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Abstract

In the recent decades the Fluid-Structure Interaction (FSI) problem has been of great
interest to many researchers and a variety of methods have been proposed for its
numerical simulation. As FSI simulation is a multi-discipline and a multi-physics
problem, its full simulation consists of many details and sub-procedures. On the other
hand, reliable FSI simulations are required in various applications ranging from hemo-
dynamics and structural engineering to aero-elasticity. In hemo-dynamics an
incompressible fluid is coupled with a flexible structure with similar density (e.g. blood
in arteries). In aero-elasticity a compressible fluid interacts with a stiff structure (e.g.
aircraft wing) or an incompressible flow is coupled with a very light structure (e.g.
Parachute or sail), whereas in some other engineering applications an incompressible
flow interacts with a flexible structure with large displacement (e.g. oil risers in offshore
industries). Therefore, various FSI models are employed to simulate a variety of different
applications. An initial vital step to conduct an accurate FSI simulation is to perform a
study of the physics of the problem which would be the main criterion on which the full
FSI simulation procedure will then be based.

In this thesis, interaction of an incompressible fluid flow at low Reynolds number
with a flexible circular cylinder in two dimensions has been studied in detail using some
of the latest published methods in the literature. The elements of procedures have been
chosen in a way to allow further development to simulate the interaction of an
incompressible fluid flow with a flexible oil riser with large displacement in three
dimensions in future.

To achieve this goal, a partitioned approach has been adopted to enable the use of
existing structural codes together with an Immersed Boundary (IB) method which would
allow the modelling of large displacements. A direct forcing approach, interpolation /
reconstruction, type of IB is used to enforce the moving boundary condition and to create
sharp interfaces with the possibility of modelling in three dimensions. This provides an
advantage over the IB continuous forcing approach which creates a diffused boundary.
And also is considered as a preferred method over the cut cell approach which is very
complex in three dimensions with moving boundaries.

Different reconstruction methods from the literature have been compared with the
newly proposed method. The fluid governing equation is solved only in the fluid domain
using a Cartesian grid and an Eulerian approach while the structural analysis was
performed using Lagrangian methods. This method avoids the creation of secondary
fluid domains inside the solid boundary which occurs in some of the IB methods. In the
IB methods forces from the Eulerian flow field are transferred onto the Lagrangian
marker points on the solid boundary and the displacement and velocities of the moving
boundary are interpolated in the flow domain to enforce no-slip boundary conditions.
Various coupling methods from the literature were selected and improved to allow
modelling the interface and to transfer the data between fluid and structure.

In addition, as an alternative method to simulate FSI for a single object in the fluid
flow as suggested in the literature, the moving frame of reference method has been
applied for the first time in this thesis to simulate Fluid-Structure interaction using an IB
reconstruction approach.

The flow around a cylinder in two dimensions was selected as a benchmark to
validate the simulation results as there are many experimental and analytical results
presented in the literature for this specific case.



Some of the Contributions to knowledge

Comprehensive and comparative study of the FSI methods considering
facilities and physics of the problem to define an algorithm to be able to:

To simulate Large displacement/deformation

To integrated existing fluid flow and structural codes

To be extendable to three dimension

To be able to define sharp boundaries and resolve vortices in the flow field
To be fitted to the existing computational facilities

YV VYY

Developing an FSI code based on the comprehensive study to simulate
» Stationary cases

» Forced Vibration with prescribe motion

» Vortex Induced Vibration (VIV)

e Proposing a new interpolation procedure and comparing it with literature

e Characterising the domain parameters affecting Strouhal number, lift and drag
coefficients

e Explaining some of discrepancies in the results of the lift and drag coefficient
presented in the literature based on parametric study.

e Applying a moving reference frame along with an IB interpolation method to
model FSI and VIV.
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Chapter 1. Introduction

Fluid-Structure Interaction (FSI) analysis is widely used to study the physical
phenomenon which occurs in many engineering applications in which a fluid flow
interacts with a deformable or moving structure.

Many engineering structures are subjected to environmental fluid currents that can
induce significant unsteady forces. For instance, wind can cause substantial forces to be
imparted on chimney towers, cables, bridge decks and other common structures. Ocean
currents can similarly affect offshore platforms, submerged pipelines and riser pipes’.
Without an accurate FSI analysis there will be a great uncertainty about the safety of
these structures.

Moreover, FSI analysis has had significant impact in biomechanics research, making
it possible to model the interaction between biological tissues (e.g. arteries) and
biological fluid flow (e.g. blood).

Modelling many of these FSI problems with large displacement/deformation and
complex geometry is quite challenging and despite extensive developments in the recent
decades, there is still a demand for further work in this area of research. Also, FSI is a
multi-physics and multi-disciplinary phenomenon therefore an accurate FSI modelling
involves many detailed challenging procedures. The computation algorithms should be
selected based on the physics of the problem and the availability of computational
resources. In this study the main focus is on simulation of behaviour of offshore flexible
risers and pipe lines. When a riser oscillates in the flow or is exposed to an oscillatory
flow, the vortex shedding regime around the pipe can be changed dramatically. In a
certain range of oscillation and amplitude, the oscillatory stream and vortex shedding
can affect the structure’s stability which could lead to structural failure. Sophisticated
structural studies has been carried out for risers subjected to prescribed excitation forces,
however the motivation here is to couple the structural analysis with a more realistic
excitation by studying FSI in a real riser condition.

The ultimate aim of this research is to develop and test an in-house code which then

be combined with an existing structural analysis program to simulate Fluid-Structure-

1- The risers pipes used in the offshore industry to convey fluids (oil and gas) from the seabed to the
sea level and vice versa.



Interaction (FSI) of an offshore riser in realistic circumstances. In addition, the models
and algorithm are employed in the code in such a way that the simulations can be run in
a reasonable time using existing computational facilities. The final goal is to simulate
vortex induced vibration of a riser in three dimensions, at high Reynolds number and
with large displacements.

The first stage of this comprehensive program of work has been completed and is
presented in this thesis. In this stage an in-house code is developed to simulate two
dimensional flows around a flexible/deformable circular cylinder?. To achieve this goal,
first FSI methods are studied in detail; The FSI algorithm elements are selected in a way
to facilitate further developments of the code to three dimensions, high Reynolds
numbers and large displacements/deformations in future.

This thesis is divided in three parts. In the first part which includes chapters 1, 2 and 3
the motivation, introduction, background and literature review of the problem is
presented and some examples of various FSI applications are provided. In the second
part of the thesis which include chapters 4, 5 and 6 the FSI methodology based on the
immersed boundary (IB) method with an interpolation/ reconstruction procedure is
discussed and the proposed algorithm is presented. The results of a parametric study for
a stationary case are validated with bench marks as well as the results from other IB
interpolation methods in the literature. In the final part of the thesis, chapter 7, the
simulation of the flow around a flexible cylinder is presented. The simulation results
with a moving and an inertial reference frame are compared with one another and with
some results from the literature. Also, case studies of Vortex Induced Vibration analysis
of the proposed model are presented and validated against results from the literature.

In this introductory chapter, some fundamental topics and general parameters used in
a full FSI analysis are briefly explained. At the beginning, the effect of the Reynolds
number as a key parameter is discussed. This is followed by introducing some important

terminology in the field. And finally a summary of the chapter is presented.

1.1 Fluid-Structure interaction (FSI)

Fluid-Structure Interaction (FSI) is a multiphasic problem which involves

Computational Fluid Dynamics (CFD) and Computational Structural analysis. The flow

2- The circular cross section is use for the whole study as in the offshore industry the riser’s cross
section are all circular due to the fact that not only these cross section has minimum stress concentration
but also circular cross section can be manufactured and used easier in this application.



simulation is considered to be an FSI problem inside or around a deformable or moving
boundary/structure when flow forces cause the structure to deform which, in turn,
changes the boundary conditions of the fluid flow.

Numerical simulations of the fluid field interacting with moving boundaries are
among the most challenging problems in computational mechanics. The reason for this
is that the fluid domain changes with time and the location of boundaries depend on

fluid flow forces inducing deformation/motion of the boundaries (Yang et al. 2008).

1.2 Vortex shedding and Strouhal number

When the fluid flow passes around an object, such as a circular cylinder, a boundary
layer will form around the cylinder. Due to an adverse pressure gradient along the
downstream half of the cylinder, the boundary layer separates at a specific angle behind
the cylinder depending on the flow parameter. The separated boundary layer rolls up into
vortices in the low pressure area behind the cylinder. After a period of growth these
vortices are shed and washed downstream by the flow. These vortices create alternating
pressure on either side of the cylinder and the body tends to move toward the low
pressure zone. Therefore, the vortex shedding is the oscillating flow pattern that occurs
periodically when a fluid (e.g. air or water) passes a bluff body at specific velocities, U,
depending on the Reynolds number, size and shape of the body. The normalised vortex
shedding frequency for a stationary body is known as the Strouhal number, St (=f,D/U);
in which, the parameter D is the diameter of cylinder and f, is vortex shedding
frequency. The Von Karman vortex street is a famous vortex shedding patterns that
forms behind a stationary cylinder. In Figure 1-1, the formation of the vortices is shown

in the low pressure area (dash line contours) behind the cylinder.

Figure 1-1: Vortex shedding and pressure contour behind a cylinder at low Reynolds
number. Dash lines and continuous lines are negative and positive pressure contours,
respectively.



1.3 Vortex induced vibration and Lock-in phenomena

The vortex shedding process and the shed vortices themselves induce periodic
forces on the body. If the body is compliant or elastically supported then these forces can
cause the body to vibrate. Such a vibration is called a Vortex Induced Vibration (VIV).
The amplitude of vibration depends on many factors including the level of structural
damping, the relative mass of the body to the fluid, the magnitude of the fluid forces and
the proximity of the vortex shedding frequency to the natural frequencies of vibration of
the body.

The fluid forces in both, the cross-stream (transverse) direction (lift), and the
stream-wise (in-line) direction (drag) can induce VIV in their respective directions. The
oscillatory component of the drag forces is normally far smaller than the oscillatory
component of the lift force. Consequently in-line VIV is normally of lower amplitude
than transverse VIV. The frequency of the in-line oscillatory force and the consequent
vibration is normally twice that of the transverse oscillatory force and resulting motion.

Lock-in phenomena are defined where a body is vibrating in a fluid flow and the
oscillation frequency and vortex shedding frequency become synchronized. According
to the numerical and experimental results, lock-in only happens in body oscillation with
amplitude above a specific threshold. And the range of oscillation frequencies (or
reduced velocities) at which lock-in occurs will increase by increasing the oscillation
amplitude.

The experiment of Feng 1968 addresses the VIV and Lock-in phenomena and
related parameters. In this experiment a flexibility mounted cylinder with a transverse
degree of freedom was exposed to various air velocity streams. For a flow velocity of U,
the vortex shedding frequency, f,, the vibration frequency, f,; the vibration amplitude, A,
and the phase angle, ¢, is measured. The phase angle is defined as the phase difference
between the vortex shedding frequency and vibration frequency of the cylinder. The
results are presented based on a normalised velocity known as reduced velocity V.
(=U/D f,). In this formula, f, is the natural frequency of the system. Figure 1-2 shows
that there is no vibration at a reduced velocity lower than 4. For 4<V,<5 small vibrations
occur at the natural frequencies of the system (f/f,=1), while the vortex shedding
frequency equals the cylinder Strouhal frequency. However according to Figure 1-2a, for
5<V,<7 the vortices will start to shed at the natural frequency of the system (i.e line
f/f,=1) (instead of the Strouhal frequency). In other words the vortex shedding frequency



locks in to the natural frequency of the system for a range of reduced velocities from

V,=5to V,=7.

In the lock-in range the system natural frequency, f,, the vortex shedding frequency,

fy, and the vibration frequency, f, remain synchronised ; i.e. f,=f,=f. Therefore at this

range of reduced velocities, the lift force contributes to the system’s natural vibration

which could lead to vibration with high amplitude (Figure 1-2).
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Figure 1-2: experimental results of the cross flow response of flexibility mounted
cylinder subject to a steady air stream. Originally presented by Feng 1968 and graphs

reproduced by Sumer and Fredsée 2006.

For the higher reduced velocity, V,>7, the vortex shedding frequency unlocks from

the natural frequency and jumps to the Strouhal natural frequency (Figure 1-2a). The

range of lock-in period depends on the amplitude of vibration which itself depends on

5



structural damping. The lock-in range is larger for the higher amplitude of vibration
(lower structural damping) as it may need higher V. to unlock the shedding frequency
from the natural frequency of the system (for more details see Sumer and Fredsée 2006).

Moreover, according to Figure 1-2a, at higher reduced velocities (for instance V,=
7.3), while the system is vibrating at its natural frequency (f/f,=1), the vortex shedding
occurs at the Strouhal frequency. Since the forcing frequency (vortex-shedding
frequency) is no longer in phase with the vibration of the cylinder, there is a reduction in
amplitude of vibration. Also at higher reduced velocities, the vortex shedding frequency
moves further away from the natural frequency of the system, which could lead to a
greater reduction in the vibration amplitude. The experiment shows that at V,>8.5 the
vibration of the system completely disappears. Figure 1-2b and c, also show a hysteresis
effect in amplitude and phase shift variation with respect to reduced velocity. i.e. the
amplitude and phase will be slightly different at the same reduced velocity depending on
the direction of the experiment; increasing the reduced velocity from low to high values

in the course of experiment or vice-versa.
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In addition, the flow pattern of vortex shedding changes dramatically at different
oscillation amplitudes (Li et al. 2002). Figure 1-3 shows the vortex pattern changes at
different amplitudes of vibration, A/D, and different oscillation wave-lengths, A/D (=V,,
reduced velocity). These experiments were conducted for 300<Re<1000. Williamson &
Roshko 1988 interpreted that the changes in the shedding mode that occurs across the
critical curve is the reason of the jump in the phase angle and the lift coefficient that has
been reported by Bishop & Hassan 1964 among others.

Meneghini and Bearman 1995 presented the lock in region for the range of
amplitudes, A/D, varying from 0.025 to 0.6 and the range of oscillation frequencies, f/fs,
from 0.7 to 1.15 (Figure 1-4). This lock-in range is around the Strouhal vortex shedding
frequency and two vortices of opposite circulation are shed per cycle (S type). When the
frequency of the lift force was similar to the frequency of the oscillating flow lock-in

was occurred.
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Figure 1-4: Lock -in region as a function of amplitude, A/D, and frequency, f/fs, of
oscillation for the forced transverse vibrations of a circular cylinder. [, O lock in vortex

shedding border andA, +, unlocked vortex shedding area (Meneghini & Bearman 1995).

Vortex Induced Vibrations can have serious consequences as they provide a major
source of fatigue and can cause bodies clashing in multiple body assemblies. The
potential implications of VIV make predicting of its occurrence and its likely amplitude
and frequency of response imperative when designing engineering structures that are
exposed to flow. Recently, VIV has received a great deal of attention and various

methods for its predictions have been developed rapidly.



1.4 Fundamental parameter

The two most important factors that determine the dynamics of the flow past a
stationary bluff body? are the body’s cross-sectional shape and the Reynolds number.

The Reynolds number is a dimensionless number that gives a measure of the ratio of
inertial forces to viscous forces and consequently, quantifies the relative importance of
these two types of forces for a given flow condition. A laminar flow occurs at low
Reynolds numbers, where the viscous forces are dominant, and is characterized by
smooth, constant fluid motion. A turbulent flow, on the other hand, occurs at high
Reynolds numbers and is dominated by inertial forces, which tend to produce random
eddies, vortices and other flow fluctuations. A Reynolds number is meaningless without
the selection of proper characteristic length and velocity scales. For the flow problem
over a circular cylinder, the diameter of the cylinder is selected as the characteristic
length scales which the free-stream velocity is chosen as the characteristic velocity scale.
Practically, matching Reynolds numbers do not guarantee a similar flow, as very small
changes in the parameters such as shape, roughness could result in very different flow
regimes.

If the Reynolds number is large enough then the regions of recirculating flow can
become detached from the body (separation). The re-circulating flow in these detached
regions, which is referred to as an eddy or vortex, generally comprises of low speed
(relative to the free stream flow speed) vortices. Once shed, or detached, the vortices are
convected downstream of the body by the main flow. If the flow past the bluff body is
fully developed then a wake instability mechanism causes vortices to be shed in a
periodic fashion from alternating sides of the body. The body’s resulting wake structure
comprises a staggered array of vortices that trails downstream of the body. Such a wake

is referred to as a von Karman vortex street.

1.5 Flow regimes and vortex formation

The dynamics of the flow past a stationary circular cylinder are dependent on many
factors of which the Reynolds number is the most important. The effect of increasing the
Reynolds number is firstly to initiate flow separation, then vortex shedding and at higher
Reynolds numbers a gradual transition to turbulence, which starts in the far wake and

moves upstream and eventually into the attached boundary layers with increasing

3- The engineering bodies those are non-streamlined, such as those that have square or circular
cross-sections in the plane of the fluid flow are referred to as bluff bodies.



Reynolds number. Roshko 1954 was amongst the first to categorise the flows observed
at different Reynolds numbers into various flow regimes

The knowledge of the flow regimes that exist for the flow past a stationary circular
cylinder, and the Reynolds numbers at which these regimes begin and end, has
undergone a continuous development since Roshko’s initial categorisation of the
regimes. This section discuss the current knowledge of these flow regimes in terms of
the topology of the cylinder’s wake, the state of the flow; laminar or turbulent and where
appropriate the transition point, and certain key global parameters. The first of these key
parameters is the Strouhal number,St = f; D /U, which is a non-dimensional measure
of the vortex shedding frequency. Roshko found that the Strouhal number behaves
differently in each of the three regimes he identified. In the stable regime it rises rapidly,
in the irregular regime it is approximately constant and in the transition regime he found
it to be unstable, i.e. erratic.

¢ Non-separation regime; 0<Re<4 to 5

At very low Reynolds numbers, 0<Re<4 to 5, the flow is laminar and is dominated
by viscous effects. It remains fully attached to the cylinder, as sketched using
streamlines in Figure 1-5, this regime is often referred to as creeping or Stokes flow.

¢ Laminar steady regime; 4 to 5<Re<47

As the Reynolds number is increased beyond Re=5 the boundary layers separate
symmetrically from both sides of the cylinder. The separated shear layers roll up and
form a pair of standing vortices (recirculation cells) in the cylinder’s near wake, (See
Figure 1-5) and the wake behind the cylinder is steady and symmetric about the wake
centreline. Hence in this regime there are no fluctuating forces exerted on the cylinder
and the Strouhal number is zero (St=0). As the Reynolds number increased through this
regime the separation points, which are located towards the rear of the cylinder at Re=5,
move forward and the standing vortices grow in size. The length of the recirculation
cells increases approximately linearly with Reynolds number.

e Laminar shedding regime; 45<Re<180

At a Reynolds number of approximately 47, disturbances in the flow become
amplified, resulting in cross-stream oscillation of the downstream end of the
recirculation cells and a sinusoidal oscillation of the wake-trial downstream of the

recirculation cells. As the Reynolds number is increased the recirculation cells shorten



and the amplitude of the oscillation increases until it is large enough to cause the trial to

roll up at its troughs and crests, resulting in a staggered array of laminar vortices.
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Figure 1-5 Flow regime at various Reynolds number (Sumer & Fredsoe 2006).
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As the Reynolds number is increased further the oscillating recirculation cells
(vortices) detach themselves in a periodic fashion from the rear of the cylinder. The
vortex street is now generated by a laminar instability of the near wake through a mutual
instability of the two free shear layers. The flow throughout this laminar and unsteady
shedding regime remains two-dimensional. As the Reynolds number is increased
through this regime the Strouhal number increases, and the cylinder is subjected to
fluctuating forces in both the streamwise and cross-flow directions. The rms lift
coefficient and the base drag coefficient rise continuously with increasing Re.

e Wake transition regime; 180 <Re<350 to 400

This regime sees the development of large scale three-dimensionally in the cylinder’s
wake and is the regime that Roshko 1954 labelled as the transition regime. At
180<Re<194 the wake develops three-dimensionality in the form of vortex loops and
streamwise vortex pairs at a span wise wavelength of about 3 to 4 diameters, see
Williamson(1996a). This change to three-dimensional shedding is hysteretic and is
accompanied by a sudden fall in the Strouhal number and the base drag coefficient. At
230<Re<250 there is a second more gradual change, which has finer scale streamwise
vortices and a span-wise wavelength of about a diameter. This change is accompanied
by a shift to a higher Strouhal number. The large scale three-dimensionality seen in this
regime does not in itself imply that the wake is turbulent. The transition to turbulence
first occurs in this regime in the far wake and gradually moves upstream with increasing
Reynolds number.

e Shear layer transition regime; 350 to 400<Re<2x105

In this regime, which is also called the sub-critical regime and was labelled by Roshko
1954 as the irregular regime, the attached boundary layers remain laminar, transition
occurs in the free shear layers and the wake is fully turbulent. The transition waves first
appear in the free shear layers at 350<Re<400. As the Reynolds number is increased the
formation length (the length of vortex formation region) increases until at
1x10°<Re<2x10% chains of transition eddies are observed in the free shear layers.
Further increasing the Reynolds number results in a decrease in the formation length and
a movement of the transition points upstream towards the separation points. At
2x10°<Re<4x10° the transition eddies disappear, the formation length stops decreasing,
and transition to turbulence occurs close to the cylinder. Throughout the remainder of

the shear layer transition regime (up to Re~2x10°) the transition points, the formation
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length, the separation points (6~80°, where 0 is measured from the front stagnation
point), and the Strouhal number (St=0.2) remain relatively constant. The forces
experienced by the cylinder are closely related to the formation length. As the formation
length increases (350<Re< 1x10% both C; ,,s and —Cp, decrease, whilst as the
formation length decreases (1x10°<Re< 2x10*) both C; s and—Cpp increase, and
whilst the formation length is relatively constant (2x10°<Re< 2x10°) so are
C; +ms and—Cpp,. The dramatic fall and rise in C; ;s for 0.5x10°<Re< 5x10° is often
referred as the ‘lift crises’, which should not be confused with the ‘drag crises’, of the
critical regime, see below.

e (ritical regime; 2x105<Re< 1x10¢

In this regime the initial flow separation is laminar; transition to turbulence occurs in the
free shear layers which then reattach, resulting in the formation of thin separation-
reattachment bubbles on either side of the cylinder. The turbulent boundary layer is able
to withstand a higher adverse pressure gradient than a laminar boundary layer and final
turbulent separation is delayed until 6=140°. The postponement of final separation
results in a much narrower wake than in the shear layer transition regime and a
consequent reduction in the mean drag coefficient, Cp, from C, ~ 1.2 at the end of the
shear layer transition regime to C = 0.3 in the critical regime. The dramatic fall in the
drag coefficient is known as the ‘drag crisis’. Bearman (1969) found a regime, in which
there is a separation-reattachment bubble on only one side of the cylinder, resulting in
large mean lift forces, C;, =~ 1.

e Boundary layer transition regime; Re> 1x10°6

As the Reynolds number is increased further the separation-reattachment bubbles
disappear as the transition point move further upstream ahead of the separation points
and into the boundary layers. The turbulent boundary layers do not separate until
0=120°, resulting in a narrow wake and a low drag. As the Reynolds number is increased
the transition points and the separation points gradually move further upstream and the

base suction coefficient increases.

1.6 Aims and objective

This research is mainly concerned with the numerical FSI prediction of the Vortex
Induced Vibration (VIV) of elastically supported and flexible circular cylinders that are

subjected to steady fluid currents, and in particular with perspective to simulate the
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flexible deep-water marine riser pipes® that are subjected to ocean currents. The

objectives of this research can be summarised as follows:

To study the physics of the FSI problems and the parameters that affects the
VIV, especially in the context of circular cylinder and oil risers.

To study numerical methods suitable for FSI simulation which, on the one hand,
should be able to simulate the main physics related to the riser problem, and on
the other, the methods should be suitable for applications in which there is
limited computational power and limited simulation time.

To apply and validate the selected methods from the previous stage for a two
dimensional flow around a stationary cylinder at low Reynolds number. This
initial stage includes the development and validation of an in-house code to solve
this CFD problem.

To apply and validate the FSI simulation for a two dimensional flexible cylinder
using the selected methods from the second stage. This stage consists of the
development and validation of an in-house FSI code to simulate forced and free
vibrations of a flexible cylinder in a uniform flow based on the CFD code
developed in the previous stage.

To further develop the CFD and FSI codes to enable the analysis of the flow at
realistic Reynolds numbers around stationary and flexible cylinders by addition
of a turbulence modelling capability to the algorithm.

To develop the in-house code to enable modelling of FSI for a long flexible riser
in a flow field with a high Reynolds number by applying the “strip theory”
features. In this stage the existing structural code will be coupled with the fluid

flow to form a quasi-three dimensional FSI simulation.

To achieve these goals in this thesis, an immersed boundary method based on an

interpolation/reconstruction procedure is developed; various interpolation methods

4- Riser pipes typically have axial lengths, L, of up to a few thousand meters and have outer diameters,

D, of less than one metre, yielding length to diameter ratios, L/D, of O(1073). Risers are exposed to a

variety of ocean currents with current speeds, U, of up to about 2 m/s and current profiles that can vary

greatly with depth. The Reynolds numbers, Re= U,,D/v, where v is kinematic viscosity of water, for these

flows are typically of O(10"5) to O(10”76). As the offshore industry moves into increasingly deeper waters

(>2000m depth), the riser pipes used have become longer and effectively more flexible, and are being

excited into increasingly higher vibrational modes (>40" say).
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which are presented in the literature are compared with a newly proposed method and
the results are validated against some bench marks. In addition, a moving frame-of-
reference methodology with an immersed boundary method is presented to simulate the
flow around a flexible cylinder. Moreover, a moving cylinder with the newly developed
interpolation method is modelled using an inertial frame of reference and the results are
compared with the bench marks and the moving frame reference methodology. Finally,
the Vortex-Induced-Vibration of a flexible cylinder using Aitken relaxation is modelled
and the results are compared with those from the literature. Note that the last two

objectives were not addressed in this thesis and will be the subject of future research.

1.7 Summary

In this chapter the physical aspects and fundamental concepts of the problem are
explained and various parameters in an FSI simulation are discussed. The motivation
and the goal of the research are outlined and the contribution made through this work to
the knowledge is outlined. To simplify the simulation and to avoid high computational
demands the models used in this thesis are limited to two dimensions and at low
Reynolds numbers. However, the numerical algorithm adopted allows further
development of the analysis to three dimensions and high Reynolds number flows in the
future development of the work.

In the next chapter the background material and preliminary challenges common in
FSI simulations are addressed. Also the application of the FSI simulation in engineering
and scientific problems is explained. In addition the main approaches in the literature
which are related to this research are reviewed. The main objective of the next chapter is
to explain the advantages of a partitioned approach as compared to a monolithic
approach. In addition, the advantages of an immersed boundary (IB) method in
comparison with an Arbitrary-Eulerian-Lagrangian (ALE) methodology are briefly

discussed.
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Chapter 2. Background and preliminary study

Researchers have studied fluid dynamic for several centuries, numerous new ideas,
tools and methods have been developed to solve a various fluid problems in a variety of
engineering applications. Significant advances in the recent decades in computational
power have enabled engineers to simulate very challenging fluid problems which were
not deemed possible previously. Specifically the ability to accurately simulate complex
fluid-solid interaction problems marks a revolution in the field of computational fluid
mechanics. In this chapter some background information on state-of-the art research on
FSI is presented and the reasoning behind the chosen methodology and algorithm for the
riser problem is given whilst the principle approach and the main obstacles for a realistic
FSI simulation are briefly addressed. Also some state-of-the-art Fluid-Structure
interaction applications are introduced to demonstrate the importance of the research
carried out in this field of science. In addition, at the end of the chapter the layout of the

thesis is presented.

2.1 Main technical difficulties of a FSI simulation

In the recent years Fluid solid interaction has become an attractive area of research
as it offers the potentials of simulating a physical phenomena as closely as possible to
the that it actually occurs in nature which involves the interaction of fluid flow with a
complex deformable body. As the fluid-structure interface moves in time, the spatial
domain of the fluid flow will change, and the numerical simulation has to be able to
handle this problem. In the conventional approach, the mesh needs to be updated in
order to accurately track the interface and to represent the flow field near the boundary.
Especially, in 3D problems with a complex geometry this process is quite complicated.
Another challenge is to solve the fluid and structure equations simultaneously. There are
some important factors that require attention when choosing the solution method for a
coupled fluid-structure problem; including, a) how complex is the solid boundary?; b)

how large is the structure-deformation?; c) how sensitive is the structure to a variation of
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fluid dynamic of forces?; d) how accurate does the required solution need to be for FSI
problems?; e) how much experienced is the researcher with FSI simulation?. In the
following sections, the main approaches adopted followed to address these difficulties
are discussed.

2.2 Two fundamental computational approaches

The numerical simulation of a FSI problem could be classified broadly in
partitioned and monolithic approaches (see, Figure 2-1). Although, these expressions
could be understood slightly differently in other fields of science, here the focus is

mainly on the engineering applications.

Fluid & structure - > Fluid & structure solution

a) monolithic approach

Fluid solution (t,) —> Fluid solution (tn+1)
A y
\ A

Fluid & structure E— Fluid & structure interface
A A

Structure solution — > Structure solution (tn.1)

b) partitioned approach

Figure 2-1: a) Schematic Monolithic approach, b) Schematic Partitioned approach.

2.2.1 Partitioned approach

In the partitioned or interaction approach (Hou et al. 2012) the fluid and structure
are treated as separate entities which are solved separately with their own respective
discretisation and algorithm. Interface conditions are used to communicate information
between the fluid and structural solvers. The main advantages of this approach is that it
allows the use of traditional solvers and advanced procedures for both the standard fluid
flow and elasticity problems which simplifies the code development procedure by
allowing the usage of existing simulation codes as a part of a FSI algorithm. As a result,
the validation process of the code can remain limited to the validation of interface
tracking. The main drawback in this approach is the implementation of the interaction of

the fluid and structure and to find a converged solution; especially as the interface
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location is not known and usually changes in time. In this approach, the interface
location and its related parameters should be tracked and updated. This is a complicated
process and may cause divergence errors in the simulation. Due to these issues, normally
the partitioned approach tends to have a very slowly time converging time-step and is
harder for parallel computing implementation.

The partitioned approach may be classified into weak and strong coupling
approaches. In both of these approaches the fluid and structure are solved separately in
time. In the weak coupling approach the parameters are not updated iteratively between
fluid and structure to find a converged solution for the interface at each time step. In the
strong coupling approach, however sub iterations at each time step force the fluid flow
variables (velocity and pressure) to be coupled with structural parameters

(deformation/displacement) and vice versa.

a) b)
Qf Is Qs
ST
Lo ’ 0. ¥

Figure 2-2: Left, Schematic of body in a fluid flow with body conforming mesh. Right,
Schematic of body in a fluid flow with body non-conforming mesh method. € is the solid
domain, Q¢ is the fluid domain and T is the solid boundary

2.2.2 Monolithic approach

In the monolithic approach (Hubner et al. 2004, Ryzhakov et al. 2010, 2012, 2013),
both fluid and structure are treated in the same mathematical framework. In this
approach, a unique formulation and algorithm is used to simulate the whole fluid and
structure domain. This is a unified approach and the main advantage is that there is no
need for further coupling and dealing with its assocaited interface tracking difficulties.
Also, the method can be parallelized and can be solved using a unified space-time

discretization method.
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The main disadvantages of the monolithic methods are that they are typically hard
to be treated numerically and it is not possible to use existing fluid and structural codes.

It is also generally difficult to find a uniform formulation to solve complex problems.

2.3 Discretisation approach

Another general classification of the FSI solution procedure is based on
discretisation and mesh methods which are braodlly divied into the conforming mesh

and non-conforming mesh methods.

2.3.1 Body conforming mesh methods-moving grid method

In the body conforming approach, the interface boundary corresponds to the
physical boundary (Figure 2-2(a)). In this case, the interface location is part of the
solution and the mesh needs to conform to the interface. Therefore, by advancing the
solution in time, re-meshing is necessary due to the deformation/displacement of the
structure (Borazjani et al. 2008 classified this method as a moving mesh method). In
order to solve an FSI problem with a conforming mesh method on a structured grid
using a finite difference approach, the differential form of fluid flow governing
equations are transformed to curvilinear coordinates aligned with the grid lines (Ferziger
and Peric 2002). Therefore, the solid boundary can be defined easily in the discretised
governing equations as the grids conform to the structure geometry. For finite volume
methods, the integral form of the fluid flow governing equations could be discretised for
both structured and unstructured grids; and the geometrical information of the solid
boundary can be used directly in the discretised equations. An important feature of this
kind of FSI method is its interface tracking requirement. In this technique, the
shape/position of the fluid domain is changed by the structure deformation/displacement.
Therefore, the mesh moves/deforms to capture this new shape/position and to follow
(track) the fluid-structure interface. The most famous example of this is the Arbitrary
Lagrangian-Eulerian (ALE) interface tracking method which has gained a great deal of
attention in the recent years. (Ohayon 2001, Wall 1999, Dettmer 2004, Dettmer and
Peric 2006a and b, Bazilevs et al. 2006, Khurram & Masud 2006, Kuttler et al. 2006,
Masud et al. 2007, Wall et al. 2007, Lohner et al. 2006, Wall et al. 2006, Bletzinger et
al. 2006 among others).
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2.3.2 Non-conforming mesh methods-fixed grid method

In Figure 2-2(b) a non-conforming grid is used for the flow domain. In this
approach, the boundary location and interface conditions are imposed as constraints to
the governing equation, and the fluid and structure equations can be solved separately on
their own respective grids without any re-meshing procedure (Borazjani et al. 2008
classified this method as fixed grid method) . As the solid boundary cuts the Cartesian
grid, to define the proper constraints (solid boundary) the fluid governing equations
should be modified around the immersed boundary. These modifications of the
governing equation are the subject of the immersed boundary method and will be
reviewed in this thesis.

Clearly, in comparison with the body conforming mesh method, the main drawback
of 1B methods is the imposition of the boundary conditions on the solid-fluid interface
(Mittal & laccarino 2005). In the conforming methods the solid boundaries are aligned
with the grid lines. Therefore the boundary conditions (e.g. no-slip conditions) can be
applied directly to the fluid governing equations. Also the grid size near the solid
boundary can be chosen easier.

However, IB methods use a simple Cartesian grid to discretise the solution domain.
Therefore, by using a Cartesian grid rather than a curvilinear sytem, the body
conforming grids, can significantly reduce the number of computational processing
operations due to coordinate transformations. Also, multi-grid techniques can be
implemented easier when using Cartesian grids rather than curvilinear coordinate
systems.

In addition, the primary advantage of the IB method is the ease of grid generation,
which especially for complex geometries can be a cumbersome task in the case of the
conforming mesh methods (Ferizeger and Peric 2002).

The main advantages of the IB method in comparison with the body confirming
method is the ease with which moving boundaries (particularly in cases involving large
displacements) are dealt with. The body conforming grid method requires the generation
of a new mesh at each inner and outer time steps; also a procedure is required to map the
solution from the previous grid to the new grid following the grid regeneration. As a
result using a conforming mesh method could affect simplicity, accuracy and

computational costs of the simulation (Tezduyar 2001).
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2.4 Some FSI applications

In the recent decades Fluid-Structure Interaction (FSI) has become an important
method of computational simulation. The main reason is that most of the engineering
applications involve some sort of FSI problem and FSI algorithms have been used to
successfully model various applications ranging from civil engineering to
biomechanical, geophysical, and aero-dynamical applications. In the following section
some of the main FSI applications will be introduced briefly to show the motivation and
importance of this study.

2.4.1 Engineering application

Full scale wind turbine simulations (Figure 2-3a) are one of the FSI engineering
applications which are performed to obtain accurate and reliable modelling as well as
blade fraction prediction and design optimisation. Due to technical challenges only a
few researchers (Gomez-Iradi et al. 2009, Hsu et al. 2013, Li et al. 2012) were able to
recently perform a full scale wind turbine simulation. Bazilevs et al. 2013b used a
partitioned approach along with the ALE-VMS finite element technique (Bazilevs et al.
2013a) for the aero-dynamical formulation and the Kirchhoff shell theory (Bazilevs et al.
2011, kiendl et al. 2009, Korobenko et al. 2013) for the blade in order to simulate a full
scale wind turbine. Based on the numerical FSI analysis, they achieved a detailed
structural model of the actual wind turbine with 32 different material zones, which was
characterised by a distinct composite layout. With this special construction, they were
able to design and built a blade with desirable natural frequencies. Also, they have
validated their simulation results experimentally.

Another FSI application is the design of the cable-stayed bridges (suspension
bridge) with highly nonlinear characteristics. In this simulation the deck is supported on
several points by cables and the cables are connected to the support column. The
Takoma Narrows Bridge (Figure 2-3b) is a famous example of the kind of structures that
failed due to the resonance caused by a 64km/h wind condition on November 7, 1940 in
US. Recently Hernandez and Valdes 2013 used a partitioned approach to model
Viaducto Zaragoza Bridge (Puebla, Mexico). For the fluid simulation, an incompressible
Navier-Stokes eq. with Arbitrary Lagrangian Eulerian (ALE) formulation (Belytschko et
al. 2000) is solved with the fractional step method proposed by Codina 2001. For the

structural analysis a geometrically nonlinear model based on a finite element approach is
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used. Also an Aitken scheme [Wiincher 2006] is used to facilitate the fluid structure
interaction. Hernandez and Valdes 2013 identified the resonance for some cables. To
solve the problem, they suggested changing the operation conditions by adding frictional
dampers at the cable connection points with the deck. Using this method, on the one
hand due to the added mass the natural frequencies of cables were changed, whilst the
dampers caused a reduction in the displacement amplitude which could potentially

hinder the occurrence of resonance in the bridge.

Alr Speed (m/s)
1340 yom

soo
'S_
&
------ 2 — c)Automobile weather
a)Wind turbine b) Tacoma Cable strip analysis (Kim et al. 2013)

(Bazilevs 2013b) bridge(1940)

0.0
25
5.0

d)Parashute flow field | e)Blood flow model in f) Left ventricle

model (Takizawa 2011) arteries (Tezduyar et al. 2008) simulation (Le & Sotiropoulos
2013)

Figure 2-3: a few example of Fluid-Structure interaction (FSI) in different application

The FSI analysis is used to predict and improve the automotive weather-strip. The
weather-strip (Figure 2-3c) is an important part that is employed in order to isolate the
passenger compartment from water, dust and especially noise. There should be a large
enough contact area of the weather-strip and the door and the body frame to minimize
the wind noise level. Kim et al. 2013 implemented an FSI analysis to study the weather-
strip deformation and the gap changes between the door and the frame body due to the
external pressure drop that occurs when the vehicle is moving at high speed. They found
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that the permanent deformation of the door weather-strip was the major factor
responsible for the sound isolation performance.

Another famous and sophisticated study of the FSI technique is the comprehensive
research carried out to develop the computation of spacecraft parachutes (especially for
the Orion spacecraft, see Figure 2-3d) by the Tezduyar group (T_arsm)°. Their preference
is to use the Deforming-Spatial-Domain/Stabilized Space Time (DSD/SST) formulation
(Tezduyar et al. 1992a,b,c) as interface-tracking technique, the quasi-direct FSI coupling
method (Tezduyar et al. 2004 and 2006), and the stabilized space-time FSI technique
(Tezduyar & Sathe 2007). Using a symmetrical FSI technique they managed to compute

the parachute shapes and improve the parachute structural mechanics solutions.

2.4.2 Biomechanics applications

In spite of major developments in image processing techniques for hemodynamical
studies (Hong et al. 2008, Lee et al. 2009 and Faludi et al. 2010), nowadays in vivo
techniques only measure large scale blood flow characteristics. Understanding flow
patterns, however, requires using very high resolutions to establish a link between heart
disease and the patient’s hemodynamics, an area of research which still attracks a great
deal of attention(Kvitting et al. 2010). Very accurate numerical simulations could be the
only option in order to better understand cardiac hemodymamics. Many researches
focused on research in these areas. In the following part some of them are introduced.

Le and Sotiropoulos 2013 developed a novel model for simulating the left ventricle
(LV) valve to study the FSI between the blood flow and a mechanical heart valve
implant. They used a lumped type kinematic model along with Fitzhugh-Nagums frame
work (Fitzhugh 1961) to simulate the motion of LV wall in response to the heart
pressure wave. For FSI modelling they used a curvilinear immersed boundary
(CURVIB) method developed by Borazjani et al. 2008 with a domain decomposition
approach. Their results were in good agreement with in vivo measurements.

Accurate FSI modelling between the deformable arteries walls and the blood flow is
one of major challenges in the computational studies of cardiovascular fluid mechanics
(Bazilevs et al. 2007 and Torii et al. 2007 among others). The coupled mathematical
equations governing the blood flow and the structural blood arteries should be solved

simultaneously to satisfy physical kinematic and kinetic conditions. Tezduyar et al. 2008

° Team for Advanced Flow Simulation and Modeling (T_AFSM), Mechanical Engineering, Rice University — MS
321, 6100 Main Street, Houston, TX 77005, U.S.A.
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presented arterial problems with the stabilized space-time FSI (SSTFSI) technique to
increase the accuracy, robustness and efficiency of FSI modelling. They assumed that
the arterial deformation during a heartbeat cycle is caused by blood pressure. As the
arteries image geometries are based on time-averaged blood pressure value for patient-
specific cases; they had to assume an estimated zero-pressure arterial for their further
simulation. The arterial walls were modelled with geometrically nonlinear hyperplastic

material (Figure 2-3e).

2.5 Summary and layout of thesis

An outline of motivation and wider possible applications of this study was provided
in this chapter. The main objectives and difficulties of FSI simulations were discussed.
The major classification of the FSI approaches were reviewed from different aspects.
Finally, it was shown how FSI simulations are used to resolve real engineering and
scientific problems by presenting a selection of research that was recently conducted.

It can be concluded that FSI problems occur in a very wide range of research
ranging from the study of the behaviour of the suspension bridge, the performance and
mechanics of Parachutes and wind turbines to diagnosing diseases and cardiovascular
problems. Also, it is briefly explained why a specific FSI method is chosen among the
other numerous versions of FSI methods which have been presented in the literature.
The choice depends on the researcher’s expertise, computational facilities and other
features such as the required accuracy and type of the problem to be simulated. In the
present study the motivation is to investigate the effect of VIV on the behaviour of
flexible risers used in the offshore industry which requires a full FSI simulation.
Considering the existing limitation on time and computational facilities, it was decided
to study a 2D model of the riser which can easily be extended to a full three dimensional
simulation, using a partitioned approach and an Immersed Boundary (IB) method. The
main objective of this thesis is the implementation and validation of the IB approach
using an interpolation approach in order to enforce non-grid conforming boundary
condition. The future work comprises quasi 3D-simulations of long oil risers by
applying the Strip theory and to add LES modelling to enable using the proposed
approach in turbulent flows (higher Reynolds numbers). The layout of the rest of the
chapters are as follows:

In chapter 3, a review of 1B methods with a partitioned approach is presented. The
Fluid-Structure Interaction (FSI) methods that are related to Immersed boundary (IB)
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methods using interpolation / reconstruction are discussed in more detail. The focus will
be mainly on methods for interpolation and interface tracking.

Chapter 4 discusses the methodology of the research and involves the following
parts; First, the governing equations of the fluid flow and the structure are discussed
briefly. This is followed by the presentation of the discretisation procedure used for the
governing equations on the Cartesian grid. The IB interpolation procedure for the
boundary conditions is shown in detail and also the FSI algorithm to model the problem
is presented. In addition, the calculation of the lift and drag coefficients is explained
using two different approaches. Finally, the coupling strategy between the fluid and
structures is discussed in more details.

In Chapter 5, a parametric study and validation of the proposed algorithm is
presented. In this chapter, the effects of the flow domain size in the transverse direction
and behind the bluff body are presented. Also, the results of the mesh refinement study
are discussed. In addition using a parametric study it will be discussed why the aspect
ratio and stretching coefficient could affect the accuracy of the simulation results.
Finally the influence of different mesh patterns around the solid boundary that are used
in the simulation of the FSI methods is studied.

The proposed IB interpolation method is presented in chapter 6. The algorithm of
this method is explained along with 4 other interpolation methods which are presented in
the literature. The Strouhal number, lift and drag coefficient obtained by this method is
compared with other interpolation method. The results show a good agreement with
other second order accurate interpolation methods.

The results of a forced vibration and Vortex Induced Vibration (VIV) of a body in
the transverse direction are presented in the chapter 7. In this chapter simulation results
obtained in both a moving reference frame and an inertial frame are compared to each
other and to the results presented in literature. Also a parametric study is conducted to
show the appropriate mesh size.

Chapter 8 presents the conclusion and future research. In this chapter, the main
results and achievements are summarised and discussed briefly and the future research is

explained.
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Chapter 3. Literature review

An accurate solution for Fluid-Structure Interaction (FSI) problems is of interest in
many engineering and scientific applications. A FSI problem often involves simulating
complex geometries with large displacement/deformation. Based on the mesh
discretisation approach FSI methods can be classified into: boundary-conforming and
non-boundary-conforming mesh methods (Hou et.al 2012). A well-known conforming
mesh method is the Arbitrarily Lagrangian-Eulerian method (ALE). ALE methods use a
grid that adapts and deforms with the moving boundary (section 2.3.1). Most of the
industrial FSI applications typically have high Reynolds numbers, complex geometries
and moving boundaries and need turbulence modelling and mesh deforming grid
regenerating to solve the problem. Therefore, simulating FSI problems with moving grid
methods (e.g. ALE method) requires significant computational power and a high storage
capacity. A non-conforming mesh method (fixed grid method) is an alternative
numerical approach which efficiently handles some of these complications. The
Immersed Boundary (IB) method is an example of a non-conforming mesh method. This
type of discretisation recently has received much attention in relation to solution of FSI
problems. The non-conforming Immersed boundary (fixed grid) method is the subject of

this review.

3.1 Immersed boundary methods (IB)

The immersed-boundary (IB) method is a technique for solving flow problems in
regions with irregular boundaries using a simple and fixed structured grid solver. The
term “immersed boundary” was initially used for a method developed by Peskin 1972 to
simulate blood flow in a cardiovascular system. It was specifically designed to handle
deforming (elastic) boundaries interacting with low Reynolds number flow. The
simulation was carried out on a Cartesian grid. At locations where the boundary did not
align with a grid line the solution algorithm was locally modified. The modifications
were down in a way to enforce the desired boundary conditions on the flow domain.

Enforcing the moving boundary on the governing equation is one of the most important
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challenges in an IB algorithm. To do so; generally an additional forcing term is added to
the governing equation ((3-1) to enforce the correct velocity boundary conditions. This
term can be defined before and after discretisation of the governing equation (directly or
indirectly, respectively). One of the main challenges is the definition of this forcing term
which leads to various versions of IB methods. In the original immersed boundary (IB)
method the effects of the moving boundaries on the flow field are applied through
continuous functions, which cause diffusion of the boundary interface across a number
of grid points. Due to this characteristic the method is known as the diffused method.
Therefore, such IB methods require a high resolution mesh around the immersed
interface to produce accurate results (Borazjani et al. 2008). Recently, numerous
modifications and refinements have been proposed to enhance the accuracy, stability,
and application range of the IB method (Mittal & laccarino 2005). For instance, a class
of sharp-interface immersed boundary was introduced to remedy the diffusion of the
boundary conditions at the interface. In some references “sharp interface methods” are
classified as “Cartesian grids” which was originally designed for inviscid flows (Berger
and Aftosmis 1998; Clarke et al. 1986 among others); In these methods the immersed
boundary is modelled as a sharp interface and the effect of a moving boundary on the
fluid is considered either locally by modifying the shape of the meshes to conform to the
boundary (cut cell methods, Udaykumar et al. 1999); or by using a discrete delta
function directly (instead of using a smooth function) into the system of discretised
equations (immersed interface method, Le et al. 2006, Xu and Wang 2006 among
others); or by reconstructing immersed conditions around the immersed boundary using
an interpolation scheme (hybrid Cartesian/immersed boundary methods, HCIB,
Gilmanov and Sotiropoulos 2005 among others); or even by combing the immersed
boundary and a curvilinear body confirming mesh (Curvilinear- Hybrid
Cartesian/Immersed boundary, CURVIB, Borazjani et al. 2008). In this thesis the term
of “Immersed Boundary” (IB) is used to address all of the methods (including the
Cartesian method). The common part in all of the methods is that the solution algorithm
involves simulating viscous flows on a fix grid with (immersed or embedded)
boundaries that do not conform to the grid lines.

As for the moving boundaries, also the solid boundaries do not necessarily conform
to the grid lines. Fixed grid, non-confirming boundary methods can be generally
classified by the way that the immersed boundary conditions are imposed on the solution

domain or governing equations. In the traditional 1B methods, the immersed boundaries
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are imposed to the solution domain by introducing a source term (a forcing function, f)

to the fluid governing equations (3-1) and (3-2).

ou 1

E+u-Vu=—EVP+8V2u+f (3-1)

f = 0in the fluid domain

f # 0in the solid domain and at the immersed boundary

V-u=0or % = 0 in the fluid domain and the solid domain (3-2)
i

The forcing functions reproduce the effect of boundary condition on fluid solution
domain. This source term or forcing function can be applied to the governing equations
in two ways: the continues forcing approach and discrete forcing approach. In the
former, the forcing term is added to the governing equation before discretization of the
whole physical domain and the forcing terms do not depend on the grid discretization
method. In addition, the source term for the continuous forcing approach depends on the
type of immersed boundary, which could be either an elastic or a rigid boundary. On the
other hand; in the discrete forcing approach, the forcing term is implemented after the
discretization and the source term highly depends on the discretization method. In this
category (discrete forcing approach) the forcing term could be implemented either
directly to the computational domain or indirectly to the governing equations by adding
a discrete source term to the equations.

In the following section, some of the immersed boundary methods are briefly
introduced and their advantages and disadvantages are discussed. The objective is to
clarify the difference between these methods and the class of IB method that is presented

in this thesis.

3.1.1 Original immersed boundary method- applicable for elastic IB

Forcing approaches are normally categorised into continuous and discrete forcing
approaches. In the continuous forcing method, a forcing function is applied to the
Navier-Stokes equation (3-1) in order to enforce the correct boundary condition on the
structure (e.g. enforcing a no-slip boundary condition on a stationary body). The most
important issue in this method is the definition of the continuous forcing function. As the
solid boundaries do not coincide with the grid lines, these functions needs to enforce the
correct boundary condition to the solution domain.
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Several different functions have been developed by Peskin 1972, Saiki and Biringen
1996, Beyer and Leveque 1992, and Lai and Peskin 2000, among others. As illustrated
in Figure 3-1, in all cases, a distributed function was used rather than a sharp function.
The reason behind this is that firstly the solid boundaries do not coincide with the
Cartesian grid and, secondly, in this way the Gibbs’ oscillations phenomenon (Briscolini

& Santangelo 1988) adjacent to the solid boundaries could be suppressed.

a) b) Immersed Baundary
: —a—  Saiki & Biringen
! (1996)
= - 3 . ===+ Peskin (1972)
e o 08¢ 1.3 + Beyer & Levequa
_ \ E E @ 06} [ (1992)
[ = o . /. ,:\ \ —© Lai & Peskin
K '.‘__,..--""" ‘:};: 5 04+ ’.\!_,' {2000)
= 0 | Phiireis )
\ .o N ‘\\\
1|- O 0.0% ‘ ' )
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=3 1=2 -1 ] i+l i+2 43

i
Grid Indices

Figure 3-1a) Transferring the boundary force Fy from each material point
(Lagrangian coordinate) X(s, t) to the fluid. Shaded area shows the area which force effect
will be distributed in the fluid domain; b) various forcing function distribution (Mittal &
laccarino 2005).

Implementation of the boundary conditions with a continuous forcing function is
attractive for elastic boundaries; as on the one hand, it has a physical interpretation for
elastic boundaries and on the other, the force can be implemented easily. However,
implementation of this method for rigid boundaries is relatively cumbersome due to the
nature of the method as the definition of this force is based on elastic deformation of the
boundary, in the linear elastic case, this is a direct application of Hook’s law. When
using a smooth forcing function, another problem is that the method cannot sharply
represent the immersed boundaries and the effect of the boundary is distributed in the
fluid domain (Figure 3-1a). As the boundary is not sharp (it is blurred) this method is not
recommended for flows with a high Reynolds number (Mittal & laccarino 2005).

The source function, f, in equation (3-1) is defined by equation (3-3). Suppose a
simple closed immersed boundary is defined parametrically by X(s,t), 0 < s < L, and
X(0,t) = X(Ly, t) where s is a material point on the immersed boundary. F(s, t) is the
boundary force at each segment ds of the material points. These boundary forces satisfy
a generalised Hooke’s law for an elastic boundary both in time, t, and space, X(0, t).

According to equation (3-4), the force function, F, explicitly depends on the simulation
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time. This definition resembles an active boundary like a muscle whose elasticity varies
with time. For instance, in a two dimensional circular cylinder with several material
points on its border, these forces at each material point try to preserve the circular shape
of the boundary.

fx,t) = beF(s, t)o(x — s)ds -3

0
F(s,t) = S(X(0,t),t) (3-4)

0X(s, t)
ot

(3-5)

=u(X(s t),t) = beu(x, £)8(x — X(s, t) )dx
0

To apply this method, in the first place, the boundary force F(s,t) is calculated
based on the displacement of material points on the boundary from the initial
configuration X(0, t) according to equation (3-4). Then these forces are integrated over
all material points to calculate the force from the immersed boundary on the fluid
domain, equation (3-3).

The definition of §(x — s) charactirises different versions of these methods. For
instance, Lai and Peskin 2000 defined §(x) = d,,(x)d,(y) in each coordinate direction
in the vicinity of the material point on the immersed boundary, as shown in equation
(3-6).

1. 2x| alxl (1x]\? . (3-6)
ﬁ<3_T+ 1+T—4<T> >, where |X| < hl
dh(x) = 1 2 2
x| 4lx|  [Ix| .
—8h<3—T+ 1+T—4<T> >, Where h S |X| S Zhr
0 otherwise.

In the second step, the Navier-Stokes equations (3-1) and (3-2) are solved to find
the updated velocity at the new time step. In these equations the force term, f, is the force
from the boundary on the fluid domain described by equation (3-3) which has been
calculated in the previous step. Finally, equation (3-5) is solved with new velocity to
find the new configuration of the structure. The process will be repeated in time to
eventually find the developed solution for the problem. The key point in this type of
immersed boundary methods is that the structure should be elastic (not rigid solid) as the
force at each material point is calculated from a “Hook’s law” equation. For rigid bodies

the method described below is suggested by a number of researchers.
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3.1.2 Feedback forcing approach- applicable for rigid 1B
According to the studies by Goldstein et al 1993 and Saiki and Biringen 1996, an

analytic expression for the force f(x,,t) acting on the boundary x, at time t can be
specified by the feedback forcing equation (3-7):

‘ ; N gz ; . (3-7)
f(xs; t) = af J. [u(xSI t) - V(xS) t)] dt + :Bf[u(xSl t) - V(xSI t)]
0

Where V(x,, ) is the velocity of the moving boundary, u(x,, f) is the velocity of
the fluid on the boundary, and a; and 3y are constants. The above equation is a feedback

based on the velocity difference u(x,, £) — V(x,, £) which imposes the flow velocity on
the immersed boundary, u, to match the velocity of the immersed boundary, V, at the
same point. The major drawback for the feedback forcing is that this method requires
very small time steps CFL = 0(1073 — 1072). More details can be found on Fadlun et
al. 2000.

