming grid system. In this case most commonly a Cartesian mesh is used 

as the fixed background mesh. The effect of a moving immersed boundary is accounted 

for by adding forcing terms to the governing equations of fluid motion so that the 

presence of a no-slip boundary at the location of the interface can be felt by the 

surrounding flow. Because of the fixed grid arrangement, such methods are inherently 

applicable to FSI problems involving arbitrarily large structural displacements 

(Borazjani et al. 2008). 
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The governing equations for a conventional conforming structural grid are 

discretised in a curvilinear coordinate system to simulate the flow over a complex 

geometry. The main advantages of this approach are that imposition of boundary 

conditions is greatly simplified, and furthermore, the solver can be easily designed to 

maintain adequate accuracy and conservation property.  However, depending on the 

geometrical complexity of the solid boundaries, grid generation and grid quality can be 

major issues. A multi-block approach may help to divide the complex geometry into 

simpler geometries. Furthermore, transformation of the governing equations to the 

curvilinear coordinate system results in a complex system of equations and this 

complexity can adversely impact the stability, convergence and operation of the solver. 

Imposition of a non-grid-aligned solid boundary in a Cartesian grid method can be 

complicated. The main challenge is to construct a boundary treatment which does not 

adversely impact the accuracy and conservation properties of the underlying numerical 

solver. Especially, for viscous flows, an inadequate resolution of the boundary layers 

which form on the immersed boundaries can reduce the accuracy of the numerical 

solution (Ye et al. 1999). Immersed boundary methods have also been used successfully 

for viscous flow computations. However, in most cases (continuous forcing approach) 

the immersed boundary is distributed across a few cell-widths. This is mainly due to 

problems associated with representing a point force on a finite size mesh. Similarly, in 

the so-called volume-of-fluid (VOF) method (Scardovelli and Zaleski 1999), the process of 

interface reconstruction leads to a non-smooth interface. In contrast to these approaches, 

in (indirect forcing approach) Cartesian grid methods the boundary is represented by a 

sharp interface and this has advantages for high Reynolds number flows as well as flows 

with strong two-way coupling between the flow and the boundary motion. 

In this chapter the implementation of an interpolation/reconstruction immersed 

boundary method (which is a Cartesian grid approach) to simulate flow around a flexible 

boundary is presented. It is supposed that the flow is two dimensional with low 

Reynolds number. A fractional step method is used to simplify the governing equations. 

A finite volume method with staggered variable arrangement in uniform Cartesian mesh 

has been used to discretize the Navier-Stokes equations.  

The governing equations, discretisation, computational grid, interpolation procedure 

and algorithm of the code are explained in detail, together with the calculation of the lift 

and drag coefficients.  In the immersed boundary method, the fluid grids in the vicinity 

of the structure’s boundary which have at least one neighbour in the structural node 
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should be identified and this depends on the type of discretization used for the governing 

fluid equation. Therefore, in the following section a brief description of the derivation of 

the Navier-Stokes equations and its discretisation procedure is presented. Also, Navier-

Stokes discretised equations are used later in the calculation of the pressure boundary 

condition for the pressure Poisson equation in the Chapter 7. 

4.1 Governing equation 

The derivation of the Navier–Stokes equations begins with an application of 

Newton's second law and conservation of momentum is enforced for an arbitrary portion 

of the fluid. In an inertial frame of reference, the general form of the equations of fluid 

motion is (Batchelor 1967): 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = −∇𝑝 + ∇ ∙ S + 𝑓 

(4-1) 

Where 𝑉 is the flow velocity,  𝜌 is the fluid density, p is the pressure, S is the stress 

tensor and f represents body forces enforced on the fluid to simulate boundary 

conditions. The above relation represents conservation of momentum in a fluid and is an 

application of Newton’s second law to a continuum.  In fact, this equation is applicable 

to any non-relativistic continuum and is known as the Cauchy momentum equation 

(Batchelor 1967). 

The effect of stress in the fluid is represented by the ∇𝑝  and ∇. S terms; these are 

gradients of surface forces, similar to the definition of stresses in a solid. ∇𝑝 is called the 

pressure gradient and arises from the isotropic part of the stress tensor. This part 

corresponds to the normal stress that is present in almost all situations. The anisotropic 

part of the stress tensor gives rise to ∇. S , which conventionally describes the viscous 

forces. For incompressible flows, there is only a shear effect and hence, T is the 

deviatoric stress tensor, so that the stress tensor σ is defined as (Batchelor 1967):  

𝜎 = −𝑝𝐼 + 𝑆        (4-2) 

The stress terms p and T are unknown, so the general form of the equations of 

motion is not applicable to solve problems.  A force model is needed in the equations of 

motion to relate these stresses to the fluid motion (Feynman et al. 1963). few 

assumptions on the specific behaviour of a fluid are applied  in order to specify the 

stresses in terms of other flow variables, such as velocity and density. Batchelor 1967 
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explained the assumptions on the deviatoric stress tensor S which is needed to obtain the 

Navier-Stokes equations. 

Equation (4-3) presents the governing equation for an unsteady, incompressible 

fluid flow in vector form (Navier–Stokes equation). 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = −∇𝑝 + 𝜇∇2𝑉 + 𝑓       

(4-3) 

In the above equation 
𝜕𝑉

𝜕𝑡
 is the unsteady acceleration,  𝑉 ∙ ∇𝑉 is convection 

acceleration, −∇𝑝 is the pressure gradient. 𝜇∇2𝑉 implies that viscosity operates by 

diffusion of momentum of a Newtonian fluid, and  f is a body force (force per unit 

volume), such as gravity or centrifugal force. 

Note that only the convective terms are nonlinear for an incompressible Newtonian 

flow. The convective acceleration is an acceleration caused by a (possibly steady) 

change in velocity over position.  

The incompressible Navier-stokes equations in a 2D Cartesian domain is defined as:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) + 𝜌𝑔𝑥 

(4-4) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
) + 𝜌𝑔𝑦 

(4-5) 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0          

(4-6) 

4.2 Non-dimensional governing equation 

For reasons of simplicity and easiness of generalization of the solution algorithm 

the non-dimensional form of the Navier-Stokes equation is used. When the Navier 

Stokes equation is presented using primitive variables, the following definitions are used 

to obtain the non-dimensional equations. 

𝑡∗ =
𝑡 𝑉

𝐷
,     𝑥∗ =

𝑥

𝐷
,     𝑦∗ =

𝑦

𝐷
,     𝑝∗ =

𝑃

𝜌𝑉2
,      𝑢∗ =

𝑢

𝑉
 ,     𝑣∗ =

𝑣

𝑉
,    

   𝑅𝑒 =
𝑉𝐷

𝜈
,   𝑔∗ =

𝑔𝐷

𝜌𝑉2
 

 

(4-7)  

 

The general form of the non-dimensional Navier-Stokes equation is given in 

equation (4-8). The external force used here is the gravity, 𝑔∗, though other volume 

forces might also be added.   
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𝜕𝑉∗

𝜕𝑡∗
+ 𝑉∗ ∙ ∇∗𝑉∗ = −∇∗𝑝∗ +

1

𝑅𝑒
∇∗2𝑉∗  + 𝑔∗  

(4-8) 

In this equation the ‘*’ identifies the non-dimensional variables. It is omitted from 

the equations later in the text. 

4.3  Discretization method 

To ensure the conservation of momentum by the discretization of convection, the 

convective term in the momentum equation is written in conservative form before 

discretizing. As shown in equations (4-9) and (4-10), this is equivalent to the non-

conservative from.  

𝛻 ∙ 𝑉𝑉 = 𝑉 ∙ 𝛻𝑉 (4-9) 

𝜕𝑢2

𝜕𝑥
+
𝜕𝑣𝑢

𝜕𝑦
= 2𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑢 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)

= 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
     

(4-10) 

 

Applying the same notation in the y direction, the non-dimensional Navier-Stokes 

equations become: 

∂u

∂t
+
∂u2

∂x
+
∂vu

∂y
= −

∂p

∂x
+ 1/Re (

∂2u

∂x2
+
∂2u

∂y2
) + gx  

(4-11) 

∂v

∂t
+
∂vu

∂x
+
∂v2

∂y
= −

∂p

∂y
+ 1/Re(

∂2v

∂x2
+
∂2v

∂y2
) + gy  

(4-12) 

 

4.3.1 Staggered arrangement 

The first issue is to identify the points in the domain at which the values of the 

unknown dependent variables have to be computed. The obvious choice is to store all 

the variables at the centre of the control volumes; such an arrangement is called a 

collocated variable arrangement. Since many of the terms in each of the equations are 

essentially identical, the number of coefficients that must be computed and stored is 

minimized and the programming is simplified by this choice.  However, there is no need 

for all the variables to share the same grid; a different arrangement may turn out to be 

advantageous.  In Cartesian coordinate, the staggered arrangement introduced by Harlow 

and Welsh 1965 offers some advantages over the collocated arrangement. Several terms 

that require interpolation with the collocated arrangement, can be calculated (to a 

second-order approximation) without interpolation. 



67 

 

Typical staggered control volumes are shown in Figure 4-1. The control volume for 

the ux and uy are displaced with respect to the control volume for the continuity equation. 

Both the pressure and diffusion terms are naturally approximated by central difference 

approximations without interpolation, since the pressure nodes lie at CV face centres and 

the velocity derivatives needed for the diffusive terms are readily computed at the CV 

faces. In addition, the mass fluxes in the continuity equation at the faces of a pressure 

CV can be directly calculated.   

The biggest advantage of the staggered arrangement is the strong coupling between 

the velocities and the pressure, which helps to avoid certain convergence problems and a 

decoupling of the pressure and velocity fields. 

 

Figure 4-1: Control volumes for a staggered grid: for mass conservation and scalar 

quantities (left), for x-momentum (centre) and for y-momentum (right) 

 

4.3.2 Discretization of the momentum equation 

The cells are numbered using indices i and j which identify cell centre positions 

along the horizontal and vertical directions, respectively. Cell boundary positions are 

labelled with half-integer values for the indices. According to Figure 4-2 each parts of 

the x-momentum equation is discretized about the point (i+1/2,j) as follows: 

∂u2

∂x
=

[
1
2 (ui+3

2
,j
+ u

i+
1
2
,j
)]
2

− [
1
2 (ui+1

2
,j
+ u

i−
1
2
,j
)]
2

(xi+1,j − xi,j)
  𝑜𝑟 

(4-13) 

 

∂u2

∂x
=
(ui+1,j)

2
− (ui,j)

2

2(xi+1,j − xi,j)
 where ui,j =

1

2
(𝑢

𝑖−
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗
)  

(4-14) 

 

∂uv

∂y
=

1
2
(u

i+
1
2
,j+1

+ u
i+
1
2
,j
) [1

2
(v

i+1,j+
1
2
+ v

i,j+
1
2
)] − 1

2
(u

i+
1
2
,j−1

+ u
i+
1
2
,j
) [1

2
(v

i+1,j−
1
2
+ v

i,j−
1
2
)]

(y
i+
1
2
,j+
1
2
− y

i+
1
2
,j−
1
2
)

 

         (4-15)  
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𝑂𝑟 
𝜕𝑢𝑣

𝜕𝑦
=

(𝑢
𝑖+
1
2
,𝑗−

1
2
) (𝑣

𝑖+
1
2
,𝑗−

1
2
) − (𝑢

𝑖+
1
2
,𝑗+

1
2
) (𝑣

𝑖+
1
2
,𝑗+

1
2
)

(𝑦
𝑖+
1
2
,𝑗+

1
2
− 𝑦

𝑖+
1
2
,𝑗−

1
2
)

    

(4-16) 

 

Where  𝑢
𝑖+

1

2
,𝑗+

1

2
 = 

1

2
(𝑢

𝑖+
1

2
,𝑗+1

+ 𝑢
𝑖+

1

2
,𝑗
) and   𝑣

𝑖+
1

2
,𝑗+

1

2

=
1

2
(𝑣

𝑖+1,𝑗+
1

2

+ 𝑣
𝑖,𝑗+

1

2

)     (4-17) 

 

𝜕𝑝

𝜕𝑥
=

𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)
  

(4-18) 

 

𝜕2𝑢

𝜕𝑥2
=

𝑢
𝑖+
3
2
,𝑗
− 2𝑢

𝑖+
1
2
,𝑗
+ 𝑢

𝑖−
1
2
,𝑗

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)
2     

(4-19) 

 

𝜕2𝑢

𝜕𝑦2
=

𝑢
𝑖+
1
2
,𝑗+1

− 2𝑢
𝑖+
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗−1

(𝑦𝑖+1
2
,𝑗+1 − 𝑦𝑖+1

2
,𝑗)

2     
(4-20) 

 

 

Figure 4-2: staggered arrangement used for discretization 

 

In addition to the space index subscripts, there is a superscript for the number of 

time cycles. For instant 𝑢
𝑖+1

2
,𝑗

(𝑛+1)
 shows the horizontal velocity at the time t = (n + 1)𝛿𝑡, 

in which the 𝛿𝑡 is the time increment per cycle. When there is no superscript, it is 

correspond to the value of the parameter at time t = n𝜕𝑡. 

𝜕𝑢

𝜕𝑡
=

𝑢
𝑖+1

2
,𝑗

𝑛+1

 
− 𝑢

𝑖+1
2
,𝑗

𝑛

𝜕𝑡
          

(4-21) 
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4.3.3 Fractional step method 

To solve the Navier-Stokes equations a splitting method is used. In the first part of 

the solution an intermediate velocity is calculated by updating the velocity in time by 

taking into account only convection and diffusion terms. The results of this stage are 

updated by enforcing the Poisson equation for the pressure.    

Equations (4-22) and ((4-24) show how the convective and diffusive term is used to 

calculated intermediate velocity �̂� and 𝑣  in x and y direction respectively. 

  

�̂�
𝒊+𝟏

𝟐
,𝒋

𝒏+𝟏

 
–𝒖

𝒊+𝟏
𝟐
,𝒋

𝒏

𝝏𝒕
=
(𝐮𝐢,𝐣)

𝟐
− (𝐮𝐢+𝟏,𝐣)

𝟐

(𝐱𝐢,𝐣 − 𝐱𝐢+𝟏,𝐣)

+

(𝒖
𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐
) − (𝒖

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

(𝒚
𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐

− 𝒚
𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

+ 𝝂(

𝒖
𝒊+
𝟑
𝟐
,𝒋
− 𝟐𝒖

𝒊+
𝟏
𝟐
,𝒋
+ 𝒖

𝒊−
𝟏
𝟐
,𝒋

(𝒙𝒊+𝟏,𝒋 − 𝒙𝒊,𝒋)
𝟐

+

𝒖
𝒊+
𝟏
𝟐
,𝒋+𝟏

− 𝟐𝒖
𝒊+
𝟏
𝟐
,𝒋
+ 𝒖

𝒊+
𝟏
𝟐
,𝒋−𝟏

(𝒚
𝒊+𝟏

𝟐
,𝒋+𝟏

− 𝒚
𝒊+𝟏

𝟐
,𝒋
)
𝟐 )+𝒈𝒙                   

 

(4-22) 

 

�̂�
𝒊,𝒋+𝟏

𝟐

𝒏+𝟏

 
–𝒗

𝒊,𝒋+𝟏
𝟐

𝒏

𝝏𝒕
=

(𝒖
𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐
) − (𝒖

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

(𝒙
𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐

− 𝒙
𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

+
(𝐯𝐢,𝐣)

𝟐
− (𝐯𝐢,𝐣+𝟏)

𝟐

(𝐲𝐢,𝐣 − 𝐲𝐢,𝐣+𝟏)

+ 𝝂(

𝒗
𝒊+𝟏,𝒋+

𝟏
𝟐

− 𝟐𝒗
𝒊,𝒋+

𝟏
𝟐

+ 𝒗
𝒊−𝟏,𝒋+

𝟏
𝟐

(𝒙𝒊+𝟏,𝒋 − 𝒙𝒊,𝒋)
𝟐

+

𝒗
𝒊,𝒋+

𝟑
𝟐

− 𝟐𝒗
𝒊,𝒋+

𝟏
𝟐
,
+ 𝒗

𝒊,𝒋−
𝟏
𝟐

(𝒚
𝒊+𝟏

𝟐
,𝒋+𝟏

− 𝒚
𝒊+𝟏

𝟐
,𝒋
)
𝟐 )+ 𝒈𝒚    

(4-23) 

 

 

 

For the velocities values which are not centred at points indicated in the mesh 

diagram, an average of adjacent values is applied. For example: 
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𝑢i,j =
1

2
(𝑢

𝑖−
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗
)            and            𝑣𝑖,𝑗 =

1

2
(𝑣

𝑖,𝑗−
1
2
+ 𝑣

𝑖,𝑗+
1
2
)  

(4-24) 

 

𝑢
𝑖+

1

2
,𝑗+

1

2
 = 

1

2
(𝑢

𝑖+
1

2
,𝑗+1

+ 𝑢
𝑖+

1

2
,𝑗
)  and     𝑣

𝑖+
1

2
,𝑗+

1

2

=
1

2
(𝑣

𝑖+1,𝑗+
1

2

+ 𝑣
𝑖,𝑗+

1

2

)  (4-25) 

 

In this research  equations (4-22) and (4-23) are solved by using 3
rd

 order Range-

Kutta method to calculate the intermediate velocities.  

 In the second stage of the fractional step method the intermediate velocities from 

Equations (4-22) and (4-23) are updated by adding the effect of pressure. 

𝑢
𝑖+1

2
,𝑗

𝑛+1

 
– �̂�

𝑖+1
2
,𝑗

𝑛

𝜕𝑡
=
𝑝𝑖+1 − 𝑝𝑖
𝑥𝑖+1 − 𝑥𝑖

 

(4-26) 

 

𝑣
𝑖+1

2
,𝑗

𝑛+1

 
–𝑣

𝑖+1
2
,𝑗

𝑛

𝜕𝑡
=
𝑝𝑗+1 − 𝑝𝑗

𝑥𝑗+1 − 𝑥𝑗
 

(4-27) 

 

   The calculation of pressure equation is discussed in the next part.  

4.3.4  Calculation of pressure 

The solution of the incompressible Navier-Stokes equations is complicated by the 

lack of an independent equation for the pressure, whose gradient contributes to 

momentum equations. One way to overcome this issue is to construct an equation for the 

pressure field to guarantee satisfaction of the continuity equation (Ferziger and Peric 

2002).  

The form of the continuity equation suggests that if the divergence of the 

momentum equation is taken, then the continuity equation could be used to simplify the 

resulting terms, which leads to a Poisson equation for the pressure. The procedure is as 

follow: 

Taking the divergence from the general Cartesian form of Navier-Stokes (equation 

(4-3)) or from the non-dimensional form (equation (4-8)) will lead to: 

∇ ∙ (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = ∇ ∙ (−∇𝑃 +

1

𝑅𝑒
∇2𝑉 + g) 

(4-28) 

 

While in the indices form the equation will look like as: 

𝜕

𝜕𝑥𝑖
(
𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑖
(−

𝜕𝑝

𝜕𝑥𝑖
+ 1/𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝑔𝑥𝑖) 

 

(4-29) 

 

Transferring the divergence of the pressure gradient to the left side of the equation: 

𝜕

𝜕𝑥𝑖
(
𝜕𝑝

𝜕𝑥𝑖
) = −

𝜕

𝜕𝑥𝑖
(
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
− 1/𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

− 𝑔𝑥𝑖 +
𝜕𝑢𝑖
𝜕𝑡
) 

(4-30) 
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It is possible to simplify the above equation more, as the viscous and unsteady 

terms disappear by applying the continuity equation: 

∂

∂xi
(
∂p

∂xi
) = −

∂

∂xi
(
∂uiuj

∂xj
) 

(4-31) 

 

In some research even the temporal and viscous terms are not omitted depending on 

the accuracy of the results and in what order the continuity equation is forced in previous 

time steps. The above pressure equation (equation (4-31)) can be solved by one of the 

numerical methods for elliptic equations. In the pressure equation, the right hand side is 

a sum of the derivatives of terms in the momentum equations; these terms must be 

approximated in the same way as the momentum equation. To maintain the consistency 

among the approximation used, it is best to derive the pressure equation from the 

discresized momentum equation.  From equations (4-28) and (4-29) one can obtain: 

𝐷𝑖,𝑗
𝑛+1

 
–𝐷𝑖,𝑗

𝑛

𝜕𝑡
= −𝑄𝑖,𝑗 −

𝑝𝑖+1,𝑗 + 𝑝𝑖−1,𝑗 − 2𝑝𝑖,𝑗

𝜕𝑥2
−
𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗−1 − 2𝑝𝑖,𝑗

𝜕𝑦2

+ 1/𝑅𝑒 (
𝐷𝑖+1,𝑗 +𝐷𝑖−1,𝑗 − 2𝐷𝑖,𝑗

𝜕𝑥2
−
𝐷𝑖,𝑗+1 + 𝐷𝑖,𝑗−1 − 2𝐷𝑖,𝑗

𝜕𝑦2
) 

(4-32) 

 

 𝐷𝑖,𝑗 =
𝑢
𝑖+
1
2
,𝑗
–𝑢

𝑖−
1
2
,𝑗

𝜕𝑥
+
𝑣
𝑖,𝑗+

1
2

–𝑣
𝑖,𝑗+

1
2

𝜕𝑦
 

 

(4-33) 

 

𝑄𝑖,𝑗 =
(𝑢𝑖+1,𝑗)

2
+ (𝑢𝑖−1,𝑗)

2
− 2(𝑢𝑖,𝑗)

2

𝜕𝑥2
−
(𝑣𝑖+1,𝑗)

2
+ (𝑣𝑖−1,𝑗)

2
− 2(𝑣𝑖,𝑗)

2

𝜕𝑦2

+
2

𝜕𝑥 𝜕𝑦
[(𝑢

𝑖+
1
2
,𝑗+

1
2
) (𝑣

𝑖+
1
2
,𝑗+

1
2
) + (𝑢

𝑖−
1
2
,𝑗−

1
2
) (𝑣

𝑖−
1
2
,𝑗−

1
2
)

− (𝑢
𝑖+
1
2
,𝑗−

1
2
)(𝑣

𝑖+
1
2
,𝑗−

1
2
) − (𝑢

𝑖−
1
2
,𝑗+

1
2
) (𝑣

𝑖−
1
2
,𝑗+

1
2
)]   

 

(4-34) 

 

The procedure for determining the pressure is based on the requirement that 𝐷𝑖,𝑗
𝑛+1 

vanishes for every cell at the end of the time cycle. This assumption leads to the 

equation for the pressure: 

𝑝𝑖+1,𝑗 + 𝑝𝑖−1,𝑗 − 2𝑝𝑖,𝑗

𝜕𝑥2
−
𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗−1 − 2𝑝𝑖,𝑗

𝜕𝑦2
= −𝑅𝑖,𝑗         

(4-35) 

 

Where 𝑅𝑖,𝑗 will be: 

𝑅𝑖,𝑗 = 𝑄𝑖,𝑗 −
𝐷𝑖,𝑗

𝜕𝑡
− 𝜈 (

𝐷𝑖+1,𝑗 − 𝐷𝑖−1,𝑗 − 2𝐷𝑖,𝑗

𝜕𝑥2
−
𝐷𝑖,𝑗+1 − 𝐷𝑖,𝑗−1 − 2𝐷𝑖,𝑗

𝜕𝑦2
)  

 

(4-36) 
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In principal, it is possible to use 𝑄𝑖,𝑗 instead of 𝑅𝑖,𝑗 in the equation (4-35), since 𝐷𝑖,𝑗 

should be zero in previous time steps. However, in practice the use of 𝑅𝑖,𝑗 is desirable so 

that equation (4-35) does not have to be solved extremely accurately in order to keep the 

accumulative error in the divergence to a sufficiently low level.  Harlow and Welch 

1965 reported that with a very stringent convergence requirement, the cumulative results 

of calculation are independent of using 𝐷𝑖,𝑗 or 𝑅𝑖,𝑗 in equation (4-35). 

Equations equations (4-22) to (4-27), (4-35) and (4-36) are the main equations used 

in performing the calculation of the flow parameters. 𝑅𝑖,𝑗 is computed for every cell, 

using the velocities available at the beginning of the cycle using equations (4-26) and 

(4-27). Secondly  𝑝𝑖,𝑗 is calculated using equation (4-35). Finally the intermediate 

velocities that are calculated from equations (4-22) and (4-23) are updated by inserting 

the new pressure in equations (4-26) and (4-27). The process will be continued in time.  

 

4.3.5 Mesh generation 

One of the advantages of using immersed boundary methods is the use of simple 

Cartesian mesh generation. In this approach regardless of the location of boundary a 

structured grid is created to cover the entire computational domain, including possible 

solid objects inserted in the flow domain. In this research staggered grid arrangement is 

used. In Figure 4-3, the computational grid is shown by the black lines with coordinates 

xcoord(i) and ycoord(j) in x and y direction, respectively. The blue lines are passing 

through the centre of the computational cells. These coordinates are stored in the xcrd(i) 

and ycrd(j) arrays in x and y direction respectively. Also, as the staggered variable 

arrangement is used, in order to define the boundary conditions it was necessary to 

define the blue line beyond the computational grid, effectively introducing “ghost” or 

virtual grid points. The calculation however is just limited to the main area. Later in 

Chapter 5, a special mesh is used which is finer around the solid boundary which 

becomes coarser towards the outside in order to limit the number of mesh points. 
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Figure 4-3 : Uniform staggered mesh coordinate 

 

4.3.6 Location of velocities and pressure   

In the collocated arrangement the pressure and velocities are defined at the centre of 

the grid cells. However, in the staggered arrangement the pressures and the velocities are 

not defined at the same locations. According to the Figure 4-4 the pressures are defined 

at the cell centres where the lines xcrd(i) and ycrd(j) are intersecting. On the other hand 

the velocity in x direction, u(i,j) is introduced at the intersections of the xcoord(i) and 

ycrd(j) lines and the velocity in y directions is defined at the intersections of ycoord(j) 

and xcrd(i). 
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Figure 4-4: velocities and pressure positions in a staggered arrangement 

4.4  Boundary conditions 

As the staggered arrangement has been used for the discretization of the governing 

equations, the definition of the boundary condition should match this arrangement. For 

the inlet, outlet, top and bottom, uniform velocity, convective outflow and symmetry 

boundary conditions for the velocity have been used respectively. According to the IB 

procedure when the solid boundary is not aligned with the background grid the 

definition of the no-slip condition at the immersed boundary (here the cylinder wall) 

becomes cumbersome. The definition of the boundary conditions are detailed in the 

following sections. 

4.4.1  Inlet 

At the inlet, it is straight forward to introduce the velocity in the x direction, u, as 

this velocity is defined on the cell boundary, xcoord(0), which is the first line of the 

computational grid. According to the Figure 4-5, u(0,1), u(0,2) … and u(0,ny) (or 

generally u(0,j)  j=1,2…ny) has been defined as the inlet velocity in x direction (green 

arrows in Figure 4-5). However the inlet velocity in the y direction, v, cannot be defined 

directly due to the staggered arrangement of the variables. To resolve the issue, the 

velocities v(0,j) and v(1,j) are defined in a way that the average of these two velocities, 

corresponds to the actual v-velocity at the inlet. (v(0,0)+v(1,0))/2 or (v(0,1)+v(1,1))/2 
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…. And (v(0,ny)+v(1,ny))/2. For the special case of the zero inlet v-velocity v(0,j)= - 

v(1,j) is defined (the red arrows in Figure 4-5). 

 

Figure 4-5 Staggered arrangement – bold lines are cell boundaries which velocities are 

calculated, and pressure are calculated on intersection of light lines.  Velocities in y 

direction need to be interpolated for inlet. Velocities in x direction are specified directly on 

the boundaries.  

4.4.2  Outlet 

As the velocities and the pressure are not known at the exit and the computational 

domain must be finite, according to the Orlanski 1976 the convective outflow boundary 

conditions are applied for each velocity flux component. The location of the outflow 

boundary must be sufficiently downstream of the immersed object and the recirculation 

from the IB should not be present and the streamlines should be parallel. Also at the 

outflow boundary: 

𝜕𝑢

𝜕𝑦
=
𝜕𝑣

𝜕𝑦
= 0   and  

𝜕𝑝

𝜕𝑛
=  0 

(4-37) 

 

Equations (4-38) and (4-39) present a simplified version of the unsteady convective 

boundary conditions in the staggered arrangement. In these equations, 𝑈𝑐𝑜𝑛
∗  is the 

convection velocity at the outlet and it is assumed to be a constant value. In Figure 4-5 

the purple arrows and orange arrows are the u and v velocities that are used to 

implement the outflow boundary conditions in x and y directions respectively.  
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(𝑢(𝑛𝑥,𝑗)
𝑛+1 − 𝑢(𝑛𝑥,𝑗)

𝑛 )

𝑑𝑡
= 𝑈𝑐𝑜𝑛

∗
(𝑢(𝑛𝑥,𝑗)

𝑛 − 𝑢(𝑛𝑥−1,𝑗)
𝑛 )

𝑑𝑥
 

(4-38) 

 

(𝑣(𝑛𝑥+1,𝑗)
𝑛+1 − 𝑣(𝑛𝑥+1,𝑗)

𝑛 )

𝑑𝑡
= 𝑈𝑐𝑜𝑛

∗
(𝑣(𝑛𝑥+1,𝑗)

𝑛 − 𝑣(𝑛𝑥,𝑗)
𝑛 )

𝑑𝑥
 

(4-39) 

 

4.4.3 Symmetry boundary condition 

For the top and the bottom boundaries the symmetry condition has been used. ie. no 

flows passes across the boundaries.  This implies that the normal velocities are set to 

zero and the normal gradient of the u velocity is assumed to be zero as well. In  Figure 

4-5, the blue arrows represent the velocities in the y direction which are set to zero at the 

boundary (Dirichelt boundary conditions) and the yellow arrows define the location of 

the Neumann boundary condition for the velocity in x direction. Equations define the 

symmetry boundary conditions that are applied for the staggered arrangement.   

       v𝑖,𝑛𝑦 = 0      𝑢𝑖,𝑛𝑦+1 = 𝑢𝑖,𝑛𝑦    
(4-40) 

v𝑖,0 = 0           𝑢𝑖,0 = 𝑢𝑖,1 (4-41) 

 

4.4.4 Solid boundary not conforming mesh (immersed boundary) 

It has been mentioned earlier that the use of Cartesian coordinates may result in a 

mesh that is not aligned with the solid boundaries. Solid boundaries could cut the grid 

cells which complicates the implementation of the boundary conditions. For instance, it 

is not always possible to apply no slip boundary conditions directly at the walls of a 

solid. To resolve this issue different methods are used to introduce a solid boundary to 

the fluid flow. This notion is the main subject of the immersed boundary methods and 

has been addressed in the chapter 3. 

In this part, the procedure to define the boundary conditions around the non-

conforming solid boundaries is briefly discussed. Firstly, a Cartesian mesh is defined for 

the whole of the fluid domain regardless of the location of an immersed solid, see Figure 

4-6 left.  

The presence of the solid boundary is introduced to the flow solver by using an 

interpolation immersed boundary method. As shown in Figure 4-6 right, to update each 

velocity component in the CFD solver, 8 neighbouring velocities located around that 

specific velocity are needed for the discretization of the Navier-Stokes equations on a 

staggered grid. 
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Figure 4-6 Left, a part of domain with not conforming Cartesian mesh, regardless of 

solid existence. Right, A specific velocity with its 8 velocities around necessary for its 

calculation.  

 

In this figure, it is clearly shown that two out of eight neighbouring velocities are 

located inside the solid. The flow solver cannot update this specific velocity 

automatically and specific treatment is needed. In these cases the governing equations 

are replaced with interpolation equations that use velocities at the wall of the solid and 

neighbouring velocities located in the flow field.  

Figure 4-7, shows all the velocities in the x and y directions (u and v components) 

which need to be interpolated inside the fluid domain. All of these velocities cannot be 

calculated automatically by the governing equation as at least one out of the eight 

neighbouring velocities components are located inside the solid. 

 

 

Figure 4-7: A 2D Cartesian grid with staggered arrangement, left: u velocities needed 

to be interpolated near immersed boundary. Right: v velocities needed to be interpolated 

near the immersed boundary.  
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Interpolation equations are formulated for all “boundary” velocities in the flow 

domain that require interpolation.  

Interpolation is implemented in the direction perpendicular to the solid boundary, 

unlike some of interpolation methods presented in the literature. To simplify the 

interpolation procedure, the solid boundary is locally assumed to be a circular cylinder. 

Perpendicular lines cut the cylinder on one side and grid lines on the other side. Figure 

4-8, shows two possible interpolation scenarios to interpolate ui,j . In Figure 4-8, the 

velocity, u2, is interpolated using ui-1,j and ui-1,j+1. Then ui,j is interpolated using u1 (on the 

cylinder wall) and u2. This procedure will be repeated for all the u and v boundary 

velocities that are presented on Figure 4-7.  

 

 
 

Figure 4-8: interpolation method for the velocity near the boundary in two different 

scenarios. ui,j has been interpolated between u1=0 on the boundary and u2. 

 

It is assumed that the normal pressure gradient is nearly zero (
𝜕𝑝

𝜕𝑛
≈ 0) near the 

stationary (or moving with constant velocity) immersed boundary (if the IB has 

acceleration, 
𝜕𝑝

𝜕𝑛
≠ 0 ) therefore pressure is not extrapolated to the immersed boundary. 

On the other hand, the pressure of 4 locations is used in the staggered arrangement to 

update the pressure inside the fluid governing equation in CFD solver (Pressure Poisson 

equation). As shown in Figure 4-9 left, the value of Pi,j depend on Pi,j+1, Pi,j-1, Pi+1,j and Pi-

1,j. If any of these four points were inside of the solid boundary, they are assumed to be 

the same value as Pi,j (
𝜕𝑝

𝜕𝑛
= 0). In the case of the moving IB (with acceleration) the 

pressure gradient is calculated by projecting the differential form of the momentum 

equation perpendicular to the boundary (see chapter 7). 
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In Figure 4-9 right, shaded cells are the cells in which the pressures are updated 

using governing equations.  On the Figure 4-9 left, although pressures on the shaded 

areas are updated using governing equations, they have a neighbour of which their 

pressure value is not explicitly updated. 

 

 

Figure 4-9: Right, shaded area shows the cells in which the pressure is updated in the 

CFD solver. Left, cells with at least one immersed boundary pressure points is shown.  

 

In the next section the algorithm of the code is explained briefly and the flow chart 

of the program is presented.  

4.5  Solving procedure 

The solution algorithm consists of four main parts. 

 At the beginning a simple Cartesian grid is created as a computational domain. 

Three attributes, umask, vmask and pmask are defined for u and v velocities and 

pressure respectively at entire domain. These attributes are zero for the cells of 

the domain that are covered by the immersed solid (they are not directly updated 

by governing equations). The interface cells which were not updated by 

governing equations are categorised and the interpolation coefficients for the 

velocity component are calculated (in the “Ingrid “part of the following 

flowchart).  Also, the initial condition and constant parameters are defined at this 

stage (in the “init” part of the algorithm). The boundary conditions are 

implemented in the “bounds” algorithm. The interpolation formulas are applied 

to the governing equations as boundary conditions. In addition the discretised 

equations matrix is decomposed using an incomplete LU decomposition 

algorithm in the “inisol” section of the program.  
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Figure 4-10: flowchart of the flow solver used to apply interpolation method 
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 In the second stage, a Runge-Kutta algorithm is used to calculate the 

intermediate velocity components by implementing the convective and diffusive 

part of the Navier-Stokes equations and updated boundary conditions.  

 In the third stage, using the intermediate velocities the pressure Poisson equation 

is solved in the ’solve’ subroutine. This algorithm is the most time consuming 

part of the codes and is repeated to find a converged solution for the pressure (to 

a user define range) at each time step (or at least 5000 times). 

 In the final stage the velocity is updated using the new pressure from the 

previous stage which effectively projects the intermediate velocities on a 

divergence-free velocity field. This part is performed in the ‘calcuv’ subroutine. 

The program is marched in time from the second stage to reach a developed 

solution. At each time step the minimum and maximum divergence of the velocities 

are calculated. And the results are saved at each time step. The above algorithm is 

presented at Figure 4-10.  In this flow chart the moving immersed boundary is not 

included. In the next section the solution of the Naiver –Stokes equations in moving 

frame of reference is discussed and the related algorithm is explained in Chapter 7. 

 

4.6  Moving frame of reference  

Moving frame of reference has been widely used to solve the Fluid-Structure 

interaction for the problems in which a rigid body is displacing/rotating in a steady flow 

field (for instance Li et al. 2002). This method which is presented in Section 3.5 is 

capable of handling large displacement/rotation of a body in two dimensions.  However, 

there are two main differences in the simulation used here and the one that Li et al 2002 

has introduced. First of all, Li et al. used a spectral/hp spatial discretization, while, here 

an FVM with a staggered variable arrangement is used for the discretization. Secondly, 

here an immersed boundary with interpolation method is used to force the solid 

boundary, while in Li et al. the solid boundary was resolved with the unformatted mesh, 

so the no-slip boundary conditions would be directly enforced. For simplification, the 

cylinder was only allowed to move in transverse direction so that equation (3-37) could 

be simplified to incorporate only the acceleration of the solid boundary in the transverse 

direction. The moving frame of reference method is used to simulate the flow around an 

oscillating cylinder in the cross flow direction in chapter 7 in more detail. The 



82 

 

simulation results using this method are compared with the literature and results of 

simulation in an inertial frame of reference.  

