

College of Engineering, Design and physical science

PhD Mechanical Engineering

Title:

Application of Immersed Boundary Method to Flexible Riser Problem

Author:

SeyedHossein MadaniKermani

Supervised by:

Prof. Hamid Bahai

Dr. Jan Wissink

Date:

March 2014

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of

Philosophy in Mechanical Engineering

Submitted for examination

ii

Abstract

In the recent decades the Fluid-Structure Interaction (FSI) problem has been of great

interest to many researchers and a variety of methods have been proposed for its

numerical simulation. As FSI simulation is a multi-discipline and a multi-physics

problem, its full simulation consists of many details and sub-procedures. On the other

hand, reliable FSI simulations are required in various applications ranging from hemo-

dynamics and structural engineering to aero-elasticity. In hemo-dynamics an

incompressible fluid is coupled with a flexible structure with similar density (e.g. blood

in arteries). In aero-elasticity a compressible fluid interacts with a stiff structure (e.g.

aircraft wing) or an incompressible flow is coupled with a very light structure (e.g.

Parachute or sail), whereas in some other engineering applications an incompressible

flow interacts with a flexible structure with large displacement (e.g. oil risers in offshore

industries). Therefore, various FSI models are employed to simulate a variety of different

applications. An initial vital step to conduct an accurate FSI simulation is to perform a

study of the physics of the problem which would be the main criterion on which the full

FSI simulation procedure will then be based.

In this thesis, interaction of an incompressible fluid flow at low Reynolds number

with a flexible circular cylinder in two dimensions has been studied in detail using some

of the latest published methods in the literature. The elements of procedures have been

chosen in a way to allow further development to simulate the interaction of an

incompressible fluid flow with a flexible oil riser with large displacement in three

dimensions in future.

To achieve this goal, a partitioned approach has been adopted to enable the use of

existing structural codes together with an Immersed Boundary (IB) method which would

allow the modelling of large displacements. A direct forcing approach, interpolation /

reconstruction, type of IB is used to enforce the moving boundary condition and to create

sharp interfaces with the possibility of modelling in three dimensions. This provides an

advantage over the IB continuous forcing approach which creates a diffused boundary.

And also is considered as a preferred method over the cut cell approach which is very

complex in three dimensions with moving boundaries.

Different reconstruction methods from the literature have been compared with the

newly proposed method. The fluid governing equation is solved only in the fluid domain

using a Cartesian grid and an Eulerian approach while the structural analysis was

performed using Lagrangian methods. This method avoids the creation of secondary

fluid domains inside the solid boundary which occurs in some of the IB methods. In the

IB methods forces from the Eulerian flow field are transferred onto the Lagrangian

marker points on the solid boundary and the displacement and velocities of the moving

boundary are interpolated in the flow domain to enforce no-slip boundary conditions.

Various coupling methods from the literature were selected and improved to allow

modelling the interface and to transfer the data between fluid and structure.

In addition, as an alternative method to simulate FSI for a single object in the fluid

flow as suggested in the literature, the moving frame of reference method has been

applied for the first time in this thesis to simulate Fluid-Structure interaction using an IB

reconstruction approach.

The flow around a cylinder in two dimensions was selected as a benchmark to

validate the simulation results as there are many experimental and analytical results

presented in the literature for this specific case.

iii

Some of the Contributions to knowledge

 Comprehensive and comparative study of the FSI methods considering

facilities and physics of the problem to define an algorithm to be able to:

 To simulate Large displacement/deformation

 To integrated existing fluid flow and structural codes

 To be extendable to three dimension

 To be able to define sharp boundaries and resolve vortices in the flow field

 To be fitted to the existing computational facilities

 Developing an FSI code based on the comprehensive study to simulate

 Stationary cases

 Forced Vibration with prescribe motion

 Vortex Induced Vibration (VIV)

 Proposing a new interpolation procedure and comparing it with literature

 Characterising the domain parameters affecting Strouhal number, lift and drag

coefficients

 Explaining some of discrepancies in the results of the lift and drag coefficient

presented in the literature based on parametric study.

 Applying a moving reference frame along with an IB interpolation method to

model FSI and VIV.

iv

Acknowledgement

I would like to acknowledge the contributions of my supervisors Professor Hamid Bahai

and Dr. Jan wissink who never hesitated to lead me throughout this thesis in every aspect.

v

Dedication

This thesis is dedicated to my father, who taught me that the large tasks can be

accomplished by diligence and persistent work. It is also dedicated to my mother, who taught

me to work and help without expectation. Finally, this thesis is dedicated to my wife who

passionately encouraged and fully supported me throughout completion of this work.

vi

Table of contents

Abstract ……………………………………………………………………………….…ii

Some of the Contributions to knowledge …………………………………………….…iii

Acknowledgement ………………………………………………………………………iv

Dedication …………………………………………………………………………….....v

Table of contents ……………………………………………………………………..…vi

List of figures …………………………………………………………………………...xi

List of tables …………………………………………………………………………..xvii

List of Abbreviations ………………………………………………………………...xviii

List of Symbols ………………………………………………………………………..xix

 Chapter 1. Introduction …………………………………………………………1

1.1 Fluid-Structure interaction (FSI) .. 2

1.2 Vortex shedding and Strouhal number ... 3

1.3 Vortex induced vibration and Lock-in phenomena ... 4

1.4 Fundamental parameter ... 8

1.5 Flow regimes and vortex formation .. 8

 Non-separation regime; 0<Re<4 to 5 .. 9

 Laminar steady regime; 4 to 5<Re<47 .. 9

 Laminar shedding regime; 45<Re<180 ... 9

 Wake transition regime; 180 <Re<350 to 400 .. 11

 Shear layer transition regime; 350 to 400<Re<2×105 ... 11

 Critical regime; 2×105<Re< 1×106 ... 12

 Boundary layer transition regime; Re> 1×106 ... 12

1.6 Aims and objective .. 12

1.7 Summary ... 14

Chapter 2. Background and preliminary study ... 15

2.1 Main technical difficulties of a FSI simulation .. 15

2.2 Two fundamental computational approaches .. 16

2.2.1 Partitioned approach .. 16

2.2.2 Monolithic approach ... 17

2.3 Discretisation approach .. 18

2.3.1 Body conforming mesh methods-moving grid method .. 18

vii

2.3.2 Non-conforming mesh methods-fixed grid method ... 19

2.4 Some FSI applications ... 20

2.4.1 Engineering application... 20

2.4.2 Biomechanics applications .. 22

2.5 Summary and layout of thesis .. 23

Chapter 3. Literature review ... 25

3.1 Immersed boundary methods (IB) .. 25

3.1.1 Original immersed boundary method- applicable for elastic IB 27

3.1.2 Feedback forcing approach- applicable for rigid IB .. 30

3.1.3 Physical Virtual Model (PVM) approach ... 30

3.1.4 Immersed interface approach ... 30

3.1.5 Fictitious domain method ... 31

3.1.6 Ghost-Cell approach .. 32

3.1.7 Cut-Cell method – Cartesian method ... 32

3.1.8 Direct forcing approach .. 32

3.1.9 Interpolation or reconstruction method ... 33

3.2 Defining the interface cells ... 35

3.2.1 Point-in-polyhedron algorithm ... 35

3.2.2 Interfacial marker at the interface discontinuity algorithm 36

3.3 Boundary Reconstruction/Interpolation ... 38

3.3.1 Stepwise geometry -No interpolation ... 38

3.3.2 Weighted method ... 39

3.3.3 Linear interpolation method ... 39

3.3.4 Bilinear interpolation method .. 42

3.3.5 Revised interpolation method .. 43

3.3.6 Quadratic interpolation method ... 44

3.3.7 Higher order interpolation methods ... 45

3.4 Interface tracking methods ... 45

3.4.1 Second-order accuracy without sub-iteration (loosely coupled, weak solution) . 47

3.4.2 Fixed point FSI coupling algorithm with dynamic relaxation 49

3.4.3 Reduced-order modelling (ROM) and interface location prediction 50

3.5 Moving frame of reference ... 50

3.5.1 Moving frame Formulation ... 51

3.5.2 Moving frame reference boundary conditions ... 53

viii

3.6 Freshly cleared nodes ... 53

3.7 Mass conservation and pressure treatment near IB .. 54

3.7.1 Fictitious adding mass effect ... 56

3.8 Calculation of force on immersed boundary .. 56

3.8.1 Integrating continuous force .. 57

3.8.2 Direct calculation of surface forces ... 57

3.8.3 Application of momentum conservation .. 58

3.8.4 Direct forcing method ... 58

3.9 Some related Bench mark studies .. 59

3.10 Discussion .. 60

Chapter 4. Methodology ... 62

4.1 Governing equation .. 64

4.2 Non-dimensional governing equation .. 65

4.3 Discretization method ... 66

4.3.1 Staggered arrangement .. 66

4.3.2 Discretization of the momentum equation .. 67

4.3.3 Fractional step method ... 69

4.3.4 Calculation of pressure ... 70

4.3.5 Mesh generation ... 72

4.3.6 Location of velocities and pressure .. 73

4.4 Boundary conditions ... 74

4.4.1 Inlet ... 74

4.4.2 Outlet .. 75

4.4.3 Symmetry boundary condition ... 76

4.4.4 Solid boundary not conforming mesh (immersed boundary) 76

4.5 Solving procedure ... 79

4.6 Moving frame of reference ... 81

4.7 Evaluating forces and moment on an immersed boundary ... 82

4.8 Direct calculation of pressure over an IB .. 84

4.8.1 Calculation of pressure force without extrapolation .. 84

4.8.2 Extrapolating the pressure .. 85

4.8.3 Calculation of the shear forces around a cylinder .. 85

4.8.4 Application of momentum conservation to calculate force on IB 87

4.9 Lift and drag coefficient .. 89

ix

4.10 Summary ... 90

Chapter 5. Parametric study and validation ... 92

5.1 Parametric study ... 92

5.1.1 Parametric study - Mesh refinement effect .. 94

5.1.2 Parametric study – size of domain in front of cylinder 101

5.1.3 Parametric study – Blockage effect .. 104

5.1.4 Parametric study – Stretching factor .. 108

5.1.5 Parametric study – size of uniform area, x direction after cylinder 110

5.1.6 Parametric study- uniform size x direction before cylinder 113

5.1.7 Parametric study- uniform grid area in y direction ... 114

5.2 Validation .. 116

5.3 Summary ... 119

Chapter 6. Comparative study of the interpolation methods - Stationary cylinder 121

6.1 Governing equation and computational domain .. 121

6.2 Interpolation method cases .. 122

6.2.1 Case A: No interpolation ... 123

6.2.2 Case B: Weighting method .. 123

6.2.3 Case C: linear interpolation method ... 124

6.2.4 Case D: Bilinear interpolation method .. 124

6.2.5 Case E: Proposed interpolation method ... 125

6.3 Results and discussion .. 125

6.4 Conclusion ... 131

Chapter 7. Body cross flow oscillation ... 132

7.1 Forced Oscillation of a body in cross flow direction ... 132

7.2 Fluid-Structure interaction due to Vortex induced Vibration 133

7.3 First approach-moving frame of reference ... 134

7.3.1 Moving frame-governing equation ... 135

7.3.2 Moving frame-velocity boundary conditions .. 136

7.3.3 Moving frame-Neumann boundary for pressure Poisson equation 136

7.3.4 Moving frame of reference algorithm .. 137

7.4 Second approach, moving IB or fixed grid (inertial frame of reference) 138

7.4.1 Inertial frame-governing equation and boundary conditions 139

7.4.2 Inertial frame of reference algorithm ... 139

7.5 Calculation of the force on moving boundary .. 140

x

7.6 Parametric study ... 140

7.6.1 Parametric study- mesh size ... 141

7.6.2 Parametric study-size of domain before the cylinder ... 143

7.6.3 Parametric study- blockage effect .. 144

7.7 Results ... 145

7.7.1 Inertial effect - Froude-Krylov force .. 146

7.7.2 Moving frame verses inertial frame of references ... 148

7.7.3 Cross flow oscillation of circular cylinder – validation .. 150

7.7.4 Vortex induced vibration in cross flow direction .. 155

7.8 Summary ... 157

Chapter 8. Conclusion and Future work ... 158

8.1 Simulation approaches.. 159

8.2 Validation of the results and feasibility of the method .. 161

8.3 Drawbacks verses advantages of the IB interpolation .. 163

8.4 Future work ... 164

 References ………..165

 Appendix A, Fortran Code, Construction method……………………………………………….….………….174

 Appendix B, Conference paper 2011…………..…………………………………………………….……………….235

 The IV International Conference on Computational Methods for Coupled

Problems in Science and Engineering held in Kos, Greece 20-22 June 2011

Appendix C, Conference paper 2013……………………………………………………………………………..….243

 The V International Conference on Computational Methods for Coupled

Problems in Science and Engineering held in Ibiza, Spain 17-19 June 2013

xi

List of figures

Figure 1-1: Vortex shedding and pressure contour behind a cylinder at low Reynolds

number. Dash lines and continuous lines are negative and positive pressure contours,

respectively. .. 3

Figure 1-2: experimental results of the cross flow response of flexibility mounted cylinder

subject to a steady air stream. Originally presented by Feng 1968 and graphs

reproduced by Sumer and Fredsǿe 2006. ... 5

Figure 1-3: Types of vortex-Shedding as a function of oscillation amplitude in transverse

direction, A/D, and oscillation wave length, λ/D, (Williamson & Roshko 1998). The

critical curve marks the transition from the 2S to the 2P mode of vortex shedding. The

dashed curves marked Ι and П, from Bishop & Hassan 1964, Indicate where the fluid

forces acting on the cylinder underwent a sudden jump, for Ι decreasing λ/D and П

increasing λ/D. .. 6

Figure 1-4: Lock -in region as a function of amplitude, A/D, and frequency, f/fs, of

oscillation for the forced transverse vibrations of a circular cylinder. ,  lock in

vortex shedding border and, +, unlocked vortex shedding area (Meneghini &

Bearman 1995). .. 7

Figure 1-5 Flow regime at various Reynolds number (Sumer & Fredsoe 2006). 10

Figure 2-1: a) Schematic Monolithic approach, b) Schematic Partitioned approach.......... 16

Figure 2-2: Left, Schematic of body in a fluid flow with body conforming mesh. Right,

Schematic of body in a fluid flow with body non-conforming mesh method. 𝛀𝒔 is the

solid domain, 𝛀𝐟 is the fluid domain and 𝚪𝐬 is the solid boundary 17

Figure 2-3: a few example of Fluid-Structure interaction (FSI) in different application 21

Figure 3-1a) Transferring the boundary force Fk from each material point (Lagrangian

coordinate) 𝐗𝒔, 𝒕 to the fluid. Shaded area shows the area which force effect will be

distributed in the fluid domain; b) various forcing function distribution (Mittal &

Iaccarino 2005). .. 28

Figure 3-2: A 2D Cartesian mesh with a solid boundary (circle). Interface points, that

require interpolation, are identified by arrows. Points A1 to A8 are all neighbouring

points of A. Note that A2 and A7 are inside the solid domain. 34

Figure 3-3: a) background Cartesian grid with a polygon immersed boundary classified to

fluid, solid and interface nodes, b) a ray casting test method for a polygon; point A is

inside and point B is outside the polygon, c) a ray casting test method for a polyhedron

(Borazjani et al 2008). .. 36

Figure 3-4 a)Definition of the immersed boundary topology by interfacial markers, arc

length vector and normal vector; b) Identification of fluid nodes from solid nodes using

a normal vector; c) Demonstration of interface nodes (o) and marker points (●),

(Balaras 2004). ... 37

Figure 3-5 interpolation procedure sketch for u velocity in an staggered arrangement a)

without interpolation b) weighted interpolation c) linear interpolation 39

xii

Figure 3-6: calculating the interface cell velocity by linear interpolation; a) ambiguity in

the direction of interpolation, Fadlun et al. 2000 model b) linear interpolation

perpendicular to the IB, Balaras 2004 model. .. 40

Figure 3-7: interpolation scheme in direction perpendicular to the IB, Balaras 2004; three

boundary options depends on the immersed boundary geometry and local grid size. ... 41

Figure 3-8: Schematic reconstruction of the IB unknown “b” with interpolation in the

wall-normal direction. The triangle represents an unstructured element of the IB. The

dash line is the intersection of the body with the Cartesian grid (Gilmanov et al. 2003).