3.1.3 Physical Virtual Model (PVM) approach

Introducing the boundary force, f, in equation (3-1) is the main challenge in an
immersed boundary method. Lima E Silva et al. 2003 proposed a PVM approach to
calculate the interfacial forces without an ad hoc constant that usually depends on
domain and numerical model. In this method, the force is calculated over a sequence of
Lagrangian points, representing the interface, using the updated velocity and pressure
from the Navier-Stokes equation in the fluid domain. Silva implemented the
conservation of momentum theorem in an arbitrary control volume included each
Lagrangian points to calculated the interfacial force. One of the advantages of this
method is that the forces due to friction and pressure is calculated separately, which are
important factors in a vortex induced vibration context. This method is called the
Physical Virtual Model as it is only based on the conservation laws. The simulation
results for the flow around a stationary cylinder were found to match the numerical and

experimental data in the literature.

3.1.4 Immersed interface approach

Using several grid nodes in the vicinity of the immersed boundary to spread the
forcing function is an inherent feature of the original immersed boundary method. This

issue complicates the extension of this method to high Reynolds number flows in
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practical applications (Gilmanov and Sotiropoulos 2005). However, LeVeque and Li
1994 proposed a type of IB method, called the Immersed Interface Method (I1IM) to
overcome this issue. IIM only modifies the grid nodes in the immediate vicinity of the
immersed boundary to enforce a set jump condition at the interface by adding the forcing
function. This method maintains the interface sharpness for the immersed boundary and
is second order accurate. In the method proposed by Lee and LeVeque in 2003 the
boundary force is decomposed into a tangential and a normal component. The tangential
forces were added to the momentum equations, while the normal component is applied

to the pressure Poisson equation in terms of a pressure jump condition over the interface.

3.1.5 Fictitious domain method

Glowinski et al. 1999 proposed a different method by applying a fictitious domain
method®. In this method the fluid governing equations were enforced inside of the rigid
body as well as outside in the fluid domain. The fluid velocity inside the solid body is
enforced by a Distributed Lagrange Multiplier (DLM) to behave like a rigid body
(boundary) maotion in the fluid domain. In fact, the multiplier creates additional body
force inside the particle to maintain the rigid body motion for the solid body. Baaijens
2001 developed a DLM based on the Mortar Element’ (ME) method to impose the no
slip boundary conditions as an equation for the Lagrange multiplier. He applied this
method to simulate the behaviour of a two dimensional flexible slender body in a
channel flow with fluctuating inlet velocities. Yu 2005, extended the fictitious domain
method to three dimensional simulation and non-slender bodies. He used the continuum
equations for the general material rather than Newton’s equation for rigid body motions.
Like the DLM in the rigid body motion, where a pseudo body force introduces the rigid
body motion to the fluid domain, in his method the Lagrange multiplier forces the
fictitious fluid (inside the solid) to move with the same velocity as the solid.

However, due to the need for an accurate representation of the boundary layer in
high Reynolds number flow, the use of distributed, smooth forcing functions near the

immersed boundary is not desirable. In these cases it is recommended to use a sharp

6 -fictitious domain methods, also known as domain-embedding methods, are one type of solution
methods for partial differential equations. The main idea is to replace a simple but larger domain (the
fictitious domain) in a problem with a complex time dependent geometry (see, Glowinski et al. 2000).

7 -Mortar methods are discretization methods for partial differential equations, which use separated
discretisation, in non-confirming subdomains and the meshes in subdomains do not match at the
interfaces, however, the equality of parameters on the interface is enforced by Lagrange multipliers to
preserve the accuracy of the solution (Maday et al 1989).
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interface with a higher local accuracy near the boundary. This goal can be achieved by
imposing the boundary conditions directly on the immersed boundary. There are two
well-known methods that fit into this category: the Ghost-Cell Finite-Difference

Approach and the Cut-Cell Finite-Volume Approach.

3.1.6 Ghost-Cell approach

In the Ghost-Cell approach the immersed boundary is implemented by using ghost
cells. Ghost cells are cells inside the solid boundary which have at least one neighbour
on the fluid side. The parameters (imaginary velocity and pressure) in the ghost cell
inside the solid are defined by an interpolation method which implicitly enforces the
correct boundary condition for the immersed boundary. In this approach, there is a
possibility of loosing accuracy as this method is based on the mirrored velocity with

respect to the solid body (as discussed by Kang 2008).

3.1.7 Cut-Cell method — Cartesian method

All of the immersed boundary methods discussed so far are not designed to consider
the conservations laws near the solid boundary. However, the Cut-Cell method in
combination with a Finite-Volume approach is designed in order to preserve the
conservation of momentum and mass near the boundary. In this method, the cells which
have been cut by the immersed boundary are reshaped or absorbed by neighbouring cells
in order to form a new trapezoidal control volume cell shape. In this method, the
governing equations are not modified. This method has been used by Mittal et al. 2003&
2004 to simulate vortex-induced vibration around a stationary and a moving body and
for free falling objects. Although considered to be consistent, this method suffers from
slow convergence (due to small cells) and is regarded as being too complex which are its
major disadvantages. Also, the extension of this method to 3D is not straightforward and
needs complex polyhedral cells, which complicate the discretization of the Navier-
Stokes equations (Ghias et al. 2007).

3.1.8 Direct forcing approach

The Navier-Stokes equations usually cannot be integrated analytically to define the
forcing functions. Therefore, often, it is not possible to derive an analytical forcing
function to enforce specific boundary conditions. To tackle this problem, a method has
been suggested by Mohd-Yusof 1997 and Verzicco et al. 2000. In this method, which is
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known as the direct forcing approach, the forcing functions are subtracted from the
numerical solution after discretizing the Navier-Stokes equations. The important
advantage of this method is that there is no need to define the forcing function
parameters prior to solving the Navier-Stokes equations and there is no stability
constraint due to the use of continuous forcing functions (Gibb’s oscillation). However,
it is still required to implement the distributed forcing functions which strongly depend
on the discretization algorithm. Mohd-Yusof 1997 developed an expression for the
forcing function, which does not have the time steps restriction. In this method, the
discretized form of the Navier-Stokes equation is used directly to calculate the force
expression by imposing the velocity of the immersed boundary (equation (3-9)).

n+1 _ ,,n -
z m Y~ RHS™Ya 4 frra (36)

In equations (3-8) and (3-9), the RHS comprises the convective, viscous and

pressure terms of the Navier-Stokes equation. Therefore, the forcing term, f"+1/2, is
simply calculated to enforce the immersed boundary condition on the fluid domain and
the governing equations by using equation (3-9).
n+1 __ un (3_9)

At
Another important issue in the direct forcing approach is the interpolation

fn+1/2 — _RHSn+1/2 +

procedures. As the immersed boundary does not necessary coincide with the fluid
parameters on the grid especially in a staggered arrangement, it is necessary to calculate
and enforce the forcing function interpolation. Fadlun et al. 2000 have implemented
three different interpolation schemes and compared their accuracy. As one of the main
parts of this research relates to the interpolation procedures, various interpolation
schemes have been studied in detail in the latter part of this review.

3.1.9 Interpolation or reconstruction method

In the interpolation method, the forcing function, f, equation (3-1) is not directly
calculated to enforce boundary conditions. Instead, the flow velocity is interpolated at
the interface cells and the forcing term is imposed indirectly to the discrete equations or
directly to the computational domain. In other words, at the interface cells an
interpolation formula replaces the Navier-Stokes equations. The interface points are
defined as the points in the fluid domain near the solid boundary for which one of the

neighbouring points in the discretized equations is inside the solid domain. Therefore,
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the parameters related to these points cannot be updated through solving the governing
equation. Any cells that contain one or more interface points are called interface cells.
Figure 3-2 (left) shows the interface cells around a circular cylinder in which at least one
of the points’ parameters cannot be updated directly using the governing equations. For
instance, in Figure 3-2(right), to update the velocity at point A using the governing
equations its 8 neighbouring velocities are needed; however two of 8 velocity-
components are inside the solid boundary. Therefore, the velocity at point A should be
interpolated between the boundary points and other points inside the flow field.

Besides its simplicity, this method has a few advantages. There are no severe
limitations on the time steps as the velocities on the boundary are implicitly or explicitly
applied to the governing equation (fluid domain). In addition, the velocities in the fluid
domain are separated from the non-physical velocity inside the solid boundary. As in the
most of immersed boundary methods, due to its nature a secondary non-physical flow is

created inside the solid boundary.
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Figure 3-2: A 2D Cartesian mesh with a solid boundary (circle). Interface points, that
require interpolation, are identified by arrows. Points Al to A8 are all neighbouring points
of A. Note that A2 and A7 are inside the solid domain.

One of the disadvantages of the interpolation or reconstruction method is the
decoupling of pressure and conservation of mass at the interface. laccarino and Verzicco
2003 showed that a linear interpolation method is acceptable for those cases in which the
first points of the interpolation in the fluid are inside the viscous sub layer. Several
interpolation methods have been introduced by Ghias et al. 2004, Fadlun et al. 2000,
Kang et al. 2009, Choi et al. 2007 among others. In the next section some of these

interpolation methods are discussed in more detail.
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3.2 Defining the interface cells

The general key feature for any sharp immersed boundary method is that the
governing equations are solved on a grid that does not conform to the immersed solid
boundary (moving or stationary). The governing equations are solved only on the fluid
domain nodes in which all of the neighbouring points are located entirely in the fluid
domain and the fluid nodes in immediate vicinity of the immersed boundary are updated
by interpolation. In other word, the interface points are not updated inside of the
governing equations. Instead, they are used as boundary conditions for the governing
equations. Therefore one of initial steps in applying this immersed boundary (IB)
method is to classify the nodes in the background grid in three categories; the cells that
are thoroughly within the fluid domain, the cells completely within the solid domain and
the interface cells. The interface cells are the cells in which the immersed boundary
crosses or in which the parameters cannot be updated using the governing equation. This
classification of the grid cells can be performed in several ways. It is a straightforward
procedure to identify them in a simple or analytically well described geometry.
However, a complex computational geometry tool is required to identify the interface
cells for a complex geometry (laccarino and verzicco 2003). Gilmanov et al. 2003
presented an algorithm to identify interface nodes that is only applicable to simple
convex bodies. Another algorithm, presented by Gilmanov & Sotiropoulos 2005, is
applicable to identify the interface nodes for an arbitrary geometry. Borazjani et al. 2008
used the classical method of the point-in-polyhedron problem for their computational
geometry. In the following part the methods of Borazjani et al. 2008, Gilmanov and

Sotiropouls 2005 are briefly disused.

3.2.1 Point-in-polyhedron algorithm

Classifying the Cartesian grid into fluid and solid parts is a classical problem of the
point-in-polyhedron procedure in computational geometry. A point and a polyhedron,
whose geometry is introduced by its sides are defined in space, It is then required to
establish whether the point is contained inside or outside of the polyhedron. In a two
dimensional geometry the problem is downgraded to a point-in-polygon problem; with
two major solution methods, the so called ray-casting method and the winding number
method (Haines 1994). In the ray-casing method, a half infinite ray is drawn from a

point in the domain and the number of intersections between the half infinite ray and the
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polygon edges is counted. If the number is odd (point A in Figure 3-3b) than the point is
inside the polygon (on the immersed solid), otherwise it is located outside of the polygon

(in the fluid domain).

a)

b) c)
V4
\7” © Innerfluid _
y - ® |nterface P
>\7 % 4+ Solid

Figure 3-3: a) background Cartesian grid with a polygon immersed boundary
classified to fluid, solid and interface nodes, b) a ray casting test method for a polygon;
point A is inside and point B is outside the polygon, ¢) a ray casting test method for a
polyhedron (Borazjani et al 2008).

Expanding the ray-caste-polyhedron method to 3D is straightforward and is briefly
described as follows. Suppose that the surface of polyhedron is discretised with an
unstructured triangle mesh and a point p(x,y,z) is defined in space. A line is casted from
the point p to the point S(x,y,z) outside of polyhedron, the number of intersection of the
ray with the triangle elements on the surface of polyhedron shows if the point p is
outside (fluid node) or inside (solid node) of the polyhedron (Figure 3-3c). The core of
the ray-triangle intersection algorithm is explained by Moller and Trumbore 1997 (for

more details, see Borazjani et al. 2008).

3.2.2 Interfacial marker at the interface discontinuity algorithm

This methodology was initially proposed by Udaykumar et al. 1997. The fluid-
structure interface is tracked as a discontinuity. The algorithm is very robust and is
applied in a variety of problems, especially in FSI problems with a sharp immersed
boundary method. The detailed algorithm is presented in the papers published by
Udaykumar et al. 1997. Key features of this method are presented here to facilitate
further discussion about the immersed boundary method with a sharp interface.

In this method an open or closed immersed boundary with an arbitrary shape is
represented by interfacial markers which are defined by their arc length coordinates X(S)
in Figure 3-4. The markers are equally spaced with a spacing size of the same order of
the background Cartesian grid. The start point is defined such that with increasing s, the

fluid is always on the left hand side. By fitting quadratic polynomial with each point
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through and its two immediate neighbours, the unknown coefficients in equation (3-10)

are calculated to obtain a local parameterisation of the immersed boundary at each

interfacial point.

x(s) = ays® + bys + ¢, and y(s) = ays* + bys + ¢, (3-10)
Using this calculating the normal vector to the immersed boundary is

straightforward by employing the following equations.

— —X -
n, = Vs and n.. = s (3-11)
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Figure 3-4 a)Definition of the immersed boundary topology by interfacial markers,
arc length vector and normal vector; b) Identification of fluid nodes from solid nodes using
a normal vector; ¢) Demonstration of interface nodes (0) and marker points (e), (Balaras
2004).

Having a local parameterization of the immersed boundary around each marker
points, it is possible to identify the grid point closest to each marker point in the
background Cartesian by using an iterative method, like the Newton-Raphson method.
According to Figure 3-4b, a line (vector) is defined from each Cartesian point in the
vicinity of the marker point perpendicular to the local approximation of the immersed
boundary. The inner product of these vector and normal vector, equation (3-11), of
immersed boundary at each marker point shows that if the grid point on the Cartesian
background is on the fluid domain or in the solid domain. If the inner product is positive
the point is outside (for closed solid boundaries) or on the left hand side (for the open
boundaries) of the solid interface. (see Balaras 2004 for more details). Figure 3-4c shows
the interface cells (black circle) which need special treatment to enforce the solid

boundary condition in a sharp interface 1B method.
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3.3 Boundary Reconstruction/Interpolation

It is well known that the majority of immersed boundary approaches need some sort
of interpolation procedure. For instance, the forcing method discussed earlier was based
on the assumption that the unknown (velocity) positions on the grids exactly match with
the immersed boundary location. In this case the boundary coincides with the grid lines
especially with moving boundaries, which is not the case for complex geometries. In
particular, for staggered arrangement, even if the grid lines and boundary location
coincide together for one unknown (e.g. velocity in x direction) they will not coincide
for the other unknowns. Therefore interpolation is needed in the IB solution procedure to
enforce the immersed boundary in the presence of non-matching grid lines.

Due to the forcing method, the interpolation procedure would be different and can
be categorised by two main approaches. In the first approach; the forcing function is
spread in the vicinity of the immersed boundary, which in the original 1B approach
introduced by Peskin 1972 is achieved using a discrete Dirac delta function (section
3.1.1). The main drawback for this approach is that this spreading acts as extra
dissipation close to the IB which could lead to an inaccurate prediction of the boundary
layer. In the second approach a local solution of the unknown (velocity) is reconstructed
to enforce the IB as a sharp interface with a relatively high degree of accuracy (depends
on its procedure). This method of interpolation is widely used in the indirect forcing
approaches. In other words, in the vicinity of the immersed boundary the flow governing
equations are replaced by an interpolation equation. In this way, the unknown at the
interface cells are determined and these values will be used as the boundary values for
the governing equation. This process is repeated at each time step and the flow
parameters in the interface cells are updated by direct interpolation and used as boundary
conditions for the flow solver. Various interpolation methods have been developed to
address this issue.

In this review, a number of interpolation procedures which could potentially be
used in indirect discrete forcing approaches (interpolation or reconstruction) are
categorized, explained and compared briefly in the following section.

3.3.1 Stepwise geometry -No interpolation

The simplest possible method is to identify edges of the interface cells as the solid

boundaries to define the solid domain. In fact, in this way there is no interpolation
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needed and the solid boundary will have a stepwise shape (Figure 3-5a). Also, the
boundary itself will be somewhat diffused, as in the staggered methods the boundary
conditions for the different velocity components are applied at different sides of an
element. Fadlun et al. 2000 proposed this method for calculating and imposing forcing
functions, respectively, from and to the velocities around immersed boundaries. As
interpolation is not needed, this method will be less expensive while still giving
acceptable results. The disadvantage of this method is that (especially on course meshes)
the shape and size of the enforced boundary is different from the real solid boundary
which could affect the lift and drag forces. Also, this method is only first order accurate
in space.
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Figure 3-5 interpolation procedure sketch for u velocity in an staggered arrangement
a) without interpolation b) weighted interpolation c) linear interpolation

3.3.2 Weighted method

This method is similar to the one discussed above. The major difference is that the
boundary values (force term) for those cells that are crossed by the IB are corrected
based on the volume/surface of cell that is occupied by the structure (Figure 3-5b). For
each of the force and velocity components a coefficient is determined that corresponds
to the ratio of the fluid part of the cell to the whole area of the cell, which is a first order
accurate method in space. Fadlun et al. 2000 used this method to scale the forcing of the

velocities closest to the boundaries.

3.3.3 Linear interpolation method

In this method, the velocities in the interface cells are calculated by a linear
interpolation between the velocity at the solid boundary (applying the no slip condition)

and in one point inside the fluid. Fadlun et al. 2000 suggested this interpolation method
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to enforce the boundary condition to the fluid domain. Also, Kang et al. 2009 used this
interpolation method for the immersed boundary but applied it in a direction parallel to
the grid lines. In Figure 3-5c, the interpolation procedure for an 1B cell velocity, U;j, in
the vertical direction using the Usglig and Ui j+1 (inside the fluid domain) is shown.
Application of this approach for a complex geometry could lead to a possible
ambiguity in choosing the interpolation direction. Figure 3-6a, illustrates such
ambiguities as the interface (IB cell) velocity, U;; could be interpolated either in the
horizontal or vertical direction (Kang et al. 2009). Balaras 2004 suggested using the
linear interpolation scheme in a direction perpendicular to the boundary to overcome this
problem. According to Figure 3-6b he suggested to calculat U,y in the fluid domain at
a location where hi=hy; therefore the interface velocity, U;; is obtained from Usgjig and

Uvirtual USing

_ h2 hy — 3-12
Uij = 5 Usotia +  Uvirtuarr ~ Whereh =h; +h, (3-12)
a) b)
b Ui j+1
\ \" h, Uvirtual
)
1 Ui,j | hy )/
Usolid1 === =0 Ui+l,j »~
Usolid uij

Usolid2 ‘\
f \\
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Figure 3-6: calculating the interface cell velocity by linear interpolation; a) ambiguity
in the direction of interpolation, Fadlun et al. 2000 model b) linear interpolation
perpendicular to the 1B, Balaras 2004 model.

Balaras predicted three possibilities for calculating Uyerar from Uy to U, in fluid
domain. According to Figure 3-7a) if none of the U; to U, is an interface velocity the
Uverwat Can be calculated by equation (3-13); where o; is the standard bilinear
interpolation coefficient.

4 (3-13)

Ui,j = z al-Ul-

1

40



Uy Uz
Sy Uvirtual ~
U : L ~
T h Pu /QC U, e 'O uvirtual g .
P hy »
v
o ,
hy - hy g -
N\ 7] Vij \,7’u|,1 L b Us

, ¢
Usbolid Usblid Yy’ L 1 _ P virtua
e i \’-4 =
Usolid ®~  Vi,j Uy
] - ) - l -

Figure 3-7: interpolation scheme in direction perpendicular to the IB, Balaras 2004,
three boundary options depends on the immersed boundary geometry and local grid size.

Figure 3-7b) shows that if one of velocities around the Uyiwa IS the interface
velocity, Uij, the Uy IS interpolated from U; to Us. In addition, if more than one of
the velocities around the Uyiwa is an interface velocity (Figure 3-7c¢), in this case h; is
chosen larger than h; in a way that at least three neighbouring velocities of Uy;rya do not
coincide with the interface velocities, U;;j . Linear interpolation is a second order
accurate scheme (for more detail see Balaras 2004, Kang et al. 2009).

Gilmanov et al. 2003 presented and applied the Balaras interpolation method to
three dimensional problems. As explained earlier in the reconstruction/interpolation
method, the entire fluid domain is solved using the boundary values specified at the
interface cells, and the immersed bodies are excluded from the computation. Suppose at
time step, n, all the velocities and pressures in the fluid domain (for example point a, B,
& and vy at Figure 3-8) are known and also suppose that the boundary conditions are
known at all vertices of the unstructured grid at the same time step. To advance the flow
governing equations to the next time step the values of the immersed cells (for example
point b at Figure 3-8) are interpolated linearly between point a on the structure and point
c inside fluid domain. Gilmanov et al. 2003 used another interpolation, equation (3-14),

to calculate the value of the parameters (velocities) in Figure 3-8 (points ¢ & a).

Uy = ( z Um/5m> / ( Z 1 /Sm> (3-14)

m=1,3 m=1,3
Where m=1,3 are the three vertices of the triangular element which include point a,
and s,,, are the distances between point a and each of the three vertices of the triangular
element. The same method is used to calculate the boundary condition at point ¢ by

interpolating the values defined at o, B, 6 and y in Figure 3-8. Also, the pressure gradient
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is calculated as a Dirichlet condition in a similar way at point b (see Gilmanov et al.
2003 for more detail).
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Figure 3-8: Schematic reconstruction of the IB unknown “b” with interpolation in the
wall-normal direction. The triangle represents an unstructured element of the IB. The dash
line is the intersection of the body with the Cartesian grid (Gilmanov et al. 2003).

3.3.4 Bilinear interpolation method

Kang et al. 2009 introduced this method as a linear interpolation method, (Standard
Reconstruction Method, SRM). Two adjacent velocities in the horizontal and vertical
directions and the velocity of the solid boundary are used to obtain the interpolated
velocity at each interface point near the immersed boundary (Figure 3-9). Equation

(3-15) is the interpolation formula for the velocity, where the coefficient c represents

the interpolation weight for each of the velocities.

Figure 3-9: Standard Reconstruction Method (SRM) for velocity in vertical (left) and
horizontal (right) direction

Uij = Wiy1,jUir1j + @ j41U; jo1 + OsoriaUsotia (3-15)
To solve the governing equations in a fractional-step method, after each time step

-

U; ; is calculated from the momentum interpolation, U; ;, followed by projection onto each
divergence-free field. The intermediate velocity itself, 7;; is calculated using an

interpolation formula for the cells near the solid boundary.

42



3.3.5 Revised interpolation method

In spite of the various advantages in standard interpolation/Reconstruction methods
(SRM) that have been discussed so far, there are several short-comings as well. An
important issue is the decoupling between the pressure field and the local velocity near
the immersed boundaries. Also, there is no explicit contribution of the velocity or
pressure gradient at the previous time steps in the interpolation formula which could
cause abnormal pressure gradients near the immersed boundary (Kang et al. 2009).

Kang et al. 2009 has revised the above interpolation methods to use the velocity
field in the previous time step to obtain a more accurate interpolation for the next time
step. To do so, the explicit difference between the velocities at two consecutive time
steps is used to calculate the interface velocities at the new time step. In a fractional step

strategy to solve the Navier-Stokes equations this difference could be defined as av,; =

-~

U, — U ; where U7, is the intermediate velocity before the pressure (conservation of

mass) projection step. In this case the interpolation formula based on the previous
velocity is defined as,

AUjj = wi41,jAU; 41 + 04 j118U; jo1 + Oso1iaDUsonia (3-16)

Or alternatively it can be expressed as:

U = w105 + 0154108541 + 0soriaUdoria (3-17)

fTk—1 fTk—1 fTk—1 fTk—1
+ U(Ui,j - wi+1,jUi+1,j - wi,j+1Ui,j+1 - wsolidUsolid)

Where n = \[(a)iﬂj + wi_j+1)/wsolid and (n < 1)

In addition, to compensate for the decoupling between the velocity and the local
pressure, Kang et al. 2009 explicitly added the effect of the pressure gradient to the
interpolation equation.

Uli,cj = wi+1,jUik+1,j + wi,j+1l7il,(j+1 + Wsoria Ulia (3-18)
+ U(Ui]fj_l — W41, U5 — 0111054 — 050110 Ulia)

apk—l apk—l apk—l
- 5kAt< QSIS T Wi
ij

0x i+1,j i,j+1

apk—l )
— Wsolid ]
0x solid

In equation (3-18), instead of the pressure gradient at the solid boundary,

0pk_1]
ox lsolia '

the pressure gradient at the interface cell, "’;—H] , Is used, which is not affecting the
X i,j

second order accuracy of the formula. In the above formula the easiest choice is to select
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8, = 1, in which case the pressure gradients at the interface cell and the momentum

equation are the same.

3.3.6 Quadratic interpolation method

In addition, Kang et al. 2009 introduced a quadratic interpolation formula to
improve the Revised Linear Interpolation Method (RLIM). In this method the local
pressure gradient is incorporated in the velocity interpolation to compensate the
decoupling between the pressure and the velocity near the solid boundary, however there
IS no extra user defined parameter like the RLIM method in the interpolation formula.
Figure 3-10a&c illustrate their interpolation method in the two-dimensional case in
horizontal and vertical directions. Four adjacent velocities are used to enforce the
momentum equation by a quadratic interpolation. For those interface points where the
quadratic interpolation is not applicable (see, Figure 3-10b) due to geometry and
curvature of the immersed boundary, it is replaced with the linear interpolation.
Equation (3-19) is another version of the quadratic interpolation formula, where the
origin of the local coordinate system is located at the interface velocity, U; ;. Though this
interpolation formula has a third order accuracy, the overall accuracy of the flow solver
is second order. Therefore, a quadratic interpolation only gives more degrees of freedom
(more flexibility) to the velocities near the immersed boundary rather than higher order

accuracy (more than two) to the problem.

itk — ,k 2 k k 2 k T
Uij = Qiyrj Xien + bisr jXigr + Qi je1 Vivr + bijaaYiser + Uy (3-19)
a) b) c)
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Figure 3-10: Quadratic interpolation method for an interface velocity in the
horizontal (left) and the vertical (right) directions. The middle pane shows that it is not
always possible to use this type of quadratic interpolation.

Moreover, in the quadratic interpolation there is no user defined parameter. Kang

reported that this method could become unstable in some cases. Two remedies are

44



suggested; using a cubic interpolation instead of a quadratic one, which increases the
number of coefficients and therefore the complexity of the method. Another suggestion
IS to use a linear interpolation when the two velocities on the immersed boundary (Uslig1
and Usgiig2 OF Vsoiigz and Vgiig2) are nearer than some threshold to each other (more detail
see Kang et al. 2009).

3.3.7 Higher order interpolation methods

Choi et al. 2007 also introduced a higher order interpolation method. It has been
shown that a power law interpolation is better than a linear interpolation method, for
higher Reynolds number. They introduced the concept of tangency correction by
resolving the velocity into the normal and the tangential direction to the immersed
boundary. The velocity profile in the tangential direction is written as a general power
law in terms ~n¥, rather than assuming a linear trend (n is the normal coordinate). Small
value of power k, (k=1/7 or 1/9) preserve the expected logarithmic distribution near the
wall region which is necessary for application of a turbulent model. The normal velocity
profile is defined in such a way that its second derivative is maintained at the immersed
surface (n=0) to satisfy the Neumann boundary condition for the wall normal pressure
gradient. Choi’s numerical results shows that for Reynolds numbers less than 1000 a
linear distribution of the velocity profile (k=1) is required, however, in problems with
Reynolds numbers greater than 10,000 using the law power (k=1/7 or 1/9) gives a more

realistic flow separation result (more detail see Choi et al. 2007).

3.4 Interface tracking methods

An important challenge faced when using immersed boundary methods is to
maintain stability in the FSI simulation, which may lead to very small time steps (Fauci
and Fogelson 1993, Peskin 2002). It is possible to improve the numerical stability by
calculating the boundary forces implicitly (strong coupling) in advance (time). Also, in
the presence of very strong interaction between the fluid flow and structure (eg. blood
flow in arteries), a strong coupling between the solvers is required to stabilise the
simulation in a partitioned approach. This is due to the additional flow acceleration that
is acting on the solid which is known as the added mass effect (Causin et al. 2005 and
Idelsohn et al. 2009 among others).

Another challenge in the FSI modelling is the interface tracking between the fluid

and the structure. Sub-iterations (strong coupling) between the fluid and the structure
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solution increase the numerical stability of the interface tracking methods. Wood et al.
2010 explained that the FSI method becomes unstable in absence of sub-iteration steps
between flow and structure solutions at each time step (weak coupling). They showed
that one additional sub-iteration can reduce the numerical error by two orders of
magnitude without adding a substantial over head to the program; more sub-iterations
could achieve an even better convergence.

In this context, the IB partitioned approaches are classified into strong (Farhat et al.
2006) and weak (Quarteroni et al 2000) coupling methods. Weak coupling could
produce acceptable results when the coupling (interaction between the fluid and the
structure) is not strong like in aero-elasticity problems (Farhat et al. 2006). However,
weak coupling may lead to instabilities when the density of the fluid and the structure
are similar, for example in simulating blood flow in arteries.

Although many methods were developed to improve the treatment of the interface
to gain a better accuracy, efficiency and stability for the FSI simulation (Tu and peskin
1992, Mayo and peskin 1993, Fauci and Fogelson 1993, LeVeque and Li 1997, Lee and
LeVeque 2003, Mori and peskin 2008, Newren et al. 2008, Hou and Shi 2008, Ceniceros
et al. 2009 among others), it remains a challenge to produce a computationally efficient
IB method (Hou et al. 2012).

Due to the coupling of the interface configuration and the boundary forces with the
fluid flow simulation, solving a FSI problem implicitly requires solving a very large
system of nonlinear equations. Finding a converged solution to such a large system is a
very challenging problem. Due to these challenges, most of the simulations were
originally based on explicit methods. Recently, however, implicit methods have been
developed that exploit the improved computational power. Newren et al. 2008 presented
an unconditionally stable procedure with a second order Crank-Nicolson formulation
where inertia forces are neglected, assuming a linear and self-adjoint force at the
interface. Mori and Peskin 2008 suggested a similar scheme and proposed a fully
implicit method. Cenicero et al. 2009 designed a cost-effective algorithm to solve the
linear system arising from the implicit discretization. Also Wang 2006, 2007 and 2010
employed a fully implicit time integration algorithm along with a matrix free
combination of Newton-Raphson and General Minimal RESidual (GMRES) solvers.

In addition, Badia et al. 2008 proposed a method to estimate the interface location
and to replace Neumann and Dirichlet boundary conditions by a general Robin

transmission method in a new FSI iteration. Having a better prediction of the fluid
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structure interface, Farhat et al. 2006 proposed a FSI model with a second order
accuracy in time. Another second order FSI method was developed by Zhang et al. 2007.
In their model the CFD code was considered as a black box. A reduced-order method
was introduced by Vierendeels et al. 2008 in an attempt to improve the computational
efficiency. In the following section some of these methods are studied and compared in

more detail.

3.4.1 Second-order accuracy without sub-iteration (loosely coupled, weak

solution)

Li et al. 2002 proposed a loose coupling between the fluid flow and the structure for
simulating an FSI problem in a relative frame of reference method. In the first step the

n+l n+l
, F

force at t is calculated explicitly from the forces F" and F"* using extrapolation

or relaxation factors (equation ((3-20))). The parameter 9 can be either a relaxation or
extrapolation factor. ¥ = 3/2 results in a second order extrapolation. In the second

stage, the structural governing equation is solved to find the displacement, X",
velocity, V™!, and acceleration, a™* at t""* by a second order, trapezoidal scheme
((3-21))). In the third step, the fluid governing equation is updated from time t" to t"**
with respect to the velocity, V™!, and the displacement, X"**, using a new boundary
condition at time t"*. These steps are repeated for the whole range of FSI simulation

problems in time domain.

FY™l=9F"+ (1 —-9)F" 1 (3-20)
XM= X7 4 Zan (V™ 4+ VY (3-21)
pn+l — pn 4 %At(a” +qnt) (3-22)

Frtt (3-23)

C K
an+1 + _Vn+1 + _Xn+1 —
m m

m
In addition, Li et al. 2002 suggested using an implicit method so that F*** is updated
with the newly calculated flow field velocity, V™, to fulfil a convergence criterion
according to equation ((3-24),
|FS = F R < e (3-24)
In equation ((3-24), j is the sub-iteration index and ¢ is a prescribed small constant.
If the newly calculated Fjﬁ’gl is converged then the program goes to the next time step.
Farhat et al. 2006 suggested two second-order temporal accuracy algorithms. These

procedures are second-order accuracy for both the flow and the structures fields. Farhat
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proposed a three-point backward difference method for solving the flow field and the
structure in the following steps. a) Predicting the interface velocity based on the second-
order accurate structural solution. b) Calculating the interface location based on the
structural governing equation. ¢) Solving the fluid governing equation based on the new
boundary conditions (interface location). d) Calculating force, pressure and shear stress,
acting on the fluid-structure interface to be used to predict the interface velocity as
described in for the first step.

The second method of Farhat was a half time step procedure; using the following
steps: a) Predicting the interface velocity based on the governing structural equations in
half of the time step; b) Calculating the interface position based on the velocity and
governing structural equation in half of the time step; c) solving the fluid governing
equation based on the velocity and location of the interface in half of the time step; d)
Calculating the force from the fluid flow at half of the time step to find the velocity and
location of the interface at the full time step by solving the governing structural
equations.

Zhang et al. 2007 studied the accuracy, stability and efficiency of their two
proposed FSI algorithms for an aero-elastic flutter benchmark. Their first algorithm
solves structural dynamic equations under hydrodynamic forces. Those forces are
calculated by a black box CFD simulation.

The structural equations are solved with a standard fourth order accurate Runge-
Kutta method. The discretised equation uses the fluid pressure at p(t) and p(t + %) in
which the latter is predicted by a second order backward extrapolation procedure
(equation ((3-25)).

p(t+At) = %(3p(t — 2At) — 10P(t — At) + 15p(t)) (3-25)

In the next step, the structural equations are solved to find the new position of the
boundary. Once the new boundary position is predicted, the CFD code solves the fluid
governing equations to generate a new pressure distribution based on the new boundary
location. The new pressure distribution is applied to the structural equations in the next
time step.

The second algorithm of Zhang is based on a multi-step, implicit second order
Adams Bashforth method to solve the structural equations, in which the predictor is an

explicit second-order Adams scheme. The forces from the fluid flow in the predictor step
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at time n+1 can be approximated by a second order accuracy (equation (3-26)) or a forth
order accuracy (equation (3-27)).

p(t + At) = 2p(t) — P(t — At) (3-26)

p(t + At) = 4p(t) — 6P(t — At) + 4P(t — 2At) — pP(t — 3At) (3-27)

Both Zhang algorithms require to call the CFD code only once per time step. They
presented the result for a flutter benchmark. The simulation results confirm that their
algorithms are superior to the conventional algorithm in which the fluid flow and

structure equations are solved alternately.

3.4.2 Fixed point FSI coupling algorithm with dynamic relaxation

One of the most basic yet efficient approaches is the fixed point algorithm with
dynamic relaxation which was suggested by Kuttler & Wall 2008, Mok & Wall 2001
and Wall 1999. This algorithm calculates the FSI interface within an incompressible
fluid flow (of a body placed with a flexible structure). A Dirichlet-Neumann scheme is
used to apply the algorithm to the FSI interface and to couple the nonlinear equation of
flow to the structures. In this scheme, the flow becomes the Dirichlet part of the problem
by the defining the flow velocity at the interface and the structure becomes the Neumann
part of the scheme by describing the forces on the interface. This technique couples two
black boxed field solvers (fluid and structure solvers) and predicts the FSI solution.

In the first place, a suitable location is predicted for the interface, y7***. Then, the

n+1

_an
interface velocity, uf** = *—>L, is calculated for the flow domain based on the

predicted location at the new time step, y**?, and the previous location, y. In the next
step, the flow governing equation is solved based on this new velocity boundary
condition (Dirichlet) to find the coupling forces on the interface. Finally, the governing
structural equation is solved based on the calculated force (pressure) to obtain the
structural displacement y**1. At this stage it is possible to define an iterative cycle to
find a converged value of the structural displacement. A stopping criterion (equation

((3-28)) is introduced to check the convergence of the results.

n+l1 _ ..n+1 n+1 (3'28)
Ti+1 = Yri+1 — Vri

In this equation, i, is the iteration index, and the residual, r%;};, should be less than

a certain value (Deparis 2004) to achieve convergence. To accelerate convergence, a

relaxation coefficient is introduced.
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n+1 _ . n+1 n+1 _ n+1 n+1 (3‘29)
Yriv1 =Yri T Wity = @ity + (1 — w)dr;

As a result, the fixed-point algorithm to solve the FSI problems consists of a relaxed
FSI cycle with appropriate relaxation factor and convergence criteria. The relaxation
parameter should be small enough to guarantee the convergence of the FSI simulation,
while avoiding unnecessary iterations. Also, it should be as large as possible to use as
much as possible of the new solution for the next iteration. Kuttler & Wall 2008
suggested two methods to define the relaxation parameter; Aitken relaxation and
steepest descent relaxation.

The main idea in the Aitken method (equation (3-30)) is to use the values from two
previous iterations to calculate the current coefficient; therefore, there is no possibility to
calculate the relaxation parameter after only one iteration.

Ti+1 (3-30)

Wiy = —@W—————
Ti+2 — Ti+1

3.4.3 Reduced-order modelling (ROM) and interface location prediction

Vierendeels et al. 2008 proposed a ROM procedure to solve the FSI problem for a
heart valve as a bench mark. The heart valve was modelled with series of rigid links,
connected by hinges along with a torsional stiffness. The sets of implicit FSI equations
for the discretised fluid and structure are represented symbolically by equations (3-31)
and (3-32) respectively.

G(x”+1, Pn+1) =0 (3'31)

Pn+1 — F(xn+1) (3-32)

A sub-iteration can performed to find the interface at the new time step (x"*1) as
equation (3-33).
0=~ G(xn+1,k’Pn+1,k) (3_33)
— G(Xn+1’k_1 Pn+1,k—1) X Ax + a_G
, ap xn+1,k—1'Pn+1,k—1

X Ap
Where Ap = p(x”"'l'k—l + Ax) — p(xn+1,k—1)

3.5 Moving frame of reference

As it has been mentioned earlier, one of the main problems for simulating flow

around a flexible structure is the moving boundaries. The two main techniques to tackle
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this problem are classified as: deforming grid methods similar to the Arbitrary-
Lagrangian-Eulerian (ALE) approach (Donea et al. 1982) and fixed grid methods, such
as the Immersed Boundary (1B) method (Peskin 1972).

An alternative approach for solving the moving-boundary flow problem for a
flexibly mounted, non-deforming (rigid) body is to attach the coordinate system to the
body, and solve the Navier-Stokes equations in a moving frame of reference. The
advantage of such an approach is that an optimized direct solver for the fluid can be
efficiently applied. This is particularly important when considering the very long
simulation time typically required to capture the instability of the fluid-structure
interaction. Newman and Karniadakis 1988 applied a coordinate transformation to a
flexible cable in the (x, y) direction; but did not include a rotational degree of freedom in
their simulation, which is of great significance in some problems. Li et al. 2002 used a
similar approach as Newman and Karniadakis for a single body undergoing both
translation and rotation. They introduced a coordinate transformation attached to the
transforming/rotating body. This formulation proved to be very flexible in handling
every possible motion of a body in two dimensional plane. In the following section their
method is briefly explained. In the Chapter 7 this method combined with the immersed
boundary interpolation method will be used to simulate the flow around a flexible

circular cylinder.

3.5.1 Moving frame Formulation

Assume that instantaneously the body translates by d = (g(t), h(t))T and rotates
by an angle 8 = 6 (t), in the absolute frame of reference(x,y’). Then a corresponding
moving frame of reference (X, y) can be attached to the body using the transformation.

% =g(t) +x cosd + y sinb (3-34)
y = h(t) — x sinf + y cosf

Here, the prime denotes the absolute frame of reference, and the coordinates
x = (x,y)T denote the moving frame of reference whilstd = (g(t),h(t))T is the
coordinate of the origin of the moving frame of reference in the absolute frame of
reference. The rotational angle 6 (t) is defined to be consistent with the aeronautical
sign convention for the angle of attack, i.e., rotating the model clockwise in a flow from

left to right increases the angle (Figure 3-11).
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Figure 3-11 : Coordinate transformation
Li et al. 2002 have derived the Navier-Stokes equations in a moving reference for a

I,

two dimensional case using the above transformation, and obtained:

V.V=0 (3-35)
ov i (3-36)
g+ V-V = —Vp 4 OV2V + G(v, )

G(v,t) = 201,V + (8)°X + §I,X — ATd (3-37)

Where A is the rotation matrix:

sinf  cos6 T -1 cosf —sinf (3-38)
A= At =471 =
(—c059 sine) ’ (sinH cos0 )

And the velocity V in the moving frame reference is defined by:

V=0I,X+A"(V —d), where Iy = (2 _01) (3-39)

The term 261,V is related to the deflecting or Coriolis force and (6)"X is related to

the centrifugal force. The terms A”d and 61,X are related to the forces due to unsteady
translation and rotation.

The pressure is kept unaltered. This not only simplifies the implementation of the
pressure boundary condition for the splitting scheme in the moving frame of reference,
but is also convenient when coupling the flow solver with a structural equation which is

primarily driven by the pressure forces in the absolute frame of reference.
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For a non-accelerating motion this formulation is effectively stating that the
problem of a moving body in a uniform flow is equivalent to that of a stationary body in
a moving flow. For example, when a body is fixed in a flow and has an angle 8 with the
free stream velocity, then according to the above formulation:9 = 0,6 # 0 . Therefore,
the problem becomes flow around a body with not slip boundary conditions where the

inlet velocitiesare V = AV = (cosf; —sin6)T.

3.5.2 Moving frame reference boundary conditions

The far field Dirichlet boundary condition for the transformed Navier—Stokes
equations can be specified using equation (3-41), i.e.,

V=0IX+AT(V —d); (3-40)

V is velocity in the far field in the absolute frame of reference.

For many numerical schemes, a far field Neumann boundary condition for the far
field is typically defined in the absolute frame of reference, such that:
ViLa = g%,  Vi.a =gy (3-41)

Where 7 is the outward normal to the boundary and g, g% are known functions.
Therefore it is necessary to transform this condition into the moving frame of reference.

Li et al. 2002 derived the corresponding Neumann boundary conditions in the

moving frame of reference as:

Vun=gk— 6n,, Vv.n=gk+0n, (3-42)

3.6 Freshly cleared nodes

An important issue arises when the movement of an immersed interface (boundary)
relative to the fixed background grid expose new nodes to the fluid domain that were
originally in the solid body. The new fluid nodes need to be addressed carefully when
using an FSI sharp interface method. Udaykumar et al. 2001 resolved this issue by
introducing a cell-merging formulation along with a quadratic interpolation among
neighbouring points in the fluid for the cut cell approach. Gilmanov and Sotiropolus
2005 reported that in the direct forcing approach or reconstruction method, as long as the
new grid point in the fluid is considered as an immersed cell, there should not be any
problem as according to the definition of the immersed or interface cell, the values of the
parameters at these points are interpolated before updating the fluid governing equation.

In other words, this implies that the movement of the immersed boundary at each time
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step should be less than a computational cell. To enforce the above conditions they have
introduce the following restriction on the time step.
h (3-43)

At <
max (U], V2], W)
m=1,M

Where in equation (3-43) U, V and W are the Cartesian components of the velocity
and h is the minimum grid size near the immersed boundary. Gilmanov and Sortirpolous
explained that in the dual time step approach (with extra inner iterations to achieve a
strong coupling at each time step) the above criterion is less restrictive in comparison
with to the Courant condition for the stability of the simulation.

3.7 Mass conservation and pressure treatment near 1B

Conservation of mass is a very important factor for the calculation of the pressure as
pressure is a Lagrange multiplier for the continuity equation. There are few methods to
conserve mass near an immersed boundary depending on the IB method. Figure 3-12(a)
shows that in the continuous forcing approach the mass conservation is implemented for
all the cells in the fluid and solid domains by assuming there is no IB. The primary
advantage of this method is that there is no need to take extra measures in order to fulfil
the mass conservation near the 1B. However, few other issues need to be addressed.
According to the equations (3-1) and (3-2) the gradient of the pressure in the fluid side
of IB, T'ig-fivig, and at the immersed boundary I'jg (and/or solid domain) can be calculated
by equations (3-44) and (3-45), respectively. Where in the equation (3-44), u/™ js the
flow velocity on the fluid side of domain; while in equation (3-45), the velocity could be
either for the fluid or the solid domain around the IB. Practically, it has not been proven
that the pressure gradients from these two equation are always the same at the IB; unless
the f is zero or there is a discontinuity in the velocity near the immersed boundary (jump
condition). Therefore, applying equations (3-1) and (3-2) to the whole domain (fluid and
solid, Figure 3-12(a)) may not be sufficient to accurately predict the pressure around the
immersed boundary (Kang et al. 2009).

gutid . (3-44)

+ ﬁVZufl”idl when V. u/id =

T'1B-fluid
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Ju ) (3-45)
VP|rp = |— 57— w.Vu +9V u+f] whenV.u =0
ot I'ig

Another example to show the need for an additional pressure treatment near I}y is
the case of very thin IB layer between two channels with a steady laminar flow in
opposite directions. In this case, the pressure gradients at each side of the Iz can be
calculated by applying equation (3-44) which results in an independent (decoupled)

solution across I (more detail see Kang et al. 2009).

(a) (b) (c)
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Figure 3-12: Various methods for conservation of mass depending on the 1B method
a) mostly for the continuous forcing approach (standard approach) b) mostly for the cut
cell approach with a reshaped control volume c) mostly for the reconstruction method,
conservation of mass only in fluid domain (Kang et al. 2009).

The decoupling of the solid domain from the fluid domain across the Iy is similar
to the immersed interface method that uses “jump conditions” at the immersed boundary
(Lee and LeVeque 2003). Also Kim et al. 2001 suggested implementing a modified
continuity equation in the solid domain or at I}z in order to remove the unwanted
coupling of the non-physical flow field in the solid domain to the actual flow field
domain. The parameter ‘q’ in this equation is known as the mass forcing term.

V.u=gq in solid domain and I}g (3-46)

In addition, when the immersed boundary, Ig, is forced inside the fluid domain
either directly by using a Dirac delta function, f, in equation (3-1) or indirectly, by
reconstructing the velocity at the interface nodes (the nodes on the fluid domain which
have one neighbour in the solid domain) the forcing function and the reconstructed
velocity should satisfy conservation of momentum.

Figure 3-12(b) shows another method to conserve mass around the immersed
boundary, Ig. In this method the cells which are crossed by the immersed boundary are
divided into the fluid region which is solved purely by applying the Navier-Stokes

equation, and the solid region which does not need any solution. In this case, I
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separates these two regions. Conservation of mass is satisfied in the reshaped control
volumes similar to the Finite volume Method (FVM) for an unstructured grid. A Similar
method was used by Udaykumar et al. 2001 among others in the cut cell approach. The
advantages of this method are that the conservation of mass is automatically enforced at
[1g and the pressure gradient and velocity in the fluid region are independent of the
parameters in the solid region. However, this method is very complicated for a moving
complex geometry especially in three dimensions (laccarino and Verzicco 2003).
Another shortcoming presented by Kirkpatrick et al. 2003 is that when the size of the
reshape mesh is very small, the matrix condition number rises significantly.

In the final method, according to the Figure 3-12(c), the control volumes which are
in the solid region and the ones crossed by the immersed boundary, Ig, are excluded
from the computational region and the mass conservation is only implemented in the
fluid domain. This method does not create a pressure coupling problem between the
fluid and solid region. Also, this method does not suffer from reshaping issues and other

complexities of the cut cell method.

3.7.1 Fictitious adding mass effect

The added mass effect rises only when an immersed body in an oscillatory stream
experiences an oscillatory hydrodynamic force in the direction of the stream. Morison et
al. 1950 modelled this oscillatory force as being composed of an inertial and a drag
force. The inertial force is in phase with the flow’s acceleration whilst the drag force is
in phase with the velocity.

Inertial forces consist of two parts: a ‘buoyance force’ which account for the
pressure gradient required to accelerate the flow past the body and the ‘added mass’. The
added mass is the fictitious mass of the fluid that is considered to be attached to the
structure, and if the structure is permitted to vibrate, it moves with the structure and
therefore adds to its inertia. The contribution of the added mass force to the inertial
forces acting on a vibrating structure is proportional to the relative acceleration of the
fluid with respect to the structure.

3.8 Calculation of force on immersed boundary

Generally, the forces on the immersed boundary can be classified as drag and lift
forces if the component of force is in line with the flow or in transverse direction to the

flow, respectively. Also, the force on a body in a fluid flow arises from two parts; the
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pressure distribution and the shear stress along the submerged body. Depending on the
type of the immersed boundary method, the calculation of the force on the immersed
boundary is performed in different ways. In the continuous forcing approach (original 1B
and feedback forcing method), the force on the IB is calculated directly with a
continuous function to be added to the Navier-Stokes equation which is not subject of
this thesis. In the sharp boundary approach, either using the cell deformation (cut cell
method) or the reconstruction method, calculating the immersed boundary forces is a
challenging task and despite a great number of publications this subject has rarely been
explained properly (Balaras 2004). Lai and Peskin 2000 suggested three methods to
calculate the drag force on an immersed boundary for the continuous forcing approach.
Balaras 2004, based on Lai and Peskin method, suggested to employ conservation of
momentum to calculate the immersed boundary forces in the sharp interface 1B methods.
In addition, Choi et al. 2007 used the method proposed by Balaras in their simulation.
Moreover, there are other direct methods presented in literature to integrate the force due
to the pressure as well as the force due to friction. For instance, Li et al. 2002 used a
direct integration of the force on an immersed boundary in a moving reference frame

method. In the section below some of these methods will be discussed in more detail.

3.8.1 Integrating continuous force

This method is only applicable in combination with the continuous forcing
approach. The force, f, in the right hand side of equation (3-1) is integrated in the fluid
domain or the force F (in equation (3-4)) is integrated over the material points at the
immersed boundary (equation (3-47)). In this equation the negative sign can be
explained by Newton’s third law and L, is the number of material points on the
immersed boundary.

Lb (3-47)
Fz—j de=—EFidSi
fluid domain =1

3.8.2 Direct calculation of surface forces

The aerodynamical force exerted on a body by the flow is the integral of the local
stress. Equation (3-48) expresses, o, the local stress in terms of the pressure (normal
stress) and t, tangential stress (shear stress). The local stress can be integrated over the

immersed boundary to calculate the forces from the fluid on the body (equation (3-49)).
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o=-pl+71 (3-48)
(3-49)
F=J ands=—] pnds+f Tnds = F, + F,
r(t) r(t) r'(t)

Where n is the outward unit normal on the body, F, refers to the pressure force and

E, refers to the viscous force. The above integration is defined in the absolute frame of

reference.

3.8.3 Application of momentum conservation

When the under-laying Cartesian mesh for the flow, in an IB method is not aligned
with the material points of the structure in a Lagrangian frame work; it is difficult to
calculate interface forces in an immersed boundary method. To solve this problem,
Balaras 2004 suggested a method based on the conservation of momentum for an
optional control volume around the immersed body. Suppose I'g is the boundary of a

fixed control volume surrounding the immersed boundary, I',. The conservation of
momentum is applied to the bonded surface, I'= T’y U I'p. Using this, the force from the
fluid on the immersed boundary is calculated by equation (3-50) in vector notation or by

equation (3-51) in index notation for a two dimensional problems (for more details see
Lai and Peskin 2000 and Balaras 2004).

. d (3-50)
F=— pudA — | (puid + pl—1).nds
dt boundaed area ro
d (3-51)

F, = Ef pu;dA — f (puiw; + pdij — vij) nyds
boundaed area ro

3.8.4 Direct forcing method

Another method to calculate the force from the fluid to the structure is the direct
forcing approach which was introduced initially by Mohd-Yusof 1997. In this method,
after discretization, the force is added to the Navier-Stokes equations. Equation (3-52)
describes the semi-discretisation of equation (3-1). Equation (3-52) is explicitly
rearranged to find the force, f, with respect to the other parameters. Finally, in this
equation u™*! is replaced by Vsolid™*! (equation (3-53)). In this equation, f represents
the force of fluid on the immersed boundary (more details see Mohd-Yusof 1997 and
Fadlun et al. 2000)
untl — yn 1 (3-52)

—————+uVu=—-VP+9V2u+f
At p
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Vsolid®*t! — u® 1 (3-53)
f= + u.Vu + —VP — 9V?u
At p

3.9 Some related Bench mark studies

The flow around a cylinder has been extensively studied both numerically and
experimentally for several decades and several cases have been reviewed by Williamson
1996 and Williamson & Govardhan 2004 and 2008. The flow problem, is sufficiently
simple to be analysed in great detail while, it is still retains the physics of more complex
flows. Separation of the boundary layer from the surface makes the flow around a
cylinder an interesting benchmark for immersed boundary method. In addition, as the
main goal for this research is to simulate FSI for cylindrical oil risers, a study of the flow
around a 2D cylinder is very relevant. In this section some of the numerical and
experimental results which describe the flow field around a moving/stationary cylinder
are presented.

Corbalan and de Souza 2010 suggested using an Eulerian method to predict the
forcing term which is added to Navier-Stokes equations in the continuous force IB
method. To validate and verify the method, four cases have been presented as bench
marks; flow over a stationary cylinder, flow over cylinder with a force oscillation in the
transverse direction to the flow, flow over a cylinder forced to oscillate in line with the
flow and flow over a cylinder with a forced rotational movement. In all cases the flow
was laminar and the amplitude of the oscillation was 0.4 and 0.2 times the cylinder
diameter. The frequency of the oscillation was selected to be 0.6 and 1.05 times of
frequency of the vortex shedding around a stationary cylinder. The lift and drag forces
for the above cases have been reported and compared with were compared the literature.