To evaluate the simulation and also to couple the fluid governing equation to the 

structural solver (for the fluid structure interaction), the forces and moment acting on a 

body in the moving frame of reference should be calculated. In the next sections, the 

calculation of force and moments acting on an immersed boundary with both an inertial 

frame of reference and a moving frame of references is addressed. 

4.7 Evaluating forces and moment on an immersed boundary  

To simulate Fluid-Structure-Interaction (FSI) and Vortex Induced Vibration (VIV) 

using immersed boundaries and the interpolation method, it is necessary to calculate the 

body forces explicitly. Here, the method used to calculate the lift and drag force due to 

pressure and shear stress is discussed. It is assumed that drag and lift forces are positive 

in the x and y direction, respectively. Figure 4-11(left) and equations (4-5) to (4-7) 

illustrate the calculation method for the lift and drag force due to the pressure on an 

immersed body. 

The forces will be resolved into components parallel and perpendicular to the free 

stream velocity. 

The hydrodynamic force exerted on a body by the flow can be obtained by the 

integration of local stress: 

𝜎 = −𝑝I + 𝜏 (4-42) 

𝐹 = ∫ 𝜎�́�𝑑�́�
Γ(𝑡)

= −∫ 𝑝�́�𝑑�́�
Γ(𝑡)

+∫ 𝜏�́�𝑑�́� = �́�𝑝 + �́�𝑣
Γ(𝑡)

 
(4-43) 

 

Where �́� is the outward unit normal on the body, �́�𝑝  refers to the pressure force and 

�́�𝑣 refers to the viscous force. Note that the above integration is defined in the absolute 

frame of reference. 

The total force, however, can be evaluated in the transformed plane and then 

mapped back onto the absolute frame of reference since: 

𝐹 = �́�𝑝 + �́�𝑣 = 𝐴(𝐹𝑝 + 𝐹𝑣) (4-44) 

Where 𝐹𝑝, 𝐹𝑣 are the forces calculated in the transformed plane. 

𝑑𝐹 = 𝑃𝑑𝐴 (4-45) 

𝑑𝐹𝐿𝑖𝑓𝑡𝑝 = 𝑃𝑑𝐴(−𝑠𝑖𝑛𝜃)  (4-46) 

𝑑𝐹𝐷𝑟𝑎𝑔𝑝 = 𝑃𝑑𝐴(−𝑐𝑜𝑠𝜃) (4-47) 

 



83 

 

 

P is the pressure on the immersed boundary, 𝑑𝐹𝐿𝑖𝑓𝑡𝑝 and 𝑑𝐹𝐷𝑟𝑎𝑔𝑝 are the 

component of lift and drag due to pressure. 𝑑𝐴 is the area between two consecutive 

locations on the immersed boundary in which the pressure was used to calculate lift and 

drag forces. In IB methods, especially when using interpolation, the pressure on the 

immersed boundary is not known directly, however for the stationary cases it is assumed 

that the gradient of pressure is zero near the immersed boundary; hence the nearest 

pressure on the fluid domain is taken as the pressure on the immersed boundary (Figure 

4-12). In the following part, the pressure calculation method is discussed in more details. 

 

  

Figure 4-11: calculation of lift and drag component of force due to pressure (left) and 

shear force (right) 

 

Lift and drag due to shear stress are calculated as illustrated in Figure 4-11 right, 

equations (4-48) and (4-49). 

𝑑𝐹𝑆ℎ𝑒𝑎𝑟 =  𝜏𝑤𝑎𝑙𝑙𝑑𝐴 (4-48) 

𝑑𝐹𝑦 = 𝑑𝐹𝑙𝑖𝑓𝑡𝑠 =  (𝜏𝑤𝑎𝑙𝑙𝑑𝐴) 𝑐𝑜𝑠𝜃  (4-49) 

𝑑𝐹𝑥 = 𝑑𝐹𝑑𝑟𝑎𝑔𝑠 =  (𝜏𝑤𝑎𝑙𝑙𝑑𝐴)(−𝑠𝑖𝑛𝜃)  (4-50) 

𝜏𝑤𝑎𝑙𝑙 is the shear stress on the immersed boundary. 𝑑𝐹𝑑𝑟𝑎𝑔𝑠 and 𝑑𝐹𝑙𝑖𝑓𝑡𝑠 are the 

components of drag and lift due to the shear forces on the IB. The Shear stress 

calculation method is presented in the next part. To simulate the solid body with a 

rotational degree of freedom, calculation of the angular momentum is necessary. The 

momentum due to shear force can be calculated using the equation (4-51), in this 

equation, R is the radius of the immersed boundary (circular cylinder). 

𝑑𝑀𝑆ℎ𝑒𝑎𝑟 = 𝑅  𝜏𝑤𝑎𝑙𝑙𝑑𝐴  

(4-51) 

Generally, in the inertial frame, the moment of the forces on a surface Γ(𝑡) of a 

body about an origin O (for instance the centre of the body) is given by:  
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�́� = ∫ �́� × (𝜎. �́�)𝑑�́�
Γ(𝑡)

= ∮𝑝(�́� × �́�)𝑑�́� + ∮ �́� × (𝜏. �́�)𝑑�́� = �́�𝑝 + �́�𝑣  , 
(4-52) 

 

where �́� is a vector from the origin to the element of the surface Γ(𝑡). The origin is 

an optional point due to the definition of momentum; moment is a free vector. Therefore 

the resultant moment for both moving frame and inertial frame of reference is the same. 

Which simply states that �́� is the rotated vector from the origin in the moving frame of 

reference. Therefore for a two-dimensional problem: 

�́� = 𝑀 = −∮𝑝(𝐱 × 𝐧)𝑑𝐬 + ∮𝐱 × (𝜏. 𝐧)𝑑𝐬 
(4-53) 

In the above equations, �́� and 𝑀 are the moments of the interaction forces in the 

inertial and moving frames of reference, respectively. Also x is the location of the 

element on the surface Γ(𝑡) in the moving frame. The moments calculated either in the 

moving frame of reference or in the inertial inertia frame of reference will be the same. 

4.8 Direct calculation of pressure over an IB  

Finding the pressure around the immersed boundary is an important issue when 

calculating lift and drag forces. After finding the pressure on the immersed boundary, 

the body force due to the pressure on the immersed body can be calculated by 

integrating the pressure over its boundary. The vertical and horizontal components of the 

force will be Lift and Drag forces due to the pressure, respectively. The pressure on the 

immersed body can be calculated either directly or by extrapolation. 

4.8.1 Calculation of pressure force without extrapolation  

For a stationary immersed boundary or a boundary with constant velocity, one can 

assume that the gradient of the pressure in the perpendicular direction to the surface is 

zero close to the boundary. Therefore, the pressure on the immersed boundary will be 

the same as the pressure in the nearest cell when looking outward in the radial direction. 

These pressures are located in the flow domain and updated by the governing equations 

of the fluid flow. Figure 4-12 left, illustrates how, the pressure near the cylinder was 

used as the pressure on top of the cylinder.  

If the immersed body undergoes acceleration, the gradient of the pressure near the 

IB is not negligible and the gradient of the pressure can be calculated by projecting the 

momentum equation in the direction perpendicular to the immersed boundary. The 

subject will be address in the Chapter 7. 
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Figure 4-12: left, pressure near the immersed boundary directly used as pressure on 

the boundary. Right, linear extrapolation method to calculate pressure on the immersed 

boundary. 

4.8.2 Extrapolating the pressure  

This method could be either linear or nonlinear (second order, exponential…). In 

this research only the linear extrapolation of the pressure to the cylinder wall is studied. 

For the linear extrapolation of the pressure on the cylinder, two consecutive pressure 

values in the perpendicular direction to the immersed boundary are needed for each 

point. Figure 4-12 shows a schematic of the extrapolation method. A line perpendicular 

to the immersed boundary is used to find two pressure values at 2 locations. The first 

pressure, Pi,j is used directly, however, the second pressure, Pint, is interpolated using 

two other pressure points. Following the calculation of Pi,j and Pint, the pressure on the 

cylinder can be found by linear extrapolation. 

4.8.3  Calculation of the shear forces around a cylinder 

As it has been mentioned earlier, to calculate shear forces around the immersed 

boundary it is necessary to find the gradient of the velocities around the boundary. The 

gradient of velocity parallel to the cylinder is assumed to be linear at each point around 

the cylinder. As the velocity of the cylinder is known (from the structural analysis), the 

first step is to find the velocities in the centre of the boundary cells around the cylinder. 

In the staggered arrangement, the u and v velocities in the centre of the cell are 

calculated by averaging their values from the cell edges. The location of tangential 

velocity around the cylinder is shown in Figure 4-13 left. In the second step, the 

tangential velocity is calculated by projecting the velocities vector on the local tangent to 
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the solid boundary. It is supposed that the tangential velocity is positive in the counter-

clock wise direction in order to obtain a unique formula for the calculation of the 

tangential velocities around the boundary. Equation and Figure 4-13 right depict the 

calculation of the tangential velocity for a specific point around the cylinder. In the final 

step, shear stress and shear force on the boundary are calculated using equation (4-56). 

In addition, the lift and drag forces are calculated by projecting the shear forces in x and 

y direction respectively. It is worth mentioning that taking the counter clock wise 

direction as the positive direction is optional and this does not change the generality of 

the method.  However, it should be noted that in the calculation of both the lift and drag 

forces the same assumption is made. 

Using the above, the total lift and drag forces around the cylinder can be calculated 

by integrating their partial values around the immersed boundary. 

 

  

Figure 4-13: Calculating tangential velocity around the immersed boundary 

𝑈𝑡𝑎𝑛 = −𝑈𝑠𝑖𝑛𝜃 + 𝑉𝑐𝑜𝑠𝜃  (4-54) 

𝑈𝑡𝑎𝑛0 = −𝑈𝑠𝑜𝑙𝑖𝑑𝑠𝑖𝑛𝜃 + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑜𝑠𝜃  (4-55) 

In the above equations, 𝑈𝑡𝑎𝑛0 and 𝑈𝑡𝑎𝑛 are the tangential velocities on the 

immersed boundary and the boundary cell, respectively. The shear stress on the 

boundary can be calculated by equation (4-56). In this equation 𝑑𝑟 is the distance 

between 𝑈𝑡𝑎𝑛 𝑎𝑛𝑑 𝑈𝑡𝑎𝑛0 in the radial direction and 𝜇 is the dynamic viscosity of the 

fluid. 

𝜏𝑤𝑎𝑙𝑙 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜇

𝑈𝑡𝑎𝑛−𝑈𝑡𝑎𝑛0

𝑑𝑟
  (4-56) 

In general, shear stress is defined by  𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 , however if the two side of this 

equation are divided by density, then  𝜏 𝜌⁄ =
𝜇
𝜌⁄
𝑑𝑢

𝑑𝑦
 and 𝜗 =

𝜇
𝜌⁄  . Also, in the numerical 
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simulation of fluid flow for simplicity, it is assumed that 𝑢∞ = 1 and 𝐷 = 1, so that 

𝑅𝑒 =
𝜌𝑢∞𝐷

𝜇
=

1

𝜗
 or 𝜗 = 1 𝑅𝑒⁄  and therefore 𝜏 𝜌⁄ = 𝜗

𝑑𝑢

𝑑𝑦
. Using the shear stress over the 

density on the immersed boundary can be calculated by 𝜏 𝜌⁄ = 1 𝑅𝑒⁄
𝑑𝑢

𝑑𝑦
  .  

The above idea can be explained using non-dimensional parameters as well. 

According to equation (4-7), the non-dimensional form of the shear stress is given by 

equation (4-57). In equation (4-58) it is simply shown that 1 𝑅𝑒⁄
𝑑𝑢

𝑑𝑦
 is a non-dimensional 

value as long as the velocity and displacement are non-dimensional. 

𝜏∗ =
𝜏

𝜌𝑢∞
2
 (4-57) 

𝜏∗ = 1 𝑅𝑒⁄
𝑑𝑢∗

𝑑𝑦∗
=

1

𝜌𝑢∞𝐷
𝜇

×

𝑑𝑢
𝑢∞
𝑑𝑦
𝐷

=
1

𝜌𝑢∞
2
× 𝜇 ×

𝑑𝑢

𝑑𝑦
=

𝜏

𝜌𝑢∞
2
 

(4-58) 

 

Figure 4-14: Location of Immersed boundary (IB), control volume (C.V.), Control 

Surface (C.S.) to apply Conservation of momentum law 

4.8.4 Application of momentum conservation to calculate force on IB 

The accurate calculation of lift and drag forces on an IB is a challenging task, 

especially when an interpolation/reconstruction IB is used. The reason is that on the one 

hand the forces on the IB surface strongly depend on the formation of vortices and on 

the other the way boundary conditions are forced affect vortices when using a non-

conforming mesh method. Despite the existence of extensive literature about the FSI 

methods, the calculation of body forces have received much less attention (Balaras 

2D 
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2004). In this section, as mentioned earlier in section 3.8.3, conservation of momentum 

is applied to calculate the forces around an immersed boundary. 

As illustrated in the Figure 4-14, conservation of momentum (equation (3-51)) is 

applied to the control volume limited between the IB and C.S in horizontal (x) direction 

and vertical (y) direction to calculate drag and lift forces respectively.  

𝐹𝐷𝑟𝑎𝑔 =
𝑑

𝑑𝑡
∫ 𝜌𝑢𝑑𝐴
𝐶.𝑉

−∫ (𝜌𝑢𝑢𝑗 + 𝑝𝛿1𝑗 − 𝜏1𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠 
(4-59) 

 

𝐹𝐿𝑖𝑓𝑡 =
𝑑

𝑑𝑡
∫ 𝜌𝑣𝑑𝐴
𝐶.𝑉

−∫ (𝜌𝑣𝑢𝑗 + 𝑝𝛿2𝑗 − 𝜏2𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠 
(4-60) 

 

 

Figure 4-15: Surface normal vector n, velocity (u,v) and pressure on the control 

surfaces 

 

According to the Figure 4-15, the last integrals (the control surface integral) in 

equations (4-59) and (4-60) are expanded to enable calculating the lift and drag forces on 

the immersed boundary. Using this, the control surface integral in equation (4-58) 

becomes: 

∫ (𝜌𝑢𝑢𝑗 + 𝑝𝛿1𝑗 − 𝜏1𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠              

=   ∫ (𝜌𝑢(−𝑢) + (−𝑝)
𝐶.𝑆.𝑤𝑒𝑠𝑡

− (−𝜏11))𝑑𝑠

+ ∫ (𝜌𝑢(𝑣) + (0) − (𝜏12))𝑑𝑠
𝐶.𝑆.𝑛𝑜𝑟𝑡ℎ

+∫ (𝜌𝑢(𝑢) + (𝑝) − (𝜏11))𝑑𝑠
𝐶.𝑆.𝑒𝑎𝑠𝑡

+∫ (𝜌𝑢(−𝑣) − (0) − (−𝜏12))𝑑𝑠
𝐶.𝑆.𝑠𝑜𝑢𝑡ℎ

 

 (4-61) 
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  The first integral in (4-59) 

resent the temporal changes of the momentum in the control volume.  

∫ (𝜌𝑣𝑢𝑗 + 𝑝𝛿2𝑗 − 𝜏2𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠              

=   ∫ (𝜌𝑣(−𝑢) + (0)
𝐶.𝑆.𝑤𝑒𝑠𝑡

− (−𝜏21))𝑑𝑠

+ ∫ (𝜌𝑣(𝑣) + (𝑝) − (𝜏21))𝑑𝑠
𝐶.𝑆.𝑛𝑜𝑟𝑡ℎ

+∫ (𝜌𝑣(𝑢) + (0) − (𝜏22))𝑑𝑠
𝐶.𝑆.𝑒𝑎𝑠𝑡

+∫ (𝜌𝑣(−𝑣) − (𝑝) − (−𝜏22))𝑑𝑠
𝐶.𝑆.𝑠𝑜𝑢𝑡ℎ

 

 (4-62) 

Where in the above equations, the stresses 𝜏11, 𝜏22, 𝜏12 are defined by: 

𝜏11 = −
2

3
𝜇∇. 𝑉 + 2𝜇

𝜕𝑢

𝜕𝑥
 

(4-63) 

 

𝜏22 = −
2

3
𝜇∇. 𝑉 + 2𝜇

𝜕𝑣

𝜕𝑦
 

(4-64) 

 

𝜏12 = 𝜏21 = 𝜇 (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 ) 

(4-65) 

 

The first term on the left hand side of equations (4-59) and (4-60) become near zero 

in the steady state condition and can be neglected, however, in this study in order to be 

able to present the results in the transient conditions, they are integrated in the control 

volume/surface (surface bounded between the IB boundary and the control surface 

(C.S.). 

4.9 Lift and drag coefficient  

The dimensionless drag, CD, and lift, CL, coefficients are defined by: 

𝐶𝐷 =
𝐹𝐷𝑟𝑎𝑔
1
2
 𝜌𝑢∞2 𝐷

 
 

(4-66) 

 

𝐶𝐿 =
𝐹𝐿𝑖𝑓𝑡

1
2
 𝜌𝑢∞2 𝐷

 
(4-67) 
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where 𝐹𝐷𝑟𝑎𝑔, 𝐹𝐿𝑖𝑓𝑡, 𝜌, 𝑢∞, 𝐷 are drag force, lift force, fluid density, free stream 

velocity and the cylinder diameter, respectively. In these equations the value of the drag 

and lift forces are dimensional. On the other hand, the values of the drag and lift forces 

which are calculated in the equations (4-59) and (4-60) are non-dimensional because all 

parameters on the right hand side of these equations are non-dimensional. Therefore, to 

calculate the lift and drag coefficients from the drag and lift forces  (equations (4-59) 

and (4-60)), equations (4-66) and (4-67)  become: 

𝐶𝐷 = 2 × 𝐹𝐷𝑟𝑎𝑔 (4-68) 

𝐶𝐿 = 2 × 𝐹𝑙𝑖𝑓𝑡 (4-69) 

In addition, as discussed earlier, the drag and lift forces on a cylinder submerged in 

a flow arise from two sources, the shear stress and the pressure distribution over the 

body. Therefore: 

𝐶𝐷 = 2 × 𝐹𝐷𝑟𝑎𝑔𝑝 + 2 × 𝐹𝐷𝑟𝑎𝑔𝑠 (4-70) 

𝐶𝐿 = 2 × 𝐹𝐿𝑖𝑓𝑡𝑝 + 2 × 𝐹𝐿𝑖𝑓𝑡𝑠 (4-71) 

 

4.10 Summary  

In this chapter the main body of the algorithm that is developed to simulate flow 

around a solid boundary is outlined. Most of the details are explained in a way to support 

the interpolation/reconstruction immersed boundary method. At the beginning, the 

governing equations and their discretisation procedures are discussed. It is explained that 

a fractional step method is used to update the velocities at each new time step. Then the 

background Cartesian grid was introduced using a staggered arrangement of velocities. 

The boundary conditions at the inlet, outlet, symmetry and immersed boundaries are 

introduced in detail in Section 4.4. In chapter 7 it will be shown that the boundary 

conditions play a vital role in the definition of the moving frame of reference.  

 One of the contributions of this research is the implementation of the immersed 

boundary in a Cartesian grid using the interpolation method presented in Section 4.4.4. 

In that part, the way in which velocities are interpolated near the immersed boundary is 

explained.  In Section 4.5 the solution algorithm is briefly explained. In this procedure, 

one of the main challenges is the calculation of the pressure and the shear forces at the 

cylinder due to the fact that the immersed boundary is not aligned with the grid. This 

problem is addressed in sections 4.7 and 4.8. In these sections the methods used to 
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calculate lift and drag forces on the immersed boundary are presented and briefly 

compared. The accurate calculation of lift and drag forces is necessary to be able to 

implement the fluid structure interaction for a flexible solid body. This issue is discussed 

in more details in chapter 7. 

 In the next chapter, the algorithm outlined here is validated by comparing the 

results with a bench mark. As flow around a circular cylinder has been studied 

extensively, it was decided to use this as a bench mark; this case has similarities to the 

simulation of the oil riser pipe, the study of which is the ultimate aim of this research. 

In addition, to clarify the role of the computational grid on the results, a 

comprehensive parametric study is performed for the two dimensional flow around a 

circular cylinder in next chapter.   
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Chapter 5. Parametric study and validation  

 

In the previous chapter the algorithm which was developed to simulate the flow 

around an immersed boundary was presented. An immersed boundary interpolation 

method was used to apply the solid boundary conditions. In this chapter, the fluid flow 

around a stationary cylinder in two dimensions at a low Reynolds number is selected as 

a bench mark to validate the code written in FORTRAN. This bench mark has been used 

by many researchers to validate their methods resulting in several experimental and 

numerical simulations which are available in the literature for comparison purposes.  

At first a parametric study is performed. Here, six parameters related to the size of 

computational domain which might affect the simulation results are investigated. In 

addition, the results of the lift and drag coefficients at low Reynolds number, Re=100 are 

compared with those in the literature to assess the accuracy of the method. In this study, 

the hydrodynamic forces are calculated by two methods: 1) by application of the 

conservation of momentum and 2) by a direct integration of pressure and shear force on 

the immersed boundary.   

5.1 Parametric study 

The ultimate goal of this research is to apply the strip theory to simulate the 

interaction of the fluid flow and oil risers. In this theory, the flow around the cross 

section of the riser is simulated at several levels along the pipe. The hydrodynamics 

forces that are calculated at each level are linked through the structural model to update 

the location/shape of the riser. This process is repeated several times to obtain a 

converged solution at every time step. This simulation requires very high computational 

power. Therefore, identifying methods that allow minimizing the computational demand 

needed to solve the Fluid-Structure interaction (FSI) problems and in particular the riser 

problem is of paramount importance. In this chapter the parameters that might affect the 

simulation of flow around a cross section of the riser are investigated. The criterion was 

to select the parameters in such a way as to minimized computational power while still 
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providing acceptable results. To achieve this goal, the two-dimensional flow around a 

stationary cylinder was taken as a bench mark. 

In the first place a grid refinement study is performed to investigate the dependancy 

of the interpolation method on the size of the mesh near the immersed boundary. Also, 

the size of the compuational domain might be very important. On the one hand, the 

domain boundaries should be far enough away (large computational domain) from the 

cylinder to be able to neglect the effect of the boundaries on the accuracy of simulation 

and, on the other, the domain should be small enough to limit the computational 

demand. The overal effect of the domain in the y direction is addressed by studying the 

blockage effect in the literature. The effect of the domain size upstream of the cylinder is 

referred to as the entrance effect and is addressed for the first time in this thesis as far as 

the author is aware. This part is labelled ’c’ in Figure 5-2. 

 

 

Figure 5-1: flow pattern around a stationary cylinder at Re=100. High pressure area 

(Continuous line), low pressure area (dash line), blue and red counters are the vortices. 

 

In general, the places where the variables exhibit large gradients are the most 

sensitive regions with regard to the grid size. According to Figure 5-1, the areas around 

the cylinder with very high pressure and velocities gradients coincide. Therefore a very 
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dense mesh is necessary around the cylinder. On the other hand, there are hardly any 

gradients far from the cylinder; therefore, a coarse mesh can be used in these locations. 

To address this issue, a uniform mesh around the cylinder is used. However the size of 

this uniform grid area might be important as well. To investigate this effect, the size of 

uniform grid before and after the cylinder (x direction) and also the size of uniform area 

in the y direction are studied separately; these lengths are identified by ‘e’, ‘f’ and ‘b’ in 

the Figure 5-2. 

In addition, using a streching factor is necessary to maintain a coarse grid far from 

the cylinder (area with low gradients)  and to have a fine grid near the cylinder. The 

effect of the stercthing factor is studied as well. To fulfil these criteria a comprehensive 

investigation is presented in this chapter to show the effect of the domain and grid sizes 

on the simulation results. 

 

Figure 5-2: Background Cartesian mesh- parametric studies guide.  

5.1.1 Parametric study - Mesh refinement effect  

The size of the mesh near the Immersed Boundary (IB) plays a significant role both 

in the accuracy of the results and in the computational expenses.  To find the proper 

  f 

  d 
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  b 

  a 

  a 

  g 
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mesh size for the numerical simulation and also maintain the second-order accuracy of 

the model, a mesh refinement study is performed. In this study, the centre of the cylinder 

is located at centre of the Cartesian coordinate and the size of computational domain in 

both the x and y directions is taken as [-15D,15D], and the uniform grid around the 

cylinder in both the x and y directions covers the regions [-1D,1D]х [-1D,1D] (2 times of 

the cylinder diameter in each direction). In this uniform area around the cylinder 6 grid 

sizes ranging from 0.2D to 0.00625D are used for the simulation (see Table 5-1). A 

stretching factor of 3 is used to extend the grid from uniform area to the computational 

boundary in all 6 cases and the Strouhal number, the drag and the lift coefficients for the 

flow problem are compared.  Table 5-1 shows the details of the grids and their results. 

The stretching factor helps to reduce the actual number of nodes in the grid. For 

instance, in a 30Dх 30D domain using a grid size of 0.2D (without stretching) the 

number of points in each direction becomes 150. This number reduces to 57 grid points 

when using a stretching factor of 3. The effect of stretching on hydrodynamic  forces 

will be discussed later in this chapter. 

Figure 5-3: simulation accuracy of the immersed boundary based on the mesh size 

 

 

  

dx=dy=0.2         dx=dy=0.1 dx=dy=0.05 

   

dx=dy=0.025 dx=dy=0.0125 dx=dy=0.00625 
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In non-conforming boundary approaches, when the grid get finner near the 

immersed boundary the shape of the cylinder (IB) is approximated more accurately. 

Figure 5-3 compares the effect of the grid size close to the cylinder on the approximation 

of the cylinder boundary. Clearly, the finer grids lead to a better approximation and are 

likely to produce more accurate results.   

 

Table 5-1: Results of mesh refinement study around a stationary cylinder at Re=100. 

∆𝑥 = ∆𝑦 Number of grid at 

each direction  

Total no. of grid 

points 

Strouhal 

No. 

Mean drag 

coefficient 

Max lift 

coefficient 

0.2 57*57 3’249 0.147 1.467 0.285 

0.1 109*109 11’881 0.154 1.315 0.225 

0.05 213*213 45’369 0.159 1.334 0.305 

0.025 423*423 178’929 0.1637 1.329 0.314 

0.0125 837*837 700’569 0.174 1.327 0.315 

0.00625 1669*1669 2’785’561 0.1743 1.328 0.316 

 

Figure 5-4 presents the drag coefficient, drag due to pressure and drag due to the 

shear stress for 5 different grid sizes from dx=dy=0.1D to 0.00625D. The results for 

dx=dy=0.2D are not shown as it is out of the range compared to the other results. The 

results show that the components of the drag (drag due to pressure and shear stress) are 

more affected by the grid size than the drag coefficient. For instance, the mean drag 

coefficient due to pressure reduces from 1.15 to 1.1, which is about 4.5%, when the grids 

become finer from 0.1D to 0.05D; while the mean drag increased from 1.315 to 1.335, 

which is about 1.5%. 

In addition, Figure 5-4 and Figure 5-6 show that by increasing the number of grid 

points the mean drag due to pressure reduces and converges to the value of 1.05. This 

trend, however, is reversed for the drag due to the shear stress. The results show that the 

mean drag due to shear stress increases and converges to a value of 0.33 by increasing 

the number of the grid points in each direction from 50 to 1600. Therefore, the drag 

coefficients for sufficiently fine grids (approximately finer than 0.025D) are less 

dependent on the grid size due to the fact that the errors in the calculation of the drag due 

to the shear stress and pressure tend to cancel one another. 
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Figure 5-4: Mesh refinement study, drag, drag due to pressure and shear stress for 

five different grid sizes from dx=dy=0.1 to 0.00625 around the circular cylinder   

 

The lift coefficient, the lift due to pressure and shear stress are compared in Figure 

5-6 for five different grid sizes from dx=dy=0.1 to 0.00625.  The results for the grid with 

dx=dy=0.2 (coarsest grid) is not shown as it is out of range in compare to the other 

cases. The numerical results show that (unlike the drag coefficient components) the lift 

coefficient, lift due to the pressure and the shear stress have similar trends. For instance, 

if the grid sizes are reduced from 0.1D to 0.05D the total lift, lift due to pressure and lift 

due to shear stress increase from 0.22 to 0.3, from 0.21 to 0.28 and from 0.01 to 0.02 

respectively. Also, Figure 5-5 shows that the drag due to pressure and friction are 

converging for the grid size smaller than 0.025 (see Table 5-1). 
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Figure 5-5: Drag coefficient due to pressure and shear stress verses the number of 

grid in each direction of the domain around a stationary cylinder at low Reynolds number, 

Re=100   

 

 
 

 

 

 
 

 

 

 

Figure 5-6: Mesh refinement study for lift, lift due to pressure and friction for various 

grid size where computational domain in x and y is [-15,15] and Stretching factor is 3. 
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In addition, Figure 5-7 shows that the lift highly depends on the grid size in the 

coarse grid range. For instance, the lift coefficient increases significantly from 0.225 to 

0.305 by decreasing the grid size from 0.1D to 0.05D which  is about a 26% rise; while 

for the relatively fine grids (finer than 0.025D), the lift coefficient is less dependent on 

the grid size (at low Reynolds number). 

 

             

Figure 5-7: Lift coefficient verses the number of grid points in each direction of the 

domain around a stationary cylinder at Low Reynolds number, Re=100 

 

A comparison between the results obtained for the lift and drag coefficients shows 

that the lift coefficient, more than the drag coefficient, depends on the grid size for the 

coarse meshes. For the fine meshes both of them are relatively independent of the grid 

size. For instance, by decreasing the grid size from 0.1D to 0.05D the drag and lift 

coefficients change by 1.5% and 26% respectively. A further decrease in grid size from 

0.025D to 0.0125D leads only to a lift and drag coefficient change of about 0.15% and 

0.3% respectively.  It should be noted that for any grid size the drag coefficient is not as 

grid dependent as the lift coefficient. This is due to the fact that the errors in the drag due 

to the pressure and shear stress cancel each other out. For the cases dx=dy=0.025D and 

0.0125D , the difference in the drag due to pressure is about 2.5% and the drag due to 

shear stress changes by about 8%. However, the change in the drag coefficient is just 

about 0.15%.  
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Figure 5-8: The Power Spectral density of lift coefficient for six different grids size in 

frequency domain, where computational domain in x and y is [-15, 15] and Stretching 

factor is 3.  

 

The numerical results also show that the Strouhal frequencies are affected most by 

the coarse grids.  For instance, for grid size dx=dy=0.2D, the Strouhal frequency is 

0.147, which it is 4.5% lower than the Strouhal frequency for the grid size 0.1D. Figure 

5-8 shows the power spectral density (PSD) of the lift coefficient for six different grid 

sizes ranging from 0.2D to 0.00625D at low Reynolds flow, Re=100. For fine grids the 

Strouhal number is much less dependent of the grid size and converges to the  value 

fs=0.164 (Figure 5-9). 

 

 

Figure 5-9: Strouhal number verses the number of grid point in each direction of the 

domain around a Stationary cylinder at low Reynolds number, Re=100 

 

0.145

0.15

0.155

0.16

0.165

0.17

0 500 1000 1500 2000

St
ro

u
h

al
 f

re
q

u
e

n
cy

 

Number of grid in each direction 



101 

 

5.1.2 Parametric study – size of domain in front of cylinder 

The size of the computational domain in front of the cylinder is an important 

parameter in the study of the flow over a circular cylinder at low Reynolds number. To 

study this effect the flow over a stationary cylinder at Re=100 is simulated.  Four 

different flow domain sizes ranging from 5D to 20D upstream of the cylinder are 

compared, whilst other domain parameters are kept constant. The size of the domain in 

the transverse direction is 30 D; the grid size in the uniform area around the cylinder is 

dx=dy=0.025, and the sizes of the uniform grid area is 1D and 5D in front of and after 

the cylinder in the x direction and 3D above and below the cylinder in the y direction 

(Figure 5-2). The grid stretching factor for the mesh from the uniform area to the border 

of the computational grid is 3.  

 

 
  

 

  

Figure 5-10: Effect of the Size of the fluid domain in front of the circular cylinder in x 

direction on the Drag coefficient  
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It can be seen that the size of computational domain significantly affects the results 

(Figure 5-10). The drag coefficient changes by 10% (from 1.44 to the 1.32) when the 

domain size changes from 5D to 20D behind the cylinder. This value is decreased by 

0.6% when the size of domain in front of the cylinder is increased from 15D to 20D 

(from 1.328 to 1.32). The simulation results show that this trend is similar for the drag 

coefficients due to the pressure and friction. It can be concluded that the size of 15D 

behind the cylinder gives sufficiently accurate results at relatively low computational 

cost. 

By increasing the size of the domain in front of the cylinder form 5D to 20D the lift 

coefficient is affected in a similar way as with the drag coefficient (Figure 5-11). In this 

case, the lift coefficient decreases from 0.337 to 0.3 (about 12%). This change becomes 

less than 3%, when the sized of the domain in front of the cylinder increases from 15D 

to 20D.  

  

  

Figure 5-11: Effect of the Size of the fluid domain in front of the circular cylinder in x 

direction on the lift coefficient 
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By using larger computational domain in front of the cylinder the simulation results 

show that the lift due to pressure is affected slightly more than the lift due to friction. For 

instance the lift coefficient is changed by about 12% while the computational domain in 

front of the cylinder is changed from 5D to 15D. In this case, the lift force due to 

pressure is changed slightly more than 13% and the lift due to the friction is changed by 

less than 10%.  

Another important parameter which is affected by the size of the domain in front of 

the cylinder is the Strouhal number.  By increasing the size of domain in front of the 

cylinder from 5D to 20D this parameter is decreased from 0.173 to 0.164 (about 5.5%). 

However, for a sufficiently large domain in front of the cylinder (15D and above) there 

is hardly any difference in the Strouhal number results (Figure 5-12). 

  

 
Figure 5-12: The power spectral density of the Lift coefficient- Effect of the Size of the 

fluid domain in front of the cylinder in x direction on the lift coefficient.  

 

 

It is worth mentioning that some of the differences in the results reported by 

different researcher could be explained by this parameter. For example Choi et al. 2007, 

used a grid with the dimension of the 80Dх 80D for their simulation and obtained 1.34, 

0.315 and 0.164 for Drag, lift coefficient and Strouhal number, while Lai and Peskin 

2000 used a computational domain with 6D in front of the cylinder and  reported a 

higher value for the drag coefficient (see Table 5-3).    
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5.1.3 Parametric study – Blockage effect 

In the case of flow passing a bluff body, the blockage effect was reported by 

Karniadakis and Triantafyllou 1992, who showed that the simulation results will be 

affected by the size of the computational domain in the cross flow direction. On the 

other hand, solving the flow governing equations in a very large domain is very 

expensive and might not improve the results noticeably. In this section a parametric 

study is carried out to determine the minimum domain size for which the blockage effect 

is negligible. To achieve this goal, the flow (low Reynolds number, Re=100) over a 

circular cylinder with diameter D, is simulated for 5 different domain sizes from 10D ([-

5,5]) to 50D ([-25,25]) in y direction (perpendicular to the flow, x direction). In this 

problem the cylinder is located at (x,y)=(0,0) and has equal distance to the domain’s 

upper and lower boundaries.  

 

  

  

Figure 5-13: Effect of the size of the computational domain in the y direction on the drag  
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The Hydrodynamic quantities (lift and drag) and Strouhal number for these cases 

are compared. Other computational domains parameters remain constant during the 

simulation; the size of the domain in the x direction is [-15D,15D]; the size of uniform 

grid area around the cylinder is [-2D,4D] х [-2D,2D] in the x and y directions 

respectively where dx=dy=0.025. The grid is stretched by a factor of 3 from the uniform 

area around the cylinder to the domain boundaries. The numerical results show that the 

blockage effect significantly affects the hydro-dynamical quantities in the small domain. 

For instance, the mean drag and maximum lift coefficients for the domain with y∈ [-

5D,5D] are 1.43 and 0.322, respectively while for the domain y∈ [-10,10] these 

quantities are 1.34 and 0.285, respectively. These results show that at Re=100 if the size 

of domain is doubled from 10D to 20D in the cross flow direction the lift and drag 

coefficients decrease by about 7 % and 12% respectively.  

 

  

  

Figure 5-14: Effect of the Size of the fluid domain in y direction on the Lift coefficient.  
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However, as shown in Figure 5-13, for the domain that is larger than [-15D,15D] 

the blockage effect on the lift and drag coefficient is very limited . For instance, by 

enlarging the vertical direction of the domain from 30D to 50D, the drag coefficient only 

decreases by less than 1%, and the change in the lift coefficient is negligible. Also, 

Figure 5-13 shows that the blockage has similar effect on the drag coefficient, the drag 

due to the pressure and the shear stress.  

Figure 5-14 shows the blockage effect on the lift coefficient at low Reynolds 

number. The numerical simulation shows that enlarging the domain in the cross flow 

direction by more than 20D will not affect the lift coefficient. 