 .. 42

Figure 3-9: Standard Reconstruction Method (SRM) for velocity in vertical (left) and

horizontal (right) direction ... 42

Figure 3-10: Quadratic interpolation method for an interface velocity in the horizontal

(left) and the vertical (right) directions. The middle pane shows that it is not always

possible to use this type of quadratic interpolation. ... 44

Figure 3-11 : Coordinate transformation ... 52

Figure 3-12: Various methods for conservation of mass depending on the IB method a)

mostly for the continuous forcing approach (standard approach) b) mostly for the cut

cell approach with a reshaped control volume c) mostly for the reconstruction method,

conservation of mass only in fluid domain (Kang et al. 2009). 55

Figure 4-1: Control volumes for a staggered grid: for mass conservation and scalar

quantities (left), for x-momentum (centre) and for y-momentum (right) 67

Figure 4-2: staggered arrangement used for discretization ... 68

Figure 4-3 : Unifrom staggered mesh coordinate ... 73

Figure 4-4: velocities and pressure positions in a staggered arrangement 74

Figure 4-5 Staggered arrangement – bold lines are cell boundaries which velocities are

calculated, and pressure are calculated on intersection of light lines. Velocities in y

direction need to be interpolated for inlet. Velocities in x direction are specified directly

on the boundaries. ... 75

Figure 4-6 Left, a part of domain with not conforming Cartesian mesh, regardless of solid

existence. Right, A specific velocity with its 8 velocities around necessary for its

calculation... 77

Figure 4-7: A 2D Cartesian grid with staggered arrangement, left: u velocities needed to be

interpolated near immersed boundary. Right: v velocities needed to be interpolated near

the immersed boundary. ... 77

Figure 4-8: interpolation method for the velocity near the boundary in two different

scenarios. ui,j has been interpolated between u1=0 on the boundary and u2. 78

Figure 4-9: Right, shaded area shows the cells in which the pressure is updated in the CFD

solver. Left, cells with at least one immersed boundary pressure points is shown. 79

Figure 4-10: flowchart of the flow solver used to apply interpolation method 80

Figure 4-11: calculation of lift and drag component of force due to pressure (left) and

shear force (right) ... 83

xiii

Figure 4-12: left, pressure near the immersed boundary directly used as pressure on the

boundary. Right, linear extrapolation method to calculate pressure on the immersed

boundary. .. 85

Figure 4-13: Calculating tangential velocity around the immersed boundary 86

Figure 4-14: Location of Immersed boundary (IB), control volume (C.V.), Control Surface

(C.S.) to apply Conservation of momentum law .. 87

Figure 4-15: Surface normal vector n, velocity (u,v) and pressure on the control surfaces 88

Figure 5-1: flow pattern around a stationary cylinder at Re=100. High pressure area

(Continuous line), low pressure area (dash line), blue and red counters are the vortices.

 .. 93

Figure 5-2: Background Cartesian mesh- parametric studies guide. 94

Figure 5-3: simulation accuracy of the immersed boundary based on the mesh size 95

Figure 5-4: Mesh refinement study, drag, drag due to pressure and shear stress for five

different grid sizes from dx=dy=0.1 to 0.00625 around the circular cylinder 97

Figure 5-5: Drag coefficient due to pressure and shear stress verses the number of grid in

each direction of the domain around a stationary cylinder at low Reynolds number,

Re=100 ... 98

Figure 5-6: Mesh refinement study for lift, lift due to pressure and friction for various grid

size where computational domain in x and y is [-15,15] and Stretching factor is 3. 98

Figure 5-7: Lift coefficient verses the number of grid points in each direction of the

domain around a stationary cylinder at Low Reynolds number, Re=100 99

Figure 5-8: The Power Spectral density of lift coefficient for six different grids size in

frequency domain, where computational domain in x and y is [-15, 15] and Stretching

factor is 3. ... 100

Figure 5-9: Strouhal number verses the number of grid point in each direction of the

domain around a Stationary cylinder at low Reynolds number, Re=100 100

Figure 5-10: Effect of the Size of the fluid domain in front of the circular cylinder in x

direction on the Drag coefficient .. 101

Figure 5-11: Effect of the Size of the fluid domain in front of the circular cylinder in x

direction on the lift coefficient ... 102

Figure 5-12: The power spectral density of the Lift coefficient- Effect of the Size of the

fluid domain in front of the cylinder in x direction on the lift coefficient. 103

Figure 5-13: Effect of the size of the computational domain in the y direction on the drag

 .. 104

Figure 5-14: Effect of the Size of the fluid domain in y direction on the Lift coefficient.

 .. 105

Figure 5-15: Power Spectral Density (PSD) of the Lift coefficient - Effect of Size of the

domain in y direction on the lift coefficient. .. 106

Figure 5-16: Drag coefficient verse domain size in cross flow direction, 107

Figure 5-17: Lift coefficient verse the size of domain in perpendicular direction to the

main stream velocity (cross flow direction). .. 107

xiv

Figure 5-18: Strouhal number verse the size of domain in perpendicular direction to the

main stream velocity (cross flow direction). .. 108

Figure 5-19: Effect of the grid stretching factor on the Drag coefficient 108

Figure 5-20: Effect of the grid stretching factor on the Lift coefficient. 109

Figure 5-21: Effect of the grid stretching factor on Strouhal number. 110

Figure 5-22: Effect of the uniform area after the circular cylinder in x direction on the

Drag coefficient. ... 111

Figure 5-23: Effect of the uniform grid area after the circular cylinder in x direction on the

lift coefficient. .. 112

Figure 5-24: Power Spectral density (PSD) of the Lift coefficient - Effect of the uniform

Size of the fluid domain after the circular cylinder in x direction on the lift coefficient.

 .. 113

Figure 5-25: Effect of the uniform grid in front of the circular cylinder in the x direction

on the drag coefficient. ... 114

Figure 5-26: Effect of the uniform grid in front of the circular cylinder in x direction on

the Lift coefficient. ... 114

Figure 5-27: Effect of the vertical extend of the uniform area around the circular cylinder

on the Drag coefficient. .. 115

Figure 5-28: Effect of the vertical extend of the uniform area around the circular cylinder

on the Lift coefficient. .. 115

Figure 5-29: Schematic of the computational domain ... 116

Figure 5-30: Drag coefficient, Drag due to pressure and friction for a stationary cylinder at

Re=100 versus non dimensional time. ... 117

Figure 5-31: Lift coefficient, the lift due to pressure and friction for a stationary cylinder at

Re=100 verses non dimensional time. .. 118

Figure 6-1: Fluid domain size and boundary conditions. .. 122

Figure 6-2: Bilinear proposed interpolation in this study for the cells near the solid

boundary in vertical (Left) and horizontal (right) velocity components. 124

Figure 6-3: Drag coefficient for the flow around a stationary cylinder at Re=100, Case A,

without interpolation; Case B: area weighting method; Case C, Linear interpolation

method; Case D, Bilinear interpolation; Case E, Suggested bilinear interpolation...... 127

Figure 6-4: Drag coefficient due to pressure (left) and due to shear stress (right) for the

flow around a stationary cylinder at Re=100, Case A, without interpolation; Case B:

area weighting method; Case C, Linear interpolation method; Case D, Bilinear

interpolation1; Case E, proposed bilinear interpolation method 128

Figure 6-5: Lift coefficient for the flow around a stationary cylinder at Re=100, Case A,

without interpolation; Case B: area weighting method; Case C, Linear interpolation

method; Case D, Bilinear interpolation method; Case E, suggested bilinear

interpolation method ... 128

Figure 6-6: Lift coefficient due to pressure (left) and shear stress (right) for the flow

around a stationary cylinder at Re=100. Case A, without interpolation method; Case B:

file:///D:/thesis/thesis%208-5-2014(1).docx%23_Toc387353741

xv

area weighting method; Case C, Linear interpolation method; Case D, Bilinear

interpolation method; Case E, suggested Bilinear interpolation 129

Figure 6-7: Power Spectral density of the lift coefficient; five different interpolation

methods... 130

Figure 7-1: Flow over a circular cylinder at two dimensions with vertical degree of

freedom ... 133

Figure 7-2: mesh refinement study- Drag coefficient ... 142

Figure 7-3: mesh refinement study – Lift coefficient ... 143

Figure 7-4: Parametric study of the effect of size of domain before cylinder in x direction

on the mean drag and maximum lift; cross flow oscillation with A/D=0.2 and

fe/fs=1.05 at Re=100 .. 143

Figure 7-5: Parametric study of the effect of size of domain in y direction on drag

coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100 144

Figure 7-6: Parametric study of the effect of the size of the domain in the y direction on

the lift coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100 145

Figure 7-7: Parametric study of the effect of size of domain in y direction on the mean

drag and maximum lift; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

 .. 145

Figure 7-8: Using Froude-Krylov force (inertial force) to correct lift coefficient calculated

in moving frame of reference ... 147

Figure 7-9: The drag (CD) due to pressure and shear stress, lift due to shear stress and

pressure for cases A and B in the moving frame of reference 147

Figure 7-10: lift (lower curve) and drag (upper curve) due to pressure; dotted lines, inertia

frame of reference(without smoothing); dash lines, moving frame of reference 148

Figure 7-11: lift (lower curve) and drag (upper curve) due to pressure; dotted lines, inertia

frame of reference (with smoothing); dashed lines, moving frame of reference 149

Figure 7-12: lift (lower curve) and drag (upper curve) due to shear stress; dotted lines,

inertia frame of reference; dash lines, moving frame of reference 149

Figure 7-13: Force coefficient and phase angle verses fe/fs. Left-Mean drag coefficient

(CD), rms of drag and lift fluctuation coefficients (CDrms and CLrms respectively);

Right-Phase angle between CL and the vertical position of the cylinder. -■-, present

study; -▲-, Kim & Choi 2006. ... 150

Figure 7-14: Drag (CD), Lift (CL) coefficient and yc/D time history for A/D=0.2 and

Re=185, (a) f/fs=0.8, (b) f/fs=0.9, (c) f/fs=1, (d) f/fs=1.1, (e) f/fs=1.12, (f) f/fs=1.2. CD:

dash dot curve; CL: Continuous curve; yc/D: dot curve .. 152

Figure 7-15: Drag (CD), Lift (CL) coefficient and yc/D time history for fe/fs=0.75 and

Re=200, (a) A/D=0.25, (b) A/D=0.30, (c) A/D=0.45, (d) A/D=0.6. 153

Figure 7-16: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.90, A/D=0.15, Re=200.

Left figure present study, right figure shows results of Meneghini and Bearman 1995.

 .. 154

xvi

Figure 7-17: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.80, A/D=0.25, Re=200.

Left figure present study, right figure shows results of Meneghini and Bearman 1995.

 .. 154

Figure 7-18: Drag (CD), Lift (CL) and yc/D over time for fe/fs=1.025, A/D=0.05, Re=200;

left figure) present study; Right figure) Meneghini and Bearman 1995. 155

xvii

List of tables

Table 5-1: Results of mesh refinement study around a stationary cylinder at Re=100. 96

Table 5-2: parametric study of the Stretching factor, minimum grid size is 0.025D, the

domain size [-15,15] in x and y direction, and the uniform domain size [-2,4]in x and

[-2,2]in y direction. ... 110

Table 5-3: Drag, lift and Strouhal number for present study and well known numerical and

experimental studies for the flow around a circular cylinder at low Re=100. 119

Table 6-1: Real computational time, 20 vortex shedding ... 126

Table 6-2: Strouhal number, lift and drag coefficient for the flow around a stationary

cylinder and Re=100. ... 130

Table 7-1: mesh refinement study of oscillating cylinder – Parameters and results 141

Table 7-2 : Amplitude of oscillation (ymax/D) at various reduced velocity at constant

Reynolds number, Re=150, and low mass ratio, m
*
=2. ... 156

Table 7-3: Amplitude of oscillation (ymax/D) at various Reynolds number and reduced

velocity at high mass ratio, m
*
=149.10. ... 156

xviii

List of Abbreviations

Abbreviation Stands for

ALE Arbitrary Lagrangian Eulerian

CFD Computational Fluid Dynamic

CURVIB Curvilinear Immersed Boundary

FD Finite Difference

FE, FEA or FEM Finite Element, Finite Element analysis or Finite Element Method

FV Finite Volume

FSI Fluid-Structure Interaction

HCIB Hybrid Cartesian Immersed Boundary

IB Immersed Boundary

IIM Immersed Interface Method

LES Large Eddy Simulation

NS Navier Stokes

PVM Physical Virtual Method

RLIM Revised Linear Interpolation method

ROM Reduced Order Method

SRM Standard Reconstruction Method

Ured Reduced Velocity

VIV Vortex Induced Vibration

xix

List of Symbols

Abbreviation Stands for units

A Amplitude of oscillation m

CD Drag Coefficient …

CL Lift coefficient …

CLrms Root mean square of CL …

CP Pressure coefficient …

D Cylinder diameter m

f Frequency Hz

f Forcing function N

fn Natural frequency of the solid Hz

fo Oscillation frequency Hz

fs Strouhal frequency Hz

fv Vortex shedding frequency Hz

FD Drag force N

FL Lift force N

Mred Reduced mass of the system …

Re Reynolds number …

St Strouhal number …

U∞ Free stream velocity m/s

t,t
’

Time s

Vr or Ur Reduced velocity …

X Position (material point) m

x Position (Eulerian) m

ρ Density Kg/m
3

τ Shear stress N/m
2

ν Static viscosity m
2
/s

η Dynamic viscosity Pa.s

ξ Damping ratio …

φ Phase angle …

1

Chapter 1. Introduction

Fluid-Structure Interaction (FSI) analysis is widely used to study the physical

phenomenon which occurs in many engineering applications in which a fluid flow

interacts with a deformable or moving structure.

Many engineering structures are subjected to environmental fluid currents that can

induce significant unsteady forces. For instance, wind can cause substantial forces to be

imparted on chimney towers, cables, bridge decks and other common structures. Ocean

currents can similarly affect offshore platforms, submerged pipelines and riser pipes
1
.

Without an accurate FSI analysis there will be a great uncertainty about the safety of

these structures.

Moreover, FSI analysis has had significant impact in biomechanics research, making

it possible to model the interaction between biological tissues (e.g. arteries) and

biological fluid flow (e.g. blood).

Modelling many of these FSI problems with large displacement/deformation and

complex geometry is quite challenging and despite extensive developments in the recent

decades, there is still a demand for further work in this area of research. Also, FSI is a

multi-physics and multi-disciplinary phenomenon therefore an accurate FSI modelling

involves many detailed challenging procedures. The computation algorithms should be

selected based on the physics of the problem and the availability of computational

resources. In this study the main focus is on simulation of behaviour of offshore flexible

risers and pipe lines. When a riser oscillates in the flow or is exposed to an oscillatory

flow, the vortex shedding regime around the pipe can be changed dramatically. In a

certain range of oscillation and amplitude, the oscillatory stream and vortex shedding

can affect the structure’s stability which could lead to structural failure. Sophisticated

structural studies has been carried out for risers subjected to prescribed excitation forces,

however the motivation here is to couple the structural analysis with a more realistic

excitation by studying FSI in a real riser condition.

The ultimate aim of this research is to develop and test an in-house code which then

be combined with an existing structural analysis program to simulate Fluid-Structure-

1- The risers pipes used in the offshore industry to convey fluids (oil and gas) from the seabed to the

sea level and vice versa.

2

Interaction (FSI) of an offshore riser in realistic circumstances. In addition, the models

and algorithm are employed in the code in such a way that the simulations can be run in

a reasonable time using existing computational facilities. The final goal is to simulate

vortex induced vibration of a riser in three dimensions, at high Reynolds number and

with large displacements.

The first stage of this comprehensive program of work has been completed and is

presented in this thesis. In this stage an in-house code is developed to simulate two

dimensional flows around a flexible/deformable circular cylinder
2
. To achieve this goal,

first FSI methods are studied in detail; The FSI algorithm elements are selected in a way

to facilitate further developments of the code to three dimensions, high Reynolds

numbers and large displacements/deformations in future.

This thesis is divided in three parts. In the first part which includes chapters 1, 2 and 3

the motivation, introduction, background and literature review of the problem is

presented and some examples of various FSI applications are provided. In the second

part of the thesis which include chapters 4, 5 and 6 the FSI methodology based on the

immersed boundary (IB) method with an interpolation/ reconstruction procedure is

discussed and the proposed algorithm is presented. The results of a parametric study for

a stationary case are validated with bench marks as well as the results from other IB

interpolation methods in the literature. In the final part of the thesis, chapter 7, the

simulation of the flow around a flexible cylinder is presented. The simulation results

with a moving and an inertial reference frame are compared with one another and with

some results from the literature. Also, case studies of Vortex Induced Vibration analysis

of the proposed model are presented and validated against results from the literature.