Choi et al. 2007 proposed a more general IB method that is valid for all Reynolds
numbers and can be implemented for various grid topologies. The immersed boundary
objects are represented by clouds of structured or unstructured nodes rendered as level
sets in the computational domain which can be used to categorise the computational
nodes as being in, near and outside of the flow domain. In addition, they have
decomposed the velocity near the immersed boundary into a component normal to the 1B
and a tangential component. The tangential component near the boundary surface is
calculated by using a power-law function of the wall normal distance. They also used

general interpolation/reconstruction techniques to impose the immersed boundary. Five
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different problems were simulated to verify their methods, including the flow over a

stationary cylinder and over a cylinder oscillating in line with the flow direction.

3.10 Discussion

In a complete Fluid-Structure interaction simulation the main challenges are to
address the complex boundary and large displacement of the immersed boundary. In the
previous chapters the physics and importance of these kinds of study were presented.
Also the general principles of the methodologies to tackle FSI problems are briefly
described. In this chapter the main focus was to explain and compare Immersed
boundary methods, their advantages and disadvantages. In additions, several technical
issue related to this problem were addressed.

It was briefly discussed, that 1B methods were originally based on adding an extra
forcing term to the governing equations in order to enforce the boundary conditions. The
way in which this source term was defined was the main difference between various
versions of the IB methods.

As discussed earlier, in the discrete forcing approach the 1B is imposed on the flow
domain after the discretization of Navier-Stokes equations. this means that introducing
the boundary conditions and forcing functions is not as straightforward as in the
continuous forcing approach and depends on the discretization method and its
implementation. Also, in the discrete forcing approach the definition of the pressure on
the boundary is not as straightforward as in the continuous forcing approach and requires
special treatment. The advantages of the discrete forcing approach are that the boundary
conditions can be introduced sharply without any extra stability constraint, while the
fluid and solid domains are clearly separated and the equations that describe the flow are
only solved in the fluid domain.

Cut-cell methods for fluid-structure interaction problems with moving boundaries
take significant amount of computational time (Udaykumar et al. 1999, 2001), while the
Ghost-Cell approach will create non-physical results when solving the fluid equations in
the solid domain.

Fadlun et al. 2000, studied the effect of three interpolation methods in the direct
forcing approach for a few different problems. The simulation process has been repeated
on various grids and the solution on the finest grid was assumed to be exact. It has been
shown that in the “step geometry” (without interpolation) the error deceases slower than

first order. Weighting the forcing by the fraction of volume occupied by the structure
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better results with a nearly first order behaviour were obtained. The results obtained with
a flat boundary showed that the weighting methods underestimate the velocities so the
results are not entirely satisfactory. The linear interpolation method was the best among
these three and showed a second order accuracy. In the linear interpolation, the velocity
profile is assumed to vary linearly very close to the wall and this requires a sufficiently
fine grid near the immersed boundary. This issue could be improved by using a local
refinement with embedded grids (Kravchenko et al. 1996). However, the benefit and
costs of this kind of improvement should be compared with the boundary conforming
mesh method. Also Fadlun et al. 2000 claimed that interpolation methods have the same

effect on both stationary and prescribed moving boundary problem simulations.

Methods for calculating the hydrodynamical forces from the fluid on the structure
were explained as starting points to study the coupling between the fluid and the
structure in an FSI simulation. Some of the coupling strategies introduced were used as

part of solutions in the literature.

In the final section, some important concepts like fictitious mass and treatment of
pressure at immersed boundaries are discussed briefly. Also some of the studies of flow
around a cylinder are introduced. This problem will be used as bench mark later in the

thesis.

In the next chapter the immersed boundary method based on the
interpolation/reconstruction methodology is explained. The focus of the Chapter will be
to explain the details of the procedure and the programming in order to address the key

points that have been discussed thus far.
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Chapter 4. Methodology

Simulating the flow around a moving boundary has been the subject of study during
the recent decades. The moving boundary is one of the main issues that need to be
solved in order to simulate the flow around a flexible structure. The two main techniques
to tackle this problem are: moving grid methods such as the Arbitrary Lagrangian
Eulerian (ALE) approach (Donea et al. 1982) and the fixed grid methods, such as the
Immersed Boundary (IB) method (Peskin 1972).

ALE methods employ a grid that adapts to, moves and deforms with the moving
boundary. Such methods have been applied to study the transient aero-elastic response
of airfoils (Farhat et al. 1998), the FSI problem of a shock absorber [Le and Mouro
2001], the blood flow through compliant aortas (Fernandez & Moubachir 2005), etc. A
significant limitation of the ALE approach, however, stems from the fact that the mesh
conforms to the moving boundary and, as such, needs to be constantly displaced and
deformed following the motion of the boundary. The mesh moving step could be quite
challenging and expensive for complicated 3D problems. This situation is further
exacerbated in problems involving large structural displacements for which frequent
remeshing might be the only feasible approach to ensure a well-conditioned mesh at
each time step of the simulation. Because of this inherent limitation, the ALE approach
is only applicable to FSI problems involving relatively small structural displacements.

In fixed grid approaches, on the other hand, the entire computational domain
including both the fluid and structure domains is discretized with a single, fixed, non-
boundary conforming grid system. In this case most commonly a Cartesian mesh is used
as the fixed background mesh. The effect of a moving immersed boundary is accounted
for by adding forcing terms to the governing equations of fluid motion so that the
presence of a no-slip boundary at the location of the interface can be felt by the
surrounding flow. Because of the fixed grid arrangement, such methods are inherently
applicable to FSI problems involving arbitrarily large structural displacements
(Borazjani et al. 2008).
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The governing equations for a conventional conforming structural grid are
discretised in a curvilinear coordinate system to simulate the flow over a complex
geometry. The main advantages of this approach are that imposition of boundary
conditions is greatly simplified, and furthermore, the solver can be easily designed to
maintain adequate accuracy and conservation property. However, depending on the
geometrical complexity of the solid boundaries, grid generation and grid quality can be
major issues. A multi-block approach may help to divide the complex geometry into
simpler geometries. Furthermore, transformation of the governing equations to the
curvilinear coordinate system results in a complex system of equations and this
complexity can adversely impact the stability, convergence and operation of the solver.

Imposition of a non-grid-aligned solid boundary in a Cartesian grid method can be
complicated. The main challenge is to construct a boundary treatment which does not
adversely impact the accuracy and conservation properties of the underlying numerical
solver. Especially, for viscous flows, an inadequate resolution of the boundary layers
which form on the immersed boundaries can reduce the accuracy of the numerical
solution (Ye et al. 1999). Immersed boundary methods have also been used successfully
for viscous flow computations. However, in most cases (continuous forcing approach)
the immersed boundary is distributed across a few cell-widths. This is mainly due to
problems associated with representing a point force on a finite size mesh. Similarly, in
the so-called volume-of-fluid (VOF) method (Scardovelli and Zaleski 1999), the process of
interface reconstruction leads to a non-smooth interface. In contrast to these approaches,
in (indirect forcing approach) Cartesian grid methods the boundary is represented by a
sharp interface and this has advantages for high Reynolds number flows as well as flows
with strong two-way coupling between the flow and the boundary motion.

In this chapter the implementation of an interpolation/reconstruction immersed
boundary method (which is a Cartesian grid approach) to simulate flow around a flexible
boundary is presented. It is supposed that the flow is two dimensional with low
Reynolds number. A fractional step method is used to simplify the governing equations.
A finite volume method with staggered variable arrangement in uniform Cartesian mesh
has been used to discretize the Navier-Stokes equations.

The governing equations, discretisation, computational grid, interpolation procedure
and algorithm of the code are explained in detail, together with the calculation of the lift
and drag coefficients. In the immersed boundary method, the fluid grids in the vicinity

of the structure’s boundary which have at least one neighbour in the structural node
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should be identified and this depends on the type of discretization used for the governing
fluid equation. Therefore, in the following section a brief description of the derivation of
the Navier-Stokes equations and its discretisation procedure is presented. Also, Navier-
Stokes discretised equations are used later in the calculation of the pressure boundary

condition for the pressure Poisson equation in the Chapter 7.

4.1 Governing equation

The derivation of the Navier-Stokes equations begins with an application of
Newton's second law and conservation of momentum is enforced for an arbitrary portion
of the fluid. In an inertial frame of reference, the general form of the equations of fluid
motion is (Batchelor 1967):

v ]
p(E+V-VV)=—Vp+V-S+f (4-1)

Where V is the flow velocity, p is the fluid density, p is the pressure, S is the stress
tensor and f represents body forces enforced on the fluid to simulate boundary
conditions. The above relation represents conservation of momentum in a fluid and is an
application of Newton’s second law to a continuum. In fact, this equation is applicable
to any non-relativistic continuum and is known as the Cauchy momentum equation
(Batchelor 1967).

The effect of stress in the fluid is represented by the Vp and V.S terms; these are
gradients of surface forces, similar to the definition of stresses in a solid. Vp is called the
pressure gradient and arises from the isotropic part of the stress tensor. This part
corresponds to the normal stress that is present in almost all situations. The anisotropic
part of the stress tensor gives rise to V.S , which conventionally describes the viscous
forces. For incompressible flows, there is only a shear effect and hence, T is the

deviatoric stress tensor, so that the stress tensor o is defined as (Batchelor 1967):
o=—pl+S (4-2)

The stress terms p and T are unknown, so the general form of the equations of
motion is not applicable to solve problems. A force model is needed in the equations of
motion to relate these stresses to the fluid motion (Feynman et al. 1963). few
assumptions on the specific behaviour of a fluid are applied in order to specify the
stresses in terms of other flow variables, such as velocity and density. Batchelor 1967
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explained the assumptions on the deviatoric stress tensor S which is needed to obtain the

Navier-Stokes equations.

Equation (4-3) presents the governing equation for an unsteady, incompressible

fluid flow in vector form (Navier—Stokes equation).

v -
p(E+V-VV)=—Vp+uV2V+f (4-3)

In the above equation Z—: is the unsteady acceleration, V -VV is convection

acceleration, —Vp is the pressure gradient. uV2V implies that viscosity operates by
diffusion of momentum of a Newtonian fluid, and f is a body force (force per unit
volume), such as gravity or centrifugal force.

Note that only the convective terms are nonlinear for an incompressible Newtonian
flow. The convective acceleration is an acceleration caused by a (possibly steady)
change in velocity over position.

The incompressible Navier-stokes equations in a 2D Cartesian domain is defined as:

(au N ou N au) _ Op 0%u N 0%u N (4-4)
P ot " %ox T Vay) T Tax TH\ox2 T ay2) T PIx

(617 N ov 617) _0p N 0%v N 0%v N (4-5)
P ot " %ax T Vay) T Tay T H\axz T ay2) T P9y
ou 9 )
LY ) (4-6)

4.2 Non-dimensional governing equation

For reasons of simplicity and easiness of generalization of the solution algorithm
the non-dimensional form of the Navier-Stokes equation is used. When the Navier
Stokes equation is presented using primitive variables, the following definitions are used

to obtain the non-dimensional equations.

t*—tV ., X LY *_P , u , Vv
_Dr x—D: y—D, p—pvz: u_V; v_V; (4_7)
VD gD
R = — g
¢=57 9 pV?

The general form of the non-dimensional Navier-Stokes equation is given in
equation (4-8). The external force used here is the gravity, g*, though other volume

forces might also be added.
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In this equation the “*’ identifies the non-dimensional variables. It is omitted from

the equations later in the text.

4.3 Discretization method

To ensure the conservation of momentum by the discretization of convection, the
convective term in the momentum equation is written in conservative form before
discretizing. As shown in equations (4-9) and (4-10), this is equivalent to the non-

conservative from.

V-vw=VvV-vv (4-9)
6_1L2+aﬂ=2u6_u+u6_u+v6_u=u6_u+v6_u+u(6_u a_v) (410
0x dy dx dx ay 0x dy dx 0dy
Ju du
= ua+v@

Applying the same notation in the y direction, the non-dimensional Navier-Stokes
equations become:

6u+ ou? N dvu  dp 1R 62u+ 0%u (4-11)
Tt ax oy T Tax TR (Gt ayz) e

ov dvu 0v? op 0%v  0%v
v 2

1/R (4-12)
it ox Tay T Ty TR Gt o) tey

4.3.1 Staggered arrangement

The first issue is to identify the points in the domain at which the values of the
unknown dependent variables have to be computed. The obvious choice is to store all
the variables at the centre of the control volumes; such an arrangement is called a
collocated variable arrangement. Since many of the terms in each of the equations are
essentially identical, the number of coefficients that must be computed and stored is
minimized and the programming is simplified by this choice. However, there is no need
for all the variables to share the same grid; a different arrangement may turn out to be
advantageous. In Cartesian coordinate, the staggered arrangement introduced by Harlow
and Welsh 1965 offers some advantages over the collocated arrangement. Several terms
that require interpolation with the collocated arrangement, can be calculated (to a

second-order approximation) without interpolation.
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Typical staggered control volumes are shown in Figure 4-1. The control volume for
the uy and uy are displaced with respect to the control volume for the continuity equation.
Both the pressure and diffusion terms are naturally approximated by central difference
approximations without interpolation, since the pressure nodes lie at CV face centres and
the velocity derivatives needed for the diffusive terms are readily computed at the CV
faces. In addition, the mass fluxes in the continuity equation at the faces of a pressure
CV can be directly calculated.

The biggest advantage of the staggered arrangement is the strong coupling between
the velocities and the pressure, which helps to avoid certain convergence problems and a

decoupling of the pressure and velocity fields.

|

-t e —r§- . —t-

X, X Xis1 X1 X;

Figure 4-1: Control volumes for a staggered grid: for mass conservation and scalar
guantities (left), for x-momentum (centre) and for y-momentum (right)

4.3.2 Discretization of the momentum equation

The cells are numbered using indices i and j which identify cell centre positions
along the horizontal and vertical directions, respectively. Cell boundary positions are
labelled with half-integer values for the indices. According to Figure 4-2 each parts of
the x-momentum equation is discretized about the point (i+1/2,j) as follows:

1 2 n 2 (4-13)

du? [7 (uH%J * ui+%.1)] " [7 (ui%.j * ui—%.j)]
il or
0x (Xi+1j = Xij)

2 O () (4-14)
ou” - CEDEICY) where u;; = 1(u 1. +uU 1 )
ox 2(X1+1,j - Xi,j) ’ 2\ i-3] i+5,]
owr _ 1 (ugpon * 0 B (s * 2)] =300t 00 B (g ) (419
=

g (yi+%,j+% B yi+%,j—%)
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_ (4-16)
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Where u; 1,.1_ - (ui+l,j+1 + ui+l,j) and v;1,.1 =7 (Ui+1,j+1 + Ui,j+1)
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0P _ Pirrj “Pij_ (4-18)
0x  (Xiv1,j — Xi)
u —2u +u -
d%u ity it i (4-19)
2 2
ox (tivr,j = xi5)
d%u ui+%,j+1 B 2ui+%,j + ui+%,j—1 (4-20)
ayz - 2
(yi+%,j+1 - yi+%,j)
jt2
i+312
j+1 v(i,j+1/2)
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i+172
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Figure 4-2: staggered arrangement used for discretization

In addition to the space index subscripts, there is a superscript for the number of

fﬁ;}l) shows the horizontal velocity at the time t = (n + 1)dt¢,
>

time cycles. For instant u

in which the &t is the time increment per cycle. When there is no superscript, it is

correspond to the value of the parameter at time t = nat.

n+1 n
S — U 1.
i+3,] 1+3,]

u (4-21)

du _
at ot
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4.3.3 Fractional step method

To solve the Navier-Stokes equations a splitting method is used. In the first part of
the solution an intermediate velocity is calculated by updating the velocity in time by
taking into account only convection and diffusion terms. The results of this stage are
updated by enforcing the Poisson equation for the pressure.

Equations (4-22) and ((4-24) show how the convective and diffusive term is used to

calculated intermediate velocity 2 and ¥ in x and y direction respectively.

~n+1 n _
Yindi "M (“i,i)z - (“i+1,i)2 22

ot (Xi,i - Xi+1,j)

+
y. 1 - Y. 1 1)
< Hz2i2 taitz
u —2u +u
P Ry
+v 5
(xis1 x”)
1 u 1.+u 1
l+71+1 it+s) 1+2]—1

=n+1l n (4-23)
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+
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+v

(xi+1,j - xi,j)z

v.3—2v. 1+vV 1
l,]+i l,]+7, l,]—i

2 +9y
(yi+%,j+1 - yi+%,j)

For the velocities values which are not centred at points indicated in the mesh

diagram, an average of adjacent values is applied. For example:
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_1 + d _1 + ) (4-24)
ui,j = ui_%'j ui%’j an Ui,j = 5 Ui,j—% vi,j+%

1 1 (4-25)
Uirljsl=3 (ui+§,j+1 + ui+§,j> and Visljs T3 (Ui+1,j+§ + Ui,j+§>

In this research equations (4-22) and (4-23) are solved by using 3 order Range-
Kutta method to calculate the intermediate velocities.

In the second stage of the fractional step method the intermediate velocities from
Equations (4-22) and (4-23) are updated by adding the effect of pressure.

n+1 ~N
UM TAP (4-26)
i+3) i3] P — Dy
ot Xit1 — X
n+1 AT
V. 1.-V. 1. (4'27)
ttp] 3] Piv1 —Pj
ot x]'+1 — Xj

The calculation of pressure equation is discussed in the next part.

4.3.4 Calculation of pressure

The solution of the incompressible Navier-Stokes equations is complicated by the
lack of an independent equation for the pressure, whose gradient contributes to
momentum equations. One way to overcome this issue is to construct an equation for the
pressure field to guarantee satisfaction of the continuity equation (Ferziger and Peric
2002).

The form of the continuity equation suggests that if the divergence of the
momentum equation is taken, then the continuity equation could be used to simplify the
resulting terms, which leads to a Poisson equation for the pressure. The procedure is as
follow:

Taking the divergence from the general Cartesian form of Navier-Stokes (equation

(4-3)) or from the non-dimensional form (equation (4-8)) will lead to:

v 1 (4-28)
(2L : —v.(— 2
V(6t+v VV) V( VP+ReVV+g)
While in the indices form the equation will look like as:
d (’)ui auiuj d ap c')zul- (4-29)
a}(ﬁ* ox, ) "o\ o TR Gx0x T 9

Transferring the divergence of the pressure gradient to the left side of the equation:

o (dp 0 (du 9%, ou; (4-30)
Dy Dy, o
axi axi axi ax] axjax] t at
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It is possible to simplify the above equation more, as the viscous and unsteady

terms disappear by applying the continuity equation:

0 <6p)= 0 <6uiu]-> (4-31)

7w \ox) = "o \ o

In some research even the temporal and viscous terms are not omitted depending on
the accuracy of the results and in what order the continuity equation is forced in previous
time steps. The above pressure equation (equation (4-31)) can be solved by one of the
numerical methods for elliptic equations. In the pressure equation, the right hand side is
a sum of the derivatives of terms in the momentum equations; these terms must be
approximated in the same way as the momentum equation. To maintain the consistency
among the approximation used, it is best to derive the pressure equation from the
discresized momentum equation. From equations (4-28) and (4-29) one can obtain:

+1 _
D" - D} -, - Pi+1j t Pi-1j —2Pij  Pij+1+Pij-1 — 2Py, (4-32)
at L] axz ayz
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( T it5J)-3 i=5J+3 i—5J+3

The procedure for determining the pressure is based on the requirement that D{‘fi

vanishes for every cell at the end of the time cycle. This assumption leads to the

equation for the pressure:

Di+1j t Pi—1j = 2Pij Pij+1 t Dij-1~ 2Dij R (4-39)
0x? B dy? T
Where R; ; will be:
R D; ; Diy1j—Di—1j—2D;; Dijiq — Dijo1 —2D;; (4-36)
ij = Qij = ot 0x2 B dy?
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In principal, it is possible to use Q; ; instead of R; ; in the equation (4-35), since D; ;
should be zero in previous time steps. However, in practice the use of R, ; is desirable so
that equation (4-35) does not have to be solved extremely accurately in order to keep the
accumulative error in the divergence to a sufficiently low level. Harlow and Welch
1965 reported that with a very stringent convergence requirement, the cumulative results
of calculation are independent of using D; ; or R; ; in equation (4-35).

Equations equations (4-22) to (4-27), (4-35) and (4-36) are the main equations used
in performing the calculation of the flow parameters. R; ; is computed for every cell,
using the velocities available at the beginning of the cycle using equations (4-26) and
(4-27). Secondly p;; is calculated using equation (4-35). Finally the intermediate
velocities that are calculated from equations (4-22) and (4-23) are updated by inserting

the new pressure in equations (4-26) and (4-27). The process will be continued in time.

4.3.5 Mesh generation

One of the advantages of using immersed boundary methods is the use of simple
Cartesian mesh generation. In this approach regardless of the location of boundary a
structured grid is created to cover the entire computational domain, including possible
solid objects inserted in the flow domain. In this research staggered grid arrangement is
used. In Figure 4-3, the computational grid is shown by the black lines with coordinates
xcoord(i) and ycoord(j) in x and y direction, respectively. The blue lines are passing
through the centre of the computational cells. These coordinates are stored in the xcrd(i)
and ycrd(j) arrays in x and y direction respectively. Also, as the staggered variable
arrangement is used, in order to define the boundary conditions it was necessary to
define the blue line beyond the computational grid, effectively introducing “ghost” or
virtual grid points. The calculation however is just limited to the main area. Later in
Chapter 5, a special mesh is used which is finer around the solid boundary which

becomes coarser towards the outside in order to limit the number of mesh points.
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Figure 4-3 : Uniform staggered mesh coordinate

4.3.6 Location of velocities and pressure

In the collocated arrangement the pressure and velocities are defined at the centre of
the grid cells. However, in the staggered arrangement the pressures and the velocities are
not defined at the same locations. According to the Figure 4-4 the pressures are defined
at the cell centres where the lines xcrd(i) and ycrd(j) are intersecting. On the other hand
the velocity in x direction, u(i,j) is introduced at the intersections of the xcoord(i) and

ycrd(j) lines and the velocity in y directions is defined at the intersections of ycoord(j)
and xcrd(i).
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Figure 4-4: velocities and pressure positions in a staggered arrangement

4.4 Boundary conditions

As the staggered arrangement has been used for the discretization of the governing
equations, the definition of the boundary condition should match this arrangement. For
the inlet, outlet, top and bottom, uniform velocity, convective outflow and symmetry
boundary conditions for the velocity have been used respectively. According to the IB
procedure when the solid boundary is not aligned with the background grid the
definition of the no-slip condition at the immersed boundary (here the cylinder wall)
becomes cumbersome. The definition of the boundary conditions are detailed in the
following sections.

441 Inlet

At the inlet, it is straight forward to introduce the velocity in the x direction, u, as
this velocity is defined on the cell boundary, xcoord(0), which is the first line of the
computational grid. According to the Figure 4-5, u(0,1), u(0,2) ... and u(0,ny) (or
generally u(0,j) j=1,2...ny) has been defined as the inlet velocity in x direction (green
arrows in Figure 4-5). However the inlet velocity in the y direction, v, cannot be defined
directly due to the staggered arrangement of the variables. To resolve the issue, the
velocities v(0,j) and v(1,j) are defined in a way that the average of these two velocities,
corresponds to the actual v-velocity at the inlet. (v(0,0)+v(1,0))/2 or (v(0,1)+v(1,1))/2

74



.... And (v(0,ny)+v(1,ny))/2. For the special case of the zero inlet v-velocity v(0,))= -
v(1,j) is defined (the red arrows in Figure 4-5).

| |
3 4
Y | ]
P(1,ny) P(mlmy)
} ‘ : |
- — B —p-
| 1 ‘
1
(og)_ P(1,2) =4 P(2:2) =r> -t ‘ 5 -
-lv(1,1)F ]'
; (oil)'P(l’l)'u(ll,l) ue) I'm’“’l) ! i )""’_‘
3
T =X

Figure 4-5 Staggered arrangement — bold lines are cell boundaries which velocities are
calculated, and pressure are calculated on intersection of light lines. Velocities in y
direction need to be interpolated for inlet. Velocities in x direction are specified directly on
the boundaries.

44,2 Outlet

As the velocities and the pressure are not known at the exit and the computational
domain must be finite, according to the Orlanski 1976 the convective outflow boundary
conditions are applied for each velocity flux component. The location of the outflow
boundary must be sufficiently downstream of the immersed object and the recirculation
from the IB should not be present and the streamlines should be parallel. Also at the
outflow boundary:

Ju OJv dp (4-37)
—=—=0 and —= 0
dy 0dy on

Equations (4-38) and (4-39) present a simplified version of the unsteady convective
boundary conditions in the staggered arrangement. In these equations, Uy, is the
convection velocity at the outlet and it is assumed to be a constant value. In Figure 4-5
the purple arrows and orange arrows are the u and v velocities that are used to

implement the outflow boundary conditions in x and y directions respectively.
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(u?ntc%j) B u?nx.j)) — U (u?nx, D~ u?nx—l, j)) (4-38)
dt con dx
(v(nn-l;cl-l-l,j) - vzlnx+1,j)) _ (U(T;lx+1,j) - U(T;lx,j)) (4-39)
dt con dx

4.4.3 Symmetry boundary condition

For the top and the bottom boundaries the symmetry condition has been used. ie. no
flows passes across the boundaries. This implies that the normal velocities are set to
zero and the normal gradient of the u velocity is assumed to be zero as well. In Figure
4-5, the blue arrows represent the velocities in the y direction which are set to zero at the
boundary (Dirichelt boundary conditions) and the yellow arrows define the location of
the Neumann boundary condition for the velocity in x direction. Equations define the
symmetry boundary conditions that are applied for the staggered arrangement.

Viny =0 Uinpy1 = U
iny iny iny (4_40)

Vio=0 Ujo = Uiy (4-41)

4.4.4 Solid boundary not conforming mesh (immersed boundary)

It has been mentioned earlier that the use of Cartesian coordinates may result in a
mesh that is not aligned with the solid boundaries. Solid boundaries could cut the grid
cells which complicates the implementation of the boundary conditions. For instance, it
is not always possible to apply no slip boundary conditions directly at the walls of a
solid. To resolve this issue different methods are used to introduce a solid boundary to
the fluid flow. This notion is the main subject of the immersed boundary methods and
has been addressed in the chapter 3.

In this part, the procedure to define the boundary conditions around the non-
conforming solid boundaries is briefly discussed. Firstly, a Cartesian mesh is defined for
the whole of the fluid domain regardless of the location of an immersed solid, see Figure
4-6 left.

The presence of the solid boundary is introduced to the flow solver by using an
interpolation immersed boundary method. As shown in Figure 4-6 right, to update each
velocity component in the CFD solver, 8 neighbouring velocities located around that
specific velocity are needed for the discretization of the Navier-Stokes equations on a

staggered grid.

76



Specific velocity

Figure 4-6 Left, a part of domain with not conforming Cartesian mesh, regardless of
solid existence. Right, A specific velocity with its 8 velocities around necessary for its
calculation.

In this figure, it is clearly shown that two out of eight neighbouring velocities are
located inside the solid. The flow solver cannot update this specific velocity
automatically and specific treatment is needed. In these cases the governing equations
are replaced with interpolation equations that use velocities at the wall of the solid and
neighbouring velocities located in the flow field.

Figure 4-7, shows all the velocities in the x and y directions (u and v components)
which need to be interpolated inside the fluid domain. All of these velocities cannot be
calculated automatically by the governing equation as at least one out of the eight

neighbouring velocities components are located inside the solid.

Figure 4-7: A 2D Cartesian grid with staggered arrangement, left: u velocities needed
to be interpolated near immersed boundary. Right: v velocities needed to be interpolated
near the immersed boundary.
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Interpolation equations are formulated for all “boundary” velocities in the flow
domain that require interpolation.

Interpolation is implemented in the direction perpendicular to the solid boundary,
unlike some of interpolation methods presented in the literature. To simplify the
interpolation procedure, the solid boundary is locally assumed to be a circular cylinder.
Perpendicular lines cut the cylinder on one side and grid lines on the other side. Figure
4-8, shows two possible interpolation scenarios to interpolate u;; . In Figure 4-8, the
velocity, up, is interpolated using ui.1j and Ui.1 j+1. Then u;; is interpolated using u; (on the
cylinder wall) and u,. This procedure will be repeated for all the u and v boundary

velocities that are presented on Figure 4-7.

-BI-I‘J_]

ul]

_Jli-l._]\_ 111, ] L
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- T
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Figure 4-8: interpolation method for the velocity near the boundary in two different
scenarios. ui,j has been interpolated between ul=0 on the boundary and u2.

It is assumed that the normal pressure gradient is nearly zero (S—Z ~ 0) near the
stationary (or moving with constant velocity) immersed boundary (if the IB has
acceleration, g—i #+ 0 ) therefore pressure is not extrapolated to the immersed boundary.

On the other hand, the pressure of 4 locations is used in the staggered arrangement to
update the pressure inside the fluid governing equation in CFD solver (Pressure Poisson
equation). As shown in Figure 4-9 left, the value of P;;jdepend on Pjj+1, Pij-1, Pis1jand Pi.

1j- If any of these four points were inside of the solid boundary, they are assumed to be
the same value as P;j (Z_Z = 0). In the case of the moving IB (with acceleration) the

pressure gradient is calculated by projecting the differential form of the momentum

equation perpendicular to the boundary (see chapter 7).
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In Figure 4-9 right, shaded cells are the cells in which the pressures are updated

using governing equations. On the Figure 4-9 left, although pressures on the shaded

areas are updated using governing equations, they have a neighbour of which their

pressure value is not explicitly updated.

Pi,j+1
L ]

Pi L

Bi L P}u/ b 3 I
4 4 4 4

Pl.,jil -’( \ 1 -.( \ 1
: : : 4

Figure 4-9: Right, shaded area shows the cells in which the pressure is updated in the
CFD solver. Left, cells with at least one immersed boundary pressure points is shown.

In the next section the algorithm of the code is explained briefly and the flow chart

of the program is presented.

4.5

Solving procedure

The solution algorithm consists of four main parts.

At the beginning a simple Cartesian grid is created as a computational domain.
Three attributes, umask, vmask and pmask are defined for u and v velocities and
pressure respectively at entire domain. These attributes are zero for the cells of
the domain that are covered by the immersed solid (they are not directly updated
by governing equations). The interface cells which were not updated by
governing equations are categorised and the interpolation coefficients for the
velocity component are calculated (in the “Ingrid “part of the following
flowchart). Also, the initial condition and constant parameters are defined at this
stage (in the “init” part of the algorithm). The boundary conditions are
implemented in the “bounds” algorithm. The interpolation formulas are applied
to the governing equations as boundary conditions. In addition the discretised
equations matrix is decomposed using an incomplete LU decomposition

algorithm in the “inisol” section of the program.
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Figure 4-10: flowchart of the flow solver used to apply interpolation method
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e In the second stage, a Runge-Kutta algorithm is used to calculate the
intermediate velocity components by implementing the convective and diffusive
part of the Navier-Stokes equations and updated boundary conditions.

¢ In the third stage, using the intermediate velocities the pressure Poisson equation
is solved in the ’solve’ subroutine. This algorithm is the most time consuming
part of the codes and is repeated to find a converged solution for the pressure (to
a user define range) at each time step (or at least 5000 times).

e In the final stage the velocity is updated using the new pressure from the
previous stage which effectively projects the intermediate velocities on a
divergence-free velocity field. This part is performed in the ‘calcuv’ subroutine.

The program is marched in time from the second stage to reach a developed
solution. At each time step the minimum and maximum divergence of the velocities
are calculated. And the results are saved at each time step. The above algorithm is
presented at Figure 4-10. In this flow chart the moving immersed boundary is not
included. In the next section the solution of the Naiver —Stokes equations in moving

frame of reference is discussed and the related algorithm is explained in Chapter 7.

4.6 Moving frame of reference

Moving frame of reference has been widely used to solve the Fluid-Structure
interaction for the problems in which a rigid body is displacing/rotating in a steady flow
field (for instance Li et al. 2002). This method which is presented in Section 3.5 is
capable of handling large displacement/rotation of a body in two dimensions. However,
there are two main differences in the simulation used here and the one that Li et al 2002
has introduced. First of all, Li et al. used a spectral/hp spatial discretization, while, here
an FVM with a staggered variable arrangement is used for the discretization. Secondly,
here an immersed boundary with interpolation method is used to force the solid
boundary, while in Li et al. the solid boundary was resolved with the unformatted mesh,
so the no-slip boundary conditions would be directly enforced. For simplification, the
cylinder was only allowed to move in transverse direction so that equation (3-37) could
be simplified to incorporate only the acceleration of the solid boundary in the transverse
direction. The moving frame of reference method is used to simulate the flow around an

oscillating cylinder in the cross flow direction in chapter 7 in more detail. The
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simulation results using this method are compared with the literature and results of
simulation in an inertial frame of reference.

To evaluate the simulation and also to couple the fluid governing equation to the
structural solver (for the fluid structure interaction), the forces and moment acting on a
body in the moving frame of reference should be calculated. In the next sections, the
calculation of force and moments acting on an immersed boundary with both an inertial

frame of reference and a moving frame of references is addressed.

4.7 Evaluating forces and moment on an immersed boundary

To simulate Fluid-Structure-Interaction (FSI) and Vortex Induced Vibration (VIV)
using immersed boundaries and the interpolation method, it is necessary to calculate the
body forces explicitly. Here, the method used to calculate the lift and drag force due to
pressure and shear stress is discussed. It is assumed that drag and lift forces are positive
in the x and y direction, respectively. Figure 4-11(left) and equations (4-5) to (4-7)
illustrate the calculation method for the lift and drag force due to the pressure on an
immersed body.

The forces will be resolved into components parallel and perpendicular to the free
stream velocity.

The hydrodynamic force exerted on a body by the flow can be obtained by the
integration of local stress:
o=-pl+t (4-42)
F= f ohd$ = — f phds + f hds = £, + F, (4-43)

r(t) r(t) r()

Where n is the outward unit normal on the body, F;a refers to the pressure force and
E, refers to the viscous force. Note that the above integration is defined in the absolute
frame of reference.

The total force, however, can be evaluated in the transformed plane and then
mapped back onto the absolute frame of reference since:

F=F +F =A(F,+F,) (4-44)

Where F,, F, are the forces calculated in the transformed plane.

dF = PdA (4-45)
dFyiftp = PdA(—sing) (4-46)
dFprqgp = PdA(—cos6) (4-47)
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P is the pressure on the immersed boundary, dFy;r, and dFp,qq, are the
component of lift and drag due to pressure. dA is the area between two consecutive
locations on the immersed boundary in which the pressure was used to calculate lift and
drag forces. In IB methods, especially when using interpolation, the pressure on the
immersed boundary is not known directly, however for the stationary cases it is assumed
that the gradient of pressure is zero near the immersed boundary; hence the nearest
pressure on the fluid domain is taken as the pressure on the immersed boundary (Figure

4-12). In the following part, the pressure calculation method is discussed in more details.

dF,, = PdA(—sin 6)

dF PdA

¥
dF shearstress

wlA

_ | dF; 4 = wdA(cos &)
R dFyp, ., = mA(—sin#)

|
\AFM = PdA(~cos6) /
6 . | o S
X J rd

| /

Figure 4-11: calculation of lift and drag component of force due to pressure (left) and
shear force (right)

X

Lift and drag due to shear stress are calculated as illustrated in Figure 4-11 right,
equations (4-48) and (4-49).

AFspear = TwaudA (4-48)
dFy = dFliftS = (Twa”dA) cos@ (4'49)
ar, = dFdrags = (TwandA)(—sinb) (4-50)

Twau 1S the shear stress on the immersed boundary. dFy,q4s and dFf.s are the
components of drag and lift due to the shear forces on the IB. The Shear stress
calculation method is presented in the next part. To simulate the solid body with a
rotational degree of freedom, calculation of the angular momentum is necessary. The
momentum due to shear force can be calculated using the equation (4-51), in this
equation, R is the radius of the immersed boundary (circular cylinder).

AMspeqr = R TyaudA
(4-51)
Generally, in the inertial frame, the moment of the forces on a surface I'(t) of a

body about an origin O (for instance the centre of the body) is given by:
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) . (4-52)
M= fx(a.ﬁ)ds=fp(r'xﬁ)ds#fr'x(z.ﬁ)dé:Mp+M,,,
T(t)

where 7 is a vector from the origin to the element of the surface I'(t). The origin is
an optional point due to the definition of momentum; moment is a free vector. Therefore
the resultant moment for both moving frame and inertial frame of reference is the same.
Which simply states that 7 is the rotated vector from the origin in the moving frame of
reference. Therefore for a two-dimensional problem:

M=M=—- f p(x X n)ds + fx X (t.n)ds (4-53)

In the above equations, M and M are the moments of the interaction forces in the
inertial and moving frames of reference, respectively. Also x is the location of the
element on the surface I'(t) in the moving frame. The moments calculated either in the

moving frame of reference or in the inertial inertia frame of reference will be the same.

4.8 Direct calculation of pressure over an 1B

Finding the pressure around the immersed boundary is an important issue when
calculating lift and drag forces. After finding the pressure on the immersed boundary,
the body force due to the pressure on the immersed body can be calculated by
integrating the pressure over its boundary. The vertical and horizontal components of the
force will be Lift and Drag forces due to the pressure, respectively. The pressure on the

immersed body can be calculated either directly or by extrapolation.

4.8.1 Calculation of pressure force without extrapolation

For a stationary immersed boundary or a boundary with constant velocity, one can
assume that the gradient of the pressure in the perpendicular direction to the surface is
zero close to the boundary. Therefore, the pressure on the immersed boundary will be
the same as the pressure in the nearest cell when looking outward in the radial direction.
These pressures are located in the flow domain and updated by the governing equations
of the fluid flow. Figure 4-12 left, illustrates how, the pressure near the cylinder was
used as the pressure on top of the cylinder.

If the immersed body undergoes acceleration, the gradient of the pressure near the
IB is not negligible and the gradient of the pressure can be calculated by projecting the
momentum equation in the direction perpendicular to the immersed boundary. The

subject will be address in the Chapter 7.
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Figure 4-12: left, pressure near the immersed boundary directly used as pressure on
the boundary. Right, linear extrapolation method to calculate pressure on the immersed
boundary.
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4.8.2 Extrapolating the pressure

This method could be either linear or nonlinear (second order, exponential...). In
this research only the linear extrapolation of the pressure to the cylinder wall is studied.
For the linear extrapolation of the pressure on the cylinder, two consecutive pressure
values in the perpendicular direction to the immersed boundary are needed for each
point. Figure 4-12 shows a schematic of the extrapolation method. A line perpendicular
to the immersed boundary is used to find two pressure values at 2 locations. The first
pressure, P;j; is used directly, however, the second pressure, Pint, is interpolated using
two other pressure points. Following the calculation of P;; and Pint, the pressure on the
cylinder can be found by linear extrapolation.

4.8.3 Calculation of the shear forces around a cylinder

As it has been mentioned earlier, to calculate shear forces around the immersed
boundary it is necessary to find the gradient of the velocities around the boundary. The
gradient of velocity parallel to the cylinder is assumed to be linear at each point around
the cylinder. As the velocity of the cylinder is known (from the structural analysis), the
first step is to find the velocities in the centre of the boundary cells around the cylinder.
In the staggered arrangement, the u and v velocities in the centre of the cell are
calculated by averaging their values from the cell edges. The location of tangential
velocity around the cylinder is shown in Figure 4-13 left. In the second step, the

tangential velocity is calculated by projecting the velocities vector on the local tangent to
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the solid boundary. It is supposed that the tangential velocity is positive in the counter-
clock wise direction in order to obtain a unique formula for the calculation of the
tangential velocities around the boundary. Equation and Figure 4-13 right depict the
calculation of the tangential velocity for a specific point around the cylinder. In the final
step, shear stress and shear force on the boundary are calculated using equation (4-56).
In addition, the lift and drag forces are calculated by projecting the shear forces in x and
y direction respectively. It is worth mentioning that taking the counter clock wise
direction as the positive direction is optional and this does not change the generality of
the method. However, it should be noted that in the calculation of both the lift and drag
forces the same assumption is made.

Using the above, the total lift and drag forces around the cylinder can be calculated
by integrating their partial values around the immersed boundary.
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Figure 4-13: Calculating tangential velocity around the immersed boundary
Utan = —Usin@ + VcosO (4-54)

Utano = —Uso1iaSind + Vsgiigcos6 (4-55)

In the above equations, U.,,, and U, are the tangential velocities on the
immersed boundary and the boundary cell, respectively. The shear stress on the
boundary can be calculated by equation (4-56). In this equation dr is the distance
between U,,, and U4, in the radial direction and u is the dynamic viscosity of the
fluid.

du Utan—Utano (4'56)
T = —_—= —_—
wall = U dy ar

In general, shear stress is defined by 7 = uZ—; , however if the two side of this

equation are divided by density, then T/p = ”/pg—; and 9 = “/p . Also, in the numerical
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simulation of fluid flow for simplicity, it is assumed that u,, =1 and D = 1, so that

_ PuoD _ 1 ~1 T/ — 9% Usi
Re = =sord= /Re and therefore */p =9 ™ Using the shear stress over the

density on the immersed boundary can be calculated by T/p = 1/Re Z—z :

The above idea can be explained using non-dimensional parameters as well.

According to equation (4-7), the non-dimensional form of the shear stress is given by
equation (4-57). In equation (4-58) it is simply shown that 1/Rez_§ IS a non-dimensional
value as long as the velocity and displacement are non-dimensional.

_ T (4-57)

T =
PUo?

du (4-58)
du” 1 U 1 du T
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Figure 4-14: Location of Immersed boundary (IB), control volume (C.V.), Control
Surface (C.S.) to apply Conservation of momentum law

4.8.4 Application of momentum conservation to calculate force on IB

The accurate calculation of lift and drag forces on an IB is a challenging task,
especially when an interpolation/reconstruction IB is used. The reason is that on the one
hand the forces on the IB surface strongly depend on the formation of vortices and on
the other the way boundary conditions are forced affect vortices when using a non-
conforming mesh method. Despite the existence of extensive literature about the FSI

methods, the calculation of body forces have received much less attention (Balaras
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2004). In this section, as mentioned earlier in section 3.8.3, conservation of momentum
is applied to calculate the forces around an immersed boundary.

As illustrated in the Figure 4-14, conservation of momentum (equation (3-51)) is
applied to the control volume limited between the 1B and C.S in horizontal (x) direction
and vertical (y) direction to calculate drag and lift forces respectively.

d (4-59)
Fprag = Ef pudA — f (puy; + péy; — 71;) njds
cvV ro=cC.s

4 (4-60)
Fpife = —f pvdA — f (Pvuj + 82 — TZJ') n;ds
dt Jey ro=Cs

T

P — CV <« P
n(-1,0) «— O — n(1,0)
u——>» >y

v T ln(O,-If

Figure 4-15: Surface normal vector n, velocity (u,v) and pressure on the control
surfaces

According to the Figure 4-15, the last integrals (the control surface integral) in
equations (4-59) and (4-60) are expanded to enable calculating the lift and drag forces on
the immersed boundary. Using this, the control surface integral in equation (4-58)
becomes:

(4-61)
f (puuj +pby; — 1'1]-) n;ds
ro=c.s

- [ (uwep
C.S.west
—(—T11))d5

n j (pu(v) + (0) — (r1))ds
Cc.S.north

n j (pu(w) + () — (11))ds
C.S.east

t (un -0 - Cr)ds
C.S.south
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The first integral in (4-59)
resent the temporal changes of the momentum in the control volume.

(4-62)
f (pvuj + pdyj — rzj) n;ds
ro=cs
- [ (e
C.S.west
- (—T21))d5
t (o) + @) - @)ds
C.S.north
+ (v + - @)ds
C.S.east
R GBI G
C.S.south
Where in the above equations, the stresses 7,4, 7,2, T1, are defined by:
) ou (4-63)
Ty = —g,uV.V + Z,ua
2,07 42,20 (4-64)
Tyy = —ZUV. U=
22 3 ay
_ _ (av N ou ) (4-65)
T2 = To1 = U ax | ay

The first term on the left hand side of equations (4-59) and (4-60) become near zero

in the steady state condition and can be neglected, however, in this study in order to be

able to present the results in the transient conditions, they are integrated in the control

volume/surface (surface bounded between the IB boundary and the control surface

(C.S).

4.9 Lift and drag coefficient

The dimensionless drag, Cp, and lift, C, coefficients are defined by:

Cn = FDrag
D — 1 -
> pudD (4-66)
_ Fup (4-67)
G = LouzD
2 PUo
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where Fprqg, Frife, Py U, D are drag force, lift force, fluid density, free stream
velocity and the cylinder diameter, respectively. In these equations the value of the drag
and lift forces are dimensional. On the other hand, the values of the drag and lift forces
which are calculated in the equations (4-59) and (4-60) are non-dimensional because all
parameters on the right hand side of these equations are non-dimensional. Therefore, to
calculate the lift and drag coefficients from the drag and lift forces (equations (4-59)
and (4-60)), equations (4-66) and (4-67) become:
Cp =2 X Fppag (4-68)
C, =2 X Fp (4-69)

In addition, as discussed earlier, the drag and lift forces on a cylinder submerged in
a flow arise from two sources, the shear stress and the pressure distribution over the
body. Therefore:
Cp = 2 X Fpragp + 2 X Fprags (4-70)
CpL=2XFpifep + 2 X Fripes (4-71)

4.10 Summary

In this chapter the main body of the algorithm that is developed to simulate flow
around a solid boundary is outlined. Most of the details are explained in a way to support
the interpolation/reconstruction immersed boundary method. At the beginning, the
governing equations and their discretisation procedures are discussed. It is explained that
a fractional step method is used to update the velocities at each new time step. Then the
background Cartesian grid was introduced using a staggered arrangement of velocities.
The boundary conditions at the inlet, outlet, symmetry and immersed boundaries are
introduced in detail in Section 4.4. In chapter 7 it will be shown that the boundary
conditions play a vital role in the definition of the moving frame of reference.

One of the contributions of this research is the implementation of the immersed
boundary in a Cartesian grid using the interpolation method presented in Section 4.4.4.
In that part, the way in which velocities are interpolated near the immersed boundary is
explained. In Section 4.5 the solution algorithm is briefly explained. In this procedure,
one of the main challenges is the calculation of the pressure and the shear forces at the
cylinder due to the fact that the immersed boundary is not aligned with the grid. This

problem is addressed in sections 4.7 and 4.8. In these sections the methods used to
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calculate lift and drag forces on the immersed boundary are presented and briefly
compared. The accurate calculation of lift and drag forces is necessary to be able to
implement the fluid structure interaction for a flexible solid body. This issue is discussed
in more details in chapter 7.

In the next chapter, the algorithm outlined here is validated by comparing the
results with a bench mark. As flow around a circular cylinder has been studied
extensively, it was decided to use this as a bench mark; this case has similarities to the
simulation of the oil riser pipe, the study of which is the ultimate aim of this research.

In addition, to clarify the role of the computational grid on the results, a
comprehensive parametric study is performed for the two dimensional flow around a

circular cylinder in next chapter.
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Chapter 5. Parametric study and validation

In the previous chapter the algorithm which was developed to simulate the flow
around an immersed boundary was presented. An immersed boundary interpolation
method was used to apply the solid boundary conditions. In this chapter, the fluid flow
around a stationary cylinder in two dimensions at a low Reynolds number is selected as
a bench mark to validate the code written in FORTRAN. This bench mark has been used
by many researchers to validate their methods resulting in several experimental and
numerical simulations which are available in the literature for comparison purposes.

At first a parametric study is performed. Here, six parameters related to the size of
computational domain which might affect the simulation results are investigated. In
addition, the results of the lift and drag coefficients at low Reynolds number, Re=100 are
compared with those in the literature to assess the accuracy of the method. In this study,
the hydrodynamic forces are calculated by two methods: 1) by application of the
conservation of momentum and 2) by a direct integration of pressure and shear force on

the immersed boundary.

5.1 Parametric study

The ultimate goal of this research is to apply the strip theory to simulate the
interaction of the fluid flow and oil risers. In this theory, the flow around the cross
section of the riser is simulated at several levels along the pipe. The hydrodynamics
forces that are calculated at each level are linked through the structural model to update
the location/shape of the riser. This process is repeated several times to obtain a
converged solution at every time step. This simulation requires very high computational
power. Therefore, identifying methods that allow minimizing the computational demand
needed to solve the Fluid-Structure interaction (FSI) problems and in particular the riser
problem is of paramount importance. In this chapter the parameters that might affect the
simulation of flow around a cross section of the riser are investigated. The criterion was

to select the parameters in such a way as to minimized computational power while still
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providing acceptable results. To achieve this goal, the two-dimensional flow around a
stationary cylinder was taken as a bench mark.

In the first place a grid refinement study is performed to investigate the dependancy
of the interpolation method on the size of the mesh near the immersed boundary. Also,
the size of the compuational domain might be very important. On the one hand, the
domain boundaries should be far enough away (large computational domain) from the
cylinder to be able to neglect the effect of the boundaries on the accuracy of simulation
and, on the other, the domain should be small enough to limit the computational
demand. The overal effect of the domain in the y direction is addressed by studying the
blockage effect in the literature. The effect of the domain size upstream of the cylinder is
referred to as the entrance effect and is addressed for the first time in this thesis as far as

the author is aware. This part is labelled ’c’ in Figure 5-2.
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Figure 5-1: flow pattern around a stationary cylinder at Re=100. High pressure area
(Continuous line), low pressure area (dash line), blue and red counters are the vortices.

In general, the places where the variables exhibit large gradients are the most
sensitive regions with regard to the grid size. According to Figure 5-1, the areas around
the cylinder with very high pressure and velocities gradients coincide. Therefore a very
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dense mesh is necessary around the cylinder. On the other hand, there are hardly any
gradients far from the cylinder; therefore, a coarse mesh can be used in these locations.
To address this issue, a uniform mesh around the cylinder is used. However the size of
this uniform grid area might be important as well. To investigate this effect, the size of
uniform grid before and after the cylinder (x direction) and also the size of uniform area
in the y direction are studied separately; these lengths are identified by ‘e’, ‘f* and ‘b’ in
the Figure 5-2.

In addition, using a streching factor is necessary to maintain a coarse grid far from
the cylinder (area with low gradients) and to have a fine grid near the cylinder. The
effect of the stercthing factor is studied as well. To fulfil these criteria a comprehensive
investigation is presented in this chapter to show the effect of the domain and grid sizes

on the simulation results.
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Figure 5-2: Background Cartesian mesh- parametric studies guide.

5.1.1 Parametric study - Mesh refinement effect

The size of the mesh near the Immersed Boundary (IB) plays a significant role both
in the accuracy of the results and in the computational expenses. To find the proper
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mesh size for the numerical simulation and also maintain the second-order accuracy of
the model, a mesh refinement study is performed. In this study, the centre of the cylinder
Is located at centre of the Cartesian coordinate and the size of computational domain in
both the x and y directions is taken as [-15D,15D], and the uniform grid around the
cylinder in both the x and y directions covers the regions [-1D,1D] x[-1D,1D] (2 times of

the cylinder diameter in each direction). In this uniform area around the cylinder 6 grid
sizes ranging from 0.2D to 0.00625D are used for the simulation (see Table 5-1). A
stretching factor of 3 is used to extend the grid from uniform area to the computational
boundary in all 6 cases and the Strouhal number, the drag and the lift coefficients for the
flow problem are compared. Table 5-1 shows the details of the grids and their results.
The stretching factor helps to reduce the actual number of nodes in the grid. For
instance, in a 30D x 30D domain using a grid size of 0.2D (without stretching) the
number of points in each direction becomes 150. This number reduces to 57 grid points

when using a stretching factor of 3. The effect of stretching on hydrodynamic forces

will be discussed later in this chapter.

. . X s i 4.4 486 48 5 52 5.4 56
X X

dx=dy=0.025 dx=dy=0.0125 dx=dy=0.00625

Figure 5-3: simulation accuracy of the immersed boundary based on the mesh size
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In non-conforming boundary approaches, when the grid get finner near the
immersed boundary the shape of the cylinder (IB) is approximated more accurately.
Figure 5-3 compares the effect of the grid size close to the cylinder on the approximation
of the cylinder boundary. Clearly, the finer grids lead to a better approximation and are

likely to produce more accurate results.

Table 5-1: Results of mesh refinement study around a stationary cylinder at Re=100.

Ax = Ay Number of grid at | Total no. of grid | Strouhal Mean  drag | Max lift
each direction points No. coefficient coefficient
0.2 S7*57 3°249 0.147 1.467 0.285
0.1 109*109 11°881 0.154 1.315 0.225
0.05 213*213 45°369 0.159 1.334 0.305
0.025 423*423 178°929 0.1637 1.329 0.314
0.0125 837*837 700°569 0.174 1.327 0.315
0.00625 | 1669*1669 27785561 0.1743 1.328 0.316

Figure 5-4 presents the drag coefficient, drag due to pressure and drag due to the
shear stress for 5 different grid sizes from dx=dy=0.1D to 0.00625D. The results for
dx=dy=0.2D are not shown as it is out of the range compared to the other results. The
results show that the components of the drag (drag due to pressure and shear stress) are
more affected by the grid size than the drag coefficient. For instance, the mean drag
coefficient due to pressure reduces from 1.15 to 1.1, which is about 4.5%, when the grids
become finer from 0.1D to 0.05D; while the mean drag increased from 1.315 to 1.335,
which is about 1.5%.

In addition, Figure 5-4 and Figure 5-6 show that by increasing the number of grid
points the mean drag due to pressure reduces and converges to the value of 1.05. This
trend, however, is reversed for the drag due to the shear stress. The results show that the
mean drag due to shear stress increases and converges to a value of 0.33 by increasing
the number of the grid points in each direction from 50 to 1600. Therefore, the drag
coefficients for sufficiently fine grids (approximately finer than 0.025D) are less
dependent on the grid size due to the fact that the errors in the calculation of the drag due

to the shear stress and pressure tend to cancel one another.
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Figure 5-4: Mesh refinement study, drag, drag due to pressure and shear stress for
five different grid sizes from dx=dy=0.1 to 0.00625 around the circular cylinder

The lift coefficient, the lift due to pressure and shear stress are compared in Figure

5-6 for five different grid sizes from dx=dy=0.1 to 0.00625. The results for the grid with

dx=dy=0.2 (coarsest grid) is not shown as it is out of range in compare to the other

cases. The numerical results show that (unlike the drag coefficient components) the lift

coefficient, lift due to the pressure and the shear stress have similar trends. For instance,

if the grid sizes are reduced from 0.1D to 0.05D the total lift, lift due to pressure and lift

due to shear stress increase from 0.22 to 0.3, from 0.21 to 0.28 and from 0.01 to 0.02

respectively. Also, Figure 5-5 shows that the drag due to pressure and friction are

converging for the grid size smaller than 0.025 (see Table 5-1).
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Figure 5-6: Mesh refinement study for lift, lift due to pressure and friction for various
grid size where computational domain in x and y is [-15,15] and Stretching factor is 3.
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In addition, Figure 5-7 shows that the lift highly depends on the grid size in the
coarse grid range. For instance, the lift coefficient increases significantly from 0.225 to
0.305 by decreasing the grid size from 0.1D to 0.05D which is about a 26% rise; while
for the relatively fine grids (finer than 0.025D), the lift coefficient is less dependent on

the grid size (at low Reynolds number).
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Figure 5-7: Lift coefficient verses the number of grid points in each direction of the
domain around a stationary cylinder at Low Reynolds number, Re=100

A comparison between the results obtained for the lift and drag coefficients shows
that the lift coefficient, more than the drag coefficient, depends on the grid size for the
coarse meshes. For the fine meshes both of them are relatively independent of the grid
size. For instance, by decreasing the grid size from 0.1D to 0.05D the drag and lift
coefficients change by 1.5% and 26% respectively. A further decrease in grid size from
0.025D to 0.0125D leads only to a lift and drag coefficient change of about 0.15% and
0.3% respectively. It should be noted that for any grid size the drag coefficient is not as
grid dependent as the lift coefficient. This is due to the fact that the errors in the drag due
to the pressure and shear stress cancel each other out. For the cases dx=dy=0.025D and
0.0125D , the difference in the drag due to pressure is about 2.5% and the drag due to
shear stress changes by about 8%. However, the change in the drag coefficient is just
about 0.15%.
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Figure 5-8: The Power Spectral density of lift coefficient for six different grids size in
frequency domain, where computational domain in x and y is [-15, 15] and Stretching
factor is 3.