 In addition, the numerical results (Figure 5-14) show that the lift coefficient due to 

the pressure is more affected by the size of the domain in the y direction than the lift 

coefficient due to the shear stress. For instance, by doubling the size of domain in the 

cross flow direction from 10D to 20D, the lift coefficient due to pressure and shear stress 

decrease 12.3%, and about 11%, respectively.  

 

 

Figure 5-15: Power Spectral Density (PSD) of the Lift coefficient - Effect of Size of the 

domain in y direction on the lift coefficient.  

  

The Strouhal number is affected by the blockage effect as well as lifts and drag 

coefficient.  Figure 5-15 shows the power spectral density (PSD) of the lift coefficient 

for the flow around a cylinder at Re=100 for five different domain sizes in the y 
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direction from 10D to 50D. The numerical results show that for small domains the 

blockage effect is more severe. For instance, by increasing the domain from 10D (the 

case [-5,5] in Figure 5-15)to 20D (the case [-10,10] in Figure 5-15) the Strouhal number 

changes from 0.175 to 0.168. However, for the domain that is larger than 30D (the case 

[-15,15] in Figure 5-15) in the cross flow direction, the Strouhal number remains about 

0.164 and does not change when further enlarging in the size of the domain in the y 

direction.  

Figure 5-16 to Figure 5-18 show that at low Reynolds numbers, if the size of 

domain is more than 30D in the cross flow direction, the blockage effect on the lift, drag 

and Strouhal number is negligible. The drag coefficient for a cylinder in the cross flow 

direction at Re=100, was reported to be1.44 (by Corbalan & de Souza 2010) and 1.33 

(by Kim et al. 2001); the blocking effect might be one of the reasons for this difference.  

 

 

Figure 5-16: Drag coefficient verse domain size in cross flow direction,  

 

 

Figure 5-17: Lift coefficient verse the size of domain in perpendicular direction to the 

main stream velocity (cross flow direction). 
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Figure 5-18: Strouhal number verse the size of domain in perpendicular direction to 

the main stream velocity (cross flow direction). 

5.1.4 Parametric study – Stretching factor 

According to the mesh refinement study for the flow around a bluff body (Section 

5.1.1) in order to obtain accurate hydro-dynamical forces, a fine grid around the 

immersed boundary is recommended. On the other hand, to minimize the blockage and 

entrance length effects (Section 5.1.2 and 5.1.3) on the simulation results a relatively 

large computational domain is needed. These issues lead to high computational costs. A 

stretching technique allows refining the grid near the IB, while using a coarse mesh in 

the outer region to ensure that the computational domain is sufficiently large. In this way 

the number of grid points and the computational resources needed are minimised without 

compromising the accuracy of the simulation. In this section the effect of the stretching 

factor on the lift, drag and Strouhal number is presented. 

 
 

 

 

 

Figure 5-19: Effect of the grid stretching factor on the Drag coefficient 
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To study the effect of the stretching factor, the flow around a stationary cylinder at 

low Reynolds number, R=100 is simulated on a uniform grid using four grids with 

stretching factors ranging from 2 to 5. Other domain parameters remain constant; the 

size of domain in both the x and y directions is 30D, the size of uniform grid area around 

the cylinder is 6D (2D in front and 4D after) in the x direction and 4D (2D on each side) 

in y the direction. The size of the grid in the uniform grid area around the immersed 

boundary is dx=dy=0.025D. 

 
 

 

 

 

Figure 5-20: Effect of the grid stretching factor on the Lift coefficient. 

 

Numerical results show that the high stretching factor could slightly affect the drag 

and lift coefficients and Strouhal number.  Figure 5-19 and Figure 5-20 show that a 

stretching factor of 5 leads to a mean drag of 1.3375 and max lift of 0.327 which is about 

1% higher than the values obtained when using a stretching factor of 4, where the mean 

drag coefficient is about 1.3225 and maximum lift is about 0.31.  In the case where the 

stretching factor is less than 4, the drag and lift coefficients are hardly affected by the 

stretching factor and the simulation results are matching well with the results on the 

uniform grid. 

According to the Table 5-2, at Re=100 the grid-stretching could significantly reduce 

the number of nodes and hence the computational expense while the lift, drag and 

Strouhal number have a small effect of only one present.    
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Table 5-2: parametric study of the Stretching factor, minimum grid size is 0.025D, the 

domain size [-15,15] in x and y direction, and the uniform domain size [-2,4]in x and  

[-2,2]in y direction.  

Stretching 

factor 

No. grid 

(x 

direction) 

No. grid 

(y 

direction) 

Total No. CD(mean) CL(Max) Strouhal 

number 

5 310 235 72’850 1.3375 0.327 0.166 

4 385 317 122’045 1.3225 0.31 0.164 

3 531 475 252’225 1.3215 0.305 0.164 

2 771 735 566’685 1.3215 0.305 0.164 

Uniform grid 1200 1200 1’440’000 1.3215 0.305 0.164 

 

According to the Figure 5-21, the stretching factor hardly affects the Strouhal 

number (the frequency of vortex shedding around a cylinder) at low Reynolds numbers. 

It can be seen in this figure that the Strouhal number changes from 0.166 to 0.164 when 

the stretching factor changes from 5 to 4, however there is hardly any variation in the 

Strouhal number when the stretching factor becomes less than 4. 

 

 

Figure 5-21: Effect of the grid stretching factor on Strouhal number. 

 

5.1.5 Parametric study – size of uniform area, x direction after cylinder 

In the simulation of free flow passing a circular cylinder at low Reynolds number, 

the gradient of the velocity and pressure are relatively high near and in the wake of the 



111 

 

cylinder. Therefore, a higher resolution grid (dense mesh) is necessary in these areas in 

order to obtain an accurate simulation. A coarser grid should be sufficient to resolve the 

far field where the flow parameters do not vary very much. The size of uniform grid 

around the cylinder should be large enough to guarantee the accuracy of the results and 

it should be small enough to minimise the computational costs. In this section the 

optimum size of this area downstream of the cylinder (dimension “f” in the Figure 5-2) 

is investigated. The size of the uniform mesh before the cylinder in the x direction 

(dimension “e” in the Figure 5-2) and the size of the symmetric uniform mesh in the y 

direction (dimension “g” in the Figure 5-2) are presented in Sections 5.1.6 and 5.1.7 

respectively. The flow around a cylinder at Re=100 is simulated in two dimensions. The 

overall size of the computational domain in the x and y directions is taken as [-15,15]. 

The size of the grid in the uniform area is dx=dy=0.025.   

 

  

Figure 5-22: Effect of the uniform area after the circular cylinder in x direction on the 

Drag coefficient.  

 

The size of the uniform area after the cylinder is changed from 1D to 5D while the 

rest of the domain parameters remain constant. In this study the uniform domains [-1,1], 

[-1,2], [-1,3], [-1,4], [-1,5] in the x direction are compared. The uniform grid area around 

the cylinder in the y direction is maintained at [-5,5].  
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Figure 5-23: Effect of the uniform grid area after the circular cylinder in x direction 

on the lift coefficient. 

 

Figure 5-22 shows the effect of the length of the uniform mesh after the cylinder on 

the overall drag coefficient. The simulation results show about one percent increase in 

the drag coefficient when the uniform area after the cylinder is changed from 5D ([-1,5]) 

to 1D ([-1,1]). However, when this size is changed from [-1,3] to [-1,5] the changes in 

the drag coefficient were found to be negligible. Both the drag due to pressure and 

friction were found to behave in a similar way. 

Figure 5-23 shows the results of varying the length of the uniform grid area behind 

the cylinder on the lift coefficient. The maximum lift coefficient was found to reduce 

from 0.333 to 0.307 when comparing case [-1,1] to case [-1,5] respectively, which is 

about 8 percent.  However, the difference just changed by less than one percent when the 

uniform grid size ahead of the cylinder changes from 3D to 5D. A similar trend is 

observed for the lift coefficients due to pressure and shear stress. In other words, the 

uniform size [-1,3] in the x direction is a good choice to obtain accurate results for both 

the lift and drag coefficient.  

Figure 5-24 shows the power spectral density (PSD) of the lift coefficient in the 

frequency domain for different uniform sub-grid length after the cylinder in the x 

direction. The results show that this parameter does not affect the Strouhal number as all 

cases show the same frequency for the lift coefficient.  
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Figure 5-24: Power Spectral density (PSD) of the Lift coefficient - Effect of the 

uniform Size of the fluid domain after the circular cylinder in x direction on the Strouhal 

number.  

 

5.1.6 Parametric study- uniform size x direction before cylinder 

In this section the effect of the uniform grid size in front of the cylinder in x 

direction (dimension “e” in the Figure 5-2) on the hydrodynamic forces is investigated. 

The size of the uniform grid length in front of the cylinder is changed from 1D to 5D 

while the rest of the domain parameters remain unchanged. The size of the uniform 

domain in the y direction is [-5,5]. Figure 5-25 shows that the mean drag coefficient 

decreases from 1.3285 to 1.325 when the uniform area in front of the cylinder increases 

from 1D to 2D, respectively, which is about 0.3%. However, if the size of the uniform 

grid area in front of cylinder is longer than 2D, the effect of this parameter on the mean 

drag coefficient is absolutely negligible. The simulation results show a similar effect on 

the drag due to pressure and due to shear stress. Therefore, if the size of the uniform grid 

in front of the cylinder is taken to be longer than 2D, the effect of this parameters can be 

neglected at Re=100. 
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Figure 5-25: Effect of the uniform grid in front of the circular cylinder in the x 

direction on the drag coefficient. 

 

Figure 5-26 hardly shows any changes in the lift coefficient due to changing the 

uniform grid in front of the cylinder from 1D to 5D. Also the simulation results hardly 

show any changes in the lift due to pressure and shear stress by changing this parameter. 

In addition, the power spectral density of the lift coefficient results shows that the 

Strouhal number is not affected by this parameter either. 
 

 

 

 

Figure 5-26: Effect of the uniform grid in front of the circular cylinder in x direction 

on the Lift coefficient. 

5.1.7 Parametric study- uniform grid area in y direction  

In this section the effect of the size of the uniform grid area around the cylinder in 

the y direction (dimension “g” in the Figure 5-2) on the lift and drag coefficient is 

presented.  Here, this parameter is changed from 2D ([-1,1]) to 10D ([-5,5]), while the 

rest of the domain parameters remains constant. The total size of the grid in both the x 
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and y directions is 30D, the uniform grid size in the x direction around the cylinder is 

 [-1D,5D] and the size of the grid cells around the cylinder is dx=dy=0.025D. 

  
 

 

 

 

Figure 5-27: Effect of the vertical extend of the uniform area around the circular 

cylinder on the Drag coefficient. 

 

Figure 5-27 andFigure 5-28 show that the drag and lift coefficients are hardly 

affected by increasing the size of the uniform area around the cylinder in the y direction 

beyond [-2,2]. 

 
 

 

 

 

Figure 5-28: Effect of the vertical extends of the uniform area around the circular 

cylinder on the Lift coefficient. 

 

According to Figure 5-27, by increasing size of the uniform grid area from [-1,1] to 

[-2,2]  in the y direction the mean drag coefficient increases from 1.325 to 1.33 
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respectively, which is less than 0.3 percent. Also, according to Figure 5-28, the 

maximum lift coefficient changes from 0.303 to 0.309 when the size of the uniform grid 

in the y direction is changed from [-1,1] to [-2,2] which is less than 0.6%. The 

simulation results show a similar trend for the lift and drag due to pressure and shear 

stress.  Moreover, the power spectral density (PSD) of the lift coefficient shows that the 

Strouhal frequency is not affected at all by changing the size of uniform grid area in the 

y direction. 

5.2  Validation  

In this section, the numerical code and the IB interpolation method are validated by 

comparison with other numerical and experimental results presented in the literature. 

The flow around a stationary circular cylinder at a low Reynolds number of Re=100 is 

chosen as a bench mark. According to the parametric study presented, the domain sizes 

in the x and y directions are selected as [-15D, 15D] while the uniform grid area in the x 

and y directions around the cylinder is [-2,4] х [-2,2] (see Figure 5-29). The grid size in 

the uniform area is 0.025D and the grid is stretched towards the computational 

boundaries by a stretching factor of 3. The numerical results for the lift and drag 

coefficients and the Strouhal number are compared with those given the literature.  
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Figure 5-29:  Schematic of the computational domain 
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A Dirichlet boundary conditions (U=1 and V=0) is applied at the inflow; to model 

the far field a symmetric boundary (U(i,ny)=U(i,ny-1) and V(i,ny)=0) is used while a 

convective boundary condition is applied at the outflow.  

 

 

Figure 5-30: Drag coefficient, Drag due to pressure and friction for a stationary 

cylinder at Re=100 versus non dimensional time. 

 

Figure 5-30 shows the drag coefficient plotted against the non-dimensional 

simulation time. The results took about 150 non-dimensional time units to reach the 

steady state solution without adding an external perturbation to trigger the vortex 

shedding. The drag due to the shear stress and the pressure are integrated around the 

cylinder to obtain the total drag coefficient.  

At Re=100 the mean drag coefficient, the drag due to pressure and shear stress are 

1.325, 1.05, 0.275 respectively. Also, according to the Table 5-3 the results match the 

experimental and other numerical results very well.  

Figure 5-31 presents the numerical results for the lift coefficient at Re=100. The 

results show that the amplitude of the lift due to the pressure dominates the lift 

coefficient. The simulation results show that the amplitude of lift coefficient, lift due to 

pressure and shear stress are about 0.31, 0.282 and 0.03, respectively. The pattern of the 

lift and drag coefficient and also the Strouhal number (St=0.164) are matching very well 

with the literature. 
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Figure 5-31: Lift coefficient, the lift due to pressure and friction for a stationary 

cylinder at Re=100 verses non dimensional time. 

 

The flow around a cylinder is a well-known test case which has received a great 

deal of attention in the literature. Table 5-3 shows the results of a few of these studies 

(more details are presented on chapter 6). Interestingly, the reported results show 

differences of about 10% and 7% between the reported drag and lift coefficients 

respectively. At first glance it looks like these differences are due to the various 

algorithms and approaches that have been applied to solve the problem. Some of the 

differences are caused by the use of various computational domain sizes. Apart from the 

mesh sizes that were employed, also the size of the computational domain maybe one of 

the causes of these differences. The size of domain could affect the results in three ways, 

either the domain is not high enough to prevent the blockage effect, or the length of the 

domain before the cylinder is not large enough to prevent an inflow effect or the size of 

the domain after the cylinder is not large enough to be able to neglect the outflow 

affecting the simulation results. For instance, the size of the domain in front of the 

cylinder in the case of Corbalan & de Souza 2010 is 6.5D and in the case of Lai & 

Peskin (2000) is about 6D (1.85/0.3), the higher mean drag that is predicted in 

comparison to the other cases (for instance Kim et al. 2001) was due to the use of the 

relatively small inflow domain used by former researcher in front of the cylinder. 

In addition, in the simulation of Lima E Silva et al. 2003, the inflow length is 

sufficiently long but the blockage effect due to the limited vertical extend of the domain 

causes the drag coefficient increases to 1.39. 



119 

 

According to the parametric study conducted in this chapter for the flow around the 

cylinder at Re=100, the size of the domain before the cylinder should be more than 15D 

and the size of the domain in the cross flow direction should be more than 30D in order 

to ensure that domain size does not influence the drag coefficient. In all cases, the size of 

domain after the cylinder was long enough to prevent an additional effect on the drag 

coefficient form the outflow boundary condition. According to Table 5-3 , the size of the 

computational domain has a similar effect on both lift and Strouhal number as well as on 

the drag coefficient (more results are presented on Table 6-2). 

 

Table 5-3: Drag, lift and Strouhal number for present study and well known 

numerical and experimental studies for the flow around a circular cylinder at low Re=100.  

 Domain 

before 

cylinder 

Domain 

size in y 

direction 

Domain  

size in x 

cylinder 

D CD CL St. 

Corbalan & de souza 

2010 

(IB- Force) 

6.5D 15D 19.2D 1 1.44 ±0.31 --------- 

Lima E Silva et al. 

2003 (IB- PVM) 
16D 15D 30D 1 1.39 ------- --------- 

Lai  & Peskin 2000 

(IB- Force) 
1.85 8 8 0.3 1.447 ±0.329 0.165 

Kim et al. 2001 

(IB- Force+ mass 

source) 

--------- 100D 70D 1 1.33 ±0.32 0.165 

Roshko1954 

(experiment) 
---------- --------- ----------- ------- ------- -------- 0.164 

Williamson 1988 

(experiment) 
--------- --------- ---------- ------- ------- ------- 0.166 

Present study (IB – 

Interpolation) 
15D 30D 30D 1 1.33 ±0.31 0.164 

 

5.3 Summary  

Fluid Structure Interaction (FSI) has received a great deal attention in the recent 

decades and many approaches have been adopted to solve this problem.  In this thesis, 

the focus is on the Immersed Boundary approach with interpolation/reconstruction 

methodology. On the one hand, the IB method makes it possible to model FSI problems 

with complex boundary and large structural displacement, on the other the IB method 

needs special care and a high mesh resolution near the immersed boundary. In general 

FSI problems, and in particular IB approach, are relatively expensive and therefore a 

selection of optimum parameters to model this problem is important.  In this chapter the 

developed methodology and code is validated and a comprehensive parametric study is 
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conducted for flow around a stationary cylinder at low Reynolds number, Re=100. This 

particular case is a well-known benchmark and several experimental and computational 

results are reported in the literature. It is shown that the size of the domain significantly 

affects the flow parameters and this could be a potential reason for some of the 

discrepancies in results reported in the literature. Numerical simulation results show that 

if the size of the domain is increased from 5D to 10D before the cylinder, the lift and 

drag coefficients decrease by about 10%.  However, a further enlargement of the domain 

does not change these values any more. In addition, the size of the domain in the cross 

flow direction is important. When the size of the domain in the y direction is increased 

from 10D to 25D, the lift and drag coefficients decrease by about 10%.  

 However, numerical results show that the sizes of the uniform grid patch around 

the cylinder and the grid stretching factor only have a limited effect on the lift and drag 

coefficients. The results show that any size of the uniform grid area in the y direction 

larger than [-2,2] does not affect the results. Also, the uniform size in the x direction is 

proposed to be [-2,4] to limit affecting the flow parameters. Also, stretching factor less 

than 4, have very limited influence on the lift and drag coefficients.    

In addition, the Strouhal number and lift and drag coefficients for the optimum 

domain sizes were compared with the reported values in the literature. All the 

parameters were found to be in very good agreement with the numerical and 

experimental results reported elsewhere.  

In the next chapter, the present IB approach is compared with alternative 

interpolation/reconstruction methods reported in the literature.  
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Chapter 6. Comparative study of the interpolation 

methods - Stationary cylinder 

 

 

Peskin 1972 introduced the Immersed boundary (IB) approach. In this method, 

using a Cartesian grid the solid boundary is imposed on the flow by adding a forcing 

function to the flow equations. Since 1972, Peskin’s method has been developed further 

by many researchers (see Chapter 3 for more details) and most of the modern immersed 

boundary approaches use an interpolation procedure to enforce the non-grid conforming 

boundaries. In the direct forcing approaches, the interpolation is used to implement the 

forcing functions at the interface cells in order to enforce the immersed boundary on the 

governing equations. In the IB interpolation method, the forcing function, f, which is 

needed to enforce the boundary conditions is not calculated directly; but instead, the 

flow velocity is interpolated at the interface cells and the solid boundary is imposed 

indirectly on the discrete equations. The interface points are identified as those points in 

the fluid domain whose at least one of its neighbouring points is inside the solid domain. 

Therefore, the flow parameters (i.e. velocities and pressures) related to these points 

cannot be updated directly by the governing equation (Figure 3-2right). Any cells that 

contain one or more interface points are called the interface cells. In the indirect forcing 

approach (interpolations approach), at every time step the flow parameters in the 

interface cells are updated by direct interpolation formulas and the results are used as the 

boundary condition in the flow solver. In this chapter, the flow around a circular cylinder 

at low Reynolds number is selected as a bench mark and four IB 

interpolation/reconstruction methods which have been introduced previously in the 

literature review chapter are compared with the proposed interpolation method in this 

research.  

6.1 Governing equation and computational domain 

The unsteady, incompressible Navier-Stokes equations (4-3) are used as the 

governing equations. A staggered variable arrangement, as introduced by Harlow and 

Welch 1965, is used to discretize the governing equations on a Cartesian grid (equations 

(4-11) to (4-20)). The continuity equation is enforced by taking the divergence of the 

momentum equations to form a Poisson equation for the pressure (equations (4-32) to 
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(4-36)).  The governing equations were solved by a two steps fractional method 

(equations (4-22) and (4-23)). 

Based on the parametric study conducted in chapter 5, the size of the computational 

domain is selected in a way to ensure that the boundaries have limited effect on the 

simulation results (Figure 6-1).  Therefore, the size of the domain in y and x directions 

are taken to be 20D and 15D, respectively and the grid size is chosen to be 

dx=dy=0.05D which is the coarsest grid that gives acceptable results (according to the 

mesh refinement study presented in section 5.1.1).  

Since the entire domain is meshed using a uniform Cartesian grid, the 

implementation of the grid-conforming inlet, outlet and side boundary conditions was 

straightforward and the boundary conditions along the circular cylinder are implemented 

using five different immersed boundary interpolation methods.  

 

 

Figure 6-1: Fluid domain size and boundary conditions. 

6.2 Interpolation method cases 

Several methods are used in the literature to interpolate/reconstruct the velocity in 

the boundary cells near the immersed boundary (section 3.3). Four interpolation methods 

plus the interpolation method introduced in this thesis are compared to one another. To 

do so, the first step is to define the interface cells in the specific geometry, which could 

be complicated for geometries with unknown analytical functions (Iaccarino & Verzicco 
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2003). Here, the flow around a stationary circular cylinder at low Reynolds number, 

Re=100 is selected as a bench mark. The next step is to determine the interpolation 

formulas for each individual interpolation method. These formulas will be used to 

update the flow parameters (velocities and pressure) in the interface cells adjacent to the 

solid boundaries. The flow solver uses these values as the boundary conditions for the 

rest of the flow domain. In the following part, these interpolation methods are explained 

briefly.    

6.2.1 Case A: No interpolation 

The simplest possible method is to add the interface cells to the solid domain. In 

this case an interpolation is not needed and the solid boundary assumes a stepwise shape 

(Figure 3-5a). The immersed boundary is diffused, in the staggered variable arrangement 

as the velocity components are defined at different sides of an element. Fadlun et al. 

2000 proposed a similar method for imposing forcing functions for the immersed 

boundaries. As no interpolation is conducted in this method, it is expected to be 

relatively faster while still giving acceptable results. In the case of a moving body 

(displacement/ deformation) this method is potentially more efficient as the interpolation 

formulas do not need to be updated in the course of the displacement/deformation. In the 

simulation of the flow around a complex geometry with curved boundaries, this method 

could lead to inaccurate results for the lift and drag coefficient when using relatively 

course grids. On a fine grid this method could give more accurate results, but this would 

compromise the advantage of the method which is the lower computational demand.   

6.2.2 Case B: Weighting method 

This method is similar to the one discussed above as Case A. The major difference 

is that the values for the velocities in the boundary cells are associated with the area of 

the cell which is covered by the fluid over the total cell area.  In this method the area of 

cells which are common between the fluid and structures are used to calculate this 

weighting coefficients.  Figure 3-5 (right) shows the location of these weighted 

boundary velocities in the cells that are part fluid and part solid. For each of the velocity 

components a coefficient is determined that corresponds to the ratio of the fluid part of 

the two adjacent cells to the whole area of the two cells. 
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6.2.3 Case C: linear interpolation method   

The third method is a linear interpolation method where the velocities in the 

interface cells are calculated by interpolating between the velocity at the solid boundary 

applying the no slip condition and one point in the fluid domain. Fadlun et al. 2000 

suggested using this interpolation method to enforce the boundary condition to the fluid 

domain in the forcing IB approaches. The linear interpolation is ideal for the problems in 

which the immersed boundaries are parallel to the Cartesian grids lines. The advantage 

of this method is that the interpolation formula is simple as the interpolation points 

coincide with grid nodes on the Cartesian coordinates where the velocities are defined in 

the discretised governing equations; however for the inclined and curved immersed 

boundaries the interpolation direction (either x or y direction in two dimensional 

simulation) might slightly affect the simulation results. 

 

 
 

Figure 6-2: Bilinear proposed interpolation in this study for the cells near the solid 

boundary in vertical (Left) and horizontal (right) velocity components. 

6.2.4 Case D: Bilinear interpolation method 

Kang et al. 2009 presented various interpolation methods for the immersed 

boundary method in two dimensions considering the effect of the pressure near the 

boundary as well as velocity in the previous time step. In this comparison study his 

interpolation schemes where only involve a pure velocity interpolation were selected. In 

the Standard Reconstruction method (SRM), Kang et al. 2009, used the two 

neighbouring velocities in the horizontal and vertical directions that were located closest 

to the immersed boundary to interpolate velocities at the interface points (Figure 3-9). 

The resulting interpolation formula for the velocity in the horizontal direction is 

presented by equation (3-15), where the coefficients represent the interpolation weights. 

This method is similar to the linear methods (Case C), however, interpolations are 
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performed in both x and y directions in order to find boundary velocities. For some 

points, due to the curvature of the immersed boundary, the interpolation is only possible 

in one of the directions; therefore this method reduces to a linear interpolation method at 

those points (Figure 3-10).     

6.2.5 Case E: Proposed interpolation method  

The bilinear interpolation method proposed in this paper is based on interpolating 

the boundary velocity values in the direction perpendicular to the immersed boundary. In 

this method, perpendicular lines from the boundary surface are drawn which intersect 

the locations of the boundary velocities and cut the line between the first two known 

velocities in the fluid domain (Point A, Figure 6-2 right). The velocity is interpolated 

between two known velocities at the intersection point A. Then, the boundary cell 

velocity values will be interpolated using the solid boundary velocity (for a stationary 

cylinder with no-slip conditions this velocity is zero) and the velocity at point A. Figure 

6-2 (left) shows this interpolation for velocities in the y direction and Figure 6-2 (right) 

shows the interpolation for the velocity in the x direction.  

There are some alternative interpolation methods presented in the literature that 

interpolate the interface cell velocities in the perpendicular direction to the immersed 

boundary (Balaras 2004, Gilmanov et al. 2003 among others); but in these methods the 

procedure to find the interpolation points is very time consuming (see section 3.3.3). For 

the stationary cases, the interpolation formulas are calculated only once, prior to the 

simulation, and at each time step the values of the boundary cells are updated using the 

same formulas. However, as for the problems with moving immersed boundaries, the 

interpolation formulas should be recalculated at each time step, the interpolation method 

should not be too time consuming to execute. 

6.3 Results and discussion 

The flow around a stationary circular cylinder at low Reynolds number, Re=100, is 

taken as a bench mark. Five different interpolation treatments are implemented 

separately to represent the immersed boundary (the circular cylinder). The Strouhal 

number (St), drag (CD) and lift (CL) coefficients for various cases are compared.  

For any solid body both the pressure distribution and the friction along the solid 

surface may contribute to the lift and drag forces. In this chapter, the pressure at the 

surface is obtained by taking the wall-nearest pressure values in the flow domain on the 
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outside of the solid body, thereby assuming that the wall normal gradient of the pressure 

near the surface is negligibly small.  The component of the drag and lift forces due to 

pressure distribution is calculated by integrating the pressure along the solid boundary. 

On the other hand, the shear-force component of the lift and drag forces is calculated 

from near the surface of the solid.  The tangential velocity near the solid surface is 

obtained at the wall-nearest point outside of the body and is subsequently used to 

calculate the wall-shear stress at the cylinder surface (see chapter 4 for more details). 

 

Table 6-1: Real computational time, 20 vortex shedding 

 Case A Case B Case C Case D Case E 

Real 

time (s) 

3231 3225 3379 4441 3383 

 

The simulation times for 20 complete vortex shedding periods are measured for 

these five different interpolation cases. Once vortex shedding commenced all 

simulations were found to run at virtually the same speed (Table 6-1) showing that the 

computational effort needed for the interpolation was negligible as most of the 

computational time (more than 70%) is taken by the Pressure Poisson solver. However, 

for a non-stationary cylinder, it is expected that updating the interpolation formulas may 

lead to an increment in the execution time for the linear and bilinear methods.  

Figure 6-3 (left) shows that Case C (linear interpolation) is the quickest method to 

develop vortex shedding, which indicates that the implementation of boundary 

conditions with linear interpolation causes significant numerical noise. In Case E 

(proposed bilinear method), on the other hand, the vortex-shedding instability kicks in 

much later evidencing that the level of numerical noise introduced by this type of 

interpolation is very small. 

Figure 6-3 (right), shows a comparison of the drag coefficients obtained in 

calculations of flow over a stationary cylinder at Re=100 using various interpolation 

methods. It can be seen that in the cases C, D and E, (linear and Bilinear interpolation 

methods) the results are converging to a value of CD = 1.43. However, Case A (without 

interpolation) leads to a higher drag coefficient, CD=1.46 and Case B (weighting 

method) leads to a lower drag coefficient CD=1.42. In the literature for this bench mark 

(at Re=100), the drag coefficient is reported in the range from 1.33 to 1.47 (Table 6-2). 
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Therefore, all the interpolation methods are predicting acceptable values for the drag 

coefficient. 

 
 

 

 

 

Figure 6-3: Drag coefficient for the flow around a stationary cylinder at Re=100, Case 

A, without interpolation; Case B: area weighting method; Case C, Linear interpolation 

method; Case D, Bilinear interpolation; Case E, Suggested bilinear interpolation. 

 

The drag coefficient due to pressure and shear stress show a slightly different 

behaviour (Figure 6-4). The drag coefficient due to the pressure for linear (case C) and 

bilinear (cases D and E) methods are about 1.18, however for Case A (without 

interpolation) and case B (weighting method) these values are 1.11 and 1.06 

respectively. The results show that both case A and B predict smaller values (by about 

8%) pressure drag coefficient in comparison to the other linear and bilinear interpolation 

methods.  

On the other hand, in the case A and B, the mean drag coefficient due to shear stress 

(Figure 6-4 right) are predicted to be 0.345 and 0.355 respectively, which is about 40% 

higher than the values predicted by linear and bilinear methods (case C, D and E) which 

are about 0.245. The numerical results show that the two cases A and B are predicting a 

lower value for the drag coefficient due to the pressure (about 8%) and a higher value for 

the drag due to the shear stress (about 40%) in comparison to the linear and bilinear 

cases. But the drag coefficient for cases A and B differ only about 2% from those 

obtained in the other interpolation methods. This can be explained by the fact that 

accumulated errors are cancelling out. Therefore, it is important to notice that the 

difference among the methods should not be judged only by the drag coefficient and the 
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drag components should be investigated as well. In addition, according to the Figure 6-3 

right and Figure 6-4, in the linear and bilinear interpolation (case C, D and E) methods, 

the drag coefficient, the drag due to pressure and drag due to the shear stress are 

converging nearly to the same values. The numerical results confirm that the suggested 

bilinear interpolation method (case E) has the same accuracy as the linear (case C) and 

bilinear (case D) methods. 
 

 

 

 

Figure 6-4: Drag coefficient due to pressure (left) and due to shear stress (right) for 

the flow around a stationary cylinder at Re=100, Case A, without interpolation; Case B: 

area weighting method; Case C, Linear interpolation method; Case D, Bilinear 

interpolation1; Case E, proposed bilinear interpolation method 

 
 

 

 

 

Figure 6-5: Lift coefficient for the flow around a stationary cylinder at Re=100, Case 

A, without interpolation; Case B: area weighting method; Case C, Linear interpolation 

method; Case D, Bilinear interpolation  method; Case E,  suggested bilinear interpolation 

method 
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Figure 6-5 and Figure 6-6 show the comparison of the lift coefficients for the 

various interpolation cases. It can be seen that, like the drag coefficients, also the lift 

coefficients for the bilinear cases are nearly the same (Case D and E) with CL ≈ ±0.31. 

Case B (weighting method) shows the lowest value for the lift (CL = ±0.27) and Case C 

(linear interpolation), shows the highest value for the lift coefficient (CL=±0.325).  

The simulation results show that the lift coefficient predicted by the linear (case C) 

and bilinear (case D and E) methods are matching well with the results reported in the 

literature (Table 6-2). However Case A (without interpolation) and case B (weighting 

method) show a lift coefficient that is slightly lower than the values reported in the 

literature.   

The Power Spectral density (PSD) of the lift coefficient is presented in the Figure 

6-7. The PSD graph illustrates that interpolation methods could affect the frequency of 

the vortex shedding (Strouhal number) for the stationary cylinder. The numerical results 

show that, apart from cases A (without interpolation) and B (weighting method) that 

predict a higher Strouhal number (0.174 and 0.176), the other interpolation methods do 

not affect severely the Strouhal number. The Strouhal number for the linear interpolation 

method (Case C), for the bilinear interpolation method (Case D) and for the proposed 

bilinear interpolation method (Case E) is predicted about 0.169.  
 

 

 

 

Figure 6-6: Lift coefficient due to pressure (left) and shear stress (right) for the flow 

around a stationary cylinder at Re=100. Case A, without interpolation method; Case B: 

area weighting method; Case C, Linear interpolation method; Case D, Bilinear 

interpolation method; Case E, suggested Bilinear interpolation 

 

In the numerical literature, the Strouhal number for the flow around a circular 

cylinder at Re=100 is reported in the range from 0.164 to 0.175. However, most of the 
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experimental results reported show a Strouhal number in the range from 0.164 to 0.167. 

According to the parametric study (Chapter 6), the reason that these numerical 

simulations present higher values for the Strouhal number is related to the entrance 

length (before the cylinder), which it is taken to be 5D in this chapter.  

 

 

Figure 6-7: Power Spectral density of the lift coefficient; five different interpolation 

methods 

 

Table 6-2: Strouhal number, lift and drag coefficient for the flow around a stationary 

cylinder and Re=100. 

 

simulation methods 

Strouhal 

Number 

   Drag 

Coefficient 

    Lift 

coefficient 

Case A 0.174 1.46 0.29 

Case B 0.175 1.42 0.27 

Case C 0.169 1.432 0.325 

Case D 0.169 1.434 0.305 

Case E 0.168 1.432 0.312 

Park 1998, fitted method 0.165 1.33 0.33 

Williamson 1988(exp.)  0.166 …. …. 

Kim et al. 2001 0.165 1.33 0.32 

Roshko 1954(exp.)  0.164 …. …. 

Lai and Peskin 2000 0.165 1.4473 0.3299 

Choi et al. 2007 …. 1.351 0.315 

Corbalan & de Souza 2010 …. 1.44 0.31 
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Table 6-2 shows a comparison of the Strouhal number, lift and drag coefficient for 

the flow around a stationary cylinder at Re=100 using various methods; ranging from the 

experimental methods (Roshko 1954 and Willamsion 1988) to the body fitted mesh 

(Park et al. 1998) and immersed boundary methods (Kim et al. 2001, Lai & Peskin 2000, 

Choi et al. 2007 and Corbalan & de Souza 2010). It can be seen that the Strouhal number 

varies between 0.16 and 0.18; the drag coefficient between 1.33 and 1.4473 and the lift 

coefficient between 0.31 and 0.33.   

6.4 Conclusion 

The objective of the present study was to compare the accuracy and computational 

efficiency of various IB interpolation methods and select the most accurate and least 

expensive method for future use in the simulations of flow around a deformable 

cylinder. The fractional step method and a staggered variable arrangement on a 

Cartesian grid have been used to solve the governing equations. In the proposed IB 

method the velocities near non-conforming boundaries were interpolated in the normal 

direction to the walls, thereby considering the curvature of the geometry. The Strouhal 

number, drag and lift coefficient for 5 different IB interpolation methods are compared. 

The overall results show a good agreement with the literature for most of the 

interpolation methods for the stationary cylinder at a low Reynolds number, Re=100. 

The drag coefficient results for the five different interpolation methods differ by no more 

that 2%, while the drag due to shear stress shows differences of up to 40% due to the 

accumulated errors, however simulation results only show a 2% difference in drag 

coefficients. The Strouhal numbers for five different interpolation methods differ only 

by a maximum of 3%. The simulation results show a difference of about 15% on the lift 

coefficient between the interpolation methods. However the lift coefficients calculated 

by linear and bilinear interpolation methods were formed to match well with literature.  

In addition, the bilinear interpolation method took about 2% more computational 

time per vortex shedding cycle compared to the other methods.  In the next chapter the 

proposed interpolation method is used to simulate body cross flow oscillation of a 

circular cylinder. 
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Chapter 7. Body cross flow oscillation   

 

Having studying the flow over a stationary bluff body in previous chapters, the 

focus of this chapter is on the flow over a moving body with a degree of freedom in the 

cross flow direction. This chapter briefly presents the theory and governing equations 

necessary to simulate a moving body in a uniform stream. Also, it is explained how the 

Navier-Stokes equations with IB interpolation are modified to allow   modelling of a 

moving boundary in the presence of either forced oscillations or with prescribed motion 

and Vortex-Induced Vibrations (VIV) in the cross flow. In this model the IB 

interpolation technique is used to represent the immersed boundary on a Cartesian grid. 

To simulate the FSI problem, two approaches are followed; an inertial frame of 

reference and a moving (non-inertial) frame of reference. In the latter case, the frame of 

reference is attached to the body and the governing equations are solved in a relative 

frame of reference.  