In this introductory chapter, some fundamental topics and general parameters used in

a full FSI analysis are briefly explained. At the beginning, the effect of the Reynolds

number as a key parameter is discussed. This is followed by introducing some important

terminology in the field. And finally a summary of the chapter is presented.

1.1 Fluid-Structure interaction (FSI)

Fluid-Structure Interaction (FSI) is a multiphasic problem which involves

Computational Fluid Dynamics (CFD) and Computational Structural analysis. The flow

2- The circular cross section is use for the whole study as in the offshore industry the riser’s cross

section are all circular due to the fact that not only these cross section has minimum stress concentration

but also circular cross section can be manufactured and used easier in this application.

3

simulation is considered to be an FSI problem inside or around a deformable or moving

boundary/structure when flow forces cause the structure to deform which, in turn,

changes the boundary conditions of the fluid flow.

Numerical simulations of the fluid field interacting with moving boundaries are

among the most challenging problems in computational mechanics. The reason for this

is that the fluid domain changes with time and the location of boundaries depend on

fluid flow forces inducing deformation/motion of the boundaries (Yang et al. 2008).

1.2 Vortex shedding and Strouhal number

When the fluid flow passes around an object, such as a circular cylinder, a boundary

layer will form around the cylinder. Due to an adverse pressure gradient along the

downstream half of the cylinder, the boundary layer separates at a specific angle behind

the cylinder depending on the flow parameter. The separated boundary layer rolls up into

vortices in the low pressure area behind the cylinder. After a period of growth these

vortices are shed and washed downstream by the flow. These vortices create alternating

pressure on either side of the cylinder and the body tends to move toward the low

pressure zone. Therefore, the vortex shedding is the oscillating flow pattern that occurs

periodically when a fluid (e.g. air or water) passes a bluff body at specific velocities, U,

depending on the Reynolds number, size and shape of the body. The normalised vortex

shedding frequency for a stationary body is known as the Strouhal number, St (=fvD/U);

in which, the parameter D is the diameter of cylinder and fv is vortex shedding

frequency. The Von Karman vortex street is a famous vortex shedding patterns that

forms behind a stationary cylinder. In Figure 1-1, the formation of the vortices is shown

in the low pressure area (dash line contours) behind the cylinder.

Figure 1-1: Vortex shedding and pressure contour behind a cylinder at low Reynolds

number. Dash lines and continuous lines are negative and positive pressure contours,

respectively.

4

1.3 Vortex induced vibration and Lock-in phenomena

The vortex shedding process and the shed vortices themselves induce periodic

forces on the body. If the body is compliant or elastically supported then these forces can

cause the body to vibrate. Such a vibration is called a Vortex Induced Vibration (VIV).

The amplitude of vibration depends on many factors including the level of structural

damping, the relative mass of the body to the fluid, the magnitude of the fluid forces and

the proximity of the vortex shedding frequency to the natural frequencies of vibration of

the body.

The fluid forces in both, the cross-stream (transverse) direction (lift), and the

stream-wise (in-line) direction (drag) can induce VIV in their respective directions. The

oscillatory component of the drag forces is normally far smaller than the oscillatory

component of the lift force. Consequently in-line VIV is normally of lower amplitude

than transverse VIV. The frequency of the in-line oscillatory force and the consequent

vibration is normally twice that of the transverse oscillatory force and resulting motion.

Lock-in phenomena are defined where a body is vibrating in a fluid flow and the

oscillation frequency and vortex shedding frequency become synchronized. According

to the numerical and experimental results, lock-in only happens in body oscillation with

amplitude above a specific threshold. And the range of oscillation frequencies (or

reduced velocities) at which lock-in occurs will increase by increasing the oscillation

amplitude.

The experiment of Feng 1968 addresses the VIV and Lock-in phenomena and

related parameters. In this experiment a flexibility mounted cylinder with a transverse

degree of freedom was exposed to various air velocity streams. For a flow velocity of U,

the vortex shedding frequency, fv, the vibration frequency, fo; the vibration amplitude, A,

and the phase angle, φ, is measured. The phase angle is defined as the phase difference

between the vortex shedding frequency and vibration frequency of the cylinder. The

results are presented based on a normalised velocity known as reduced velocity Vr

(=U/D fn). In this formula, fn is the natural frequency of the system. Figure 1-2 shows

that there is no vibration at a reduced velocity lower than 4. For 4<Vr<5 small vibrations

occur at the natural frequencies of the system (f/fn=1), while the vortex shedding

frequency equals the cylinder Strouhal frequency. However according to Figure 1-2a, for

5<Vr<7 the vortices will start to shed at the natural frequency of the system (i.e line

f/fn=1) (instead of the Strouhal frequency). In other words the vortex shedding frequency

5

locks in to the natural frequency of the system for a range of reduced velocities from

Vr=5 to Vr=7.

In the lock-in range the system natural frequency, fn, the vortex shedding frequency,

fv, and the vibration frequency, f, remain synchronised ; i.e. fn=fv=f. Therefore at this

range of reduced velocities, the lift force contributes to the system’s natural vibration

which could lead to vibration with high amplitude (Figure 1-2).

Figure 1-2: experimental results of the cross flow response of flexibility mounted

cylinder subject to a steady air stream. Originally presented by Feng 1968 and graphs

reproduced by Sumer and Fredsǿe 2006.

For the higher reduced velocity, Vr>7, the vortex shedding frequency unlocks from

the natural frequency and jumps to the Strouhal natural frequency (Figure 1-2a). The

range of lock-in period depends on the amplitude of vibration which itself depends on

6

structural damping. The lock-in range is larger for the higher amplitude of vibration

(lower structural damping) as it may need higher Vr to unlock the shedding frequency

from the natural frequency of the system (for more details see Sumer and Fredsǿe 2006).

Moreover, according to Figure 1-2a, at higher reduced velocities (for instance Vr=

7.3), while the system is vibrating at its natural frequency (f/fn=1), the vortex shedding

occurs at the Strouhal frequency. Since the forcing frequency (vortex-shedding

frequency) is no longer in phase with the vibration of the cylinder, there is a reduction in

amplitude of vibration. Also at higher reduced velocities, the vortex shedding frequency

moves further away from the natural frequency of the system, which could lead to a

greater reduction in the vibration amplitude. The experiment shows that at Vr>8.5 the

vibration of the system completely disappears. Figure 1-2b and c, also show a hysteresis

effect in amplitude and phase shift variation with respect to reduced velocity. i.e. the

amplitude and phase will be slightly different at the same reduced velocity depending on

the direction of the experiment; increasing the reduced velocity from low to high values

in the course of experiment or vice-versa.

Figure 1-3: Types of vortex-Shedding as a function of oscillation amplitude in

transverse direction, A/D, and oscillation wave length, λ/D, (Williamson & Roshko 1998).

The critical curve marks the transition from the 2S to the 2P mode of vortex shedding. The

dashed curves marked Ι and П, from Bishop & Hassan 1964, Indicate where the fluid

forces acting on the cylinder underwent a sudden jump, for Ι decreasing λ/D and П

increasing λ/D.

7

In addition, the flow pattern of vortex shedding changes dramatically at different

oscillation amplitudes (Li et al. 2002). Figure 1-3 shows the vortex pattern changes at

different amplitudes of vibration, A/D, and different oscillation wave-lengths, λ/D (=Vr,

reduced velocity). These experiments were conducted for 300<Re<1000. Williamson &

Roshko 1988 interpreted that the changes in the shedding mode that occurs across the

critical curve is the reason of the jump in the phase angle and the lift coefficient that has

been reported by Bishop & Hassan 1964 among others.

Meneghini and Bearman 1995 presented the lock in region for the range of

amplitudes, A/D, varying from 0.025 to 0.6 and the range of oscillation frequencies, f/fs,

from 0.7 to 1.15 (Figure 1-4). This lock-in range is around the Strouhal vortex shedding

frequency and two vortices of opposite circulation are shed per cycle (S type). When the

frequency of the lift force was similar to the frequency of the oscillating flow lock-in

was occurred.

Figure 1-4: Lock -in region as a function of amplitude, A/D, and frequency, f/fs, of

oscillation for the forced transverse vibrations of a circular cylinder. ,  lock in vortex

shedding border and, +, unlocked vortex shedding area (Meneghini & Bearman 1995).

Vortex Induced Vibrations can have serious consequences as they provide a major

source of fatigue and can cause bodies clashing in multiple body assemblies. The

potential implications of VIV make predicting of its occurrence and its likely amplitude

and frequency of response imperative when designing engineering structures that are

exposed to flow. Recently, VIV has received a great deal of attention and various

methods for its predictions have been developed rapidly.

8

1.4 Fundamental parameter

The two most important factors that determine the dynamics of the flow past a

stationary bluff body
3
 are the body’s cross-sectional shape and the Reynolds number.

The Reynolds number is a dimensionless number that gives a measure of the ratio of

inertial forces to viscous forces and consequently, quantifies the relative importance of

these two types of forces for a given flow condition. A laminar flow occurs at low

Reynolds numbers, where the viscous forces are dominant, and is characterized by

smooth, constant fluid motion. A turbulent flow, on the other hand, occurs at high

Reynolds numbers and is dominated by inertial forces, which tend to produce random

eddies, vortices and other flow fluctuations. A Reynolds number is meaningless without

the selection of proper characteristic length and velocity scales. For the flow problem

over a circular cylinder, the diameter of the cylinder is selected as the characteristic

length scales which the free-stream velocity is chosen as the characteristic velocity scale.

Practically, matching Reynolds numbers do not guarantee a similar flow, as very small

changes in the parameters such as shape, roughness could result in very different flow

regimes.

If the Reynolds number is large enough then the regions of recirculating flow can

become detached from the body (separation). The re-circulating flow in these detached

regions, which is referred to as an eddy or vortex, generally comprises of low speed

(relative to the free stream flow speed) vortices. Once shed, or detached, the vortices are

convected downstream of the body by the main flow. If the flow past the bluff body is

fully developed then a wake instability mechanism causes vortices to be shed in a

periodic fashion from alternating sides of the body. The body’s resulting wake structure

comprises a staggered array of vortices that trails downstream of the body. Such a wake

is referred to as a von Karman vortex street.

1.5 Flow regimes and vortex formation

The dynamics of the flow past a stationary circular cylinder are dependent on many

factors of which the Reynolds number is the most important. The effect of increasing the

Reynolds number is firstly to initiate flow separation, then vortex shedding and at higher

Reynolds numbers a gradual transition to turbulence, which starts in the far wake and

moves upstream and eventually into the attached boundary layers with increasing

3- The engineering bodies those are non-streamlined, such as those that have square or circular

cross-sections in the plane of the fluid flow are referred to as bluff bodies.

9

Reynolds number. Roshko 1954 was amongst the first to categorise the flows observed

at different Reynolds numbers into various flow regimes

The knowledge of the flow regimes that exist for the flow past a stationary circular

cylinder, and the Reynolds numbers at which these regimes begin and end, has

undergone a continuous development since Roshko’s initial categorisation of the

regimes. This section discuss the current knowledge of these flow regimes in terms of

the topology of the cylinder’s wake, the state of the flow; laminar or turbulent and where

appropriate the transition point, and certain key global parameters. The first of these key

parameters is the Strouhal number,𝑆𝑡 = 𝑓𝑠 𝐷 𝑈∞⁄ , which is a non-dimensional measure

of the vortex shedding frequency. Roshko found that the Strouhal number behaves

differently in each of the three regimes he identified. In the stable regime it rises rapidly,

in the irregular regime it is approximately constant and in the transition regime he found

it to be unstable, i.e. erratic.

 Non-separation regime; 0<Re<4 to 5

At very low Reynolds numbers, 0<Re<4 to 5, the flow is laminar and is dominated

by viscous effects. It remains fully attached to the cylinder, as sketched using

streamlines in Figure 1-5, this regime is often referred to as creeping or Stokes flow.

 Laminar steady regime; 4 to 5<Re<47

As the Reynolds number is increased beyond Re≈5 the boundary layers separate

symmetrically from both sides of the cylinder. The separated shear layers roll up and

form a pair of standing vortices (recirculation cells) in the cylinder’s near wake, (see

Figure 1-5) and the wake behind the cylinder is steady and symmetric about the wake

centreline. Hence in this regime there are no fluctuating forces exerted on the cylinder

and the Strouhal number is zero (St=0). As the Reynolds number increased through this

regime the separation points, which are located towards the rear of the cylinder at Re≈5,

move forward and the standing vortices grow in size. The length of the recirculation

cells increases approximately linearly with Reynolds number.

 Laminar shedding regime; 45<Re<180

At a Reynolds number of approximately 47, disturbances in the flow become

amplified, resulting in cross-stream oscillation of the downstream end of the

recirculation cells and a sinusoidal oscillation of the wake-trial downstream of the

recirculation cells. As the Reynolds number is increased the recirculation cells shorten

10

and the amplitude of the oscillation increases until it is large enough to cause the trial to

roll up at its troughs and crests, resulting in a staggered array of laminar vortices.

0<Re<4 to 5

Creeping or stokes flow

5< Re < 45

A pair of stable vortices

45 < Re < 180

Laminar vortex

shedding

200< Re <300

Transition to turbulent

in the wake

300<

Re<3×10
5

Up to the separation

point the boundary remains

laminar; however wake

Completely turbulent.

3×10
5
< Re

<4×10
6

Turbulent Boundary

layer separation, the

boundary layer partly

turbulent partly laminar

Re>4×10
6

Boundary layer and

wake completely turbulent,

however wake street is

narrower than laminar flow.

Figure 1-5 Flow regime at various Reynolds number (Sumer & Fredsoe 2006).

11

As the Reynolds number is increased further the oscillating recirculation cells

(vortices) detach themselves in a periodic fashion from the rear of the cylinder. The

vortex street is now generated by a laminar instability of the near wake through a mutual

instability of the two free shear layers. The flow throughout this laminar and unsteady

shedding regime remains two-dimensional. As the Reynolds number is increased

through this regime the Strouhal number increases, and the cylinder is subjected to

fluctuating forces in both the streamwise and cross-flow directions. The rms lift

coefficient and the base drag coefficient rise continuously with increasing Re.

 Wake transition regime; 180 <Re<350 to 400

This regime sees the development of large scale three-dimensionally in the cylinder’s

wake and is the regime that Roshko 1954 labelled as the transition regime. At

180<Re<194 the wake develops three-dimensionality in the form of vortex loops and

streamwise vortex pairs at a span wise wavelength of about 3 to 4 diameters, see

Williamson(1996a). This change to three-dimensional shedding is hysteretic and is

accompanied by a sudden fall in the Strouhal number and the base drag coefficient. At

230<Re<250 there is a second more gradual change, which has finer scale streamwise

vortices and a span-wise wavelength of about a diameter. This change is accompanied

by a shift to a higher Strouhal number. The large scale three-dimensionality seen in this

regime does not in itself imply that the wake is turbulent. The transition to turbulence

first occurs in this regime in the far wake and gradually moves upstream with increasing

Reynolds number.

 Shear layer transition regime; 350 to 400<Re<2×105

In this regime, which is also called the sub-critical regime and was labelled by Roshko

1954 as the irregular regime, the attached boundary layers remain laminar, transition

occurs in the free shear layers and the wake is fully turbulent. The transition waves first

appear in the free shear layers at 350<Re<400. As the Reynolds number is increased the

formation length (the length of vortex formation region) increases until at

1×10
3
<Re<2×10

3
 chains of transition eddies are observed in the free shear layers.

Further increasing the Reynolds number results in a decrease in the formation length and

a movement of the transition points upstream towards the separation points. At

2×10
3
<Re<4×10

3
the transition eddies disappear, the formation length stops decreasing,

and transition to turbulence occurs close to the cylinder. Throughout the remainder of

the shear layer transition regime (up to Re≈2×10
5
) the transition points, the formation

12

length, the separation points (θ≈80°, where θ is measured from the front stagnation

point), and the Strouhal number (St≈0.2) remain relatively constant. The forces

experienced by the cylinder are closely related to the formation length. As the formation

length increases (350<Re< 1×10
3
) both 𝐶𝐿 𝑟𝑚𝑠 and −𝐶𝑃𝑏 decrease, whilst as the

formation length decreases (1×10
3
<Re< 2×10

4
) both 𝐶𝐿 𝑟𝑚𝑠 and−𝐶𝑃𝑏 increase, and

whilst the formation length is relatively constant (2×10
4
<Re< 2×10

5
) so are

𝐶𝐿 𝑟𝑚𝑠 and−𝐶𝑃𝑏. The dramatic fall and rise in 𝐶𝐿 𝑟𝑚𝑠 for 0.5×10
3
<Re< 5×10

3
 is often

referred as the ‘lift crises’, which should not be confused with the ‘drag crises’, of the

critical regime, see below.