The numerical results also show that the Strouhal frequencies are affected most by
the coarse grids. For instance, for grid size dx=dy=0.2D, the Strouhal frequency is
0.147, which it is 4.5% lower than the Strouhal frequency for the grid size 0.1D. Figure
5-8 shows the power spectral density (PSD) of the lift coefficient for six different grid
sizes ranging from 0.2D to 0.00625D at low Reynolds flow, Re=100. For fine grids the
Strouhal number is much less dependent of the grid size and converges to the value

f:=0.164 (Figure 5-9).
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Figure 5-9: Strouhal number verses the number of grid point in each direction of the
domain around a Stationary cylinder at low Reynolds number, Re=100
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5.1.2 Parametric study — size of domain in front of cylinder

The size of the computational domain in front of the cylinder is an important

parameter in the study of the flow over a circular cylinder at low Reynolds number. To

study this effect the flow over a stationary cylinder at Re=100 is simulated. Four

different flow domain sizes ranging from 5D to 20D upstream of the cylinder are

compared, whilst other domain parameters are kept constant. The size of the domain in

the transverse direction is 30 D; the grid size in the uniform area around the cylinder is

dx=dy=0.025, and the sizes of the uniform grid area is 1D and 5D in front of and after

the cylinder in the x direction and 3D above and below the cylinder in the y direction

(Figure 5-2). The grid stretching factor for the mesh from the uniform area to the border

of the computational grid is 3.
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101



It can be seen that the size of computational domain significantly affects the results
(Figure 5-10). The drag coefficient changes by 10% (from 1.44 to the 1.32) when the
domain size changes from 5D to 20D behind the cylinder. This value is decreased by
0.6% when the size of domain in front of the cylinder is increased from 15D to 20D
(from 1.328 to 1.32). The simulation results show that this trend is similar for the drag
coefficients due to the pressure and friction. It can be concluded that the size of 15D
behind the cylinder gives sufficiently accurate results at relatively low computational
cost.

By increasing the size of the domain in front of the cylinder form 5D to 20D the lift
coefficient is affected in a similar way as with the drag coefficient (Figure 5-11). In this
case, the lift coefficient decreases from 0.337 to 0.3 (about 12%). This change becomes
less than 3%, when the sized of the domain in front of the cylinder increases from 15D
to 20D.
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Figure 5-11: Effect of the Size of the fluid domain in front of the circular cylinder in x
direction on the lift coefficient
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By using larger computational domain in front of the cylinder the simulation results
show that the lift due to pressure is affected slightly more than the lift due to friction. For
instance the lift coefficient is changed by about 12% while the computational domain in
front of the cylinder is changed from 5D to 15D. In this case, the lift force due to
pressure is changed slightly more than 13% and the lift due to the friction is changed by
less than 10%.

Another important parameter which is affected by the size of the domain in front of
the cylinder is the Strouhal number. By increasing the size of domain in front of the
cylinder from 5D to 20D this parameter is decreased from 0.173 to 0.164 (about 5.5%).
However, for a sufficiently large domain in front of the cylinder (15D and above) there

is hardly any difference in the Strouhal number results (Figure 5-12).
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Figure 5-12: The power spectral density of the Lift coefficient- Effect of the Size of the
fluid domain in front of the cylinder in x direction on the lift coefficient.

It is worth mentioning that some of the differences in the results reported by
different researcher could be explained by this parameter. For example Choi et al. 2007,
used a grid with the dimension of the 80D x 80D for their simulation and obtained 1.34,
0.315 and 0.164 for Drag, lift coefficient and Strouhal number, while Lai and Peskin

2000 used a computational domain with 6D in front of the cylinder and reported a
higher value for the drag coefficient (see Table 5-3).
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5.1.3 Parametric study — Blockage effect

In the case of flow passing a bluff body, the blockage effect was reported by

Karniadakis and Triantafyllou 1992, who showed that the simulation results will be

affected by the size of the computational domain in the cross flow direction. On the

other hand, solving the flow governing equations in a very large domain is very

expensive and might not improve the results noticeably. In this section a parametric

study is carried out to determine the minimum domain size for which the blockage effect

is negligible. To achieve this goal, the flow (low Reynolds number, Re=100) over a

circular cylinder with diameter D, is simulated for 5 different domain sizes from 10D ([-
5,5]) to 50D ([-25,25]) in y direction (perpendicular to the flow, x direction). In this

problem the cylinder is located at (x,y)=(0,0) and has equal distance to the domain’s

upper and lower boundaries.
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Figure 5-13: Effect of the size of the computational domain in the y direction on the drag
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The Hydrodynamic quantities (lift and drag) and Strouhal number for these cases
are compared. Other computational domains parameters remain constant during the
simulation; the size of the domain in the x direction is [-15D,15D]; the size of uniform
grid area around the cylinder is [-2D,4D] x [-2D,2D] in the x and y directions
respectively where dx=dy=0.025. The grid is stretched by a factor of 3 from the uniform
area around the cylinder to the domain boundaries. The numerical results show that the
blockage effect significantly affects the hydro-dynamical quantities in the small domain.

For instance, the mean drag and maximum lift coefficients for the domain with y< [-
5D,5D] are 1.43 and 0.322, respectively while for the domain y< [-10,10] these

quantities are 1.34 and 0.285, respectively. These results show that at Re=100 if the size
of domain is doubled from 10D to 20D in the cross flow direction the lift and drag

coefficients decrease by about 7 % and 12% respectively.
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Figure 5-14: Effect of the Size of the fluid domain in y direction on the Lift coefficient.
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However, as shown in Figure 5-13, for the domain that is larger than [-15D,15D]
the blockage effect on the lift and drag coefficient is very limited . For instance, by
enlarging the vertical direction of the domain from 30D to 50D, the drag coefficient only
decreases by less than 1%, and the change in the lift coefficient is negligible. Also,
Figure 5-13 shows that the blockage has similar effect on the drag coefficient, the drag
due to the pressure and the shear stress.

Figure 5-14 shows the blockage effect on the lift coefficient at low Reynolds
number. The numerical simulation shows that enlarging the domain in the cross flow
direction by more than 20D will not affect the lift coefficient.

In addition, the numerical results (Figure 5-14) show that the lift coefficient due to
the pressure is more affected by the size of the domain in the y direction than the lift
coefficient due to the shear stress. For instance, by doubling the size of domain in the
cross flow direction from 10D to 20D, the lift coefficient due to pressure and shear stress

decrease 12.3%, and about 11%, respectively.
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Figure 5-15: Power Spectral Density (PSD) of the Lift coefficient - Effect of Size of the
domain in y direction on the lift coefficient.

The Strouhal number is affected by the blockage effect as well as lifts and drag
coefficient. Figure 5-15 shows the power spectral density (PSD) of the lift coefficient
for the flow around a cylinder at Re=100 for five different domain sizes in the y
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direction from 10D to 50D. The numerical results show that for small domains the
blockage effect is more severe. For instance, by increasing the domain from 10D (the
case [-5,5] in Figure 5-15)to 20D (the case [-10,10] in Figure 5-15) the Strouhal number
changes from 0.175 to 0.168. However, for the domain that is larger than 30D (the case
[-15,15] in Figure 5-15) in the cross flow direction, the Strouhal number remains about
0.164 and does not change when further enlarging in the size of the domain in the y
direction.

Figure 5-16 to Figure 5-18 show that at low Reynolds numbers, if the size of
domain is more than 30D in the cross flow direction, the blockage effect on the lift, drag
and Strouhal number is negligible. The drag coefficient for a cylinder in the cross flow
direction at Re=100, was reported to bel.44 (by Corbalan & de Souza 2010) and 1.33
(by Kim et al. 2001); the blocking effect might be one of the reasons for this difference.
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Figure 5-16: Drag coefficient verse domain size in cross flow direction,
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Figure 5-17: Lift coefficient verse the size of domain in perpendicular direction to the
main stream velocity (cross flow direction).
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5.1.4 Parametric study — Stretching factor

According to the mesh refinement study for the flow around a bluff body (Section
5.1.1) in order to obtain accurate hydro-dynamical forces, a fine grid around the
immersed boundary is recommended. On the other hand, to minimize the blockage and
entrance length effects (Section 5.1.2 and 5.1.3) on the simulation results a relatively
large computational domain is needed. These issues lead to high computational costs. A
stretching technique allows refining the grid near the IB, while using a coarse mesh in
the outer region to ensure that the computational domain is sufficiently large. In this way
the number of grid points and the computational resources needed are minimised without
compromising the accuracy of the simulation. In this section the effect of the stretching

factor on the lift, drag and Strouhal number is presented.
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Figure 5-19: Effect of the grid stretching factor on the Drag coefficient
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To study the effect of the stretching factor, the flow around a stationary cylinder at
low Reynolds number, R=100 is simulated on a uniform grid using four grids with
stretching factors ranging from 2 to 5. Other domain parameters remain constant; the
size of domain in both the x and y directions is 30D, the size of uniform grid area around
the cylinder is 6D (2D in front and 4D after) in the x direction and 4D (2D on each side)
in y the direction. The size of the grid in the uniform grid area around the immersed
boundary is dx=dy=0.025D.
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Figure 5-20: Effect of the grid stretching factor on the Lift coefficient.

Numerical results show that the high stretching factor could slightly affect the drag
and lift coefficients and Strouhal number. Figure 5-19 and Figure 5-20 show that a
stretching factor of 5 leads to a mean drag of 1.3375 and max lift of 0.327 which is about
1% higher than the values obtained when using a stretching factor of 4, where the mean
drag coefficient is about 1.3225 and maximum lift is about 0.31. In the case where the
stretching factor is less than 4, the drag and lift coefficients are hardly affected by the
stretching factor and the simulation results are matching well with the results on the
uniform grid.

According to the Table 5-2, at Re=100 the grid-stretching could significantly reduce
the number of nodes and hence the computational expense while the lift, drag and
Strouhal number have a small effect of only one present.
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Table 5-2: parametric study of the Stretching factor, minimum grid size is 0.025D, the
domain size [-15,15] in x and y direction, and the uniform domain size [-2,4]in x and
[-2,2]iny direction.

Stretching No. grid | No. grid | Total No. CD(mean) | CL(Max) | Strouhal
factor (x (y number
direction) direction)
5 310 235 | 72°850 1.3375 0.327 | 0.166
4 385 317 | 122°045 1.3225 0.31 0.164
3 531 475 | 252°225 1.3215 0.305 | 0.164
2 771 735 | 566’685 1.3215 0.305 | 0.164
Uniform grid 1200 1200 | 1°440°000 1.3215 0.305 | 0.164

According to the Figure 5-21, the stretching factor hardly affects the Strouhal

number (the frequency of vortex shedding around a cylinder) at low Reynolds numbers.

It can be seen in this figure that the Strouhal number changes from 0.166 to 0.164 when

the stretching factor changes from 5 to 4, however there is hardly any variation in the

Strouhal number when the stretching factor becomes less than 4.
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Figure 5-21: Effect of the grid stretching factor on Strouhal number.

5.1.5 Parametric study — size of uniform area, x direction after cylinder

In the simulation of free flow passing a circular cylinder at low Reynolds number,

the gradient of the velocity and pressure are relatively high near and in the wake of the
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cylinder. Therefore, a higher resolution grid (dense mesh) is necessary in these areas in
order to obtain an accurate simulation. A coarser grid should be sufficient to resolve the
far field where the flow parameters do not vary very much. The size of uniform grid
around the cylinder should be large enough to guarantee the accuracy of the results and
it should be small enough to minimise the computational costs. In this section the
optimum size of this area downstream of the cylinder (dimension “f” in the Figure 5-2)
Is investigated. The size of the uniform mesh before the cylinder in the x direction
(dimension “e” in the Figure 5-2) and the size of the symmetric uniform mesh in the y
direction (dimension “g” in the Figure 5-2) are presented in Sections 5.1.6 and 5.1.7
respectively. The flow around a cylinder at Re=100 is simulated in two dimensions. The
overall size of the computational domain in the x and y directions is taken as [-15,15].
The size of the grid in the uniform area is dx=dy=0.025.

15¢ 135
! ~ ~ ~
14 X /

iform domain x [-1,1], y [-5,-5] / \
iform domain x [1.2], y [-5,5] / /

| iform domain x [-1,3], y [-5,5] 134 / / /

14 uniform domain x [-14], y [-5,5] L / /
‘ uniform domain x [1,5], y [-5,5] ZoneA / \ / \
\ 1 A

w
&

“\‘ / // 3 ’\ \
/| \

\7/ \

Drag Coefficient - CD
R o
Drag Coefficient - CD
g B
G
B S
N
i///
( <
—_—

131 F uniform domain x [-1,
| uniform domain x [1,2],
\ ———— uniform domain x[-1,3],
11F 2 [-1.4),
% “

uniform domain x [-1,
S uniform domain x [1,

1.05

L L L " 3 . ! ) . )
50 100 150 200 170 172 174 176 178 180
Non-dimensional time Non-dimensional time

Figure 5-22: Effect of the uniform area after the circular cylinder in x direction on the
Drag coefficient.

The size of the uniform area after the cylinder is changed from 1D to 5D while the
rest of the domain parameters remain constant. In this study the uniform domains [-1,1],
[-1,2], [-1,3], [-1,4], [-1,5] in the x direction are compared. The uniform grid area around

the cylinder in the y direction is maintained at [-5,5].
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Figure 5-23: Effect of the uniform grid area after the circular cylinder in x direction
on the lift coefficient.

Figure 5-22 shows the effect of the length of the uniform mesh after the cylinder on
the overall drag coefficient. The simulation results show about one percent increase in
the drag coefficient when the uniform area after the cylinder is changed from 5D ([-1,5])
to 1D ([-1,1]). However, when this size is changed from [-1,3] to [-1,5] the changes in
the drag coefficient were found to be negligible. Both the drag due to pressure and
friction were found to behave in a similar way.

Figure 5-23 shows the results of varying the length of the uniform grid area behind
the cylinder on the lift coefficient. The maximum lift coefficient was found to reduce
from 0.333 to 0.307 when comparing case [-1,1] to case [-1,5] respectively, which is
about 8 percent. However, the difference just changed by less than one percent when the
uniform grid size ahead of the cylinder changes from 3D to 5D. A similar trend is
observed for the lift coefficients due to pressure and shear stress. In other words, the
uniform size [-1,3] in the x direction is a good choice to obtain accurate results for both
the lift and drag coefficient.

Figure 5-24 shows the power spectral density (PSD) of the lift coefficient in the
frequency domain for different uniform sub-grid length after the cylinder in the X
direction. The results show that this parameter does not affect the Strouhal number as all
cases show the same frequency for the lift coefficient.
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Figure 5-24: Power Spectral density (PSD) of the Lift coefficient - Effect of the
uniform Size of the fluid domain after the circular cylinder in x direction on the Strouhal
number.

5.1.6 Parametric study- uniform size x direction before cylinder

In this section the effect of the uniform grid size in front of the cylinder in x
direction (dimension “e” in the Figure 5-2) on the hydrodynamic forces is investigated.
The size of the uniform grid length in front of the cylinder is changed from 1D to 5D
while the rest of the domain parameters remain unchanged. The size of the uniform
domain in the y direction is [-5,5]. Figure 5-25 shows that the mean drag coefficient
decreases from 1.3285 to 1.325 when the uniform area in front of the cylinder increases
from 1D to 2D, respectively, which is about 0.3%. However, if the size of the uniform
grid area in front of cylinder is longer than 2D, the effect of this parameter on the mean
drag coefficient is absolutely negligible. The simulation results show a similar effect on
the drag due to pressure and due to shear stress. Therefore, if the size of the uniform grid
in front of the cylinder is taken to be longer than 2D, the effect of this parameters can be
neglected at Re=100.
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Figure 5-25: Effect of the uniform grid in front of the circular cylinder in the x
direction on the drag coefficient.

Figure 5-26 hardly shows any changes in the lift coefficient due to changing the
uniform grid in front of the cylinder from 1D to 5D. Also the simulation results hardly
show any changes in the lift due to pressure and shear stress by changing this parameter.
In addition, the power spectral density of the lift coefficient results shows that the

Strouhal number is not affected by this parameter either.
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Figure 5-26: Effect of the uniform grid in front of the circular cylinder in x direction
on the Lift coefficient.

5.1.7 Parametric study- uniform grid area in y direction

In this section the effect of the size of the uniform grid area around the cylinder in
the y direction (dimension “g” in the Figure 5-2) on the lift and drag coefficient is
presented. Here, this parameter is changed from 2D ([-1,1]) to 10D ([-5,5]), while the
rest of the domain parameters remains constant. The total size of the grid in both the x
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and y directions is 30D, the uniform grid size in the x direction around the cylinder is

[-1D,5D] and the size of the grid cells around the cylinder is dx=dy=0.025D.
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Figure 5-27: Effect of the vertical extend of the uniform area around the circular
cylinder on the Drag coefficient.

Figure 5-27 andFigure 5-28 show that the drag and lift coefficients are hardly
affected by increasing the size of the uniform area around the cylinder in the y direction
beyond [-2,2].
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Figure 5-28: Effect of the vertical extends of the uniform area around the circular
cylinder on the Lift coefficient.

According to Figure 5-27, by increasing size of the uniform grid area from [-1,1] to

[-2,2] in the y direction the mean drag coefficient increases from 1.325 to 1.33
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respectively, which is less than 0.3 percent. Also, according to Figure 5-28, the
maximum lift coefficient changes from 0.303 to 0.309 when the size of the uniform grid
in the y direction is changed from [-1,1] to [-2,2] which is less than 0.6%. The
simulation results show a similar trend for the lift and drag due to pressure and shear
stress. Moreover, the power spectral density (PSD) of the lift coefficient shows that the
Strouhal frequency is not affected at all by changing the size of uniform grid area in the

y direction.

5.2 Validation

In this section, the numerical code and the IB interpolation method are validated by
comparison with other numerical and experimental results presented in the literature.
The flow around a stationary circular cylinder at a low Reynolds number of Re=100 is
chosen as a bench mark. According to the parametric study presented, the domain sizes
in the x and y directions are selected as [-15D, 15D] while the uniform grid area in the x

and y directions around the cylinder is [-2,4] x[-2,2] (see Figure 5-29). The grid size in

the uniform area is 0.025D and the grid is stretched towards the computational
boundaries by a stretching factor of 3. The numerical results for the lift and drag
coefficients and the Strouhal number are compared with those given the literature.
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Figure 5-29: Schematic of the computational domain
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A Dirichlet boundary conditions (U,=1 and V=0) is applied at the inflow; to model
the far field a symmetric boundary (U(i,ny)=U(i,ny-1) and V(i,ny)=0) is used while a

convective boundary condition is applied at the outflow.
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Figure 5-30: Drag coefficient, Drag due to pressure and friction for a stationary
cylinder at Re=100 versus non dimensional time.

Figure 5-30 shows the drag coefficient plotted against the non-dimensional
simulation time. The results took about 150 non-dimensional time units to reach the
steady state solution without adding an external perturbation to trigger the vortex
shedding. The drag due to the shear stress and the pressure are integrated around the
cylinder to obtain the total drag coefficient.

At Re=100 the mean drag coefficient, the drag due to pressure and shear stress are
1.325, 1.05, 0.275 respectively. Also, according to the Table 5-3 the results match the
experimental and other numerical results very well.

Figure 5-31 presents the numerical results for the lift coefficient at Re=100. The
results show that the amplitude of the lift due to the pressure dominates the lift
coefficient. The simulation results show that the amplitude of lift coefficient, lift due to
pressure and shear stress are about 0.31, 0.282 and 0.03, respectively. The pattern of the
lift and drag coefficient and also the Strouhal number (St=0.164) are matching very well

with the literature.
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Figure 5-31: Lift coefficient, the lift due to pressure and friction for a stationary
cylinder at Re=100 verses non dimensional time.

The flow around a cylinder is a well-known test case which has received a great
deal of attention in the literature. Table 5-3 shows the results of a few of these studies
(more details are presented on chapter 6). Interestingly, the reported results show
differences of about 10% and 7% between the reported drag and lift coefficients
respectively. At first glance it looks like these differences are due to the various
algorithms and approaches that have been applied to solve the problem. Some of the
differences are caused by the use of various computational domain sizes. Apart from the
mesh sizes that were employed, also the size of the computational domain maybe one of
the causes of these differences. The size of domain could affect the results in three ways,
either the domain is not high enough to prevent the blockage effect, or the length of the
domain before the cylinder is not large enough to prevent an inflow effect or the size of
the domain after the cylinder is not large enough to be able to neglect the outflow
affecting the simulation results. For instance, the size of the domain in front of the
cylinder in the case of Corbalan & de Souza 2010 is 6.5D and in the case of Lai &
Peskin (2000) is about 6D (1.85/0.3), the higher mean drag that is predicted in
comparison to the other cases (for instance Kim et al. 2001) was due to the use of the
relatively small inflow domain used by former researcher in front of the cylinder.

In addition, in the simulation of Lima E Silva et al. 2003, the inflow length is
sufficiently long but the blockage effect due to the limited vertical extend of the domain

causes the drag coefficient increases to 1.39.
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According to the parametric study conducted in this chapter for the flow around the
cylinder at Re=100, the size of the domain before the cylinder should be more than 15D
and the size of the domain in the cross flow direction should be more than 30D in order
to ensure that domain size does not influence the drag coefficient. In all cases, the size of
domain after the cylinder was long enough to prevent an additional effect on the drag
coefficient form the outflow boundary condition. According to Table 5-3 , the size of the
computational domain has a similar effect on both lift and Strouhal number as well as on
the drag coefficient (more results are presented on Table 6-2).

Table 5-3: Drag, lift and Strouhal number for present study and well known
numerical and experimental studies for the flow around a circular cylinder at low Re=100.

Domain Domain Domain D CD CL St.
before size in y |size in X

cylinder direction cylinder

Corbalan & de souza | 6.5D 15D 19.2D 1144 +0.31 | -
2010
(IB- Force)

Lima E Silva et al. 16D 15D 30D 11.39
2003 (IB- PVM)

Lai & Peskin 2000 1.85 8 8 0.3 1447 | £0.329 | 0.165
(IB- Force)

Kimetal. 2001 | ——eemmmm- 100D 70D 1133 +0.32 | 0.165
(IB- Force+ mass
source)

Roshko1954 | ccmmmmeeee | mmmmmeem | mmmeeee 0.164
(experiment)

Williamson 1988 | ccemmmmem | e | s 0.166
(experiment)

Present study (IB — 15D 30D 30D 11133 +0.31 | 0.164
Interpolation)

5.3 Summary

Fluid Structure Interaction (FSI) has received a great deal attention in the recent
decades and many approaches have been adopted to solve this problem. In this thesis,
the focus is on the Immersed Boundary approach with interpolation/reconstruction
methodology. On the one hand, the IB method makes it possible to model FSI problems
with complex boundary and large structural displacement, on the other the 1B method
needs special care and a high mesh resolution near the immersed boundary. In general
FSI problems, and in particular IB approach, are relatively expensive and therefore a
selection of optimum parameters to model this problem is important. In this chapter the

developed methodology and code is validated and a comprehensive parametric study is
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conducted for flow around a stationary cylinder at low Reynolds number, Re=100. This
particular case is a well-known benchmark and several experimental and computational
results are reported in the literature. It is shown that the size of the domain significantly
affects the flow parameters and this could be a potential reason for some of the
discrepancies in results reported in the literature. Numerical simulation results show that
if the size of the domain is increased from 5D to 10D before the cylinder, the lift and
drag coefficients decrease by about 10%. However, a further enlargement of the domain
does not change these values any more. In addition, the size of the domain in the cross
flow direction is important. When the size of the domain in the y direction is increased
from 10D to 25D, the lift and drag coefficients decrease by about 10%.

However, numerical results show that the sizes of the uniform grid patch around
the cylinder and the grid stretching factor only have a limited effect on the lift and drag
coefficients. The results show that any size of the uniform grid area in the y direction
larger than [-2,2] does not affect the results. Also, the uniform size in the x direction is
proposed to be [-2,4] to limit affecting the flow parameters. Also, stretching factor less
than 4, have very limited influence on the lift and drag coefficients.

In addition, the Strouhal number and lift and drag coefficients for the optimum
domain sizes were compared with the reported values in the literature. All the
parameters were found to be in very good agreement with the numerical and
experimental results reported elsewhere.

In the next chapter, the present IB approach is compared with alternative

interpolation/reconstruction methods reported in the literature.
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Chapter 6. Comparative study of the interpolation

methods - Stationary cylinder

Peskin 1972 introduced the Immersed boundary (IB) approach. In this method,
using a Cartesian grid the solid boundary is imposed on the flow by adding a forcing
function to the flow equations. Since 1972, Peskin’s method has been developed further
by many researchers (see Chapter 3 for more details) and most of the modern immersed
boundary approaches use an interpolation procedure to enforce the non-grid conforming
boundaries. In the direct forcing approaches, the interpolation is used to implement the
forcing functions at the interface cells in order to enforce the immersed boundary on the
governing equations. In the IB interpolation method, the forcing function, f, which is
needed to enforce the boundary conditions is not calculated directly; but instead, the
flow velocity is interpolated at the interface cells and the solid boundary is imposed
indirectly on the discrete equations. The interface points are identified as those points in
the fluid domain whose at least one of its neighbouring points is inside the solid domain.
Therefore, the flow parameters (i.e. velocities and pressures) related to these points
cannot be updated directly by the governing equation (Figure 3-2right). Any cells that
contain one or more interface points are called the interface cells. In the indirect forcing
approach (interpolations approach), at every time step the flow parameters in the
interface cells are updated by direct interpolation formulas and the results are used as the
boundary condition in the flow solver. In this chapter, the flow around a circular cylinder
at low Reynolds number is selected as a bench mark and four IB
interpolation/reconstruction methods which have been introduced previously in the
literature review chapter are compared with the proposed interpolation method in this

research.

6.1 Governing equation and computational domain

The unsteady, incompressible Navier-Stokes equations (4-3) are used as the
governing equations. A staggered variable arrangement, as introduced by Harlow and
Welch 1965, is used to discretize the governing equations on a Cartesian grid (equations
(4-11) to (4-20)). The continuity equation is enforced by taking the divergence of the

momentum equations to form a Poisson equation for the pressure (equations (4-32) to
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(4-36)). The governing equations were solved by a two steps fractional method
(equations (4-22) and (4-23)).

Based on the parametric study conducted in chapter 5, the size of the computational
domain is selected in a way to ensure that the boundaries have limited effect on the
simulation results (Figure 6-1). Therefore, the size of the domain in y and x directions
are taken to be 20D and 15D, respectively and the grid size is chosen to be
dx=dy=0.05D which is the coarsest grid that gives acceptable results (according to the
mesh refinement study presented in section 5.1.1).

Since the entire domain is meshed using a uniform Cartesian grid, the
implementation of the grid-conforming inlet, outlet and side boundary conditions was
straightforward and the boundary conditions along the circular cylinder are implemented
using five different immersed boundary interpolation methods.

20 - —
Free slip boundary condition
15
i (Cirﬁnlr;ts)tant velocity Convective out-flow
B boundary condition
B No-Slip
Boundary condition
B around the cylinder
&)
= 10}
> -
5 -
[ Free slip boundary condition
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0] 5 10 15

X/D

Figure 6-1: Fluid domain size and boundary conditions.

6.2 Interpolation method cases

Several methods are used in the literature to interpolate/reconstruct the velocity in
the boundary cells near the immersed boundary (section 3.3). Four interpolation methods
plus the interpolation method introduced in this thesis are compared to one another. To
do so, the first step is to define the interface cells in the specific geometry, which could

be complicated for geometries with unknown analytical functions (laccarino & Verzicco
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2003). Here, the flow around a stationary circular cylinder at low Reynolds number,
Re=100 is selected as a bench mark. The next step is to determine the interpolation
formulas for each individual interpolation method. These formulas will be used to
update the flow parameters (velocities and pressure) in the interface cells adjacent to the
solid boundaries. The flow solver uses these values as the boundary conditions for the
rest of the flow domain. In the following part, these interpolation methods are explained

briefly.

6.2.1 Case A: No interpolation

The simplest possible method is to add the interface cells to the solid domain. In
this case an interpolation is not needed and the solid boundary assumes a stepwise shape
(Figure 3-5a). The immersed boundary is diffused, in the staggered variable arrangement
as the velocity components are defined at different sides of an element. Fadlun et al.
2000 proposed a similar method for imposing forcing functions for the immersed
boundaries. As no interpolation is conducted in this method, it is expected to be
relatively faster while still giving acceptable results. In the case of a moving body
(displacement/ deformation) this method is potentially more efficient as the interpolation
formulas do not need to be updated in the course of the displacement/deformation. In the
simulation of the flow around a complex geometry with curved boundaries, this method
could lead to inaccurate results for the lift and drag coefficient when using relatively
course grids. On a fine grid this method could give more accurate results, but this would
compromise the advantage of the method which is the lower computational demand.

6.2.2 Case B: Weighting method

This method is similar to the one discussed above as Case A. The major difference
is that the values for the velocities in the boundary cells are associated with the area of
the cell which is covered by the fluid over the total cell area. In this method the area of
cells which are common between the fluid and structures are used to calculate this
weighting coefficients. Figure 3-5 (right) shows the location of these weighted
boundary velocities in the cells that are part fluid and part solid. For each of the velocity
components a coefficient is determined that corresponds to the ratio of the fluid part of

the two adjacent cells to the whole area of the two cells.
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6.2.3 Case C: linear interpolation method

The third method is a linear interpolation method where the velocities in the
interface cells are calculated by interpolating between the velocity at the solid boundary
applying the no slip condition and one point in the fluid domain. Fadlun et al. 2000
suggested using this interpolation method to enforce the boundary condition to the fluid
domain in the forcing IB approaches. The linear interpolation is ideal for the problems in
which the immersed boundaries are parallel to the Cartesian grids lines. The advantage
of this method is that the interpolation formula is simple as the interpolation points
coincide with grid nodes on the Cartesian coordinates where the velocities are defined in
the discretised governing equations; however for the inclined and curved immersed
boundaries the interpolation direction (either x or y direction in two dimensional

simulation) might slightly affect the simulation results.

Figure 6-2: Bilinear proposed interpolation in this study for the cells near the solid
boundary in vertical (Left) and horizontal (right) velocity components.

6.2.4 Case D: Bilinear interpolation method

Kang et al. 2009 presented various interpolation methods for the immersed
boundary method in two dimensions considering the effect of the pressure near the
boundary as well as velocity in the previous time step. In this comparison study his
interpolation schemes where only involve a pure velocity interpolation were selected. In
the Standard Reconstruction method (SRM), Kang et al. 2009, used the two
neighbouring velocities in the horizontal and vertical directions that were located closest
to the immersed boundary to interpolate velocities at the interface points (Figure 3-9).
The resulting interpolation formula for the velocity in the horizontal direction is
presented by equation (3-15), where the coefficients represent the interpolation weights.

This method is similar to the linear methods (Case C), however, interpolations are
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performed in both x and y directions in order to find boundary velocities. For some
points, due to the curvature of the immersed boundary, the interpolation is only possible
in one of the directions; therefore this method reduces to a linear interpolation method at

those points (Figure 3-10).

6.2.5 Case E: Proposed interpolation method

The bilinear interpolation method proposed in this paper is based on interpolating
the boundary velocity values in the direction perpendicular to the immersed boundary. In
this method, perpendicular lines from the boundary surface are drawn which intersect
the locations of the boundary velocities and cut the line between the first two known
velocities in the fluid domain (Point A, Figure 6-2 right). The velocity is interpolated
between two known velocities at the intersection point A. Then, the boundary cell
velocity values will be interpolated using the solid boundary velocity (for a stationary
cylinder with no-slip conditions this velocity is zero) and the velocity at point A. Figure
6-2 (left) shows this interpolation for velocities in the y direction and Figure 6-2 (right)
shows the interpolation for the velocity in the x direction.

There are some alternative interpolation methods presented in the literature that
interpolate the interface cell velocities in the perpendicular direction to the immersed
boundary (Balaras 2004, Gilmanov et al. 2003 among others); but in these methods the
procedure to find the interpolation points is very time consuming (see section 3.3.3). For
the stationary cases, the interpolation formulas are calculated only once, prior to the
simulation, and at each time step the values of the boundary cells are updated using the
same formulas. However, as for the problems with moving immersed boundaries, the
interpolation formulas should be recalculated at each time step, the interpolation method

should not be too time consuming to execute.

6.3 Results and discussion

The flow around a stationary circular cylinder at low Reynolds number, Re=100, is
taken as a bench mark. Five different interpolation treatments are implemented
separately to represent the immersed boundary (the circular cylinder). The Strouhal
number (St), drag (CD) and lift (CL) coefficients for various cases are compared.

For any solid body both the pressure distribution and the friction along the solid
surface may contribute to the lift and drag forces. In this chapter, the pressure at the

surface is obtained by taking the wall-nearest pressure values in the flow domain on the
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outside of the solid body, thereby assuming that the wall normal gradient of the pressure
near the surface is negligibly small. The component of the drag and lift forces due to
pressure distribution is calculated by integrating the pressure along the solid boundary.
On the other hand, the shear-force component of the lift and drag forces is calculated
from near the surface of the solid. The tangential velocity near the solid surface is
obtained at the wall-nearest point outside of the body and is subsequently used to

calculate the wall-shear stress at the cylinder surface (see chapter 4 for more details).

Table 6-1: Real computational time, 20 vortex shedding
Case A | Case B | Case C | Case D | Case E

Real 3231 | 3225 | 3379 |4441 | 3383

time (s)

The simulation times for 20 complete vortex shedding periods are measured for
these five different interpolation cases. Once vortex shedding commenced all
simulations were found to run at virtually the same speed (Table 6-1) showing that the
computational effort needed for the interpolation was negligible as most of the
computational time (more than 70%) is taken by the Pressure Poisson solver. However,
for a non-stationary cylinder, it is expected that updating the interpolation formulas may
lead to an increment in the execution time for the linear and bilinear methods.

Figure 6-3 (left) shows that Case C (linear interpolation) is the quickest method to
develop vortex shedding, which indicates that the implementation of boundary
conditions with linear interpolation causes significant numerical noise. In Case E
(proposed bilinear method), on the other hand, the vortex-shedding instability kicks in
much later evidencing that the level of numerical noise introduced by this type of
interpolation is very small.

Figure 6-3 (right), shows a comparison of the drag coefficients obtained in
calculations of flow over a stationary cylinder at Re=100 using various interpolation
methods. It can be seen that in the cases C, D and E, (linear and Bilinear interpolation
methods) the results are converging to a value of Cp = 1.43. However, Case A (without
interpolation) leads to a higher drag coefficient, CD=1.46 and Case B (weighting
method) leads to a lower drag coefficient CD=1.42. In the literature for this bench mark
(at Re=100), the drag coefficient is reported in the range from 1.33 to 1.47 (Table 6-2).
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Therefore, all the interpolation methods are predicting acceptable values for the drag

coefficient.
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Figure 6-3: Drag coefficient for the flow around a stationary cylinder at Re=100, Case
A, without interpolation; Case B: area weighting method; Case C, Linear interpolation
method; Case D, Bilinear interpolation; Case E, Suggested bilinear interpolation.

The drag coefficient due to pressure and shear stress show a slightly different
behaviour (Figure 6-4). The drag coefficient due to the pressure for linear (case C) and
bilinear (cases D and E) methods are about 1.18, however for Case A (without
interpolation) and case B (weighting method) these values are 1.11 and 1.06
respectively. The results show that both case A and B predict smaller values (by about
8%) pressure drag coefficient in comparison to the other linear and bilinear interpolation
methods.

On the other hand, in the case A and B, the mean drag coefficient due to shear stress
(Figure 6-4 right) are predicted to be 0.345 and 0.355 respectively, which is about 40%
higher than the values predicted by linear and bilinear methods (case C, D and E) which
are about 0.245. The numerical results show that the two cases A and B are predicting a
lower value for the drag coefficient due to the pressure (about 8%) and a higher value for
the drag due to the shear stress (about 40%) in comparison to the linear and bilinear
cases. But the drag coefficient for cases A and B differ only about 2% from those
obtained in the other interpolation methods. This can be explained by the fact that
accumulated errors are cancelling out. Therefore, it is important to notice that the

difference among the methods should not be judged only by the drag coefficient and the
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drag components should be investigated as well. In addition, according to the Figure 6-3
right and Figure 6-4, in the linear and bilinear interpolation (case C, D and E) methods,
the drag coefficient, the drag due to pressure and drag due to the shear stress are
converging nearly to the same values. The numerical results confirm that the suggested
bilinear interpolation method (case E) has the same accuracy as the linear (case C) and

bilinear (case D) methods.
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Figure 6-4: Drag coefficient due to pressure (left) and due to shear stress (right) for
the flow around a stationary cylinder at Re=100, Case A, without interpolation; Case B:
area weighting method; Case C, Linear interpolation method; Case D, Bilinear
interpolationl; Case E, proposed bilinear interpolation method
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Figure 6-5: Lift coefficient for the flow around a stationary cylinder at Re=100, Case
A, without interpolation; Case B: area weighting method; Case C, Linear interpolation
method; Case D, Bilinear interpolation method; Case E, suggested bilinear interpolation
method
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Figure 6-5 and Figure 6-6 show the comparison of the lift coefficients for the
various interpolation cases. It can be seen that, like the drag coefficients, also the lift
coefficients for the bilinear cases are nearly the same (Case D and E) with CL ~ +0.31.
Case B (weighting method) shows the lowest value for the lift (CL = £0.27) and Case C
(linear interpolation), shows the highest value for the lift coefficient (CL=%0.325).

The simulation results show that the lift coefficient predicted by the linear (case C)
and bilinear (case D and E) methods are matching well with the results reported in the
literature (Table 6-2). However Case A (without interpolation) and case B (weighting
method) show a lift coefficient that is slightly lower than the values reported in the
literature.

The Power Spectral density (PSD) of the lift coefficient is presented in the Figure
6-7. The PSD graph illustrates that interpolation methods could affect the frequency of
the vortex shedding (Strouhal number) for the stationary cylinder. The numerical results
show that, apart from cases A (without interpolation) and B (weighting method) that
predict a higher Strouhal number (0.174 and 0.176), the other interpolation methods do
not affect severely the Strouhal number. The Strouhal number for the linear interpolation
method (Case C), for the bilinear interpolation method (Case D) and for the proposed

bilinear interpolation method (Case E) is predicted about 0.169.
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Figure 6-6: Lift coefficient due to pressure (left) and shear stress (right) for the flow
around a stationary cylinder at Re=100. Case A, without interpolation method; Case B:

area weighting method; Case C, Linear interpolation method; Case D, Bilinear

interpolation method; Case E, suggested Bilinear interpolation

In the numerical literature, the Strouhal number for the flow around a circular

cylinder at Re=100 is reported in the range from 0.164 to 0.175. However, most of the
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experimental results reported show a Strouhal number in the range from 0.164 to 0.167.
According to the parametric study (Chapter 6), the reason that these numerical
simulations present higher values for the Strouhal number is related to the entrance
length (before the cylinder), which it is taken to be 5D in this chapter.

Power Spectral Density (PSD)

0.15 0.
Strouhal frequency

Figure 6-7: Power Spectral density of the lift coefficient; five different interpolation
methods

Table 6-2: Strouhal number, lift and drag coefficient for the flow around a stationary
cylinder and Re=100.

Strouhal Drag Lift
simulation methods Number Coefficient | coefficient
Case A 0.174 1.46 0.29
Case B 0.175 1.42 0.27
Case C 0.169 1.432 0.325
Case D 0.169 1.434 0.305
Case E 0.168 1.432 0.312
Park 1998, fitted method 0.165 1.33 0.33
Williamson 1988(exp.) 0.166
Kim et al. 2001 0.165 1.33 0.32
Roshko 1954(exp.) 0.164
Lai and Peskin 2000 0.165 1.4473 0.3299
Choi et al. 2007 1.351 0.315
Corbalan & de Souza 2010 1.44 0.31
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Table 6-2 shows a comparison of the Strouhal number, lift and drag coefficient for
the flow around a stationary cylinder at Re=100 using various methods; ranging from the
experimental methods (Roshko 1954 and Willamsion 1988) to the body fitted mesh
(Park et al. 1998) and immersed boundary methods (Kim et al. 2001, Lai & Peskin 2000,
Choi et al. 2007 and Corbalan & de Souza 2010). It can be seen that the Strouhal number
varies between 0.16 and 0.18; the drag coefficient between 1.33 and 1.4473 and the lift
coefficient between 0.31 and 0.33.

6.4 Conclusion

The objective of the present study was to compare the accuracy and computational
efficiency of various IB interpolation methods and select the most accurate and least
expensive method for future use in the simulations of flow around a deformable
cylinder. The fractional step method and a staggered variable arrangement on a
Cartesian grid have been used to solve the governing equations. In the proposed IB
method the velocities near non-conforming boundaries were interpolated in the normal
direction to the walls, thereby considering the curvature of the geometry. The Strouhal
number, drag and lift coefficient for 5 different IB interpolation methods are compared.
The overall results show a good agreement with the literature for most of the
interpolation methods for the stationary cylinder at a low Reynolds number, Re=100.
The drag coefficient results for the five different interpolation methods differ by no more
that 2%, while the drag due to shear stress shows differences of up to 40% due to the
accumulated errors, however simulation results only show a 2% difference in drag
coefficients. The Strouhal numbers for five different interpolation methods differ only
by a maximum of 3%. The simulation results show a difference of about 15% on the lift
coefficient between the interpolation methods. However the lift coefficients calculated
by linear and bilinear interpolation methods were formed to match well with literature.

In addition, the bilinear interpolation method took about 2% more computational
time per vortex shedding cycle compared to the other methods. In the next chapter the
proposed interpolation method is used to simulate body cross flow oscillation of a

circular cylinder.
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Chapter 7. Body cross flow oscillation

Having studying the flow over a stationary bluff body in previous chapters, the
focus of this chapter is on the flow over a moving body with a degree of freedom in the
cross flow direction. This chapter briefly presents the theory and governing equations
necessary to simulate a moving body in a uniform stream. Also, it is explained how the
Navier-Stokes equations with IB interpolation are modified to allow modelling of a
moving boundary in the presence of either forced oscillations or with prescribed motion
and Vortex-Induced Vibrations (VIV) in the cross flow. In this model the IB
interpolation technique is used to represent the immersed boundary on a Cartesian grid.
To simulate the FSI problem, two approaches are followed; an inertial frame of
reference and a moving (non-inertial) frame of reference. In the latter case, the frame of
reference is attached to the body and the governing equations are solved in a relative

frame of reference.

7.1 Forced Oscillation of a body in cross flow direction

In a forced excitation of a body, the body oscillates at the forcing frequency with a
prescribed motion in the cross flow direction. At some specific range of oscillation the
frequency of vortex shedding around the body becomes similar to the oscillation
frequency. From the literature it is known that the frequency of vortex shedding can be
controlled for a limited range of reduced velocities, where the vortex shedding frequency
and the body oscillation frequency become synchronized. This phenomenon is usually
known as ‘lock-in’. Simulation results show that the lock-in occurs only in a frequency
range close to the system’s natural frequency, above a threshold of oscillation amplitude.
The lock-in range increases with increasing the amplitude (Figure 1-4). Moreover, a
dramatic change might occur in the flow patterns and lift and drag forces by increasing
the oscillation amplitude in the lock-in region. Another important issue in a cross flow
oscillation is the phase change between the vortex shedding and the forced oscillation. In
some cases the amplitude of the lift coefficient for the vibrating cylinder is lower than a
stationary case, due to the fact that the inertial part of the lift force dominates in this
range of oscillations and has a different phase than the lift due to the vortex shedding.
This issue in low amplitude vibration could lead to a lock-in and beating pattern. The

body’s motion in the y direction is defined as a sinusoidal motion as,
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Ve(t) = AgySin(wt) = AgySin(2mft) (7-1)

Where y,(t) is the location of the centre of the cylinder and A,,, w and f is the

amplitude, the frequency in rad/s and the frequency in Hz of the prescribe oscillation,
respectively.

7.2 Fluid-Structure interaction due to Vortex induced Vibration

When a flow passes a bluff body, Fluid-Structure Interaction (FSI) and vortex
shedding phenomena may incur the bluff body to oscillate. This oscillation is known as
Vortex-Induced Vibration (VIV) in the literature. If the frequencies of the VIV and the
natural frequency of the structure become similar, the flow may induce resonance in the
structure. The governing equation of a structure (Figure 7-1) that is flexible (one degree

of freedom) in the cross flow direction is given by:
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Figure 7-1: Flow over a circular cylinder at two dimensions with vertical degree of
freedom
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Where m, C and K are mass, damping and stiffness of the structure, respectively,
while y corresponds to the transverse displacement of the centre of the body. F, is the
hydrodynamic force in the cross flow direction. The same non-dimensional scaling as in
the flow governing equation is applied here to non-dimensionalize the structural
governing equation.

d?y*

dt*?

mm*

dy™  ram\? . 2xcu) (7-3)
()=
Where, the non-dimensional parameters are labelled by a “*’. In the reminder of this

+2><€><(?/—’:)

thesis this sign is dropped for simplicity. V. :% is the reduced velocity where
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fn =G \/é is the natural frequency of the undamped structural system (mass and

spring), U, and D are the free stream velocity and cylinder diameter, respectively (the
same reference scales as used to non-dimensionalized the Navier-Stokes equations) .

C, = —L— is the lift coefficient where p is the fluid density and L. is the length of the

3pU3,DLc

cylinder (This length is assumed to be Lc=1 in the two dimensional simulation).

m'="=__"__is the mass ratio, i.e. the mass of the structure (cylinder) m, over
f Pf”([;—z>llc

the mass of the fluid replaced by the structure m;. y* = Zis the non-dimensionalized

vertical displacement. t* = tx% iIs the non-dimensional time and E=C£C is the

structural damping ratio where ¢, = 2+km is the critical damping.

In an FSI simulation, at every time step the hydrodynamic forces are calculated by
solving the flow governing equations and the displacement of the structure based on
these forces is predicted. In the same time step the flow governing equations for the new
configuration of the structure is solved to predict the new hydrodynamic forces. This
process is continued iteratively to obtain a converged solution with the convergance
criteria being a constant position of the structure before going to the next time step i.e
strong coupling.

The free vibration (VIV) and forced vibration of a structure can be presented in
either a moving frame of reference or an inertial frame of reference. In the following
sections these two approaches are briefly presented. Also, the simulation results based

on these two approaches will be compared.

7.3 First approach-moving frame of reference

In this approach the reference frame is fixed to the moving body and the boundary
conditions are defined in a way to resemble the same problem for an observer moving
with the body. This can be explained due the fact that the flow about a circular cylinder
forced to oscillate in the transverse direction to a free stream is kinematically the same
as the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross
flow. It should be noted that these two flows differ dynamically due to the inertial
effects. This effect is known as the Froude-Krylov force in the literature (Meneghini and
Bearman1995).
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D d*Ysonia -
Cr, = (CL)retative frame + 202 dzg l

In this equation C; is the lift coefficient in the inertial frame of reference,
(CL)retative frame 18 the lift coefficient which is calculated in the moving frame of

2
d*Ysolid

D
reference and —
202 dt?

is the non-dimensional inertial term for a circular cylinder. D is

dz}’solid
dt?

the cylinder diameter and is the acceleration of the cylinder in the inertial frame

of reference.

In the discussion of the methodology (Chapter 4) it was explained that regardless of
the simulation approach (conforming grid, e.g. ALE or non-conforming grid, e.g. IB), it
is possible to simulate moving boundaries in a non-inertial frame of reference. The
combination of the conforming grid approach with a non-inertial frame of reference
could be the best algorithm to simulate FSI for a single two dimensional rigid body
motion in fluid flow. On the other hand, the relative reference frame could improve non-
conforming grid approaches significantly as the IB formulation does not need to be
updated because relative displacement of the body and the background computational
grid is zero. In this approach, the governing equation of the flow is solved in a moving
reference frame which is attached to the cylinder. To solve the governing equation in the
relative frame two fundamental changes are necessary. First of all, the governing
equation should be derived in the relative frame of reference. This subject has been
addressed in section 3.5 for a general case. The Navier-Stokes equation in the relative
frame of reference has additional terms to compensate for the effect of the moving frame
in the calculation. Also, the boundary conditions should be introduced in the relative
reference frame as well. Here, only the movement in the transverse direction is
considered. The updating of the governing equations and boundary conditions is

described below.

7.3.1 Moving frame-governing equation

Equations (3-35) to (3-39) govern the flow in the moving frame of reference given a
general movement in the two dimensional case. For the movement of the body in the
cross flow direction the governing equations can be written as:

VV=0 (7-5)
(7-6)

oV .
=+ VUV = —Vp+0V?V—d
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In these equations the velocities are all relative. The G(v, t) term in equation (3-37)
is simplified to only d which is the transverse acceleration of the moving body in the
inertial frame of reference. The other terms in equation (3-37) cancel due to the fact that
the moving frame is not rotating, hence # = 6 = 6 = 0 and the rotation matrix A =
AT = 1. For instance, in the case of a transverse sinusoidal oscillation (equation (7-1)) of
the cylinder, d reads:

d = §.(t) = —Agyw?Sin(wt) (7-7)

7.3.2 Moving frame-velocity boundary conditions

The boundary conditions should be applied in the relative frame of reference.
Equation (3-39) ows the velocity in the relative frame of reference. For the transverse
oscillation of the body the frame does not have an angular velocity, i.e. & = 0, hence

V=V —d=V —y.(t) =V — AgywCos(wt) (7-8)

Vis the velocity in the absolute frame of reference, in this frame a symmetric
boundary condition is applied in the top and bottom of the computational domain hence
in the absolute frame of reference the velocities normal to this boundaries are zero,
V = 0. Therefore equation (7-8) can be simplified for the above case (movement of
body in the transverse direction) to give:

V=—d=-y.(t) = —ApywCos(wt) (7-9)

7.3.3 Moving frame-Neumann boundary for pressure Poisson equation

Finding a proper pressure boundary condition for the elliptic pressure Poisson
equation (PPE), equation (7-10) , has been the subject of some controversy (Gresho &
Sani 1987 and Sani et al. 2006). First of all, as a necessary condition for the existence of
a solution to a problem with a Neumann boundary condition (equation (7-11)), the
boundary condition should be well-posed i.e. the source and the boundary data should

satisfy the compatibility condition (equation (7-13)).

—Vzp =f (7-10)
dp _ (7-11)
an 9

The compatibility condition is obtained by applying the divergence theorem (also

known as Gauss’ theorem) to the integration of the Poisson equation over the domain
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(equation (7-12)). To do so, the Laplace operator is written as the divergence of the

gradient vector.

_ I e (7-12)
Jroe-fum=fg=)s

Q
f9+ff:0 (7-13)
0 Q

More precisely, equation (7-13) states that the outward flux of the vector field
(gradient of pressure on the boundaries) is equal to the volume integral (here surface) of
the divergence (of the pressure gradient) over the region inside the boundaries. In other
words, it states that the sum of all sources minus the sum of all sinks gives the net flow
out of a region.

A natural method to define the Neumann boundary for the pressure is by using the
normal component of the momentum equation at the boundaries (Blackburn and
Henderson 1999). By taking the dot product of the domain outward normal unit vector,

n, with the momentum equation (7-6), the Neumann pressure boundary condition is

obtained as
dp ov . (7-14)
an =%= —n- [E+VVV+I9(VXVXV)+Ad]

In the above equation, according to the suggestion of the Orsag et al. 1986, the
viscous term is presented by using the vectors identify:
V2V =V(V:V) -V XVXV (7-15)

Also, Blackburn and Henderson 1999 suggested writing the non-linear term
(convection term) as a skew symmetric form (equation (7-16)).
V-VW=(V-VW+V-VV)/2 (7-16)

7.3.4 Moving frame of reference algorithm

Using a non-inertial reference frame allows to simulate FSI problems with moving
boundaries in a fixed Cartesian grid (as compared to an ALE approach with
moving/deforming grid) while the interpolation coefficient maintains unchanged (in
comparison to an IB approach in an inertial frame). Therefore using a moving frame of
reference would be potentially an efficient approach; however this method is limited to a
single moving object or synchronised moving objects. The algorithm for the simulation

of a forced vibration of a rigid body using a moving frame of reference is as follows.
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1. The flow boundary condition (location and velocities) are updated according to
the prescribed motion of the cylinder in time.

2. The flow velocity is updated at the new time step using an explicit Rung-Kutta
method.

3. The pressure Poisson equation with Neumann boundary conditions is solved by
an iterative method.

4. The velocity vectors are updated by using the pressure term from the previous
step.

The above algorithm is repeated until a steady state solution is reached.

7.4 Second approach, moving IB or fixed grid (inertial frame of
reference)

When simulating flow around a stationary cylinder, the interpolation formulas are
calculated once and the interface velocities (around the cylinder) are updated using
interpolation formulae for every iteration. Therefore, the interpolation formulae at the
boundary cells remain unchanged. However, in a moving cylinder, the position of the
cylinder is changing, and therefore the boundary cells and interpolation formulae could
potentially change. In other words, at each time step, if the position of the cylinder is
changed, the interpolation formulae should be updated as well. To do this, before
updating the interpolation formulae each time step, the position of centre of cylinder is
updated automatically to the new position using the prescribe motion (equation (7-1)).

One of the important issues is the relation between the time steps of the fluid flow
and the time steps of prescribed motion of the structure. Choosing the time step of the
structure and the flow depends on the CFL number in the fluid flow and the prescribed
motion of the structure. It is important that the time step in the fluid should not lead to
instability. However, choosing a very small time step will be expensive. Firstly, because
the interpolation formulae and also the LU decomposition matrices should be
recalculated each time step and secondly, the boundary conditions of the flow will
change at each time step which leads to a higher number of inner iteration for the flow
(Poisson solver) to resolve these perturbations.

Choosing different time step for the flow and the structure is not recommended as it

may cause a spurious phase between the lift coefficient and the displacement of the
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cylinder. An approach, like artificial incompressibility that uses dual time stepping is a

potential remedy for this problem (Gilmanov and Sotiropoulos 2005).