7.1 Forced Oscillation of a body in cross flow direction  

In a forced excitation of a body, the body oscillates at the forcing frequency with a 

prescribed motion in the cross flow direction. At some specific range of oscillation the 

frequency of vortex shedding around the body becomes similar to the oscillation 

frequency. From the literature it is known that the frequency of vortex shedding can be 

controlled for a limited range of reduced velocities, where the vortex shedding frequency 

and the body oscillation frequency become synchronized. This phenomenon is usually 

known as ‘lock-in’. Simulation results show that the lock-in occurs only in a frequency 

range close to the system’s natural frequency, above a threshold of oscillation amplitude. 

The lock-in range increases with increasing the amplitude (Figure 1-4). Moreover, a 

dramatic change might occur in the flow patterns and lift and drag forces by increasing 

the oscillation amplitude in the lock-in region. Another important issue in a cross flow 

oscillation is the phase change between the vortex shedding and the forced oscillation. In 

some cases the amplitude of the lift coefficient for the vibrating cylinder is lower than a 

stationary case, due to the fact that the inertial part of the lift force dominates in this 

range of oscillations and has a different phase than the lift due to the vortex shedding. 

This issue in low amplitude vibration could lead to a lock-in and beating pattern. The 

body’s motion in the y direction is defined as a sinusoidal motion as,  
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𝑦𝑐(𝑡) = 𝐴0𝑦𝑆𝑖𝑛(𝜔𝑡) = 𝐴0𝑦𝑆𝑖𝑛(2𝜋𝑓𝑡) (7-1) 

 

Where 𝑦𝑐(𝑡) is the location of the centre of the cylinder and 𝐴0𝑦, 𝜔 and 𝑓 is the 

amplitude, the frequency in rad/s and the frequency in Hz of the prescribe oscillation, 

respectively. 

7.2 Fluid-Structure interaction due to Vortex induced Vibration  

When a flow passes a bluff body, Fluid-Structure Interaction (FSI) and vortex 

shedding phenomena may incur the bluff body to oscillate. This oscillation is known as 

Vortex-Induced Vibration (VIV) in the literature. If the frequencies of the VIV and the 

natural frequency of the structure become similar, the flow may induce resonance in the 

structure. The governing equation of a structure (Figure 7-1) that is flexible (one degree 

of freedom) in the cross flow direction is given by:  

 

Figure 7-1: Flow over a circular cylinder at two dimensions with vertical degree of 

freedom 

 

𝑚
𝑑2𝑦

𝑑𝑡2
+ 𝐶

𝑑𝑦

𝑑𝑡
+ 𝑘𝑦 = 𝐹𝐿(𝑡) 

(7-2) 

 

Where m, C and K are mass, damping and stiffness of the structure, respectively, 

while y corresponds to the transverse displacement of the centre of the body. 𝐹𝐿 is the 

hydrodynamic force in the cross flow direction. The same non-dimensional scaling as in 

the flow governing equation is applied here to non-dimensionalize the structural 

governing equation.  

𝑑2𝑦∗

𝑑𝑡∗2
+ 2 × 𝜉 × (

2𝜋

𝑉𝑟
)
𝑑𝑦∗

𝑑𝑡∗
+ (

2𝜋

𝑉𝑟
)
2

𝑦∗ =
2×𝐶𝐿(𝑡)

𝜋𝑚∗  
(7-3) 

 

Where, the non-dimensional parameters are labelled by a ‘*’. In the reminder of this 

thesis this sign is dropped for simplicity. 𝑉𝑟 =
𝑈∞
𝑓𝑁𝐷

 is the reduced velocity where 
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𝑓𝑁 = ( 1
2𝜋
)√𝐾

𝑚
 is the natural frequency of the undamped structural system (mass and 

spring), 𝑈∞ and 𝐷 are the free stream velocity and cylinder diameter, respectively (the 

same reference scales as used to non-dimensionalized the Navier-Stokes equations) . 

𝐶𝐿 =
𝐹𝐿

1
2
𝜌𝑈∞

2 𝐷𝐿𝑐
 is the lift coefficient where 𝜌 is the fluid density and 𝐿𝑐 is the length of the 

cylinder (This length is assumed to be Lc=1 in the two dimensional simulation). 

𝑚∗ = 𝑚

𝑚𝑓
= 𝑚

𝜌𝑓𝜋(
𝐷2

4
)𝐿𝑐

 is the mass ratio, i.e. the mass of the structure (cylinder) m, over 

the mass of the fluid replaced by the structure 𝑚𝑓. 𝑦∗ = 𝑦

𝐷
 is the non-dimensionalized 

vertical displacement. 𝑡∗ = 𝑡 × 𝐷

𝑈∞
 is the non-dimensional time and 𝜉 = 𝐶

𝐶𝑐
  is the 

structural damping ratio where 𝑐𝑐 = 2√𝐾𝑚 is the critical damping.  

In an FSI simulation, at every time step the hydrodynamic forces are calculated by 

solving the flow governing equations and the displacement of the structure based on 

these forces is predicted. In the same time step the flow governing equations for the new 

configuration of the structure is solved to predict the new hydrodynamic forces. This 

process is continued iteratively to obtain a converged solution with the convergance   

criteria being a constant position of the structure before going to the next time step i.e 

strong coupling. 

The free vibration (VIV) and forced vibration of a structure can be presented in 

either a moving frame of reference or an inertial frame of reference. In the following 

sections these two approaches are briefly presented. Also, the simulation results based 

on these two approaches will be compared.   

7.3 First approach-moving frame of reference 

In this approach the reference frame is fixed to the moving body and the boundary 

conditions are defined in a way to resemble the same problem for an observer moving 

with the body. This can be explained due the fact that the flow about a circular cylinder 

forced to oscillate in the transverse direction to a free stream is kinematically the same 

as the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross 

flow. It should be noted that these two flows differ dynamically due to the inertial 

effects. This effect is known as the Froude-Krylov force in the literature (Meneghini and 

Bearman1995). 
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𝐶𝐿 = (𝐶𝐿)𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 +
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

 
(7-4) 

 

In this equation 𝐶𝐿 is the lift coefficient in the inertial frame of reference, 

(𝐶𝐿)𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 is the lift coefficient which is calculated in the moving frame of 

reference and 
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the non-dimensional inertial term for a circular cylinder. D is 

the cylinder diameter and  
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the acceleration of the cylinder in the inertial frame 

of reference.   

In the discussion of the methodology (Chapter 4) it was explained that regardless of 

the simulation approach (conforming grid, e.g. ALE or non-conforming grid, e.g. IB), it 

is possible to simulate moving boundaries in a non-inertial frame of reference. The 

combination of the conforming grid approach with a non-inertial frame of reference 

could be the best algorithm to simulate FSI for a single two dimensional rigid body 

motion in fluid flow. On the other hand, the relative reference frame could improve non-

conforming grid approaches significantly as the IB formulation does not need to be 

updated because relative displacement of the body and the background computational 

grid is zero. In this approach, the governing equation of the flow is solved in a moving 

reference frame which is attached to the cylinder. To solve the governing equation in the 

relative frame two fundamental changes are necessary. First of all, the governing 

equation should be derived in the relative frame of reference. This subject has been 

addressed in section 3.5 for a general case. The Navier-Stokes equation in the relative 

frame of reference has additional terms to compensate for the effect of the moving frame 

in the calculation. Also, the boundary conditions should be introduced in the relative 

reference frame as well. Here, only the movement in the transverse direction is 

considered. The updating of the governing equations and boundary conditions is 

described below.    

7.3.1 Moving frame-governing equation 

Equations (3-35) to (3-39) govern the flow in the moving frame of reference given a 

general movement in the two dimensional case. For the movement of the body in the 

cross flow direction the governing equations can be written as: 

∇. V = 0 (7-5) 

 

∂V

∂t
+ V ∙ ∇V = −∇p + ϑ∇2V − �̈� 

(7-6) 
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In these equations the velocities are all relative. The 𝐺(𝑣, 𝑡) term in equation (3-37) 

is simplified to only �̈� which is the transverse acceleration of the moving body in the 

inertial frame of reference. The other terms in equation (3-37) cancel due to the fact that 

the moving frame is not rotating, hence 𝜃 = �̇� = �̈� = 0 and the rotation matrix 𝐴 =

𝐴𝑇 = 𝐼. For instance, in the case of a transverse sinusoidal oscillation (equation (7-1)) of 

the cylinder,  �̈� reads: 

�̈� = �̈�𝑐(𝑡) = −𝐴0𝑦𝜔
2𝑆𝑖𝑛(𝜔𝑡) (7-7) 

 

7.3.2 Moving frame-velocity boundary conditions 

The boundary conditions should be applied in the relative frame of reference.  

Equation (3-39) ows the velocity in the relative frame of reference. For the transverse 

oscillation of the body the frame does not have an angular velocity, i.e. �̇� = 0, hence 

𝑉 = 𝑉 ́ − �̇� = 𝑉 ́ − �̇�𝑐(𝑡) = 𝑉 ́ − 𝐴0𝑦𝜔𝐶𝑜𝑠(𝜔𝑡) (7-8) 

 

𝑉 ́ is the velocity in the absolute frame of reference, in this frame a symmetric 

boundary condition is applied in the top and bottom of the computational domain hence 

in the absolute frame of reference the velocities normal to this boundaries are zero, 

𝑉 ́ = 0. Therefore equation (7-8) can be simplified for the above case (movement of 

body in the transverse direction) to give: 

𝑉 = −�̇� = −�̇�𝑐(𝑡) = −𝐴0𝑦𝜔𝐶𝑜𝑠(𝜔𝑡) (7-9) 

 

7.3.3 Moving frame-Neumann boundary for pressure Poisson equation 

 Finding a proper pressure boundary condition for the elliptic pressure Poisson 

equation (PPE), equation (7-10)  , has been the subject of some controversy (Gresho & 

Sani 1987 and Sani et al. 2006). First of all, as a necessary condition for the existence of 

a solution to a problem with a Neumann boundary condition (equation (7-11)), the 

boundary condition should be well-posed i.e. the source and the boundary data should 

satisfy the compatibility condition (equation (7-13)). 

−∇2𝑝 = 𝑓 (7-10) 

 

𝜕𝑝

𝜕𝑛
= 𝑔 

(7-11) 

 

The compatibility condition is obtained by applying the divergence theorem (also 

known as Gauss’ theorem) to the integration of the Poisson equation over the domain 
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(equation (7-12)). To do so, the Laplace operator is written as the divergence of the 

gradient vector.  

−∫∇2𝑝

Ω

= −∫∇. ∇𝑝

Ω

= −∫
𝜕𝑝

𝜕𝑛
𝜕Ω

=∫𝑓

Ω

 
(7-12) 

 

∫𝑔

𝜕Ω

+∫𝑓

Ω

= 0 
(7-13) 

 

More precisely, equation (7-13) states that the outward flux of the vector field 

(gradient of pressure on the boundaries) is equal to the volume integral (here surface) of 

the divergence (of the pressure gradient) over the region inside the boundaries. In other 

words, it states that the sum of all sources minus the sum of all sinks gives the net flow 

out of a region.  

A natural method to define the Neumann boundary for the pressure is by using the 

normal component of the momentum equation at the boundaries (Blackburn and 

Henderson 1999). By taking the dot product of the domain outward normal unit vector, 

n, with the momentum equation (7-6), the Neumann pressure boundary condition is 

obtained as  

n ∙ ∇p =
∂p

∂n
= −n ∙ [

∂V

∂t
+ V ∙ ∇V + ϑ(∇ × ∇ × V) + A�̈�] 

(7-14) 

 

In the above equation, according to the suggestion of the Orsag et al. 1986, the 

viscous term is presented by using the vectors identify: 

∇2V = ∇(∇ ∙ V) − ∇ × ∇ × V (7-15) 

 

Also, Blackburn and Henderson 1999 suggested writing the non-linear term 

(convection term) as a skew symmetric form (equation (7-16)). 

V ∙ ∇V = (V ∙ ∇V + ∇ ∙ VV) 2⁄  (7-16) 

 

7.3.4 Moving frame of reference algorithm 

Using a non-inertial reference frame allows to simulate FSI problems with moving 

boundaries in a fixed Cartesian grid (as compared to an ALE approach with 

moving/deforming grid) while the interpolation coefficient maintains unchanged (in 

comparison to an IB approach in an inertial frame). Therefore using a moving frame of 

reference would be potentially an efficient approach; however this method is limited to a 

single moving object or synchronised moving objects. The algorithm for the simulation 

of a forced vibration of a rigid body using a moving frame of reference is as follows. 
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1. The flow boundary condition (location and velocities) are updated according to 

the prescribed motion of the cylinder in time. 

2. The flow velocity is updated at the new time step using an explicit Rung-Kutta 

method. 

3. The pressure Poisson equation with Neumann boundary conditions is solved by 

an iterative method. 

4. The velocity vectors are updated by using the pressure term from the previous 

step. 

The above algorithm is repeated until a steady state solution is reached.  

7.4 Second approach, moving IB or fixed grid (inertial frame of 

reference) 

When simulating flow around a stationary cylinder, the interpolation formulas are 

calculated once and the interface velocities (around the cylinder) are updated using 

interpolation formulae for every iteration. Therefore, the interpolation formulae at the 

boundary cells remain unchanged. However, in a moving cylinder, the position of the 

cylinder is changing, and therefore the boundary cells and interpolation formulae could 

potentially change. In other words, at each time step, if the position of the cylinder is 

changed, the interpolation formulae should be updated as well. To do this, before 

updating the interpolation formulae each time step, the position of centre of cylinder is 

updated automatically to the new position using the prescribe motion (equation (7-1)).  

One of the important issues is the relation between the time steps of the fluid flow 

and the time steps of prescribed motion of the structure. Choosing the time step of the 

structure and the flow depends on the CFL number in the fluid flow and the prescribed 

motion of the structure. It is important that the time step in the fluid should not lead to 

instability. However, choosing a very small time step will be expensive. Firstly, because 

the interpolation formulae and also the LU decomposition matrices should be 

recalculated each time step and secondly, the boundary conditions of the flow will 

change at each time step which leads to a higher number of inner iteration for the flow 

(Poisson solver) to resolve these perturbations.      

Choosing different time step for the flow and the structure is not recommended as it 

may cause a spurious phase between the lift coefficient and the displacement of the 
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cylinder. An approach, like artificial incompressibility that uses dual time stepping is a 

potential remedy for this problem (Gilmanov and Sotiropoulos 2005).  

7.4.1 Inertial frame-governing equation and boundary conditions 

Equation (4-8) presents the momentum equation in the non-dimensional form. This 

equation and the continuity equation are solved by the fractional step (Chorin projection 

approach) method as explained in section 4.3.3. In this context, the vector form of the 

governing equation is as follows: 

∂V

∂t
= −V ∙ ∇V + ϑ∇2V 

(7-17) 

 

∂V

∂t
= −∇p 

(7-18) 

 

In equation (7-17) (by ignoring the pressure in the momentum equation), an 

intermediate velocity that does not satisfy the incompressibility constraint is calculated. 

The intermediate velocity will be projected to a solenoidal space (divergence-free 

velocity field) using equation (7-18). In this equation, the pressure field is calculated by 

solving the pressure Poisson equation (PPE). (PPE is formed by forcing the mass 

conservation to the divergence of the momentum equation). 

The boundary conditions for the domain remain unchanged compared to the 

stationary case. However, the boundary around the moving object should be updated in 

time according to the prescribed motion of the cylinder. Also the Neumann condition for 

the pressure Poisson equation should be updated according to the following equation as 

explained in the previous section: 

∂p

∂n
= −n ∙ [

∂V

∂t
+ V ∙ ∇V + ϑ(∇ × ∇ × V)] 

(7-19) 

 

7.4.2 Inertial frame of reference algorithm 

The main advantage when using an immersed boundary approach is the ability to 

simulate the Fluid-Structure-Interaction (FSI) for a moving object on a fixed grid. In this 

approach, unlike the Arbitrary-Lagrangian-Eulerian (ALE) approach the computational 

grid is not deforming or displacing, even though at each time step the interpolation 

formula needs to be updated. To simulate a cylinder moving with a prescribe oscillation 

in the cross flow direction the following algorithm is used.  

1. From the prescribed motion and the simulation time, the position of the cylinder 

is known and is used to calculate the interpolation formulae and LU matrices. 
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2. The velocity around the cylinder at each new position is updated with new 

interpolation formula. 

3. The pressure Poisson equation with Neumann boundary conditions is used to 

enforce the continuity equation. 

4. The velocity field is updated using the new pressure gradient as calculated in step 

3. 

  

The above algorithm is continued in time to reach a fully developed solution.  

7.5 Calculation of the force on moving boundary 

In the non-conforming boundary approach, the computation of local forces on a 

moving boundary is not a trivial problem (Yang & Balaras 2006). Lai and Peskin 2000 

compared three methods of force calculation to their own approach (immersed 

boundary-continuous forcing approach). In section 4.8 a direct method is presented to 

calculate the local force on the stationary (or moving with constant velocity) immersed 

boundary. In this section the method is developed for the moving boundary case as well. 

The simulation results show that for low amplitudes of oscillation (i.e. small 

acceleration) the same procedures are acceptable. However, for oscillations with higher 

acceleration, corresponding to higher amplitude and/or frequency of oscillation, some 

special treatment (extrapolation of the pressure near the boundary) could improve the 

simulation accuracy (Gilmanov and Sotiropoulos 2005). 

7.6 Parametric study 

In this section various parameters which could potentially affect hydrodynamic 

forces from the uniform free stream on an oscillating cylinder are briefly addressed. 

According to the parametric study for a stationary cylinder the mesh size, domain size 

up stream of the cylinder and the domain size in the transverse direction to the flow are 

the most influential factors. Here, these effects are studied for cylinder oscillating in 

cross flow direction with an amplitude of A/D=0.2, while the frequency of excitation is 

fe=1.05х fs. The parametric study is performed at Re=100, based on the free stream 

velocity and cylinder diameter. So that the Strouhal frequency is fs=0.167. The effects of 

different prescribe motions (amplitude and frequency) on the lift and drag coefficient are 

presented later in the results section.   



141 

 

7.6.1 Parametric study- mesh size 

The size of the grid around the immersed boundary is an important parameter in the 

study of the flow around the bluff body. The boundary conditions can be applied more 

precisely while there are fine grids around the IB; however, using a very fine mesh near 

the IB is very expensive and might slow down the simulation process significantly. The 

results of the mesh refinement study for the flow around a circular cylinder is presented 

in this section to show the optimum grid size for this problem.  

 

Table 7-1: mesh refinement study of oscillating cylinder – Parameters and results 

∆𝑥 = ∆𝑦 Number 

of grid  

at each 

direction  

Total 

no. of grid 

points 

Actual computational 

time (s) (for 100 time-units)  

Mean-

Drag 

coefficient 

Max-

Lift 

coefficient 

0.1 122х 97 11’834 2’500       (45 minutes) 1.33 0.45-0.71 

0.05 240х 191 45’840 5’800         (1.6 hours) 1.58 0.575 

0.025 468х 375 175’500 27’800       (7.2 hours) 1.59 0.55 

0.0125 942х 742 698’964 237’000     (2.74 days) 1.59 0.545 

0.00625 1880х 1489 2’799’320 2’206’000  (25.7days) 1.60 0.55 

 

 

According to the Figure 5-2, the centre of the cylinder is located at the origin of the 

computational grid and the size of domain the in x, y directions is 

[-15D, 30D] х [-20D,20D]. The size of the embedded uniform grid area is [-2D,4D]х  

[-2D,2D] and the stretching factor is 4. The cylinder is forced to oscillate in the cross 

flow direction with an amplitude of 0.2D and a frequency of F=fo/fs=1.05.  

In this study, the mesh size of the embedded uniform mesh is changed from 0.1D to 

0.00625D. The numerical results show that for the coarse mesh (dx=dy=0.1D) the lift 

and drag coefficient are highly affected by the size of the mesh, however for the fine 

meshes, this effect is negligible. For instance, if the size of the mesh changes from 0.1D 

to 0.05D, the mean drag coefficient increases by about 16%, while a decreases in the 

grid size from 0.025D to 0.0125D results changes is negligible in lift and drag 

coefficients (less than 1%).  
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Figure 7-2: mesh refinement study- Drag coefficient 

 

In Table 7-1 the accuracy of the numerical results and the computational time 

needed to achieve the accuracy is presented for five different mesh sizes. It is shown that 

the computational time to simulate hundred non-dimensional time step increases from 

1.6 hours to 25.7 days (385.5 times increase) when the mesh is refined from a size of 

0.05D to 0.00625D (8 times decrease), respectively.  

Figure 7-2 andFigure 7-3 show the time history of the lift and drag coefficients for 

the five different mesh sizes listed in Table 7-1. The graphs show that the drag 

coefficient, the drag due to the pressure and due to shear stress are more sensitive to the 

mesh size than the lift coefficient.  It can be seen that the lift and drag coefficient 

converge to the steady solution after about 50 non-dimensional simulation time.  
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Figure 7-3: mesh refinement study – Lift coefficient 

7.6.2 Parametric study-size of domain before the cylinder 

One of the important parameters which highly affects the hydrodynamic forces is 

the length of the computational domain upstream of the solid body which received less 

attention in the literature. The size of domain upstream of the cylinder is changed from 

5D (five times of the cylinder diameter) to 30D. The size of the domain in the y direction 

for this study remains 40D. The simulation results (Figure 7-4) show that mean drag 

coefficient decreases by 4.4% and the maximum lift coefficient increases by 23.6%, 

respectively, by increasing the size of the domain upstream of the cylinder from 5D to 

15D. However, if the size of the domain upstream of the cylinder is further increased 

from 20D to 30D, the mean drag and maximum lift coefficients only change by -0.2% 

and 1.5% respectively.  

 

  

Figure 7-4: Parametric study of the effect of size of domain before cylinder in x 

direction on the mean drag and maximum lift; cross flow oscillation with A/D=0.2 and 

fe/fs=1.05 at Re=100 
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7.6.3 Parametric study- blockage effect 

Another important parameter affecting hydrodynamic forces is the size of the 

domain in the transverse direction which is addressed as the blockage effect in the 

literature. In this simulations the size of the domain in the transverse direction is 

increased from 10D to 100D; while the rest of the parameters is kept constant; in this 

case, according to the parametric study in the chapter 5, the size of the domain in the x 

direction is [-15D,30D].  

The simulation results (Figure 7-5 and Figure 7-6) show that if the size of the 

domain in the transverse direction changes from 10D to 40D the mean drag and 

maximum lift coefficients are decreased and increased by 4% and 24.6% respectively. 

 

 

Figure 7-5: Parametric study of the effect of size of domain in y direction on drag 

coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100  

 

However if the size of the domain in the y direction is further increased from 50D to 

100D the mean drag and maximum lift coefficients change by about -0.1% and 1.6%, 

respectively. Figure 7-7 show the drag and lift coefficients based on the oscillation time 

for various domain sizes in the y direction. 
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Figure 7-6: Parametric study of the effect of the size of the domain in the y direction 

on the lift coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100  

 

  

Figure 7-7: Parametric study of the effect of size of domain in y direction on the mean 

drag and maximum lift; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100 

7.7 Results  

In this section, to validate the FSI algorithm presented in the previous sections, 

several cases with various amplitudes and frequencies of oscillation were selected as a 

bench mark. The simulations were repeated for various Reynolds numbers and the 

simulation results were compared with the literature and with inertial reference frame 

simulation results.    

1.58

1.6

1.62

1.64

1.66

0 20 40 60 80 100

C
D

m
ea

n
 

size of domain in y direction 

0.4

0.45

0.5

0.55

0.6

0 20 40 60 80 100

C
Lm

ax
 

size of domain in y direction 



146 

 

7.7.1 Inertial effect - Froude-Krylov force  

As explained in section 7.3, it is possible to solve the flow governing equations in 

the moving frame of reference (equation (7-6)) as well as in the inertial frame of 

reference (equation (7-17)). This can be explained by the fact that the flow about a 

circular cylinder forced to oscillate in the cross flow direction is kinematically similar to 

the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross 

flow (Meneghini and Bearman 1995).  It should be noted that these two flows differ 

dynamically due to inertia effects (Froude-Krylov force). However, if the flow 

governing equations are fully derived in the moving reference frame (equation (4-6)) the 

inertia term has already been added to the equations, and the hydrodynamic forces 

comprise the inertia effect too. Therefore, the inertia effects should be added to the 

relative hydrodynamic forces if the flow governing equation (equation (4-17)) is solved 

with the relative velocities instead of absolute one without deriving the equation in a 

moving frame. To demonstrate the effect of inertial forces, the flow around a cylinder 

that is forced to vibrate in the cross flow direction is solved in the moving frame of 

reference using the following two methods. In the first case (Case A), equation (7-17) is 

used and in the second case (Case B), equation (7-6) is used. In both cases, Re=150, 

𝐹 =
𝑓𝑒
𝑓𝑠
⁄ =0.9 and the cylinder is forced to oscillate in the cross flow direction ((7-20) 

equation (7-20)). 

yc(t) = A0ySin(ωt) = A0ySin(2π × F × f𝑠t)

= 0.15 𝑆𝑖𝑛 (2𝜋 × 0.9 × 0.196 × 𝑡) 

(7-20) 

 

In addition, in both cases the reference frame is attached to the cylinder and the 

relative velocities are defined at the inlet and far-field boundaries (top and bottom). At 

the outflow the convective boundary condition is used.  

The simulation results show that in both cases (Case A and B) the pressure, the lift 

due to shear, the drag coefficient due to pressure and the shear stress are the same 

(Figure 7-9). However the inertial force shows a difference in the lift coefficients due to 

pressure (equation (7-4)) between cases A and B.  In Figure 7-8, the red line and the 

green line show the lift coefficient (due to pressure) for cases A and B, respectively. In 

this figure, if the lift in case A (red line) and the inertial effect (orange line) are added 

together (back dots), the results are similar to the lift coefficient obtained in the case B 

(Green line).    
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Figure 7-8: Using Froude-Krylov force (inertial force) to correct lift coefficient 

calculated in moving frame of reference 

 

According to the equation (7-4), the effect of inertial force on the lift component for 

the above case is calculated as follows: 

𝐶𝐿𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
𝜌𝜋𝐷

2

4
× 1 ×

𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

1
2
𝜌𝑈2𝐷 × 1

=
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

 

(7-21) 

 

Where ρ is the density of the fluid flow; 𝜌𝜋𝐷
2

4
× 1, is the mass of the displaced flow 

by the cylinder and 
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the acceleration of the oscillating cylinder in the cross flow 

direction (referred to as �̈� in equation (7-6)). 

 

 

Figure 7-9: The drag (CD) due to pressure and shear stress, lift due to shear stress 

and pressure for cases A and B in the moving frame of reference   
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7.7.2 Moving frame verses inertial frame of references 

The governing equations are solved in both the moving frame of reference (Section 

7.3) and the inertial frame of reference (Section 7.4). In both approaches an IB 

interpolation method is used to enforce the immersed boundary. In the moving frame of 

reference, however, the interpolation formulas are not updated so that the simulation is 

less time consuming and the results are much smoother.  In this section, a comparison 

between these two approaches is presented. In both cases a cylinder is forced to oscillate 

in the cross flow direction, the Reynolds number is 100 (Re=100), the amplitude of the 

oscillation is 0.2D and the frequency of the oscillation is 1.05 times the vortex shedding 

frequency (0.167). The Reynolds number is based on the free stream velocity and the 

cylinder diameter, D. 

The lift and drag due to pressure for both approaches (moving and fixed frame of 

reference) are shown in the Figure 7-10. The results from the inertial frame of reference 

simulations show noise in the lift and drag signal due to pressure (dotted line). The 

reason for this is that the interpolation formulas are updated at each time step.  

 

 

Figure 7-10: lift (lower curve) and drag (upper curve) due to pressure; dotted lines, 

inertia frame of reference(without smoothing); dash lines, moving frame of reference  

 

Despite the noise that the inertial frame produces for the lift and drag due to 

pressure, both frames of reference calculate nearly the same values for the lift and drag 

coefficient after smoothing the graph of the inertial frame of reference results by 

omitting the noise (Figure 7-11).  
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Figure 7-11: lift (lower curve) and drag (upper curve) due to pressure; dotted lines, 

inertia frame of reference (with smoothing); dashed lines, moving frame of reference  

 

Figure 7-12 shows the lift and drag due to shear stress for both non-inertial and 

inertial frame of reference simulations. The simulation results do not show any noise in 

the lift and drag due to shear stress for both approaches. It can be concluded that the 

noise in the lift and drag coefficient are due to the calculation of the pressure. Also it can 

explain why the inertial frame of reference approach is so time consuming. Not only 

updating the interpolation formulas is taking extra simulation time but also the Pressure 

Poisson equation (as the most expensive part of the code) needs more iterations to 

converge due to the noise in the pressure.  

 

 

Figure 7-12: lift (lower curve) and drag (upper curve) due to shear stress; dotted lines, 

inertia frame of reference; dash lines, moving frame of reference 
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7.7.3 Cross flow oscillation of circular cylinder – validation 

In this section, the simulation results induced by a transverse oscillation of a 

circular cylinder in a steady free stream are compared with those in the literature. The 

Reynolds number is calculated based on the cylinder diameter and the free stream 

velocity. The cylinder is forced to oscillate in the cross flow direction according to: 

 yc(t) = A0ySin(ωt) = A0ySin(2πf𝑒t) (7-22) 

Where, yc(t) is the location of circular cylinder that changes in time, A0y is the 

amplitude of the transverse oscillation and f𝑒 is the excitation frequency. The simulation 

is performed at low Reynolds numbers, Re=185 and R=200, 0.05 ≤ A0y D⁄ ≤ 0.6 and 

0.8 ≤ fe fs⁄ ≤ 1.2  in order to carry out a comparison with the results presented by Kim 

and Choi 2006 and Meneghini and Bearman 1995. fs is the frequency of the vortex 

shedding for a stationary cylinder (Strouhal number). To calculate the Strouhal 

frequency at each Reynolds number, the flow around the stationary cylinder is simulated 

separately. The grid is distributed similarly to what is shown in Figure 5-1 andFigure 

5-2. The number of the grid points in x (stream wise) and y (cross flow) direction are 

531х 478, respectively. Around the cylinder a uniform grid with dx=dy=0.025 is used. 

The size of computational domain is [-15D to 15D] in both x and y directions.  

 

  

Figure 7-13: Force coefficient and phase angle verses fe/fs. Left-Mean drag coefficient 

(CD), rms of drag and lift fluctuation coefficients (CDrms and CLrms respectively); Right-

Phase angle between CL and the vertical position of the cylinder. -■-, present study; -▲-, 

Kim & Choi 2006. 
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boundary condition (u/u∞=1 and v=-vcylinder) is defined at the inlet; at the top and bottom 

(farfield) of the computational domain a Neumman boundary condition (
𝜕𝑢

𝜕𝑦
= 0) and a 

dirichlet boundary condition (v=-vcylinder) is used; and the convective boundary condition 

(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑐

𝜕𝑢𝑖

𝜕𝑥
= 0) is conducted at the outflow, where c is the space-averaged streamwise 

velocity.   

The hydrodynamic forces (the force due to pressure and shear stress) are resolved in 

the x and y directions in the physical domain yielding Fx and Fy. These two forces are 

non-dimensionalized according to equations (4-66) and (4-67). In these equations 𝑢∞ is 

the free stream velocity.  

In the first place, the effect of frequency of excitation on the hydrodynamic forces 

at a constant amplitude of oscillation, A0y D⁄ = 0.2 is investigated. The simulation is 

performed at fe/fs=0.8, 0.9, 1, 1.1, 1.12 and 1.2. In this simulation the Reynolds number 

is Re=180.  

Figure 7-13-left shows the mean drag coefficient (CD) and the root mean square 

(rms) of the drag and the lift fluctuations (CDrms and CLrms, respectively); and Figure 

7-13-right shows the phase angle between the lift coefficient and the location of 

cylinder. The simulations results are in good agreement with the results presented by 

Kim and Choi 2006. However, in the present study, the rms of the lift coefficient in the 

excitation frequencies below the Strouhal frequency are predicted to be smaller, while 

for the excitation frequency above the Strouhal number, these values are calculated to be 

higher than Kim and Choi’s prediction.   The Drag coefficient and the rms of the drag at 

all frequencies of excitation are predicted to be slightly higher than the results presented 

by Kim and Choi. In other word, the fluctuations in the drag coefficient are predicted to 

be higher in this research. This can be explained by the definition of the lift and drag 

coefficients to be either perpendicular to the free stream or perpendicular to the relative 

velocity.  

Figure 7-14 shows how the frequency of excitation might affect the amplitude and 

the pattern of the hydrodynamic forces. In this figure the amplitude of oscillation is 0.2D 

and the Reynolds number is Re=180. For the frequencies of excitation lower than or 

equal to the Strouhal frequency the lift and drag coefficients reach a steady solution 

(synchronization) however at frequencies of excitation higher than the Strouhal 

frequency a beating phenomenon is observed. It can be concluded that for excitation 

frequencies above the Strouhal frequency, the boundary where lock-in occurs is much 
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closer to fe/fs=1 than for excitation frequencies below the Strouhal frequency. This is in 

complete agreement with the numerical results presented by Meneghini and Bearman 

1995 and experimental results reported by Bearman and Curie 1979 where lock-in was 

observed only below the Strouhal frequency. However, at higher Reynolds numbers, 

experimental results reported by Koopmann 1967 show an almost symmetrical boundary 

of lock-in around the Strouhal frequency.    

 

  

  

  

Figure 7-14: Drag (CD), Lift (CL) coefficient and yc/D time history for A/D=0.2 and 

Re=185, (a) f/fs=0.8, (b) f/fs=0.9, (c) f/fs=1, (d) f/fs=1.1, (e) f/fs=1.12, (f) f/fs=1.2. CD: dash dot 

curve; CL: Continuous curve;  yc/D: dot curve 

 

Figure 7-15 shows time histories of hydrodynamic forces at an excitation frequency 

of fe/fs=0.75, and a Reynolds number of Re=200 for four different amplitudes of 
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excitation, A/D=0.25, 0.3, 0.45, 0.6. The lock-in does not occur for fe/fs<0.70. For the 

case fe/fs=0.75 and A/D=0.25 a very light beating phenomena is observed (albeit not 

very clear). By increasing the amplitude of excitation, a synchronization between the 

forcing excitation and the vortex shedding frequency occurs. It seems that at this range 

of frequencies (fe/fs=0.75) and for A/D<0.3, the flow cannot decide whether to shed at 

the frequency of vortex shedding or at the frequency of excitation. Meneghini and 

Bearman 1995 got similar results, however, they observed synchronization above 

A/D=0.5. 

   

  

  

Figure 7-15: Drag (CD), Lift (CL) coefficient and yc/D time history for fe/fs=0.75 and 

Re=200, (a) A/D=0.25, (b) A/D=0.30, (c) A/D=0.45, (d) A/D=0.6. 

 

In Figure 7-16 to Figure 7-18 the lift and drag coefficient for three cases with 

A/D=0.15 and fe/fs=0.9, A/D=0.25 and fe/fs=0.8 and A/D=0.05 and fe/fs=1.025 are 

presented. The Results show excellent agreement with the results presented by 

Meneghini and Bearman 1995. Meneghini and Bearman used a mesh conforming 

method with a moving reference frame, but they did not directly include the effect of a 

moving frame inside the governing equations. Instead, they used the Froude-Krylov 

force to add the inertial effect to the hydrodynamic forces.  In the first case (Figure 



154 

 

7-16), the phase difference between the excitation frequency and the lift coefficient is 

about 175ª so that this case is inside the lock-in range (Figure 1-4). After starting the 

numerical simulation the frequency of the vortex-shedding gradually changes to the 

excitation frequency.  

  

Figure 7-16: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.90, A/D=0.15, 

Re=200. Left figure present study, right figure shows results of Meneghini and Bearman 

1995. 

By decreasing the excitation frequency, the amplitude of the excitation should 

increase to remain in the lock-in region (Figure 1-4). In Figure 7-17, the results of the 

case A/D=0.25 and fe/fs=0.8 is presented. In this case, the phase difference between the 

lift coefficient and the cylinder displacement is nearly 180ª and the amplitude of the lift 

coefficient is lower than in the case of the stationary cylinder. Meneghini and Bearman 

1995 explained that this could be due to the fact that inertial part of the lift force (due to 

the cross flow oscillation of cylinder) cancels out the lift due to vortex shedding which is 

dominant in stationary cases.  

  

Figure 7-17: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.80, A/D=0.25, 

Re=200. Left figure present study, right figure shows results of Meneghini and Bearman 

1995. 
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A comparison for the case A/D=0.05 and fe/fs=1.025 is shown in Figure 7-18. The 

phase difference in this case between the frequency of the excitation and the cylinder 

displacement is about 15ª. The numerical results show that the above fe/fs=1.075 lock-in 

does not occur for any amplitude of excitation. 

  

Figure 7-18: Drag (CD), Lift (CL) and yc/D over time for fe/fs=1.025, A/D=0.05, 

Re=200; left figure) present study; Right figure) Meneghini and Bearman 1995. 

7.7.4 Vortex induced vibration in cross flow direction 

In this section, to demonstrate the accuracy of the formulation provided in section 

7.2.2, the flow around a circular cylinder in two dimensions with one degree of freedom 

in the cross flow direction is simulated. Several runs are performed at high and low mass 

ratios and the results are validated in compare to experimental and numerical results 

presented in the literature. Also the lock-in region is investigated. 