 Critical regime; 2×105<Re< 1×106

In this regime the initial flow separation is laminar; transition to turbulence occurs in the

free shear layers which then reattach, resulting in the formation of thin separation-

reattachment bubbles on either side of the cylinder. The turbulent boundary layer is able

to withstand a higher adverse pressure gradient than a laminar boundary layer and final

turbulent separation is delayed until θ=140°. The postponement of final separation

results in a much narrower wake than in the shear layer transition regime and a

consequent reduction in the mean drag coefficient, 𝐶�̅�, from 𝐶�̅� ≈ 1.2 at the end of the

shear layer transition regime to 𝐶�̅� ≈ 0.3 in the critical regime. The dramatic fall in the

drag coefficient is known as the ‘drag crisis’. Bearman (1969) found a regime, in which

there is a separation-reattachment bubble on only one side of the cylinder, resulting in

large mean lift forces, 𝐶�̅� ≈ 1.

 Boundary layer transition regime; Re> 1×106

As the Reynolds number is increased further the separation-reattachment bubbles

disappear as the transition point move further upstream ahead of the separation points

and into the boundary layers. The turbulent boundary layers do not separate until

θ=120°, resulting in a narrow wake and a low drag. As the Reynolds number is increased

the transition points and the separation points gradually move further upstream and the

base suction coefficient increases.

1.6 Aims and objective

This research is mainly concerned with the numerical FSI prediction of the Vortex

Induced Vibration (VIV) of elastically supported and flexible circular cylinders that are

subjected to steady fluid currents, and in particular with perspective to simulate the

13

flexible deep-water marine riser pipes
4
 that are subjected to ocean currents. The

objectives of this research can be summarised as follows:

 To study the physics of the FSI problems and the parameters that affects the

VIV, especially in the context of circular cylinder and oil risers.

 To study numerical methods suitable for FSI simulation which, on the one hand,

should be able to simulate the main physics related to the riser problem, and on

the other, the methods should be suitable for applications in which there is

limited computational power and limited simulation time.

 To apply and validate the selected methods from the previous stage for a two

dimensional flow around a stationary cylinder at low Reynolds number. This

initial stage includes the development and validation of an in-house code to solve

this CFD problem.

 To apply and validate the FSI simulation for a two dimensional flexible cylinder

using the selected methods from the second stage. This stage consists of the

development and validation of an in-house FSI code to simulate forced and free

vibrations of a flexible cylinder in a uniform flow based on the CFD code

developed in the previous stage.

 To further develop the CFD and FSI codes to enable the analysis of the flow at

realistic Reynolds numbers around stationary and flexible cylinders by addition

of a turbulence modelling capability to the algorithm.

 To develop the in-house code to enable modelling of FSI for a long flexible riser

in a flow field with a high Reynolds number by applying the “strip theory”

features. In this stage the existing structural code will be coupled with the fluid

flow to form a quasi-three dimensional FSI simulation.

To achieve these goals in this thesis, an immersed boundary method based on an

interpolation/reconstruction procedure is developed; various interpolation methods

4- Riser pipes typically have axial lengths, L, of up to a few thousand meters and have outer diameters,

D, of less than one metre, yielding length to diameter ratios, L/D, of O(10^3). Risers are exposed to a

variety of ocean currents with current speeds, U∞, of up to about 2 m/s and current profiles that can vary

greatly with depth. The Reynolds numbers, Re= U∞D/ν, where ν is kinematic viscosity of water, for these

flows are typically of O(10^5) to O(10^6). As the offshore industry moves into increasingly deeper waters

(>2000m depth), the riser pipes used have become longer and effectively more flexible, and are being

excited into increasingly higher vibrational modes (>40
th

 say).

14

which are presented in the literature are compared with a newly proposed method and

the results are validated against some bench marks. In addition, a moving frame-of-

reference methodology with an immersed boundary method is presented to simulate the

flow around a flexible cylinder. Moreover, a moving cylinder with the newly developed

interpolation method is modelled using an inertial frame of reference and the results are

compared with the bench marks and the moving frame reference methodology. Finally,

the Vortex-Induced-Vibration of a flexible cylinder using Aitken relaxation is modelled

and the results are compared with those from the literature. Note that the last two

objectives were not addressed in this thesis and will be the subject of future research.

1.7 Summary

In this chapter the physical aspects and fundamental concepts of the problem are

explained and various parameters in an FSI simulation are discussed. The motivation

and the goal of the research are outlined and the contribution made through this work to

the knowledge is outlined. To simplify the simulation and to avoid high computational

demands the models used in this thesis are limited to two dimensions and at low

Reynolds numbers. However, the numerical algorithm adopted allows further

development of the analysis to three dimensions and high Reynolds number flows in the

future development of the work.

In the next chapter the background material and preliminary challenges common in

FSI simulations are addressed. Also the application of the FSI simulation in engineering

and scientific problems is explained. In addition the main approaches in the literature

which are related to this research are reviewed. The main objective of the next chapter is

to explain the advantages of a partitioned approach as compared to a monolithic

approach. In addition, the advantages of an immersed boundary (IB) method in

comparison with an Arbitrary-Eulerian-Lagrangian (ALE) methodology are briefly

discussed.

15

Chapter 2. Background and preliminary study

Researchers have studied fluid dynamic for several centuries, numerous new ideas,

tools and methods have been developed to solve a various fluid problems in a variety of

engineering applications. Significant advances in the recent decades in computational

power have enabled engineers to simulate very challenging fluid problems which were

not deemed possible previously. Specifically the ability to accurately simulate complex

fluid-solid interaction problems marks a revolution in the field of computational fluid

mechanics. In this chapter some background information on state-of-the art research on

FSI is presented and the reasoning behind the chosen methodology and algorithm for the

riser problem is given whilst the principle approach and the main obstacles for a realistic

FSI simulation are briefly addressed. Also some state-of-the-art Fluid-Structure

interaction applications are introduced to demonstrate the importance of the research

carried out in this field of science. In addition, at the end of the chapter the layout of the

thesis is presented.

2.1 Main technical difficulties of a FSI simulation

In the recent years Fluid solid interaction has become an attractive area of research

as it offers the potentials of simulating a physical phenomena as closely as possible to

the that it actually occurs in nature which involves the interaction of fluid flow with a

complex deformable body. As the fluid-structure interface moves in time, the spatial

domain of the fluid flow will change, and the numerical simulation has to be able to

handle this problem. In the conventional approach, the mesh needs to be updated in

order to accurately track the interface and to represent the flow field near the boundary.

Especially, in 3D problems with a complex geometry this process is quite complicated.

Another challenge is to solve the fluid and structure equations simultaneously. There are

some important factors that require attention when choosing the solution method for a

coupled fluid-structure problem; including, a) how complex is the solid boundary?; b)

how large is the structure-deformation?; c) how sensitive is the structure to a variation of

16

fluid dynamic of forces?; d) how accurate does the required solution need to be for FSI

problems?; e) how much experienced is the researcher with FSI simulation?. In the

following sections, the main approaches adopted followed to address these difficulties

are discussed.

2.2 Two fundamental computational approaches

The numerical simulation of a FSI problem could be classified broadly in

partitioned and monolithic approaches (see, Figure 2-1). Although, these expressions

could be understood slightly differently in other fields of science, here the focus is

mainly on the engineering applications.

a) monolithic approach

b) partitioned approach

Figure 2-1: a) Schematic Monolithic approach, b) Schematic Partitioned approach.

2.2.1 Partitioned approach

In the partitioned or interaction approach (Hou et al. 2012) the fluid and structure

are treated as separate entities which are solved separately with their own respective

discretisation and algorithm. Interface conditions are used to communicate information

between the fluid and structural solvers. The main advantages of this approach is that it

allows the use of traditional solvers and advanced procedures for both the standard fluid

flow and elasticity problems which simplifies the code development procedure by

allowing the usage of existing simulation codes as a part of a FSI algorithm. As a result,

the validation process of the code can remain limited to the validation of interface

tracking. The main drawback in this approach is the implementation of the interaction of

the fluid and structure and to find a converged solution; especially as the interface

Fluid & structure Fluid & structure solution

Fluid solution (tn)

Structure solution

Fluid & structure

Fluid solution (tn+1)

Fluid & structure interface

Structure solution (tn+1)

17

location is not known and usually changes in time. In this approach, the interface

location and its related parameters should be tracked and updated. This is a complicated

process and may cause divergence errors in the simulation. Due to these issues, normally

the partitioned approach tends to have a very slowly time converging time-step and is

harder for parallel computing implementation.

The partitioned approach may be classified into weak and strong coupling

approaches. In both of these approaches the fluid and structure are solved separately in

time. In the weak coupling approach the parameters are not updated iteratively between

fluid and structure to find a converged solution for the interface at each time step. In the

strong coupling approach, however sub iterations at each time step force the fluid flow

variables (velocity and pressure) to be coupled with structural parameters

(deformation/displacement) and vice versa.

a)

b)

Figure 2-2: Left, Schematic of body in a fluid flow with body conforming mesh. Right,

Schematic of body in a fluid flow with body non-conforming mesh method. 𝛀𝒔 is the solid

domain, 𝛀𝐟 is the fluid domain and 𝚪𝐬 is the solid boundary

2.2.2 Monolithic approach

In the monolithic approach (Hubner et al. 2004, Ryzhakov et al. 2010, 2012, 2013),

both fluid and structure are treated in the same mathematical framework. In this

approach, a unique formulation and algorithm is used to simulate the whole fluid and

structure domain. This is a unified approach and the main advantage is that there is no

need for further coupling and dealing with its assocaited interface tracking difficulties.

Also, the method can be parallelized and can be solved using a unified space-time

discretization method.

18

The main disadvantages of the monolithic methods are that they are typically hard

to be treated numerically and it is not possible to use existing fluid and structural codes.

It is also generally difficult to find a uniform formulation to solve complex problems.

2.3 Discretisation approach

Another general classification of the FSI solution procedure is based on

discretisation and mesh methods which are braodlly divied into the conforming mesh

and non-conforming mesh methods.

2.3.1 Body conforming mesh methods-moving grid method

In the body conforming approach, the interface boundary corresponds to the

physical boundary (Figure 2-2(a)). In this case, the interface location is part of the

solution and the mesh needs to conform to the interface. Therefore, by advancing the

solution in time, re-meshing is necessary due to the deformation/displacement of the

structure (Borazjani et al. 2008 classified this method as a moving mesh method). In

order to solve an FSI problem with a conforming mesh method on a structured grid

using a finite difference approach, the differential form of fluid flow governing

equations are transformed to curvilinear coordinates aligned with the grid lines (Ferziger

and Peric 2002). Therefore, the solid boundary can be defined easily in the discretised

governing equations as the grids conform to the structure geometry. For finite volume

methods, the integral form of the fluid flow governing equations could be discretised for

both structured and unstructured grids; and the geometrical information of the solid

boundary can be used directly in the discretised equations. An important feature of this

kind of FSI method is its interface tracking requirement. In this technique, the

shape/position of the fluid domain is changed by the structure deformation/displacement.

Therefore, the mesh moves/deforms to capture this new shape/position and to follow

(track) the fluid-structure interface. The most famous example of this is the Arbitrary

Lagrangian-Eulerian (ALE) interface tracking method which has gained a great deal of

attention in the recent years. (Ohayon 2001, Wall 1999, Dettmer 2004, Dettmer and

Peric 2006a and b, Bazilevs et al. 2006, Khurram & Masud 2006, Kuttler et al. 2006,

Masud et al. 2007, Wall et al. 2007, Lohner et al. 2006, Wall et al. 2006, Bletzinger et

al. 2006 among others).

19

2.3.2 Non-conforming mesh methods-fixed grid method

In Figure 2-2(b) a non-conforming grid is used for the flow domain. In this

approach, the boundary location and interface conditions are imposed as constraints to

the governing equation, and the fluid and structure equations can be solved separately on

their own respective grids without any re-meshing procedure (Borazjani et al. 2008

classified this method as fixed grid method) . As the solid boundary cuts the Cartesian

grid, to define the proper constraints (solid boundary) the fluid governing equations

should be modified around the immersed boundary. These modifications of the

governing equation are the subject of the immersed boundary method and will be

reviewed in this thesis.

Clearly, in comparison with the body conforming mesh method, the main drawback

of IB methods is the imposition of the boundary conditions on the solid-fluid interface

(Mittal & Iaccarino 2005). In the conforming methods the solid boundaries are aligned

with the grid lines. Therefore the boundary conditions (e.g. no-slip conditions) can be

applied directly to the fluid governing equations. Also the grid size near the solid

boundary can be chosen easier.

However, IB methods use a simple Cartesian grid to discretise the solution domain.

Therefore, by using a Cartesian grid rather than a curvilinear sytem, the body

conforming grids, can significantly reduce the number of computational processing

operations due to coordinate transformations. Also, multi-grid techniques can be

implemented easier when using Cartesian grids rather than curvilinear coordinate

systems.

In addition, the primary advantage of the IB method is the ease of grid generation,

which especially for complex geometries can be a cumbersome task in the case of the

conforming mesh methods (Ferizeger and Peric 2002).

The main advantages of the IB method in comparison with the body confirming

method is the ease with which moving boundaries (particularly in cases involving large

displacements) are dealt with. The body conforming grid method requires the generation

of a new mesh at each inner and outer time steps; also a procedure is required to map the

solution from the previous grid to the new grid following the grid regeneration. As a

result using a conforming mesh method could affect simplicity, accuracy and

computational costs of the simulation (Tezduyar 2001).

20

2.4 Some FSI applications

In the recent decades Fluid-Structure Interaction (FSI) has become an important

method of computational simulation. The main reason is that most of the engineering

applications involve some sort of FSI problem and FSI algorithms have been used to

successfully model various applications ranging from civil engineering to

biomechanical, geophysical, and aero-dynamical applications. In the following section

some of the main FSI applications will be introduced briefly to show the motivation and

importance of this study.

2.4.1 Engineering application

Full scale wind turbine simulations (Figure 2-3a) are one of the FSI engineering

applications which are performed to obtain accurate and reliable modelling as well as

blade fraction prediction and design optimisation. Due to technical challenges only a

few researchers (Gomez-Iradi et al. 2009, Hsu et al. 2013, Li et al. 2012) were able to

recently perform a full scale wind turbine simulation. Bazilevs et al. 2013b used a

partitioned approach along with the ALE-VMS finite element technique (Bazilevs et al.

2013a) for the aero-dynamical formulation and the Kirchhoff shell theory (Bazilevs et al.

2011, kiendl et al. 2009, Korobenko et al. 2013) for the blade in order to simulate a full

scale wind turbine. Based on the numerical FSI analysis, they achieved a detailed

structural model of the actual wind turbine with 32 different material zones, which was

characterised by a distinct composite layout. With this special construction, they were

able to design and built a blade with desirable natural frequencies. Also, they have

validated their simulation results experimentally.