7.4.1 Inertial frame-governing equation and boundary conditions

Equation (4-8) presents the momentum equation in the non-dimensional form. This
equation and the continuity equation are solved by the fractional step (Chorin projection
approach) method as explained in section 4.3.3. In this context, the vector form of the

governing equation is as follows:

A% (7-17)
— = —V-VV+9V3V

ot

Y (7-18)
— =_V

at P

In equation (7-17) (by ignoring the pressure in the momentum equation), an
intermediate velocity that does not satisfy the incompressibility constraint is calculated.
The intermediate velocity will be projected to a solenoidal space (divergence-free
velocity field) using equation (7-18). In this equation, the pressure field is calculated by
solving the pressure Poisson equation (PPE). (PPE is formed by forcing the mass
conservation to the divergence of the momentum equation).

The boundary conditions for the domain remain unchanged compared to the
stationary case. However, the boundary around the moving object should be updated in
time according to the prescribed motion of the cylinder. Also the Neumann condition for
the pressure Poisson equation should be updated according to the following equation as
explained in the previous section:

o’ _ 6V+v VW4 9(VXVXV (7-19)
an_ n [at ( )]

7.4.2 Inertial frame of reference algorithm

The main advantage when using an immersed boundary approach is the ability to
simulate the Fluid-Structure-Interaction (FSI) for a moving object on a fixed grid. In this
approach, unlike the Arbitrary-Lagrangian-Eulerian (ALE) approach the computational
grid is not deforming or displacing, even though at each time step the interpolation
formula needs to be updated. To simulate a cylinder moving with a prescribe oscillation
in the cross flow direction the following algorithm is used.

1. From the prescribed motion and the simulation time, the position of the cylinder

is known and is used to calculate the interpolation formulae and LU matrices.
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2. The velocity around the cylinder at each new position is updated with new
interpolation formula.

3. The pressure Poisson equation with Neumann boundary conditions is used to
enforce the continuity equation.

4. The velocity field is updated using the new pressure gradient as calculated in step
3.

The above algorithm is continued in time to reach a fully developed solution.

7.5 Calculation of the force on moving boundary

In the non-conforming boundary approach, the computation of local forces on a
moving boundary is not a trivial problem (Yang & Balaras 2006). Lai and Peskin 2000
compared three methods of force calculation to their own approach (immersed
boundary-continuous forcing approach). In section 4.8 a direct method is presented to
calculate the local force on the stationary (or moving with constant velocity) immersed
boundary. In this section the method is developed for the moving boundary case as well.
The simulation results show that for low amplitudes of oscillation (i.e. small
acceleration) the same procedures are acceptable. However, for oscillations with higher
acceleration, corresponding to higher amplitude and/or frequency of oscillation, some
special treatment (extrapolation of the pressure near the boundary) could improve the

simulation accuracy (Gilmanov and Sotiropoulos 2005).

7.6 Parametric study

In this section various parameters which could potentially affect hydrodynamic
forces from the uniform free stream on an oscillating cylinder are briefly addressed.
According to the parametric study for a stationary cylinder the mesh size, domain size
up stream of the cylinder and the domain size in the transverse direction to the flow are
the most influential factors. Here, these effects are studied for cylinder oscillating in

cross flow direction with an amplitude of A/D=0.2, while the frequency of excitation is

fe=1.05x fs. The parametric study is performed at Re=100, based on the free stream

velocity and cylinder diameter. So that the Strouhal frequency is fs=0.167. The effects of
different prescribe motions (amplitude and frequency) on the lift and drag coefficient are

presented later in the results section.
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7.6.1 Parametric study- mesh size

The size of the grid around the immersed boundary is an important parameter in the
study of the flow around the bluff body. The boundary conditions can be applied more
precisely while there are fine grids around the IB; however, using a very fine mesh near
the IB is very expensive and might slow down the simulation process significantly. The
results of the mesh refinement study for the flow around a circular cylinder is presented

in this section to show the optimum grid size for this problem.

Table 7-1: mesh refinement study of oscillating cylinder — Parameters and results

Ax = Ay Number Total Actual  computational Mean- Max-
of grid no. of grid time (s) (for 100 time-units) Drag Lift
at  each | points coefficient coefficient
direction
0.1 122 %97 11’834 2’500 (45 minutes) 1.33 | 0.45-0.71
0.05 240x191 45°840 5’800 (1.6 hours) 1.58 | 0.575
0.025 468 <375 175’500 27°800 (7.2 hours) 159 |0.55
0.0125 0942 x 742 698’964 237°000 (2.7 days) 159 |0.545
0.00625 | 1880x1489 |2°799°320 | 2°206°000 (25.7days) 1.60 | 0.55

According to the Figure 5-2, the centre of the cylinder is located at the origin of the
in X,

[-15D, 30D] x [-20D,20D]. The size of the embedded uniform grid area is [-2D,4D] x

computational grid and the size of domain the y directions is

[-2D,2D] and the stretching factor is 4. The cylinder is forced to oscillate in the cross
flow direction with an amplitude of 0.2D and a frequency of F=f,/f;=1.05.

In this study, the mesh size of the embedded uniform mesh is changed from 0.1D to
0.00625D. The numerical results show that for the coarse mesh (dx=dy=0.1D) the lift
and drag coefficient are highly affected by the size of the mesh, however for the fine
meshes, this effect is negligible. For instance, if the size of the mesh changes from 0.1D
to 0.05D, the mean drag coefficient increases by about 16%, while a decreases in the
grid size from 0.025D to 0.0125D results changes is negligible in lift and drag
coefficients (less than 1%).

141




18
Zone A/ 175
; ’ | i/
| i | 17
AR R AR R
AT AN AR
| HHHHHHTT ‘ ' [ <651
18 | | | i i o [
a f U | ' 1 | | s I
) | | l | UM | S
= A il I il ! S16f
< (I ‘ | [ \ { o16F
] (i | ! 4104 AE o [
© i l it W \ | s
g (i J LT g
2 \' ) 1551
= b E [
o [
g14f |l 8
a i 1.5
| gy
dx=dy=0.1
dx=dy=0.05 1451
dx=dy=0.025 [ ——— dx=dy=0d
S, — =
12} ek L] S vy 77
dx=dy=0.00625
20 80 100 74 76 78 80
Non-dimensional time Non-dimensional time (Zone A)
145F 045+
/ A
B \ J'/ \ / [
14} \ / \ / -
< i \ / \ —~ 04F
2 s
S1.35 S L i e il
P 7310 351 \/ N A SN
£ 2
w
& 5 03
212 2
2 e = _— _— _
2 3025+ i = =
3 1. B8 [
I H:
o - 2
£115L/ \ RN ~ Y e
3 F N\ \\ L / \/ 08) [
2 11F 20.15
5 | dx=dy=0.1 e E dxedy=01
[ dx=dy=0.05 - x=dy=
1.05F dx=dy=0.025 01F gx=gy=gg$g
- dx=dy=0.0125 b x=dy=0.0125
I dx=dy=0.00625 r dx=dy=0.00625
d 72 74 76 78 72 74 76
Non-dimensional time (Zone A) Non-dimensional time (Zone A)

Figure 7-2: mesh refinement study- Drag coefficient

In Table 7-1 the accuracy of the numerical results and the computational time
needed to achieve the accuracy is presented for five different mesh sizes. It is shown that
the computational time to simulate hundred non-dimensional time step increases from
1.6 hours to 25.7 days (385.5 times increase) when the mesh is refined from a size of
0.05D to 0.00625D (8 times decrease), respectively.

Figure 7-2 andFigure 7-3 show the time history of the lift and drag coefficients for
the five different mesh sizes listed in Table 7-1. The graphs show that the drag
coefficient, the drag due to the pressure and due to shear stress are more sensitive to the
mesh size than the lift coefficient. It can be seen that the lift and drag coefficient
converge to the steady solution after about 50 non-dimensional simulation time.
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Figure 7-3: mesh refinement study — Lift coefficient

7.6.2 Parametric study-size of domain before the cylinder

One of the important parameters which highly affects the hydrodynamic forces is
the length of the computational domain upstream of the solid body which received less
attention in the literature. The size of domain upstream of the cylinder is changed from
5D (five times of the cylinder diameter) to 30D. The size of the domain in the y direction
for this study remains 40D. The simulation results (Figure 7-4) show that mean drag
coefficient decreases by 4.4% and the maximum lift coefficient increases by 23.6%,
respectively, by increasing the size of the domain upstream of the cylinder from 5D to
15D. However, if the size of the domain upstream of the cylinder is further increased
from 20D to 30D, the mean drag and maximum lift coefficients only change by -0.2%
and 1.5% respectively.

1.68 0.6
4

1.65 R 0.55 —

[
x

5 \ 8 ]
£1.62 E£05
(@)

1.59 0.45

/4
1.56 0.4
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Size of domain before cylinder Size of domain before cylinder

Figure 7-4: Parametric study of the effect of size of domain before cylinder in x
direction on the mean drag and maximum lift; cross flow oscillation with A/D=0.2 and
fe/fs=1.05 at Re=100
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7.6.3 Parametric study- blockage effect

Another important parameter affecting hydrodynamic forces is the size of the
domain in the transverse direction which is addressed as the blockage effect in the
literature. In this simulations the size of the domain in the transverse direction is
increased from 10D to 100D; while the rest of the parameters is kept constant; in this
case, according to the parametric study in the chapter 5, the size of the domain in the x
direction is [-15D,30D].

The simulation results (Figure 7-5 and Figure 7-6) show that if the size of the
domain in the transverse direction changes from 10D to 40D the mean drag and

maximum lift coefficients are decreased and increased by 4% and 24.6% respectively.
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Figure 7-5: Parametric study of the effect of size of domain in y direction on drag
coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

However if the size of the domain in the y direction is further increased from 50D to
100D the mean drag and maximum lift coefficients change by about -0.1% and 1.6%,
respectively. Figure 7-7 show the drag and lift coefficients based on the oscillation time

for various domain sizes in the y direction.
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Figure 7-6: Parametric study of the effect of the size of the domain in the y direction
on the lift coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100
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Figure 7-7: Parametric study of the effect of size of domain in y direction on the mean
drag and maximum lift; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

7.7 Results

In this section, to validate the FSI algorithm presented in the previous sections,
several cases with various amplitudes and frequencies of oscillation were selected as a
bench mark. The simulations were repeated for various Reynolds numbers and the

simulation results were compared with the literature and with inertial reference frame

simulation results.
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7.7.1 Inertial effect - Froude-Krylov force

As explained in section 7.3, it is possible to solve the flow governing equations in
the moving frame of reference (equation (7-6)) as well as in the inertial frame of
reference (equation (7-17)). This can be explained by the fact that the flow about a
circular cylinder forced to oscillate in the cross flow direction is kinematically similar to
the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross
flow (Meneghini and Bearman 1995). It should be noted that these two flows differ
dynamically due to inertia effects (Froude-Krylov force). However, if the flow
governing equations are fully derived in the moving reference frame (equation (4-6)) the
inertia term has already been added to the equations, and the hydrodynamic forces
comprise the inertia effect too. Therefore, the inertia effects should be added to the
relative hydrodynamic forces if the flow governing equation (equation (4-17)) is solved
with the relative velocities instead of absolute one without deriving the equation in a
moving frame. To demonstrate the effect of inertial forces, the flow around a cylinder
that is forced to vibrate in the cross flow direction is solved in the moving frame of
reference using the following two methods. In the first case (Case A), equation (7-17) is
used and in the second case (Case B), equation (7-6) is used. In both cases, Re=150,

F = fe/f =0.9 and the cylinder is forced to oscillate in the cross flow direction ((7-20)
S

equation (7-20)).

yc(D) = AgySin(wt) = Ag,Sin(21 X F X ft) (7-20)
= 0.15 Sin (2w X 0.9 X 0.196 X t)

In addition, in both cases the reference frame is attached to the cylinder and the
relative velocities are defined at the inlet and far-field boundaries (top and bottom). At
the outflow the convective boundary condition is used.

The simulation results show that in both cases (Case A and B) the pressure, the lift
due to shear, the drag coefficient due to pressure and the shear stress are the same
(Figure 7-9). However the inertial force shows a difference in the lift coefficients due to
pressure (equation (7-4)) between cases A and B. In Figure 7-8, the red line and the
green line show the lift coefficient (due to pressure) for cases A and B, respectively. In
this figure, if the lift in case A (red line) and the inertial effect (orange line) are added
together (back dots), the results are similar to the lift coefficient obtained in the case B

(Green line).
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Figure 7-8: Using Froude-Krylov force (inertial force) to correct lift coefficient
calculated in moving frame of reference

According to the equation (7-4), the effect of inertial force on the lift component for

the above case is calculated as follows:

2 d? . (7-21)
_ pT[DT X 1x é,;glld _ D dZySOlid
CLinertia - %pUZD x 1 - 2U2  dt2

Where p is the density of the fluid flow; pni—z X 1, is the mass of the displaced flow

2 .
by the cylinder and % is the acceleration of the oscillating cylinder in the cross flow

direction (referred to as d in equation (7-6)).

pressure
SMONANNAANANANANANANNANANNANNAN

3 ‘I -pressure
3‘\ jr\N\N\f\u W\f\/\f\ﬁf '\/’\,"\;’\j\f\f\N\/’\/b’\/\)"&cﬁx/if\f\x\/\f\
\

05 |
5 A
% \ CD- Shear stress
= A e i S SO USSR T )
:IS') 0 ;{\/\- CL- Shear stress
E L

———— CD dueto pressure - Case A

L mmemseeees CD dueto pressure-Case B
05}k ————— CD dueto shear stress - Case A
S L CD due to shear stress - Case B
—————— CL due to shear stress - Case A
--------- CL due to shear stress - Case B
L —————— Pressure - Case A

4 sssssesas Pressure - Case B

]
0 20 40 60 80 100
time (non-dimensional)

Figure 7-9: The drag (CD) due to pressure and shear stress, lift due to shear stress
and pressure for cases A and B in the moving frame of reference
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7.7.2 Moving frame verses inertial frame of references

The governing equations are solved in both the moving frame of reference (Section
7.3) and the inertial frame of reference (Section 7.4). In both approaches an IB
interpolation method is used to enforce the immersed boundary. In the moving frame of
reference, however, the interpolation formulas are not updated so that the simulation is
less time consuming and the results are much smoother. In this section, a comparison
between these two approaches is presented. In both cases a cylinder is forced to oscillate
in the cross flow direction, the Reynolds number is 100 (Re=100), the amplitude of the
oscillation is 0.2D and the frequency of the oscillation is 1.05 times the vortex shedding
frequency (0.167). The Reynolds number is based on the free stream velocity and the
cylinder diameter, D.

The lift and drag due to pressure for both approaches (moving and fixed frame of
reference) are shown in the Figure 7-10. The results from the inertial frame of reference
simulations show noise in the lift and drag signal due to pressure (dotted line). The

reason for this is that the interpolation formulas are updated at each time step.

lift and drag due to shear stress
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Figure 7-10: lift (lower curve) and drag (upper curve) due to pressure; dotted lines,
inertia frame of reference(without smoothing); dash lines, moving frame of reference

Despite the noise that the inertial frame produces for the lift and drag due to
pressure, both frames of reference calculate nearly the same values for the lift and drag
coefficient after smoothing the graph of the inertial frame of reference results by

omitting the noise (Figure 7-11).
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lift and drag due to pressure
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Figure 7-11: lift (lower curve) and drag (upper curve) due to pressure; dotted lines,
inertia frame of reference (with smoothing); dashed lines, moving frame of reference

Figure 7-12 shows the lift and drag due to shear stress for both non-inertial and
inertial frame of reference simulations. The simulation results do not show any noise in
the lift and drag due to shear stress for both approaches. It can be concluded that the
noise in the lift and drag coefficient are due to the calculation of the pressure. Also it can
explain why the inertial frame of reference approach is so time consuming. Not only
updating the interpolation formulas is taking extra simulation time but also the Pressure
Poisson equation (as the most expensive part of the code) needs more iterations to

converge due to the noise in the pressure.
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Figure 7-12: lift (lower curve) and drag (upper curve) due to shear stress; dotted lines,
inertia frame of reference; dash lines, moving frame of reference
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7.7.3 Cross flow oscillation of circular cylinder — validation

In this section, the simulation results induced by a transverse oscillation of a
circular cylinder in a steady free stream are compared with those in the literature. The
Reynolds number is calculated based on the cylinder diameter and the free stream
velocity. The cylinder is forced to oscillate in the cross flow direction according to:

ye(t) = AgySin(wt) = Aoy Sin(2mf,t) (7-22)

Where, y.(t) is the location of circular cylinder that changes in time, Aoy, is the
amplitude of the transverse oscillation and f, is the excitation frequency. The simulation
is performed at low Reynolds numbers, Re=185 and R=200, 0.05 < A,,/D < 0.6 and
0.8 < f./fs < 1.2 in order to carry out a comparison with the results presented by Kim
and Choi 2006 and Meneghini and Bearman 1995. f; is the frequency of the vortex
shedding for a stationary cylinder (Strouhal number). To calculate the Strouhal
frequency at each Reynolds number, the flow around the stationary cylinder is simulated
separately. The grid is distributed similarly to what is shown in Figure 5-1 andFigure
5-2. The number of the grid points in x (stream wise) and y (cross flow) direction are

531 x 478, respectively. Around the cylinder a uniform grid with dx=dy=0.025 is used.

The size of computational domain is [-15D to 15D] in both x and y directions.
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Figure 7-13: Force coefficient and phase angle verses f./f;. Left-Mean drag coefficient
(CD), rms of drag and lift fluctuation coefficients (CDrms and CLrms respectively); Right-
Phase angle between CL and the vertical position of the cylinder. -m-, present study; ,
Kim & Choi 2006.

The flow governing equations are solved in the moving frame of references, in

which the origin corresponds with the centre of the circular cylinder and a dirichlet
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boundary condition (u/u.=1 and v=-Vcyiinder) is defined at the inlet; at the top and bottom
(farfield) of the computational domain a Neumman boundary condition (z—; =0)and a

dirichlet boundary condition (V=-V¢yiinder) is Used; and the convective boundary condition

(% + c% = 0) is conducted at the outflow, where c is the space-averaged streamwise

velocity.

The hydrodynamic forces (the force due to pressure and shear stress) are resolved in
the x and y directions in the physical domain yielding Fyx and Fy. These two forces are
non-dimensionalized according to equations (4-66) and (4-67). In these equations u, is
the free stream velocity.

In the first place, the effect of frequency of excitation on the hydrodynamic forces
at a constant amplitude of oscillation, A,,/D = 0.2 is investigated. The simulation is
performed at fe/fs=0.8, 0.9, 1, 1.1, 1.12 and 1.2. In this simulation the Reynolds number
is Re=180.

Figure 7-13-left shows the mean drag coefficient (CD) and the root mean square
(rms) of the drag and the lift fluctuations (CDrms and CLrms, respectively); and Figure
7-13-right shows the phase angle between the lift coefficient and the location of
cylinder. The simulations results are in good agreement with the results presented by
Kim and Choi 2006. However, in the present study, the rms of the lift coefficient in the
excitation frequencies below the Strouhal frequency are predicted to be smaller, while
for the excitation frequency above the Strouhal number, these values are calculated to be
higher than Kim and Choi’s prediction. The Drag coefficient and the rms of the drag at
all frequencies of excitation are predicted to be slightly higher than the results presented
by Kim and Choi. In other word, the fluctuations in the drag coefficient are predicted to
be higher in this research. This can be explained by the definition of the lift and drag
coefficients to be either perpendicular to the free stream or perpendicular to the relative
velocity.

Figure 7-14 shows how the frequency of excitation might affect the amplitude and
the pattern of the hydrodynamic forces. In this figure the amplitude of oscillation is 0.2D
and the Reynolds number is Re=180. For the frequencies of excitation lower than or
equal to the Strouhal frequency the lift and drag coefficients reach a steady solution
(synchronization) however at frequencies of excitation higher than the Strouhal
frequency a beating phenomenon is observed. It can be concluded that for excitation

frequencies above the Strouhal frequency, the boundary where lock-in occurs is much
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closer to fe/fs=1 than for excitation frequencies below the Strouhal frequency. This is in

complete agreement with the numerical results presented by Meneghini and Bearman

1995 and experimental results reported by Bearman and Curie 1979 where lock-in was

observed only below the Strouhal frequency. However, at higher Reynolds numbers,

experimental results reported by Koopmann 1967 show an almost symmetrical boundary

of lock-in around the Strouhal frequency.
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Figure 7-14: Drag (CD), Lift (CL) coefficient and y./D time history for A/D=0.2 and

Re=185, (a) f/f:=0.8, (b) f/f.=0.9, (c) f/f,=1, (d) f/f:=1.1, (e) f/f,=1.12, (f) f/f,=1.2. CD: dash dot

curve; CL: Continuous curve; y/D: dot curve

Figure 7-15 shows time histories of hydrodynamic forces at an excitation frequency

of fe/fs=0.75, and a Reynolds number of Re=200 for four different amplitudes of
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excitation, A/D=0.25, 0.3, 0.45, 0.6. The lock-in does not occur for fe/fs<0.70. For the
case fe/fs=0.75 and A/D=0.25 a very light beating phenomena is observed (albeit not
very clear). By increasing the amplitude of excitation, a synchronization between the
forcing excitation and the vortex shedding frequency occurs. It seems that at this range
of frequencies (fe/fs=0.75) and for A/D<0.3, the flow cannot decide whether to shed at
the frequency of vortex shedding or at the frequency of excitation. Meneghini and
Bearman 1995 got similar results, however, they observed synchronization above
A/D=0.5.
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Figure 7-15: Drag (CD), Lift (CL) coefficient and y./D time history for f./f;=0.75 and
Re=200, (a) A/D=0.25, (b) A/D=0.30, (c) A/D=0.45, (d) A/D=0.6.

In Figure 7-16 to Figure 7-18 the lift and drag coefficient for three cases with
A/D=0.15 and fe/fs=0.9, A/D=0.25 and fe/fs=0.8 and A/D=0.05 and fe/fs=1.025 are
presented. The Results show excellent agreement with the results presented by
Meneghini and Bearman 1995. Meneghini and Bearman used a mesh conforming
method with a moving reference frame, but they did not directly include the effect of a
moving frame inside the governing equations. Instead, they used the Froude-Krylov

force to add the inertial effect to the hydrodynamic forces. In the first case (Figure
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7-16), the phase difference between the excitation frequency and the lift coefficient is
about 175° so that this case is inside the lock-in range (Figure 1-4). After starting the

numerical simulation the frequency of the vortex-shedding gradually changes to the

excitation frequency.
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Figure 7-16: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.90, A/D=0.15,
Re=200. Left figure present study, right figure shows results of Meneghini and Bearman
1995.
By decreasing the excitation frequency, the amplitude of the excitation should

increase to remain in the lock-in region (Figure 1-4). In Figure 7-17, the results of the
case A/D=0.25 and fe/fs=0.8 is presented. In this case, the phase difference between the

lift coefficient and the cylinder displacement is nearly 180° and the amplitude of the lift

coefficient is lower than in the case of the stationary cylinder. Meneghini and Bearman
1995 explained that this could be due to the fact that inertial part of the lift force (due to
the cross flow oscillation of cylinder) cancels out the lift due to vortex shedding which is

dominant in stationary cases.
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Figure 7-17: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.80, A/D=0.25,
Re=200. Left figure present study, right figure shows results of Meneghini and Bearman
1995.
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A comparison for the case A/D=0.05 and fe/fs=1.025 is shown in Figure 7-18. The

phase difference in this case between the frequency of the excitation and the cylinder

displacement is about 15°. The numerical results show that the above fe/fs=1.075 lock-in

does not occur for any amplitude of excitation.
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Figure 7-18: Drag (CD), Lift (CL) and yc/D over time for fe/fs=1.025, A/D=0.05,
Re=200; left figure) present study; Right figure) Meneghini and Bearman 1995.

7.7.4 Vortex induced vibration in cross flow direction

In this section, to demonstrate the accuracy of the formulation provided in section
7.2.2, the flow around a circular cylinder in two dimensions with one degree of freedom
in the cross flow direction is simulated. Several runs are performed at high and low mass
ratios and the results are validated in compare to experimental and numerical results
presented in the literature. Also the lock-in region is investigated.

In the first stage, the simulation results for the low mass ratio are compared to the
results provided by Borazjani et al. 2008 and Ahn and kallinderis 2006 who employed
IB method and ALE approach, respectively. In this case the Reynolds number, mass
ratio and damping ratio are fixed at 150, 2, O, respectively and the stiffness of the
structural system is changed by varying the reduced velocity from 3 to 8. The size of
computational domain is [-15D,15D] both in x and y direction and the cylinder is in the
centre of the domain. Also, there is a uniform grid around the cylinder in the area [-
2D,2D] in x and y direction, the uniform grid in this area is dx=dy=0.025D and the non-
dimensional time step is dt=0.001. Simulation of the flow around a stationary cylinder
shows that the vortex shedding frequency or Strouhal number is St=0.2 at Re=150,
therefore the lock-in phenomenon should occur around this frequency and hence reduce
frequency of Vr=5.

The simulation results show that the applied IB reconstruction method accurately

predicted the lock-in range, however, the maximum amplitude is predicted lower than
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the one predicted by Borazjani et al. 2008 and Ahn & Kallinderis 2006. This might be

due to the definition of the pressure boundary for the pressure Poisson equation.

Table 7-2 : Amplitude of oscillation (ymax/D) at various reduced velocity at constant
Reynolds number, Re=150, and low mass ratio, m'=2.

Reduced Velcotiy Vr=3 | Vr=4 | Vr=5 | Vr=6 | Vr=7 | Vr=8 | Vr=25
Recent Research 0.04 | 042 |0.38 [0.30 [0.20 |0.06 |0.03
Borazjani et al. 2008 0.06 {052 |048 |043 038 |0.08 |---
Ahn & Kallinderis 2006 | 0.06 | 0.56 |[0.52 |0.42 |0.37 |0.08 |----

In the second stage, for the high mass ratio, the results presented by
Anagnostopoulos and Bearman 1992 are used for validation; these results have been
used for validation by several researcher (see for example, Yang et al. 2008, Li et al.
2002 among others). Therefore, to be able to compare the results, a mass ratio, m* =
149.10 and a damping ration, & = 0.0012, is selected. The Reynolds number changes
in the range of 90 to 140 which is eugivalent to the reduced velocity of 5.02 to 7.81.

Table 7-3: Amplitude of oscillation (ymax/D) at various Reynolds number and
reduced velocity at high mass ratio, m"'=149.10.

Vrand Re Vr=5.02 | Vr=5.30 | Vr=5.58 | Vr=5.8 | Vr=6.41 | Vr=7.81
Re=90 | Re=95 | Re=100 | Re=105 | Re=115 | Re=140

Anagnostopoulos  and | ------- 0 0 0.54 0.5 0

Bearman 1992 (exp.)

Yang et al. 2008 (Nu.) |0 0.42 0.41 0.36 0.22 0

Schulz and Kallinderis | 0 0.5 0.48 0.45 0.43 0

1998 (Neu.)

Present computation 0 0.1 0.24 0.36 0.22 0.0012

Simulation results (Table 7-3) show that the applied IB model in this study has a
good agreement with the experimental results presented by Anagnostopoulos and
Bearman 1992 in terms of predicting the range of reduced velocities which VIV occurs.
For instance, the amplitude of oscillations reported by Yang et al. 2008 and Schulz &
Kallinderis1998 at reduced velocity of Vr=5.30 (Re=95) are 0.42 and 0.5, respectively.
However, at present study the amplitude of oscillation at Vr=5.30 is 0.1 which shows
better agreement with the experimental results which shows zero amplitude at this

reduce velocity.
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Generaly numerical results presented in the literature predict lower amplitude of
oscillation in comparison to the experimental results. In the present study the same trend
Is observed. The reason behind this might be that although the reduced velocity is the
same for both experiment and numerical simulation, the numerical simulation is
normally performed at low Reynolds number in which vortices can be assumed two
dimensionls. Therefore the two dimensional numerical simulations cannot model three

dimensional aspects of the vorticities which occur at higher Reynolds numbers.

7.8 Summary

In this chapter, the forced vibration and the vortex induced vibration of a bluff body
in a uniform flow are discussed and the simulation results are compared and validated
using well-established experimental and numerical bench marks. It was shown that the
immersed boundary interpolation approach used for the stationary cylinder in chapters 5
and 6 could be applied for the moving immersed boundary as well. A comprehensive
parametric study is performed to show how the computational domain parameters could
affect the hydrodynamic forces and computational costs. Based on a parametric study,

for low Reynolds numbers simulation a domain size of [-15D,30D] x [-20D,-20D] in x

and y direction respectively and a mesh size of dx=dy=0.025 around the immersed
boundary are recommended.

To simulate moving boundaries two approaches were followed, using either a
moving (non-inertial) frame or fixed (inertial) frame of references. Compared to the
inertial frame of reference, the moving frame of reference results were much smoother
and the computational time was lower. However, the moving frame approach is limited
to simulations of single or synchronized moving bluff bodies in the fluid flow.

Also, it is shown by deriving the governing equations in the moving frame of
reference that the Froude-Krylov force should not be added to the hydrodynamic forces
to compensate for the inertial effect.

In addition it is shown that the noise in the results from the inertial frame of
reference simulation is due to the calculation of the pressure which maybe improved by
using a dual time step formulation or by using an accurate interpolation of the pressure
at the immersed boundary. Moreover, the VIV simulations show that the results are in

good agreement with the literature.
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Chapter 8. Conclusion and Future work

The simulation of Fluid Structure Interaction (FSI) is a multi-disciplinary and a
multi-physics problem and a full FSI simulation has to address many issues. The main
goal in this research was to develop an FSI code to simulate Vortex-Induced Vibration
(VIV) in the flexible riser application. The riser problem involves simulation of a
flexible, slender structure with large displacement and bending in an unsteady fluid flow.
A full simulation of this problem with the current knowledge and computational power
is not feasible at the moment due to the multi-physics nature of the problem. Many
research groups have worked in the past to model this problem and suggested various
models and due to recent developments in computational power, CFD and Structural
algorithms, a continuous progress in the research in this area is being made.

A partitioned strategy has been used to link the CFD and structural codes to be able
to model the riser problem in a quasi-three dimensional using the strip theory. In the
strip theory, the flow is computed in a number of two dimensional planes that are
positioned at intervals along the pipes. The flow in each plane of the strip theory model
is solved using a two dimensional Navier-Stokes solver. The response of the pipe to the
flow loading is computed using various beam theories through a structural code. At this
stage, a loose or strong coupling strategy will be used to alternatively pass the load from
the flow to the structure and pass the new location of the structure to the flow solvers.

In an FSI problem, an initial and vital step for a feasible and accurate simulation is
to study the physics of the problem. In this PhD thesis the main focus was to simulate
the flow around a flexible body in the two dimensional plain. The outcome of this
research will be used for a future modelling of the riser problem in the frame work of the
strip theory. Using the strip theory for the riser problem, the problem was reduced to a
well-documented simulation of the flexible circular cylinder in two dimensions.
However, due to the fact that this two dimensional simulation will be used as a part of a
bigger model special attention was needed. The first issue was that the two dimensional
flow solver should be able to handle large displacements/deformations of the structure.
Secondly, the flow solver should be computationally efficient. Thirdly, it was needed to

integrate the flow solver with a structural code. Finally, the algorithm has to be
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expandable to three dimensions to be able to model turbulent high Reynolds number
flow in the future. Therefore, considering the physics of the problem and the restriction
on the computational facilities, a comprehensive study of the available FSI approaches
was conducted to find an appropriate algorithm that fulfils the set criteria.

8.1 Simulation approaches

There are two main simulation approaches for FSI problems: monolithic and
partitioned approaches. In the monolithic approach both fluid and structure are
formulated in the same mathematical framework and a unique algorithm is used to solve
the entire fluid and structure domain. However, in order to link the CFD code with a
structural code using the strip theory in future, a partitioned approach was preferred.
Within this approach the fluid and the structure were treated as two separate
computational entities and to be solved with their own respective discretisation and
solution algorithm. Interface conditions were used to communicate information between
the flow and structural solvers.

Another important feature for the FSI code is that the code should be able to model
large displacements. There are two main discretisation method; the conforming method
and the non-conforming method. In the former, the interface boundary condition is
identical to the physical boundary condition making the interface location part of the
solution requiring the grid to conform to the interface. By advancing in time, re-meshing
might become necessary due to deformation/ displacement of structure. Therefore, this
approach is expensive due to the regular re-meshing in every time step. In addition this
method is good for low displacement due to inherit limitation in mesh deformation.
However, in the non-conforming approach, the boundary location and interface
conditions were imposed as constraints on the governing equations defined on a
background Cartesian grid, and no re-meshing procedure is needed. As the solid
boundary cuts the Cartesian grid, to define the proper boundary condition the flow
governing equations need to be modified near the immersed boundary. The
modifications of the governing equations near the structure are the subject of the
immersed boundary method which were addressed and evaluated in this thesis.

Immersed boundary methods comprise various ways of enforcing boundary
condition. By adopting the indirect forcing approach, interpolation/ reconstruction was
used to enforce the moving boundary. In this approach however unlike the continuous

forcing approach in which a diffused boundary is created, sharp interfaces are created.
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The method also allows the possibility of modelling in three dimensions which is not
easily possible in the cut cell approach due to its very complex application procedure in
in three dimensions.

In this PhD thesis a new IB interpolation/reconstruction method is proposed. In this
method the interpolation is performed in a direction perpendicular to the IB boundary,
similar to that proposed by Gilmanov & Sotiropoulos 2005. However, in this model a
different logic and a direct approach is used to select the interpolation points without
trial and error. The simulation results were compared with other interpolation methods
proposed in the literature and the results of lift and drag coefficient showed a very good
agreement between the methods.

The definition and calculation of the lift and the drag forces in an FSI problem
using an IB approach is not a trivial problem. In this thesis two methods were conducted
which were found to match well with one another; the direct integration of the pressure
and shear forces on the immersed boundary and the application of the conservation of
momentum in integral form. The lift and drag coefficient results were used to validate
the methodology and the code for both a stationary circular cylinder and a flexible
cylinder oscillating in the cross flow direction.

A circular cylinder oscillating in the cross flow direction was modelled in two
dimensions as an initial stage in the study of the riser problem. At this stage two
methods were presented, an inertial and a non-inertial frame of reference method. In the
former, the Navier-Stokes equations were solved in an inertial frame of reference and the
movement of the structure was modelled using an IB method. Due to the fact that at each
time step the interpolation formulas were updated, the algorithm was relatively slow
(time consuming). In the second method, the frame of reference was fixed to the cylinder
and the fluid flow was solved using an observer point of view on the circular cylinder,
therefore, the flow governing equation (Navier-Stokes equations) were defined and
solved in a moving frame of reference. Although, this method was more efficient, it is
only really suitable for a single object oscillating in the flow, for instance a single riser.

To solve the pressure Poisson equation, the normal gradient of the pressure at the
immersed boundaries (Neumann boundary condition) was assumed to be zero in the case
of a stationary cylinder in a uniform flow. However, the definition of the correct
pressure boundary conditions for the FSI problem was a challenging issue because the
structure undergoes acceleration relative to the flow. In this case, the gradient of the

pressure in the perpendicular direction to the immersed boundary was calculated by
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projection of the differential form of the momentum equation in that direction. This
boundary was defined carefully to maintain the well-posed conditions for the pressure
Poisson equation.

In the final stage of this thesis, some VIV simulations of a flexible cylinder in the
cross flow direction were presented. To maintain the two dimensionality of the flow, the
simulation was carried out at a low Reynolds number. The vortex shedding from the
cylinder was creating oscillating force on the cylinder. These forces were used to solve
the structural governing equations. In this thesis the equation of motion of an elastically
supported cylinder is used. The force from the Eulerian flow field was transferred to the
Lagrangian marker points on the solid boundary and the displacement and velocities of
the moving boundary were interpolated to the flow domain to enforce no-slip boundary
conditions. In the case of a rigid cylinder the force is transferred to the centre of the mass

of the cylinder.

8.2 Validation of the results and feasibility of the method

The flow around a circular cylinder in two dimensions was taken as a benchmark
due to its similarity to the physics of the riser. Also, the flow around a circular cylinder
is a famous benchmark that has been used extensively to validate many FSI
methodologies. Many experimental and analytical results are presented in the literature
for this specific case. In addition, the choice of the overall size of the domain and the
size of the grids near the immersed boundary were found to be important when accurate
simulation results were desired from an FSI simulation in general and partiulcarly when
the IB approach is used. On the one hand, the parameters were selected in a way to give
accurate, reliable and repeatable results whilst on the other, the methodology and the
solution were found to be computationally inexpensive. Generally, it is important to
determine the optimum parameters for an FSI problem in order to control the size of the
problem. However, for a riser problem in which several two dimensional simulations
and a structural code will be executed simultaneously using the optimum parameters for
the simulation is vital. To achieve this objective, a comprehensive parametric study was
performed to find the optimum range of the parameters for the domain which gives good
results with minimum computational cost. This study was able to address some of the
discrepancies found in the literature in respect of the reported Strouhal number, lift and

drag coefficients.
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For the flow around a circular cylinder at a low Reynolds number seven parameters
were studied. Of these parameters the grid size around the 1B, the entrance length before
cylinder and the size of the domain in cross flow direction (blockage effect) were found
to be the most important. The numerical results as well as results published in the
literature showed that these parameters could significantly affect the results. For instance
in the literature the drag coefficient for the steady flow around a stationary cylinder at
Re=100 was reported in the range of 1.447 to 1.32 showing a 9% difference in the
reported results. Also, the reported Strouhal numbers for the same cases varied from
0.182 to 0.164 showing discrepencies of up to 10% in the results. By relating the
simulation results to the simulation parameters it was possible to explain these
discrepencies. Some of these differences stemmed from the size of domain in the
numerical calculation rather than the methodology of the solution. The results of the
parametric study at Re=100 showed that if the entrance length increased from 5D to 10D
the Strouhal number, lift and drag coefficient tends to decrease by about 10%. A further
enlargement of the domain behind the cylinder had negligible effect on the Strouhal
number, lift and drag coefficient. Therefore, for this specific problem an inflow length of
10D before the cylinder was found to be optimum. Similarly, the size of the domain in
the cross flow direction (blockage effect) was also found to be important.

The mesh refinement study for the drag coefficient showed an interesting behaviour
between the drag coefficient’s components (pressure drag and friction drag). As far as
the author is aware, this issue has not been reported before in the literature. The
numerical results showed that the drag coefficient was less affected (about 3%) than the
lift coefficient (about 12%) when changing the size of the mesh from 0.1 to 0.00625 (4
times) in the mesh refinement study. This issue can be explained by the fact that the
components of the drag coefficient were reversely responding to the grid size. i.e. by
further refinement of the grid, the drag due to the pressure converged to a lower value
while the drag due to friction converged to a higher value. This shows that the drag is
less sensitive to the size of the grid.

Additionally, a comparison was presented of IB Interpolation / Reconstruction
methods. Four different interpolation methods were compared with the proposed
interpolation method in this thesis. The numerical results showed that the proposed
interpolation method was stable and gave accurate results compared to other linear and

bi-linear methods. Also this method does not suffer from the problem associated with the
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bi-linear methods in finding interpolation points in the othorgonal directions when
modelling high curvature IB.

To fulfil the objective of this research, in the final step the numerical simulation of
the flow around a cylinder oscillating in the cross flow direction was presented. This
problem was presented in both fixed and moving frames of reference and the results
were found to match well. The simulation of the flow around a cylinder is a well-known
problem and has been used to validate FSI methodology by many researchers. To the
best knowledge of author this was the first time that this problem was modelled using a
sharp immersed boundary Interpolation/ Reconstruction technique along with a moving
frame of reference.

In the next part, the main draw backs of the applied methodology will be discussed
and also some works will be proposed to address these issues as future research.

8.3 Drawbacks verses advantages of the IB interpolation

The Immersed Boundary with an Interpolation/reconstruction approach was used in
this thesis to enable modelling moving boundaries with large displacements. As any
other FSI method, this method has also some drawbacks. The most important of which,
incompariosn to an ALE approach is that it is not straight forward to apply the boundary
conditions on the moving boundary, especially for curved boundaries. This is common
with all IB approaches and becomes more complicated because a staggered grid
arrangement is used in the discretisation of the governing equations.

Another important issue was the calculation of the hydrodynamic forces at the
immersed boundaries. Calculating the lift and the drag forces on the IB immersed
boundary was not a trivial problem, especially, when an Interpolation method was
applied to the FSI problem. However, using momentum principle could help to address
this problem.

Despite these short comings, however, it is concluded form the experience gained
from this research work that the IB the interpolation/Reconstruction method, is
considered as an appropriate method to apply to the flexible riser problem with large
displacement/deformation using the strip theory approach. Firstly, this method could
handle large displacements where a conforming method like ALE would be
computationally more expensive. Also as the IB method adopted here was a sharp
interface method, unlike the IB forcing approach it does not create diffuse boundaries
near solid bounaries. This method can be simply developed to three dimensions, where
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the 1B cut cell method would become very expensive and complicated. Finally, this

method does not create a secondary flow inside the solid boundary, unlike the ghost cell

methods which create non-physical flow inside the solid boundaries.

8.4 Future work

This PhD research was part of a larger research project which aims to model the

VIV for a slender oil riser and publication of some journal paper are planed during the

completion of project in near future. In this study, the methodology to solve the flow

around a flexible circular cylinder in two dimensions was addressed. This will be used as

part of strip theory to model FSI for whole flexible risers used in the offshore industries.

In this section, the suggestions for future work are all directly related to this PhD thesis.

All the simulations in this thesis, including the parametric study, were limited to
a low Reynolds number, Re=100. The parametric study to show the effect of the
Reynolds number on the FSI parameters is recommended for further low
Reynolds numbers 40<Re<200.

In a real riser problem, the Reynolds number is of order of O(10%), therefore

adding a suitable algorithm to model the turbulence is necessary.

The Neumann boundary conditions for the pressure,g—z, do not noticeably affect
the lift and drag forces. A proper parametric study will help to understand the
range of oscillations that the ‘standard’ boundary condition Z—: = 0 is sufficiently

accurate.

The moving frame of reference presents promising results for the cylinder
oscillation in the cross flow direction. It is suggested to further develop this
simulation for inline oscillations using the IB and interpolation approaches.
Finally, to improve the results for the moving cylinder in the inertial frame of
reference, it is suggested to use a dual time integration to reduce the fluctuation
of the response. Also, this method is very slow in comparison to the moving
frame of reference approach. It is suggested to use a parallel processing
capability to improve this method. For simulations with more than one cylinder
oscillating in the flow domain, this method offers the only solution, as the

moving frame of reference method cannot be used in multi-cylinders simulations.
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Appendix A, Fortran Code, FSI by Reconstruction method

PROGRAM DISCO

implicit none

integer nnx,nny,MxSurf,Mxy ! grid dimension in x and y direction

common /cylsize/ acyl, bcyl, Rcyl

double precision acyl, bcyl, Rcyl ! cylinder center point x and y

dirction plus its radious

cc

Q

cc

parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
parameter (acyl=5.00000,bcyl=10.00000,Rcyl=0.5000000000)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn

double precision Re, RRe,dt,time,dts

double precision maxdiv,divm

common / bndvinfi/ iplv (Mxy),jplv(Mxy),ip2v (Mxy), jp2v (Mxy),
& iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu(Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu, ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

integer nt,i,Jj,k,t,ksub
logical EX

inquire (file="movie.dat', exist=EX)
if (EX) go to 15

open(l2, file = 'movie.dat',position='append',

& form="'formatted"')
write (12, ' (A)') 'variables="x","y","u","v","p"'
close (12)

continue

time=0.DO0

call inigrid()
call init ()

call interpolate ()
call bounds ()

call inisol ()

do nt = 1,1000000
time=time+dt
write(*,*) 'time = ', time
ksub=0
call structuremain
call structure (ksub)

call convec|()

174



call fillf()
call calcuv ()
K*hkkhkkhhkkkkkkkkx FSI Part )k kkkkkkkkx
if ((mod(nt,100) .EQ. 1) .AND.
& ( nt .NE. 1)) then
call forcvib
call structure()
call structuretwo ()
end 1if
call convergence (ksub)
)k kkkkkkkkkxk end Of FSI * Kk ok Kk k Kk kK kK
STOP
if (mod(nt,1000) .EQ. 0) then
write(*,*) 'Saving field.dat...'
call wrtfld()
call savfld{()
end if
if (mod(nt,10).EQ.0) then
call mean()
end if
call bounds () ! this line 1is added in test7?
divm=maxdiv ()
write(*,*) 'Maximum Divergence = ',divm
end do

Q Q
QQ

Q0000000000

call wrtfld()
call savfld{()
call etimetest
end

cc

subroutine inigrid()

** initialize the grid, blocking, extrapolation of velocities at
** Dboundaries

Q0 QQ0

integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
cc parameter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

c
common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree

c
common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

c
common /maskdiv/ idiv (Mxy),jdiv (Mxy),ndiv
integer idiv,Jjdiv,ndiv

c
common /minsx/ pins (0:nnx+2,0:nny+2),uins (0:nnx+2,0:nny+2),
& vins (0:nnx+2, 0:nny+2)
double precision pins,uins,vins

c
common / bniinf/ jyu(nnx),jyv(nnx)
integer jyu,jyv

c
common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn,nx3,nnl
double precision Re, RRe,dt,time,dts
integer t,k,nxl,nyl

c
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Q00000000

a0 00aq
Q Q00 0Q00Q0aQ Q000000 Q QQ Q Q0 Q

double

common
double

double
double

precision yj,vy0,yl,delta, tanh0, tanhl, coefl

/sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

precision dx,dy, fact,offset,alpha, xtg, ytg,dnorm,dyl
precision gradient,intercept, xint,yint,weight,al,cl,PI

logical EX

common

/homeadd/ home

character*40 home

RRe=1D0/Re
write(*,*) 'ingrid, home', home

STOP

**x*xxx**Reading an arbitrary grid from a file if exist otherwise

making a uniform grid ***Fkkkdkxxxx

inquire (file='grid.bin', exist=EX)

if (EX) then
open (unit=12,file="'grid.bin', form="'UNFORMATTED"')

rewind (12)

read(1l2) nx,ny

read(12) ( xcrd(i),i=0,nx+1

read(12) ( ycrd(3j),3j=0,ny+1
read(12) ( txu(i),i=1,nx )
read(12) ( txv(i),i=1,nx )
read(12) ( tyu(i),i=1l,nx )
read(12) ( tyv(i),i=1l,nx )
read(1l2) (vnoru(i),i=1l,nx )
read(12) (vnorv(i),i=1,nx )
read(12) ( fyu(i),i=1,nx )
read(12) ( fyv(i),i=1l,nx )
read(12) ( Jjyu(i),i=1l,nx )
read(12) ( Jjyv(i),i=1l,nx )

close (12)

do i=0,nx

xcoord (i)=0.5D0* (xcrd (i) +xcrd (i+1))
end do
do j=0,ny

ycoord (j)=0.5D0* (ycrd (j)+ycrd (j+1))

end do

do i=1,nx
do j=1,ny

pmask (i, j)=1.D0
umask (i, J)=1.D0

vmask (i, J)
end do
end do

do i=1,nx
do j=1,jyv (1)

1.D0

pmask (i, j)=0.D0

end do
end do

write(*,*) (i,jyv(i),pmask(i,jyv(i)),i=1,nx)

do i=1,nx
do j=1,ny

if

(pmask (i, J)

.EQ.