In the first stage, the simulation results for the low mass ratio are compared to the 

results provided by Borazjani et al. 2008 and Ahn and kallinderis 2006 who employed 

IB method and ALE approach, respectively. In this case the Reynolds number, mass 

ratio and damping ratio are fixed at 150, 2, 0, respectively and the stiffness of the 

structural system is changed by varying the reduced velocity from 3 to 8. The size of 

computational domain is [-15D,15D] both in x and y direction and the cylinder is in the 

centre of the domain. Also, there is a uniform grid around the cylinder in the area [-

2D,2D] in x and y direction, the uniform grid in this area is dx=dy=0.025D and the non-

dimensional time step is dt=0.001. Simulation of the flow around a stationary cylinder 

shows that the vortex shedding frequency or Strouhal number is St=0.2 at Re=150, 

therefore the lock-in phenomenon should occur around this frequency and hence reduce 

frequency of Vr=5. 

The simulation results show that the applied IB reconstruction method accurately 

predicted the lock-in range, however, the maximum amplitude is predicted lower than 
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the one predicted by Borazjani et al. 2008 and Ahn & Kallinderis 2006. This might be 

due to the definition of the pressure boundary for the pressure Poisson equation.   

 

Table 7-2 : Amplitude of oscillation (ymax/D) at various reduced velocity at constant 

Reynolds number, Re=150, and low mass ratio, m
*
=2. 

Reduced Velcotiy Vr=3 Vr=4 Vr=5 Vr=6 Vr=7 Vr=8 Vr=25 

Recent Research 0.04 0.42 0.38 0.30 0.20 0.06 0.03 

Borazjani et al. 2008 0.06 0.52 0.48 0.43 0.38 0.08 ----- 

Ahn & Kallinderis 2006 0.06 0.56 0.52 0.42 0.37 0.08 ----- 

In the second stage, for the high mass ratio, the results presented by 

Anagnostopoulos and Bearman 1992 are used for validation; these results have been 

used for validation by several researcher (see for example, Yang et al. 2008, Li et al. 

2002 among others). Therefore, to be able to compare the results, a mass ratio, 𝑚∗ =

149.10  and a damping ration, 𝜉 = 0.0012, is selected. The Reynolds number changes 

in the range of 90 to 140 which is euqivalent to the reduced velocity of 5.02 to 7.81.  

 

Table 7-3: Amplitude of oscillation (ymax/D) at various Reynolds number and 

reduced velocity at high mass ratio, m
*
=149.10. 

 

Vr and Re Vr=5.02 

Re=90 

Vr=5.30 

Re=95 

Vr=5.58 

Re=100 

Vr=5.8 

Re=105 

Vr=6.41 

Re=115 

Vr=7.81 

Re=140 

Anagnostopoulos and 

Bearman 1992 (exp.) 

------- 0 0 0.54 0.5 0 

Yang et al. 2008 (Nu.) 0 0.42 0.41 0.36 0.22 0 

Schulz and Kallinderis 

1998 (Neu.) 

0 0.5 0.48 0.45 0.43 0 

Present computation 0 0.1 0.24 0.36 0.22 0.0012 

Simulation results (Table 7-3) show that the applied IB model in this study has a 

good agreement with the experimental results presented by Anagnostopoulos and 

Bearman 1992 in terms of predicting the range of reduced velocities which VIV occurs. 

For instance, the amplitude of oscillations reported by Yang et al. 2008 and Schulz & 

Kallinderis1998 at reduced velocity of Vr=5.30 (Re=95)  are 0.42 and 0.5, respectively. 

However, at present study the amplitude of oscillation at Vr=5.30 is 0.1 which shows 

better agreement with the experimental results which shows zero amplitude at this 

reduce velocity.  
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Generaly numerical results presented in the literature predict lower amplitude of 

oscillation in comparison to the experimental results. In the present study the same trend 

is observed. The reason behind this might be that although the reduced velocity is the 

same for both experiment and numerical simulation, the numerical simulation is 

normally performed at low Reynolds number in which vortices can be assumed two 

dimensionls. Therefore the two dimensional numerical simulations cannot model three 

dimensional aspects of the vorticities which occur at higher Reynolds numbers. 

7.8 Summary  

In this chapter, the forced vibration and the vortex induced vibration of a bluff body 

in a uniform flow are discussed and the simulation results are compared and validated 

using well-established experimental and numerical bench marks. It was shown that the 

immersed boundary interpolation approach used for the stationary cylinder in chapters 5 

and 6 could be applied for the moving immersed boundary as well. A comprehensive 

parametric study is performed to show how the computational domain parameters could 

affect the hydrodynamic forces and computational costs. Based on a parametric study, 

for low Reynolds numbers simulation a domain size of [-15D,30D] х [-20D,-20D] in x 

and y direction respectively and a mesh size of dx=dy=0.025 around the immersed 

boundary are recommended. 

 To simulate moving boundaries two approaches were followed, using either a 

moving (non-inertial) frame or fixed (inertial) frame of references. Compared to the 

inertial frame of reference, the moving frame of reference results were much smoother 

and the computational time was lower. However, the moving frame approach is limited 

to simulations of single or synchronized moving bluff bodies in the fluid flow. 

Also, it is shown by deriving the governing equations in the moving frame of 

reference that the Froude-Krylov force should not be added to the hydrodynamic forces 

to compensate for the inertial effect.  

In addition it is shown that the noise in the results from the inertial frame of 

reference simulation is due to the calculation of the pressure which maybe improved by 

using a dual time step formulation or by using an accurate interpolation of the pressure 

at the immersed boundary. Moreover, the VIV simulations show that the results are in 

good agreement with the literature.   
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Chapter 8. Conclusion and Future work 

 

The simulation of Fluid Structure Interaction (FSI) is a multi-disciplinary and a 

multi-physics problem and a full FSI simulation has to address many issues. The main 

goal in this research was to develop an FSI code to simulate Vortex-Induced Vibration 

(VIV) in the flexible riser application. The riser problem involves simulation of a 

flexible, slender structure with large displacement and bending in an unsteady fluid flow. 

A full simulation of this problem with the current knowledge and computational power 

is not feasible at the moment due to the multi-physics nature of the problem. Many 

research groups have worked in the past to model this problem and suggested various 

models and due to recent developments in computational power, CFD and Structural 

algorithms, a continuous progress in the research in this area is being made. 

A partitioned strategy has been used to link the CFD and structural codes to be able 

to model the riser problem in a quasi-three dimensional using the strip theory. In the 

strip theory, the flow is computed in a number of two dimensional planes that are 

positioned at intervals along the pipes. The flow in each plane of the strip theory model 

is solved using a two dimensional Navier-Stokes solver. The response of the pipe to the 

flow loading is computed using various beam theories through a structural code. At this 

stage, a loose or strong coupling strategy will be used to alternatively pass the load from 

the flow to the structure and pass the new location of the structure to the flow solvers. 

In an FSI problem, an initial and vital step for a feasible and accurate simulation is 

to study the physics of the problem. In this PhD thesis the main focus was to simulate 

the flow around a flexible body in the two dimensional plain. The outcome of this 

research will be used for a future modelling of the riser problem in the frame work of the 

strip theory. Using the strip theory for the riser problem, the problem was reduced to a 

well-documented simulation of the flexible circular cylinder in two dimensions. 

However, due to the fact that this two dimensional simulation will be used as a part of a 

bigger model special attention was needed. The first issue was that the two dimensional 

flow solver should be able to handle large displacements/deformations of the structure. 

Secondly, the flow solver should be computationally efficient. Thirdly, it was needed to 

integrate the flow solver with a structural code. Finally, the algorithm has to be 
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expandable to three dimensions to be able to model turbulent high Reynolds number 

flow in the future. Therefore, considering the physics of the problem and the restriction 

on the computational facilities, a comprehensive study of the available FSI approaches 

was conducted to find an appropriate algorithm that fulfils the set criteria.  

8.1 Simulation approaches 

There are two main simulation approaches for FSI problems: monolithic and 

partitioned approaches. In the monolithic approach both fluid and structure are 

formulated in the same mathematical framework and a unique algorithm is used to solve 

the entire fluid and structure domain. However, in order to link the CFD code with a 

structural code using the strip theory in future, a partitioned approach was preferred. 

Within this approach the fluid and the structure were treated as two separate 

computational entities and to be solved with their own respective discretisation and 

solution algorithm. Interface conditions were used to communicate information between 

the flow and structural solvers. 

Another important feature for the FSI code is that the code should be able to model 

large displacements. There are two main discretisation method; the conforming method 

and the non-conforming method. In the former, the interface boundary condition is 

identical to the physical boundary condition making the interface location part of the 

solution requiring the grid to conform to the interface. By advancing in time, re-meshing 

might become necessary due to deformation/ displacement of structure. Therefore, this 

approach is expensive due to the regular re-meshing in every time step. In addition this 

method is good for low displacement due to inherit limitation in mesh deformation. 

However, in the non-conforming approach, the boundary location and interface 

conditions were imposed as constraints on the governing equations defined on a 

background Cartesian grid, and no re-meshing procedure is needed. As the solid 

boundary cuts the Cartesian grid, to define the proper boundary condition the flow 

governing equations need to be modified near the immersed boundary. The 

modifications of the governing equations near the structure are the subject of the 

immersed boundary method which were addressed and evaluated in this thesis. 

Immersed boundary methods comprise various ways of enforcing boundary 

condition. By adopting the indirect forcing approach, interpolation/ reconstruction was 

used to enforce the moving boundary. In this approach however unlike the continuous 

forcing approach in which a diffused boundary is created, sharp interfaces are created. 
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The method also allows the possibility of modelling in three dimensions which is not 

easily possible in the cut cell approach due to its very complex application procedure in 

in three dimensions.  

In this PhD thesis a new IB interpolation/reconstruction method is proposed. In this 

method the interpolation is performed in a direction perpendicular to the IB boundary, 

similar to that proposed by Gilmanov & Sotiropoulos 2005. However, in this model a 

different logic and a direct approach is used to select the interpolation points without 

trial and error. The simulation results were compared with other interpolation methods 

proposed in the literature and the results of lift and drag coefficient showed a very good 

agreement between the methods.  

The definition and calculation of the lift and the drag forces in an FSI problem 

using an IB approach is not a trivial problem. In this thesis two methods were conducted 

which were found to match well with one another; the direct integration of the pressure 

and shear forces on the immersed boundary and the application of the conservation of 

momentum in integral form. The lift and drag coefficient results were used to validate 

the methodology and the code for both a stationary circular cylinder and a flexible 

cylinder oscillating in the cross flow direction. 

A circular cylinder oscillating in the cross flow direction was modelled in two 

dimensions as an initial stage in the study of the riser problem. At this stage two 

methods were presented, an inertial and a non-inertial frame of reference method. In the 

former, the Navier-Stokes equations were solved in an inertial frame of reference and the 

movement of the structure was modelled using an IB method. Due to the fact that at each 

time step the interpolation formulas were updated, the algorithm was relatively slow 

(time consuming). In the second method, the frame of reference was fixed to the cylinder 

and the fluid flow was solved using an observer point of view on the circular cylinder, 

therefore, the flow governing equation (Navier-Stokes equations) were defined and 

solved in a moving frame of reference.  Although, this method was more efficient, it is 

only really suitable for a single object oscillating in the flow, for instance a single riser. 

To solve the pressure Poisson equation, the normal gradient of the pressure at the 

immersed boundaries (Neumann boundary condition) was assumed to be zero in the case 

of a stationary cylinder in a uniform flow. However, the definition of the correct 

pressure boundary conditions for the FSI problem was a challenging issue because the 

structure undergoes acceleration relative to the flow. In this case, the gradient of the 

pressure in the perpendicular direction to the immersed boundary was calculated by 
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projection of the differential form of the momentum equation in that direction. This 

boundary was defined carefully to maintain the well-posed conditions for the pressure 

Poisson equation. 

In the final stage of this thesis, some VIV simulations of a flexible cylinder in the 

cross flow direction were presented. To maintain the two dimensionality of the flow, the 

simulation was carried out at a low Reynolds number. The vortex shedding from the 

cylinder was creating oscillating force on the cylinder. These forces were used to solve 

the structural governing equations. In this thesis the equation of motion of an elastically 

supported cylinder is used. The force from the Eulerian flow field was transferred to the 

Lagrangian marker points on the solid boundary and the displacement and velocities of 

the moving boundary were interpolated to the flow domain to enforce no-slip boundary 

conditions. In the case of a rigid cylinder the force is transferred to the centre of the mass 

of the cylinder.  

8.2 Validation of the results and feasibility of the method 

The flow around a circular cylinder in two dimensions was taken as a benchmark 

due to its similarity to the physics of the riser. Also, the flow around a circular cylinder 

is a famous benchmark that has been used extensively to validate many FSI 

methodologies. Many experimental and analytical results are presented in the literature 

for this specific case. In addition, the choice of the overall size of the domain and the 

size of the grids near the immersed boundary were found to be important when accurate 

simulation results were desired from an FSI simulation in general and partiulcarly when 

the IB approach is used. On the one hand, the parameters were selected in a way to give 

accurate, reliable and repeatable results whilst on the other, the methodology and the 

solution were found to be computationally inexpensive. Generally, it is important to 

determine the optimum parameters for an FSI problem in order to control the size of the 

problem. However, for a riser problem in which several two dimensional simulations 

and a structural code will be executed simultaneously using the optimum parameters for 

the simulation is vital. To achieve this objective, a comprehensive parametric study was 

performed to find the optimum range of the parameters for the domain which gives good 

results with minimum computational cost. This study was able to address some of the 

discrepancies found in the literature in respect of the reported Strouhal number, lift and 

drag coefficients.  
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For the flow around a circular cylinder at a low Reynolds number seven parameters 

were studied. Of these parameters the grid size around the IB, the entrance length before 

cylinder and the size of the domain in cross flow direction (blockage effect) were found 

to be the most important. The numerical results as well as results published in the 

literature showed that these parameters could significantly affect the results. For instance 

in the literature the drag coefficient for the steady flow around a stationary cylinder at 

Re=100 was reported in the range of 1.447 to 1.32 showing a 9% difference in the 

reported results. Also, the reported Strouhal numbers for the same cases varied from 

0.182 to 0.164 showing discrepencies of up to 10% in the results. By relating the 

simulation results to the simulation parameters it was possible to explain these 

discrepencies. Some of these differences stemmed from the size of domain in the 

numerical calculation rather than the methodology of the solution. The results of the 

parametric study at Re=100 showed that if the entrance length increased from 5D to 10D 

the Strouhal number, lift and drag coefficient tends to decrease by about 10%. A further 

enlargement of the domain behind the cylinder had negligible effect on the Strouhal 

number, lift and drag coefficient. Therefore, for this specific problem an inflow length of 

10D before the cylinder was found to be optimum. Similarly, the size of the domain in 

the cross flow direction (blockage effect) was also found to be important.  

The mesh refinement study for the drag coefficient showed an interesting behaviour 

between the drag coefficient’s components (pressure drag and friction drag). As far as 

the author is aware, this issue has not been reported before in the literature. The 

numerical results showed that the drag coefficient was less affected (about 3%) than the 

lift coefficient (about 12%) when changing the size of the mesh from 0.1 to 0.00625 (4 

times) in the mesh refinement study. This issue can be explained by the fact that the 

components of the drag coefficient were reversely responding to the grid size. i.e. by 

further refinement of the grid, the drag due to the pressure converged to a lower value 

while the drag due to friction converged to a higher value.  This shows that the drag is 

less sensitive to the size of the grid. 

Additionally, a comparison was presented of IB Interpolation / Reconstruction 

methods. Four different interpolation methods were compared with the proposed 

interpolation method in this thesis. The numerical results showed that the proposed 

interpolation method was stable and gave accurate results compared to other linear and 

bi-linear methods. Also this method does not suffer from the problem associated with the 
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bi-linear methods in finding interpolation points in the othorgonal directions when 

modelling high curvature IB. 

To fulfil the objective of this research, in the final step the numerical simulation of 

the flow around a cylinder oscillating in the cross flow direction was presented. This 

problem was presented in both fixed and moving frames of reference and the results 

were found to match well. The simulation of the flow around a cylinder is a well-known 

problem and has been used to validate FSI methodology by many researchers. To the 

best knowledge of author this was the first time that this problem was modelled using a 

sharp immersed boundary Interpolation/ Reconstruction technique along with a moving 

frame of reference.  

In the next part, the main draw backs of the applied methodology will be discussed 

and also some works will be proposed to address these issues as future research.  

8.3 Drawbacks verses advantages of the IB interpolation  

The Immersed Boundary with an Interpolation/reconstruction approach was used in 

this thesis to enable modelling moving boundaries with large displacements. As any 

other FSI method, this method has also some drawbacks. The most important of which, 

incompariosn to an ALE approach is that it is not straight forward to apply the boundary 

conditions on the moving boundary, especially for curved boundaries. This is common 

with all IB approaches and becomes more complicated because a staggered grid 

arrangement is used in the discretisation of the governing equations.   

Another important issue was the calculation of the hydrodynamic forces at the 

immersed boundaries. Calculating the lift and the drag forces on the IB immersed 

boundary was not a trivial problem, especially, when an Interpolation method was 

applied to the FSI problem. However, using momentum principle could help to address 

this problem.  

Despite these short comings, however, it is concluded form the experience gained 

from this research work that the IB the interpolation/Reconstruction method, is 

considered as an appropriate method to apply to the flexible riser problem with large 

displacement/deformation using the strip theory approach. Firstly, this method could 

handle large displacements where a conforming method like ALE would be 

computationally more expensive. Also as the IB method adopted here was a sharp 

interface method, unlike the IB forcing approach it does not create diffuse boundaries 

near solid bounaries. This method can be simply developed to three dimensions, where 



164 

 

the IB cut cell method would become very expensive and complicated. Finally, this 

method does not create a secondary flow inside the solid boundary, unlike the ghost cell 

methods which create non-physical flow inside the solid boundaries.     

8.4 Future work 

This PhD research was part of a larger research project which aims to model the 

VIV for a slender oil riser and publication of some journal paper are planed during the 

completion of project in near future. In this study, the methodology to solve the flow 

around a flexible circular cylinder in two dimensions was addressed. This will be used as 

part of strip theory to model FSI for whole flexible risers used in the offshore industries. 

In this section, the suggestions for future work are all directly related to this PhD thesis. 

 All the simulations in this thesis, including the parametric study, were limited to 

a low Reynolds number, Re=100. The parametric study to show the effect of the 

Reynolds number on the FSI parameters is recommended for further low 

Reynolds numbers 40<Re<200. 

 In a real riser problem, the Reynolds number is of order of O(10
4
), therefore 

adding a suitable algorithm to model the turbulence is necessary. 

 The Neumann boundary conditions for the pressure,
𝜕𝑝

𝜕𝑛
, do not noticeably affect 

the lift and drag forces. A proper parametric study will help to understand the 

range of oscillations that the ‘standard’ boundary condition 
𝜕𝑝

𝜕𝑛
= 0 is sufficiently 

accurate. 

 The moving frame of reference presents promising results for the cylinder 

oscillation in the cross flow direction. It is suggested to further develop this 

simulation for inline oscillations using the IB and interpolation approaches. 

 Finally, to improve the results for the moving cylinder in the inertial frame of 

reference, it is suggested to use a dual time integration to reduce the fluctuation 

of the response. Also, this method is very slow in comparison to the moving 

frame of reference approach. It is suggested to use a parallel processing 

capability to improve this method. For simulations with more than one cylinder 

oscillating in the flow domain, this method offers the only solution, as the 

moving frame of reference method cannot be used in multi-cylinders simulations. 
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Appendix A, Fortran Code, FSI by Reconstruction method 

c 

      PROGRAM DISCO 

c 

      implicit none 

c 

      integer nnx,nny,MxSurf,Mxy         ! grid dimension in x and y direction 

      common /cylsize/ acyl, bcyl, Rcyl 

      double precision acyl, bcyl, Rcyl  ! cylinder center point x and y 

dirction plus its radious 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

cc      parameter (acyl=5.00000,bcyl=10.00000,Rcyl=0.5000000000) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

      double precision maxdiv,divm 

c 

 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      integer nt,i,j,k,t,ksub      

      logical EX  

c 

      inquire(file='movie.dat',exist=EX) 

       if (EX)  go to 15 

 

      open(12, file = 'movie.dat',position='append', 

     &                      form='formatted') 

       write(12,'(A)') 'variables="x","y","u","v","p"' 

      close(12) 

15    continue 

c 

c  

      time=0.D0 

      call inigrid() 

      call init() 

      call interpolate() 

      call bounds() 

      call inisol() 

c       

      do nt = 1,1000000 

        time=time+dt 

        write(*,*) 'time = ',time 

        ksub=0 

        call structuremain 

c       call structure(ksub) 

c   

cc        call convec() 
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cc        call fillf() 

cc        call calcuv() 

c        **************   FSI Part *********** 

c       if ((mod(nt,100) .EQ. 1) .AND.  

c    &      ( nt .NE. 1)) then  

c       call forcvib 

c       call structure() 

c       call structuretwo() 

c        end if  

c        call convergence(ksub)  

c        ************    end of FSI **********         

c STOP 

        if (mod(nt,1000) .EQ. 0) then  

           write(*,*) 'Saving field.dat...' 

           call wrtfld() 

           call savfld() 

        end if 

        if (mod(nt,10).EQ.0) then 

           call mean() 

        end if 

        call bounds()  ! this line is added in test7 

        divm=maxdiv() 

        write(*,*) 'Maximum Divergence = ',divm 

      end do 

c 

      call wrtfld() 

      call savfld() 

      call etimetest 

      end 

cc 

c 

       

       subroutine inigrid() 

c 

c **  initialize the grid, blocking, extrapolation of velocities at 

c **  boundaries 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

cc      parameter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common /maskdiv/ idiv(Mxy),jdiv(Mxy),ndiv 

      integer  idiv,jdiv,ndiv 

c 

      common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2), 

     &                                   vins(0:nnx+2,0:nny+2) 

      double precision pins,uins,vins 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn,nx3,nn1 

      double precision Re, RRe,dt,time,dts 

      integer t,k,nx1,ny1 

c 
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      double precision yj,y0,y1,delta,tanh0,tanh1,coef1  

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      double precision dx,dy,fact,offset,alpha,xtg,ytg,dnorm,dy1 

      double precision gradient,intercept, xint,yint,weight,a1,c1,PI 

      logical EX       

c      

      common /homeadd/ home 

      character*40 home 

c  

      RRe=1D0/Re 

c       write(*,*)'ingrid,home',home 

c STOP 

c 

c       *******Reading an arbitrary grid from a file if exist otherwise 

c              making a uniform grid ************* 

c 

cc      inquire(file='grid.bin',exist=EX)        

c    

cc      if (EX) then 

cc         open(unit=12,file='grid.bin',form='UNFORMATTED') 

cc        rewind(12) 

c 

cc         read(12) nx,ny 

cc         read(12) ( xcrd(i),i=0,nx+1) 

cc         read(12) ( ycrd(j),j=0,ny+1) 

c        read(12) (  txu(i),i=1,nx  ) 

c        read(12) (  txv(i),i=1,nx  ) 

c        read(12) (  tyu(i),i=1,nx  ) 

c        read(12) (  tyv(i),i=1,nx  ) 

c        read(12) (vnoru(i),i=1,nx  ) 

c        read(12) (vnorv(i),i=1,nx  ) 

c        read(12) (  fyu(i),i=1,nx  ) 

c        read(12) (  fyv(i),i=1,nx  ) 

c        read(12) (  jyu(i),i=1,nx  ) 

c        read(12) (  jyv(i),i=1,nx  ) 

cc         close(12) 

c 

cc         do i=0,nx 

cc            xcoord(i)=0.5D0*(xcrd(i)+xcrd(i+1)) 

cc         end do 

c  

cc         do j=0,ny 

cc            ycoord(j)=0.5D0*(ycrd(j)+ycrd(j+1)) 

cc         end do 

c  

cc         do i=1,nx 

cc         do j=1,ny 

cc            pmask(i,j)=1.D0 

cc            umask(i,j)=1.D0 

cc            vmask(i,j)=1.D0 

cc         end do  

cc         end do 

c 

cc         do i=1,nx 

cc         do j=1,jyv(i) 

cc            pmask(i,j)=0.D0 

cc         end do  

cc         end do  

cc         write(*,*) (i,jyv(i),pmask(i,jyv(i)),i=1,nx) 

c 

c        do i=1,nx 

c        do j=1,ny 

c            if (pmask(i,j) .EQ. 0.D0) then 

cc                amask(i,j)=0.D0 

c                if (i .GT. 1) amask(i-1,j)=0.D0 
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c            end if  

c        end do  

c        end do 

c      

cc         return  

cc      end if    

c 

c **  Grid does not exist, produce a mesh which is uniform in x and y  

c **  direction, later we need to increase the density of mesh near  

c **  the cylidner to capture the vorticity 

c 

c**********         ! This part is for making fine mesh around cylinder x 

direction 

cc      i=0        

cc      dx=0.1D0 

cc      xcrd(0)=-0.5D0*dx 

cc      xcrd(1)=0.5D0*dx 

cc      xcoord(0)=0.D0 

cc100    i=i+1 

cc         xcoord(i)=xcoord(i-1)+dx 

c         xcrd(i+1)=xcrd(i)+dx 

cc         xcrd(i)=(xcoord(i)+xcoord(i-1))/2 

cc         If (xcoord(i) .LT. 6.0) then  

cc                 dt=0.1D0 

cc        else If ((xcoord(i) .LE.9.05) .AND. (xcoord(i) .GE. 6.0)) then 

cc        dx=dx-0.00125D0 

c  dx=dx-0.00126 

cc        else if ((xcoord(i) .GT. 11) .AND. (xcoord(i) .LT. 13.9)) then 

cc         dx=dx+0.00125D0 

c          dx=dx+0.00126 

cc          else if ((xcoord(i) .GT. 9.05) .AND. (xcoord(i) .LE. 11)) then 

cc            dx=0.05D0 

c          dx=0.025D0       

c          dx=0.0125 

c          dx=0.00675 

cc          else 

cc          dx=0.1D0 

cc          end if 

c      write(*,*)'i,dx,xcoord(i)', i,dx, xcoord(i) 

c  write(*,*)'i,xcoord,xcrd',i,xcoord(i),xcrd(i)  

cc         if (xcoord(i) .LE. 25) go to 100 

cc          xcrd(i+1)=xcoord(i)+0.5D0*dx 

cc          nx=i 

c *********   ! end of making fine mesh around cylinder x direction 

      delta=5.D0 !3.D0 

c 

      nx2  =37 !78 

      nx3  =37 !66 

      dx   =0.0250D0!0.025D0 

      nn   =4.0D0/dx 

      nx=nx2+nx3+nn 

      xcoord(0) =  -15.0D0 

      xcoord(nx2)=  -2.0D0 

c 

      do i=1,nx2-1 

      yj=1.D0*i 

      y0=delta/2.D0*yj/nx2 

      y1=delta/2.D0 

      tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0)) 

      tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1)) 

      coef1 =  tanh0/tanh1 

      xcoord(i)  = (1.D0-coef1)*xcoord(0)+coef1*xcoord(nx2) 

      xcrd(i)=(xcoord(i)+xcoord(i-1))/2.0D0 

      end do 

c 

      write(*,*)'nx2, dx',nx2,xcoord(nx2)-xcoord(nx2-1) 

c 

      do k=1,nn-1 
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         xcoord(nx2+k)=xcoord(nx2)+k*dx 

         xcrd(nx2+k)  =(xcoord(nx2+k)+xcoord(nx2+k-1))/2.0D0 

      end do 

c 

         xcoord(nx2+nn)   = 2.0D0 

         xcoord(nx)       =15.0D0 

c 

 

      do i=1,nx3-1 

      yj=1.D0*(nx3-i) 

      y0=delta/2.D0*yj/nx3 

      y1=delta/2.D0 

      tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0)) 

      tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1)) 

      coef1 =  tanh0/tanh1 

      xcoord(nx2+nn+i)  = coef1*xcoord(nx2+nn)+ 

     &              (1.0D0-coef1)*xcoord(nx      ) 

      xcrd(nx2+nn+i)=(xcoord(nx2+nn+i)+xcoord(nx2+nn+i-1))/2 

      end do 

       write(*,*)'nx2+nn,dx',nx2+nn,xcoord(nx2+nn+1)-xcoord(nx2+nn) 

c 

        xcrd(nx)  =(xcoord(nx)+xcoord(nx-1))/2.0D0 

        xcrd(nx+1)=2*xcoord(nx)-xcrd(nx) 

        xcrd(0)= xcoord(0)-(xcrd(1)-xcoord(0)) 

        xcrd(nx2)=(xcoord(nx2)+xcoord(nx2-1))/2.0D0 

        xcrd(nx2+nn)=(xcoord(nx2+nn)+xcoord(nx2+nn-1))/2.0D0 

 

 

c         k=0 

c         nx=2*nx2+nn 

c      do i=nx2+nn+1,nx 

c         k =k+1 

c         xcoord(i)= -xcoord(nx2-k) 

c         xcrd(i)=(xcoord(i)+xcoord(i-1))/2 

c      end do 

c        xcrd(nx+1)=xcoord(nx)+(xcoord(nx)-xcrd(nx-1)) 

c        xcrd(0)= xcoord(0)-(xcrd(1)-xcoord(0)) 

c        xcrd(nx2)=(xcoord(nx2)+xcoord(nx2-1))/2 

      do i=0,nx+1 

       write(*,*)'i,dx,xcoord,xcrd',  

     &     i,2*(xcoord(i)-xcrd(i)), xcoord(i),xcrd(i) 

      end do 

c          

cc       open(unit=12,file='trial.out') 

cc       write(12,*)'variables="x","y"'  

cc       write(12,*) 

cc   &    'ZONE T="scalar field",I=',2*ny2+nn,'J =',2*ny2+nn,'F=BLOCK'   

c 

cc       write(12,'(5E16.8)')((y(i),i=1,2*ny2+nn),j=1,2*ny2+nn) 

cc       write(12,'(5E16.8)')((y(j),i=1,2*ny2+nn),j=1,2*ny2+nn) 

c 

cc       close(12) 

 

ccccc 

c    ! making uniform mesh xdirction 

cc    nx=250 

cc    ny=300  ! was 400 for 20D in y direction 

cc    dx = 25D0/nx 

cc    xcrd(0)=-0.5D0*dx 

cc    do i=0,nx               ! this part has change to make a bit new andices 

cc       xcoord(i)=i*dx 

cc       xcrd(i+1)=xcrd(i)+dx 

cc    end do 

 

c ********     ! end of uniform mesh x direction 

 

c      alpha = 1.02  ! stretching of 2 per cent. 

c      dy = 1D0/ny ! this is the mean dy 
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c 

c      ycoord(ny)=1D0 

c      do j=ny-1,0,-1 

c         ycoord(j)=ycoord(j+1)-dy 

c         dy=alpha*dy 

c      end do 

c      offset=ycoord(0) 

c      fact=ycoord(ny)-offset 

c 

c      do j=0,ny 

c         ycoord(j)=(ycoord(j)-offset)/fact 

c      end do 

c 

c      ycrd(0)=-0.5D0*ycoord(1) 

c 

c ******** ! creating fine mesh around the cylinder in y direction 

c 

cc        j=0 

cc        dy=0.1D0 

cc        ycrd(0)=-0.5D0*dy 

cc        ycrd(1)=0.5D0*dy 

cc        ycoord(0)=0.D0 

cc 

cc110   j=j+1 

cc         ycoord(j)=ycoord(j-1)+dy 

c       ycrd(j+1)=ycrd(j)+dy 

cc       ycrd(j)=(ycoord(j)+ycoord(j-1))/2 

cc        if ((ycoord(j) .LE. 11.0) .OR. (ycoord(j) .GE.18.9)) then 

cc           dy=0.1D0  

cc       else if ((ycoord(j) .GT. 11.0) .AND. (ycoord(j) .LE. 14.05)) then 

cc           dy=dy-0.00125D0 

c         dy=dy-0.001262 

cc         else if ((ycoord(j) .GE. 16) .AND. (ycoord(j) .LT. 18.9)) then 

cc           dy=dy+0.00125D0 

c    dy=dy+0.001262 

cc         else 

cc           dy=0.05D0 

c         dy=0.025D0 

c          dy=0.0125 

c    dy=0.00535 

cc       end if 

c       write(*,*)'j,dy,ycoord(j)', j,dy, ycoord(j) 

cc        if (ycoord(j) .LE. 30) go to 110 

cc        ycrd(j+1)=ycoord(j)+0.5D0*dy 

cc        ny=j 

cc        write(*,*)'ny',ny 

c ******** end of creating fine mesh around the cylidner in y direction 

c 

 

c      ny1=119  

      ny2=37 

      delta=5.D0 !3.D0 

      nn = 160!160 

c 

c      ny2  = (ny1+1)/2 

      ycoord(0) =  -15.0D0 

      ycoord(ny2)=  -2.0D0 

c 

      do j=1,ny2-1 

      yj=1.D0*j 

      y0=delta/2.D0*yj/ny2 

      y1=delta/2.D0 

      tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0)) 

      tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1)) 

      coef1 =  tanh0/tanh1 

      ycoord(j)  = (1.D0-coef1)*ycoord(0)+coef1*ycoord(ny2) 

      ycrd(j)=(ycoord(j)+ycoord(j-1))/2 

c     write(*,*)'j,dy,ycoord(j)',j,dy, ycoord(j) 
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      end do 

c 

      nn1    =  INT(4/ABS(ycoord(ny2)-ycoord(ny2-1))) 

      dy1    = 4.0D0 /nn1 

c 

      dy    =  4.0D0/nn 

      write(*,*)'dy,nn =',dy,nn,dy1,nn1 

c 

      do k=1,nn-1 

         ycoord(ny2+k)=ycoord(ny2)+k*dy 

         ycrd(ny2+k)=(ycoord(ny2+k)+ycoord(ny2+k-1))/2 

c        write(*,*)'j,dy,ycoord(j)',ny2+k,dy, ycoord(ny2+k) 

      end do 

c 

         k=0 

         ny=2*ny2+nn 

      do j=ny2+nn,ny 

c         k =k+1 

         ycoord(j)= -ycoord(ny2-k) 

         ycrd(j)=(ycoord(j)+ycoord(j-1))/2 

         k =k+1 

c        write(*,*)'j,dy,ycoord(j)', j,dy, ycoord(j) 

      end do 

        ycrd(ny+1)=ycoord(ny)+(ycoord(ny)-ycrd(ny)) 

        ycrd(0)= ycoord(0)-(ycrd(1)-ycoord(0)) 

        ycrd(ny2)=(ycoord(ny2)+ycoord(ny2-1))/2 

      do j=0,ny+1 

       write(*,*)'j,dy,ycoord(j)',j,ycoord(j)-ycoord(j-1),  

     &  ycoord(j),ycrd(j) 

       end do 

               

c          

c *****  creating uniform mesh  

c 

cc    dy= 30D0/ny   !was 20 in y direction 

cc    ycrd(0)=-0.5D0*dy 

cc    ycoord(0)=-dy 

cc    do j=0,ny                      ! this part has change to make a bit new 

andices 

cc     ycoord(j)=j*dy 

cc     ycrd(j+1)=ycrd(j)+dy  

cc    end do 

c 

c      ycrd(ny+1)=1D0+0.5D0*(ycoord(ny)-ycoord(ny-1)) 

c 

      open(unit=12,file='grid.dat') 

 

      write(12,*) 'variables="x","y"' 

      write(12,*)  

     &  'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK' 

      write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny) 

      write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny) 

      close(12) 

c     STOP 

      open(unit=12,file='grid2.dat') 

      write(12,*) 'variables="x","y"' 

      write(12,*)  

     &  'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK' 

      write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) 

      write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) 

      close(12) 

c     STOP 

c   *********************define u and v and p absolute inside of the 

cylinder***** 

cc      uins=1 

cc      vins=1 

cc      pins=1  

cc 
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cc     do i=2,nx-1 

cc      do j=2,ny-1 

cc  if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then 

cc                vins(i,j)=vsolid 

cc  end if 

cc         if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc                uins(i,j)=usolid 

cc  end if  

cc         if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc   pins(i,j)=0 

cc  end if 

cc     end do 

cc     end do 

c ********************************end of part ****************** 

c 

c      do i=1,nx 

c         xtg = xcrd(i) 

c         ytg = 0.269D0*sqrt(0.1D0 * xtg) 

c         fxdm = MAX(1.D0-2.D0*MAX(xtg-4.D0,0.D0),0.D0) 

c         txv(i)=1D0 

c         tyv(i)=0.05D0*0.269D0/sqrt(0.1D0 * xtg) 

c         dnorm = SQRT(txv(i)**2+tyv(i)**2) 

c         txv(i)=txv(i)/dnorm 

c         tyv(i)=tyv(i)/dnorm 

c         vnorv(i)=fxdm*0.081/sqrt(0.1D0 * xtg) ! scaled by inlet vel. 

c         vnorv(i)=0.D0 

c         do j=1,ny 

c            jyv(i)=j 

c            pmask(i,j)=0.D0 

c            if (ycoord(j)-ytg .GT. 0D0) GoTo 20 

c         end do 

c         STOP 'ERROR 002' 

c  20     continue 

c         jyu(i)=jyv(i)+1 

c 

c         fyv(i)=ytg  

c      end do   

c 

c      open(unit=12,file='checkv.dat') 

c      write(12,*) '*** v: i, j, ycoord, ytg: ' 

c      do i=1,400 

c         write(12,*) i,jyv(i),ycoord(jyv(i)),fyv(i) 

c      end do 

c      close(12) 

c 

c      STOP 'check it' 

c      do i=1,nx 

c      do j=1,ny 

c         if (pmask(i,j) .EQ. 0.D0) then 

c             amask(i,j)=0.D0 

c             if (i .GT. 1) amask(i-1,j)=0.D0 

c         end if  

c      end do  

c      end do 

c      

c      do i=1,nx 

c      do j=2,ny 

c        if ((amask(i,j) .EQ. 1.D0) .AND. (amask(i,j-1) .EQ. 0.D0)) then 

c           jyu(i)=j 

c        end if 

c      end do  

c      end do 

c      

cc      open(unit=12,file='grid.bin',form='UNFORMATTED') 

cc      rewind(12) 

c 

cc      write(12) nx,ny 

cc      write(12) ( xcrd(i),i=0,nx+1) 
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cc      write(12) ( ycrd(j),j=0,ny+1) 

cc      write(12) (  txu(i),i=1,nx  ) 

cc      write(12) (  txv(i),i=1,nx  ) 

cc      write(12) (  tyu(i),i=1,nx  ) 

cc      write(12) (  tyv(i),i=1,nx  ) 

cc      write(12) (vnoru(i),i=1,nx  ) 

cc      write(12) (vnorv(i),i=1,nx  ) 

cc      write(12) (  fyu(i),i=1,nx  ) 

cc      write(12) (  fyv(i),i=1,nx  ) 

cc      write(12) (  jyu(i),i=1,nx  ) 

cc      write(12) (  jyv(i),i=1,nx  ) 

cc      close(12) 

c 

      return 

      end 

cc 

 

 

      subroutine interpolate() 

c 

c **  initialize the grid, blocking, extrapolation of velocities at 

c **  boundaries 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c      parameter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000) 

c      

      common /cylzise/ acyl, bcyl, Rcyl 

      double precision acyl, bcyl, Rcyl 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy), 

     &          ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy), 

     &                  nbndp 

      integer  ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp 

c 

      common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy), 

     &                  wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy) 

      double precision teta,unitvi,unitvj,wp1,wp2,delta1 

c 

      common /maskdiv/ idiv(Mxy),jdiv(Mxy),ndiv 

      integer  idiv,jdiv,ndiv 

 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 
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     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx 

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2), 

     &                                   vins(0:nnx+2,0:nny+2) 

      double precision pins,uins,vins 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

      integer t,k 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      double precision dx,dy,fact,offset,alpha,xtg,ytg,dnorm 

      double precision gradient,intercept, xint,yint,weight,a1,c1,PI 

      logical EX       

c      

      common /homeadd/ home 

      character*40 home 

c  

       

      xsolid=0.D0  

      RRe=1.D0/Re 

      bcyl=0.D0!+ysolid 

      acyl=0.D0!+xsolid 

      Rcyl=0.5D0 

cc 

c   *********************define u and v and p absolute inside of the 

cylinder***** 

cc      uins=1 

cc      vins=1 

cc      pins=1 

cc 

cc      do i=2,nx-1 

cc      do j=2,ny-1 

cc        if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then 

cc                vins(i,j)=vsolid 

cc       end if 

cc         if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc                uins(i,j)=usolid 

cc         end if  

cc         if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc         pins(i,j)=0 

cc         end if 

cc      end do 

cc      end do 

c ********************************end of part ****************** 

      umask=0.D0 

      vmask=0.D0 

      do i=1,nx-1 

      do j=1,ny 

        umask(i,j)=1.D0 

      end do 

      end do 

c 

      do i=1,nx 
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      do j=1,ny-1 

         vmask(i,j)=1.D0 

      end do 

      end do 

c 

c *** to define where vmask(i,j)=0 and umask(i,j)=0 and pmask(i,j)=0       

      do i=2,nx-1 

      do j=2,ny-1 

       if  

     &((sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i-1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i)-acyl)**2+(ycoord(j+1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LE. Rcyl)) 

     & then  

      vmask(i,j)=0 

       end if 

       if  

     &((sqrt((xcoord(i+1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i)-acyl)**2+(ycrd(j-1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl)   .OR. 