Another FSI application is the design of the cable-stayed bridges (suspension

bridge) with highly nonlinear characteristics. In this simulation the deck is supported on

several points by cables and the cables are connected to the support column. The

Takoma Narrows Bridge (Figure 2-3b) is a famous example of the kind of structures that

failed due to the resonance caused by a 64km/h wind condition on November 7, 1940 in

US. Recently Hernández and Valdes 2013 used a partitioned approach to model

Viaducto Zaragoza Bridge (Puebla, Mexico). For the fluid simulation, an incompressible

Navier-Stokes eq. with Arbitrary Lagrangian Eulerian (ALE) formulation (Belytschko et

al. 2000) is solved with the fractional step method proposed by Codina 2001. For the

structural analysis a geometrically nonlinear model based on a finite element approach is

21

used. Also an Aitken scheme [Wüncher 2006] is used to facilitate the fluid structure

interaction. Hernández and Valdes 2013 identified the resonance for some cables. To

solve the problem, they suggested changing the operation conditions by adding frictional

dampers at the cable connection points with the deck. Using this method, on the one

hand due to the added mass the natural frequencies of cables were changed, whilst the

dampers caused a reduction in the displacement amplitude which could potentially

hinder the occurrence of resonance in the bridge.

a)Wind turbine

(Bazilevs 2013b)

b) Tacoma Cable

bridge(1940)

c)Automobile weather

strip analysis (Kim et al. 2013)

d)Parashute flow field

model (Takizawa 2011)

e)Blood flow model in

arteries (Tezduyar et al. 2008)

f) Left ventricle

simulation (Le & Sotiropoulos

2013)

Figure 2-3: a few example of Fluid-Structure interaction (FSI) in different application

The FSI analysis is used to predict and improve the automotive weather-strip. The

weather-strip (Figure 2-3c) is an important part that is employed in order to isolate the

passenger compartment from water, dust and especially noise. There should be a large

enough contact area of the weather-strip and the door and the body frame to minimize

the wind noise level. Kim et al. 2013 implemented an FSI analysis to study the weather-

strip deformation and the gap changes between the door and the frame body due to the

external pressure drop that occurs when the vehicle is moving at high speed. They found

22

that the permanent deformation of the door weather-strip was the major factor

responsible for the sound isolation performance.

Another famous and sophisticated study of the FSI technique is the comprehensive

research carried out to develop the computation of spacecraft parachutes (especially for

the Orion spacecraft, see Figure 2-3d) by the Tezduyar group (T_AFSM)
5
. Their preference

is to use the Deforming-Spatial-Domain/Stabilized Space Time (DSD/SST) formulation

(Tezduyar et al. 1992a,b,c) as interface-tracking technique, the quasi-direct FSI coupling

method (Tezduyar et al. 2004 and 2006), and the stabilized space-time FSI technique

(Tezduyar & Sathe 2007). Using a symmetrical FSI technique they managed to compute

the parachute shapes and improve the parachute structural mechanics solutions.

2.4.2 Biomechanics applications

In spite of major developments in image processing techniques for hemodynamical

studies (Hong et al. 2008, Lee et al. 2009 and Faludi et al. 2010), nowadays in vivo

techniques only measure large scale blood flow characteristics. Understanding flow

patterns, however, requires using very high resolutions to establish a link between heart

disease and the patient’s hemodynamics, an area of research which still attracks a great

deal of attention(Kvitting et al. 2010). Very accurate numerical simulations could be the

only option in order to better understand cardiac hemodymamics. Many researches

focused on research in these areas. In the following part some of them are introduced.

Le and Sotiropoulos 2013 developed a novel model for simulating the left ventricle

(LV) valve to study the FSI between the blood flow and a mechanical heart valve

implant. They used a lumped type kinematic model along with Fitzhugh-Nagums frame

work (Fitzhugh 1961) to simulate the motion of LV wall in response to the heart

pressure wave. For FSI modelling they used a curvilinear immersed boundary

(CURVIB) method developed by Borazjani et al. 2008 with a domain decomposition

approach. Their results were in good agreement with in vivo measurements.

Accurate FSI modelling between the deformable arteries walls and the blood flow is

one of major challenges in the computational studies of cardiovascular fluid mechanics

(Bazilevs et al. 2007 and Torii et al. 2007 among others). The coupled mathematical

equations governing the blood flow and the structural blood arteries should be solved

simultaneously to satisfy physical kinematic and kinetic conditions. Tezduyar et al. 2008

5
 Team for Advanced Flow Simulation and Modeling (T_AFSM), Mechanical Engineering, Rice University — MS

321, 6100 Main Street, Houston, TX 77005, U.S.A.

23

presented arterial problems with the stabilized space-time FSI (SSTFSI) technique to

increase the accuracy, robustness and efficiency of FSI modelling. They assumed that

the arterial deformation during a heartbeat cycle is caused by blood pressure. As the

arteries image geometries are based on time-averaged blood pressure value for patient-

specific cases; they had to assume an estimated zero-pressure arterial for their further

simulation. The arterial walls were modelled with geometrically nonlinear hyperplastic

material (Figure 2-3e).

2.5 Summary and layout of thesis

An outline of motivation and wider possible applications of this study was provided

in this chapter. The main objectives and difficulties of FSI simulations were discussed.

The major classification of the FSI approaches were reviewed from different aspects.

Finally, it was shown how FSI simulations are used to resolve real engineering and

scientific problems by presenting a selection of research that was recently conducted.

It can be concluded that FSI problems occur in a very wide range of research

ranging from the study of the behaviour of the suspension bridge, the performance and

mechanics of Parachutes and wind turbines to diagnosing diseases and cardiovascular

problems. Also, it is briefly explained why a specific FSI method is chosen among the

other numerous versions of FSI methods which have been presented in the literature.

The choice depends on the researcher’s expertise, computational facilities and other

features such as the required accuracy and type of the problem to be simulated. In the

present study the motivation is to investigate the effect of VIV on the behaviour of

flexible risers used in the offshore industry which requires a full FSI simulation.

Considering the existing limitation on time and computational facilities, it was decided

to study a 2D model of the riser which can easily be extended to a full three dimensional

simulation, using a partitioned approach and an Immersed Boundary (IB) method. The

main objective of this thesis is the implementation and validation of the IB approach

using an interpolation approach in order to enforce non-grid conforming boundary

condition. The future work comprises quasi 3D-simulations of long oil risers by

applying the Strip theory and to add LES modelling to enable using the proposed

approach in turbulent flows (higher Reynolds numbers). The layout of the rest of the

chapters are as follows:

In chapter 3, a review of IB methods with a partitioned approach is presented. The

Fluid-Structure Interaction (FSI) methods that are related to Immersed boundary (IB)

24

methods using interpolation / reconstruction are discussed in more detail. The focus will

be mainly on methods for interpolation and interface tracking.

Chapter 4 discusses the methodology of the research and involves the following

parts; First, the governing equations of the fluid flow and the structure are discussed

briefly. This is followed by the presentation of the discretisation procedure used for the

governing equations on the Cartesian grid. The IB interpolation procedure for the

boundary conditions is shown in detail and also the FSI algorithm to model the problem

is presented. In addition, the calculation of the lift and drag coefficients is explained

using two different approaches. Finally, the coupling strategy between the fluid and

structures is discussed in more details.

In Chapter 5, a parametric study and validation of the proposed algorithm is

presented. In this chapter, the effects of the flow domain size in the transverse direction

and behind the bluff body are presented. Also, the results of the mesh refinement study

are discussed. In addition using a parametric study it will be discussed why the aspect

ratio and stretching coefficient could affect the accuracy of the simulation results.

Finally the influence of different mesh patterns around the solid boundary that are used

in the simulation of the FSI methods is studied.

The proposed IB interpolation method is presented in chapter 6. The algorithm of

this method is explained along with 4 other interpolation methods which are presented in

the literature. The Strouhal number, lift and drag coefficient obtained by this method is

compared with other interpolation method. The results show a good agreement with

other second order accurate interpolation methods.

The results of a forced vibration and Vortex Induced Vibration (VIV) of a body in

the transverse direction are presented in the chapter 7. In this chapter simulation results

obtained in both a moving reference frame and an inertial frame are compared to each

other and to the results presented in literature. Also a parametric study is conducted to

show the appropriate mesh size.

Chapter 8 presents the conclusion and future research. In this chapter, the main

results and achievements are summarised and discussed briefly and the future research is

explained.

25

Chapter 3. Literature review

An accurate solution for Fluid-Structure Interaction (FSI) problems is of interest in

many engineering and scientific applications. A FSI problem often involves simulating

complex geometries with large displacement/deformation. Based on the mesh

discretisation approach FSI methods can be classified into: boundary-conforming and

non-boundary-conforming mesh methods (Hou et.al 2012). A well-known conforming

mesh method is the Arbitrarily Lagrangian-Eulerian method (ALE). ALE methods use a

grid that adapts and deforms with the moving boundary (section 2.3.1). Most of the

industrial FSI applications typically have high Reynolds numbers, complex geometries

and moving boundaries and need turbulence modelling and mesh deforming grid

regenerating to solve the problem. Therefore, simulating FSI problems with moving grid

methods (e.g. ALE method) requires significant computational power and a high storage

capacity. A non-conforming mesh method (fixed grid method) is an alternative

numerical approach which efficiently handles some of these complications. The

Immersed Boundary (IB) method is an example of a non-conforming mesh method. This

type of discretisation recently has received much attention in relation to solution of FSI

problems. The non-conforming Immersed boundary (fixed grid) method is the subject of

this review.

3.1 Immersed boundary methods (IB)

The immersed-boundary (IB) method is a technique for solving flow problems in

regions with irregular boundaries using a simple and fixed structured grid solver. The

term “immersed boundary” was initially used for a method developed by Peskin 1972 to

simulate blood flow in a cardiovascular system. It was specifically designed to handle

deforming (elastic) boundaries interacting with low Reynolds number flow. The

simulation was carried out on a Cartesian grid. At locations where the boundary did not

align with a grid line the solution algorithm was locally modified. The modifications

were down in a way to enforce the desired boundary conditions on the flow domain.

Enforcing the moving boundary on the governing equation is one of the most important

26

challenges in an IB algorithm. To do so; generally an additional forcing term is added to

the governing equation ((3-1) to enforce the correct velocity boundary conditions. This

term can be defined before and after discretisation of the governing equation (directly or

indirectly, respectively). One of the main challenges is the definition of this forcing term

which leads to various versions of IB methods. In the original immersed boundary (IB)

method the effects of the moving boundaries on the flow field are applied through

continuous functions, which cause diffusion of the boundary interface across a number

of grid points. Due to this characteristic the method is known as the diffused method.

Therefore, such IB methods require a high resolution mesh around the immersed

interface to produce accurate results (Borazjani et al. 2008). Recently, numerous

modifications and refinements have been proposed to enhance the accuracy, stability,

and application range of the IB method (Mittal & Iaccarino 2005). For instance, a class

of sharp-interface immersed boundary was introduced to remedy the diffusion of the

boundary conditions at the interface. In some references “sharp interface methods” are

classified as “Cartesian grids” which was originally designed for inviscid flows (Berger

and Aftosmis 1998; Clarke et al. 1986 among others); In these methods the immersed

boundary is modelled as a sharp interface and the effect of a moving boundary on the

fluid is considered either locally by modifying the shape of the meshes to conform to the

boundary (cut cell methods, Udaykumar et al. 1999); or by using a discrete delta

function directly (instead of using a smooth function) into the system of discretised

equations (immersed interface method, Le et al. 2006, Xu and Wang 2006 among

others); or by reconstructing immersed conditions around the immersed boundary using

an interpolation scheme (hybrid Cartesian/immersed boundary methods, HCIB,

Gilmanov and Sotiropoulos 2005 among others); or even by combing the immersed

boundary and a curvilinear body confirming mesh (Curvilinear- Hybrid

Cartesian/Immersed boundary, CURVIB, Borazjani et al. 2008). In this thesis the term

of “Immersed Boundary” (IB) is used to address all of the methods (including the

Cartesian method). The common part in all of the methods is that the solution algorithm

involves simulating viscous flows on a fix grid with (immersed or embedded)

boundaries that do not conform to the grid lines.

As for the moving boundaries, also the solid boundaries do not necessarily conform

to the grid lines. Fixed grid, non-confirming boundary methods can be generally

classified by the way that the immersed boundary conditions are imposed on the solution

domain or governing equations. In the traditional IB methods, the immersed boundaries

27

are imposed to the solution domain by introducing a source term (a forcing function, f)

to the fluid governing equations (3-1) and (3-2).

∂u

∂t
+ u ∙ ∇u = −

1

ρ
∇P + ϑ∇2u + 𝑓

𝑓 = 0 in the fluid domain

𝑓 ≠ 0 in the solid domain and at the immersed boundary

(3-1)

∇ ∙ u = 0 or
∂ui
∂xi

= 0 in the fluid domain and the solid domain
(3-2)

The forcing functions reproduce the effect of boundary condition on fluid solution

domain. This source term or forcing function can be applied to the governing equations

in two ways: the continues forcing approach and discrete forcing approach. In the

former, the forcing term is added to the governing equation before discretization of the

whole physical domain and the forcing terms do not depend on the grid discretization

method. In addition, the source term for the continuous forcing approach depends on the

type of immersed boundary, which could be either an elastic or a rigid boundary. On the

other hand; in the discrete forcing approach, the forcing term is implemented after the

discretization and the source term highly depends on the discretization method. In this

category (discrete forcing approach) the forcing term could be implemented either

directly to the computational domain or indirectly to the governing equations by adding

a discrete source term to the equations.

In the following section, some of the immersed boundary methods are briefly

introduced and their advantages and disadvantages are discussed. The objective is to

clarify the difference between these methods and the class of IB method that is presented

in this thesis.

3.1.1 Original immersed boundary method- applicable for elastic IB

Forcing approaches are normally categorised into continuous and discrete forcing

approaches. In the continuous forcing method, a forcing function is applied to the

Navier-Stokes equation (3-1) in order to enforce the correct boundary condition on the

structure (e.g. enforcing a no-slip boundary condition on a stationary body). The most

important issue in this method is the definition of the continuous forcing function. As the

solid boundaries do not coincide with the grid lines, these functions needs to enforce the

correct boundary condition to the solution domain.

28

Several different functions have been developed by Peskin 1972, Saiki and Biringen

1996, Beyer and Leveque 1992, and Lai and Peskin 2000, among others. As illustrated

in Figure 3-1, in all cases, a distributed function was used rather than a sharp function.

The reason behind this is that firstly the solid boundaries do not coincide with the

Cartesian grid and, secondly, in this way the Gibbs’ oscillations phenomenon (Briscolini

& Santangelo 1988) adjacent to the solid boundaries could be suppressed.

a)

 b)

Figure 3-1a) Transferring the boundary force Fk from each material point

(Lagrangian coordinate) 𝐗(𝒔, 𝒕) to the fluid. Shaded area shows the area which force effect

will be distributed in the fluid domain; b) various forcing function distribution (Mittal &

Iaccarino 2005).

Implementation of the boundary conditions with a continuous forcing function is

attractive for elastic boundaries; as on the one hand, it has a physical interpretation for

elastic boundaries and on the other, the force can be implemented easily. However,

implementation of this method for rigid boundaries is relatively cumbersome due to the

nature of the method as the definition of this force is based on elastic deformation of the

boundary, in the linear elastic case, this is a direct application of Hook’s law. When

using a smooth forcing function, another problem is that the method cannot sharply

represent the immersed boundaries and the effect of the boundary is distributed in the

fluid domain (Figure 3-1a). As the boundary is not sharp (it is blurred) this method is not

recommended for flows with a high Reynolds number (Mittal & Iaccarino 2005).

The source function, f, in equation (3-1) is defined by equation (3-3). Suppose a

simple closed immersed boundary is defined parametrically by 𝐗(𝑠, 𝑡), 0 ≤ 𝑠 ≤ 𝐿𝑏 and

𝐗(0, 𝑡) = 𝐗(𝐿𝑏, 𝑡) where 𝑠 is a material point on the immersed boundary. 𝐅(𝑠, 𝑡) is the

boundary force at each segment 𝑑𝑠 of the material points. These boundary forces satisfy

a generalised Hooke’s law for an elastic boundary both in time, t, and space, 𝐗(0, 𝑡).

According to equation (3-4), the force function, F, explicitly depends on the simulation

29

time. This definition resembles an active boundary like a muscle whose elasticity varies

with time. For instance, in a two dimensional circular cylinder with several material

points on its border, these forces at each material point try to preserve the circular shape

of the boundary.

𝑓(𝐱, 𝑡) = ∫ 𝐅(𝑠, 𝑡)𝛿(𝐱 − 𝑠)𝑑𝑠
𝐿𝑏

0

(3-3)

𝐅(𝑠, 𝑡) = 𝐒(𝐗(0, 𝑡), 𝑡) (3-4)

𝜕𝐗(𝑠, 𝑡)

𝜕𝑡
= 𝐮(𝐗(𝑠, 𝑡), 𝑡) = ∫ 𝐮(𝐱, 𝑡)𝛿(𝐱 − 𝐗(𝑠, 𝑡))𝑑𝐱

𝐿𝑏

0

(3-5)

To apply this method, in the first place, the boundary force 𝐅(𝑠, 𝑡) is calculated

based on the displacement of material points on the boundary from the initial

configuration 𝐗(0, 𝑡) according to equation (3-4). Then these forces are integrated over

all material points to calculate the force from the immersed boundary on the fluid

domain, equation (3-3).