0.D0)

then

amask(i,3)=0.DO0
if (i .GT. 1) amask(i-1,73)=0.DO0
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c end 1if
c end do
c end do
c
cc return
cc end if
c
c ** Grid does not exist, produce a mesh which is uniform in x and y
c ** direction, later we need to increase the density of mesh near
c ** the cylidner to capture the vorticity
c
CHRHIHIKXXX XXX K ! This part is for making fine mesh around cylinder x
direction
cc i=0
cc dx=0.1D0
cc xcrd (0)=-0.5D0*dx
cc xcrd (1)=0.5D0*dx
cc xcoord (0)=0.DO0
ccl00 i=i+1
cc xcoord (i)=xcoord(i-1)+dx
c xcrd (i+1l)=xcrd (i) +dx
cc xcrd (i) =(xcoord (i) +xcoord(i-1))/2
cc If (xcoord(i) .LT. 6.0) then
cc dt=0.1D0
cc else If ((xcoord(i) .LE.9.05) .AND. (xcoord(i) .GE. 6.0)) then
cc dx=dx-0.00125D0
c dx=dx-0.00126
cc else 1if ((xcoord(i) .GT. 11) .AND. (xcoord(i) .LT. 13.9)) then
cc dx=dx+0.00125D0
c dx=dx+0.00126
cc else if ((xcoord(i) .GT. 9.05) .AND. (xcoord(i) .LE. 11)) then
cc dx=0.05D0
c dx=0.025D0
c dx=0.0125
c dx=0.00675
cc else
cc dx=0.1D0
cc end if
c write(*,*)'i,dx,xcoord (i)', i,dx, xcoord(i)
c write(*,*)'i,xcoord,xcrd', i,xcoord (i), xcrd (i)
cc if (xcoord(i) .LE. 25) go to 100
cc xcrd (i+1)=xcoord (i) +0.5D0*dx
cc nx=1i
C KFAE KA ! end of making fine mesh around cylinder x direction
delta=5.D0 !3.DO
c
nx2 =37 !78
nx3 =37 !66
dx =0.0250D0!0.025D0
nn =4.0D0/dx
nx=nx2+nx3+nn
xcoord(0) = -=15.0DO0
xcoord (nx2)= -2.0DO0
c
do i=1,nx2-1
yj=1.D0*1i
y0=delta/2.D0*y7j/nx2
yl=delta/2.D0
tanh0 = (exp(y0)-exp(-y0))/ (exp (y0)+exp (-y0))
tanhl = (exp(yl)-exp(-yl))/ (exp(yl)+exp(-yl))
coefl = tanhO/tanhl
xcoord (i) = (1.D0-coefl) *xcoord (0)+coefl*xcoord (nx2)
xcrd (i) =(xcoord (i) +xcoord(i-1))/2.0D0
end do
c
write (*,*) 'nx2, dx',nx2,xcoord(nx2)-xcoord (nx2-1)
c

do k=1,nn-1
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&

Q00000000

&

C

cc

cc

cc

cc &
C

cc

cc

C

cc

ccccce
c !
cc
cc
cc
cc
cc
cc
cc
cc

c * Kk Kk ok

C
C

xcoord (nx2+
xcrd (nx2+k)
end do

xcoord (nx2+
xcoord (nx)

do i=1,nx3-1

y3=1.D0* (nx3-1
y0=delta/2.D0*
yl=delta/2.DO0

tanh0 = (exp(y
tanhl = (exp(y
coefl = tanhO

xcoord (nx2+nn+

xcrd (nx2+nn+1i) =

end do
write (*,*)

xcrd (n
xcrd (n
xcrd (0
(nx
(n

x) =
x+1)=2
)= XCO
xcrd

xcrd (nx2+nn) =

k=0
nx=2*nx2+n

k)=xcoord (nx2)

+k*dx

= (xcoord (nx2+k) +xcoord (nx2+k-1)) /2.0D0

nn) = 2.0D0
=15.0D0

)

yj/nx3

0) —exp ( )/ (e

1) -exp( )/ (e

/tanhl

i) =

y0) +exp (-y0)

)
yl)+exp (-yl))

coefl*xcoord (nx2+nn) +

(1.0D0-coefl) *xcoord (nx )

'nx2+nn,dx"',nx2+nn, xcoord (nx2+nn+1)

xcoord (nx) +xcoord(nx-1))/2.0D0
*xcoord (nx) -xcrd (nx)
ord(0) - (xcrd (1) -xcoord (0))

n

2)=(xcoord (nx2) +xcoord (nx2-1))/2.0D0
(xcoord (nx2+nn) +xcoord (nx2+nn-1))

(xcoord (nx2+nn+1i) +xcoord (nx2+nn+1i-1)) /2

-xcoord (nx2+nn)

/2.0D0

,2*ny2+nn, 'F=BLOCK'

=1,2*ny2+nn)
=1,2*ny2+nn)

! this part has change to make a bit new andices

do i=nx2+nn+1,nx

k =k+1

xcoord (1)= -xcoord (nx2-k)

xcrd (i) =(xcoord (i) +xcoord(i-1))/2

end do
xcrd (nx+1) =xcoord (nx) + (xcoord (nx) -xcrd (nx-1) )
xcrd (0)= xcoord(0)-(xcrd(1l)-xcoord(0))
xcrd (nx2) = (xcoord (nx2) +xcoord (nx2-1)) /2
do 1=0,nx+1
write(*,*)'i,dx,xcoord,xcrd"',
i,2* (xcoord(i)-xcrd(i)), xcoord(i),xcrd(i)
end do
open (unit=12,file="trial.out")
write(1l2,*) 'variables="x","y""'
write (12, *)

'ZONE T="scalar field",I=',2*ny2+nn,'J ="'
write (12, ' (5E16.8)") ((y(i),1i=1,2*ny2+nn), j
write(12,"'(5E16.8)"') ((y(3),i=1,2*ny2+nn),J
close (12)

making uniform mesh xdirction
nx=250
ny=300 ! was 400 for 20D in y direction
dx = 25D0/nx
xcrd (0)=-0.5D0*dx
do i=0,nx
xcoord (i)=1i*dx
xcrd (i+1l)=xcrd (i) +dx
end do
KE XK ! end of uniform mesh x direction
alpha = 1.02 ! stretching of 2 per cent.
dy = 1D0/ny ! this is the mean dy
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Qo000

*xxxxx*x*% | creating fine mesh around the cylinder in y direction
cc 3=0
cc dy=0.1DO0
cc ycrd (0)=-0.5D0*dy
cc ycrd (1)=0.5D0*dy
cc ycoord (0)=0.D0
cc
ccllO J=j+1
cc ycoord (j)=ycoord(j-1)+dy
c yerd (3+1) =ycrd (j) +dy
cc ycrd ()= (ycoord (j)+ycoord (j-1))/2
cc if ((ycoord(j) .LE. 11.0) .OR. (ycoord(j) .GE.18.9)) then
cc dy=0.1D0
cc else if ((ycoord(j) .GT. 11.0) .AND. (ycoord(j) .LE. 14.05)) then
cc dy=dy-0.00125D0
c dy=dy-0.001262
cc else if ((ycoord(j) .GE. 1l6) .AND. (ycoord(j) .LT. 18.9)) then
cc dy=dy+0.00125D0
c dy=dy+0.001262
cc else
cc dy=0.05D0
c dy=0.025D0
c dy=0.0125
c dy=0.00535
cc end 1if
c write(*,*)'j,dy,ycoord(j)"', Jj,dy, ycoord(3)
cc if (ycoord(j) .LE. 30) go to 110
cc ycrd (j+1)=ycoord (j)+0.5D0*dy
cc ny=j
cc write(*,*) 'ny',ny
c ***x*xxxx* end of creating fine mesh around the cylidner in y direction
c
¢} nyl=119
ny2=37
delta=5.D0 !3.DO0
nn = 160!160
c
c ny2 = (nyl+l)/2
ycoord(0) = =15.0D0
ycoord (ny2)= -2.0D0
c
do j=1,ny2-1
y3j=1.D0*j
y0=delta/2.D0*yj/ny2
yl=delta/2.D0
tanh0 = (exp(y0)-exp (-y0))/ (exp (y0) +exp (-y0))
tanhl = (exp(yl)-exp(-yl))/ (exp(yl)+exp(-yl))
coefl = tanhO/tanhl
ycoord(j) = (1.DO-coefl)*ycoord(0)+coefl*ycoord (ny2)
ycrd (J)=(ycoord (j)+ycoord (j-1))/2
c write(*,*)'j,dy,ycoord(j)"',J,dy, ycoord(3j)

ycoord (ny)=1D0
do j=ny-1,0,-1
ycoord (j)=ycoord (j+1)-dy
dy=alpha*dy
end do
offset=ycoord(0)
fact=ycoord(ny)-offset

do j=0,ny
ycoord (j)=(ycoord(j)-offset)/fact
end do

ycrd (0)=-0.5D0*ycoord (1)
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end do

c
nnl = INT (4/ABS (ycoord(ny2)-ycoord(ny2-1)))
dyl = 4.0D0 /nnl
c
dy = 4.0D0/nn
write(*,*)'dy,nn =',dy,nn,dyl,nnl
c
do k=1,nn-1
ycoord (ny2+k)=ycoord (ny2) +tk*dy
ycrd (ny2+k) = (ycoord (ny2+k) +ycoord (ny2+k-1)) /2
c write(*,*)"'J,dy,ycoord(]j)',ny2+k,dy, ycoord(ny2+k)
end do
c
k=0
ny=2*ny2+nn
do j=ny2+nn,ny
c k =k+1
ycoord (j)= -ycoord(ny2-k)
ycrd (j)=(ycoord (j)+ycoord (j-1))/2
k =k+1
c write(*,*)'j,dy,ycoord(j)', j,dy, ycoord(3j)
end do
ycrd (ny+1l)=ycoord (ny) + (ycoord (ny) ~ycrd (ny) )
ycrd (0)= ycoord(0) - (ycrd(l)-ycoord(0))
ycrd (ny2) = (ycoord (ny2) +ycoord (ny2-1)) /2
do j=0,ny+1
write(*,*)'j,dy,ycoord(]j)"',Jj,ycoord(]j)-ycoord(j-1),
& ycoord(j),ycrd(3)
end do
c
c *****  creating uniform mesh
c
cc dy= 30D0/ny 'was 20 in y direction
cc ycrd (0)=-0.5D0*dy
cc ycoord (0)=-dy
cc do j=0,ny ! this part has change to make a bit new
andices
cc ycoord (j)=j*dy
cc ycrd(j+1l)=ycrd(j) +dy
cc end do
c
c ycrd (ny+1)=1D0+0.5D0* (ycoord (ny) -ycoord (ny-1))
c
open (unit=12,file="'grid.dat")
write(12,*) 'variables="x","y"'
write (12,%*)

& 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'
write(12,'(5E16.8)"') ((xcoord(i),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((ycoord(j),i=1,nx),j=1,ny)
close (12)

c STOP
open (unit=12,file="grid2.dat"')
write(12,*) 'variables="x","y"'
write (12,%*)

& 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'
write(12,'(5E16.8)"') ((xcrd(i),i=1,nx),j=1,ny)
write (12, "' (5E16.8)") ((ycrd(j),i=1,nx),3j=1,ny)
close (12)

c STOP

c KEREAXK KK AF A A A A Axxxxx**define u and v and p absolute inside of the
cylinder**x*x*

cc uins=1

cc vins=1

cc pins=1

cc
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cc do i=2,nx-1

cc do j=2,ny-1

cc if (sgrt((xcrd(i)-acyl)**2+ (ycoord(j)-bcyl)**2) .LT. Rcyl) then
cc vins (i, j)=vsolid

cc end 1f

cc if (sgrt((xcoord(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) then
cc uins (i, j)=usolid

cc end 1f

cc if (sgrt((xcrd(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) then
cc pins (i, j)=0

cc end 1if

cc end do

cc end do

********************************end Of part KAk hk Ak kA Ak Ak Ak kA k K,k %k

do i=1,nx
xtg = xcrd (i)
yvtg = 0.269D0*sgrt (0.1D0 * xtg)

fxdm = MAX(1.D0-2.DO*MAX (xtg-4.D0,0.D0),0.D0)
txv (1)=1DO0
tyv(1)=0.05D0*0.269D0/sqgrt (0.1D0 * xtq)

dnorm = SQRT (txv (i) **2+tyv (i) **2)
txv(i)=txv (i) /dnorm
tyv (i)=tyv (i) /dnorm
vnorv (i) =fxdm*0.081/sqrt (0.1D0 * xtg) ! scaled by inlet vel.
vnorv (1)=0.D0
do j=1,ny
jyv(i)=]
pmask (i, j)=0.DO0
if (ycoord(j)-ytg .GT. 0DO) GoTo 20
end do
STOP 'ERROR 002'
continue
Jyu(i)=jyv(i)+1

N
(@]

fyv(i)=ytg
end do

open (unit=12, file="'checkv.dat')

write(12,*) '*** v: i, j, ycoord, ytg: '
do i=1,400
write(12,*) i,jyv(i),ycoord(jyv(i)),fyv (i)
end do
close(12)

STOP 'check it'
do i=1,nx
do j=1,ny
if (pmask(i,j) .EQ. 0.DO) then
amask (i,3)=0.D0
if (i .GT. 1) amask(i-1,73)=0.DO0
end if
end do
end do

do i=1,nx
do j=2,ny
if ((amask
jyu(i)=
end if
end do
end do

(i,3) .EQ. 1.DO) .AND. (amask(i,j-1) .EQ. 0.D0O)) then
J

o000 000000c000000000000000000000000000a0aQn

cc open (unit=12,file="'grid.bin', form="'UNFORMATTED")
cc rewind (12)

c

cc write(12) nx,ny

cc write(12) ( xcrd(i),i=0,nx+1)
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cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

cc

Q0 QQ0

* %

* K

return
end

subrout

initial
boundar

integer
paramet
paramet

parame

common
double
common

&
double

common
&
double

common
double

common
&
integer

common
&
integer

common
double

common
double

common

&

&
integer

common
&
double

common
integer

common

(12) ( ycrd(3j),3=0,ny+1)
(12) ( txu(i),i=1,nx )
(12) ( txv(i),i=1,nx )
(12) ( tyu(i),i=1,nx )
(12) ( tyv(i),i=l,nx )
(12) (vnoru(i),i=1,nx )
(12) (vnorv(i),i=1,nx )
(12) ( fyu(i),i=1,nx )
(12) ( fyv(i),i=1,nx )
(12) ( Jyu(i),i=1,nx )
(12) ( Jyv(i),i=1,nx )
(12)

ine interpolate ()

ize the grid, blocking,
ies

extrapolation of velocities at

nnx,nny,MxSurf, Mxy
er (nnx=600,nny=850,MxSurf=50)
er (Mxy=2*nnx+2*nny)
ter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000)

/cylzise/ acyl, bcyl, Rcyl

precision acyl, bcyl, Rcyl

/veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
p(0:nnx+1,0:nny+1l),a(0:nnx,nny,4),b(nnx, 0:nny, 4)

precision u,v,p,a,b

/ griddd/ xcrd(0O:nnx+1), ycrd(0O:nny+1l), scalar (nnx,nny),

xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

precision xcrd, ycrd, scalar, xfree, yfree

/ griddx/ xcoord(0:nnx),

precision xcoord, ycoord

ycoord (0:nny)

/ bndvinfi/ iplv (Mxy),jplv (Mxy),ip2v (Mxy), jp2v (Mxy),
iinterpv (Mxy), jinterpv (Mxy) ,nbndv
iplv,jplv,ip2v, jp2v,iinterpv, jinterpv, nbndv
/ bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
iinterpu (Mxy), jinterpu (Mxy) ,nbndu
iplu, jplu, ip2u, jp2u,iinterpu, jinterpu, nbndu

/ bndvinfR/ wvl (Mxy),wv2 (mxy)
precision wvl,wv2

/ bnduinfR/ wul (Mxy) ,wu2 (Mxy)
precision wul,wu2

/ bndpinfi/iplp (0:Mxy), jplp (0:Mxy),ip2p (0:Mxy), jp2p (0:Mxy) ,
ip3p (0:Mxy), Jjp3p (0:Mxy) ,iinterpp (0:Mxy), jinterpp (0:Mxy) ,
nbndp
iplp,jplp,ip2p, jp2p, ip3p, jp3p,iinterpp, jinterpp, nbndp
/ bndpinfR/ teta (0:Mxy),unitvi (0:Mxy),unitvj (0:Mxy),
wpl (0:Mxy),wp2 (0:Mxy) ,deltal (0:Mxy)
precision teta,unitvi,unitvj,wpl,wp2,deltal

/maskdiv/ idiv (Mxy),jdiv (Mxy),ndiv
idiv, jdiv,ndiv

/masksx/ pmask (0:nnx,0:nny),umask (0:nnx, 0:nny),
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cc
C

& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),

& vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv,vup,uup,
& influx

common /minsx/ pins (0:nnx+2,0:nny+2),uins (0:nnx+2,0:nny+2),
& vins (0:nnx+2, 0:nny+2)
double precision pins,uins,vins

common / bniinf/ jyu(nnx),Jjyv(nnx)
integer jyu,jyv

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn

double precision Re, RRe,dt,time,dts

integer t,k

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

double precision dx,dy, fact,offset,alpha,xtg, ytg,dnorm
double precision gradient,intercept, xint,yint,weight,al,cl,PI
logical EX

common /homeadd/ home
character*40 home

xs011d=0.D0
RRe=1.D0/Re
bcyl=0.D0!+ysolid
acyl=0.D0!+xsolid
Rcyl=0.5D0

KrREAXK KK KA Ak A AAxxxxxF*define u and v and p absolute inside of the

cylinder*****

cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

uins=1
vins=1
pins=1

do 1i=2,nx-1
do j=2,ny-1
if (sgrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then
vins (i, j)=vsolid
end 1if
if (sgrt((xcoord(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) then
uins (i, j)=usolid
end 1if
if (sqgrt((
pins(i,j)=
end 1if
end do
end do

xcrd (i) —acyl) **2+ (ycrd (j) -bcyl) **2) .LT. Rcyl) then
0

c ********************************end Of part khkkhkhkkkhkkkhkhkkkhkkkhkhkkkhk*k

umask=0.D0

vmask=0.D0

do i=1,nx-1

do j=1,ny
umask (i, j)=1.D0

end do

end do

do i=1,nx
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do j=1,ny-1
vmask (i, j)=1.D0

end do
end do
c
c *** to define where vmask(i,j)=0 and umask(i,j)=0 and pmask (i, J)=0
do i=2,nx-1
do j=2,ny-1
if
& ((sgrt ((xcrd(i+l) -acyl) **2+ (ycoord (j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcrd(i-1)-acyl) **2+ (ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcrd(i)-acyl) **2+ (ycoord(j+1)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcrd(i)-acyl) **2+ (ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR.
& (sqrt((xcoord(l) —acyl)**2+ (ycrd(j+1) -bcyl) **2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i-1)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i-1)-acyl) **2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcrd(i)-acyl) **2+ (ycoord(j)-bcyl)**2) .LE. Rcyl))
& then
vmask (i, 3)=0
end 1if
if
& ((sgrt ((xcoord(i+l) —acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i-1)-acyl) **2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i)-acyl) **2+ (ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i)-acyl) **2+ (ycrd(j-1)-bcyl)**2) .LT. Rcyl) .OR.
& (sqgrt((xcrd(i+l)-acyl) **2+ (ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcrd(i)-acyl) **2+ (ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.
& (sqgrt((xcrd(i)-acyl) **2+ (ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR.
& (sgrt((xcoord(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LE. Rcyl) .OR.
& (sgrt((xcrd(i+l)-acyl) **2+ (ycoord(j-1)-bcyl)**2) .LT. Rcyl))
& then
umask (i, 3)=0
end 1if
end do
end do
c
c ¢ ***xxx*x*% definition of pmask
do i=1,nx
do j=1,ny
if ((umask(i-1,7)+umask(i,j)+vmask(i,j-1)+vmask(i,j)).EQ.1) then
umask(i ,3 )=0
umask (i-1,3 )=0
vmask(i ,3 )=0
vmask (i ,3-1)=0
end if
end do
end do
c
c ****xxx* end of definition of pmask
pmask=0.D0
do i=1,nx
do j=1,ny
if ((umask(i-1,7)+umask(i,J)+vmask(i,j-1)+vmask(i,J)).GE.1) then
pmask (i, j)=1.D0
end if
end do
end do
c
c PR B I I I I e b b I I b b b b b b g V—VelOCitieS ER R i b e I I e b b b e b g

KrRxxxF KKK A A K Fxxxxx* interpolation to find the boundary value of vmask(i,])

k=0

nbndv=0
do Jj=2,ny-1
do 1i=2,nx-1
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—acyl) **2)+
.AND. (deltal

(ycoord (3)
.GE.

deltal=sqgrt (((xcrd (i)
((vmask(i,3j) .EQ. 0.DO)
k=k+1
gradient=((bcyl-ycoord(j))/ ((acyl-xcrd(i))))
intercept=bcyl-acyl*gradient
c write(*,*) 'gradient, intercept’',

C
* Kk kK ok ok ok ok

If Reyl))

gradient, intercept

third quarter of circle *x*FxFxkkdddkrxxrxxrx

C

if ((ycoord(j) .LE. bcyl) .AND. (xcrd(i)

& then
xint=(ycoord(j-1)-intercept) /gradient

)) .OR.

1)) .AND.

)

)) then

If ((acyl EQ. xcrd (i
& ((xint .GE. xcrd(i
& (xint .LE. xcrd(i
yint=ycoord(j-1)
weight=

of grater I indices of v on interpolation point
If (acyl .EQ. xcrd(i))

weight=1
xint=xcrd (i)

1

)

then

I5,6F10.2)")
,xint, xcrd (1),

c write (* (A,
& thirdl',k,1i,j,weight, xcrd(l 1
Else
xint=xcrd(i-1)
yint=gradient*xint+intercept
weight=((yint-ycoord(j-1))/ (ycoord(J)
If (bcyl .EQ. ycoord(j)) then
weight=1
yint=ycoord(j)
nd if
)=

gradien

Q

E
iplv(k
jplv(k
ip2v(k
jp2v(
c write (*
& third2',k,i,Jj,weight, ycoord(j-1),
End if
End if

)=
)=
)=
(A,3I4,6F8.2)‘)
yint, ycoord(j),

'i,1ik, ik, wet,

Q

If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i)
second quater of circle
& then

xint=(ycoord(j+1)

!********
-intercept) /gradient

.AND.
xcrd (

(xint
i))) Then

If ((xint .GE. xcrd(i-1))
& .OR. (acyl .EQ.
yint=ycoord (j+1)
weight=((xint-xcrd(i-1))/ (xcrd (i)
grater I indices of v on interpolation point
If (acyl .EQ. xcrd(
weight=1
xint=xcrd (i)
End if

i)) then

,6F10.2)")
,xint,xcrd (i),

c write (*
c &scondl', k,1i,j,weight, xcrd

.LE.

((xint-xcrd(i-1))/ (xcrd (i) -xcrd(i-1))) !

.LE.

.LE.

-xcrd (i-1))) !

-bcyl) **2)

then

acyl))

'i, ik, jk,weight, ycrd

t,intercept

-ycoord(j-1)))

'new 20/5/13
'new 20/5/13

'new 20/5/13
'new 20/5/13

yCco

intercept,gradient

acyl))

xcrd (1))

'i,1ik, jk,weight, ycrd
gradient, intercept

weight

weight of
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Else
xint=xcrd(i-1)
yint=gradient*xint+intercept
weight=((yint-ycoord(j))/ (ycoord(j+1)-ycoord(j)))
iplv(k)=i-1
jplv(k)=j+1
ip2v (k)=i-1

jp2v (k) =]
c write(*,"'(A,3I5,6F10.2)"')'i,1ik,jk,weight, ycoord
c &scond2',k,1i,j,weight,ycoord(j-1),yint, ycoord(j),gradient,intercept
End if
End if
c
c

If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl))
| *kddkxxx first quater of circle
& then
xint=(ycoord(j+1)-intercept) /gradient

c
If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1)))
& then
yint=ycoord (j+1)
weight=((xint-xcrd(i))/ (xcrd (i+1l)-xcrd(i))) ! weight of

grater I indices of v on interpolation point
iplv(k)=i+1
jplv (k) =j+1
ip2v (k) =i
jp2v (k) =j+1

c
c write(*,"'(A,31I5,6F10.2)")"'i,1ik,jk,weight, ycoord
c & firstl',k,i,j,weight,xcrd(i),xint,xcrd(i+l),gradient, intercept
Else
xint=xcrd (i+1)
yint=gradient*xint+intercept
weight=((yint-ycoord(j))/ (ycoord (j+1)-ycoord(j)))
iplv(k)=i+1
Jplv (k)=7j+1
ip2v (k)=1i+1
jp2v (k) =]
c write(*,"'(A,31I5,6F10.2)")"'i,1ik,jk,weight, ycoord
c & firt2',%k,1i,3j,weight, ycoord(j),yint, ycoord(j+1),gradient,intercept
End if
End if
c
c
If (((ycoord(j) .LE. bcyl) .AND. (xcrd(i).GT. acyl)))
| *dkddxxx fourth quater of circle
& then
xint=(ycoord(j-1)-intercept) /gradient
c
If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1l)))
& then
yint=ycoord(j-1)
weight=((xint-xcrd(i))/ (xcrd(i+1l)-xcrd(i))) ! weight of

grater I indices of v on interpolation point
iplv(k)=i+1
jplv(k)=3-1

ip2v (k)=1i

jp2v (k) =j-1
c write(*,'(A,3I5,6F10.2)")"'i,1ik,jk,weight, ycrd
c & fourl',k,i,j,weight,xcrd(i),xint,xcrd(i+l),gradient, intercept

Else
xint=xcrd (i+1)
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yint=gradient*xint+intercept
weight=((yint-ycoord(j-1))/ (ycoord(j)-ycoord(j-1)))

if (bcyl .EQ. ycoord(j)) then ' 21/5/13
weight=1 ! 21/5/13
yint= ycoord(j) ! 21/5/13
endif 1 21/5/13
iplv (k) =i+1
jplv (k)=]

ip2v (k) =i+1
jp2v(k)=3j-1

c write(*,"'(A,31I5,6F10.2)")'i,1ik,jk,weight, ycoord
c & four2',k,i,j,weight, ycoord(j-1),yint, ycoord(j),gradient,intercept
End if
End if
c

iinterpv (k)=1
Jjinterpv (k) =j

al=sqgrt((acyl-xcrd(i)) **2+ (bcyl-ycoord(j))**2)-Rcyl ! distance of
bounary point to the bondary of circle
cl=(sgrt((acyl-xint) **2+ (bcyl-yint) **2) ) -Rcyl ! distance of
interpolation point to the boundary of circle
cc wvl (k)= (al/cl) *weight
cc wv2 (k)=(al/cl)* (1-weight)
wvl (k)=weight
wv2 (k)= (al/cl)
if (al .EQ. 0) then ! point is on the solid cl to al
wvl (k)=0
wv2 (k)=0
end 1if
c write(*,'(A,3I5,7F10.2)")"'i,ik,jk,weight,wvl,wv2,
c & final',k,i,j,weight,wvl (k),wv2(k),al,cl,xint,yint
End if
c
end do
end do
nbndv=k
write(*,*) 'k,nbndv="',k,nbndv

C *k xEkkkAkxkkkkxxkkkk y—-yelocities
KA AR A AR AR A A A A A A AR A A A A A A AR A A A A A A AR A A A A A A AR AR A AR A A A AR A AR AR A AR AR A A A A AR A A A kA A Ak Ak kK

*kkkkkkxok o

c ****x*xxx*interpolation to find the bounadry value of umask (i, j)

k=0
nbndu=0
c
do J=2,ny-1
do 1i=2,nx-1
deltal= sgrt((xcoord(i)-acyl)**2+ (ycrd(j)-bcyl) **2)
If ((umask(i,j) .EQ. 0) .AND. (deltal .GE. Rcyl)) then
k=k+1
gradient=(bcyl-ycrd(j))/ (acyl-xcoord(i))
intercept=bcyl-acyl*gradient
c
c

If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .LE. acyl)) !
* %k kx k Xk third quater Of Circle Kk kkhkkkhkhkkkkkkkkxk
& then
yint=gradient * xcoord(i-1)+intercept

c
If ((bcyl .EQ. ycrd(j)) .OR. ! 21/5/13
& ((yint .GE. ycrd(j-1)) .AND.
& (yint .LE. ycrd(j)))) then
xint=xcoord (i-1)
weight=(yint-ycrd(j-1))/ (ycrd(j)-ycrd(j-1)) ! weight

of grater I indices of v on interpolation point
if (bcyl .EQ. ycrd(j)) then !21/5/13

187



weight = 1 121/5/13

yint =ycrd(j) 121/5/13
endif 121/5/13
iplu(k)=i-1
jplu (k) =]
ip2u (k)=i-1
jp2u(k)=j-1
c write(*,"'(A,3I5,6F10.2)")'1i,1ik,jk,weight, ycrd
c & thirdl',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient, intercept
Else
yint=ycrd(j-1)
xint=(yint-intercept) /gradient
weight=(xint-xcoord(i-1))/ (xcoord (i) -xcoord (i-1))
IF (acyl .EQ. xcoord(i)) then
weight=1
xint=xcoord (i)
End if
iplu(k)=1
jplu(k)=j-1
ip2u (k)=i-1
jp2u(k)=j-1
c write(*,"'(A,3I5,6F10.2)")'i,1ik,jk,weight, xcoord
c &third2',k,1i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept
End if
End if
c

If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .LE. acyl)) !
* Kk k ok k k Second quarter Of Circle *hkhkhkhkhkkhkhkkrkkkkk*k
& then
yint=gradient * xcoord(i-1)+intercept

If ((yint .GE. ycrd(j)) .AND.
& (yint .LE. ycrd(j+1l))) then
xint=xcoord (i-1)
weight=(yint-ycrd(j))/ (ycrd(j+1)-ycrd(j)) ! weight of
grater I indices of v on interpolation point
iplu(k)=i-1
jplu(k)=j+1
ip2u (k)=i-1

jp2u (k) =j
c write(*,"'(A,3I5,6F10.2)")'1i,1ik,jk,weight, ycrd
c &scondl',k,i,j,weight,ycrd(j),yint,ycrd(j+1),gradient, intercept

Else
yint=ycrd(j+1)
xint=(yint-intercept) /gradient
weight=(xint-xcoord (i-1))/ (xcoord (i) -xcoord (i-1))
If (acyl .EQ. xcoord(i)) then
weight=1
xint=xcoord (1)
End if
iplu(k)=1
jplu(k)=j+1
ip2u (k)=i-1
jp2u (k) =j+1

c write(*,"'(A,3I5,6F10.2)")'i,ik,jk,weight, xcoord
c &scond2',k,1i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept
End if
End if
c

If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .GT. acyl)) !
* %k kx k Xk first quarter Of Circle *rhkhkkkhkhhkkhkhkkhkhkkxkxkkx
& then
yint=gradient * xcoord(i+l)+intercept

If ((yint .GE. ycrd(j)) .AND.

& (yint .LE. ycrd(j+1l))) then
xint=xcoord (i+1)
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weight=((yint-ycrd(j))/ (ycrd(j+1)-ycrd(j))) ! weight of
grater I indices of v on interpolation point

iplu(k)=i+1
Jplu(k)=j+1
ip2u(k)=i+1
jp2u (k) =3
c write(*,"'(A,3I5,6F10.2)")"'i,1ik,jk,weight, xcoord
c &first2',k,1i,3j,weight,ycrd(j),yint,ycrd(j+1),gradient, intercept

Else
yint=ycrd(j+1)
xint=(yint-intercept) /gradient
weight=((xint-xcoord(i)) / (xcoord (i+1)-xcoord(i)))

iplu(k)=i+1

jplu(k)=3+1

ip2u(k)=1

jp2u(k)=3+1
c write(*,"'(A,3I5,6F10.2)")'i,1ik,jk,weight, xcoord
c &first2',k,1i,3j,weight,xcoord (i), xint, xcoord(i+l),gradient,intercept

End 1if
End 1if

c
If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .GT. acyl))

* Kk ok ok ok x fourth quater Of Circle Kk hkkkkhkkkkhkkkxkx
& then
yint=gradient * xcoord(i+l)+intercept

c
If ((bcyl .EQ. ycrd(j)) .OR.
& ((yint .GE. ycrd(j-1)) .AND.
& (yint .LE. ycrd(j)))) then
xint=xcoord (i+1)
weight=((yint-ycrd(j-1))/ (ycrd(j)-ycrd(j-1))) ! weight

of grater I indices of v on interpolation point
if (bcyl .EQ. ycrd(j)) then
weight = 1
yint = ycrd(i)
end 1if
iplu(k)=i+1
jplu(k) =]
ip2u(k)=1i+1
jp2u (k) =3-1
c write(*,"'(A,31I5,6F10.2)")'i,ik,jk,weight, xcoord
c &fourl',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient, intercept
Else
yint=ycrd(j-1)
xint=(yint-intercept) /gradient
weight=((xint-xcoord(i)) / (xcoord (i+1l)-xcoord(i)))
iplu(k)=1i+1
jplu(k)=j-1

ip2u (k) =1
jp2u(k)=j-1
c write(*,"'(A,31I5,6F10.2)")'i,ik,jk,weight, xcoord
c & four2',k,i,j,weight,xcoord(i),xint,xcoord(i+l),gradient,intercept
End if
End 1if
c
c
iinterpu(k)=1
Jjinterpu (k) =]
al=sqgrt ((acyl-xcoord (i) ) **2+ (bcyl-ycrd(j))**2)-Rcyl ! distance of
bounary point to the bondary of circle
cl=sqgrt((acyl-xint) **2+ (bcyl-yint) **2) -Rcyl ! distance of
interpolation point to the boundary of circle
cc wul (k)=(al/cl) *weight
cc wu2 (k)=(al/cl)* (1-weight)
wul (k) =weight ' 21/5/13
wu2 (k)=(al/cl) 121/5/13
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if (al .EQ. 0) then !
wul (k) =0
wu?2 (k) =0
endif
End if
end do
end do
nbndu=k
write(*,*) 'k,nbndu', k, nbndu

point on the solid boudnary

121/5/13
121/5/13
121/5/13

c KAK KA A KA KNI A A A A A AN A A AR A A AR AR AR A A A A AR A Ak kK pressure interpolation indices on

c
c
c
moving
&
&
c
c
*kkkkx
c
c
&
c
c

boundary******************
k=0
nbndp = 0
PI=4.*ATAN(1.)
do j=8,ny-8
do i=8,nx-8

if ((pmask(i,3j) .EQ. 1)
((pmask(i+1,3) .EQ. 0) .OR.
(pmask (i,3+1) .EQ. 0) .OR.

.AND.

(pmask (i-1,7)
(pmask (i,3-1)

.EQ.
.EQ

deltal= sqgrt((xcrd(i)-acyl)**2+ (ycrd(
gradient=(bcyl-ycrd(j))/ (acyl-xcrd (i)

intercept=bcyl-acyl*gradient

k=k+1

0)

.OR.
-0)))

then

j) -bcyl) **2)
)

teta (k) =ATAN2 ( (ycrd (j)-bcyl), (xcrd(i)-acyl))
) then
teta (k)=teta(k)+ 2*PI

if (teta(k) .LE. O
end 1if
teta (k)

unitvi (k

unitvj (k

)
)
)

iplp(k
jplp (k
If ((ycrd(j

i
J

.LE. bcyl

) .AND.

(xcrd (1)

third quater of circle **xxxxkkkdkddtrxxx

yint=ycrd(j-1)
xint=

(yint- intercept) /gradient

teta (k)= (2*PI/3) - (ATAN (gradient))

if (acyl .EQ. xcrd(i))
if ((xint .GE. xcrd(i-1)
(acyl .EQ. xcrd(i)))

.AND.

then

teta (k)=2*PI/3
(xint .LE.

.LE.

acyl))

ATAN2 ( (bcyl-ycrd(j)), (acyl-xcrd(i)))
(xcrd (i) -acyl) /deltal
(ycrd(j)-bcyl) /deltal

lupdate 21/5/13

xcrd (1)))

wpl (k)= (xint-xcrd(i-1))/ (xcrd (i) -xcrd(i-1))

if (acyl
wpl (k) =1
xint=xcrd (i)
end if
ip2p (k) =1
jp2p (k) =j-1
ip3p(k)=i-1
jp3p (k) =j-1
else

xint=xcrd(i-1)

.EQ.

xcrd (1))

then

yint=gradient * xint+intercept
wpl (k)= (yint-ycrd(j-1))/ (ycrd(j)-ycrd(j-1))

if (bcyl .EQ. ycrd(j))
wpl (k)=1
yint=ycrd(j)
endif
ip2p (k)=i-1
jp2p (k) =]
ip3p(k)=1i-1
jp3p (k)=j-1

then

121/5/21
121/5/21
121/5/21
121/5/21

then
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end if
end if

If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .LE. acyl)) then
* k ok kkx SeCODd quarter Of Clrcle khkhkkhkkhkkhkhrkhkkhkkhkhkkrkkhkkkx
yint=ycrd(j+1)
xint= (yint- intercept)/gradient !update 21/5/13

c
if ((xint .GE. xcrd(i-1) .and. (xint .LE. xcrd(i)))
& (acyl .EQ. xcrd(i))) then
wpl (k)= (xint-xcrd(i-1))/ (xcrd(i)-xcrd(i-1))
c
If (acyl .EQ. xcrd(i)) then
wpl (k)=1
xint=xcrd (i)
End if
c
ip2p (k) =1
jp2p (k) =j+1
ip3p(k)=i-1
jp3p (k) =j+1
else
xint=xcrd (i-1)
yint=gradient * xint+intercept
WPl(k)—(yint yecrd(j))/ (yerd(3+1) -ycrd (3))
ip2p (k)=
p2p(k)=3+1
ip3p (k)=
jp3p (k)=
end if
end if
c

If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl)) then
21/5/13 *xxxxx first quarter of circle *FFkkkddrxkkkdkokkk
yint=ycrd(j+1)
xint= (yint - intercept)/gradient !update 21/5/13

c
if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1)))
wpl (k)= (xint-xcrd(i))/ (xcrd (i+1l)-xcrd (1))
ip2p (k) =i+1
jp2p (k) =j+1
ip3p (k) =1
jp3p (k) =j+1
else
xint=xcrd (i+1)
yint=gradient * xint+intercept
wpl (k)=(yint-ycrd (j))/ (ycrd (j+1)-ycrd (7))
ip2p (k) =i+1
jp2p (k) =j+1
ip3p(k)=1+1
jp3p (k)=
end if
end 1if
c
If ((ycrd(j) .LE. bcyl) .AND. (xcrd(i) .GT. acyl)) then
21/5/13 *xxxxx  fourth quater of circle ***xFxFxAxxrxrrkhkkk
yint=ycrd(j-1)
xint= (yint- intercept)/gradient
c
c teta (k) =2*PI*ATAN (abs (aradient))
c if (acyl .EQ. xcrd(i)) teta(k)=3*PI/2
c
if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1l)))
wpl (k)= (xint-xcrd (i) )/ (xcrd (i+1)-xcrd(i))
ip2p (k)=i+1
jp2p (k)=3-1
ip3p (k) =1
jp3p (k)=j-1

.OR.

then

upadte

! update

then
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else
xint=xcrd (i+1)
yint=gradient * xint+intercept
wpl (k) =(yint-ycrd(j-1))/ (ycrd(j)-ycrd(j-1))
if (bcyl .EQ. ycrd(j)) then
wpl (k) =1
yint=ycrd(j)

endif
ip2p (k)=i+1
jp2p (k) =]
ip3p (k)=i+1
jp3p (k) =j-1
end if
c
end if
c
iinterpp (k)=1
Jjinterpp (k) =]
al=sqgrt ((acyl-xcrd(i))**2+ (bcyl-ycrd(j))**2)-Rcyl ! distance of
first pressure point to the bondary of circle
cl=sqgrt((acyl-xint) **2+ (bcyl-yint) **2) -Rcyl ! distance of

interpolation point to the boundary of circle
wp2 (k)=(al/cl)
deltal (k)=al
end if
end do
end do
nbndp=k
write (*,*) 'nbndp',nbndp
do k=1,nbndp
do j=k+1,nbndp
if (teta(j) .LT. teta(k)) then
templ=teta (j)
temp2=iinterpp (Jj)
temp3=jinterpp (J)
temp4d=iplp (J)
temp5=jplp (J)
temp6=1ip2p (J)
temp7=Jp2p (J)
temp8=1ip3p (J)
temp9=Jp3p (J)
templO=wpl (j)
templl=wp2 (j)
templ2=unitvi (3)
templ3=unitvj (j)
templéd=deltal (j)

teta (j)=teta (k)
iinterpp(j)=iinterpp (k)
jinterpp (j)=Jjinterpp (k)
iplp(3)=iplp (k)

jplp (3)=jplp (k)
ip2p (j)=ip2p (k)
jp2p (3)=Jp2p (k)
ip3p (j)=ip3p (k)
jp3p (3)=3p3p (k)
wpl (3)=wpl (k)
wp2 (3) =wp2 (k)
unitvi (j)=unitvi (k)
unitvj (j)=unitvj (k)
deltal (j)=deltal (k)

teta (k) =templ
iinterpp (k)=temp2
jinterpp (k) =temp3
iplp (k) =temp4
jplp (k) =temp5
ip2p (k) =tempb
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=temp7
=temp8
=temp9
=templ0
=templl
)=templ2
)=templ3
)=templd

jp2p
ip3p
jp3p
wpl (
wp2 (
unitvi
unitvj
deltal

k)
k)
k)
)
)

(
(
(
k
k
(k
(k
(k

end 1if

end do

end do

teta (nbndp+l)=teta(l)+2 *
iinterpp (nbndp+l)=iinterpp
Jjinterpp (nbndp+l)=jinterpp
iplp (nbndp+1)=iplp (1)

jplp (nbndp+l) =
ip2p (nbndp+1)=1ip2p
jp2p (nbndp+1) =jp2p
ip3p (nbndp+1)=1ip3p
jp3p (nbndp+1) =jp3p
wpl (nbndp+1)=wpl (1
wp2 (nbndp+1)=wp2 (1)
unitvi (nbndp+1)=unitvi (1)
unitvj (nbndp+1)=unitvj (1)
deltal (nbndp+l)=deltal (1)

* ATAN
)
)

(1.)

4
(1
(1

)
)
)
)
)

teta (0)=teta (nbndp)-2 * 4.
iinterpp (0)=iinterpp (nbndp)
Jjinterpp (0)=jinterpp (nbndp)
iplp (0)=iplp (nbndp)
jplp (0)=jplp (nbndp
ip2p =ip2p (nbndp
(
(

* ATAN (1.)

jp2p jp2p (nbndp
ip3p =ip3p (nbndp
jp3p (0) =jp3p (nbndp
wpl ( wpl (nbndp)

wp2 (0) =wp2 (nbndp)

unitv )=unitvi (nbndp)
unitv )=unitvj (nbndp)
delta )=deltal (nbndp)

(0)= )
(0)= )
(0)= )
(0)= )
(0)= )
0)=

)
i
J
1

(0
(0
(0

c****and of pressure indices interpolation hhkrhkhkhk kA hkkhkrhkkhkrhhkrkhkhkhkhkrhkhkrhkkhkhkhkkhkxkkx

return
end
cc
subroutine bounds ()
c
integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
c
c
common /cylzise/ acyl, bcyl, Rcyl
double precision acyl, bcyl, Rcyl
c
common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b
c
common /velotemp/ utemp (0:nnx,0:nny+1),vtemp (0:nnx+1,0:nny)
double precision utemp, vtemp
c
common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree
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common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

c
common / bndvinfi/ iplv (Mxy),Jjplv(Mxy),ip2v (Mxy),jp2v (Mxy),
& iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv
c
common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy),jp2u (Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu
common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2
c
common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2
c
common /masksx/ pmask(0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask
c
common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),
& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx) ,
& vup (0:nnx+1) ,uup (0:nnx) ,influx
double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv, vup,uup,
& influx
c
common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
c
common / bniinf/ jyu(nnx),Jjyv(nnx)
integer jyu,jyv
c
common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts
c
double precision vi,vip,uip,uip2,xtg,ytg,dnorm,ubound, vbound, vtan,
& flux,bflux, fact,dux,ycl,uint,vint,
& vsolidRelative,usolidRelative
c
common /homeadd/ home
character*40 home
c
logical EX
c
c write (*,*) "**xxxxxxx*x* gt the beginning of bounds****xxxxx*1!
c
c ** inlet boundary at the left grid-line
c
do j=1,ny
u(0,3)=1.D0
end do
c
do j=0,ny
Cc V(OI]):_V(II])
v(0,j)=-vsolid
end do
c

c ** symmetry boundary at the upper and lower side
this is not fullfilled (except for 1<x<2)

c
c do i=0,nx

c v(i,ny )=0

c u(i,ny+l)=u(i,ny) ! indices should be check to see if ny

is correct or ny+1 !
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c v(i,0 )=

c u(i,0 )= (1,1 )
cc v(i,ny)=vup (i)

c end do

c *** relative velocity at the upper and lower side
do 1=0,nx
v(i,ny)=-vsolid

v(i, 0)=-vsolid
c u(i, 0)= u(i,n+l) !period bondary for the u
u(i, 0 y=u(i,1 )
u(i,ny+l)=u(i,ny)
end do

C ********************************Solid bOundary around the cy]_j_nder (immersed
boudnary) kkkkhkrkhkkhkrkhkhkhkkhkkkkhkkxkkkkkxkxk

c
c write (*, *) "'nbndu, nbndv', nbndu,nbndv
vsolidRelative=0
usolidRelative=0
do i=1,nbndv !'nbndv
ik=iinterpv (i)
Jjk=jinterpv (i)
v(ik,jk)=(1-wv2 (i))*vsolidRelative +
& wv2 (1) * wvl (1) *vtemp (iplv (i), jplv (i) )+
& wv2 (1) * (1-wvl(i)) *vtemp (ip2v (i), Jjp2v(i))
c write(*,'(A,3I5,5F16.8)") 'i,ik,jk,x(ik),y(Jk),v(ik,jk),wvl,wv2="
c & ,i,ik,jk,xcrd(ik), ycrd(jk),v(ik,Jjk),wvl(i),wv2 (1)
end do
c
do i=1,nbndu !'nbndu
ik=iinterpu (i)
jk=jinterpu (i)
u(ik,jk)=(1l-wu2(i)) *usolidRelative+
& wu2 (1) * wul (i) *u(iplu(i),jplu(i))+
3 wu2 (i) *(l-wul (i))*u(ip2u (i), jp2u(i))
c if ((u(ik,jk) .GE. 1) .OR. (u(ik,jk) .LE. -1)) then
c write(*,*) 'i,ik,jk,u(ik,jk)="',1,1ik,jk,u(ik,jk)
(e} end 1if
end do
c

coee**xFkkxkxkkxkxkkx 29 /5/13 defining velocity inside the solid*****kkkxkkkxk
c
do 1i=2,nx-1
do j=2,ny-1
if (sgrt((xcrd(i)-acyl)**2+ (ycoord(j)-bcyl)**2) .LT. Rcyl) then
v(i,j)=vsolidRelative

end 1if
cc if (sgrt((xcoord(i)-acyl) **2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) then
cc uins (i, j)=usolid
cc end 1if
cc if (sgrt((xcrd(i)-acyl)**2+ (ycrd(j)-bcyl)**2) .LT. Rcyl) then
cc pins (i, j)=0
cc end 1if

end do

end do

c ********************************end Of part khkkhkhkkkhkkkhkhkkhkhAkkhkhkkkhk*k

C

C FEEFFFxxXFK part to improve divergence around the cylinder

c
ccc do i=1,nx

ccc do j=1,ny

ccc if (umask(i,j)+umask(i-1,7j)+vmask(i,j)+vmask(i,j-1) .EQ. 1) then
ccc if (umask(i,j) .NE.1l) then
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ccc u(i,j)=u(i-1,3j)-
(

ccc & (xcoord (i) -xcoord(i-1))/ (ycoord(j)-ycoord(j-1)))*
ccc & (v(i,3)-v(i,3-1))
ccc end 1if
c
ccc if (umask(i-1,3) .NE. 1) then
ccc u(i-1,3)=u(i,j)+
ccc & ((xcoord (i) -xcoord(i-1))/ (ycoord(j)-ycoord(j=1)))*
ccc & (v(i,3)-v(i,3-1))
ccc end 1if
c
ccc if (vmask(i,j) .NE. 1) then
ccc v(i,j)=v(i,j-1)-
ccc & ((ycoord (j)-ycoord(j-1))/ (xcoord (i) -xcoord(i-1)))*
ccc & (u(i,j)-u(i-1,3))
ccc end 1if
c
ccc if (vmask(i,j-1) .NE. 1) then
ccc v(i,j-1)=v(i,3)+
ccc & ((ycoord (j)-ycoord(j-1))/ (xcoord (i) -xcoord(i-1)))*
ccc & (u(i,j)-u(i-1,3))
ccc end 1if
c
ccc end if
ccc end do
ccc end do
] STOP
c
cc do i=0,nx
cc u(i,ny+1l)=2*%uup(i)-u (i, ny)
cc end do
c
c
c
cc do i1i=2,nx-1
cc do j=1,ny-1
cc if (amask(i,j) .NE. amask(i-1,7)) then
cc bflux=bflux-u (i, j)* (ycoord(j)-ycoord(j-1))
cc end if
cc end do
cc end do
c
c
c ** Exit boundary conditions
c
flux=0.D0
do j=1,ny
u(nx ,j)=u(nx ,J)-umask(nx-1,7)*dt* (u(nx,j)-u(nx-1,73))/
& (xcoord (nx) -xcoord (nx-1))
v(nx+1,3)=v(nx+1l,j)-vmask (nx-1,73) *dt* (v (nx+1,j)-v(nx,j))/
& (xcrd (nx+1) -xcrd (nx) )
flux=flux+umask (nx-1,3j) *u(nx, j) * (ycoord (j)-ycoord (j-1))
end do
c
if (flux .LT. 1D-6) then
flux=0.D0
do j=1,ny

u(nx,j)=umask (nx-1,7)
flux=flux+umask (nx-1,7j) *u(nx,j) * (ycoord (j)-ycoord(j-1))

end do
end if
c
c ** Updata outflow for global mass conservation
c
cJW WARNING CHANGE THIS BACK LATER
bflux=0.D0
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CHRAFXXXxFFFFkAkkkxxxx this part took out to check the convergence problem

c
do
end

c
do
end

c

C  FEFFxxAKKkAAAA thig part has been added to improve the divergence problem

ccc

ccc do

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

c wr

c
fac

c wr
do
end

c ca

c ST

c

c wr
ret
end

cc

cc
sub

c
int
par
par

c

comi

nbnd=1, nbndu
i=iinterpu (nbnd)
j=jinterpu (nbnd)
if (pmask(i+1l,7)+pmask(i,j) .EQ. 1) then
if (pmask(i+l,3j) .EQ. 1.D0) then
bflux=bflux+u (i, j)* (ycoord(j)-ycoord(j-1))
else if (pmask(i,j) .EQ. 1.D0) then
bflux=bflux-u (i, j)* (ycoord(j)-ycoord(j-1))
end if
end 1f
do

nbnd=1, nbndv
i=iinterpv (nbnd)
j=jinterpv (nbnd)
if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then
if (pmask(i,j+1) .EQ. 1.D0) then
bflux=bflux+v (i, j) * (xcoord (i) -xcoord(i-1))
else if (pmask(i,j) .EQ. 1.D0) then
bflux=bflux-v (i, j)* (xcoord(i)-xcoord(i-1))
end if
end 1if
do

do i=2, nx-1
j=2, ny-1
if (pmask(i+l,])+pmask(i,j) .EQ. 1) then
if (pmask(i+1,3j) .EQ. 1.D0) then
bflux=bflux+u (i, j) * (ycoord(j)-ycoord(j-1))
else if (pmask(i,j) .EQ. 1.D0) then
bflux=bflux-u(i, j) * (ycoord(j)-ycoord(j-1))
end 1if
end if
if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then
if (pmask(i,j+1) .EQ. 1.D0) then
bflux=bflux+v (i, j)* (xcoord (i) -xcoord(i-1))
else if (pmask(i,j) .EQ. 1.D0) then
bflux=bflux-v (i, j) * (xcoord (i) -xcoord(i-1))

end 1if

end if

end do
end do
ite(*,*) 'outflux,bflux = ',flux,bflux
t=(influx+bflux) /flux
ite(*,*) 'influx, BFLUX, fact = ',influx,bflux,influx-bflux, fact
j=1,ny
u(nx,j)=fact*umask (nx-1,7) *u(nx, Jj)
do
11 fillf ()
OoP
ite(*,*)l K*hkkkhkkhhkkkkkkkk* at the end Of bounds*****************'
urn
routine init ()

eger nnx,nny,MxSurf,Mxy
ameter (nnx=600,nny=850,MxSurf=50)
ameter (Mxy=2*nnx+2*nny)

mon /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
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& p(0:nnx+1l,0:nny+1),a(0:nnx,nny,4),b(nnx, 0:nny, 4)
double precision u,v,p,a,b

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),

& vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv,vup,uup,
& influx

common / bndvinfi/ iplv (Mxy),Jjplv (Mxy),ip2v (Mxy),jp2v (Mxy),
& iinterpv (Mxy),jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
& iinterpu (Mxy), Jjinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

common / bniinf/ jyu(nnx),jyv(nnx)
integer jyu,jyv

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

double precision vi,vip,uip,uip2,xtg,ytg,dnorm, ubound, vbound,
& vtan, flux, fact,dx

double precision cdx(100),udx(100),vdx(100)

integer nil,one

logical EX

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

common /epsili/epstemp
double precision epstemp

common /homeadd/ home
character*40 home

epstemp=5.0D-7

Wwrite (*,*) ' ***x*kx*xbeginning of init***xxkxkx1
Re = 100.DO
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Q000000000

RRe = 1DO0O/Re
dt = 0.001D
time= 0.DO0O

vsolid =0.DO
ysolid =0.DO0
usolid =0.DO
xsolid =0.DO0

Set the initial velocities and pressure

u=1.D0
urk=1.D0

do i=1,nx-1
u(i,0 )=1.
u(i,ny+1)=1.
end do

do j=0,ny
do i=1,nx-1

0 ! it was 0.001DO

DO
DO

it was ny+l

! it was nx

u(i,j)=1.D0*umask (i, 7)

urk(i,7)=
end do
end do

do j=0,ny

do 1=0,nx+1
v(i,Jj)=0.
vrk(i,J)=

end do

end do

do j=10,ny-
do i=10,nx-

1.D0

DO
0.D0

10
10

!'*umask (i,3)

it was ny
it was nx+1

u(i,j)=1.D0 *umask (i, )
urk (i, j)=1.D0*umask (i, 7)

v(i,j)=1.D0*vmask (i, ])

vrk(i,j)=1.D0*vmask (i, ])

end do
end do

do j=1,10
br(j) = 0.0D
do i=1,10

ar(i,j) =
end do

OO oOoONNDN

b(iljll):
end do
end do
end do

0

0.0DO0

.0D0/3.0D0
.0D0/3.0D0
.250D0
.375D0
.375D0

0.D0
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c **

C

do j=0,ny+1

do i=0,nx+1
p(i,3)=0.D0

end do

end do

Determine influx

influx=0.DO0

further study

cc
cc

do j=1,ny
influx=influx+u(0,j)* (ycoord(j)-ycoord(j-1))
end do

write(*,*) 'influx = ',influx

call getfld(ex)
if (ex) then

write(*,*) 'data has been read from file'
write(*,*) 'time = ',time
end if

write(*,*) Thhdxkkhhkxxkkrrxand of jnitx* xrrxxsx?

return
end

subroutine convec
integer nnx,nny,MxSurf,Mxy

parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1l),a(0:nnx,nny,4),b(nnx,0:nny, 4)

double precision u,v,p,a,b

common / griddd/ xcrd(0:nnx+1), ycrd(0O:nny+1), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

double precision xcrd, ycrd, scalar, xfree, yfree

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
& ajp (nnx,nny) ,diag (nnx,nny), f (nnx, nny)

double precision aim,aip,ajm,ajp,diag, f

common / bndvinfi/ iplv (Mxy),jplv (Mxy),ip2v (Mxy), jp2v (Mxy) ,
& iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,Jjplv,ip2v,jp2v,iinterpv, jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wuZ2

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)

double precision pmask,umask,vmask

this part need
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cc

c **

ccc

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

common /homeadd/ home
character*40 home

integer i,j,k

write (*,*) ' ***x*kxkxx*x gt the beginning of convec ***x*xkxkkk*!
call bounds ()

Save velocity at old time

do j=0,ny+1

do i=0,nx
urk (i, 3)

end do

end do

u(i,J)

do j=0,ny

do i=0,nx+1
vrk(i,J)

end do

end do

v(i,3J)

Start doing RK substeps
do k1 =1, nrk

do j=1,ny
do i=1,nx-1
u(i,j) = urk(i,j)
if (k1 .GT. 1) then
do j1l=1,kl-1
u(i,j)=u(i,j)+dt*umask(i,j)*ar(kl,jl)*a(i,J,31)
end do
end if
end do
end do

do j=1,ny-1
do i=1,nx
v(i,3) = vrk(i,J)
if (k1 .GT. 1) then
do jl1=1,kl-1
v(i,j)=v(i,J)+dt*vmask(i,Jj)*ar(kl,jl)*b(i,3,jl)
v(i,3)=v(i,])+dt*ar(k1,31)*b(i,3,71)
end do
end if
end do
end do

call bounds

do j=1,ny
do i=1,nx-1

a(i,j,kl)=-0.25D0*umask (i,J) * (
((u(i,J)+u(i+l,3)) *(u(i,j)+u(i+l,J)) -
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ccc

ccc

ccc

cc
cc

& (u(i,j)+u(i-1,3))*(u(i,j)+u(i-1,3)))/ (xcrd(i+l)-xcrd(i))+
& ((u(i,J)+u(i,J+1)) *(v(i,])+v(i+l,3))-
& (u(i,j)+u(i,j-1)) *(v(i ,j 1)+V(l+l,j 1))/
& (y oord(j) ycoord( 1)))+ umask(i,j)*
& RRe* ((u(i+l,j)-2*u(i,j)+u(i-1,73))/ ((xcrd(i+1l)-xcrd(i))**2)+
& (u(i,j+1)-2*u(i,3) u(l, -1))/ ((ycoord(j)-ycoord(j-1))**2))-
& axsolid
end do
end do
do i=1,nx
do j=1,ny-1
b(i,j,k1)=-0.25D0*vmask (i,7J) *(
b(i,j,k1)=-0.25D0* (
& ((v(i,3)+v(i,J+1))*(v(i,])+v(i,]+1))~-
& (Vv(i,3)+v(i,3-1))*(v(i,3)+v(i,J-1)))/ (ycrd(j+1)-ycrd(]j))+
& ((v(i,3)+v(i+l,3))*(u(i,J)+u(i,j+1))-
& (v(i,3)+v(i-1,3)) * (u(i-1,3) +u(i-1,3+1)))/
& (xcoord (i) -xcoord(i-1)))+ vmask(i,j)*
& (xcoord (i) -xcoord (i-1)))+
& RRe* ((v(i,j+1)-2*v(i,J)+v(i,J-1))/ ((ycrd(j+1)-ycrd(j))**2)+
& (v(i+1l,3)-2*v(i,J)+v(i-1,7))/ ((xcoord(i)-xcoord (i-1))**2)) -
& aysolid
end do
end do
end do
do j=1,ny
do i=1,nx
u(i,j) = urk(i,3j)
v(i,j) = vrk(i,J)
do jl=1,nrk
u(i,j)=u(i,j)+dt*umask(i,j) *br(31)*a(i,j,Jj1)
v(i,j)=v(i,])+dt*vmask (i, ) *br(jl)*b(i,j,Jl)
v(i,j)=v(i,])+dt*br(j1)*b(i,3,31)
end do
end do
end do

call bounds ()

write(*,*) Thhkhkkhkrhkhhkhkhhkkhkhkkhdkkhkkk at the end Of convec *khkkkkkxkhkkk !
return
end

subroutine calcuv

integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

double precision xcrd, ycrd, scalar, xfree, yfree

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
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cc
ccC

integer
double

common
&
double

common / bndvinfi/ iplv (Mxy),jplv(Mxy),ip2v (Mxy),jp2v (Mxy),

&
integer

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy),jp2u (Mxy),

&
integer

common
double

common
double

common
&
double

common
&
double
integer
common
double

integer
common
charact

eps = e

call so

end do
end do

return
end
subrout
integer

paramet
paramet

nx,ny,nx2,ny2,nn
precision Re, RRe,dt,time,dts

/SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
ajp (nnx,nny) ,diag (nnx,nny), £ (nnx, nny)
precision aim,aip,ajm,ajp,diag, f

iinterpv (Mxy), jinterpv (Mxy) ,nbndv
iplv,jplv,ip2v, jp2v,iinterpv, jinterpv, nbndv

iinterpu (Mxy), jinterpu (Mxy) ,nbndu
iplu, jplu,ip2u, jp2u,iinterpu, jinterpu, nbndu

/ bndvinfR/ wvl (Mxy),wv2 (mxy)
precision wvl,wv2

/ bnduinfR/ wul (Mxy) ,wu2 (Mxy)
precision wul,wu2

/masksx/ pmask (0:nnx,0:nny),umask (0:nnx, 0:nny),
vmask (0:nnx, 0:nny)
precision pmask,umask,vmask

/rkcom / urk(0:nnx,0:nny+1), vrk(0O:nnx+1,0:nny),
ar(10,10), br(10), nrk
precision urk, vrk, ar, br
nrk
/epsili/epstemp
precision epstemp, eps

i, 3,k
/homeadd/ home

er*40 home

pstemp

lve (eps, iterat)

ny

nx-1

j) = u(i,3j) - dt*umask(i,j)*
(p(i+l,3)-p(i,3))/ (xcrd(i+l)-xcrd(i))

ny-1

nx

,J) = v(i,j) - dt*pmask(i,]j) *pmask (i, j+1)*

,J) = v(i,j) - dt*vmask(i,j)*
(p(i,J+1)-p(i,3))/ (ycrd(j+1)-ycrd(3))

ine mean ()

nnx,nny,MxSurf, Mxy
er (nnx=600,nny=850,MxSurf=50)
er (Mxy=2*nnx+2*nny)
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cc

cc

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx, 0:nny, 4)

double precision u,v,p,a,b

common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

& uu (nnx,nny) ,

vv (nnx,nny),

double precision um,vm,pm,uu,vv,uv

common /parmen/ nmean
integer nmean

uv (nnx, nny)