     & (sqrt((xcrd(i)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR. 

     & (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LE. Rcyl)   .OR.  

     & (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl))  

     &    then  

          umask(i,j)=0 

       end if 

      end do 

      end do  

c 

c c *******  definition of pmask  

 

       do i=1,nx 

       do j=1,ny 

        if ((umask(i-1,j)+umask(i,j)+vmask(i,j-1)+vmask(i,j)).EQ.1) then 

                umask(i  ,j  )=0 

                umask(i-1,j  )=0 

                vmask(i  ,j  )=0 

                vmask(i  ,j-1)=0 

        end if 

       end do 

       end do 

c 

c ******* end of definition of pmask  

 

      pmask=0.D0 

      do i=1,nx 

      do j=1,ny 

       if ((umask(i-1,j)+umask(i,j)+vmask(i,j-1)+vmask(i,j)).GE.1) then 

          pmask(i,j)=1.D0 

       end if   

      end do 

      end do  

 

c 

c ************************  v-velocities     ******************* 

*******************interpolation to find the boundary value of vmask(i,j) 

       k=0 

       nbndv=0 

      do  j=2,ny-1 

      do  i=2,nx-1 
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c     

         deltal=sqrt(((xcrd(i)-acyl)**2)+(ycoord(j)-bcyl)**2) 

       If ((vmask(i,j) .EQ. 0.D0) .AND. (deltal .GE. Rcyl)) then      

              k=k+1 

            gradient=((bcyl-ycoord(j))/((acyl-xcrd(i)))) 

            intercept=bcyl-acyl*gradient 

c      write(*,*)'gradient, intercept', gradient,intercept 

c                                                                      ! 

********  third quarter of circle ***************** 

c 

                if ((ycoord(j) .LE. bcyl) .AND. (xcrd(i) .LE. acyl)) 

     &             then 

                   xint=(ycoord(j-1)-intercept)/gradient 

c 

                    If ((acyl . EQ. xcrd(i)) .OR.  

     &                 ((xint .GE. xcrd(i-1)) .AND.  

     &                  (xint .LE. xcrd(i)))) then 

                        yint=ycoord(j-1) 

                        weight=((xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))) ! weight 

of grater I indices of v on interpolation point 

                              If (acyl .EQ. xcrd(i)) then  

                                  weight=1 

                                   xint=xcrd(i) 

                                End if 

                           ip1v(k)=i 

                           jp1v(k)=j-1 

                           ip2v(k)=i-1 

                           jp2v(k)=j-1 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd 

c     & third1',k,i,j,weight,xcrd(i-1),xint,xcrd(i),gradient,intercept 

                     Else           

                        xint=xcrd(i-1) 

                        yint=gradient*xint+intercept 

                     weight=((yint-ycoord(j-1))/(ycoord(j)-ycoord(j-1))) 

                              If (bcyl .EQ. ycoord(j)) then   !new 20/5/13 

                                  weight=1                  !new 20/5/13 

                                   yint=ycoord(j)             !new 20/5/13 

                                End if                      !new 20/5/13 

                           ip1v(k)=i-1 

                           jp1v(k)=j 

                           ip2v(k)=i-1 

                           jp2v(k)=j-1  

c                     write(*,'(A,3I4,6F8.2)')'i,ik,jk,wet,yco 

c     & third2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),intercept,gradient 

                    End if 

                End if 

c 

c 

               If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i) .LE. acyl))     

!********  second quater of circle 

     &                then 

               xint=(ycoord(j+1)-intercept)/gradient 

c 

                  If ((xint .GE. xcrd(i-1)) .AND. (xint .LE. xcrd(i)) 

     &                      .OR. (acyl .EQ. xcrd(i))) Then         

                    yint=ycoord(j+1) 

                    weight=((xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))) ! weight of 

grater I indices of v on interpolation point 

                          If (acyl .EQ. xcrd(i)) then  

                                weight=1 

                                xint=xcrd(i) 

                          End if 

                           ip1v(k)=i 

                           jp1v(k)=j+1 

                           ip2v(k)=i-1 

                           jp2v(k)=j+1 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd 

c     &scond1',k,i,j,weight,xcrd(i-1),xint,xcrd(i),gradient,intercept 
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      Else  

   xint=xcrd(i-1) 

   yint=gradient*xint+intercept 

                     weight=((yint-ycoord(j))/(ycoord(j+1)-ycoord(j)))  

                           ip1v(k)=i-1 

             jp1v(k)=j+1 

             ip2v(k)=i-1 

               jp2v(k)=j 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord 

c     &scond2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),gradient,intercept 

 

                    End if 

         End if 

c 

c 

  If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl))                   

!******** first quater of circle 

     &            then 

     xint=(ycoord(j+1)-intercept)/gradient  

c 

      If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) 

     &               then     

    yint=ycoord(j+1) 

      weight=((xint-xcrd(i))/(xcrd(i+1)-xcrd(i))) ! weight of 

grater I indices of v on interpolation point 

                           ip1v(k)=i+1 

             jp1v(k)=j+1 

             ip2v(k)=i 

               jp2v(k)=j+1 

c 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord 

c     & first1',k,i,j,weight,xcrd(i),xint,xcrd(i+1),gradient,intercept 

 

      Else   

   xint=xcrd(i+1) 

   yint=gradient*xint+intercept 

                     weight=((yint-ycoord(j))/(ycoord(j+1)-ycoord(j)))  

                           ip1v(k)=i+1 

             jp1v(k)=j+1 

             ip2v(k)=i+1 

               jp2v(k)=j 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord 

c     & firt2',k,i,j,weight,ycoord(j),yint,ycoord(j+1),gradient,intercept 

 

                    End if 

                End if 

c 

c 

  If (((ycoord(j) .LE. bcyl) .AND. (xcrd(i).GT. acyl)))                   

!******* fourth  quater of circle 

     &                then 

     xint=(ycoord(j-1)-intercept)/gradient  

c 

      If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) 

     &                then 

    yint=ycoord(j-1) 

      weight=((xint-xcrd(i))/(xcrd(i+1)-xcrd(i))) ! weight of 

grater I indices of v on interpolation point 

                           ip1v(k)=i+1 

             jp1v(k)=j-1 

             ip2v(k)=i 

               jp2v(k)=j-1 

c                       write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd 

c     & four1',k,i,j,weight,xcrd(i),xint,xcrd(i+1),gradient,intercept 

 

      Else  

   xint=xcrd(i+1) 
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   yint=gradient*xint+intercept 

                    weight=((yint-ycoord(j-1))/(ycoord(j)-ycoord(j-1)))  

                    if (bcyl .EQ. ycoord(j)) then    ! 21/5/13 

                            weight=1                 ! 21/5/13 

                            yint= ycoord(j)          ! 21/5/13 

                    endif                            ! 21/5/13 

                           ip1v(k)=i+1 

             jp1v(k)=j 

             ip2v(k)=i+1 

               jp2v(k)=j-1 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord 

c     & four2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),gradient,intercept 

 

                    End if 

              End if 

c          

           iinterpv(k)=i 

           jinterpv(k)=j 

           a1=sqrt((acyl-xcrd(i))**2+(bcyl-ycoord(j))**2)-Rcyl  ! distance of 

bounary point to the bondary of circle  

           c1=(sqrt((acyl-xint)**2+(bcyl-yint)**2))-Rcyl        ! distance of 

interpolation point to the boundary of circle    

cc           wv1(k)=(a1/c1)*weight 

cc           wv2(k)=(a1/c1)*(1-weight) 

 

           wv1(k)=weight 

           wv2(k)=(a1/c1) 

           if (a1 .EQ. 0) then       ! point is on the solid c1 to a1 

            wv1(k)=0 

            wv2(k)=0 

           end if 

c                     write(*,'(A,3I5,7F10.2)')'i,ik,jk,weight,wv1,wv2, 

c    & final',k,i,j,weight,wv1(k),wv2(k),a1,c1,xint,yint 

      End if 

c 

      end do 

      end do 

       nbndv=k 

       write(*,*) 'k,nbndv=',k,nbndv 

c ** *************** u-velocities  

*******************************************************************************

*********: 

c ********interpolation to find the bounadry value of umask(i,j) 

        k=0 

        nbndu=0 

c 

       

      do  j=2,ny-1 

       do  i=2,nx-1 

         deltal= sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2)  

         If ((umask(i,j) .EQ. 0) .AND.(deltal .GE. Rcyl)) then   

        k=k+1 

            gradient=(bcyl-ycrd(j))/(acyl-xcoord(i)) 

     intercept=bcyl-acyl*gradient 

c   

c 

            If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .LE. acyl))       !        

******  third quater of circle ***************** 

     &             then 

     yint=gradient * xcoord(i-1)+intercept 

c 

      If ((bcyl .EQ. ycrd(j)) .OR. ! 21/5/13 

     &                  ((yint .GE. ycrd(j-1)) .AND.  

     &                  (yint .LE. ycrd(j)))) then 

                        xint=xcoord(i-1) 

                           weight=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1)) ! weight 

of grater I indices of v on interpolation point 

                           if (bcyl .EQ. ycrd(j)) then !21/5/13 
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                                   weight = 1          !21/5/13 

                                   yint =ycrd(j)       !21/5/13 

                           endif                       !21/5/13 

                           ip1u(k)=i-1 

             jp1u(k)=j 

             ip2u(k)=i-1 

                           jp2u(k)=j-1 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd 

c     & third1',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient,intercept 

 

      Else           

                        yint=ycrd(j-1) 

                        xint=(yint-intercept)/gradient 

                     weight=(xint-xcoord(i-1))/(xcoord(i)-xcoord(i-1)) 

                           IF (acyl .EQ. xcoord(i)) then 

                                weight=1 

                                xint=xcoord(i)  

                           End if 

                           ip1u(k)=i 

             jp1u(k)=j-1 

             ip2u(k)=i-1 

               jp2u(k)=j-1 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     &third2',k,i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept 

                    End if 

  End if 

c 

                If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .LE. acyl))   !        

******  second quarter of circle ***************** 

     &             then 

     yint=gradient * xcoord(i-1)+intercept 

c 

      If ((yint .GE. ycrd(j)) .AND.  

     &                  (yint .LE. ycrd(j+1))) then 

    xint=xcoord(i-1) 

      weight=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j)) ! weight of 

grater I indices of v on interpolation point 

                           ip1u(k)=i-1 

             jp1u(k)=j+1 

             ip2u(k)=i-1 

                           jp2u(k)=j 

c                      write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd 

c     &scond1',k,i,j,weight,ycrd(j),yint,ycrd(j+1),gradient,intercept 

      Else           

   yint=ycrd(j+1) 

   xint=(yint-intercept)/gradient 

                     weight=(xint-xcoord(i-1))/(xcoord(i)-xcoord(i-1))  

                           If (acyl .EQ. xcoord(i)) then  

                                weight=1 

    xint=xcoord(i) 

                           End if 

                           ip1u(k)=i 

             jp1u(k)=j+1 

             ip2u(k)=i-1 

               jp2u(k)=j+1 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     &scond2',k,i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept 

                    End if 

  End if 

c 

  If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .GT. acyl))            !        

******  first quarter of circle ***************** 

     &             then 

     yint=gradient * xcoord(i+1)+intercept  

c 

      If ((yint .GE. ycrd(j)) .AND.  

     &                  (yint .LE. ycrd(j+1))) then 

    xint=xcoord(i+1) 
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      weight=((yint-ycrd(j))/(ycrd(j+1)-ycrd(j))) ! weight of 

grater I indices of v on interpolation point 

                           ip1u(k)=i+1 

             jp1u(k)=j+1 

             ip2u(k)=i+1 

                           jp2u(k)=j 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     &first2',k,i,j,weight,ycrd(j),yint,ycrd(j+1),gradient,intercept 

 

      Else           

   yint=ycrd(j+1) 

   xint=(yint-intercept)/gradient 

                     weight=((xint-xcoord(i))/(xcoord(i+1)-xcoord(i)))  

                           ip1u(k)=i+1 

             jp1u(k)=j+1 

             ip2u(k)=i 

               jp2u(k)=j+1 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     &first2',k,i,j,weight,xcoord(i),xint,xcoord(i+1),gradient,intercept 

                   End if 

  End if 

 

c 

  If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .GT. acyl))            !        

******  fourth quater of circle ***************** 

     &             then 

     yint=gradient * xcoord(i+1)+intercept 

c 

      If ((bcyl .EQ. ycrd(j)) .OR.  

     &                  ((yint .GE. ycrd(j-1)) .AND.  

     &                  (yint .LE. ycrd(j)))) then 

    xint=xcoord(i+1) 

      weight=((yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1))) ! weight 

of grater I indices of v on interpolation point 

                           if (bcyl .EQ. ycrd(j)) then  

                                   weight = 1 

                                   yint = ycrd(i) 

                           end if 

                           ip1u(k)=i+1 

             jp1u(k)=j 

             ip2u(k)=i+1 

                           jp2u(k)=j-1 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     &four1',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient,intercept 

      Else           

   yint=ycrd(j-1) 

   xint=(yint-intercept)/gradient 

                     weight=((xint-xcoord(i))/(xcoord(i+1)-xcoord(i)))  

                           ip1u(k)=i+1 

             jp1u(k)=j-1 

             ip2u(k)=i 

               jp2u(k)=j-1 

c                        write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord 

c     & four2',k,i,j,weight,xcoord(i),xint,xcoord(i+1),gradient,intercept 

                    End if 

  End if 

c 

c          

           iinterpu(k)=i 

           jinterpu(k)=j 

           a1=sqrt((acyl-xcoord(i))**2+(bcyl-ycrd(j))**2)-Rcyl  ! distance of 

bounary point to the bondary of circle  

           c1=sqrt((acyl-xint)**2+(bcyl-yint)**2)-Rcyl        ! distance of 

interpolation point to the boundary of circle    

cc           wu1(k)=(a1/c1)*weight 

cc           wu2(k)=(a1/c1)*(1-weight) 

              wu1(k)=weight            ! 21/5/13 

              wu2(k)=(a1/c1)           !21/5/13 
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              if (a1 .EQ. 0) then ! point on the solid boudnary 

                      wu1(k)=0         !21/5/13 

                      wu2(k)=0         !21/5/13 

              endif                    !21/5/13 

      End if 

c 

 

       end do 

      end do 

        nbndu=k 

 write(*,*)'k,nbndu',k,nbndu 

c 

c 

c ***************************************** pressure interpolation indices on 

moving boundary****************** 

        k=0 

        nbndp = 0 

        PI=4.*ATAN(1.) 

        do j=8,ny-8 

        do i=8,nx-8 

         if ((pmask(i,j) .EQ. 1) .AND. 

     & ((pmask(i+1,j) .EQ. 0) .OR. (pmask(i-1,j) .EQ. 0) .OR. 

     &  (pmask(i,j+1) .EQ. 0) .OR. (pmask(i,j-1) .EQ .0)))  then 

c 

            deltal= sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) 

            gradient=(bcyl-ycrd(j))/(acyl-xcrd(i)) 

            intercept=bcyl-acyl*gradient 

                k=k+1 

                 teta(k)=ATAN2((ycrd(j)-bcyl),(xcrd(i)-acyl)) 

                if (teta(k) .LE. 0) then 

                     teta(k)=teta(k)+ 2*PI 

                 end if     

c                teta(k)=ATAN2((bcyl-ycrd(j)),(acyl-xcrd(i))) 

                unitvi(k)=(xcrd(i)-acyl)/deltal 

                unitvj(k)=(ycrd(j)-bcyl)/deltal 

                 ip1p(k)=i 

                 jp1p(k)=j 

            If ((ycrd(j) .LE. bcyl) .AND. (xcrd(i) .LE. acyl)) then     !        

******  third quater of circle ***************** 

                yint=ycrd(j-1) 

                xint= (yint- intercept)/gradient    !update 21/5/13 

c  teta(k)=(2*PI/3)-(ATAN(gradient)) 

c  if (acyl .EQ. xcrd(i)) teta(k)=2*PI/3 

              if ((xint .GE. xcrd(i-1) .AND. (xint .LE. xcrd(i))) .OR. 

     &              (acyl .EQ. xcrd(i))) then 

                  wp1(k)=(xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1)) 

c 

                         if (acyl .EQ. xcrd(i)) then 

                          wp1(k)=1 

                          xint=xcrd(i) 

                         end if 

c 

                  ip2p(k)=i 

                  jp2p(k)=j-1 

                  ip3p(k)=i-1 

                  jp3p(k)=j-1 

              else 

                xint=xcrd(i-1) 

                yint=gradient * xint+intercept 

                 wp1(k)=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1)) 

                 if (bcyl .EQ. ycrd(j)) then !21/5/21 

                         wp1(k)=1            !21/5/21 

                         yint=ycrd(j)        !21/5/21 

                 endif                       !21/5/21 

                  ip2p(k)=i-1 

                  jp2p(k)=j 

                  ip3p(k)=i-1 

                  jp3p(k)=j-1 
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              end if 

            end if 

c 

            If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .LE. acyl)) then    !        

******  second quarter of circle ***************** 

                yint=ycrd(j+1) 

                xint= (yint- intercept)/gradient  !update 21/5/13 

c 

                if ((xint .GE. xcrd(i-1) .and. (xint .LE. xcrd(i))) .OR. 

     &              (acyl .EQ. xcrd(i))) then 

                  wp1(k)=(xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1)) 

c 

                         If (acyl .EQ. xcrd(i)) then 

                          wp1(k)=1 

                          xint=xcrd(i) 

                         End if 

c 

                  ip2p(k)=i 

                  jp2p(k)=j+1 

                  ip3p(k)=i-1 

                  jp3p(k)=j+1 

              else 

                xint=xcrd(i-1) 

                yint=gradient * xint+intercept 

                 wp1(k)=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j)) 

                  ip2p(k)=i-1 

                  jp2p(k)=j+1 

                  ip3p(k)=i-1 

                  jp3p(k)=j 

              end if 

            end if 

c 

             If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl)) then  ! upadte 

21/5/13       ******  first quarter of circle ***************** 

                yint=ycrd(j+1) 

                xint= (yint - intercept)/gradient !update 21/5/13 

c 

               if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) then 

                  wp1(k)=(xint-xcrd(i))/(xcrd(i+1)-xcrd(i)) 

                  ip2p(k)=i+1 

                  jp2p(k)=j+1 

                  ip3p(k)=i 

                  jp3p(k)=j+1 

              else 

                xint=xcrd(i+1) 

                yint=gradient * xint+intercept 

                 wp1(k)=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j)) 

                  ip2p(k)=i+1 

                  jp2p(k)=j+1 

                  ip3p(k)=i+1 

                  jp3p(k)=j 

              end if 

             end if 

c 

            If ((ycrd(j) .LE. bcyl) .AND. (xcrd(i) .GT. acyl)) then  ! update 

21/5/13       ******  fourth quater of circle ***************** 

                yint=ycrd(j-1) 

                xint= (yint- intercept)/gradient 

c 

c               teta(k)=2*PI*ATAN(abs(aradient)) 

c                if (acyl .EQ. xcrd(i)) teta(k)=3*PI/2 

c 

               if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) then 

                  wp1(k)=(xint-xcrd(i))/(xcrd(i+1)-xcrd(i)) 

                  ip2p(k)=i+1 

                  jp2p(k)=j-1 

                  ip3p(k)=i 

                  jp3p(k)=j-1 
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              else 

                xint=xcrd(i+1) 

                yint=gradient * xint+intercept 

                 wp1(k)=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1)) 

                 if (bcyl .EQ. ycrd(j)) then  

                         wp1(k)=1 

                         yint=ycrd(j) 

                 endif 

                  ip2p(k)=i+1 

                  jp2p(k)=j 

                  ip3p(k)=i+1 

                  jp3p(k)=j-1 

              end if 

c 

            end if 

c 

           iinterpp(k)=i 

           jinterpp(k)=j 

           a1=sqrt((acyl-xcrd(i))**2+(bcyl-ycrd(j))**2)-Rcyl  ! distance of  

first pressure point to the bondary of circle 

           c1=sqrt((acyl-xint)**2+(bcyl-yint)**2)-Rcyl        ! distance of 

interpolation point to the boundary of circle 

           wp2(k)=(a1/c1) 

    delta1(k)=a1 

         end if 

        end do 

        end do 

         nbndp=k 

         write (*,*)'nbndp',nbndp 

         do k=1,nbndp 

            do j=k+1,nbndp 

              if (teta(j) .LT. teta(k)) then 

                temp1=teta(j) 

                temp2=iinterpp(j) 

                temp3=jinterpp(j) 

                temp4=ip1p(j) 

                temp5=jp1p(j) 

                temp6=ip2p(j) 

                temp7=jp2p(j) 

                temp8=ip3p(j) 

                temp9=jp3p(j) 

                temp10=wp1(j) 

                temp11=wp2(j) 

                temp12=unitvi(j) 

                temp13=unitvj(j) 

                temp14=delta1(j) 

c 

                teta(j)=teta(k) 

                iinterpp(j)=iinterpp(k) 

                jinterpp(j)=jinterpp(k) 

                ip1p(j)=ip1p(k) 

                jp1p(j)=jp1p(k) 

                ip2p(j)=ip2p(k) 

                jp2p(j)=jp2p(k) 

                ip3p(j)=ip3p(k) 

                jp3p(j)=jp3p(k) 

                wp1(j)=wp1(k) 

                wp2(j)=wp2(k) 

  unitvi(j)=unitvi(k) 

  unitvj(j)=unitvj(k) 

  delta1(j)=delta1(k) 

c 

  teta(k)=temp1 

                iinterpp(k)=temp2 

                jinterpp(k)=temp3 

                ip1p(k)=temp4 

                jp1p(k)=temp5 

                ip2p(k)=temp6 
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                jp2p(k)=temp7 

                ip3p(k)=temp8 

                jp3p(k)=temp9 

                wp1(k)=temp10 

                wp2(k)=temp11 

  unitvi(k)=temp12 

  unitvj(k)=temp13 

  delta1(k)=temp14 

c 

  end if 

    end do   

 end do  

                teta(nbndp+1)=teta(1)+2 * 4. * ATAN (1.) 

                iinterpp(nbndp+1)=iinterpp(1) 

                jinterpp(nbndp+1)=jinterpp(1) 

                ip1p(nbndp+1)=ip1p(1) 

                jp1p(nbndp+1)=jp1p(1) 

                ip2p(nbndp+1)=ip2p(1) 

                jp2p(nbndp+1)=jp2p(1) 

                ip3p(nbndp+1)=ip3p(1) 

                jp3p(nbndp+1)=jp3p(1) 

                wp1(nbndp+1)=wp1(1) 

                wp2(nbndp+1)=wp2(1) 

                unitvi(nbndp+1)=unitvi(1) 

                unitvj(nbndp+1)=unitvj(1) 

                delta1(nbndp+1)=delta1(1) 

c 

                teta(0)=teta(nbndp)-2 * 4. * ATAN (1.) 

                iinterpp(0)=iinterpp(nbndp) 

                jinterpp(0)=jinterpp(nbndp) 

                ip1p(0)=ip1p(nbndp) 

                jp1p(0)=jp1p(nbndp) 

                ip2p(0)=ip2p(nbndp) 

                jp2p(0)=jp2p(nbndp) 

                ip3p(0)=ip3p(nbndp) 

                jp3p(0)=jp3p(nbndp) 

                wp1(0)=wp1(nbndp) 

                wp2(0)=wp2(nbndp) 

                unitvi(0)=unitvi(nbndp) 

                unitvj(0)=unitvj(nbndp) 

                delta1(0)=delta1(nbndp) 

 

 

c****end of pressure indices interpolation ************************************ 

      return 

      end 

cc 

      subroutine bounds() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

c      

      common /cylzise/ acyl, bcyl, Rcyl 

      double precision acyl, bcyl, Rcyl 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /velotemp/ utemp(0:nnx,0:nny+1),vtemp(0:nnx+1,0:nny) 

      double precision utemp,vtemp 

 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 
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c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      double precision vi,vip,uip,uip2,xtg,ytg,dnorm,ubound,vbound,vtan, 

     &                 flux,bflux,fact,dux,yc1,uint,vint, 

     &                 vsolidRelative,usolidRelative 

c 

      common /homeadd/ home 

      character*40 home 

c 

      logical EX  

c      

c       write(*,*)'********** at the beginning of bounds**********' 

c       

c **  inlet boundary at the left grid-line 

c       

      do j=1,ny 

         u(0,j)=1.D0 

      end do 

c 

      do j=0,ny 

c      v(0,j)=-v(1,j) 

       v(0,j)=-vsolid 

      end do 

c 

c **  symmetry boundary at the upper and lower side                                           

this is not fullfilled (except for 1<x<2) 

c 

c      do i=0,nx 

c         v(i,ny  )=0 

c         u(i,ny+1)=u(i,ny)             ! indices should be check to see if ny 

is correct or ny+1 ! 
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c         v(i,0   )=0 

c         u(i,0   )=u(i,1 ) 

cc         v(i,ny)=vup(i) 

c      end do 

c *** relative velocity at the upper and lower side  

      do i=0,nx 

         v(i,ny)=-vsolid 

         v(i, 0)=-vsolid 

c         u(i, 0)= u(i,n+1) !period bondary for the u 

         u(i,0   )=u(i,1 ) 

         u(i,ny+1)=u(i,ny) 

      end do 

 

 

 

c ********************************solid boundary around the cylinder (immersed 

boudnary) ************************ 

c 

c      write(*,*)'nbndu,nbndv', nbndu,nbndv 

         vsolidRelative=0 

         usolidRelative=0 

         do i=1,nbndv             !nbndv 

         ik=iinterpv(i) 

         jk=jinterpv(i) 

         v(ik,jk)=(1-wv2(i))*vsolidRelative + 

     &            wv2(i)*   wv1(i)  *vtemp(ip1v(i),jp1v(i))+ 

     &            wv2(i)*(1-wv1(i)) *vtemp(ip2v(i),jp2v(i)) 

c      write(*,'(A,3I5,5F16.8)') 'i,ik,jk,x(ik),y(jk),v(ik,jk),wv1,wv2=' 

c     & ,i,ik,jk,xcrd(ik), ycrd(jk),v(ik,jk),wv1(i),wv2(i) 

      end do      

c 

      do i=1,nbndu             !nbndu 

         ik=iinterpu(i) 

         jk=jinterpu(i) 

         u(ik,jk)=(1-wu2(i))*usolidRelative+ 

     &               wu2(i) *   wu1(i) *u(ip1u(i),jp1u(i))+ 

     &               wu2(i) *(1-wu1(i))*u(ip2u(i),jp2u(i)) 

c       if ((u(ik,jk) .GE. 1) .OR. (u(ik,jk) .LE. -1)) then 

c        write(*,*) 'i,ik,jk,u(ik,jk)=',i,ik,jk,u(ik,jk) 

c        end if 

      end do 

c 

 

cccc************** 22/5/13 defining velocity inside the solid************** 

c       

        do i=2,nx-1 

        do j=2,ny-1 

         if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then 

                v(i,j)=vsolidRelative 

         end if 

cc         if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc                uins(i,j)=usolid 

cc  end if  

cc         if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then 

cc   pins(i,j)=0 

cc  end if 

        end do 

        end do 

c ********************************end of part ****************** 

c 

 

 

c ********** part to improve divergence around the cylinder 

c 

ccc     do i=1,nx 

ccc     do j=1,ny   

ccc     if (umask(i,j)+umask(i-1,j)+vmask(i,j)+vmask(i,j-1) .EQ. 1) then 

ccc          if (umask(i,j) .NE.1) then 
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ccc          u(i,j)=u(i-1,j)- 

ccc     &           ((xcoord(i)-xcoord(i-1))/(ycoord(j)-ycoord(j-1)))* 

ccc     &            (v(i,j)-v(i,j-1)) 

ccc          end if 

c 

ccc          if (umask(i-1,j) .NE. 1) then 

ccc          u(i-1,j)=u(i,j)+ 

ccc     &           ((xcoord(i)-xcoord(i-1))/(ycoord(j)-ycoord(j-1)))* 

ccc     &            (v(i,j)-v(i,j-1)) 

ccc          end if 

c 

ccc         if (vmask(i,j) .NE. 1) then 

ccc          v(i,j)=v(i,j-1)- 

ccc     &          ((ycoord(j)-ycoord(j-1))/(xcoord(i)-xcoord(i-1)))* 

ccc     &            (u(i,j)-u(i-1,j)) 

ccc          end if 

c 

ccc         if (vmask(i,j-1) .NE. 1) then 

ccc          v(i,j-1)=v(i,j)+ 

ccc     &          ((ycoord(j)-ycoord(j-1))/(xcoord(i)-xcoord(i-1)))* 

ccc     &            (u(i,j)-u(i-1,j)) 

ccc          end if 

c 

ccc       end if  

ccc        end do 

ccc        end do 

 

c       STOP 

c 

cc      do i=0,nx 

cc         u(i,ny+1)=2*uup(i)-u(i,ny) 

cc      end do 

c 

c  

 

c 

cc      do i=2,nx-1 

cc         do j=1,ny-1 

cc               if (amask(i,j) .NE. amask(i-1,j)) then 

cc               bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1)) 

cc            end if         

cc         end do 

cc      end do 

c 

c 

c **  Exit boundary conditions 

c 

      flux=0.D0 

      do j=1,ny 

         u(nx  ,j)=u(nx  ,j)-umask(nx-1,j)*dt*(u(nx,j)-u(nx-1,j))/ 

     &                          (xcoord(nx)-xcoord(nx-1)) 

         v(nx+1,j)=v(nx+1,j)-vmask(nx-1,j)*dt*(v(nx+1,j)-v(nx,j))/ 

     &                          (xcrd(nx+1)-xcrd(nx)) 

         flux=flux+umask(nx-1,j)*u(nx,j)*(ycoord(j)-ycoord(j-1)) 

      end do 

c 

      if (flux .LT. 1D-6) then 

         flux=0.D0 

         do j=1,ny 

            u(nx,j)=umask(nx-1,j) 

            flux=flux+umask(nx-1,j)*u(nx,j)*(ycoord(j)-ycoord(j-1)) 

         end do 

      end if 

c 

c **  Updata outflow for global mass conservation 

c 

cJW WARNING CHANGE THIS BACK LATER 

      bflux=0.D0 
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c******************** this part took out to check the convergence problem  

c 

      do nbnd=1,nbndu 

         i=iinterpu(nbnd) 

         j=jinterpu(nbnd) 

         if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then 

            if (pmask(i+1,j) .EQ. 1.D0) then 

               bflux=bflux+u(i,j)*(ycoord(j)-ycoord(j-1)) 

            else if (pmask(i,j) .EQ. 1.D0) then 

               bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1)) 

            end if  

         end if  

      end do 

c 

      do nbnd=1,nbndv 

         i=iinterpv(nbnd) 

         j=jinterpv(nbnd) 

         if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then 

            if (pmask(i,j+1) .EQ. 1.D0) then 

               bflux=bflux+v(i,j)*(xcoord(i)-xcoord(i-1)) 

            else if (pmask(i,j) .EQ. 1.D0) then 

               bflux=bflux-v(i,j)*(xcoord(i)-xcoord(i-1)) 

            end if  

         end if  

      end do 

c 

c  ************** this part has been added to improve the divergence problem 

ccc      do i=2, nx-1 

ccc do j=2, ny-1 

ccc         if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then 

ccc            if (pmask(i+1,j) .EQ. 1.D0) then 

ccc               bflux=bflux+u(i,j)*(ycoord(j)-ycoord(j-1)) 

ccc            else if (pmask(i,j) .EQ. 1.D0) then 

ccc               bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1)) 

ccc            end if 

ccc         end if 

ccc         if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then 

ccc            if (pmask(i,j+1) .EQ. 1.D0) then 

ccc               bflux=bflux+v(i,j)*(xcoord(i)-xcoord(i-1)) 

ccc            else if (pmask(i,j) .EQ. 1.D0) then 

ccc               bflux=bflux-v(i,j)*(xcoord(i)-xcoord(i-1)) 

ccc            end if 

ccc         end if 

ccc        end do 

ccc      end do 

 

c      write(*,*) 'outflux,bflux = ',flux,bflux 

c 

      fact=(influx+bflux)/flux 

c      write(*,*) 'influx, BFLUX, fact = ',influx,bflux,influx-bflux,fact 

      do j=1,ny 

         u(nx,j)=fact*umask(nx-1,j)*u(nx,j) 

      end do 

c      call fillf() 

c      STOP 

c      

c      write(*,*)' ************** at the end of bounds*****************'  

      return 

      end 

cc 

cc        

      subroutine init() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 
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     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c       

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c 

      double precision vi,vip,uip,uip2,xtg,ytg,dnorm,ubound,vbound, 

     &                 vtan,flux,fact,dx 

      double precision cdx(100),udx(100),vdx(100) 

      integer nil,one 

      logical EX  

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

 

c 

      common /epsili/epstemp 

      double precision epstemp 

c 

       common /homeadd/ home 

      character*40 home 

c 

      epstemp=5.0D-7 

c    

      write(*,*)' ********beginning of init*********' 