The definition of 𝛿(𝐱 − 𝑠) charactirises different versions of these methods. For

instance, Lai and Peskin 2000 defined 𝛿(𝐱) = 𝑑ℎ(𝑥)𝑑ℎ(𝑦) in each coordinate direction

in the vicinity of the material point on the immersed boundary, as shown in equation

(3-6).

𝑑ℎ(𝑥) =

{

 1

8ℎ
(3−

2|𝑥|

ℎ
+√1+

4|𝑥|

ℎ
−4(

|𝑥|

ℎ
)

2

), where |𝑥| ≤ ℎ;

1

8ℎ
(3−

2|𝑥|

ℎ
+√1+

4|𝑥|

ℎ
−4(

|𝑥|

ℎ
)

2

), where ℎ ≤ |𝑥| ≤ 2ℎ;

0 otherwise.

(3-6)

In the second step, the Navier-Stokes equations (3-1) and (3-2) are solved to find

the updated velocity at the new time step. In these equations the force term, f, is the force

from the boundary on the fluid domain described by equation (3-3) which has been

calculated in the previous step. Finally, equation (3-5) is solved with new velocity to

find the new configuration of the structure. The process will be repeated in time to

eventually find the developed solution for the problem. The key point in this type of

immersed boundary methods is that the structure should be elastic (not rigid solid) as the

force at each material point is calculated from a “Hook’s law” equation. For rigid bodies

the method described below is suggested by a number of researchers.

30

3.1.2 Feedback forcing approach- applicable for rigid IB

According to the studies by Goldstein et al 1993 and Saiki and Biringen 1996, an

analytic expression for the force 𝑓(𝑥𝑠, 𝑡) acting on the boundary 𝑥𝑠 at time t can be

specified by the feedback forcing equation (3-7):

𝑓(𝑥𝑠, 𝑡) = 𝛼𝑓∫ [𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�)]
𝑡

0

𝑑�́� + 𝛽𝑓[𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�)]
(3-7)

Where 𝑉(𝑥𝑠, �́�) is the velocity of the moving boundary, 𝑢(𝑥𝑠, �́�) is the velocity of

the fluid on the boundary, and 𝛼𝑓 and 𝛽𝑓 are constants. The above equation is a feedback

based on the velocity difference 𝑢(𝑥𝑠, �́�) − 𝑉(𝑥𝑠, �́�) which imposes the flow velocity on

the immersed boundary, u, to match the velocity of the immersed boundary, V, at the

same point. The major drawback for the feedback forcing is that this method requires

very small time steps 𝐶𝐹𝐿 = 𝑂(10−3 − 10−2). More details can be found on Fadlun et

al. 2000.

3.1.3 Physical Virtual Model (PVM) approach

Introducing the boundary force, f, in equation (3-1) is the main challenge in an

immersed boundary method. Lima E Silva et al. 2003 proposed a PVM approach to

calculate the interfacial forces without an ad hoc constant that usually depends on

domain and numerical model. In this method, the force is calculated over a sequence of

Lagrangian points, representing the interface, using the updated velocity and pressure

from the Navier-Stokes equation in the fluid domain. Silva implemented the

conservation of momentum theorem in an arbitrary control volume included each

Lagrangian points to calculated the interfacial force. One of the advantages of this

method is that the forces due to friction and pressure is calculated separately, which are

important factors in a vortex induced vibration context. This method is called the

Physical Virtual Model as it is only based on the conservation laws. The simulation

results for the flow around a stationary cylinder were found to match the numerical and

experimental data in the literature.

3.1.4 Immersed interface approach

Using several grid nodes in the vicinity of the immersed boundary to spread the

forcing function is an inherent feature of the original immersed boundary method. This

issue complicates the extension of this method to high Reynolds number flows in

31

practical applications (Gilmanov and Sotiropoulos 2005). However, LeVeque and Li

1994 proposed a type of IB method, called the Immersed Interface Method (IIM) to

overcome this issue. IIM only modifies the grid nodes in the immediate vicinity of the

immersed boundary to enforce a set jump condition at the interface by adding the forcing

function. This method maintains the interface sharpness for the immersed boundary and

is second order accurate. In the method proposed by Lee and LeVeque in 2003 the

boundary force is decomposed into a tangential and a normal component. The tangential

forces were added to the momentum equations, while the normal component is applied

to the pressure Poisson equation in terms of a pressure jump condition over the interface.

3.1.5 Fictitious domain method

Glowinski et al. 1999 proposed a different method by applying a fictitious domain

method
6
. In this method the fluid governing equations were enforced inside of the rigid

body as well as outside in the fluid domain. The fluid velocity inside the solid body is

enforced by a Distributed Lagrange Multiplier (DLM) to behave like a rigid body

(boundary) motion in the fluid domain. In fact, the multiplier creates additional body

force inside the particle to maintain the rigid body motion for the solid body. Baaijens

2001 developed a DLM based on the Mortar Element
7
 (ME) method to impose the no

slip boundary conditions as an equation for the Lagrange multiplier. He applied this

method to simulate the behaviour of a two dimensional flexible slender body in a

channel flow with fluctuating inlet velocities. Yu 2005, extended the fictitious domain

method to three dimensional simulation and non-slender bodies. He used the continuum

equations for the general material rather than Newton’s equation for rigid body motions.

Like the DLM in the rigid body motion, where a pseudo body force introduces the rigid

body motion to the fluid domain, in his method the Lagrange multiplier forces the

fictitious fluid (inside the solid) to move with the same velocity as the solid.

However, due to the need for an accurate representation of the boundary layer in

high Reynolds number flow, the use of distributed, smooth forcing functions near the

immersed boundary is not desirable. In these cases it is recommended to use a sharp

6 -fictitious domain methods, also known as domain-embedding methods, are one type of solution

methods for partial differential equations. The main idea is to replace a simple but larger domain (the

fictitious domain) in a problem with a complex time dependent geometry (see, Glowinski et al. 2000).

7 -Mortar methods are discretization methods for partial differential equations, which use separated

discretisation, in non-confirming subdomains and the meshes in subdomains do not match at the

interfaces, however, the equality of parameters on the interface is enforced by Lagrange multipliers to

preserve the accuracy of the solution (Maday et al 1989).

32

interface with a higher local accuracy near the boundary. This goal can be achieved by

imposing the boundary conditions directly on the immersed boundary. There are two

well-known methods that fit into this category: the Ghost-Cell Finite-Difference

Approach and the Cut-Cell Finite-Volume Approach.

3.1.6 Ghost-Cell approach

In the Ghost-Cell approach the immersed boundary is implemented by using ghost

cells. Ghost cells are cells inside the solid boundary which have at least one neighbour

on the fluid side. The parameters (imaginary velocity and pressure) in the ghost cell

inside the solid are defined by an interpolation method which implicitly enforces the

correct boundary condition for the immersed boundary. In this approach, there is a

possibility of loosing accuracy as this method is based on the mirrored velocity with

respect to the solid body (as discussed by Kang 2008).

3.1.7 Cut-Cell method – Cartesian method

All of the immersed boundary methods discussed so far are not designed to consider

the conservations laws near the solid boundary. However, the Cut-Cell method in

combination with a Finite-Volume approach is designed in order to preserve the

conservation of momentum and mass near the boundary. In this method, the cells which

have been cut by the immersed boundary are reshaped or absorbed by neighbouring cells

in order to form a new trapezoidal control volume cell shape. In this method, the

governing equations are not modified. This method has been used by Mittal et al. 2003&

2004 to simulate vortex-induced vibration around a stationary and a moving body and

for free falling objects. Although considered to be consistent, this method suffers from

slow convergence (due to small cells) and is regarded as being too complex which are its

major disadvantages. Also, the extension of this method to 3D is not straightforward and

needs complex polyhedral cells, which complicate the discretization of the Navier-

Stokes equations (Ghias et al. 2007).

3.1.8 Direct forcing approach

The Navier-Stokes equations usually cannot be integrated analytically to define the

forcing functions. Therefore, often, it is not possible to derive an analytical forcing

function to enforce specific boundary conditions. To tackle this problem, a method has

been suggested by Mohd-Yusof 1997 and Verzicco et al. 2000. In this method, which is

33

known as the direct forcing approach, the forcing functions are subtracted from the

numerical solution after discretizing the Navier-Stokes equations. The important

advantage of this method is that there is no need to define the forcing function

parameters prior to solving the Navier-Stokes equations and there is no stability

constraint due to the use of continuous forcing functions (Gibb’s oscillation). However,

it is still required to implement the distributed forcing functions which strongly depend

on the discretization algorithm. Mohd-Yusof 1997 developed an expression for the

forcing function, which does not have the time steps restriction. In this method, the

discretized form of the Navier-Stokes equation is used directly to calculate the force

expression by imposing the velocity of the immersed boundary (equation (3-9)).

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
= 𝑅𝐻𝑆𝑛+

1
2⁄ + 𝑓𝑛+

1
2⁄

(3-8)

In equations (3-8) and (3-9), the 𝑅𝐻𝑆 comprises the convective, viscous and

pressure terms of the Navier-Stokes equation. Therefore, the forcing term, 𝑓𝑛+
1
2⁄ , is

simply calculated to enforce the immersed boundary condition on the fluid domain and

the governing equations by using equation (3-9).

𝑓𝑛+
1
2⁄ = −𝑅𝐻𝑆𝑛+

1
2⁄ +

𝑉𝑛+1 − 𝑢𝑛

∆𝑡

(3-9)

Another important issue in the direct forcing approach is the interpolation

procedures. As the immersed boundary does not necessary coincide with the fluid

parameters on the grid especially in a staggered arrangement, it is necessary to calculate

and enforce the forcing function interpolation. Fadlun et al. 2000 have implemented

three different interpolation schemes and compared their accuracy. As one of the main

parts of this research relates to the interpolation procedures, various interpolation

schemes have been studied in detail in the latter part of this review.

3.1.9 Interpolation or reconstruction method

In the interpolation method, the forcing function, f, equation (3-1) is not directly

calculated to enforce boundary conditions. Instead, the flow velocity is interpolated at

the interface cells and the forcing term is imposed indirectly to the discrete equations or

directly to the computational domain. In other words, at the interface cells an

interpolation formula replaces the Navier-Stokes equations. The interface points are

defined as the points in the fluid domain near the solid boundary for which one of the

neighbouring points in the discretized equations is inside the solid domain. Therefore,

34

the parameters related to these points cannot be updated through solving the governing

equation. Any cells that contain one or more interface points are called interface cells.

Figure 3-2 (left) shows the interface cells around a circular cylinder in which at least one

of the points’ parameters cannot be updated directly using the governing equations. For

instance, in Figure 3-2(right), to update the velocity at point A using the governing

equations its 8 neighbouring velocities are needed; however two of 8 velocity-

components are inside the solid boundary. Therefore, the velocity at point A should be

interpolated between the boundary points and other points inside the flow field.

Besides its simplicity, this method has a few advantages. There are no severe

limitations on the time steps as the velocities on the boundary are implicitly or explicitly

applied to the governing equation (fluid domain). In addition, the velocities in the fluid

domain are separated from the non-physical velocity inside the solid boundary. As in the

most of immersed boundary methods, due to its nature a secondary non-physical flow is

created inside the solid boundary.

Figure 3-2: A 2D Cartesian mesh with a solid boundary (circle). Interface points, that

require interpolation, are identified by arrows. Points A1 to A8 are all neighbouring points

of A. Note that A2 and A7 are inside the solid domain.

One of the disadvantages of the interpolation or reconstruction method is the

decoupling of pressure and conservation of mass at the interface. Iaccarino and Verzicco

2003 showed that a linear interpolation method is acceptable for those cases in which the

first points of the interpolation in the fluid are inside the viscous sub layer. Several

interpolation methods have been introduced by Ghias et al. 2004, Fadlun et al. 2000,

Kang et al. 2009, Choi et al. 2007 among others. In the next section some of these

interpolation methods are discussed in more detail.

35

3.2 Defining the interface cells

The general key feature for any sharp immersed boundary method is that the

governing equations are solved on a grid that does not conform to the immersed solid

boundary (moving or stationary). The governing equations are solved only on the fluid

domain nodes in which all of the neighbouring points are located entirely in the fluid

domain and the fluid nodes in immediate vicinity of the immersed boundary are updated

by interpolation. In other word, the interface points are not updated inside of the

governing equations. Instead, they are used as boundary conditions for the governing

equations. Therefore one of initial steps in applying this immersed boundary (IB)

method is to classify the nodes in the background grid in three categories; the cells that

are thoroughly within the fluid domain, the cells completely within the solid domain and

the interface cells. The interface cells are the cells in which the immersed boundary

crosses or in which the parameters cannot be updated using the governing equation. This

classification of the grid cells can be performed in several ways. It is a straightforward

procedure to identify them in a simple or analytically well described geometry.

However, a complex computational geometry tool is required to identify the interface

cells for a complex geometry (Iaccarino and verzicco 2003). Gilmanov et al. 2003

presented an algorithm to identify interface nodes that is only applicable to simple

convex bodies. Another algorithm, presented by Gilmanov & Sotiropoulos 2005, is

applicable to identify the interface nodes for an arbitrary geometry. Borazjani et al. 2008

used the classical method of the point-in-polyhedron problem for their computational

geometry. In the following part the methods of Borazjani et al. 2008, Gilmanov and

Sotiropouls 2005 are briefly disused.

3.2.1 Point-in-polyhedron algorithm

Classifying the Cartesian grid into fluid and solid parts is a classical problem of the

point-in-polyhedron procedure in computational geometry. A point and a polyhedron,

whose geometry is introduced by its sides are defined in space, It is then required to

establish whether the point is contained inside or outside of the polyhedron. In a two

dimensional geometry the problem is downgraded to a point-in-polygon problem; with

two major solution methods, the so called ray-casting method and the winding number

method (Haines 1994). In the ray-casing method, a half infinite ray is drawn from a

point in the domain and the number of intersections between the half infinite ray and the

36

polygon edges is counted. If the number is odd (point A in Figure 3-3b) than the point is

inside the polygon (on the immersed solid), otherwise it is located outside of the polygon

(in the fluid domain).

a)

b)

c)

Figure 3-3: a) background Cartesian grid with a polygon immersed boundary

classified to fluid, solid and interface nodes, b) a ray casting test method for a polygon;

point A is inside and point B is outside the polygon, c) a ray casting test method for a

polyhedron (Borazjani et al 2008).

Expanding the ray-caste-polyhedron method to 3D is straightforward and is briefly

described as follows. Suppose that the surface of polyhedron is discretised with an

unstructured triangle mesh and a point p(x,y,z) is defined in space. A line is casted from

the point p to the point S(x,y,z) outside of polyhedron, the number of intersection of the

ray with the triangle elements on the surface of polyhedron shows if the point p is

outside (fluid node) or inside (solid node) of the polyhedron (Figure 3-3c). The core of

the ray-triangle intersection algorithm is explained by Moller and Trumbore 1997 (for

more details, see Borazjani et al. 2008).

3.2.2 Interfacial marker at the interface discontinuity algorithm

This methodology was initially proposed by Udaykumar et al. 1997. The fluid-

structure interface is tracked as a discontinuity. The algorithm is very robust and is

applied in a variety of problems, especially in FSI problems with a sharp immersed

boundary method. The detailed algorithm is presented in the papers published by

Udaykumar et al. 1997. Key features of this method are presented here to facilitate

further discussion about the immersed boundary method with a sharp interface.

In this method an open or closed immersed boundary with an arbitrary shape is

represented by interfacial markers which are defined by their arc length coordinates X(S)

in Figure 3-4. The markers are equally spaced with a spacing size of the same order of

the background Cartesian grid. The start point is defined such that with increasing s, the

fluid is always on the left hand side. By fitting quadratic polynomial with each point

37

through and its two immediate neighbours, the unknown coefficients in equation (3-10)

are calculated to obtain a local parameterisation of the immersed boundary at each

interfacial point.

𝑥(𝑠) = 𝑎𝑥𝑠
2 + 𝑏𝑥𝑠 + 𝑐𝑥 𝑎𝑛𝑑 𝑦(𝑠) = 𝑎𝑦𝑠

2 + 𝑏𝑦𝑠 + 𝑐𝑦 (3-10)

Using this calculating the normal vector to the immersed boundary is

straightforward by employing the following equations.