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

integer nx,ny,nx2,ny2,nn
double precision Re,

double precision fac
integer i,j,k

common /homeadd/ home
character*40 home

if (nmean .EQ. 0) then
do j=1,ny
do i=1,nx
um (i, j)=0.0D0
vm (i, j)=0.0D0
pm(i,j)=0.0DO0
uu (i, j)=0.0D0
vv(i,j)=0.0D0
uv (i, j)=0.0D0
end do
end do
end if
nmean=nmean+1
fac=1.D0/nmean
do j=1,ny
do i=1,nx
um (i, j)=(1.D0-fac) *um (i, j
vm(i,j)=(1.DO0-fac)*vm(i,]
pm(i,3)=(1.D0-fac) *pm (i, j
uu(i,j)=(1.D0-fac) *uu (i, J
vv(i,j)=(1.D0-fac)*vv(i,]
uv (i, j)=(1.D0-fac) *uv (i, J
&
end do
end do
return
end

subroutine inisol ()

parameter

parameter (Mxy=2*nnx+2*nny)

RRe,dt, time, dts

0.50D0*fac* (u(i-1,3)+u(i,3))
0.50D0*fac* (v (i, j-1)+v (i, 3))
fac* p(i,J)
0.25D0*fac* (u(i-1,3)+u(i,j)) **2
0.25D0*fac* (v (i,j-1)+v (i, J))**2
0.25D0*fac* (u(i-1,j)+u(i,j))*
(v(i,3-1)+v(i,3))

(nnx=600, nny=850, nnxy=nnx*nny, MxSurf=50)

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

integer nx,ny,ny2,nn,nx3,nnl
RRe, dt,time,dts

double precision Re,

common / griddd/ xcrd(0:nnx+1),

ycrd (0:nny+1),

scalar (nnx,nny),

& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

double precision

common / griddx/

xcrd, ycrd,

xcoord (0:nnx),

scalar,

xfree,

yfree

ycoord (0:nny)
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Q0 Q0

double precision xcoord, ycoord

common / bndvinfi/ iplv (Mxy),Jjplv (Mxy),ip2v (Mxy),jp2v (Mxy),
& iinterpv (Mxy),jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu(Mxy),Jjplu(Mxy),ip2u(Mxy), jp2u(Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

common / bniinf/ jyu(nnx),Jjyv(nnx)
integer jyu,jyv

common /indi / 1li(nnx),maxit
integer 1i

common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as (nnxy),ap (nnxy),
& fp (nnxy) ,alfa
double precision ae,aw,an,as,ap, fp,alfa

common /ludeco/ un(-nny:nnxy),ue (-nny:nnxy), lw(nnxy),
& ls (nnxy), lpr (nnxy)
double precision un,ue,lw,ls,lpr

double precision pl,p2

common /epsili/epstemp
double precision epstemp

common /homeadd/ home
character*40 home

Write (*,*) " Hkkkkkkkkkkkkk gt the beginning of inisol***kksksksksksr
maxit = 5000
alfa = 0.92DO0
do i=-nny,nnxy
ue (1)=0.D0
un (1)=0.D0
end do

nxy=nx*ny

do i=1,nx
li(i)=(i-1) *ny

END DO

do i=1,nx

do j=1,ny
19=11i (i) +]
ij=(i-1) *ny+J

ae (ij)=(ycoord(j)-ycoord(j-1))/ (xcrd (i+1l)-xcrd(i))
an (ij)=(xcoord (i) -xcoord(i-1))/ (ycrd(j+1)-ycrd(j))
w(ij)=(ycoord(j)-ycoord(j-1))/ (xcrd(i)-xcrd(i-1))
s (ij)=(xcoord (i) -xcoord(i-1))/(ycrd(j)-ycrd(j-1))
end do
end do

! solid boundary
do i=1,nx-1
do j=1,ny-1
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o000

ij=(i-1) *ny+j
If (pmask(i,3j) .NE. 0) then
if (pmask(i+1l,3).EQ.0) then
e (13)=0.D0
end 1f
if (pmask(i-1,7).EQ.0) then
w(i3)=0.D0
end 1f
if (pmask(i,j+1) .EQ.0) then
n(ij)=0.D0
end 1if
if (pmask(i,j-1).EQ.0) then
s(1i3)=0.D0
end 1if
end 1if
end do
end do
! west and east Dboundary
do j=1,ny
i=1
aw((i-1) *ny+3)=0.D0
i=nx
ae((i-1)*ny+j)=0.D0
end do

do i=1,nx ! north and south bonudary
ij=(i-1) *ny+1
s(1ij)=0.D0
ij=(i-1) *ny+ny
n(ij)=0.D0
end do

do i=1,nx

s(li(i)+jyv(i))=0.D0 ! this is for the immersed boundary
as(li(i)+ 1)=0.D0
an(li(i)+ ny)=0.D0
do j=1,ny

ij=11i(1i)+7
if (amask(i,7).EQ.0.D0O) then
e (ij)=0.D0
end 1if
if (1 .GT. 1) then
if (amask(i-1,7).EQ.0.D0) aw(ij)=0.DO0
end 1if
if (j .GT. 1) then
if (pmask(i,j-1).EQ.0.D0) as(ij)=0.DO0

end 1f
end do
end do
do j=1,ny
aw (1li( 1)+3)=0.D0
ae (1li(nx)+3)=0.D0
end do

do i=1,nx

do j=1,ny
ij=(i-1) *ny +3J
ap(ij)=-(ae(ij)+aw(ij)+an(ij)+as(ij))
end do
end do

CALCULATE ELEMENTS OF [L] AND [U] MATRICES

do i=1,nx
do ij=(i-1)*ny+1, (i-1) *ny+ny
lw(ij)=aw(ij)/ (1.D0+alfa*un (ij-ny))
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ls(ij)=as(ij)/(1.D0+alfa*ue(ij- 1))

pl=alfa*lw(ij) *un(ij-ny)

p2=alfa*ls(ij) *ue(ij- 1)

lpr(ij)=1.D0/ (ap(ij) +pl+p2-1w (ij) *ue (ij-ny)-1s (i7j) *un(ij-1))
un(ij)=(an(ij)-pl) *lpr(ij)

ue (1j)=(ae(1j)-p2) *1pr(iJ)

end do
end do

Q0 Q0

Write (*,*) "**kkkxxkkkkkxkxx*x* gt the end of 1nisol***kxxkkkkkxx1!

return

end

cc

subroutine fillf ()

integer nnx,nny,MxSurf,Mxy

parameter (nnx=600,nny=850,nnxy=nnx*nny,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

&

&

&
&

&

&

&

&
&
&

&

&

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)

double precision u,v,p,a,b

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

ar(10,10), br(10), nrk

double precision urk, vrk, ar, br
integer nrk

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),
vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx) ,
vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv, vup,uup,

influx

common / bniinf/ jyu(nnx),jyv(nnx)
integer jyu,jyv

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /coefs/ ae (nnxy),aw(nnxy),an(nnxy),as (nnxy),ap (nnxy),
fp (nnxy) ,alfa
double precision ae,aw,an,as,ap, fp,alfa

common /pcorterm/ pctw(nnx,nny),pcte (nnx,nny), !pressure correction

pctn (nnx,nny) ,pcts (nnx,nny) ,
pctIBn (nnx,nny),pctIBs (nnx,nny),
pctIBe (nnx,nny),pctIBw (nnx,nny)
double precision pctw,pcte,pctn,pcts,pctIBn,pctIBs,pctIBe,pctIBw

common / bndvinfi/ iplv (Mxy),Jjplv (Mxy),ip2v (Mxy),jp2v (Mxy),
iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu
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Q00 Q000

Q0000000000000

common
double

common
double

common
&
double

common
double

common
intege

double
intege

common
charac

** f is b

write
* Kk kkk kK ok

* ok kkk Kk kK

pctw=
pcte=
pctn=
pcts=

/ bndvinfR/ wvl (Mxy),wv2 (mxy)
precision wvl,wv2

/ bnduinfR/ wul (Mxy),wu2 (Mxy)
precision wul,wu2

/masksx/ pmask (0:nnx,0:nny) ,umask (0:nnx, 0:nny),
vmask (0:nnx, 0:nny)
precision pmask,umask,vmask

/sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

/indi / 1li(nnx),maxit
r 11, maxit

precision sumf, flux,pctIBsc,pctIBsd,pctIBnc,pctIBnd
r i j,k

/homeadd/ home
ter*40 home

asically the divergence of (u,v) as calculated in convec

(*,*) 'dt = ',dt
*x*%%* calculating correction term neumann boundary***x*
**** poilsson pressure equation **Fkkkkkxx

0.D0
0.DO0
0.D0
0.DO0

pctIBn=0.D0
pctIBs=0.D0
pctIBe=0.D0
pctIBw=0.DO0
pctIBnc=0.DO0
pctIBnd=0.0D0
pctIBsc=0.D0
pctIBsd=0.DO0
pctIBec=0.D0
pctIBed=0.0D0
pctIBwc=0.DO0
pctIBwd=0.DO0O

FAAxxxxx*west and east boundary

do j=1, ny

i=1

pctw(1l,3)=((ycoord(j)-ycoord(j-1))/ (xcrd(i)-xcrd(i-1)))*!law(ij)
& ((u(l,j)**2—u(0,j)**2)/(Xcrd(l)—xcrd(O))—
& RRe* (u(2,73)-2*u(l,j)+ )) / (xcrd (i+1) -xcrd (1)) **2) *
& (xcrd(l)-xcrd(0))

i=nx

pcte (nx, j)=((ycoord(j)-ycoord(j-1))/ (xcrd(i+1l)-xcrd(i))) *lae(ij)
& (-1* (u(nx,j) **2-u(nx-1,73)**2) / (xcrd (i) -xcrd(i-1))+
& RRe* ((u(nx-2,73)-2*u(nx-1,7J)+u(nx,j))/ (xcrd(i)-xcrd(i-1))**2+
3 (u(nx,3-1)-2*u(nx, 3)+u(nx, 3+1)) / (yerd (3+1) —ycrd (3) ) ¥*2) ) *
& (xcrd (nx+1) -xcrd (nx) )

end do

FHFxxxxx*north and south boundary

do i=1,nx

j=ny
pctn (i,ny)=((xcoord(i)-xcoord(i-1))/ (ycrd(j+1)-ycrd(j)))* lan(ij)
& (((v(i,ny)**2-v(i,ny-1)**2)/ (ycoord(j)-ycoord(j-1)))+
3 ((u(i,ny)*v(i,ny)-
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u(i-1,ny)*v(i,ny))/
(xcoord (i) -xcoord(i-1)))+
(v(i,j+1)-vrk(i,j+1))/dt)*! this might not be ture
(ycrd (j+1) -ycrd(j)) '*0.DO

R & 2

J=1
pcts (i, j)=(
((

( coord( ) -xcoord (i-1))/ (ycrd(j)-ycrd(j-1)))* las((ij)
v
(u
u

X ) )
(i,3)**2-v(i,j-1)**2)/ (ycoord(j)-ycoord(j-1))+
(1,0)*v(i,0)-
(l 1,0)*v (i, 0))/

(xcoord (i) -xcoord(i-1))+
(v(i,j-1)-vrk(i,j-1))/dt)*! this might not be true
(ycrd(j)-ycrd(j-1))!*0.DO

2 R & 2 2

end do

write(*,*) '1i=202,pcts,pctn,pt,pb',pcts(202,1),pctn(202,ny),
& p(202,286),p(202,198)
call bounds

do nbnd=1,nbndv
i=iinterpv (nbnd)
j=jinterpv (nbnd)
if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then

if (pmask(i,j+1) .EQ. 1.D0) then 'top half
if ((pmask(i+l,7)+pmask(i+2,3)) .EQ. 0) then!left half

pctIBsc=((v(i,j+1)**2-v(i,])**2)/ (ycoord(j+1)-ycoord(j))+
& (u(i,Jj+1)*0.5* (v (i,3)+v(i,J+1)) -
& u(i-1,3+1)*0.5*(v(i,3)+v(i,3+1)))/
& (xcoord (i) —xcoord (i-1)))!*0.DO0O

pctIBsd=RRe* (-=1* (v (i,])-2*v(i-1,3)+v(i-2,73))/
& (xcrd (1) —xcrd(i-1))**2+
& ((u(i,j+2)-u(i-1,3+2))/ (xcoord(i)-xcoord (i-1))-
& (u(i,j+1)-u(i-1,3+1))/ (xcoord(i)-xcoord(i-1)))/
& (ycrd (j+2) -ycrd(j+1))) !'*0.D0

i,]

Fycon=fycon+v (i, 3)*v(i,])
else! right half
pctIBsc=((v(i,j+1)**2-v(i,])**2)/ (ycoord(j+1)-ycoord(j))+
& (u(i,Jj+1)*0.5* (v (i,3)+v(i,J+1)) -

& W(i-1,3+1)*0.5% (v (i,3)+v (i, j+1)))/
& (xcoord (1) -xcoord (1i-1)))!*0.DO0
pctIBsd= RRe* (-1%* (v (i,3)-2*v (i+1,3)+v(i+2,73))/
& (xcrd (i+1) -xcrd (i) ) **2+
& ((u(i,j+2)-u(i-1,3+2))/ (xcoord (i) -xcoord (i-1)) -
& (u(i,j+1)-u(i-1,3+1))/ (xcoord (i) -xcoord(i-1)))/
& (yerd (3+2) -ycrd (3+1))) ! *0.DO
end 1if
pctIBs (i, j+1)=((xcoord(i)-xcoord(i-1))/ (ycrd(j)-ycrd(j-1)))*
& (pctIBsc+pctIBsd+ (v (i, j)-vrk(i,j))/dt+aysolid) *
& (ycrd(j+1)-ycrd(3))

write(*,*)'i,j,pctIBs',i,Jj,pctIBsc,pctlIbsd,pctIBs(i,j+1),v(i,]),
svrk(i, J)

else if (pmask(i,j) .EQ. 1.D0) then!bottom

if ((pmask(i+l,j)+pmask(i+2,j)) .EQ. 0) then!left half

pctIBnc=(((v(i,J)**2-v(i,j-1)**2)/ (ycoord(j)-ycoord(j-1)))+

& (u(i, ')*o 5% (v(i,3)+v (i, j-1))-

3 u(i-1,3)*0.5% (v(i,3)+v(i,3-1)))/

& (xcoord( ) —xcoord (i-1))) !*0DO
pctIBnd=RRe* (-1* (v (i,J)-2*v(i-1,3)+v(i-2,73))/

& (xcrd (i) -xcrd(i-1))**2+

& ((u(i,Jj)-u(i,j-1))/ (ycrd(j)-ycrd(j-1))-

& (u(i-1,3)-u(i-1,3-1))/ (ycrd(3)-ycrd(j-1)))/

& (xcoord (i) -xcoord(i-1))) !*0.D0

else !right half
pctIBne=((v(i,J)**2-v(i,j-1)**2)/ (ycoord(j)-ycoord(j-1))+
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& (u(i,3)*0.5*(v(i,J)+v(i,j-1))~

& u(i-1,3)*0.5*(v(i,3)+v(i,3-1)))/
& (xcoord (i) -xcoord(i-1))) !*0.DO
pctIBnd= RRe* (=1* (v (i,])-2*v(i+l,J)+v(i+2,73))/
& (xcrd (1i+1) -xcrd (i) ) **2+
& ((u(i,J)-u(i,j-1))/ (ycrd(j)-ycrd(j-1))-
& (u(i-1,3)-u(i-1,3-1))/ (ycrd(j)-ycrd(j-1)))/
& (xcoord (i) -xcoord (i-1)))!*0.DO0
end 1if
pctIBn (i, )= ((xcoord(i)-xcoord(i-1))/ (ycrd(j+1)-ycrd(j)))*
& (pctIBnc+pctIBnd+ (v (i, j)-vrk(i,j))/dt+aysolid) *
& (ycrd(j-1) -ycrd(j-2))

write(*,*)'i,j,pctIBn',1i,j,pctIBnc,pctIBnd,pctIBn(i,j),v(i,])
&,vrk(i,3)
end if
end if
end do

do nbnd=1, nbndu
i=iinterpu (nbnd)
j=jinterpu (nbnd)
if (pmask(i+1l,7)+pmask(i,j) .EQ. 1) then
if (pmask(i+1l,3j) .EQ. 0.DO) then 'left half
if ((pmask(i+1l,j-1)+pmask(i+l,j-2)) .EQ. 0) then!top half
pctIBec=((u(i,j)**2-u(i-1,73)**2)/ (xcoord(i)-xcoord(i-1))+

& (0.5*%(u(i-1,3)+u(i,3))*(v(i,J)-v(i,3-1)))/

& (ycoord(j) -ycoord(j-1)))!*0.DO
pctIBed=RRe* (-1* (u(i,3)-2%u (i, j+1)+u (i, j+2))/

& (yerd (j+1) -ycrd(j)) **2+

& ((v(i,J)-v(i,j-1))/ (ycoord(j)-ycoord(j-1))-

& (v(i-1,3)-v(i-1,3-1))/ (ycoord(j)-ycoord(j-1)))/

& (xcrd (i) -xcrd(i-1)))!*0.D0

else! bottom half
pctIBec=((u(i,j)**2-u(i-1,73)**2)/ (xcoord (i) -xcoord(i-1))+
& (0.5* (u(i-1,3)+u(i,J))*(v(i,J)-v(i,3-1)))/
(ycoord (j) -ycoord(j-1)))!*0.DO

pctIBed=RRe* (-1* (u(i,3)-2*u(i,j-1)+u(i,j-2))/

& (ycrd(j)-ycrd(j-1)) **2+
& ((v(i,J)-v(i,J-1))/ (ycoord(j)-ycoord(j-1))-
3 (v(i-1,3)-v(i-1,3-1))/ (ycoord (j)-ycoord (j-1)))/
& (xcrd (i) -xcrd(i-1))) !'*0.DO
end if

pctIBe (i, j)=((ycoord(j)-ycoord(j-1))/ (xcrd(i+l)-xcrd(i)))*
& (pctIBec+pctIBed+ (u (i, j)-urk(i,j))/dt)*
& (xcrd (i+1l)-xcrd(i))

write(*,*)'i,Jj,pctIBe', i, Jj,pctIBec,pctlibed,pctIBe(i,j),u(i,])
surk (i, )

else if (pmask(i+l,3) .EQ. 1.D0) then!Right half
if ((pmask(i,j-1)+pmask(i,j-2)) .EQ. 0) then!'top half

pctIBwe=((u(i+l,3j)**2-u(i,j) **2)/ (xcoord(i+l)-xcoord(i))+
& (0.5* (u(i+l,3)+u(i,3)) *(v(i+1,3)-v(i+1,3-1)))/

& (ycoord(j) -ycoord(j-1))) !*0.DO
pctIBwd=RRe* (-1* (u(i, j)-2*u(i,j+1)+u(i,j+2))/

& (yerd (§+1) —ycrd (J) ) **2+

& ((v(i+1l,3)-v(i+1,3j-1))/ (ycoord(j)-ycoord(j-1))-

& (v(i+2,3)-v(i+2,3-1))/ (ycoord (j)-ycoord (j-1)))/

& (xcrd (1i+2) -xcrd(i+1))) !'*0.DO0

else !bottom half

pctIBwe=((u(i+l,J)**2-u(i,J)**2)/ (xcoord(i+l)-xcoord(i))+

& (0.5*% (u(i+l,J)+u(i,J))*(v(i+l,J)-v(i+1,3-1)))/

& (ycoord (j) -ycoord(j-1))) !*0.D0
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pctIBwd=RRe* (-1* (u(i,3)-2*u(i,j-1)+u(i,j-2))/

& (ycrd(j)-ycrd(j-1)) **2+
& ((v(i+1l,3)-v(i+1,3j-1))/ (ycoord(j)-ycoord(j-1))-
& (v(i+2,3)-v(i+2,3J-1))/ (ycoord(j)-ycoord(j-1)))/
& (xcrd (i4+2) -xcrd(i+1))) !*0.D0
c
end 1if
pctIBw (i+1,J)=((ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)))*
& (pctIBwc+pctIBwd+ (u (i, j) -urk(i,j))/dt)*
& (xcrd (i+1) -xcrd(i))
c write(*,*)'i,j,pctIBw',1i,Jj,pctIBwc,pctIBwd,pctIBw(i+1l,3),u(i,])
¢} &,urk (i, 3)
end if
end if
end do
c
sumf = 0DO
do i=1,nx
do j=1,ny
ij=(1i-1) *ny+j
fp(ij)=pmask (i, J)*
& (((u(i,3)-u(i-1,3)) *(ycoord(j)-ycoord(j-1))+
& (v(i,3j)-v(i,j-1)) * (xcoord (i) -xcoord(i-1)))/dt) -
& pctw (i, J)-pcte(i,j)+pctn(i,J)-pcts(i, )+
& pctIBn (i, ) -pctIBs (i, j)-pctIBe(i,j) +pctIBw (i, )
sumf=sumf+fp (i7)
end do
end do
c
write(*,*) 'GLOBAL: ',sumf
c
close (12)
c STOP 'in fillf'
c
return
end
cc
double precision function maxdiv ()
c
integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
c
common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1l),a(0:nnx,nny,4),b(nnx, 0:nny, 4)
double precision u,v,p,a,b
c
common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),
& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),
& vup (0:nnx+1) ,uup (0:nnx) ,influx
double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv, vup,uup,
& influx
common / bniinf/ jyu(nnx),Jjyv(nnx)
integer jyu,jyv
c
common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree
c
common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord
c
common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts
c

common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
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cc
ccC

& ajp (nnx,nny) ,diag (nnx,nny), f (nnx, nny)
double precision aim,aip,ajm,ajp,diag, f

common / bndvinfi/ iplv (Mxy),jplv(Mxy),ip2v (Mxy),jp2v (Mxy),
& iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu(Mxy),jplu(Mxy),ip2u (Mxy),jp2u (Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu

integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common /masksx/ pmask(0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

double precision div (nnx,nny),divmx,divmn

integer i,j,k

common /homeadd/ home
character*40 home

f is basically the divergence of (u,v) as calculated in convec
divmx = 0.DO
divmn = 100000.DO
imx=0
Jmx=0
do i=1,nx
do j=1,ny
div(i,j)=pmask(i,Jj)*
& ((u(i, ) -u (i )/ (xcoord (i) -xcoord (i-1))+
& (v (i )—V( ' ))/(ycoord(j)-ycoord(j—l)))
div (i, 3) pmask( J)*
& ((u(i,J)-u(i-1,73))/ (xcoord (i) -xcoord(i-1))+
& (v (i ,j) v(i,3j-1))/ (ycoord(j)-ycoord(j-1)))
if (ABS(div(i,j)) .GT. divmx) then
imx=1i
jmx=j
divmx=ABS (div (i, j))
end 1if
if ((pmask(i,j)).GT.0.5D0) then
divmn=MIN (divmn,ABS (div (i, j)))
end 1if
end do
end do
write(*,*) 'Minimum divergence = ', divmn
write(*,'(A,2I4,4E12.4)") 'Max. divergence reached at (x,y)= "'
& imx, jmx, !'xcrd (imx) , ycrd (jmx) ,
& u(imx, jmx),u (imx-1, jmx) , v (imx, jmx) , v (imx, jmx-1)
maxdiv=divmx
return
end

subroutine solve (eps,iterat)

double precision eps
integer iterat

parameter (nnx=600,nny=850,nnxy=nnx*nny,nnyy=nnx*nny+nny)
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common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common /prestemp/ptemp (0:nnx+1,0:nny+1)
double precision ptemp

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common /indi / 1li(nnx),maxit

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

integer 1i

common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as (nnxy),ap (nnxy),
& fp(nnxy),alfa
double precision ae,aw,an,as,ap, fp,alfa

common /ludeco/ un(-nny:nnxy),ue (-nny:nnxy), lw(nnxy),
& ls (nnxy), lpr (nnxy)
double precision un,ue,lw,ls,lpr

double precision res(-nny:nnyy),res0,resn,rsm

common /homeadd/ home
character*40 home
double precision templ, temp2

templ=0.D0
temp2=0.D0
res = 0.D0

..... CALCULATE RESIDUAL AND AUXILLIARY VECTORS; INNER ITERATION LOOP
do n=1,maxit

resn=0.D0
do i=1,nx
do j=1,ny
ij=(i-1) *ny+]
res (ij)=pmask(i,J) * (fp(ij)-ap(ij)*p(i,J)-an(ij) *p(i,J+1) -

& as(ij)*p(i,j-1)-ae(ij) *p(i+1,3)-aw(ij) *p(i-1,3))
resn=MAX (res (ij), resn)
res(ij)=(res(ij)-1s(ij)*res(ij-1)-1w(ij)*res(ij-ny)) *1lpr(iJj)

end do
end do

open (unit=12,file="'gridp.dat"')
write(12,*) 'variables="x","y","u","v","p",

& "ap","an","as","aw", "ae"'
write (12, *)

& 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'
write(12,'(5E16.8)"') ((xcoord(i),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((ycoord(j),i=1,nx),j=1,ny)
write (12, ' (5E16.8)") ((p(i,J),1i=1,nx),J=1,ny)
write(12,'(5E16.8)"') ((u(i,j),i=1,nx),3j=1,ny)
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100

cc

write(12,'(5E16.8)"') ((v(i,3),i=1,nx
write(12,"'(5E16.8) ") ((ap((i-1)*ny+j
write (12, ' (5E16.8)") ((an((i-1)*ny+]
write(12,"'(5E16.8)"') ((as((i-1)*ny+j
write (12, ' (5E16.8)") ((aw((i-1)*ny+]
write(12,"'(5E16.8)"') ((ae((i-1)*ny+j
write (12, ' (5E16.8)"') ((res((i-1)*ny+j
close(12)

if (n .EQ. 1) resO=resn

j=1,ny)

i=1,nx),j=1,n
i=1l,nx),j=1,n
i=1,nx),3j=1,n
i=1l,nx),j=1,n
i=1,nx),3j=1,n
i=1l,nx),j=1,n

CALCULATE INCREMENT AND CORRECT VARIABLE

do i=nx,1,-1

do j=ny,1,-1
ij=(1i-1) *ny+j
res(ij)=res(ij) -
p(i,j)=p(i,])+pmask(i,J) *res(ij)

end do

end do

CONVERGENCE CHECK

rsm=resn/ (res0+1.D-20)
if (mod(n,20) .EQ. 0) then
temp2=templ
templ=resn
write(*,*) n,' sweep, res =
end if

if ((resn .LT. eps) .OR.

((abs (templ-temp2) .LT. 1.0D-8)
(n .GT. 500) .AND.
((resn .LT. 1.0D-5) .AND. (resn
((abs (templ-temp2) .LT. 1.0D-9)
(n .GT. 300) .AND.
(resn .LT. 1.0D-6))) then

GoTo 100
end if

end do
continue

pmean=0.D0
nn=0
do i=1,nx
do j=1,ny
if (pmask(i,j) .GT. 0.5) then
nn=nn+1
pmean=pmean+p (i, j)
end 1if
end do
end do

pmean=pmean/ (1.D0*nn)

do i=1,nx

do j=1,ny
p(i,J)=pmask(i,J)* (p(i,J)-pmean)
ptemp (i,3J)=p(i,J)

end do

end do

return
end

subroutine force ()

n(ij)*res(ij+1)-

e (1) *res (ij+ny)

', resn

.AND.

.GT. 1.0D-6)))
.AND.

.OR.
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integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

common /cylzise/ acyl, bcyl, Rcyl
double precision acyl, bcyl, Rcyl

double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common /rkcom / urk(0:nnx,0O:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),

& vmask (0:nnx, 0:nny)

double precision pmask,umask,vmask

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

double precision xcrd, ycrd, scalar, xfree, yfree

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / bndvinfi/ iplv (Mxy),jplv(Mxy),ip2v (Mxy),jp2v (Mxy),
& iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
& iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common / bndpinfi/iplp (0:Mxy),jplp (0:Mxy),ip2p (0:Mxy), jp2p (0:Mxy) ,
& ip3p (0:Mxy), Jp3p (0:Mxy) ,iinterpp (0:Mxy), jinterpp (0:Mxy) ,
& nbndp

integer 1iplp,Jjplp,ip2p,Jjp2p,ip3p,Jjp3p,iinterpp,jinterpp,nbndp

common / bndpinfR/ teta (0:Mxy),unitvi (0:Mxy),unitvj (0:Mxy),
& wpl (0:Mxy) ,wp2 (0:Mxy) ,deltal (0:Mxy)
double precision teta,unitvi,unitvj,wpl,wp2,deltal

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn,nx3,nnl
double precision Re, RRe,dt,time,dts

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

& ,FL2,FD2

double precision FL,FD,1liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
& ,FL2,FD2

integer 1i,3j,k

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

double precision dliftf,dliftp,ddragf,ddragp,dpres,
& dliftptemp, ddragptemp
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C

double precision dliftf2,dliftp2,ddragf2,ddragp2,beta,
1iftf2,1iftp2,dragf2,dragp2

common/FavYold/FLn,FLold,aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn,ysolidn

double precision utan,utan0,unorm,lift,drag,psurface
double precision Fyl,Fy2,Fy3,Fy4,Fy5,Fxl,Fx2,Fx3,Fx4,Fx5,Fbflux

common /homeadd/ home
character*40 home

write (*

ddragf=0.
dliftf=0.
ddragp=0.
dliftp=0.

ddragf2=
dliftf2=
ddragp2=
dliftp2=

1iftf2=0.
dragf2=0.
1iftp2=0.
dragp2=0.

dpres=0.
1iftf=0.
dragf=0.
liftp=0.
dragp=0.
pres=0.D
Fy1l=0.DO
Fy2=0.DO0
Fy3=0.D0
Fy4=0.DO0
Fy5=0.D0
FLift=0.
Fx1=0.DO0
Fx2=0.DO0
Fx3=0.DO0
Fx4=0.DO0
Fx5=0.D0
Fdrag=0.
Fa=0.D0

*)

0.
0.
0.
0.

DO
DO
DO
DO
DO
0

DO

DO

'force subrotine'’

DO
DO
DO
DO

DO
DO
DO
DO

DO
DO
DO
DO

Fbflux=0.DO0

FLold=FL

Crxxxxxkkxxxxxk*x*new method of calculation of forcex**xxkxxxkxxx

&

&

nx1=37
nxl2=1
nyl=37
nyl2=1

97

97

do i=nx1l,nx12
do j=nyl,nyl2

**2) .GE. Rcyl)
**2) .GE. Rcyl))

-ycrd(3j))

if ((sgrt((xcrd(i)-acyl) **2+ (ycoord(]j)-bcyl)
(sqgrt ((xcrd(i+l) -acyl) **2+ (ycoord (j) -bcyl)
if ((3 .LT. nyl2) .AND. (i .LT. nx12)) then
Fyl=Fyl+0.5* (v (i,3)+v(i+1l,]J)-vrk(i,j)-vrk(i+l,3))*
(xcrd (i+1) -xcrd (i) ) * (ycrd(j+1) -ycrd(j)) /dt
Fa=Fataysolid* (xcrd (i+1l) -xcrd (i) ) * (ycrd(j+1)
end if
if ((1i .EQ. nxl) .AND. (j .LT. nyl2)) then
Fy2=Fy2+ (-1*v(1i,3)*0.25* (u(i,3j)+u(i-1,7j)+u(i-

1,3+1)+u(i,j+1))+

.AND.

then

v (-u)



Q

Q

o000

Q

C

Qo000

Q
Q

&
&
&

&
&
&

&

&
&
&

&
&
&

RRe* (((v(i+1,3)-v(i-1,7))/ (xcrd(i+1)-xcrd(i-1)))+0.5*!t21
((u(i-1,3+1)+u(i,j+1)-u(i-1,3)-u(i,J))/ (ycrd(j+1)-ycrd(j)))))*!tl2
(ycrd (j+1) -ycrd(j)) !deltay
end if
if ((i .EQ. nx12) .AND. (j .LT. nyl2)) then

Fy3=Fy3+(v(i,j)*0.25* (u(i,j)+u(i-1,3)+u(i-1,3+1)+u(i,j+1)) -
RRe* (((v(i+1,])-v(i- l,j))/ (xcrd (i+1l) -xcrd(i-1)))+0.5*!-t21
((u(i-1,3+1)+u(i,j+1)-u(i-1,3)-
(ycrd (j+1) -ycrd(j))
end if
if ((j .EQ. nyl2) .AND. (i .LT. nx12)) then
Fy4d=Fy4+ ((0.25* (v (1i,3)+v(i+1l,J)+v(i+l,3-1)+v(i,3-1)))**2+ !vv
0.5*(p(i,3)+P(i+1,3)) -
-2/3)*RRe* (((u(i+l,3)-u(i-1,7))/ (xcoord (i+1)-xcoord (i-1
&(v(i,J)+v(i+1l,])-v(i-1,3)-v(i-1,3+1))/ (ycoord (]
)

) -
/

2*RRe*0.5* (v (i,J)+v(i+1l,3)-v(i,j-1)-v(i,3-1)
(ycoord (j) -ycoord(j-1)))*
(xcrd (i+1l) -xcrd(i))
end if
if ((j .EQ. nyl) .AND. (i .LT. nx12)) then
Fy5=Fy5+ (-1*(0.25* (v (i,J)+v(i+1,3)+v(i+1l,3-1)+v(i,j-1))) **2- !-vv
0.5% (p(i,3)+P(i+1,73))+
&(((-2/3)*RRe* (((u(i+l,3j)-u(i-1,73))/ (xcoord(i+l)-xcoord(i-1)))+0.5%*

&(v(i,3)+v(i+l,])-v(i-1,3)-v(i-1,3+1))/ (ycoord(j)-ycoord(j-1))))+

2*RRe*0.5* (v (i,])+v(i+1l,3)-v(i,j-1)-v(i+1l,3-1))/
(ycoord (j)-ycoord(j-1)))*
(xcrd (i+1) -xcrd (1))
end if
end 1if
end do
end do

do nbnd=1, nbndv
i=iinterpv (nbnd)
j=jinterpv (nbnd)
if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then
if (pmask(i,j+1) .EQ. 1.D0) then!top of the cylinder
Fbflux=Fbflux-v (i, Jj)*v(i,]J) * (xcoord (i) -xcoord(i-1))
write(*,*)'i,J,top,-vv,Fbflux',i,j,
& =1*v(i,3)*v(i,])* (xcoord(i)-xcoord(i-1)),Fbflux

else if (pmask(i,j) .EQ. 1.D0) then!bottom of the cylinder

Foflux=Fbflux+v (i, J)*v(i,j)* (xcoord(i)-xcoord(i-1))
write(*,*)'i,j,bot,vv,Fbflux',i, ],
& v(i,j)*v(i,J)* (xcoord(i)-xcoord(i-1)),Fbflux
end 1if
end if

end do

do nbnd=1,nbndu
i=iinterpu (nbnd)
j=jinterpu (nbnd)
if (pmask(i+1,7)+pmask(i,j) .EQ. 1) then
if (pmask(i+1l,3j) .EQ. 1.D0) then !right
Foflux=Fbflux-u(i,J)*(0.5* (v (i+1,3)+v(i+1,3-1)))*
& (ycoord (j)-ycoord(j-1))
write(*,*)'i,Jj,right,uv,Fbflux',i, ],
& u(i,J)*(-0.5*(v(i,3)+v(i,J))* (ycoord(j)-ycoord(j-1)),Fbflux
else 1if (pmask(i,j) .EQ. 1.D0) then !left
Fbflux=Fbflux-u(i, ) *(0.5*(v(i,3)+v(i,j-1)))~*
& (ycoord (j)-ycoord(j-1))
write(*,*)'i,j,left,uv,Fbflux',i, ],
& u(i,j)*(=0.5*(v(i,J)*v(i,j-1))* (ycoord(j)-ycoord(j-1)),Fbflux

end if
end if
end do

FLift=Fyl+Fy2+Fy3+Fy4+Fy5+Fa!+Fbflux

u(i,j))/(yerd(j+1l)-ycrd(j)))))*!tl2

)))+0.5%
ycoord (j-1))))+
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open (unit=12,file="'FL1ift.dat",
& position='append')

write(12,'(8F15.6)"')time,FL1ift,Fyl,Fy2,Fy3,Fy4,Fy5,Fa!,Fbflux

close (12)
Kk khkhkkkkhkkkkKkx*k*k
do i=nx1l,nx12
do j=nyl,nyl2
if ((sgrt((xcoord(i)-acyl) **2+ (ycrd (]

if ((j .LT. nyl2) .AND. (i.LT. nx12)) then

Fx1=Fx14+0.5* (u(i,j)+u(i,j+1)-urk(i,j)-urk(i,j+1))*
& (xcrd (i+1) -xcrd (i) ) * (ycrd (j+1) -ycrd(j)) /dt

end if

if ((1i .EQ. nxl) .AND. (j .LT. nyl2)) then

) -bcyl) **2) .GE. Rcyl) .AND.
& (sgrt ( (xcoord (i) -acyl) **2+ (ycrd (j+1) -bcyl)**2) .GE. Rcyl)) then
)

Fx2=Fx2+(-1*(0.25* (u(i,j)+u(i-1,3j)+u(i-1,J+1)+u(i,j+1)))**2- lu(-u)

& 0.5% (p(i,3)+p(i,j+1))+
& 2*RRe*0.5* (u(i,J+1)+u(i,J)-u(i-1,3)-u(i-1,3+1))/
& (xcrd (i+l) -xcrd(i))) *!t12
& (yerd (3+1) -ycrd(j)) ldeltay
end if
if ((i .EQ. nx12) .AND. (j .LT. nyl2)) then

Fx3=Fx3+ ((0.25*% (u(i,3)+u(i-1,3)+u(i-1,3+1)+u(i, J+1))) **2+

& 0.5*(p(i,J)+p(i,J+1)) -
& 2*RRe*0.5* ((u(i,Jj+1)+u(i,j)-u(i-1,3)-u(i-1,3+1))/
& (xcrd (i+1) -xcrd(i)))) *!tl2
& (ycrd (j+1) -ycrd(j))
end if
if ((j .EQ. nyl2) .AND. (i .LT. nx12)) then
Fx4=Fx4+(u(i, J)*(0.25* (v (i,J)+v(i+1l,J)+v(i+1l,J-1)+v(i,j-1)))- !uv
& (RRe* (0.5* (v (i+1,3)+v(i+1l,3-1)-v(i,3)-v(i,J-1))/
& (xcrd (i+1l) -xcrd (i) )+
& (u(i,j+1)-u(i,j-1))/(ycrd(j+1)-ycrd(j-1)))))*
& (xcrd (i+1) -xcrd (1))
end if
if ((jJ .EQ. nyl) .AND. (i .LT. nx12)) then
Fx5=Fx5+ ((-1*u(i,3)*0.25*(v(i,3)+v(i+l,J)+v(i+l,j-1)+v(i,3-1)))+ !-uv
& RRe* ((0.5* (v (i+1l,J)+v(i+l,J-1)-v(i,J)-v(i,J-1))/
& (xcrd (i4+1) -xcrd (1)) )+
& (u(i,3+1)-u(i,3-1))/ (ycrd(j+1) -ycrd(3-1)))) *
& (xcrd (i+1)-xcrd(i))
end if
end 1if
end do
end do
Fdrag=Fxl+Fx2+Fx3+Fx4+Fx5
open (unit=12, file='Fdrag.dat',
& position="append')
write(12,'(9F15.6) ') time, Fdrag, Fx1,Fx2,Fx3,Fx4,Fx5
close (12)
*kkkkkkkokkkkkx
beta=ATAN (vsolid)
write(*,*) 'beta,vsolid',beta,vsolid
ccc open (unit=12, file="'degree.dat"',
ccc & position="'append')
c rewind (12)
do k=1, nbndp
c
psurface=(1-wp2 (k)) *p(iplp(k),Jjplp(k))+
& wp2 (k) * (wpl (k) *p (ip2p (k) , 3p2p (k) )+ (L-wpl (k) ) *p (ip3p (k) , Ip3p (k) ))
c
utan=-((u(iplp (k) ,Jplp (k))+u(iplp(k)-1,Jplp(k)))/2) *sin(teta (k))
& +((v(iplp(k),jplp(k))+v(iplp (k),Jjplp(k)-1))/2) *cos (teta (k))
c utanO=-usolid*sin (teta (k))+vsolid*cos (teta (k)) ladded on 11/5/13
utan0=0 ! as the reference frame is on the cylinder
c

dliftf=2*RRe* ( (utan-utan0) /deltal (k))* (cos (teta(k)))*0.5%
& (0.5*ABS (teta (k-1)-teta (k+1)))
ddragf=2*RRe* ( (utan-utan0) /deltal (k))* (-1*sin(teta(k)))*0.5%
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ccc
ccc
ccc
ccc
ccc
ccc

ccc

cc

& (0.5*ABS (teta (k-1)-teta(k+1)))
dliftp=2*psurface* (-1*sin(teta(k)))*0.5%
& (0.5*ABS (teta (k-1)-teta(k+1)))
ddragp=2*psurface* (-1*cos (teta(k)))*0.5*
& (0.5*ABS (teta (k-1)-teta(k+1)))
dpres=p (iplp(k),jplp (k) ) *0.5* (0.5*ABS (teta (k-1) -teta (k+1)))
dliftf2=2*RRe* ( (utan-utan0) /deltal (k)) * (cos (teta (k) +beta)) *0.5*
& (0.5*ABS (teta (k-1)-teta(k+1)))
ddragf2=2*RRe* ( (utan-utan0) /deltal (k)) * (-1*sin (teta (k) +beta) ) *
& 0.5*(0.5*ABS (teta (k-1) -teta (k+1)))
dliftp2=2*p (iplp(k),Jjplp(k))* (-1*sin (teta (k) +beta))*0.5*
& (0.5*ABS (teta (k-1)-teta(k+1)))
ddragp2=2*p (iplp(k), jplp(k))* (-1*cos (teta (k) +tbeta)) *0.5*
& (0.5*ABS (teta (k-1) -teta (k+1)))

write(*,*)'dLp,dLp2,dLf,dLf2"',dliftp,dliftp2,dliftf,dliftf2, beta

1iftf2=11iftf2+d1iftf2
dragf2=dragf2+ddragf?2
liftp2=1iftp2+dliftp?2
dragp2=dragp2+ddragp?

liftf=1liftf+dliftf
dragf=dragf+ddragf
liftp=liftp+dliftp
dragp=dragptddragp
pres=pres-dpres
write(*,*) 'nbndp', nbndp

write(12,'(8F15.6)"')teta(k),p(iplp(k),jplp(k)),dpres,
& 2*RRe* ( (utan-utan0) /deltal (k)) * (cos (teta(k))),
& 2*RRe* ( (utan-utan0) /deltal (k) ) * (-1*sin(teta(k))),
& 2*RRe* ( (utan-utan0) /deltal (k)),
& 2*p (iplp (k) ,Jplp(k)) * (-1*sin(teta(k))),
& 2*p (iplp (k) ,jplp(k)) * (-1*cos (teta(k)))
end do
close (12)

FL2=0.5* (1iftf2+1iftp2)
FD2=0.5* (dragf2+dragp?2)
FL=0.5* (liftf+liftp)
FD=0.5* (dragf+dragp)

write(*,*)'FL,FL2,1f,1£2,1p,1p2',FL,FL2,1iftf,1iftf2,1liftp,liftp2

STOP
return
end

subroutine forcvib ()

integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny, 4),b(nnx, 0:nny,
double precision u,v,p,a,b

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

4)
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cc

o000

cls

cc
cc
cc
cc

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),

& vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

double precision, Dimension(0:nnx,0:nny):: umaskt,vmaskt

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolidtemp, xsolidtemp, usolidtemp, ysolidtemp
& sstiff, smass, sdamping, fst,Fco,omega

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

& , FL2,FD2

double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
& ,FL2,FD2

integer i,j,k

common /epsili/epstemp
double precision epstemp

common /homeadd/ home

character*40 home
* Kk kK K

fst= 0.167 ! strouhal number
Fco=1.05D0
omega= 2* (4*Atan(1.D0))*Fco* fst
ysolid= 0.2 * sin(omega*time)
vsolid= 0.2 * omega * cos(omega*time)
aysolid=-0.2 * omega * omega * sin (omega*time)
vmaskt=vmask
umaskt=umask
call interpolate()
call inisol()
vmaskt=vmask-vmaskt
umaskt=umask-umaskt
if ((sum(umaskt) .EQ
& (sum (vmaskt) .EQ.
& goto 18
call inisol ()
epstemp=5.0D-7
do i=1,10
u=urk
v=vrk
call convec ()
call fillf ()
call calcuv ()
end do
write(*, *) 'sum(vmask-vmaskt)', sum (vmaskt)
STOP

0 ) .AND.
0))

continue
epstemp =5.0D-7

open (unit=12, file='vysolid.dat',

& position="append"')
write(12,'(3E16.8)"') time, vsolid, ysolid
close (12)
return

end

subroutine structuremain

integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=550,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
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c integer, intent (inout) ::ksub
double precision w
parameter (w=0.5D0)

c

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common /velotemp/ utemp (0:nnx,0:nny+1),vtemp (0:nnx+1,0:nny)
double precision utemp,vtemp

common /prestemp/ptemp (0:nnx+1,0:nny+1)
double precision ptemp

common / dimenx/ nx,ny,Re,RRe,dt,time,dts
integer nx,ny
double precision Re, RRe,dt,time,dts

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision xsolidn, usolidn,

& sstiff, smass, sdamping

double precision vsolidtempO, ysolidtempO,

& vs05ns,ys05ns,vs05nss, ysO05nss, vslns, yslns

& fn, fn05s, fn05ss, fnlns

double precision epsl,eps2,eps

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision eta, mratio,Vr,PI,CLift

common/FavYold/FLn,FLold,aysolidn,vsolidn, ysolidn

double precision FLn,FLold,aysolidn,vsolidn,ysolidn

double precision coeff0, coeffl

double precision vksub, dvksub,dvksub0, yksub, dyksub, dyksub0
double precision alfa,landa,landav,small

double precision ytemp,vstemp, ytempO,vtempO, aytemp

integer i,3j,%k,1

common /homeadd/ home

character*40 home
* Kk kK

Q

C xR FAAASAKKIAxAAE non-dimensional format of structure**Fkxxx
eps=0.000001 ! convergence cirterion
small=1le-20
PI=4.DO*ATAN (1.DO0)
eta=0.0012D0 ! damping ration, eta=C/Cc=C/ (2 (km)~0.5) 20/4/14

mratio=149.10 !(4/PI)*2 ! mass ratio=msolid/mfluid 23/4/14
Vr=5.58 l!at Re=100 radious velocity=U/(Fn.D) 20/4/14
c
ysolidn=ysolid 'to record inital value at time n
vsolidn=vsolid
c write(*,*)'ynl,vn,ysolid,vsolid',ysolidn,vsolidn,ysolid,vsolid
FLn=FL

c R R I b b b I b S 2b i b dh I b e S b b b S b I 2h b S Sb b Sb 2R I S S Sb I Sb b S Ih e Sh 2b I Sb b S 2b 4

Start outter iteration
c PR S B B I I I I I e I b e b I b b b b I b b b I b b b b b b g

Q

1=1
101 continue
c********** Start flow updating * Kk ok kk Kk kk kK
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call convec
call fillf
call calcuv
call force
write(*,*)'time,1l,FLn,FL',time, 1, FLn,FL
c******** end flOW updating Kk Kk kkk ok ok ok ok kok
k=1
113 continue
dyksub0=dyksub
dvksub0O=dvksub 114/04/14
yvksub=ysolid ! to record inital wvalue at k
vksub=vsolid

c
cHx*xxxxxxxx* gstart solving the structure **xxxxxkxkx
c
ysolid=ysolidn+0.5*dt* (vsolid+vsolidn)
aysolid=-2*eta* (2*PI/Vr) *vsolid-
& ((2*PI/Vr)**2) *ysolid+
& 2* (2*FL) / (PI*mratio) ! Clift=2*FL
vsolid=vsolidn+dt*aysolid
c
write(*,'(A,I5,5E16.4)") 'kl,time,ysolidn,ysolid,vsolidn,vsolid"',
&k, time, ysolidn,ysolid,vsolidn,vsolid
if (((k .LE. 5) .OR.
& (abs (ysolid-yksub) .GT. eps)) .AND.
& (k .LT. 15)) then
k=k+1
Go to 113
end 1if
c write(*,*) 'ytemp,vstemp,aytemp',time, k, ytemp, vstemp, aytemp
c

xxxxxxkxxx% end of solving structure equation***x**xxx

c

c if (k .EQ. 1) then
landa=0.3
landav=0.3

c else

dvksub=vksub -vsolid 114/04/14
dyksub=yksub -ysolid
landav= landav+ (landav-1)*
& (dvksubO-dvksub) *dvksub/ ( (dvksub0O-dvksub) **2+small)

landa= landa+ (landa-1)*
& (dyksub0-dyksub) *dyksub/ ( (dyksubO-dyksub) **2+small)
write(*, ('A,I5,6E15.6")) 'k, time,dyksub, yksub,dyksub0, ysolid"',
&k, time, dyksub, yksub,dyksub0, ysolid, landa
end 1if
ysolid=landa*ysolidn+ (1l-landa) *ysolid
vsolid=landa*vsolid+ (1-landa) *vsolidn
write(*,*)'landa,ysolid,vsolid', time, k, landa, landav,
ysolid,vsolid

write(*,*) 'ysolidn,vsn,aysn',time, k,ysolidn,vsolidn,aysolidn

write(*,*) 'ytemp,vstemp,aytemp', time, k, ytemp, vstemp, aytemp

Q00000000000
gl

if (((abs(ysolid-yksub) .GT. eps).OR.!23/4/14
& (k .LT. 5)) .AND.
& (k .LT. 15)) then

write (*,*) " FxFxxxxxkkkk*sNo, of outter-iteration, ksub=',1l
1=1+1
cc call interpolate ()
cc call inisol ()
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do j=0,ny+1
do i=0,nx

utemp (i,3)=u(i,j)! to use in bounds to update boundaries
u(i,j) = urk(i,j) !to start fluid solver from time n
end do
end do
c
do j=0,ny
do 1=0,nx+1
vtemp(i,j)=v(i,Jj) !'to use in bounds to update boundaries
v(i,j) = vrk(i,j) 'to start fluid solver from time n
end do
end do
c
goto 101
end if
c*******************************************************************
c end of outter iteration
c P S b i I S b b b b b b b b b b b I b b b b b b b b I b b b b b b I b b b b b b b b b b b b b b b b b b b b b b b b b b b b
c
open (unit=12,file="pldl.dat’,
& position='append')
write(12,'(10E15.6)"')time,pres,liftp,liftf,dragp,dragf,FL,FD,
& vsolid,ysolid
close (12)
c
return
end
c
subroutine solidsolver ()
c
integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=550,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
c
c integer, intent (inout) ::ksub
double precision w
parameter (w=0.5D0)
c
common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b
c
common /prestemp/ptemp (0:nnx+1,0:nny+1)
double precision ptemp
c
common / dimenx/ nx,ny,Re,RRe,dt,time,dts
integer nx,ny
double precision Re, RRe,dt,time,dts
c
common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk
double precision urk, vrk, ar, br
integer nrk
c

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision xsolidn, usolidn

double precision sstiff,smass, sdamping

double precision vsolidtempO, ysolidtempO,FLtempO

& vs05ns,ys05ns,vs05nss, ys05nss,vslns, yslns

& fn, fn05s, fn05ss, fnlns

double precision epsl,eps2

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision FL,FD,1liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision eta, mratio,Vr,PI,CLift
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Q

common/FavYold/FLn,FLold, aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn, ysolidn
double precision ytemp,vtemp, ytempO, vtempO,small, aytemp
integer i,j,k

common /homeadd/ home

character*40 home
* Kk kK K

small=1le-20

PI=4.DO*ATAN(1.DO0)

eta=0.0D0 ! damping ration, eta=C/Cc=C/ (2 (km)~0.5) 20/4/14
mratio=(4/PI)*2 ! mass ratio=msolid/mfluid 23/4/14
Vr=8 !at Re=100 radious velocity=U/(Fn.D) 20/4/14

Call force()

write(*,*) 'solid solver,vtemp',vtemp
aysolidn=-2*eta* (2*PI/Vr) *vsolidn-

& ((2*PI/Vr)**2)*ysolidn+

& 2* (2*FLn) / (PI*mratio) I Cliftn=2*FLn

ytemp=ysolidn+dt * vsolidn
vtemp=vsolidn+dt * aysolidn

aytemp=-2*eta* (2*PI/Vr) *vsolidn-
& ((2*PI/Vr)**2) *ysolidn+
& 2* (2*FL) / (PI*mratio) ! Clift=2*FL

ysolid=ysolidn+0.5*dt* (vsolidn+vtemp)

write(*,*) 'here',ysolid, ysolidn,vsolidn, vtemp,dt
vsolid=vsolidn+0.5*dt* (aysolidn+aytemp)

write(*,*) 'ysolidn,vsolidn,aysolidn', time, k,ysolidn,vsolidn,aysolidn
write(*,*) 'ytemp,vtemp,aytemp', time, k, ytemp, vtemp, aytemp

return
end

subroutine structure (ksub)
integer nnx,nny,MxSurf,Mxy

parameter (nnx=600,nny=550,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

integer, intent (inout) ::ksub
double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1l),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common /prestemp/ptemp (0:nnx+1,0:nny+1)
double precision ptemp

common / dimenx/ nx,ny,Re,RRe,dt,time,dts
integer nx,ny
double precision Re, RRe,dt,time,dts

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

224



common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision xsolidn, usolidn,

& sstiff, smass, sdamping

double precision vsolidtempO, ysolidtempO,
& vs05ns,ys05ns,vs05nss, ys05nss,vslns, yslns
& fn, fn05s, fn05ss, fnlns

double precision epsl,eps2

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision FL,FD,1liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision eta, mratio,Vr,PI,CLift

common/FavYold/FLn,FLold,aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn,ysolidn
double precision coeff0, coeffl

integer 1i,3j,k

common /homeadd/ home

character*40 home
* Kk kK Kk

Q

C FxFAAAAKKIAxAAE non-dimensional format of structure**Fkkxx
eta=0.D0 ! damping ration, eta=C/Cc=C/(2(km)"0.5) 6/2/14

mratio=2 ! mass ratio=msolid/mfluid 6/2/14
Vr=3 !at Re=100 radious velocity=U/(Fn.D) 6/2/14
PI=4.DO*ATAN(1.DO0)
c CLift=2*FL ! 1ift coefficient
cc sstiff = 6.05 1.1 ! strouhal number=0.167 then f=2*3.14*sqgrt
cc smass = 5.0D0 ! f= (1/2*3.14)*sqrt (k/m)
cc sdamping=5.5 ! damping ratio=0.5
c critical damping=2*sqgrt (km)
cc
c state space for the solid,
c d"2x/dt"2+ (c/m) dx/dt+ (k/m) x=CL* (1/2) *density*v"2
c v=dx/dt
c dv/dt= CL* (1/2) *density*v"2-(c/m)v-(k/m)x
c
c
if (ksub .EQ. 0) then
coeff0=3/2
FL=coeff0*FLn+ (1-coeff0) *FLold
Clift=2*FL ! 6/2/2014
end if
c
cc coeffl=1+ (sdamping/smass) *0.5*dt+ (sstiff/smass)*0.25*dt*dt
cc aysolid=
cc & (FL /smass) —
cc & (sdamping/smass) * (vsolidn+0.5*dt*aysolidn) /coeffl -
cc & (sstiff/smass) * (ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn) /coeffl
aysolid=
& 2*CLift/ (PI*mratio) -
& 2*eta* (2*PI/Vr) * (vsolidn+0.25*dt*aysolidn) -
& ((2*PI/Vr)**2)* (ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn)
c
vsolid=vsolidn+0.5*dt* (aysolidn+aysolid)
ysolid=ysolidn+0.5*dt* (vsolidn+vsolid)
c
call interpolate()
call inisol ()
c
return
end
c
c
subroutine convergence (ksub)
c

integer nnx,nny,MxSurf,Mxy
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c
integer, intent (inout) ::ksub
double precision w
parameter (w=0.5D0)
c
common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b
c
common /prestemp/ptemp (0:nnx+1,0:nny+1)
double precision ptemp
c
common / dimenx/ nx,ny,Re,RRe,dt,time,dts
integer nx,ny
double precision Re, RRe,dt,time,dts
c
common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
ar(10,10), br(10), nrk
double precision urk, vrk, ar, br
integer nrk
c
common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision xsolidn, usolidn
double precision sstiff,smass,sdamping
double precision vsolidtempO, ysolidtempO,FLtempO
vs05ns,ys05ns,vs05nss, ys05nss,vslns, yslns
fn, fn05s, fn05ss, fnlns
double precision epsl,eps2
common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
c
common/FavYold/FLn,FLold,aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn,ysolidn
integer i,j,k
c
common /homeadd/ home
character*40 home
c * Kk kK
epsl=0.005 ! should relate to mesh size
eps2=0.0001
c
c vsolidn=vsolid
c ysolidn=ysolid
c
c vsolidtempO=vsolid
c ysolidtempO=ysolid
CHF* X F K KAk KKK KX KKK forth order Rung-Kutta calculation of structure****
cc fn=(CL/smass- (sdamping/smass) *vsolidn- (sstiff/smass) *ysolidn)
cc vs05ns=vsolidn+0.5* dts*fn ! above CL is total 1lift force
(0.5*CL*1*1**2
cc ys05ns=ysolidn+0.5*dts*vsolidn
cc
cc fn05s=(CL/smass- (sdamping/smass) *vs05ns—- (sstiff/smass) *ys05ns)
cc vs05nss=vsolidn+0.5*dts*fn05s ! above CL is total 1lift force
(0.5*CL*1*1**2
cc ys05nss=ysolidn+0.5*dts*vs05ns
cc
cc fn05ss=(CL/smass- (sdamping/smass) *vs05nss- (sstiff/smass) *ys05nss)
cc vslns=vsolidn+dts*fn05ss
cc yslns=ysolidn+dts*vs05nss
cc
cc fnlns=(CL/smass- (sdamping/smass) *vslns- (sstiff/smass) *yslns)
cc vsolid=vsolidn+ (1.0D0/6) *dts* (fn+2*fn05s+2*fn05ss+fnlns)
cc ysolid=ysolidn+ (1.0D0/6) *dts* (vs05ns+2*vs05nss+2*vslns+vsolid)

parameter (nnx=600,nny=550,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)
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cc

Q

cc

17

C

write(*,*) CL
write(*,*) fn, fn05ns, fn0O5nss, fnlns
write(*,*) vs05ns, vs05nss, vslns
write(*,*) ysn0O5ns, ys05nss,yslns

FLtempO=FL
Call force()

write(*,*) 'convergence subroutine ksub="', ksub
write(*,*)'FL,FLtemp0O', FL, FLtempO,abs ((FL-FLtempO) /FL)
if ((ksub .LE. 10) .AND.