      Re  = 100.D0 
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      RRe = 1D0/Re 

      dt  = 0.001D0  ! it was 0.001D0 

      time= 0.D0            

      vsolid =0.D0 

      ysolid =0.D0 

      usolid =0.D0 

      xsolid =0.D0 

c       

c **  Set the initial velocities and pressure 

c       

      u=1.D0 

      urk=1.D0 

      do i=1,nx-1 

      u(i,0   )=1.D0 

      u(i,ny+1)=1.D0 

      end do 

      do j=0,ny            ! it was ny+1  

      do i=1,nx-1            ! it was nx 

         u(i,j)=1.D0*umask(i,j) 

         urk(i,j)=1.D0           !*umask(i,j) 

      end do 

      end do 

c      

      do j=0,ny            ! it was ny 

      do i=0,nx+1          ! it was nx+1 

         v(i,j)=0.D0 

         vrk(i,j)=0.D0 

      end do 

      end do 

c 

c      do j=10,ny-10 

c      do i=10,nx-10 

c      u(i,j)=1.D0 *umask(i,j) 

c      urk(i,j)=1.D0*umask(i,j) 

c      v(i,j)=1.D0*vmask(i,j) 

c      vrk(i,j)=1.D0*vmask(i,j) 

c      end do 

c      end do 

c 

      do j=1,10 

      br(j) = 0.0D0 

      do i=1,10 

         ar(i,j) = 0.0D0 

      end do 

      end do 

C 

      nrk = 3 

      ar(2,1) = 2.0D0/3.0D0 

      ar(3,2) = 2.0D0/3.0D0 

      br(1)   = 0.250D0 

      br(2)   = 0.375D0 

      br(3)   = 0.375D0 

C       

      do l=1,4 

      do j=1,ny 

      do i=0,nx 

         a(i,j,l)=0.D0 

      end do 

      end do 

      end do 

c 

      do l=1,4 

      do j=0,ny 

      do i=1,nx 

         b(i,j,l)=0.D0 

      end do 

      end do 

      end do 
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c 

      do j=0,ny+1 

      do i=0,nx+1 

         p(i,j)=0.D0 

      end do 

      end do 

 

c **  Determine influx 

 

c      

      influx=0.D0                                        ! this part need 

further study   

      do j=1,ny 

         influx=influx+u(0,j)*(ycoord(j)-ycoord(j-1))  

      end do 

c 

      write(*,*) 'influx = ',influx  

c 

      call getfld(ex) 

      if (ex) then 

         write(*,*) 'data has been read from file' 

         write(*,*) 'time = ',time  

      end if 

c    

c       write(*,*)'**************end of init*********'  

      return 

      end 

cc 

cc        

      subroutine convec 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 

     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 
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      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      common /homeadd/ home 

      character*40 home 

cc 

      integer i,j,k 

c 

c      write(*,*)' *********** at the beginning of convec ************' 

      call bounds() 

c 

c **  Save velocity at old time  

c 

      do j=0,ny+1 

      do i=0,nx 

         urk(i,j) = u(i,j) 

      end do 

      end do 

c 

      do j=0,ny 

      do i=0,nx+1 

         vrk(i,j) = v(i,j) 

      end do  

      end do 

c 

c **  Start doing RK substeps 

c 

      do k1 = 1, nrk 

C 

         do j=1,ny 

         do i=1,nx-1 

            u(i,j) = urk(i,j) 

               if (k1 .GT. 1) then 

               do j1=1,k1-1 

                  u(i,j)=u(i,j)+dt*umask(i,j)*ar(k1,j1)*a(i,j,j1) 

               end do 

            end if 

         end do 

         end do 

c 

         do j=1,ny-1 

         do i=1,nx 

            v(i,j) = vrk(i,j) 

            if (k1 .GT. 1) then 

               do j1=1,k1-1 

                  v(i,j)=v(i,j)+dt*vmask(i,j)*ar(k1,j1)*b(i,j,j1) 

ccc                  v(i,j)=v(i,j)+dt*ar(k1,j1)*b(i,j,j1) 

               end do 

            end if 

         end do 

         end do 

c 

         call bounds 

c 

         do j=1,ny 

         do i=1,nx-1 

c 

            a(i,j,k1)=-0.25D0*umask(i,j)*(  

     &       ((u(i,j)+u(i+1,j))*(u(i,j)+u(i+1,j))- 
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     &        (u(i,j)+u(i-1,j))*(u(i,j)+u(i-1,j)))/(xcrd(i+1)-xcrd(i))+ 

     &       ((u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j))- 

     &        (u(i,j)+u(i,j-1))*(v(i,j-1)+v(i+1,j-1)))/ 

     &                    (ycoord(j)-ycoord(j-1)))+ umask(i,j)* 

     &  RRe*((u(i+1,j)-2*u(i,j)+u(i-1,j))/((xcrd(i+1)-xcrd(i))**2)+ 

     &       (u(i,j+1)-2*u(i,j)+u(i,j-1))/((ycoord(j)-ycoord(j-1))**2))- 

     &        axsolid        

c 

         end do 

         end do 

c  

         do i=1,nx 

         do j=1,ny-1 

c 

               b(i,j,k1)=-0.25D0*vmask(i,j)*( 

ccc            b(i,j,k1)=-0.25D0*( 

     &       ((v(i,j)+v(i,j+1))*(v(i,j)+v(i,j+1))- 

     &        (v(i,j)+v(i,j-1))*(v(i,j)+v(i,j-1)))/(ycrd(j+1)-ycrd(j))+ 

     &       ((v(i,j)+v(i+1,j))*(u(i,j)+u(i,j+1))- 

     &        (v(i,j)+v(i-1,j))*(u(i-1,j)+u(i-1,j+1)))/ 

     &         (xcoord(i)-xcoord(i-1)))+ vmask(i,j)* 

ccc   &                    (xcoord(i)-xcoord(i-1)))+ 

     &  RRe*((v(i,j+1)-2*v(i,j)+v(i,j-1))/((ycrd(j+1)-ycrd(j))**2)+ 

     &       (v(i+1,j)-2*v(i,j)+v(i-1,j))/((xcoord(i)-xcoord(i-1))**2))- 

     &       aysolid 

c 

         end do 

         end do 

c 

      end do 

C 

      do j=1,ny 

      do i=1,nx 

         u(i,j) = urk(i,j) 

         v(i,j) = vrk(i,j) 

         do j1=1,nrk 

            u(i,j)=u(i,j)+dt*umask(i,j)*br(j1)*a(i,j,j1) 

            v(i,j)=v(i,j)+dt*vmask(i,j)*br(j1)*b(i,j,j1) 

ccc            v(i,j)=v(i,j)+dt*br(j1)*b(i,j,j1) 

         end do 

      end do 

      end do 

c 

      call bounds() 

c 

c     write(*,*)'******************** at the end of convec *********'       

      return 

      end 

cc 

cc        

      subroutine calcuv 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 
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      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 

     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

      common /epsili/epstemp 

      double precision epstemp,eps 

c 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c 

c 

      eps = epstemp  

c 

c 

      call solve(eps,iterat) 

c 

      do j=1,ny 

      do i=1,nx-1 

         u(i,j) = u(i,j) - dt*umask(i,j)* 

     &           (p(i+1,j)-p(i,j))/(xcrd(i+1)-xcrd(i)) 

      end do 

      end do 

c 

      do j=1,ny-1 

      do i=1,nx 

c         v(i,j) = v(i,j) - dt*pmask(i,j)*pmask(i,j+1)* 

          v(i,j) = v(i,j) - dt*vmask(i,j)* 

     &           (p(i,j+1)-p(i,j))/(ycrd(j+1)-ycrd(j)) 

      end do  

      end do 

c      

      return 

      end 

cc 

cc 

      subroutine mean() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 
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      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny), 

     &                uu(nnx,nny), vv(nnx,nny), uv(nnx,nny) 

      double precision um,vm,pm,uu,vv,uv 

c 

      common /parmen/ nmean 

      integer nmean 

    

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      double precision fac 

c 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c 

      if (nmean .EQ. 0) then 

         do j=1,ny 

         do i=1,nx 

            um(i,j)=0.0D0 

            vm(i,j)=0.0D0 

            pm(i,j)=0.0D0 

            uu(i,j)=0.0D0 

            vv(i,j)=0.0D0 

            uv(i,j)=0.0D0 

         end do 

         end do 

      end if 

c 

      nmean=nmean+1 

      fac=1.D0/nmean 

      do j=1,ny 

      do i=1,nx 

         um(i,j)=(1.D0-fac)*um(i,j)+0.50D0*fac*(u(i-1,j)+u(i,j))  

         vm(i,j)=(1.D0-fac)*vm(i,j)+0.50D0*fac*(v(i,j-1)+v(i,j))  

         pm(i,j)=(1.D0-fac)*pm(i,j)+       fac*          p(i,j)  

         uu(i,j)=(1.D0-fac)*uu(i,j)+0.25D0*fac*(u(i-1,j)+u(i,j))**2  

         vv(i,j)=(1.D0-fac)*vv(i,j)+0.25D0*fac*(v(i,j-1)+v(i,j))**2  

         uv(i,j)=(1.D0-fac)*uv(i,j)+0.25D0*fac*(u(i-1,j)+u(i,j))* 

     &                                         (v(i,j-1)+v(i,j)) 

      end do 

      end do 

c 

      return 

      end 

cc 

 

cc 

      subroutine inisol() 

c 

      parameter (nnx=600,nny=850,nnxy=nnx*nny,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,ny2,nn,nx3,nn1 

      double precision Re, RRe,dt,time,dts 

 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 
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      double precision xcoord, ycoord 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common /indi  / li(nnx),maxit 

      integer li 

c       

      common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy), 

     &                fp(nnxy),alfa 

      double precision ae,aw,an,as,ap,fp,alfa 

c 

      common /ludeco/ un(-nny:nnxy),ue(-nny:nnxy),lw(nnxy), 

     &                ls(nnxy),lpr(nnxy)  

      double precision un,ue,lw,ls,lpr 

c 

      double precision p1,p2 

c 

      common /epsili/epstemp 

      double precision epstemp 

c 

       common /homeadd/ home 

      character*40 home 

c            

c     write(*,*)' ************** at the beginning of inisol**********'  

      maxit = 5000 

      alfa  = 0.92D0 

      do i=-nny,nnxy 

         ue(i)=0.D0 

         un(i)=0.D0 

      end do  

c       

      nxy=nx*ny 

c      do i=1,nx 

c        li(i)=(i-1)*ny 

c      END DO 

C 

      do i=1,nx 

      do j=1,ny 

c         ij=li(i)+j 

          ij=(i-1)*ny+J 

         ae(ij)=(ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i)) 

         an(ij)=(xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j)) 

         aw(ij)=(ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)) 

         as(ij)=(xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1)) 

      end do 

      end do 

c                              ! solid boundary  

       do i=1,nx-1                   

       do j=1,ny-1 
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         ij=(i-1)*ny+j 

         If (pmask(i,j) .NE. 0) then 

           if (pmask(i+1,j).EQ.0) then 

               ae(ij)=0.D0  

           end if 

           if (pmask(i-1,j).EQ.0) then  

              aw(ij)=0.D0  

           end if  

           if (pmask(i,j+1).EQ.0) then  

              an(ij)=0.D0  

           end if 

           if (pmask(i,j-1).EQ.0) then  

              as(ij)=0.D0  

             end if 

         end if  

       end do 

       end do  

c                              ! west and east  boundary 

       do j=1,ny               

          i=1 

          aw((i-1)*ny+j)=0.D0 

          i=nx 

          ae((i-1)*ny+j)=0.D0 

       end do 

c 

       do i=1,nx              ! north and south bonudary 

          ij=(i-1)*ny+1 

          as(ij)=0.D0 

          ij=(i-1)*ny+ny 

          an(ij)=0.D0 

       end do    

c 

c      do i=1,nx 

c         as(li(i)+jyv(i))=0.D0 ! this is for the immersed boundary  

c         as(li(i)+     1)=0.D0 

c         an(li(i)+    ny)=0.D0 

c         do j=1,ny 

c            ij=li(i)+j 

c            if (amask(i,j).EQ.0.D0) then 

c               ae(ij)=0.D0     

c            end if 

c            if (i .GT. 1) then 

c               if (amask(i-1,j).EQ.0.D0) aw(ij)=0.D0 

c            end if 

c            if (j .GT. 1) then 

c               if (pmask(i,j-1).EQ.0.D0) as(ij)=0.D0 

c            end if 

c         end do 

c      end do 

c 

c      do j=1,ny 

c         aw(li( 1)+j)=0.D0 

c         ae(li(nx)+j)=0.D0 

c      end do 

c 

      do i=1,nx 

      do j=1,ny 

         ij=(i-1)*ny +j 

         ap(ij)=-(ae(ij)+aw(ij)+an(ij)+as(ij)) 

      end do 

      end do 

C 

C.....CALCULATE ELEMENTS OF [L] AND [U] MATRICES 

c  

       

      do i=1,nx 

      do ij=(i-1)*ny+1,(i-1)*ny+ny 

        lw(ij)=aw(ij)/(1.D0+alfa*un(ij-ny)) 
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        ls(ij)=as(ij)/(1.D0+alfa*ue(ij- 1)) 

        p1=alfa*lw(ij)*un(ij-ny) 

        p2=alfa*ls(ij)*ue(ij- 1) 

        lpr(ij)=1.D0/(ap(ij)+p1+p2-lw(ij)*ue(ij-ny)-ls(ij)*un(ij-1)) 

        un(ij)=(an(ij)-p1)*lpr(ij) 

        ue(ij)=(ae(ij)-p2)*lpr(ij) 

      end do 

      end do 

c 

c 

c       

c      write(*,*)'**************** at the end of inisol*************' 

      return 

      end 

cc 

       

      subroutine fillf() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,nnxy=nnx*nny,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /coefs/ ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy), 

     &               fp(nnxy),alfa 

      double precision ae,aw,an,as,ap,fp,alfa 

c 

      common /pcorterm/ pctw(nnx,nny),pcte(nnx,nny),!pressure correction 

     &                  pctn(nnx,nny),pcts(nnx,nny), 

     &                  pctIBn(nnx,nny),pctIBs(nnx,nny), 

     &                  pctIBe(nnx,nny),pctIBw(nnx,nny)  

      double precision  pctw,pcte,pctn,pcts,pctIBn,pctIBs,pctIBe,pctIBw 

c       

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 
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      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      common /indi / li(nnx),maxit 

      integer li, maxit 

c 

      double precision sumf,flux,pctIBsc,pctIBsd,pctIBnc,pctIBnd 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c 

c **  f is basically the divergence of (u,v) as calculated in convec 

c 

c      write(*,*) 'dt = ',dt 

c   ************* calculating correction term neumann boundary**** 

c   ************ poisson pressure equation ********** 

c 

        pctw=0.D0 

        pcte=0.D0 

        pctn=0.D0 

        pcts=0.D0 

        pctIBn=0.D0 

        pctIBs=0.D0 

        pctIBe=0.D0 

        pctIBw=0.D0 

        pctIBnc=0.D0 

        pctIBnd=0.0D0 

        pctIBsc=0.D0 

        pctIBsd=0.D0 

        pctIBec=0.D0 

        pctIBed=0.0D0 

        pctIBwc=0.D0 

        pctIBwd=0.D0 

 

c         

c *********west and east boundary 

c     do j=1, ny 

c      i=1 

c      pctw(1,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)))*!aw(ij) 

c    &     ((u(1,j)**2-u(0,j)**2)/(xcrd(1)-xcrd(0))- 

c    &       RRe*(u(2,j)-2*u(1,j)+u(0,j))/(xcrd(i+1)-xcrd(i))**2)* 

c    &       (xcrd(1)-xcrd(0))   

c      i=nx 

c      pcte(nx,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i)))*!ae(ij) 

c    &    (-1*(u(nx,j)**2-u(nx-1,j)**2)/(xcrd(i)-xcrd(i-1))+ 

c    &    RRe*((u(nx-2,j)-2*u(nx-1,j)+u(nx,j))/(xcrd(i)-xcrd(i-1))**2+ 

c    &        (u(nx,j-1)-2*u(nx,j)+u(nx,j+1))/(ycrd(j+1)-ycrd(j))**2))* 

c    &         (xcrd(nx+1)-xcrd(nx)) 

c 

c      end do 

c *********north and south boundary 

      do i=1,nx 

       j=ny 

      pctn(i,ny)=((xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j)))* !an(ij) 

     &          (((v(i,ny)**2-v(i,ny-1)**2)/(ycoord(j)-ycoord(j-1)))+ 

     &           ((u(i,ny)*v(i,ny)- 
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     &                u(i-1,ny)*v(i,ny))/ 

     &                            (xcoord(i)-xcoord(i-1)))+ 

     &            (v(i,j+1)-vrk(i,j+1))/dt)*! this might not be ture 

     &           (ycrd(j+1)-ycrd(j))!*0.D0 

 

       j=1 

      pcts(i,j)=((xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1)))* !as((ij) 

     &         ((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1))+ 

     &          (u(i,0)*v(i,0)- 

     &           u(i-1,0)*v(i,0))/ 

     &                         (xcoord(i)-xcoord(i-1))+ 

     &           (v(i,j-1)-vrk(i,j-1))/dt)*! this might not be true 

     &          (ycrd(j)-ycrd(j-1))!*0.D0    

      end do 

c      write(*,*)'i=202,pcts,pctn,pt,pb',pcts(202,1),pctn(202,ny), 

c     &                                  p(202,286),p(202,198) 

       call bounds 

c 

      do nbnd=1,nbndv 

         i=iinterpv(nbnd) 

         j=jinterpv(nbnd) 

         if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then 

               if (pmask(i,j+1) .EQ. 1.D0) then   !top half       

                    if ((pmask(i+1,j)+pmask(i+2,j)) .EQ. 0) then!left half 

        pctIBsc=((v(i,j+1)**2-v(i,j)**2)/(ycoord(j+1)-ycoord(j))+ 

     &          (u(i,j+1)*0.5*(v(i,j)+v(i,j+1))- 

     &           u(i-1,j+1)*0.5*(v(i,j)+v(i,j+1)))/ 

     &                           (xcoord(i)-xcoord(i-1)))!*0.D0 

        pctIBsd=RRe*(-1*(v(i,j)-2*v(i-1,j)+v(i-2,j))/ 

     &                            (xcrd(i)-xcrd(i-1))**2+ 

     &    ((u(i,j+2)-u(i-1,j+2))/(xcoord(i)-xcoord(i-1))- 

     &    (u(i,j+1)-u(i-1,j+1))/(xcoord(i)-xcoord(i-1)))/ 

     &    (ycrd(j+2)-ycrd(j+1)))!*0.D0 

        Fycon=fycon+v(i,j)*v(i,j) 

c 

                     else! right half 

            pctIBsc=((v(i,j+1)**2-v(i,j)**2)/(ycoord(j+1)-ycoord(j))+ 

     &              (u(i,j+1)*0.5*(v(i,j)+v(i,j+1))- 

     &               u(i-1,j+1)*0.5*(v(i,j)+v(i,j+1)))/ 

     &                           (xcoord(i)-xcoord(i-1)))!*0.D0        

            pctIBsd=  RRe*(-1*(v(i,j)-2*v(i+1,j)+v(i+2,j))/ 

     &                            (xcrd(i+1)-xcrd(i))**2+ 

     &     ((u(i,j+2)-u(i-1,j+2))/(xcoord(i)-xcoord(i-1))- 

     &     (u(i,j+1)-u(i-1,j+1))/(xcoord(i)-xcoord(i-1)))/ 

     &     (ycrd(j+2)-ycrd(j+1)))!*0.D0 

 

                     end if 

         pctIBs(i,j+1)=((xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1)))* 

     &                  (pctIBsc+pctIBsd+(v(i,j)-vrk(i,j))/dt+aysolid)* 

     &                  (ycrd(j+1)-ycrd(j)) 

c        write(*,*)'i,j,pctIBs',i,j,pctIBsc,pctIbsd,pctIBs(i,j+1),v(i,j), 

c     &vrk(i,j) 

c         

            else if (pmask(i,j) .EQ. 1.D0) then!bottom 

                   if ((pmask(i+1,j)+pmask(i+2,j)) .EQ. 0) then!left half 

        pctIBnc=(((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1)))+ 

     &         (u(i,j)*0.5*(v(i,j)+v(i,j-1))- 

     &          u(i-1,j)*0.5*(v(i,j)+v(i,j-1)))/ 

     &          (xcoord(i)-xcoord(i-1)))!*0D0 

c 

        pctIBnd=RRe*(-1*(v(i,j)-2*v(i-1,j)+v(i-2,j))/ 

     &                              (xcrd(i)-xcrd(i-1))**2+ 

     &              ((u(i,j)-u(i,j-1))/(ycrd(j)-ycrd(j-1))- 

     &               (u(i-1,j)-u(i-1,j-1))/(ycrd(j)-ycrd(j-1)))/ 

     &                             (xcoord(i)-xcoord(i-1)))!*0.D0 

c 

                     else !right half 

            pctIBnc=((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1))+ 
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     &          (u(i,j)*0.5*(v(i,j)+v(i,j-1))- 

     &           u(i-1,j)*0.5*(v(i,j)+v(i,j-1)))/ 

     &                            (xcoord(i)-xcoord(i-1)))!*0.D0  

            pctIBnd= RRe*(-1*(v(i,j)-2*v(i+1,j)+v(i+2,j))/ 

     &                              (xcrd(i+1)-xcrd(i))**2+ 

     &               ((u(i,j)-u(i,j-1))/(ycrd(j)-ycrd(j-1))- 

     &               (u(i-1,j)-u(i-1,j-1))/(ycrd(j)-ycrd(j-1)))/ 

     &                             (xcoord(i)-xcoord(i-1)))!*0.D0 

c 

                     end if 

            pctIBn(i,j)=((xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j)))* 

     &                   (pctIBnc+pctIBnd+(v(i,j)-vrk(i,j))/dt+aysolid)* 

     &                   (ycrd(j-1)-ycrd(j-2)) 

c           write(*,*)'i,j,pctIBn',i,j,pctIBnc,pctIBnd,pctIBn(i,j),v(i,j) 

c     &,vrk(i,j) 

            end if  

          end if  

      end do 

c 

      do nbnd=1,nbndu 

         i=iinterpu(nbnd) 

         j=jinterpu(nbnd) 

         if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then 

               if (pmask(i+1,j) .EQ. 0.D0) then   !left half       

                    if ((pmask(i+1,j-1)+pmask(i+1,j-2)) .EQ. 0) then!top half 

        pctIBec=((u(i,j)**2-u(i-1,j)**2)/(xcoord(i)-xcoord(i-1))+ 

     &      (0.5*(u(i-1,j)+u(i,j))*(v(i,j)-v(i,j-1)))/ 

     &                           (ycoord(j)-ycoord(j-1)))!*0.D0 

        pctIBed=RRe*(-1*(u(i,j)-2*u(i,j+1)+u(i,j+2))/ 

     &                            (ycrd(j+1)-ycrd(j))**2+ 

     &    ((v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))- 

     &    (v(i-1,j)-v(i-1,j-1))/(ycoord(j)-ycoord(j-1)))/ 

     &    (xcrd(i)-xcrd(i-1)))!*0.D0 

c 

                     else! bottom half 

        pctIBec=((u(i,j)**2-u(i-1,j)**2)/(xcoord(i)-xcoord(i-1))+ 

     &      (0.5*(u(i-1,j)+u(i,j))*(v(i,j)-v(i,j-1)))/ 

     &                           (ycoord(j)-ycoord(j-1)))!*0.D0 

             

        pctIBed=RRe*(-1*(u(i,j)-2*u(i,j-1)+u(i,j-2))/ 

     &                            (ycrd(j)-ycrd(j-1))**2+ 

     &    ((v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))- 

     &    (v(i-1,j)-v(i-1,j-1))/(ycoord(j)-ycoord(j-1)))/ 

     &    (xcrd(i)-xcrd(i-1)))!*0.D0 

 

                     end if 

         pctIBe(i,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i)))* 

     &                  (pctIBec+pctIBed+(u(i,j)-urk(i,j))/dt)* 

     &                  (xcrd(i+1)-xcrd(i)) 

c       write(*,*)'i,j,pctIBe',i,j,pctIBec,pctIbed,pctIBe(i,j),u(i,j) 

c     &urk(i,j) 

c         

            else if (pmask(i+1,j) .EQ. 1.D0) then!Right half 

                   if ((pmask(i,j-1)+pmask(i,j-2)) .EQ. 0) then!top half 

 

        pctIBwc=((u(i+1,j)**2-u(i,j)**2)/(xcoord(i+1)-xcoord(i))+ 

     &      (0.5*(u(i+1,j)+u(i,j))*(v(i+1,j)-v(i+1,j-1)))/ 

     &                           (ycoord(j)-ycoord(j-1)))!*0.D0 

        pctIBwd=RRe*(-1*(u(i,j)-2*u(i,j+1)+u(i,j+2))/ 

     &                            (ycrd(j+1)-ycrd(j))**2+ 

     &    ((v(i+1,j)-v(i+1,j-1))/(ycoord(j)-ycoord(j-1))- 

     &    (v(i+2,j)-v(i+2,j-1))/(ycoord(j)-ycoord(j-1)))/ 

     &    (xcrd(i+2)-xcrd(i+1)))!*0.D0 

 

                     else !bottom half 

        pctIBwc=((u(i+1,j)**2-u(i,j)**2)/(xcoord(i+1)-xcoord(i))+ 

     &      (0.5*(u(i+1,j)+u(i,j))*(v(i+1,j)-v(i+1,j-1)))/ 

     &                           (ycoord(j)-ycoord(j-1)))!*0.D0 
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        pctIBwd=RRe*(-1*(u(i,j)-2*u(i,j-1)+u(i,j-2))/ 

     &                            (ycrd(j)-ycrd(j-1))**2+ 

     &    ((v(i+1,j)-v(i+1,j-1))/(ycoord(j)-ycoord(j-1))- 

     &    (v(i+2,j)-v(i+2,j-1))/(ycoord(j)-ycoord(j-1)))/ 

     &    (xcrd(i+2)-xcrd(i+1)))!*0.D0 

c 

                     end if 

            pctIBw(i+1,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)))* 

     &                   (pctIBwc+pctIBwd+(u(i,j)-urk(i,j))/dt)* 

     &                   (xcrd(i+1)-xcrd(i)) 

c        write(*,*)'i,j,pctIBw',i,j,pctIBwc,pctIBwd,pctIBw(i+1,j),u(i,j) 

c     &,urk(i,j) 

            end if  

          end if  

      end do 

c 

      sumf = 0D0 

      do i=1,nx 

      do j=1,ny 

       ij=(i-1)*ny+j 

       fp(ij)=pmask(i,j)* 

     &          (((u(i,j)-u(i-1,j))*(ycoord(j)-ycoord(j-1))+ 

     &           (v(i,j)-v(i,j-1))*(xcoord(i)-xcoord(i-1)))/dt)- 

     &           pctw(i,j)-pcte(i,j)+pctn(i,j)-pcts(i,j)+ 

     &           pctIBn(i,j)-pctIBs(i,j)-pctIBe(i,j)+pctIBw(i,j)   

        sumf=sumf+fp(ij) 

      end do 

      end do 

c 

      write(*,*) 'GLOBAL: ',sumf 

c 

      close(12) 

c      STOP 'in fillf' 

c 

      return 

      end 

cc 

      double precision function maxdiv() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 
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     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c       

      double precision div(nnx,nny),divmx,divmn 

c       

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c 

c **  f is basically the divergence of (u,v) as calculated in convec 

c 

      divmx = 0.D0 

      divmn = 100000.D0 

      imx=0 

      jmx=0 

      do i=1,nx 

      do j=1,ny 

         div(i,j)=pmask(i,j)* 

     &            ((u(i,j)-u(i-1,j))/(xcoord(i)-xcoord(i-1))+ 

     &             (v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))) 

c       div(i,j)=pmask(i,j)* 

c     &            ((u(i,j)-u(i-1,j))/(xcoord(i)-xcoord(i-1))+ 

c     &            (v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))) 

         if (ABS(div(i,j)) .GT. divmx) then 

            imx=i 

            jmx=j  

            divmx=ABS(div(i,j)) 

         end if 

         if ((pmask(i,j)).GT.0.5D0) then 

             divmn=MIN(divmn,ABS(div(i,j))) 

         end if 

      end do 

      end do 

c      

      write(*,*) 'Minimum divergence = ', divmn 

      write(*,'(A,2I4,4E12.4)') 'Max. divergence reached at (x,y)= ', 

     &            imx,jmx,        !xcrd(imx),ycrd(jmx), 

     &            u(imx,jmx),u(imx-1,jmx),v(imx,jmx),v(imx,jmx-1) 

      maxdiv=divmx 

      return 

      end 

cc 

cc 

      subroutine solve(eps,iterat) 

c 

      double precision eps 

      integer iterat 

c 

      parameter (nnx=600,nny=850,nnxy=nnx*nny,nnyy=nnx*nny+nny) 
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c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /prestemp/ptemp(0:nnx+1,0:nny+1) 

      double precision ptemp 

c 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common /indi  / li(nnx),maxit 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

 

      integer li 

c 

      common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy), 

     &                fp(nnxy),alfa 

      double precision ae,aw,an,as,ap,fp,alfa 

c 

      common /ludeco/ un(-nny:nnxy),ue(-nny:nnxy),lw(nnxy), 

     &                ls(nnxy),lpr(nnxy)        

      double precision un,ue,lw,ls,lpr 

c 

      double precision res(-nny:nnyy),res0,resn,rsm 

c 

      common /homeadd/ home 

      character*40 home 

      double precision temp1,temp2 

c         

      temp1=0.D0 

      temp2=0.D0 

      res = 0.D0 

c       

C.....CALCULATE RESIDUAL AND AUXILLIARY VECTORS; INNER ITERATION LOOP 

C 

      do n=1,maxit 

c        

        resn=0.D0 

        do i=1,nx 

        do j=1,ny 

                ij=(i-1)*ny+j 

           res(ij)=pmask(i,j)*(fp(ij)-ap(ij)*p(i,j)-an(ij)*p(i,j+1)- 

     &             as(ij)*p(i,j-1)-ae(ij)*p(i+1,j)-aw(ij)*p(i-1,j)) 

           resn=MAX(res(ij),resn) 

           res(ij)=(res(ij)-ls(ij)*res(ij-1)-lw(ij)*res(ij-ny))*lpr(ij) 

        end do 

        end do 

c 

c 

c      open(unit=12,file='gridp.dat') 

c 

c      write(12,*) 'variables="x","y","u","v","p", 

c     & "ap","an","as","aw","ae"' 

c      write(12,*) 

c     &  'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK' 

c      write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny)   

c      write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny) 



214 

 

c      write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((ap((i-1)*ny+j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((an((i-1)*ny+j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((as((i-1)*ny+j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((aw((i-1)*ny+j),i=1,nx),j=1,ny) 

c      write(12,'(5E16.8)') ((ae((i-1)*ny+j),i=1,nx),j=1,ny) 

c     write(12,'(5E16.8)') ((res((i-1)*ny+j),i=1,nx),j=1,ny) 

 

c      close(12) 

        if (n .EQ. 1) res0=resn 

c 

c.....CALCULATE INCREMENT AND CORRECT VARIABLE 

c 

        do i=nx,1,-1 

        do j=ny,1,-1 

           ij=(i-1)*ny+j 

           res(ij)=res(ij)-un(ij)*res(ij+1)-ue(ij)*res(ij+ny) 

           p(i,j)=p(i,j)+pmask(i,j)*res(ij) 

        end do 

        end do 

c 

c.....CONVERGENCE CHECK 

c 

        rsm=resn/(res0+1.D-20) 

        if (mod(n,20) .EQ. 0) then  

                temp2=temp1 

                temp1=resn 

                write(*,*) n,' sweep, res = ',resn 

        end if         

c 

        if ((resn .LT. eps) .OR.  

     &      ((abs(temp1-temp2) .LT. 1.0D-8) .AND. 

     &       (n .GT. 500)  .AND. 

     &      ((resn .LT. 1.0D-5) .AND. (resn .GT. 1.0D-6))) .OR. 

     &      ((abs(temp1-temp2) .LT. 1.0D-9) .AND. 

     &       (n .GT. 300)  .AND. 

     &       (resn .LT. 1.0D-6))) then  

       

              GoTo 100 

        end if       

c 

      end do 

  100 continue 

           

      pmean=0.D0 

      nn=0 

      do i=1,nx 

      do j=1,ny 

         if (pmask(i,j) .GT. 0.5) then 

            nn=nn+1 

            pmean=pmean+p(i,j) 

         end if 

      end do 

      end do 

c 

      pmean=pmean/(1.D0*nn) 

      do i=1,nx 

      do j=1,ny 

         p(i,j)=pmask(i,j)*(p(i,j)-pmean) 

         ptemp(i,j)=p(i,j) 

      end do 

      end do 

c 

      return 

      end 

cc 

 

      subroutine force() 
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c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      common /cylzise/ acyl, bcyl, Rcyl 

      double precision acyl, bcyl, Rcyl 

c 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c       

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy), 

     &          ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy), 

     &                  nbndp 

      integer  ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp 

c 

      common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy), 

     &                  wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy) 

      double precision teta,unitvi,unitvj,wp1,wp2,delta1 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn,nx3,nn1 

      double precision Re, RRe,dt,time,dts 

c 

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c     &              ,FL2,FD2 

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c     &              ,FL2,FD2 

      integer i,j,k 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

 

      double precision dliftf,dliftp,ddragf,ddragp,dpres, 

     &                 dliftptemp,ddragptemp 
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      double precision dliftf2,dliftp2,ddragf2,ddragp2,beta, 

     &  liftf2,liftp2,dragf2,dragp2 

c 

c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

c 

      double precision utan,utan0,unorm,lift,drag,psurface 

      double precision Fy1,Fy2,Fy3,Fy4,Fy5,Fx1,Fx2,Fx3,Fx4,Fx5,Fbflux 

c 

      common /homeadd/ home 

      character*40 home 

c 

      write(*,*)'force subrotine' 

      ddragf=0.D0 

      dliftf=0.D0 

      ddragp=0.D0 

      dliftp=0.D0 

c 

      ddragf2=0.D0 

      dliftf2=0.D0 

      ddragp2=0.D0 

      dliftp2=0.D0 

      liftf2=0.D0 

      dragf2=0.D0 

      liftp2=0.D0 

      dragp2=0.D0 

c 

      dpres=0.D0 

      liftf=0.D0 

      dragf=0.D0 

      liftp=0.D0 

      dragp=0.D0 

      pres=0.D0 

      Fy1=0.D0 

      Fy2=0.D0 

      Fy3=0.D0 

      Fy4=0.D0 

      Fy5=0.D0 

      FLift=0.D0 

      Fx1=0.D0 

      Fx2=0.D0 

      Fx3=0.D0 

      Fx4=0.D0 

      Fx5=0.D0 

      Fdrag=0.D0 

      Fa=0.D0  

      Fbflux=0.D0 

      FLold=FL 

c 

 

C*****************new method of calculation of force************* 

       

        nx1=37 

        nx12=197 

        ny1=37 

        ny12=197 

        do i=nx1,nx12  

        do j=ny1,ny12 

       if ((sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .GE. Rcyl) .AND. 