𝑛𝑥 =
−𝑦𝑠

√(𝑥𝑠2 + 𝑦𝑠2)
 𝑎𝑛𝑑 𝑛𝑦 =

−𝑥𝑠

√(𝑥𝑠2 + 𝑦𝑠2)

(3-11)

a)

b)

c)

Figure 3-4 a)Definition of the immersed boundary topology by interfacial markers,

arc length vector and normal vector; b) Identification of fluid nodes from solid nodes using

a normal vector; c) Demonstration of interface nodes (o) and marker points (●), (Balaras

2004).

Having a local parameterization of the immersed boundary around each marker

points, it is possible to identify the grid point closest to each marker point in the

background Cartesian by using an iterative method, like the Newton-Raphson method.

According to Figure 3-4b, a line (vector) is defined from each Cartesian point in the

vicinity of the marker point perpendicular to the local approximation of the immersed

boundary. The inner product of these vector and normal vector, equation (3-11), of

immersed boundary at each marker point shows that if the grid point on the Cartesian

background is on the fluid domain or in the solid domain. If the inner product is positive

the point is outside (for closed solid boundaries) or on the left hand side (for the open

boundaries) of the solid interface. (see Balaras 2004 for more details). Figure 3-4c shows

the interface cells (black circle) which need special treatment to enforce the solid

boundary condition in a sharp interface IB method.

38

3.3 Boundary Reconstruction/Interpolation

It is well known that the majority of immersed boundary approaches need some sort

of interpolation procedure. For instance, the forcing method discussed earlier was based

on the assumption that the unknown (velocity) positions on the grids exactly match with

the immersed boundary location. In this case the boundary coincides with the grid lines

especially with moving boundaries, which is not the case for complex geometries. In

particular, for staggered arrangement, even if the grid lines and boundary location

coincide together for one unknown (e.g. velocity in x direction) they will not coincide

for the other unknowns. Therefore interpolation is needed in the IB solution procedure to

enforce the immersed boundary in the presence of non-matching grid lines.

Due to the forcing method, the interpolation procedure would be different and can

be categorised by two main approaches. In the first approach; the forcing function is

spread in the vicinity of the immersed boundary, which in the original IB approach

introduced by Peskin 1972 is achieved using a discrete Dirac delta function (section

3.1.1). The main drawback for this approach is that this spreading acts as extra

dissipation close to the IB which could lead to an inaccurate prediction of the boundary

layer. In the second approach a local solution of the unknown (velocity) is reconstructed

to enforce the IB as a sharp interface with a relatively high degree of accuracy (depends

on its procedure). This method of interpolation is widely used in the indirect forcing

approaches. In other words, in the vicinity of the immersed boundary the flow governing

equations are replaced by an interpolation equation. In this way, the unknown at the

interface cells are determined and these values will be used as the boundary values for

the governing equation. This process is repeated at each time step and the flow

parameters in the interface cells are updated by direct interpolation and used as boundary

conditions for the flow solver. Various interpolation methods have been developed to

address this issue.

In this review, a number of interpolation procedures which could potentially be

used in indirect discrete forcing approaches (interpolation or reconstruction) are

categorized, explained and compared briefly in the following section.

3.3.1 Stepwise geometry -No interpolation

The simplest possible method is to identify edges of the interface cells as the solid

boundaries to define the solid domain. In fact, in this way there is no interpolation

39

needed and the solid boundary will have a stepwise shape (Figure 3-5a). Also, the

boundary itself will be somewhat diffused, as in the staggered methods the boundary

conditions for the different velocity components are applied at different sides of an

element. Fadlun et al. 2000 proposed this method for calculating and imposing forcing

functions, respectively, from and to the velocities around immersed boundaries. As

interpolation is not needed, this method will be less expensive while still giving

acceptable results. The disadvantage of this method is that (especially on course meshes)

the shape and size of the enforced boundary is different from the real solid boundary

which could affect the lift and drag forces. Also, this method is only first order accurate

in space.

a)

b)

c)

Figure 3-5 interpolation procedure sketch for u velocity in an staggered arrangement

a) without interpolation b) weighted interpolation c) linear interpolation

3.3.2 Weighted method

This method is similar to the one discussed above. The major difference is that the

boundary values (force term) for those cells that are crossed by the IB are corrected

based on the volume/surface of cell that is occupied by the structure (Figure 3-5b). For

each of the force and velocity components a coefficient is determined that corresponds

to the ratio of the fluid part of the cell to the whole area of the cell, which is a first order

accurate method in space. Fadlun et al. 2000 used this method to scale the forcing of the

velocities closest to the boundaries.

3.3.3 Linear interpolation method

In this method, the velocities in the interface cells are calculated by a linear

interpolation between the velocity at the solid boundary (applying the no slip condition)

and in one point inside the fluid. Fadlun et al. 2000 suggested this interpolation method

40

to enforce the boundary condition to the fluid domain. Also, Kang et al. 2009 used this

interpolation method for the immersed boundary but applied it in a direction parallel to

the grid lines. In Figure 3-5c, the interpolation procedure for an IB cell velocity, Ui,j, in

the vertical direction using the Usolid and Ui,j+1 (inside the fluid domain) is shown.

Application of this approach for a complex geometry could lead to a possible

ambiguity in choosing the interpolation direction. Figure 3-6a, illustrates such

ambiguities as the interface (IB cell) velocity, Ui,j could be interpolated either in the

horizontal or vertical direction (Kang et al. 2009). Balaras 2004 suggested using the

linear interpolation scheme in a direction perpendicular to the boundary to overcome this

problem. According to Figure 3-6b he suggested to calculat Uvirtual in the fluid domain at

a location where h1=h2; therefore the interface velocity, Ui,j is obtained from Usolid and

Uvirtual using

𝑈𝑖,𝑗 =
ℎ2
ℎ
𝑈𝑠𝑜𝑙𝑖𝑑 +

ℎ1
ℎ
𝑈𝑣𝑖𝑟𝑡𝑢𝑎𝑙, where h = h1 + h2 (3-12)

a)

b)

Figure 3-6: calculating the interface cell velocity by linear interpolation; a) ambiguity

in the direction of interpolation, Fadlun et al. 2000 model b) linear interpolation

perpendicular to the IB, Balaras 2004 model.

Balaras predicted three possibilities for calculating Uvertual from U1 to U4 in fluid

domain. According to Figure 3-7a) if none of the U1 to U4 is an interface velocity the

Uvertual can be calculated by equation (3-13); where αi is the standard bilinear

interpolation coefficient.

𝑈𝑖,𝑗 =∑𝛼𝑖𝑈𝑖

4

1

(3-13)

41

a)

b)

c)

Figure 3-7: interpolation scheme in direction perpendicular to the IB, Balaras 2004;

three boundary options depends on the immersed boundary geometry and local grid size.

Figure 3-7b) shows that if one of velocities around the Uvirtual is the interface

velocity, Ui,j, the Uvirtual is interpolated from U1 to U3. In addition, if more than one of

the velocities around the Uvitual is an interface velocity (Figure 3-7c), in this case h2 is

chosen larger than h1 in a way that at least three neighbouring velocities of Uvirtual do not

coincide with the interface velocities, Ui,j . Linear interpolation is a second order

accurate scheme (for more detail see Balaras 2004, Kang et al. 2009).

Gilmanov et al. 2003 presented and applied the Balaras interpolation method to

three dimensional problems. As explained earlier in the reconstruction/interpolation

method, the entire fluid domain is solved using the boundary values specified at the

interface cells, and the immersed bodies are excluded from the computation. Suppose at

time step, n, all the velocities and pressures in the fluid domain (for example point α, β,

δ and γ at Figure 3-8) are known and also suppose that the boundary conditions are

known at all vertices of the unstructured grid at the same time step. To advance the flow

governing equations to the next time step the values of the immersed cells (for example

point b at Figure 3-8) are interpolated linearly between point a on the structure and point

c inside fluid domain. Gilmanov et al. 2003 used another interpolation, equation (3-14),

to calculate the value of the parameters (velocities) in Figure 3-8 (points c & a).

𝑈𝑎 = (∑ 𝑈𝑚 𝑆𝑚⁄

𝑚=1,3

) (∑ 1 𝑠𝑚⁄

𝑚=1,3

)⁄
(3-14)

Where m=1,3 are the three vertices of the triangular element which include point a,

and 𝑠𝑚 are the distances between point a and each of the three vertices of the triangular

element. The same method is used to calculate the boundary condition at point c by

interpolating the values defined at α, β, δ and γ in Figure 3-8. Also, the pressure gradient

U

3

42

is calculated as a Dirichlet condition in a similar way at point b (see Gilmanov et al.

2003 for more detail).

Figure 3-8: Schematic reconstruction of the IB unknown “b” with interpolation in the

wall-normal direction. The triangle represents an unstructured element of the IB. The dash

line is the intersection of the body with the Cartesian grid (Gilmanov et al. 2003).

3.3.4 Bilinear interpolation method

Kang et al. 2009 introduced this method as a linear interpolation method, (Standard

Reconstruction Method, SRM). Two adjacent velocities in the horizontal and vertical

directions and the velocity of the solid boundary are used to obtain the interpolated

velocity at each interface point near the immersed boundary (Figure 3-9). Equation

(3-15) is the interpolation formula for the velocity, where the coefficient w represents

the interpolation weight for each of the velocities.

Figure 3-9: Standard Reconstruction Method (SRM) for velocity in vertical (left) and

horizontal (right) direction

𝑈𝑖,𝑗 = 𝜔𝑖+1,𝑗𝑈𝑖+1,𝑗 + 𝜔𝑖,𝑗+1𝑈𝑖,𝑗+1 + 𝜔𝑠𝑜𝑙𝑖𝑑𝑈𝑠𝑜𝑙𝑖𝑑 (3-15)

To solve the governing equations in a fractional-step method, after each time step

𝑈𝑖,𝑗 is calculated from the momentum interpolation, �̂�𝑖,𝑗, followed by projection onto each

divergence-free field. The intermediate velocity itself, �̂�𝑖,𝑗 is calculated using an

interpolation formula for the cells near the solid boundary.

43

3.3.5 Revised interpolation method

 In spite of the various advantages in standard interpolation/Reconstruction methods

(SRM) that have been discussed so far, there are several short-comings as well. An

important issue is the decoupling between the pressure field and the local velocity near

the immersed boundaries. Also, there is no explicit contribution of the velocity or

pressure gradient at the previous time steps in the interpolation formula which could

cause abnormal pressure gradients near the immersed boundary (Kang et al. 2009).

Kang et al. 2009 has revised the above interpolation methods to use the velocity

field in the previous time step to obtain a more accurate interpolation for the next time

step. To do so, the explicit difference between the velocities at two consecutive time

steps is used to calculate the interface velocities at the new time step. In a fractional step

strategy to solve the Navier-Stokes equations this difference could be defined as ∆𝑈𝑖,𝑗 =

 �̂�𝑖,𝑗
𝑘
− 𝑈𝑖,𝑗

𝑘−1 ; where �̂�𝑖,𝑗
𝑘

 is the intermediate velocity before the pressure (conservation of

mass) projection step. In this case the interpolation formula based on the previous

velocity is defined as,

∆𝑈𝑖,𝑗 = 𝜔𝑖+1,𝑗∆𝑈𝑖+1,𝑗 +𝜔𝑖,𝑗+1∆𝑈𝑖,𝑗+1 + 𝜔𝑠𝑜𝑙𝑖𝑑∆𝑈𝑠𝑜𝑙𝑖𝑑 (3-16)

Or alternatively it can be expressed as:

�̂�𝑖,𝑗
𝑘 = 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘 +𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘 +𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘

+ 𝜂(�̂�𝑖,𝑗
𝑘−1 − 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘−1 − 𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘−1 − 𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘−1)

Where 𝜂 = √(𝜔𝑖+1,𝑗 + 𝜔𝑖,𝑗+1) 𝜔𝑠𝑜𝑙𝑖𝑑⁄ 𝑎𝑛𝑑 (𝜂 ≤ 1)

(3-17)

In addition, to compensate for the decoupling between the velocity and the local

pressure, Kang et al. 2009 explicitly added the effect of the pressure gradient to the

interpolation equation.

�̂�𝑖,𝑗
𝑘 = 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘 +𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘 +𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘

+ 𝜂(�̂�𝑖,𝑗
𝑘−1 − 𝜔𝑖+1,𝑗�̂�𝑖+1,𝑗

𝑘−1 − 𝜔𝑖,𝑗+1�̂�𝑖,𝑗+1
𝑘−1 − 𝜔𝑠𝑜𝑙𝑖𝑑�̂�𝑠𝑜𝑙𝑖𝑑

𝑘−1)

− 𝛿𝑘∆𝑡 (
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗

− 𝜔𝑖+1,𝑗
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖+1,𝑗

− 𝜔𝑖,𝑗+1
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗+1

− 𝜔𝑠𝑜𝑙𝑖𝑑
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑠𝑜𝑙𝑖𝑑

)

(3-18)

In equation (3-18), instead of the pressure gradient at the solid boundary,
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑠𝑜𝑙𝑖𝑑

 ,

the pressure gradient at the interface cell,
𝜕𝑝𝑘−1

𝜕𝑥
]
𝑖,𝑗

, is used, which is not affecting the

second order accuracy of the formula. In the above formula the easiest choice is to select

44

𝛿𝑘 = 1, in which case the pressure gradients at the interface cell and the momentum

equation are the same.

3.3.6 Quadratic interpolation method

In addition, Kang et al. 2009 introduced a quadratic interpolation formula to

improve the Revised Linear Interpolation Method (RLIM). In this method the local

pressure gradient is incorporated in the velocity interpolation to compensate the

decoupling between the pressure and the velocity near the solid boundary, however there

is no extra user defined parameter like the RLIM method in the interpolation formula.

Figure 3-10a&c illustrate their interpolation method in the two-dimensional case in

horizontal and vertical directions. Four adjacent velocities are used to enforce the

momentum equation by a quadratic interpolation. For those interface points where the

quadratic interpolation is not applicable (see, Figure 3-10b) due to geometry and

curvature of the immersed boundary, it is replaced with the linear interpolation.

Equation (3-19) is another version of the quadratic interpolation formula, where the

origin of the local coordinate system is located at the interface velocity, �̂�𝑖,𝑗. Though this

interpolation formula has a third order accuracy, the overall accuracy of the flow solver

is second order. Therefore, a quadratic interpolation only gives more degrees of freedom

(more flexibility) to the velocities near the immersed boundary rather than higher order

accuracy (more than two) to the problem.

�̂�𝑖,𝑗
𝑘 = 𝑎𝑖+1,𝑗

𝑘 𝑥𝑖+1
2 + 𝑏𝑖+1,𝑗

𝑘 𝑥𝑖+1 + 𝑎𝑖,𝑗+1
𝑘 𝑦𝑗+1

2 + 𝑏𝑖,𝑗+1
𝑘 𝑦𝑗+1 + �̂�𝑖,𝑗 (3-19)

a)

b)

c)

Figure 3-10: Quadratic interpolation method for an interface velocity in the

horizontal (left) and the vertical (right) directions. The middle pane shows that it is not

always possible to use this type of quadratic interpolation.

Moreover, in the quadratic interpolation there is no user defined parameter. Kang

reported that this method could become unstable in some cases. Two remedies are

45

suggested; using a cubic interpolation instead of a quadratic one, which increases the

number of coefficients and therefore the complexity of the method. Another suggestion

is to use a linear interpolation when the two velocities on the immersed boundary (Usolid1

and Usolid2 or Vsolid1 and Vsolid2) are nearer than some threshold to each other (more detail

see Kang et al. 2009).

3.3.7 Higher order interpolation methods

Choi et al. 2007 also introduced a higher order interpolation method. It has been

shown that a power law interpolation is better than a linear interpolation method, for

higher Reynolds number. They introduced the concept of tangency correction by

resolving the velocity into the normal and the tangential direction to the immersed

boundary. The velocity profile in the tangential direction is written as a general power

law in terms ~n
k
, rather than assuming a linear trend (n is the normal coordinate). Small

value of power k, (k=1/7 or 1/9) preserve the expected logarithmic distribution near the

wall region which is necessary for application of a turbulent model. The normal velocity

profile is defined in such a way that its second derivative is maintained at the immersed

surface (n=0) to satisfy the Neumann boundary condition for the wall normal pressure

gradient. Choi’s numerical results shows that for Reynolds numbers less than 1000 a

linear distribution of the velocity profile (k=1) is required, however, in problems with

Reynolds numbers greater than 10,000 using the law power (k=1/7 or 1/9) gives a more

realistic flow separation result (more detail see Choi et al. 2007).