(abs ((FL-FLtempO) /FL) .GT. epsl)) then

ksub=ksub+1
write (*,*) "' FxF*kxkxkkkkkx*No, of sub-iteration, Ksub=', ksub
write(*,*) 'abs ((FLn+l -FLn+lold)/FLn+1)"',

abs ((FL-FLtempO) /FL)

C FEERFARKAKFAAAAAAAXXXANGEarting outer iteration for creating strong

C

KEEXXXRR KKK I Ik Ak Ak xxx*coupleing between the structure and fluid

CHRFAXXXX KKK Ik Ak Axxx gt the same time step with the same initial

c Akkhkkhk Ak kA hkk kA Ak kKK Velocity,

C FhixEkkkAkxkkkhkxxkkk gtrycture

cc
cc
cc
cc
cc

cc

do j=0,ny+1
do 1=0,nx
u(i,j) = urk(i,j)
end do
end do

do j=0,ny
do 1=0,nx+1
v(i,J) = vrk(i,3J)
end do
end do

call structure (ksub)

call convec
call Fillf

call calcuv
go to 17

else
aysolidn=aysolid
vsolidn =vsolid
ysolidn =ysolid

FLold =FLn
FLn =FL
end 1if

open (unit=12, file="'pldl.dat",
& position="append"')
write(12,'(10E15.6) ") time,pres,liftp,liftf,dragp,dragf,FL,FD,
& vsolid,ysolid
close (12)

return
end

subroutine wrtfld()

integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)

but with the new position and velecity of
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parameter (Mxy=2*nnx+2*nny)

double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1l,0:nny+1),a(0:nnx,nny,4),b(nnx, 0:nny, 4)
double precision u,v,p,a,b

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),

& vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv,vup,uup,
& influx

common / bniinf/ jyu(nnx),jyv(nnx)
integer jyu,jyv

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree

common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
& ajp (nnx,nny) ,diag (nnx,nny), f (nnx, nny)
double precision aim,aip,ajm,ajp,diag, f

common / bndvinfi/ iplv (Mxy),jplv (Mxy),ip2v (Mxy), jp2v (Mxy),
& iinterpv (Mxy),jinterpv (Mxy) ,nbndv
integer iplv,Jjplv,ip2v,jp2v,iinterpv, jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
& iinterpu (Mxy), Jjinterpu (Mxy) , nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common / bndpinfi/iplp (0:Mxy),jplp (0:Mxy),ip2p (0:Mxy), jp2p (0:Mxy),
& ip3p (0:Mxy), Jjp3p (0:Mxy) ,iinterpp (0:Mxy), jinterpp (0:Mxy) ,
& nbndp

integer 1iplp,jplp,ip2p,Jjp2p,ip3p,Jjp3p,iinterpp,jinterpp, nbndp

common / bndpinfR/ teta (0:Mxy),unitvi (0:Mxy),unitv]j (0:Mxy),
& wpl (0:Mxy) ,wp2 (0:Mxy) ,deltal (0:Mxy)
double precision teta,unitvi,unitvj,wpl,wp2,deltal

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
& vmask (0:nnx, 0:nny)
double precision pmask,umask, vmask

common /minsx/ pins (0:nnx+2,0:nny+2),uins (0:nnx+2,0:nny+2),
& vins (0:nnx+2, 0:nny+2)
double precision pins,uins,vins

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

& uu (nnx,nny), vv(nnx,nny), uv(nnx,nny)
double precision um,vm,pm,uu,vv,uv
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C
C
cc
cc
cc
cc
cc
C
cc
C
cc
cc
cc
cc
C

&

&

common /parmen/ nmean
integer nmean

integer i,j,k

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

double precision dliftf,dliftp,ddragf,ddragp,dpres

common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
,FL2,FD2

double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa
,FL2,FD2

common /homeadd/ home
character*40 home

call force ()
open (unit=12, file="'pldl.dat"',
& position="append"')
write(12,'(15E15.6) ") time,pres,liftp,liftf,dragp,dragf,FL,FD,
& vsolid,ysolid,FLift,Fdrag,Fa,FL2,FD2
write(12,'(6E16.8)"') time,pres,lift,drag,liftl,dragl
close (12)

open (unit=12, file="'degree.dat"',

position="append"')
write(12,'(6E16.8)"') degree,dpres,dliftp,ddragp,dliftf,ddragf
close (12)

c *Fxxxxxx*yelocity out put for test of the divergenc

cc
cc
cc
cc
cc
cc
cc
cc
cc

&

open (unit=12,file="'velocity.dat")

rewind (12)

do 1=89,111

do j=89,111

write(12,'(A,21I4,5E16.8)"')"'i,j,u,umask,v,vmask,pmask',i,j,u(i,J),
umask (i,3),v(i,3),vmask(i,]),pmask(i,])

end do

end do

close (12)

cx*xx*xxx%x output by results on the Coordinate line

cc
cc
C

cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

C

&

&

open (unit=12, file='fieldcoord.dat"')
rewind (12)

Write(lZ,*) 'VariableS:"X","y","u","V","p","umask",
"vmask", "pmask"|
write (12,%*)

'ZONE T="t=',6 time,'" I = ',nx,'J = ',ny, 'F=BLOCK'
write(12,'(5E16.8)"') ((xcoord(i),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((ycoord(j),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((u(i,j),i=1,nx),Jj=1,ny)
write (12, "' (5E16.8)") ((v(i,J),i=1,nx),J=1,ny)
write (12, "' (5E16.8)") ((p(j—lj)li:llnx)rj:lrny)
write(12,'(5E16.8)"') ((umask(i,j),1i=1,nx),Jj=1,ny)
write(12,'(5E16.8)"') ((vmask(i,j),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((pmask(i,]j),1i=1,nx),Jj=1,ny)
close (12)

open (unit=12,file="field.dat"')
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c
write(1l2,*) 'variables="x","y","u","v","p","umask",

& "vmask", "pmask"'
write (12,%*)

& 'ZONE T="t=',6time,'" I = ',nx,'dJ = ',ny, 'F=BLOCK'
write(12,'(5E16.8)"') ((xcrd(i),i=1,nx),3j=1,ny)
write(12,'(5E16.8)"') ((ycrd(j),i=1,nx),j=1,ny)
write (12, ' (5El6. 8)')

& ((0-5D0*pmask( j)*(u(i-1,3)+u(i,3J)),i=1,nx),3=1,ny)
write (12, ' (5El6. 8)')

cc22/5/13 & ((0.5D0*pmask (i, ])*(v(i,j-1)+v(i,]J)),1i=1,nx),]j=1,ny)

& ((0.5D0*(v(i,j-1)+v(i,])),i=1,nx),j=1,ny)
write (12, "' (5E16.8)") ((p(i,3),1i=1,nx),3=1,ny)
write(12,'(5E16.8)"') ((umask(i,j),i=1,nx),j=1,ny)
write(12,'(5E16.8)"') ((vmask(i,]j),i=1,nx),]j=1,ny)
write(12,'(5E16.8)"') ((pmask(i,j),i=1,nx),j=1,ny)
close (12)

cc open (unit=12,file="'fieldu.dat")

cc rewind (12)

c

cc write(12,*) 'variables="x","y","u","umask","vmask"'
cc write (12, *)

cc & 'ZONE T="t=',6time,'" I = ',nx,'J = ',ny, 'F=BLOCK'
cc write(12,'(5E16.8)"') ((xcoord(i),i=1,nx),j=1,ny)

cc write (12, ' (5E16.8)") ((ycrd( ) ,1=1,nx),j=1,ny)

cc write (12, "' (5E16.8)") ((u(i,j),i=1,nx),J=1,ny)

cc write (12, ' (5E16.8)") ((umask( i,3),1i=1,nx),3=1,ny)
cc write(12,'(5E16.8)"') ((vmask(i,j),i=1,nx),j=1,ny)
cc close (12)

c

c

cc open (unit=12,file="fieldv.dat")

cc rewind (12)

c

cc write(12,*) 'variables="x","y","v","pmask"'

cc write (12,%*)

cc & '"ZONE T="t=',time,'" I="nx,"'"J="ny, F=BLOCK'
cc write(12,'(5E16.8)"') ((xcrd(i),i=1,nx),Jj=1,ny)

cc write(12,'(5E16.8)"') ((ycoord(j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((v(i,j),1i=1,nx),j=1,ny)

cc write(12,'(5E16.8)"') ((pmask(i,j),i=1,nx),j=1,ny)
cc close (12)

c

cc open (unit=12,file="'f.dat"')

cc rewind (12)

c

cc write(1l2,*) 'variables="x","y","f","umask","vmask", "pmask"'
cc write (12, *)

cc & 'ZONE T="t=',6 time,'" I = ',nx,'J = ',ny, 'F=BLOCK'
cc write(12,'(5E16.8)"') ((xcrd(i),i=1,nx),Jj=1,ny)

cc write ( '(5E16.8) ") ((ycrd(j),i=1,nx),J=1,ny)

cc write(12,'(5E16.8)") ((f(i,3),1i=1,nx),Jj=1,ny)

cc write(12,'(5E16.8)"') ((umask(i,j),i=1,nx),j=1,ny)
cc write(12,'(5E16.8)"') ((vmask(i,j),i=1,nx),j=1,ny)
cc write(12,'(5E16.8)"') ((pmask(i,j),i=1,nx),j=1,ny)
cc close (12)

c

c

return

end
cc
cc

subroutine savfld()
c

rewind (12)

integer nnx,nny,MxSurf,Mxy
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parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
& p(0:nnx+1,0:nny+1l),a(0:nnx,nny,4),b(nnx,0:nny, 4)
double precision u,v,p,a,b

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

& vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),

& vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv,vup,uup,
& influx

common / bniinf/ jyu(nnx),Jjyv(nnx)
integer jyu,jyv

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),

& vmask (0:nnx, 0:nny)

double precision pmask,umask,vmask

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
& xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)

double precision xcrd, ycrd, scalar, xfree, yfree

common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
& ajp (nnx,nny) ,diag (nnx,nny), f (nnx, nny)
double precision aim,aip,ajm,ajp,diag, f

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),
& uu (nnx,nny), vv(nnx,nny), uv(nnx,nny)
double precision um,vm,pm,uu,vv,uv

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
& ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

common /parmen/ nmean
integer nmean

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

common/FavVYold/FLn,FLold, aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn,ysolidn

integer 1i,3j,k

common /homeadd/ home
character*40 home

open (unit=12,file="'field.bin’,
&form="'UNFORMATTED"')
rewind (12)

write(12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid,
&vsolidn, ysolidn,aysolidn, FLn, FLold

write(12) ((u(i,Jj),1=0,nx),3j=0,ny+1)

write(12) ((v(i,3j),1=0,nx+1),3j=0,ny)
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Q

ccc
ccc
ccc

ccc
ccc
ccc
ccc

cc
cc

write(12) ((p(i,3J),1=0,nx+1),3=0,ny+1)
write(12) ((urk(i,j),1i=0,nx),3j=0,ny+1)
write(12) ((vrk(i,j),1i=0,nx+1),j=0,ny)
close (12)

open (unit=12,file="'means.bin',

&form="'UNFORMATTED")

rewind (12)

write (12) nmean
write(12) ((um(i,j),i=1,nx),j=1,ny)
write(12) ((vm(i,]j),1i=1,nx),j=1,ny)
write(12) ((pm(i,J),i=1,nx),J=1,ny)
write(12) ((uu(i,j),i=1,nx),j=1,ny)
write(12) ((vv(i,]j),i=1,nx),J=1,ny)
write(12) ((uv(i,j),i=1,nx),j=1,ny)
close (12)
open(l2, file = 'movie.dat',position='append',
& form='formatted"')
write(icmov, ' (A)') 'variables="x","y","u","v","p"'
write (12, *)
& 'ZONE T="t=',time,'" I = ',nx,'J = ',ny, 'F=BLOCK'
write(12 *) 'ZONE T="t=', time,'", I=',nx,' J=',ny,' F=BLOCK'
write (1 '(A,f16.6) ') 'SOLUTIONTIME=',time
write (1 ) nx,ny, time
write (1 '(5E16.8) ") ((xcrd(i)+xsolid,i=1,nx),j=1,ny) ! testd
write (1 '(5E16.8)‘) ((ycrd(j)+ysolid,i=1,nx),Jj=1,ny) ! testd
write(12,'(5E16.8)"') ((xcrd(i),i=1,nx),j=1l,ny) ! test2 and test3
write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) ! test2 and test3
L}

&

write (12, ' (5E16.8)")

(((0. 5DO*(u(l 1,3)+u(i,3))),i=1,nx),3=1,ny)
write (12, ' (5E16.8)")

(((0. 5DO*(V( i,3-1)+v(i,3))),1i=1,nx),3=1,ny)
write(12,'(5E16.8)"') ((p(i,3),i=1,nx),3j=1,ny)

write(12,"'(5E16.8)")

((pmask(i,3)*(0.5D0O* (u(i-1,3)+u(i,j))+usolid),i=1,nx),j=1,ny)
write(12,"'(5E16.8)")

((pmask (i,3)*(0.5D0* (v (i,j-1)+v(i,]J))+vsolid),i=1,nx),Jj=1,ny)
write(12,'(5E16.8)"') ((pmask(i,j)*p(i,3),1i=1,nx),J=1,ny)

close (12)
return
end
subroutine getfld (ex)
logical ex
integer nnx,nny,MxSurf,Mxy
parameter (nnx=600,nny=850,MxSurf=50)
parameter (Mxy=2*nnx+2*nny)

double precision w
parameter (w=0.5D0)

common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),
p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx, 0:nny, 4)
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&
&

&

&

&

&

&

&

&

&

double precision u,v,p,a,b

common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),
vnoru (nnx) ,vnorv (nnx) , fyu (nnx) , fyv (nnx),
vup (0:nnx+1) ,uup (0:nnx) ,influx

double precision txu, txv,tyu,tyv,vnoru,vnorv, fyu, fyv,vup,uup,
influx

common / bniinf/ jyu(nnx),jyv(nnx)
integer jyu,jyv

common / griddx/ xcoord(0:nnx), ycoord(0:nny)
double precision xcoord, ycoord

common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1l), scalar (nnx,nny),
xfree (Mxy,MxSurf) ,yfree (Mxy,MxSurf)
double precision xcrd, ycrd, scalar, xfree, yfree

common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),
ajp (nnx,nny) ,diag (nnx,nny), £ (nnx, nny)
double precision aim,aip,ajm,ajp,diag, f

common / bndvinfi/ iplv (Mxy),jplv(Mxy),ip2v (Mxy),jp2v (Mxy),
iinterpv (Mxy), jinterpv (Mxy) ,nbndv
integer iplv,jplv,ip2v,jp2v,iinterpv,jinterpv,nbndv

common / bnduinfi/ iplu (Mxy),jplu(Mxy),ip2u (Mxy), jp2u (Mxy),
iinterpu (Mxy), jinterpu (Mxy) ,nbndu
integer iplu,jplu,ip2u,jp2u,iinterpu, jinterpu, nbndu

common / bndvinfR/ wvl (Mxy),wv2 (mxy)
double precision wvl,wv2

common / bnduinfR/ wul (Mxy),wu2 (Mxy)
double precision wul,wu2

common /masksx/ pmask (0:nnx,0:nny),umask (0:nnx,0:nny),
vmask (0:nnx, 0:nny)
double precision pmask,umask,vmask

common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn
integer nx,ny,nx2,ny2,nn
double precision Re, RRe,dt,time,dts

common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),
uu (nnx,nny), vv(nnx,nny), uv(nnx,nny)
double precision um,vm,pm,uu,vv,uv

common /parmen/ nmean
integer nmean

common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),
ar(10,10), br(10), nrk

double precision urk, vrk, ar, br

integer nrk

common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid
double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

common/FaVvYold/FLn, FLold,aysolidn,vsolidn, ysolidn
double precision FLn,FLold,aysolidn,vsolidn,ysolidn

integer 1i,3j,k
double precision dtl

common /homeadd/ home
character*40 home
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inquire(file='field.bin',EXIST=ex)

if (.not. ex) return
c
open (unit=12,file="'field.bin’',
&form="UNFORMATTED"'")
rewind (12)
c
write(*,*) 'Reading from field.bin '
c
read (12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid,
&vsolidn, ysolidn,aysolidn, FLn,FLold
RRe=1D0/Re
read (12) ((u(i,3),1i=0,nx),3=0,ny+l)
read (12) ((v(i,3),1i=0,nx+1),3=0,ny)
read(12) ((p(i,3),1i=0,nx+1),3=0,ny+1)
read (12) ((urk(i,3j),i=0,nx),3=0,ny+1)
read (12) ((vrk(i,j),i=0,nx+1),3j=0,ny)
c
close (12)
c
c
return
end
c——
c etime.f: Demonstrate measurement of elapsed time
c——
subroutine etimetest
real etime ! Declare the type of etime()
real elapsed(2) ! For receiving user and system time
real total ! For receiving total time
integer i, j
print *, 'Start'
total=etime (elapsed)
open (unit=12,file="ptime")
rewind (12)
write(12,*) 'End:*total="', total, ' user=', elapsed(l),
& 'system="', elapsed(2)
close (12)
c Stop
Return
end

234



Appendix B

TV Intematsonal Conference on Computational Methods for Coupled Problems m Scence and Ensinesring
COUPLED PROBLEMS 2011
M Papadmkakiz, E. Ofiate and B. Schrefler (Eds)

INVESTIGATING THE EFFECT OF ROTATIONAL DEGREE OF
FREEDOM ON A CIRCULAR CYLINDER AT LOW REYNOLDS
NUMBER IN CROSS FLOW

SEYED HOSSEIN MADANI=, JAN WISSINE, HAMID BAHAIT

School of Engineening and Design - Brunel University West London

*lslamic Azad University — South Tehran Branch
email: Hossem Madanifibrunel ac uk

Kev words: cireular evlinder, Vortex-Induced Vibrations, rotaticnal d o f

Summary. Numerical simmlations of Vortex-Induced Vibrations (VIV) of a cireular eylinder
in cross fow with a rotational degree of fieedom about its axis have been carried out by
means of a finste-volume method. The study is performed in two dimensions at a Beynolds
number of Ren = 100, based on the free stream velocity and the diameter, I, of the cylinder.
The effect of the rotational degree of freedom on the cylinder’s Lift and drag forces age
compared with the baseline simmlation results of flow around a stationary cylinder. The
imtroduction of a rotational degree of freedom (dof) is observed to cause the Lft and diag
forces to change. Also, the pattern of vortex shedding behind the cylinder is found to
drastically change when the cylinder is allowed to rotate.

1. INTRODUCTION

The study of flows around cylinders has a leng history [1, 2]. The early studies were
focussed on the flow around a stationary cylinder at varions Eevnolds nembers. Subsequently,
mvestigations have been carned out of flow around a cylinder with a prescribed rotational
velocity [2]. Although the stdy of flows arcund rotating cirenlar eylinders is not new, most
of the previous works consider the rotational speed as a parameter that can be used to
decrease the effect of vortex shedding on the cylinder. In other words, angular velocity is
viewed as a way to reduce the root mean square of the lift force. This is the reason why
rotation of the cylinder is wsed in feedback control of wakes [3]. Forced oscillatory rotation of
a circular cylinder has also been investigated mumerically as well as experimentally [4]. All of
these stndies focused on impesed oscillatory angular velocities. Ettenne and Fontame [3]
studied the effect of vortex shedding on a two dimensional cylinder with two spatial d.of
They observed that the cylinder was mainly oscillating transversely and slightly in line with
the flow. When they added a rotational degree of freedom, for an arbitrary rotational moment
of mertia. the transverse amplitode of oscillation was found to be reduced by a factor of two,
while the mean in-line deflection was also found to decrease by a factor betweenl 3 to 2. In
their case, the Magnus effect was found to be negligible as the maximum angular velocity was
only on the order of 3% of the free-stream velocity U [5].
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In this stmdy, we evalnate the effect of introducing a rotational degree of freedom, on the
flow around a circular cylinder. To achieve this we infroduce the rotational angle of the
cylinder as an unknewn that is affected by friction-induced torgue.

Below, we present some of the results obtained by performing a parametric stndy in which
the moment of inertia (T) and the rotational spring rigidity (k) are varied. The spring rigidity is
used to control the rotational degree of freedom (d.o.f) and both k and I deternune the natoral
frequency (f) of the system An important parameter in this context is the so-called reduced
veloeity, Ur = UAD), where T i3 the free-stream veloeity and I is diameter of the cylinder. Tt
showld be noted that both k and I are defined for a nit-length cylinder.

2. GENEERAL SPECTFICATION

The cylinder was allowed to rotate about its axis. The ———
rotation was controlled by adding a torsional spring with
stiffness K. Without the presence of the spring the cylinder
was observed to rotate rigidly in one direction.

Becanse of the simplicity of the problem and the low
Eeynolds number, we were able to model the zet up as a two-
dimensional flow problem. The computational domain is
shown in figure 2. At the inlet, the flow 1z assumed to be
uniform with v=1; and v=0, where u and v are the velocities
of the flow in x-direction and y-direction respectively. A
free-slip boundary condition is applied along the upper and
lower boundanes while a convective outflow boundary
condition is applied at the outlet. At the surface of the
cylinder, finally. a no-slip boundary condition 1s prescribed.
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Fizure 1- Lefi: The computational domzimn shownng the boundary condihons. Bight: Zoomed wew of the O-
mesh close to the cyvlmder commespondmg to “Detarl A at the left
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This problem is an example of a rotational barmonic oscillator that can oscillate about the
axis of the eylinder. This behaviour is analogous to linear spring-mass oscillators. The general
equation of motion is given by:

d'a i
JF-I—(--E—FHH:TH} @

[fﬂ:ledampingis-small,': <€ V #id | as is the case in this study, the frequency of vibration
is very close to the natoral resonance frequency of the system:

il 1
n= o= el @
I dmam W/
In the absence of a driving force (T = (J), the general solution of the resulting
homogeneous problem is given by: (3)
# = Ae *cos (wt +0)
Where:
 a=cp2a
w=\ju? —a? = \/n/I - (C/2I)? &

Tahble 1 : Defimtion of terms in the equations
| Definition of terms

|
|Term Unit Definition |
| H Radians Angle of deflection from rest pesition |
I kegw? Moment of inertia |
| 7 kewm's 'rad™ Rotational friction {damping) |
| I N mrad™ Coefficient of torsion spring |
|T Nm Drive torque |
|fu Hz Undamped [or natural] resonance frequency |
| “n rads! Undamped resonance frequency in radians |
|||r Hz Damped resonance frequency |
| W qads™! Damped resonance frequency in radians |
| ¥ B I Reciprocal of damping time constant |
| {:2 Rad Phase angle of oscillation |
| L m Distance from axis to where force is applied |

The angular wvelocity of the cylinder iz determined by a oumerical

approximation of eq. (1) with C=0, using an Euler scheme for the integration of time. The
torque T(t) is calenlated every time step by integrating the tangential frictional forces of the
flow on the cylinder.

237



Seyed Hossein Madani, Jan Wissink, Hamid Bahai

3. NUMERICAL RESULTS

For this simmlation the [ESOCC flow solver has been wsed. LESOCC has been developed
at the Institwte of Hydromechanmics at Karlsruhe, Institote of Technology, Germany. In
Wissink and Rodi [6] it has been extensively tested for the sinmlation of flow around a
cylinder at Re=3200. LESOCC uses a second-order accurate diseretization of the convection
and diffusion. combined with a three-stage Runge-Kutta method for the time-integration It
uses a collocated variable arrangement combined with momentum interpolation to avoid a
decoupling of the pressure and velocity fields.

For the present study, a mesh independency test was carried out and, as a result, a mesh
with (360%126) points in the circomferential and radial direction respectively was chosen.
MNumerows mns have been carried out on the computing cluster at Brunel University. Teo
simulate each case using § processors it takes nearly 2000 hours for the results to converge.
Figure 3 shows how the results converged for one specific case. The Reynolds nomber was
kept constant at Fe=100 for all cases. To imtiate the vortex shedding, we applied a random
perturbation to the flow. Figure 4 shows that the results are not dependent on the initial

perturbation.

T | Il
1] 1 . ] 4
i) mWﬂﬁ 300 ]

Figure 3. The remalts of the simmlanon Converges- Fe=100, I=0.333, E=0 3648 Ur=5

In this study, the effect of a rotational degree of freedom on vortex shedding and lock-in
phenomena was investigated and the results were compared with flow around a stationary
cylinder. Initially an attempt was made to perform a simulation with a rotational d.o.f without
any restoring force (K=0). As a result, the cylinder was observed to rotate in only one
direction. It was therefore decided to add a restoring force by the introduction of a rotational
sprng (k>0). To establish which moment of mertia, I would be relevant to our problem, we
assnmed a solid cylinder with the same density of water (1000kg/m’). The diameter of the
cylinder was chosen to be 20 em; as a result = {1."8ij‘)“=(1.-'3 IjnpD4 =0.1537 kg/'m". (For the
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case with D=0.2m and a density of water equal to 1000 l-:gfmg', the equivalent moment of
mertia for the cylinder becomes I=0.157 kg.m""} and the corresponding non-dimensional
moment of inertia becomes I=0.5. Figure 5 on the left shows the effect of inertia of the
cylinder on the frequency of the vortex shedding of the cylinder (with a constant rotational
stiffness 1=0.03). For high (low) amounts of inertia the frequency decreases (increases)
dramatically. Figure 5, right. depicts the relation between KT and the natural frequency of the
system and the frequency of the rotational velocity (). This graph clearly proves equation
{2). The power of the KT 13 0.5045, which is almest the same as predicted by theory (0.5)
and the coefficient iz 0.1598 which is very close to the coefficient 1/2n=0.1591in eq. (2).
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Figure 4. The effect of changes m random perhorbahon on the comrergence of the results for two simular cases-
Re=100, 50333 E=0.05, Th=16
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Figure & —left: Natwal fequency verses merha when E=0.05 constant. Faght: natwzl frequency and vortex
shedding frequency verses (ET), the parameters are non-dunensional
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10 15

XD

rure 6 : Vortex Shedding Re=100 - first case: stationary cylinder, St=0.167, Second case I=0.333 and K=0.05,
Ur=16. $t=0.0625, third case: I=0.333. K=0.363, Ur=6, St=0.167
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Figure 6 shows vortex shedding for 3 different cases in a two dimensional flow at Re=100.
The first one 1s the stationary cylinder; the frequency of the vortex shedding for this case 1s
0.17. These result exactly match the results of Roshko [7]. who measured the frequencies
using a hot-wire velocity probe. For the low Reynolds number laminar region Roshko
condensed his results to an equation of the form St = 0.212 (1 — 21.2 / Re) where St 1s the
Strouhal number S=FD/U [7]. The second and third pictures in figure 6 show the vortex
shedding from a cylinder with a rotational degree of freedom. For the cases [=0.333 combined
with k=0.05 and k=0.365. the frequencies of vortex shedding become f=0.0625 and f=0.167
respectively. In figure 7, the effect of rotational d.of was compared with the stationary
cylinder. Etienne and Fontaine [5] observed that the introduction of a rotational degree of
freedom causes a reduction in the vortex-induced vibration i the transverse direction with the
flow [5]. It implies that we should expect a lower lift when we have a rotational dof in
combination with spatial degrees of freedom. In the absence of a spatial degree of freedom.
our results show a completely different behaviour and predict a significant increase in
unsteady lift forces acting on the cylinder due to the Magnus effect.
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Figure 7- lift for three cases. first case : stationary cylinder, second case: Rotational d.o.f1=0.333 and K=0.05,
third case: Rotational degree of freedom I=0.333, K=0.365

4. Conclusion

The introduction of a rotational degree of freedom which allows the cylinder to rotate about
its axis, has a significant effect on the pattem of vortex shedding at low Reynolds numbers. In
all cases considered. the vortex shedding locks-in to the natural frequency of the
mertial/spring system. Compared to the baseline simulation of flow around a stationary
cylinder. the addition of a rotational degree of freedom to the cylinder was observed to
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significantly increase unsteady lift forces because of the Magnus effect. wlile also the drag
forces were not diminished.. In the near future, we aim to complete the present parametric
study of the effects of inertia/spring stiffness on the flow pattemn and the Lift and drag forces.
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ABSTRACT

The accwacy and compuotational efficiency of vanows mierpoltion methods for the
mplementation of non gnd-confimne bowmdares 5 assessed. The amn of the research & fo
select an mierpolation method that i both efficent and sufficiently acowrate to be wed m the
smmdation of vortex mduced vibraton of the fow arownd a deformable cylmder. Besulis are
presemted of an mwversed bowndary mplementation m wiich the welbbeties near non-
confiming boundares were mierpolated m the nomml drection to the walk. The fow feld &
sohed on a Carfessn grd wme a fogfe whme method wih a stageered varmble
arrangement. The Strovhal muiber and Dirag coefficent for vamous cases are reported. The
results show a good agreenent wih the Heratwe, Ao, the drag coefficient amd Strouhal
mumber resulis for fve different mterpolation methods were compared & was shown that £r a
stationary cyimder at bw Feynols muvber, the mierpolstion nethod could affect the dmg
coefficient by a mamnmm 2% and the Stroubal ovber by maxmum of 3% In addiion the
bilmer mierpolbtion method took abow 2% more computational tive per vortex shedding
cycle m companien to the other methods.

INTRODUCTION

Obtaimne  accwate sohsions for Fhud-Stuctee Inferaction (FSI) problkens & of mierest m
many engmeerms and scemific applcations. A broad classiicaton of FSI nethods s based
on the type of mesh enplyed m the dscretsation where we can diferentiate between
bowndary-confornme  and  non-boundar-conformine  mesh methods [1]. A wel-koown
conformine mesh method & the Arbirarly Lagansian-Folrsn nethod (ALFE) For non-
conformineg mesh methods, wsmly an mwversed bomndary nethod 5 wed and nwost recent
developments m F5I methods are based on this appreach The latter & the subject of this
TEVIEW.

The mmmersed-boundary (IB) method & a technipe for sohmg flow problene i regions
with sregular boundares usmez a smpk stroctimed grid sober. The ferm “mersed bowndary
method” was mitially vsed for a method developed by Peskm [2] which was used fo simulate
bbod flow in a cardiovascular system. It was specﬁca.lly desimned to hande defornmms
(elastic) boundares mieractmg wih low Bevoolds munber fow The smuilation was camed
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out on a Cartesian grid and at those locations where the boundary did not akon with a mesh
fne the sohmion alcorthm was locally modified to enforce the deswed boundary conditons on
the flow. More recently mmerons modificatons and refinements have been proposed to
enhance the accwacy, stabilih and apphcation range of the [B nethod [3].

[kpeﬂiﬁgnn&evm}rttﬂtﬂrbomdm}rmﬂiﬂnnsmﬂ;msedmﬂrinmﬁed
bonndary, the IB methods can be generalty categorized mio comtimons and discrete fHrong
approaches. In the comtimons forcms method, a freing fimetion & apphed to the Nawier-
Stokes equation m order to mamtam the boundary condiion on fhe stuchwe (e.g enforcmns a
mo-slp boundary condition on a statomary body). The most mportant ssve m this method &
the defimtion of the contmmons forcng fimction needed to enfbwce the comect bowndary
condifion  Several different fimetions have been develped by Peskom [2], Sads and Bamoen
[4]. Bever and Leveque [3], and Lai and Peskm [6], anong others. In all cases, a distributed
fimction was wsed rather than a sharp fimction becanse fistly the sobid bowndares do not
comeile with the Cartesian mesh and. secondly, this way the Gibbs’ osciations phenomenon
[7] adjacent to the sohd bowndares could be suppressed. Appling a confsmous force to
enforce the bomndary condifions & aftractive for ebstc bowmdares as i has a physical
meanns and #s mplementation & rebively easy. However, the myplemenfation of this
method to enforce nmd bomndares & rebtvely covbersome due to s defintion  Another
problem &5 that by wsing a sowooth fiwetion the method camnot sharply represent the mersed
boundaries which & not reconmvended for hich Feynolds mmber flows [3].

Becanse the Naver-Stokes equatons wually camnct be mtegrated anabjtically to find the
forcmg fimetions, ¢ & wualy not possible to derne an anabytical foreme fimction to enforce
spectic bowmdary conddions. To tackle this problem a method has been suggested by Mohd-
Yusof [8] and Vermcco [9] In this method. wiwh & koown as Indiwect Discrete forcms
approach, freme fiwetions are subtracted fom the mewencal sebmwon affer dicreteine the
Maver-Stokes equations. The snportant advantage of this method & that there 5 0o need to
define the fremes fimetion pamameters prior to sobme the Naver-Stokes equations and there
& no stability constramt dpe to wsmg contmmous forems fimctions (Gbb's oscillation).
However, i i stll needed fo mplenent the dstributed fremg fimctions which stromsly
depend on the dscretmation algortlm Ancther dosion of the dscrete forems approach =
Dwrect Discrete Forcing

Due to the need for and acowate represemtation of the bowndary byer m high Reymolds
murber flow, the wse of dstrbuted, smooth forcme fimctions pear the mwersed boundary =
not desgable. In these cases it & reconmvended to use a shap mferface with a hisher bocal
accwwacy near the bowndary This goal can be acheved by mmposme the boundary condibons
diectly on the mmersed bomdary There are two well-lmown methods that fit mio this
category: the Ghost-Cell Faie-Difference Approach and the Cut-Cell Finite-Vohune
Approach

In the Ghost-Cell approach the mwersed bowndary s mplemented by the uwse of ghost
cells. Ghost celk are cells mside the sobd bowndary which have at kast one neichbow on the
fiud side The parameters (mmagmary bty and presawme) m the ghost cell (msude the sohd)
are defimed by an mterpolton method which mnphcily enfosces the comect boundary
condiion for the mwversed bomndary Iaccarme and Vermcco [10] showed that a lnear
mterpolation method & acceptable for those cases m which the first pomts of the mterpolation
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m the fhud are msade the viscous sub byer. Other mterpolition methods have been mtroduced
by Glms [11].

The entwe murersed boundary methods discussed so far are not desined to consider the
comservations kws near the sobd boundary. However, the Cut-Cell nethod wed m
combmation with a Faate-Vohure approach s desimmed m order to preserve the conservation
of momentum and nmss near the boundary. In this method the cells. which have been cut by
the mmersed bowdary, are reshaped or absorbed by newghbourme cells m order to form a
new trapezowdal control vohume cell shape. This method has been used by Mittal [12, 13] to
smmulate vortex-mduced vibration around a statonary and a movmg body and for free Gllmg
objects. Extendmg this method to 3D s not stramhtforward and needs conmplex polyhedral
cells, winch conpheate the dscretization of the Waver-Stokes equations.

As dscussed earber m the dscrete foremg approach the IB s mposed on the donmm after
the dscretzaton of Naver-Stokes equatons. This means that miroducmg the boundary
condtions and forcmg fimctions 5 not as straghtforward as m the contwous forcmg
approach and depends on the dscretmation method and #s mplenentation Alo, m dscrete
forcmg approach the defintion of the pressure on the boundary s not as straghtforward as m
the conttmous forcmg approach and requies specml treatment. Advantages of the discrete
forcmg approach are that the bowndary condmons can be mtroduced sharply without amy extra
stabilty constramt, while the fhud and sobd domams are clearly separated and the equations
that describe the flow are only solved m the find dommam

In this paper, we focus on the mdwect dscrete forcmg approach where the forcmg
fimction & not calculated dmectly and added to the Nawvier-Stokes equation We are not mtent
to wse any Cut-Cell or Ghost Cell nethods as the applymg the Cut-Cell method for fhud-
structure mteraction problens wih movng bowndanes takes lots of computational tme [14.
15]. whie the Ghost-Cell approach will create non-plysical results when solmg the fhod
equatiors m the sobd domam

In the next section the fommilation of the find dynanmcal problem winch has been used m
the smmlation s miroduced.

FORMULATION AND NTMERICAL METHODS

The governmg equation for an unsteady, mcompressibk find flow m vector form s gwen
b}rat%rle Naver—Stokes equation winch reads:
p(ﬁﬂr V)= —Vp+uviv+ (1)
V.V=0 @
where f 5 the extemal force on the fiud dommam winch & used to mplement the boundary
condiion on mn—ccuﬁ}mmg sobd bowndanes. In tlis paper thes force & not apphed dmecty
to the govenmg equations. Instead, the non-conformng boundary condiions are mtroduced
by mterpolating velocties close to the sobd boundary.

The mcompressible Nawver-stokes equations m a 2D Cartestan domam are gven by

gt " as _ 4x  Re\dxdx
ﬁu[-_
ax, " )

245



5H Madani J. Wissmk and H. Babai

where p & the geperalised presswe wiwh & defined by the statc presswe dnaded by the
denstty. Henee, to obtam the comrect the static presswe we need to nmitply p by the density.

A staggered varable amancement. as mfrodoced by Hadow and Wekh [16], & used to
dicretize the povemnng equations on a Cartessan mesh The contmmiy equation is enforoed
by taking the drergence of the momentan equation and wsing the contmiy equation to
sanplify the resulis to foom a Posson equation for the presswe field This equation 15 sobwed
by stronoly mpleit procedure (SIF). Stone’s method. at every tme step [17].

To mamiam a consitent mplementation the presswe equation & dicetzed m a sondar
way as the nomeninm  equation.

The extent of the comyntational donam was selected to be rebtiely hsge to enswe that
the location of the boundanes does nmot afect the smmilation For this reason the sme of the v
daection was taken to be 20D and the sme of the x deection was faken to be 15D which was
deemed to be sufficient to caphwe the vortex sheddng belmnd the cylmder. The mesh swe was
chosen was die=dy=0.05D which was checked m a mesh refiement study:
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Figure 1. Finid donsm size and boundary conditions.

As the entire domam was meshed wie a Catestan grid. the svplementation of the gyid-
conformmmz  miet, owflet and side boundary condiions was straghtforward, whie the
boundary comdiions alng the coyimder were mpkmented wsms mwwersed  boundary
methods.

In the next section a munber of webciy-mterpolation methods, both from the Berahwe as
well as a oowvel second-order mietpoltion method for the mplementation of the non-
conforming bowndary condfions m the fiud domam are mirodoced and compared. It will be
shown that the results show a good agreement with the Berature.
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INTERPFOLATION METHODS

In fiis section mierpolation or recomstruction methods are compared. To enforee bowndary
conditions wsing the mterpolation method, the foremg fimction f & not cakuhted directly.
Instead. the flow welcty & mierpolated at the mterfice cels and the foreme term 5 mposed
mdwectly to the discrete equations. The mterfice pomis are defined as the pomts m the fhud
donmm pear the solid bowndary for which one of the peighbowmg pomts m the dscretized
equations & mside the sobd domam Therefore, the parameters related to these pomts camnot
be updated fhrough sobine the governms equation (Figmre 2). Any cels that contam ome or
more mterface poimts are called mterfice cels. It & well known that most mversed bovmdary
approaches need some sort of mierpolation procedwe. In the dmect forcms approaches,
mierpolation & wed m order to determine the foremyg fivwtions at the mberface cels which
enforce the comect boundary comdfions to the governme equatton In the mdiect freme
approach (mferpohtions approach), each tme step the fow patameters m the mberface cells
are uwpdated by drect mierpolation and wsed as bowndary condiion for the fow sobver. In fhis
review, a muuber of mierpolation procedwes which could potentmlly be wsed m mdrect
discrete foreme approaches (mferpohtion or reconstiuction approaches) will be compared.

Figure 2: 4 7D Cartesian mesh with a solid boundary {circle). Interface pomts, that require interpolation, ame
identified by arrows. Points Al o AS are all neighbourng pomts of A MNote that A2 and A7 are inside the solid
domain.

Below # will be shown m detad how these mberfice cells have been treated and how
possible problens fhat may ocowr pear boundanes, bke the decouplng of presswe and
comsetvation of mass, may be overcome. To do so, fist step & to defive the mberfice celk for
the spectic geometry, which could be compbeated for gecmetnes wih wilmown fiwmetions
[10]. Subsequently, & will be enswed that the flow govermine equations are not solved meide
any mterfice and sobid cells. The most mportant step m the mierpolation methods s fo
deternmine  the flow parameters m the mterface celk adjacent to the sobd bouwndaries which
will be wed as bowmndary conditions for the rest of the fow domam that will subsequentty be
vpdated by the fow soler. Vanos mterpolation methods have been deweloped to tackle this
probem In the fllowing part, these methods are categormed and explmed m more detad

Case A: No interpolation
The sinplest possble method & to select the mierface celk at the sokd bouwndanes and
define the solid domam mside those celk. In fact i this case there & no mferpolation and the
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sobid boundary will have a stepwise shape (Figmre 3). Ako. the boundary fself & somewhat
diffised, as m the staggered methods the boundary condiions for the different welbbciy
components are appbed at different sides of an elemwent Fadhbn [18] proposed a smndar
method for moposing forcmne fimetions for mmersed boundaries. Here, however, the method
& appled duectly to define the sohd boundares, wiile the governms equation will be
subsequently sobed m the remomder of the compuiational domam assummg no-shp boundary
condiions for the sokd boundares As mierpolation = npot peeded, flws method will be
relatively fast while still pving acceptable results. The dsadvantage of this method - when
msed m the caleultion of flow aromnd a creular cyinder - &5 that on cowrse meshes shape and
size differences between the cylnder and the sobd bowndary could affect Bt and drag forces.

4

I

Figure 3 left, the amows shows velocity mside sobd body (solid velocity), assumed zero for a stationary
cylinder. Right, hatched cells nsed to define weighting ¢ oefficient.

Case B: Weighting me thod

This method 5 sindar to the ope discnssed abowve. The nmjor diffrence & that the
boundary vales for the welbety m those celk that are part find and part sokd are weighted
accordmsly. Fumwe 3 (nght) shows the location of these weighted bowndary vebeties m the
cells that are part fhud amd part solid For each of the welocty components a coefficient &
deternened that comresponds to the ratio of the fhud part of the two adjacent cells to the wholke
area of the fwo cells.
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Figure 4 lmear interpolation method: nterpolating Vij for a stationary solid m vertical direction (left),
mierpolating Vij for a moving solid (Viobd) m vertical diection (nuddle); interpolating ULj for a moving sobd
(Usolid) m honzontal divection.
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sobd bowndary will have a stepwise shape (Fimwe 3). Ako, the bommdary iself & somewhat
diffised, as m the staggered methods the boundary condiions for the diferemt welocty
components are apphed at different sides of an element Fadhbwn [18] proposed a simdar
method for mposme freme finctons for mrersed boundaries. Here, however, the methed
& apphed directly to defiee the sobd bowndames, while the governmz equation will be
subsequently sobed m the remmmder of the compidational dommm assimmg no-skp boundary
condiions for the sobd boundares. As mberpolation & not peeded, this method will be
relatvely fast whie stll ghme acceptable results. The disadvantage of ths method - when
wsed m the calovbation of flow aroumd a cocular cylmder - i that on cowse meshes shape and
size differences between the cyimder and the sobd boundary could affect B and drag forces.
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Figure 3: left, the amows shows velocity mzide solid body (solid velocity), assumed zero for a stationary
cylindar. Right, hatched cells nsad to define weighting cosfficient.

Case B: Weighting me thod

This method 5 sindar to the ope discussed above. The mwmjor dffrence w5 that the
bowndary valwes Br the webciy m those cels that are part fwd and part sobd are weighted
accordmngly. Fimwe 3 (nght) shows the bcaton of these weighted boundary velocties m the
cell: that are part fiud amd part solid For each of the welocky components a coefficent &
deternmned that comresponds to the mtio of the fiud part of the two adjacent cells to the whok
area of the two cells.
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| = - | -

Figure 4: lmear interpolation method: mterpolatimg Vij for a stationary solid m vertical direction (left),
mierpolting Vij for a moving solid (Viobd) m vertical diection (piddle); mterpolaimgz Ui for a moving solid
{(Usolid) m horzontal drection.
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presswre and the welocy near the sobd boundary. Fimwe 6 ilnstrates their mferpolation
nethod that wses o adjacent wvelocties and enforces the momenhmn equation by a quadratic
mterpolation m the two-dmensional case. As we ooly focns on conpammz  velocity
mierpolation methods Kane's method & exched fiom the comparison

Case E: Proposed interpolation me thod

The biinear mterpolation method propesed m this paper = based on mterpolatne the
boundary velocity vabes o the direction perpendiculsr to the sobd bowndary. In this method,
a e from the bomndary vebeiy position & dravn petpendiculsr to the bowndary swface and
extended to cut the e between the fist two lnown wvelocites m the fiud domam (Pomt A
Fiowe 7 noht) The wvelbcity will be mterpolated at the mbersection pomt A Then the
bowndary cell velecity vabes will be mierpolated uwsmg the sobd bowndary welocty (Br a
stationary cyimder with no-shp condiions this welectty i zero) and the wvelocity at pomt A
Fiowe 7 (kff) shows this mterpolation for welocies m v diection and Fiowe 7 (might) shows
the mterpolation for the wveloesty m the x diection

[TRLRNN ]
---J-I--r- -

-

“de o amid 2

'nga!‘l I e

&

Fizure 7. Bilmear proposed interpolstion in this smdy for the cells near the solid boundary i vertical (Left)
and borzontal (deht) velocity components.

EESULTS AND DISCTUSSION

The flow arownd a stationary cylnder at Re=100 has been swmiated with different
mterpolation treativents to represent the mwversed bowndary. The Strovhal muwvber, drag and
Bt coefficients for vanons cases are compared.

The Stroubal munber & the non- divensional fequency of the vortex shedding around the
body and 15 defined by
_5D
=
where & the Fequency of the vortex sheddme D & the cylinder dismeter and & the far-field
ety

The drag coefficient on a body m a fiud fow mehdes both the shear stress and the

presswre drag on the sobid swrface. The d:I:IIE'IEDIIéE':S drag coefficient i defined by
D

St

The kft force on the cylmder & gererated when the wvortex sheddine starts around the
stchre. The divensionless I coefficent & defined by
F

L

L=y ——
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For any sobd body both the pressure distrimion and the fiaction alno the sold swface
may comriige to the Bf and drag forces. In the present study, the presswe at the swifhce &
obtained by takms the wal-pearest presswe vabes m the fow donam on the owside of the
sobd body, thereby assumme that the wall nommal gradient of the pressure near the smfice &
reghobly somll  The compopent of the drag and Ef forces due to presswe dstribution s
cakulated by miegratng the presswe along the sobd bowndary. On the other hand, the shear-
force component of the B and drag forces & caleubted from pear the swihce of the sokd.
The tancential welocty near the sobd swfice & obtamed at the wal-pearest pomi owside of
the body and & subsequently wed to caleubste the wall-shear stress at the cylnder swfice.
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Figure &: Draz coefficient for the flow around a stationary cylnder at Fe=100, Case A withont mierpolation;
Case B: area weizghting method; Caze C, Linear interpolation method; Case D, Bilinear mterpolationl; Case E.
Bilmear interpalation?

Fiowe 8, shows a comparson of the drag coeffictents obtaimed m cakubitions of flow over
a stationary cylnder at Fe=100 wsine variows sferpoltion methods. It can be seen that m the
cases C, D and E (lmear and Bifnear mierpolation methods) the resulis were comergms to a
vabe of Cp = 143 Howewver, Case A (withowt imterpolation) leads to a hicher diag
coefficient, CD=146 and Case B (weghims nethod) lads to a bwer dmg coefficent
CD=1.42. Once wortex sheddno conwrenced all smmlations were found to nm at viually the
same speed (Tabk 1) showme that the compidational effort peeded for the mferpolition was
reghoble. However, for a non-stationary oyviinder, o &5 expected that the remured repeated
cakulation of mierpolation coefficients may kead to a reduction I execition speed.

Table 1: Feal computational time, 20 voriex shedding
Case A | Case B | Case C | Caze D | Caze E
| Beal time (s) | 3231 32235 3379 | 4441 3383

Fiowe 8§ (kff) shows that Case C (lmear mterpolation) s the quickest method to develop
vortex sheddme winch mdicates that ¢ the mpkmentaton of bowndary comddions wigh
Inear mierpolation camses significant memencal nose. In Case E (proposed bipear method),

251



SH Madani J. Wissmk and H. Bahai

on the other hand, the vortex-sheddme metabdity locks m oweh bter evidencmg that the kel
of murerical noke mirodoced by ths type of mierpobtion & very small
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CL-Criea D
Cl-Carem E
G L i 8
d £ o 7] -] 7] 1] o

Mon-gimanbonal tima LD U} Mar-dimsrtional lms 1O
Figure & Lift coefficient forthe flow around a3 stationary cylinder at Be=100, Caze A without mterpolation;
Caze B: area weighting method; Case C, Limear interpolation method; Case D, Bilnear mterpolationl; Casze E,
Bilmear mterpolation?

Figwe 9, shows the comparson of I coefficents for the vanows mberpolation cases. It
can be seen fom the fimwe that Bke the drag coefficient the Mt coefficent £r the mear and
bimear cases are pearly the same (Case C, D and E) CI=033. However, the Case B (rehted
to weishtne area method) shows bwer vabes for the B (CI=027). In Case A (withowt
mterpolation). the bf dve to shear stress 5 owt of range, it the If due fo pressme =
acceptable. The reason for the wmacceptable resulis for the I due to shear & that the welocty
for case A was selcted out of the boundary baver (the amn was to choose smmbyr condifions
for all cases).

Table 2: Smonhal nomber, lift and Drag coefficient for the flow around a statonary cylinder and Be=100.

Strovhal Drag Lift
smmlation methods Mimmber Coeflicient | coeflicient
Case A 0174 1.46 0.26
Case B 0173 1.42 0.27
Case C 0.169 1432 0325
Case D 0.169 1.434 0305
Case E 0.168 1432 0.31
Park: [22] fitted method 0.163 1.33 0.33
Williamson(exp.)[20] 0.166 e e
Kim [22] 0.163 1.33 0.32
Roshko (exp.)[20] 0.164
Lai and Peskin [6] 0.163 1.4473 03299
Choi [7] 1.351 0315
Corbalin & Souza [24] 1.44 0.31
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Tabk 2 shows the comparison of the Strouhal muvber, b and drag coefficient for varions
methods; fom the expermrental metheds (Foshke and Willineion teported by [20]) to the
body fited mesh [21] and murersed bowmdary methods [22, 6, 23, 24], for the flow around a
stationary cylmder at Fe=100. It can be seen that the Strouhal mmvber varies between 0.16
and 0.18; the Drag coefficient between 1.33 and 14473 and the & coefficeent between 0.31
and 0.33.

CONCLUSION

The objective of the present study & to compare the acowracy and expenses of different IB
mierpolition methods and select the most acowate and kast expemsie method for fisme e
m smulations of flow arownd a deformable cylnder A finde-vobme method on a Cartesian
mid with a stagsered varablk amansement has been wed. In s IB onplementation the
webctes near non-confirmms boundares were mierpolited m the normal diection to walls,
thereby comsiderme the cumvahwe of the geonwetry. The Strovhal mumber and Diag coefficent
for different cases are teported. The resuls show a good agreement with the Heratwe for
most of the mierpolation methods for the stationary cyimder. The drag coefficient and
Strovhal munber results for five diffrent mierpolation methods were conpared it was shown
that for a stationary cylmder at bw PBeynolds muiber, the mierpolation method could affect
the drag coefficent by a maxmmen 2% and the Strouhal mmvber by ommmmm of 3%. In
addiion the bi-lmer ﬂe:pohmn method tock about 2% mwore compdational tine per vortex
sheddme cycle m compamion to the other methods.
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