     &   (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .GE. Rcyl)) then 

        if ((j .LT. ny12) .AND. (i .LT. nx12)) then 

       Fy1=Fy1+0.5*(v(i,j)+v(i+1,j)-vrk(i,j)-vrk(i+1,j))* 

     &        (xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j))/dt 

      Fa=Fa+aysolid*(xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j)) 

        end if 

        if ((i .EQ. nx1) .AND. (j .LT. ny12)) then 

      Fy2=Fy2+(-1*v(i,j)*0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1))+  !v(-u) 
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     &      RRe*(((v(i+1,j)-v(i-1,j))/(xcrd(i+1)-xcrd(i-1)))+0.5*!t21 

     &((u(i-1,j+1)+u(i,j+1)-u(i-1,j)-u(i,j))/(ycrd(j+1)-ycrd(j)))))*!t12  

     &           (ycrd(j+1)-ycrd(j))                     !deltay 

        end if 

        if ((i .EQ. nx12) .AND. (j .LT. ny12))  then 

      Fy3=Fy3+(v(i,j)*0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1))- 

     &    RRe*(((v(i+1,j)-v(i-1,j))/(xcrd(i+1)-xcrd(i-1)))+0.5*!-t21 

     &((u(i-1,j+1)+u(i,j+1)-u(i-1,j)-u(i,j))/(ycrd(j+1)-ycrd(j)))))*!t12  

     &          (ycrd(j+1)-ycrd(j))   

        end if 

        if ((j .EQ. ny12) .AND. (i .LT. nx12)) then 

      Fy4=Fy4+((0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))**2+ !vv 

     &    0.5*(p(i,j)+P(i+1,j))- 

c     &(((-2/3)*RRe*(((u(i+1,j)-u(i-1,j))/(xcoord(i+1)-xcoord(i-1)))+0.5* 

c     &(v(i,j)+v(i+1,j)-v(i-1,j)-v(i-1,j+1))/(ycoord(j)-ycoord(j-1))))+ 

     &   2*RRe*0.5*(v(i,j)+v(i+1,j)-v(i,j-1)-v(i,j-1))/ 

     &    (ycoord(j)-ycoord(j-1)))* 

     &     (xcrd(i+1)-xcrd(i)) 

        end if 

        if ((j .EQ. ny1) .AND. (i .LT. nx12)) then    

       Fy5=Fy5+(-1*(0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))**2- !-vv 

     &    0.5*(p(i,j)+P(i+1,j))+ 

c     &(((-2/3)*RRe*(((u(i+1,j)-u(i-1,j))/(xcoord(i+1)-xcoord(i-1)))+0.5* 

c     &(v(i,j)+v(i+1,j)-v(i-1,j)-v(i-1,j+1))/(ycoord(j)-ycoord(j-1))))+ 

     &   2*RRe*0.5*(v(i,j)+v(i+1,j)-v(i,j-1)-v(i+1,j-1))/ 

     &    (ycoord(j)-ycoord(j-1)))* 

     &     (xcrd(i+1)-xcrd(i)) 

        end if 

       end if 

       end do 

       end do 

c 

c      do nbnd=1,nbndv 

c         i=iinterpv(nbnd) 

c         j=jinterpv(nbnd) 

c         if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then 

c            if (pmask(i,j+1) .EQ. 1.D0) then!top of the cylinder 

c               Fbflux=Fbflux-v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)) 

c               write(*,*)'i,j,top,-vv,Fbflux',i,j, 

c     & -1*v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)),Fbflux 

c            else if (pmask(i,j) .EQ. 1.D0) then!bottom of the cylinder 

c               Fbflux=Fbflux+v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)) 

c               write(*,*)'i,j,bot,vv,Fbflux',i,j, 

c     & v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)),Fbflux 

c            end if  

c         end if  

c      end do 

cc 

c      do nbnd=1,nbndu 

c         i=iinterpu(nbnd) 

c         j=jinterpu(nbnd) 

c         if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then 

c            if (pmask(i+1,j) .EQ. 1.D0) then !right 

c              Fbflux=Fbflux-u(i,j)*(0.5*(v(i+1,j)+v(i+1,j-1)))* 

c     &                             (ycoord(j)-ycoord(j-1)) 

c               write(*,*)'i,j,right,uv,Fbflux',i,j, 

c     & u(i,j)*(-0.5*(v(i,j)+v(i,j))*(ycoord(j)-ycoord(j-1)),Fbflux 

c            else if (pmask(i,j) .EQ. 1.D0) then !left 

c              Fbflux=Fbflux-u(i,j)*(0.5*(v(i,j)+v(i,j-1)))* 

c     &                             (ycoord(j)-ycoord(j-1)) 

c               write(*,*)'i,j,left,uv,Fbflux',i,j, 

c     & u(i,j)*(-0.5*(v(i,j)*v(i,j-1))*(ycoord(j)-ycoord(j-1)),Fbflux 

c 

c            end if  

c         end if  

c      end do 

cc       

          FLift=Fy1+Fy2+Fy3+Fy4+Fy5+Fa!+Fbflux 
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      open(unit=12,file='FLlift.dat',  

     &                    position='append') 

          write(12,'(8F15.6)')time,FLlift,Fy1,Fy2,Fy3,Fy4,Fy5,Fa!,Fbflux 

      close(12) 

************** 

        do i=nx1,nx12  

        do j=ny1,ny12 

       if ((sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .GE. Rcyl) .AND. 

     &   (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .GE. Rcyl)) then 

        if ((j .LT. ny12) .AND. (i.LT. nx12)) then  

       Fx1=Fx1+0.5*(u(i,j)+u(i,j+1)-urk(i,j)-urk(i,j+1))* 

     &        (xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j))/dt 

        end if 

        if ((i .EQ. nx1) .AND. (j .LT. ny12)) then 

      Fx2=Fx2+(-1*(0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1)))**2- !u(-u) 

     &     0.5*(p(i,j)+p(i,j+1))+  

     &      2*RRe*0.5*(u(i,j+1)+u(i,j)-u(i-1,j)-u(i-1,j+1))/ 

     &                              (xcrd(i+1)-xcrd(i)))*!t12  

     &           (ycrd(j+1)-ycrd(j))                     !deltay 

        end if 

        if ((i .EQ. nx12) .AND. (j .LT. ny12))  then 

      Fx3=Fx3+((0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1)))**2+ 

     &     0.5*(p(i,j)+p(i,j+1))- 

     &    2*RRe*0.5*((u(i,j+1)+u(i,j)-u(i-1,j)-u(i-1,j+1))/ 

     &                          (xcrd(i+1)-xcrd(i))))*!t12  

     &          (ycrd(j+1)-ycrd(j))   

        end if 

        if ((j .EQ. ny12) .AND. (i .LT. nx12)) then 

      Fx4=Fx4+(u(i,j)*(0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))- !uv 

     &    (RRe*(0.5*(v(i+1,j)+v(i+1,j-1)-v(i,j)-v(i,j-1))/ 

     &                                  (xcrd(i+1)-xcrd(i))+ 

     &   (u(i,j+1)-u(i,j-1))/(ycrd(j+1)-ycrd(j-1)))))* 

     &     (xcrd(i+1)-xcrd(i)) 

        end if 

        if ((j .EQ. ny1) .AND. (i .LT. nx12))  then    

       Fx5=Fx5+((-1*u(i,j)*0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))+ !-uv 

     &  RRe*((0.5*(v(i+1,j)+v(i+1,j-1)-v(i,j)-v(i,j-1))/ 

     &                                  (xcrd(i+1)-xcrd(i)))+ 

     &   (u(i,j+1)-u(i,j-1))/(ycrd(j+1)-ycrd(j-1))))* 

     &     (xcrd(i+1)-xcrd(i)) 

        end if 

       end if 

       end do 

       end do 

          Fdrag=Fx1+Fx2+Fx3+Fx4+Fx5 

      open(unit=12,file='Fdrag.dat',  

     &                    position='append') 

          write(12,'(9F15.6)')time,Fdrag, Fx1,Fx2,Fx3,Fx4,Fx5 

      close(12) 

************** 

       beta=ATAN(vsolid) 

      write(*,*)'beta,vsolid',beta,vsolid       

ccc   open(unit=12,file='degree.dat', 

ccc  &                position='append') 

c      rewind(12) 

      do k=1,nbndp 

c 

      psurface=(1-wp2(k))*p(ip1p(k),jp1p(k))+ 

     &  wp2(k)*(wp1(k)*p(ip2p(k),jp2p(k))+(1-wp1(k))*p(ip3p(k),jp3p(k))) 

c 

        utan=-((u(ip1p(k),jp1p(k))+u(ip1p(k)-1,jp1p(k)))/2)*sin(teta(k)) 

     &       +((v(ip1p(k),jp1p(k))+v(ip1p(k),jp1p(k)-1))/2)*cos(teta(k)) 

c         utan0=-usolid*sin(teta(k))+vsolid*cos(teta(k))  !added on 11/5/13 

         utan0=0  ! as the reference frame is on the cylinder  

c 

         dliftf=2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k)))*0.5* 

     &          (0.5*ABS(teta(k-1)-teta(k+1))) 

         ddragf=2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k)))*0.5* 
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     &          (0.5*ABS(teta(k-1)-teta(k+1)))     

         dliftp=2*psurface*(-1*sin(teta(k)))*0.5* 

     &          (0.5*ABS(teta(k-1)-teta(k+1))) 

         ddragp=2*psurface*(-1*cos(teta(k)))*0.5* 

     &         (0.5*ABS(teta(k-1)-teta(k+1))) 

         dpres=p(ip1p(k),jp1p(k))*0.5*(0.5*ABS(teta(k-1)-teta(k+1))) 

c 

         dliftf2=2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k)+beta))*0.5* 

     &          (0.5*ABS(teta(k-1)-teta(k+1))) 

         ddragf2=2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k)+beta))* 

     &         0.5*(0.5*ABS(teta(k-1)-teta(k+1)))     

         dliftp2=2*p(ip1p(k),jp1p(k))*(-1*sin(teta(k)+beta))*0.5* 

     &          (0.5*ABS(teta(k-1)-teta(k+1))) 

         ddragp2=2*p(ip1p(k),jp1p(k))*(-1*cos(teta(k)+beta))*0.5* 

     &         (0.5*ABS(teta(k-1)-teta(k+1))) 

c       write(*,*)'dLp,dLp2,dLf,dLf2',dliftp,dliftp2,dliftf,dliftf2,beta 

c 

         liftf2=liftf2+dliftf2 

         dragf2=dragf2+ddragf2 

         liftp2=liftp2+dliftp2 

         dragp2=dragp2+ddragp2 

c 

         liftf=liftf+dliftf 

         dragf=dragf+ddragf 

         liftp=liftp+dliftp 

         dragp=dragp+ddragp 

         pres=pres-dpres 

c       write(*,*)'nbndp',nbndp 

ccc       write(12,'(8F15.6)')teta(k),p(ip1p(k),jp1p(k)),dpres, 

ccc  &      2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k))), 

ccc  &      2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k))), 

ccc  &      2*RRe*((utan-utan0)/delta1(k)), 

ccc  &      2*p(ip1p(k),jp1p(k))*(-1*sin(teta(k))), 

ccc  &      2*p(ip1p(k),jp1p(k))*(-1*cos(teta(k))) 

 

       end do 

ccc     close(12) 

        FL2=0.5*(liftf2+liftp2) 

        FD2=0.5*(dragf2+dragp2) 

        FL=0.5*(liftf+liftp) 

        FD=0.5*(dragf+dragp) 

       write(*,*)'FL,FL2,lf,lf2,lp,lp2',FL,FL2,liftf,liftf2,liftp,liftp2 

c       STOP 

        return 

        end 

c 

cc     

       subroutine forcvib() 

 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 
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c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

      double precision, Dimension(0:nnx,0:nny):: umaskt,vmaskt 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolidtemp, xsolidtemp, usolidtemp, ysolidtemp 

     &               sstiff,smass,sdamping, fst,Fco,omega 

 

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c     &              ,FL2,FD2  

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c     &              ,FL2,FD2  

      integer i,j,k 

c 

 

      common /epsili/epstemp 

      double precision epstemp 

c 

      common /homeadd/ home 

      character*40 home 

c    ***** 

cc       

      fst= 0.167 ! strouhal number 

      Fco=1.05D0 

      omega= 2*(4*Atan(1.D0))*Fco* fst 

      ysolid= 0.2 * sin(omega*time) 

      vsolid= 0.2 * omega * cos(omega*time) 

      aysolid=-0.2 * omega * omega * sin(omega*time) 

c     vmaskt=vmask 

c     umaskt=umask 

c      call interpolate() 

c      call inisol() 

c      vmaskt=vmask-vmaskt 

c      umaskt=umask-umaskt 

c        if ((sum(umaskt) .EQ. 0 ) .AND.  

c    &       (sum(vmaskt) .EQ. 0 ))  

c    &        goto 18 

c      call inisol() 

c      epstemp=5.0D-7 

c      do i=1,10 

c     u=urk 

c     v=vrk 

c     call convec() 

c     call fillf() 

c     call calcuv() 

c      end do  

c      write(*,*)'sum(vmask-vmaskt)', sum (vmaskt) 

c      STOP 

        

c18     continue   

       epstemp =5.0D-7 

 

cc      open(unit=12,file='vysolid.dat', 

cc     &             position='append') 

cc      write(12,'(3E16.8)') time, vsolid, ysolid 

cc      close(12) 

        return 

       end 

 

 

       subroutine structuremain 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=550,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 



221 

 

c 

c      integer, intent(inout)::ksub  

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /velotemp/ utemp(0:nnx,0:nny+1),vtemp(0:nnx+1,0:nny) 

      double precision utemp,vtemp 

c 

      common /prestemp/ptemp(0:nnx+1,0:nny+1) 

      double precision ptemp 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts 

      integer nx,ny 

      double precision Re, RRe,dt,time,dts 

c    

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

 

c       

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision  xsolidn, usolidn, 

     &               sstiff,smass,sdamping 

      double precision vsolidtemp0, ysolidtemp0, 

     &                 vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns 

     &                 fn,fn05s,fn05ss,fn1ns   

      double precision eps1,eps2,eps 

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision eta, mratio,Vr,PI,CLift 

c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision coeff0, coeff1 

      double precision vksub,dvksub,dvksub0,yksub,dyksub,dyksub0 

      double precision alfa,landa,landav,small 

      double precision ytemp,vstemp,ytemp0,vtemp0,aytemp 

      integer i,j,k,l 

c 

      common /homeadd/ home 

      character*40 home 

c    *****   

c *************** non-dimensional format of structure******* 

      eps=0.000001 ! convergence cirterion 

      small=1e-20 

      PI=4.D0*ATAN(1.D0) 

      eta=0.0012D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 20/4/14 

      mratio=149.10 !(4/PI)*2 !  mass ratio=msolid/mfluid         23/4/14 

      Vr=5.58  !at Re=100 radious velocity=U/(Fn.D)        20/4/14 

c 

         ysolidn=ysolid   !to record inital value at time n 

         vsolidn=vsolid 

c         write(*,*)'yn1,vn,ysolid,vsolid',ysolidn,vsolidn,ysolid,vsolid 

         FLn=FL 

c  ****************************************************** 

c                   Start outter iteration  

c  ****************************************************** 

 

 

          l=1 

101     continue          

c********** start flow updating **********           
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         call convec 

         call fillf  

         call calcuv 

         call force 

         write(*,*)'time,l,FLn,FL',time,l,FLn,FL 

c******** end flow updating ***********          

         k=1 

113      continue 

           dyksub0=dyksub 

           dvksub0=dvksub   !14/04/14 

           yksub=ysolid  ! to record inital value at k 

           vksub=vsolid 

c          

c********** start solving the structure ********** 

c      

        ysolid=ysolidn+0.5*dt*(vsolid+vsolidn) 

        aysolid=-2*eta*(2*PI/Vr)*vsolid- 

     &          ((2*PI/Vr)**2)*ysolid+ 

     &            2*(2*FL)/(PI*mratio)       ! Clift=2*FL 

        vsolid=vsolidn+dt*aysolid 

c 

        write(*,'(A,I5,5E16.4)')'k1,time,ysolidn,ysolid,vsolidn,vsolid', 

     &k,time,ysolidn,ysolid,vsolidn,vsolid 

 

         if (((k .LE. 5) .OR.  

     &      (abs(ysolid-yksub) .GT. eps)) .AND. 

     &       (k .LT. 15)) then  

         k=k+1 

           Go to 113 

       end if 

c       write(*,*)'ytemp,vstemp,aytemp',time,k,ytemp,vstemp,aytemp 

c 

********** end of solving structure equation******** 

 

c 

c          if (k .EQ. 1) then  

             landa=0.3  

             landav=0.3 

c          else         

c             

             dvksub=vksub -vsolid     !14/04/14 

             dyksub=yksub -ysolid 

             landav= landav+(landav-1)* 

     &           (dvksub0-dvksub)*dvksub/((dvksub0-dvksub)**2+small) 

   

             landa= landa+(landa-1)* 

     &            (dyksub0-dyksub)*dyksub/((dyksub0-dyksub)**2+small) 

c           write(*,('A,I5,6E15.6'))'k,time,dyksub,yksub,dyksub0,ysolid', 

c     &k,time,dyksub,yksub,dyksub0,ysolid,landa     

c            end if 

c            ysolid=landa*ysolidn+(1-landa)*ysolid 

c            vsolid=landa*vsolid+(1-landa)*vsolidn 

c          write(*,*)'landa,ysolid,vsolid',time,k,landa,landav, 

c    & ysolid,vsolid 

c 

c      write(*,*)'ysolidn,vsn,aysn',time,k,ysolidn,vsolidn,aysolidn 

c 

c      write(*,*)'ytemp,vstemp,aytemp',time,k,ytemp,vstemp,aytemp 

c 

           if (((abs(ysolid-yksub) .GT. eps).OR.!23/4/14  

     &               (k .LT. 5))                         .AND. 

     &               (k .LT. 15)) then  

c 

               

       write(*,*)' *************No. of outter-iteration,ksub=',l 

              l=l+1 

cc       call interpolate () 

cc       call inisol ()     
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c 

      do j=0,ny+1 

      do i=0,nx 

         utemp(i,j)=u(i,j)! to use in bounds to update boundaries 

         u(i,j) = urk(i,j) !to start fluid solver from time n 

      end do 

      end do 

c 

      do j=0,ny 

      do i=0,nx+1 

         vtemp(i,j)=v(i,j) !to use in bounds to update boundaries 

         v(i,j) = vrk(i,j) !to start fluid solver from time n 

      end do  

      end do 

c 

              goto 101 

              end if 

c******************************************************************* 

c                end of outter iteration  

c ****************************************************************** 

c 

             open(unit=12,file='pld1.dat', 

     &       position='append') 

        write(12,'(10E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD, 

     & vsolid,ysolid    

        close(12) 

c 

       return 

       end        

c 

       subroutine solidsolver() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=550,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

c     integer, intent(inout)::ksub 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /prestemp/ptemp(0:nnx+1,0:nny+1) 

      double precision ptemp 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts 

      integer nx,ny 

      double precision Re, RRe,dt,time,dts 

c    

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

 

c       

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision  xsolidn, usolidn  

      double precision  sstiff,smass,sdamping 

      double precision vsolidtemp0, ysolidtemp0,FLtemp0 

     &                 vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns 

     &                 fn,fn05s,fn05ss,fn1ns   

      double precision eps1,eps2  

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision eta, mratio,Vr,PI,CLift 
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c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision ytemp,vtemp,ytemp0,vtemp0,small,aytemp 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c    *****   

c 

      small=1e-20 

      PI=4.D0*ATAN(1.D0) 

      eta=0.0D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 20/4/14 

      mratio=(4/PI)*2 !  mass ratio=msolid/mfluid         23/4/14 

      Vr=8 !at Re=100 radious velocity=U/(Fn.D)        20/4/14 

c 

 

           Call force() 

c 

c       

        write(*,*)'solid solver,vtemp',vtemp 

        aysolidn=-2*eta*(2*PI/Vr)*vsolidn- 

     &             ((2*PI/Vr)**2)*ysolidn+ 

     &               2*(2*FLn)/(PI*mratio)  ! Cliftn=2*FLn 

c       

        ytemp=ysolidn+dt * vsolidn 

        vtemp=vsolidn+dt * aysolidn 

c 

        aytemp=-2*eta*(2*PI/Vr)*vsolidn- 

     &          ((2*PI/Vr)**2)*ysolidn+ 

     &            2*(2*FL)/(PI*mratio)       ! Clift=2*FL 

c 

        ysolid=ysolidn+0.5*dt*(vsolidn+vtemp) 

        write(*,*)'here',ysolid,ysolidn,vsolidn,vtemp,dt 

        vsolid=vsolidn+0.5*dt*(aysolidn+aytemp) 

c       write(*,*)'ysolidn,vsolidn,aysolidn',time,k,ysolidn,vsolidn,aysolidn 

c       write(*,*)'ytemp,vtemp,aytemp',time,k,ytemp,vtemp,aytemp 

c 

        return 

      end 

c 

 

       subroutine structure(ksub) 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=550,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      integer, intent(inout)::ksub  

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /prestemp/ptemp(0:nnx+1,0:nny+1) 

      double precision ptemp 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts 

      integer nx,ny 

      double precision Re, RRe,dt,time,dts 

c    

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 
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c       

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision  xsolidn, usolidn, 

     &               sstiff,smass,sdamping 

      double precision vsolidtemp0, ysolidtemp0, 

     &                 vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns 

     &                 fn,fn05s,fn05ss,fn1ns   

      double precision eps1,eps2  

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision eta, mratio,Vr,PI,CLift 

c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision coeff0, coeff1 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c    *****   

c *************** non-dimensional format of structure******* 

      eta=0.D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 6/2/14 

      mratio=2 !  mass ratio=msolid/mfluid           6/2/14 

      Vr=3 !at Re=100 radious velocity=U/(Fn.D)        6/2/14 

      PI=4.D0*ATAN(1.D0) 

c      CLift=2*FL ! lift coefficient 

       

cc    sstiff = 6.05    !1.1 ! strouhal number=0.167 then f=2*3.14*sqrt 

cc    smass  = 5.0D0     ! f= (1/2*3.14)*sqrt (k/m) 

cc    sdamping=5.5       ! damping ratio=0.5 

c                        critical damping=2*sqrt(km) 

cc 

c      state space for the solid,  

c      d^2x/dt^2+(c/m)dx/dt+(k/m)x=CL*(1/2)*density*v^2       

c      v=dx/dt 

c      dv/dt= CL*(1/2)*density*v^2-(c/m)v-(k/m)x 

c 

c 

      if (ksub .EQ. 0) then 

      coeff0=3/2 

      FL=coeff0*FLn+(1-coeff0)*FLold 

      Clift=2*FL  ! 6/2/2014 

      end if 

c       

cc    coeff1=1+(sdamping/smass)*0.5*dt+(sstiff/smass)*0.25*dt*dt 

cc    aysolid= 

cc   &    (FL      /smass)- 

cc   &    (sdamping/smass)*(vsolidn+0.5*dt*aysolidn)/coeff1 - 

cc   &    (sstiff/smass)*(ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn)/coeff1 

      aysolid= 

     &       2*CLift/(PI*mratio)- 

     &       2*eta*(2*PI/Vr)*(vsolidn+0.25*dt*aysolidn)- 

     &       ((2*PI/Vr)**2)*(ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn)  

c 

       vsolid=vsolidn+0.5*dt*(aysolidn+aysolid) 

       ysolid=ysolidn+0.5*dt*(vsolidn+vsolid) 

c 

       call interpolate() 

       call inisol() 

c 

      return  

      end 

c 

c 

       subroutine convergence(ksub) 

c 

      integer nnx,nny,MxSurf,Mxy 
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      parameter (nnx=600,nny=550,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      integer, intent(inout)::ksub 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common /prestemp/ptemp(0:nnx+1,0:nny+1) 

      double precision ptemp 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts 

      integer nx,ny 

      double precision Re, RRe,dt,time,dts 

c    

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

 

c       

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision  xsolidn, usolidn  

      double precision  sstiff,smass,sdamping 

      double precision vsolidtemp0, ysolidtemp0,FLtemp0 

     &                 vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns 

     &                 fn,fn05s,fn05ss,fn1ns   

      double precision eps1,eps2  

      common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c    *****   

      eps1=0.005    ! should relate to mesh size 

      eps2=0.0001 

c 

c        vsolidn=vsolid 

c        ysolidn=ysolid 

c        

c         vsolidtemp0=vsolid 

c         ysolidtemp0=ysolid 

c****************   forth order Rung-Kutta calculation of structure****          

cc       fn=(CL/smass-(sdamping/smass)*vsolidn-(sstiff/smass)*ysolidn)  

cc         vs05ns=vsolidn+0.5* dts*fn    !  above  CL is total lift force     

(0.5*CL*1*1**2 

cc         ys05ns=ysolidn+0.5*dts*vsolidn 

cc          

cc       fn05s=(CL/smass-(sdamping/smass)*vs05ns-(sstiff/smass)*ys05ns)  

cc         vs05nss=vsolidn+0.5*dts*fn05s    ! above  CL is total lift force     

(0.5*CL*1*1**2 

cc         ys05nss=ysolidn+0.5*dts*vs05ns 

cc 

cc       fn05ss=(CL/smass-(sdamping/smass)*vs05nss-(sstiff/smass)*ys05nss) 

cc        vs1ns=vsolidn+dts*fn05ss 

cc        ys1ns=ysolidn+dts*vs05nss 

cc 

cc       fn1ns=(CL/smass-(sdamping/smass)*vs1ns-(sstiff/smass)*ys1ns) 

cc        vsolid=vsolidn+(1.0D0/6)*dts*(fn+2*fn05s+2*fn05ss+fn1ns) 

cc        ysolid=ysolidn+(1.0D0/6)*dts*(vs05ns+2*vs05nss+2*vs1ns+vsolid) 
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cc        write(*,*) CL 

c       write(*,*) fn, fn05ns, fn05nss,fn1ns 

c       write(*,*) vs05ns, vs05nss, vs1ns 

c       write(*,*) ysn05ns, ys05nss,ys1ns 

cc         

 

17          FLtemp0=FL 

           Call force() 

c       

        write(*,*)'convergence subroutine ksub=',ksub 

        write(*,*)'FL,FLtemp0', FL, FLtemp0,abs((FL-FLtemp0)/FL) 

       if  ((ksub .LE. 10)                       .AND. 

     &      (abs((FL-FLtemp0)/FL) .GT. eps1))  then 

c 

       ksub=ksub+1 

        write(*,*)' *************No. of sub-iteration, Ksub=',ksub 

        write(*,*)'abs((FLn+1 -FLn+1old)/FLn+1)', 

     &         abs((FL-FLtemp0)/FL)          

c 

c *********************Starting outer iteration for creating strong 

c  ********************coupleing between the structure and fluid 

c*******************  at the same time step with the same initial 

c ***************** velocity, but with the new position and velecity of 

c ****************** structure 

      do j=0,ny+1 

      do i=0,nx 

         u(i,j) = urk(i,j) 

      end do 

      end do 

c 

      do j=0,ny 

      do i=0,nx+1 

         v(i,j) = vrk(i,j) 

      end do  

      end do 

c 

       call structure(ksub)       

c       

       call convec 

       call Fillf 

       call calcuv 

       go to 17 

c 

       else 

        aysolidn=aysolid 

        vsolidn =vsolid 

        ysolidn =ysolid 

        FLold   =FLn 

        FLn     =FL 

                

       end if 

c        

cc        open(unit=12,file='pld1.dat', 

cc     &       position='append') 

cc        write(12,'(10E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD, 

cc     & vsolid,ysolid    

cc        close(12) 

c 

        return 

      end 

c 

c 

cc 

      subroutine wrtfld() 

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 
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      parameter (Mxy=2*nnx+2*nny) 

c 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 

     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy), 

     &          ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy), 

     &                  nbndp 

      integer  ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp 

c 

      common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy), 

     &                  wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy) 

      double precision teta,unitvi,unitvj,wp1,wp2,delta1 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c 

      common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2), 

     &                                   vins(0:nnx+2,0:nny+2) 

      double precision pins,uins,vins 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c    

      common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny), 

     &                uu(nnx,nny), vv(nnx,nny), uv(nnx,nny) 

      double precision um,vm,pm,uu,vv,uv 

c 
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      common /parmen/ nmean 

      integer nmean 

c 

      integer i,j,k 

c 

       

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      double precision dliftf,dliftp,ddragf,ddragp,dpres 

c 

      common  /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c    &                ,FL2,FD2  

      double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa 

c    &                ,FL2,FD2  

 

       

c 

      common /homeadd/ home 

      character*40 home 

c 

c        

cc        call force() 

cc        open(unit=12,file='pld1.dat', 

cc     &       position='append') 

cc        write(12,'(15E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD, 

cc     & vsolid,ysolid,FLift,Fdrag,Fa,FL2,FD2 

c        write(12,'(6E16.8)') time,pres,lift,drag,lift1,drag1 

cc        close(12) 

c 

cc      open(unit=12,file='degree.dat', 

cc   &       position='append') 

cc      write(12,'(6E16.8)') degree,dpres,dliftp,ddragp,dliftf,ddragf 

cc      close(12) 

c 

c *********velocity out put for test of the divergenc 

cc    open(unit=12,file='velocity.dat') 

cc    rewind(12) 

cc    do i=89,111 

cc    do j=89,111  

cc    write(12,'(A,2I4,5E16.8)')'i,j,u,umask,v,vmask,pmask',i,j,u(i,j), 

cc   &            umask(i,j),v(i,j),vmask(i,j),pmask(i,j) 

cc    end do  

cc    end do 

cc    close(12) 

 

c******** output by results on the Coordinate line 

 

cc    open(unit=12,file='fieldcoord.dat') 

cc    rewind(12) 

c 

cc    write(12,*) 'variables="x","y","u","v","p","umask", 

cc   & "vmask","pmask"' 

cc    write(12,*) 

cc   &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

cc    write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny) 

cc    close(12) 

 

c 

      open(unit=12,file='field.dat') 
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      rewind(12) 

c 

      write(12,*) 'variables="x","y","u","v","p","umask", 

     & "vmask","pmask"' 

      write(12,*)  

     &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

      write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) 

      write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) 

      write(12,'(5E16.8)')  

     & ((0.5D0*pmask(i,j)*(u(i-1,j)+u(i,j)),i=1,nx),j=1,ny) 

      write(12,'(5E16.8)') 

cc22/5/13     & ((0.5D0*pmask(i,j)*(v(i,j-1)+v(i,j)),i=1,nx),j=1,ny) 

     & ((0.5D0*(v(i,j-1)+v(i,j)),i=1,nx),j=1,ny)  

      write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny)         

      write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)   

      write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)         

      write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)         

      close(12) 

 

cc    open(unit=12,file='fieldu.dat') 

cc    rewind(12) 

c 

cc    write(12,*) 'variables="x","y","u","umask","vmask"' 

cc    write(12,*)  

cc   &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

cc    write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)  

cc    write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)         

cc    close(12) 

c 

c 

cc    open(unit=12,file='fieldv.dat') 

cc    rewind(12) 

c 

cc    write(12,*) 'variables="x","y","v","pmask"' 

cc    write(12,*)  

cc   &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

cc    write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)         

cc    close(12) 

c 

cc    open(unit=12,file='f.dat') 

cc    rewind(12) 

c 

cc    write(12,*) 'variables="x","y","f","umask","vmask","pmask"' 

cc    write(12,*)  

cc   &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

cc    write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) 

cc    write(12,'(5E16.8)') ((f(i,j),i=1,nx),j=1,ny)         

cc    write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)  

cc    write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)     

cc    write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)         

cc    close(12) 

c 

 

c 

      return 

      end 

cc 

cc        

      subroutine savfld() 

c 

      integer nnx,nny,MxSurf,Mxy 
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      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 

      double precision u,v,p,a,b 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 

     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c   

      common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny), 

     &                uu(nnx,nny), vv(nnx,nny), uv(nnx,nny) 

      double precision um,vm,pm,uu,vv,uv 

c 

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c       

      common /parmen/ nmean 

      integer nmean 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c       

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

c 

      integer i,j,k 

c 

      common /homeadd/ home 

      character*40 home 

c 

      open(unit=12,file='field.bin', 

     &form='UNFORMATTED') 

      rewind(12) 

c 

      write(12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid, 

     &vsolidn,ysolidn,aysolidn,FLn,FLold  

      write(12) ((u(i,j),i=0,nx),j=0,ny+1) 

      write(12) ((v(i,j),i=0,nx+1),j=0,ny) 
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      write(12) ((p(i,j),i=0,nx+1),j=0,ny+1) 

      write(12) ((urk(i,j),i=0,nx),j=0,ny+1) 

      write(12) ((vrk(i,j),i=0,nx+1),j=0,ny) 

 

c 

      close(12) 

c 

      open(unit=12,file='means.bin', 

     &form='UNFORMATTED') 

      rewind(12) 

c 

      write(12) nmean 

      write(12) ((um(i,j),i=1,nx),j=1,ny) 

      write(12) ((vm(i,j),i=1,nx),j=1,ny) 

      write(12) ((pm(i,j),i=1,nx),j=1,ny) 

      write(12) ((uu(i,j),i=1,nx),j=1,ny) 

      write(12) ((vv(i,j),i=1,nx),j=1,ny) 

      write(12) ((uv(i,j),i=1,nx),j=1,ny) 

c 

      close(12) 

c 

      open(12, file = 'movie.dat',position='append', 

     &                      form='formatted') 

 

c      write(icmov,'(A)') 'variables="x","y","u","v","p"' 

c      write(12,*) 

c     &  'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK' 

   

      write(12,*) 'ZONE T="t=',time,'", I=',nx,' J=',ny,' F=BLOCK' 

      write(12,'(A,f16.6)') 'SOLUTIONTIME=',time 

c     write(12) nx,ny,time 

      write(12,'(5E16.8)') ((xcrd(i)+xsolid,i=1,nx),j=1,ny) ! test4 

      write(12,'(5E16.8)') ((ycrd(j)+ysolid,i=1,nx),j=1,ny) ! test4 

ccc   write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) ! test2 and test3 

ccc   write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) ! test2 and test3 

ccc    write(12,'(5E16.8)') 

c 

ccc  & (((0.5D0*(u(i-1,j)+u(i,j))),i=1,nx),j=1,ny) 

ccc    write(12,'(5E16.8)') 

ccc  & (((0.5D0*(v(i,j-1)+v(i,j))),i=1,nx),j=1,ny) 

ccc    write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny) 

c 

       write(12,'(5E16.8)') 

     & ((pmask(i,j)*(0.5D0*(u(i-1,j)+u(i,j))+usolid),i=1,nx),j=1,ny) 

       write(12,'(5E16.8)') 

     & ((pmask(i,j)*(0.5D0*(v(i,j-1)+v(i,j))+vsolid),i=1,nx),j=1,ny) 

       write(12,'(5E16.8)') ((pmask(i,j)*p(i,j),i=1,nx),j=1,ny) 

 

       close(12) 

 

c 

      return 

      end 

cc 

cc 

      subroutine getfld(ex) 

c 

      logical ex    

c 

      integer nnx,nny,MxSurf,Mxy 

      parameter (nnx=600,nny=850,MxSurf=50) 

      parameter (Mxy=2*nnx+2*nny) 

c 

      double precision w 

      parameter       (w=0.5D0) 

c 

      common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny), 

     &                p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4) 
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      double precision u,v,p,a,b 

c 

      common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx), 

     &                 vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx), 

     &                 vup(0:nnx+1),uup(0:nnx),influx  

      double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup, 

     &                 influx 

c 

      common / bniinf/ jyu(nnx),jyv(nnx)  

      integer jyu,jyv 

c 

      common / griddx/ xcoord(0:nnx), ycoord(0:nny) 

      double precision xcoord, ycoord 

c 

      common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny), 

     &                 xfree(Mxy,MxSurf),yfree(Mxy,MxSurf) 

      double precision xcrd, ycrd, scalar, xfree, yfree 

c 

      common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny), 

     &                ajp(nnx,nny),diag(nnx,nny),f(nnx,nny) 

      double precision aim,aip,ajm,ajp,diag,f 

c 

      common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy), 

     &                  iinterpv(Mxy),jinterpv(Mxy),nbndv 

      integer  ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv 

c 

      common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy), 

     &                  iinterpu(Mxy),jinterpu(Mxy),nbndu 

      integer  ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu 

 

      common / bndvinfR/ wv1(Mxy),wv2(mxy) 

      double precision wv1,wv2 

c 

      common / bnduinfR/ wu1(Mxy),wu2(Mxy) 

      double precision wu1,wu2 

c 

      common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny), 

     &                                   vmask(0:nnx,0:nny) 

      double precision pmask,umask,vmask 

c       

      common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn 

      integer nx,ny,nx2,ny2,nn 

      double precision Re, RRe,dt,time,dts 

c 

      common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny), 

     &                uu(nnx,nny), vv(nnx,nny), uv(nnx,nny) 

      double precision um,vm,pm,uu,vv,uv 

c 

      common /parmen/ nmean 

      integer nmean 

c    

      common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny), 

     &                ar(10,10), br(10), nrk 

      double precision urk, vrk, ar, br 

      integer nrk 

c 

      common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

      double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid 

c 

      common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn 

      double precision FLn,FLold,aysolidn,vsolidn,ysolidn 

c       

      integer i,j,k 

      double precision dt1 

c 

      common /homeadd/ home 

      character*40 home 

c 
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      inquire(file='field.bin',EXIST=ex) 

      if (.not. ex) return 

c       

      open(unit=12,file='field.bin', 

     &form='UNFORMATTED') 

      rewind(12) 

c 

      write(*,*) 'Reading from field.bin ' 

c 

      read(12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid, 

     &vsolidn,ysolidn,aysolidn,FLn,FLold  

      RRe=1D0/Re 

      read(12) ((u(i,j),i=0,nx),j=0,ny+1) 

      read(12) ((v(i,j),i=0,nx+1),j=0,ny) 

      read(12) ((p(i,j),i=0,nx+1),j=0,ny+1) 

      read(12) ((urk(i,j),i=0,nx),j=0,ny+1) 

      read(12) ((vrk(i,j),i=0,nx+1),j=0,ny) 

 

c 

      close(12) 

c 

c       

      return 

      end 

 

c-- 

c etime.f: Demonstrate measurement of elapsed time 

c-- 

        subroutine etimetest 

        real etime          ! Declare the type of etime() 

        real elapsed(2)     ! For receiving user and system time 

        real total          ! For receiving total time 

        integer i, j 

        print *, 'Start' 

       total=etime(elapsed) 

       open(unit=12,file='ptime') 

       rewind(12) 

 

       write(12,*)'End:*total=', total, ' user=', elapsed(1), 

     &         'system=', elapsed(2) 

       close(12) 

c      Stop 

       Return 

       end 

 

 

 

  



235 

 

Appendix B 

 



236 

 

 



237 

 

 

 



238 

 

 

 



239 

 

 



240 

 

 



241 

 

 

  



242 

 

 

 

 

 

 

 

 

 

 

 



243 

 

Appendix C 

 



244 

 

 

 



245 

 

 



246 

 

 



247 

 

 



248 

 

 



249 

 

 



250 

 

 



251 

 

 



252 

 

 



253 

 

 



254 

 

 