3.4 Interface tracking methods

An important challenge faced when using immersed boundary methods is to

maintain stability in the FSI simulation, which may lead to very small time steps (Fauci

and Fogelson 1993, Peskin 2002). It is possible to improve the numerical stability by

calculating the boundary forces implicitly (strong coupling) in advance (time). Also, in

the presence of very strong interaction between the fluid flow and structure (eg. blood

flow in arteries), a strong coupling between the solvers is required to stabilise the

simulation in a partitioned approach. This is due to the additional flow acceleration that

is acting on the solid which is known as the added mass effect (Causin et al. 2005 and

Idelsohn et al. 2009 among others).

Another challenge in the FSI modelling is the interface tracking between the fluid

and the structure. Sub-iterations (strong coupling) between the fluid and the structure

46

solution increase the numerical stability of the interface tracking methods. Wood et al.

2010 explained that the FSI method becomes unstable in absence of sub-iteration steps

between flow and structure solutions at each time step (weak coupling). They showed

that one additional sub-iteration can reduce the numerical error by two orders of

magnitude without adding a substantial over head to the program; more sub-iterations

could achieve an even better convergence.

In this context, the IB partitioned approaches are classified into strong (Farhat et al.

2006) and weak (Quarteroni et al 2000) coupling methods. Weak coupling could

produce acceptable results when the coupling (interaction between the fluid and the

structure) is not strong like in aero-elasticity problems (Farhat et al. 2006). However,

weak coupling may lead to instabilities when the density of the fluid and the structure

are similar, for example in simulating blood flow in arteries.

Although many methods were developed to improve the treatment of the interface

to gain a better accuracy, efficiency and stability for the FSI simulation (Tu and peskin

1992, Mayo and peskin 1993, Fauci and Fogelson 1993, LeVeque and Li 1997, Lee and

LeVeque 2003, Mori and peskin 2008, Newren et al. 2008, Hou and Shi 2008, Ceniceros

et al. 2009 among others), it remains a challenge to produce a computationally efficient

IB method (Hou et al. 2012).

Due to the coupling of the interface configuration and the boundary forces with the

fluid flow simulation, solving a FSI problem implicitly requires solving a very large

system of nonlinear equations. Finding a converged solution to such a large system is a

very challenging problem. Due to these challenges, most of the simulations were

originally based on explicit methods. Recently, however, implicit methods have been

developed that exploit the improved computational power. Newren et al. 2008 presented

an unconditionally stable procedure with a second order Crank-Nicolson formulation

where inertia forces are neglected, assuming a linear and self-adjoint force at the

interface. Mori and Peskin 2008 suggested a similar scheme and proposed a fully

implicit method. Cenicero et al. 2009 designed a cost-effective algorithm to solve the

linear system arising from the implicit discretization. Also Wang 2006, 2007 and 2010

employed a fully implicit time integration algorithm along with a matrix free

combination of Newton-Raphson and General Minimal RESidual (GMRES) solvers.

In addition, Badia et al. 2008 proposed a method to estimate the interface location

and to replace Neumann and Dirichlet boundary conditions by a general Robin

transmission method in a new FSI iteration. Having a better prediction of the fluid

47

structure interface, Farhat et al. 2006 proposed a FSI model with a second order

accuracy in time. Another second order FSI method was developed by Zhang et al. 2007.

In their model the CFD code was considered as a black box. A reduced-order method

was introduced by Vierendeels et al. 2008 in an attempt to improve the computational

efficiency. In the following section some of these methods are studied and compared in

more detail.

3.4.1 Second-order accuracy without sub-iteration (loosely coupled, weak

solution)

Li et al. 2002 proposed a loose coupling between the fluid flow and the structure for

simulating an FSI problem in a relative frame of reference method. In the first step the

force at t
n+1

, F
n+1

 is calculated explicitly from the forces F
n
 and F

n-1
 using extrapolation

or relaxation factors (equation ((3-20))). The parameter 𝜗 can be either a relaxation or

extrapolation factor. 𝜗 = 3
2⁄ results in a second order extrapolation . In the second

stage, the structural governing equation is solved to find the displacement, X
n+1

,

velocity, V
n+1

, and acceleration, a
n+1

 at t
n+1

 by a second order, trapezoidal scheme

((3-21))). In the third step, the fluid governing equation is updated from time t
n
 to t

n+1

with respect to the velocity, V
n+1

, and the displacement, X
n+1

, using a new boundary

condition at time t
n+1

. These steps are repeated for the whole range of FSI simulation

problems in time domain.

𝐹𝑛+1 = 𝜗𝐹𝑛 + (1 − 𝜗)𝐹𝑛−1 (3-20)

𝑋𝑛+1 = 𝑋𝑛 +
1

2
 ∆𝑡(𝑉𝑛 + 𝑉𝑛+1) (3-21)

𝑉𝑛+1 = 𝑉𝑛 +
1

2
 ∆𝑡(𝑎𝑛 + 𝑎𝑛+1) (3-22)

𝑎𝑛+1 +
𝐶

𝑚
𝑉𝑛+1 +

𝐾

𝑚
𝑋𝑛+1 =

𝐹𝑛+1

𝑚

(3-23)

In addition, Li et al. 2002 suggested using an implicit method so that F
n+1

 is updated

with the newly calculated flow field velocity, V
n+1

, to fulfil a convergence criterion

according to equation ((3-24),

‖𝐹𝑗+1
𝑛+1 − 𝐹𝑗

𝑛+1 𝐹𝑗+1
𝑛+1⁄ ‖ < 𝜀 (3-24)

In equation ((3-24), j is the sub-iteration index and 𝜀 is a prescribed small constant.

If the newly calculated 𝐹𝑗+1
𝑛+1 is converged then the program goes to the next time step.

Farhat et al. 2006 suggested two second-order temporal accuracy algorithms. These

procedures are second-order accuracy for both the flow and the structures fields. Farhat

48

proposed a three-point backward difference method for solving the flow field and the

structure in the following steps. a) Predicting the interface velocity based on the second-

order accurate structural solution. b) Calculating the interface location based on the

structural governing equation. c) Solving the fluid governing equation based on the new

boundary conditions (interface location). d) Calculating force, pressure and shear stress,

acting on the fluid-structure interface to be used to predict the interface velocity as

described in for the first step.

The second method of Farhat was a half time step procedure; using the following

steps: a) Predicting the interface velocity based on the governing structural equations in

half of the time step; b) Calculating the interface position based on the velocity and

governing structural equation in half of the time step; c) solving the fluid governing

equation based on the velocity and location of the interface in half of the time step; d)

Calculating the force from the fluid flow at half of the time step to find the velocity and

location of the interface at the full time step by solving the governing structural

equations.

Zhang et al. 2007 studied the accuracy, stability and efficiency of their two

proposed FSI algorithms for an aero-elastic flutter benchmark. Their first algorithm

solves structural dynamic equations under hydrodynamic forces. Those forces are

calculated by a black box CFD simulation.

The structural equations are solved with a standard fourth order accurate Runge-

Kutta method. The discretised equation uses the fluid pressure at 𝑝(𝑡) and 𝑝(𝑡 + ∆𝑡

2
), in

which the latter is predicted by a second order backward extrapolation procedure

(equation ((3-25)).

𝑝(𝑡 + ∆𝑡) ≈
1

8
(3𝑝(𝑡 − 2∆𝑡) − 10𝑃(𝑡 − ∆𝑡) + 15𝑝(𝑡))

(3-25)

In the next step, the structural equations are solved to find the new position of the

boundary. Once the new boundary position is predicted, the CFD code solves the fluid

governing equations to generate a new pressure distribution based on the new boundary

location. The new pressure distribution is applied to the structural equations in the next

time step.

The second algorithm of Zhang is based on a multi-step, implicit second order

Adams Bashforth method to solve the structural equations, in which the predictor is an

explicit second-order Adams scheme. The forces from the fluid flow in the predictor step

49

at time n+1 can be approximated by a second order accuracy (equation (3-26)) or a forth

order accuracy (equation (3-27)).

𝑝(𝑡 + ∆𝑡) = 2𝑝(𝑡) − 𝑃(𝑡 − ∆𝑡) (3-26)

𝑝(𝑡 + ∆𝑡) = 4𝑝(𝑡) − 6𝑃(𝑡 − ∆𝑡) + 4𝑃(𝑡 − 2∆𝑡) − 𝑝𝑃(𝑡 − 3∆𝑡) (3-27)

Both Zhang algorithms require to call the CFD code only once per time step. They

presented the result for a flutter benchmark. The simulation results confirm that their

algorithms are superior to the conventional algorithm in which the fluid flow and

structure equations are solved alternately.

3.4.2 Fixed point FSI coupling algorithm with dynamic relaxation

One of the most basic yet efficient approaches is the fixed point algorithm with

dynamic relaxation which was suggested by Kuttler & Wall 2008, Mok & Wall 2001

and Wall 1999. This algorithm calculates the FSI interface within an incompressible

fluid flow (of a body placed with a flexible structure). A Dirichlet-Neumann scheme is

used to apply the algorithm to the FSI interface and to couple the nonlinear equation of

flow to the structures. In this scheme, the flow becomes the Dirichlet part of the problem

by the defining the flow velocity at the interface and the structure becomes the Neumann

part of the scheme by describing the forces on the interface. This technique couples two

black boxed field solvers (fluid and structure solvers) and predicts the FSI solution.

In the first place, a suitable location is predicted for the interface, 𝑦Γ
𝑛+1. Then, the

interface velocity, 𝑢Γ
𝑛+1 =

 𝑦Γ
𝑛+1− 𝑦Γ

𝑛

Δ𝑡
, is calculated for the flow domain based on the

predicted location at the new time step, 𝑦Γ
𝑛+1, and the previous location, 𝑦Γ

𝑛. In the next

step, the flow governing equation is solved based on this new velocity boundary

condition (Dirichlet) to find the coupling forces on the interface. Finally, the governing

structural equation is solved based on the calculated force (pressure) to obtain the

structural displacement 𝑦Γ
𝑛+1. At this stage it is possible to define an iterative cycle to

find a converged value of the structural displacement. A stopping criterion (equation

((3-28)) is introduced to check the convergence of the results.

𝑟Γ,𝑖+1
𝑛+1 = 𝑦Γ,𝑖+1

𝑛+1 − 𝑦Γ,𝑖
𝑛+1

(3-28)

In this equation, i, is the iteration index, and the residual, 𝑟Γ,𝑖+1
𝑛+1 , should be less than

a certain value (Deparis 2004) to achieve convergence. To accelerate convergence, a

relaxation coefficient is introduced.

50

𝑦Γ,𝑖+1
𝑛+1 = 𝑦Γ,𝑖

𝑛+1 + 𝜔𝑖𝑟Γ,𝑖+1
𝑛+1 = 𝜔𝑖𝑟Γ,𝑖+1

𝑛+1 + (1 − 𝜔𝑖)𝑑Γ,𝑖
𝑛+1

(3-29)

As a result, the fixed-point algorithm to solve the FSI problems consists of a relaxed

FSI cycle with appropriate relaxation factor and convergence criteria. The relaxation

parameter should be small enough to guarantee the convergence of the FSI simulation,

while avoiding unnecessary iterations. Also, it should be as large as possible to use as

much as possible of the new solution for the next iteration. Kuttler & Wall 2008

suggested two methods to define the relaxation parameter; Aitken relaxation and

steepest descent relaxation.

The main idea in the Aitken method (equation (3-30)) is to use the values from two

previous iterations to calculate the current coefficient; therefore, there is no possibility to

calculate the relaxation parameter after only one iteration.

𝜔𝑖+1 = −𝜔
𝑟Γ,𝑖+1

𝑟Γ,𝑖+2 − 𝑟Γ,𝑖+1

(3-30)

3.4.3 Reduced-order modelling (ROM) and interface location prediction

Vierendeels et al. 2008 proposed a ROM procedure to solve the FSI problem for a

heart valve as a bench mark. The heart valve was modelled with series of rigid links,

connected by hinges along with a torsional stiffness. The sets of implicit FSI equations

for the discretised fluid and structure are represented symbolically by equations (3-31)

and (3-32) respectively.

𝐺(𝑥𝑛+1, 𝑃𝑛+1) = 0
(3-31)

𝑃𝑛+1 = 𝐹(𝑥𝑛+1)
(3-32)

A sub-iteration can performed to find the interface at the new time step (𝑥𝑛+1) as

equation (3-33).

0 ≈ 𝐺(𝑥𝑛+1,𝑘, 𝑃𝑛+1,𝑘)

= 𝐺(𝑥𝑛+1,𝑘−1, 𝑃𝑛+1,𝑘−1) × ∆𝑥 +
𝜕𝐺

𝜕𝑝
]
𝑥𝑛+1,𝑘−1,𝑃𝑛+1,𝑘−1

× ∆𝑝

Where ∆𝑝 ≈ 𝑝(𝑥𝑛+1,𝑘−1 + ∆𝑥) − 𝑝(𝑥𝑛+1,𝑘−1)

(3-33)

3.5 Moving frame of reference

As it has been mentioned earlier, one of the main problems for simulating flow

around a flexible structure is the moving boundaries. The two main techniques to tackle

51

this problem are classified as: deforming grid methods similar to the Arbitrary-

Lagrangian-Eulerian (ALE) approach (Donea et al. 1982) and fixed grid methods, such

as the Immersed Boundary (IB) method (Peskin 1972).

An alternative approach for solving the moving-boundary flow problem for a

flexibly mounted, non-deforming (rigid) body is to attach the coordinate system to the

body, and solve the Navier–Stokes equations in a moving frame of reference. The

advantage of such an approach is that an optimized direct solver for the fluid can be

efficiently applied. This is particularly important when considering the very long

simulation time typically required to capture the instability of the fluid-structure

interaction. Newman and Karniadakis 1988 applied a coordinate transformation to a

flexible cable in the (x, y) direction; but did not include a rotational degree of freedom in

their simulation, which is of great significance in some problems. Li et al. 2002 used a

similar approach as Newman and Karniadakis for a single body undergoing both

translation and rotation. They introduced a coordinate transformation attached to the

transforming/rotating body. This formulation proved to be very flexible in handling

every possible motion of a body in two dimensional plane. In the following section their

method is briefly explained. In the Chapter 7 this method combined with the immersed

boundary interpolation method will be used to simulate the flow around a flexible

circular cylinder.

3.5.1 Moving frame Formulation

Assume that instantaneously the body translates by 𝑑 = (𝑔(𝑡), ℎ(𝑡))𝑇 and rotates

by an angle 𝜃 = 𝜃 (𝑡), in the absolute frame of reference(�́�, 𝑦’). Then a corresponding

moving frame of reference (x, y) can be attached to the body using the transformation.

�́� = 𝑔(𝑡) + 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃

�́� = ℎ(𝑡) − 𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃

(3-34)

Here, the prime denotes the absolute frame of reference, and the coordinates

𝒙 = (𝑥, 𝑦)𝑇 denote the moving frame of reference whilst 𝑑 = (𝑔(𝑡), ℎ(𝑡))𝑇 is the

coordinate of the origin of the moving frame of reference in the absolute frame of

reference. The rotational angle 𝜃 (𝑡) is defined to be consistent with the aeronautical

sign convention for the angle of attack, i.e., rotating the model clockwise in a flow from

left to right increases the angle (Figure 3-11).

52

Figure 3-11 : Coordinate transformation

Li et al. 2002 have derived the Navier-Stokes equations in a moving reference for a

two dimensional case using the above transformation, and obtained:

∇. V = 0 (3-35)

∂V

∂t
+ V. ∇V = −∇p + ϑ∇2V + G(v, t)

(3-36)

𝐺(𝑣, 𝑡) = 2�̇�𝐼0𝑉 + (�̇�)
2
𝑋 + �̈�𝐼0𝑋 − 𝐴

𝑇�̈� (3-37)

Where A is the rotation matrix:

𝐴 = (
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
−𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

) , 𝐴𝑇 = 𝐴−1 = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

)
(3-38)

And the velocity V in the moving frame reference is defined by:

𝑉 = �̇�𝐼0𝑋 + 𝐴
𝑇(𝑉 ́ − �̇�) , 𝑤ℎ𝑒𝑟𝑒 𝐼0 = (

0 −1
1 0

)
(3-39)

The term 2�̇�𝐼𝜃𝑉 is related to the deflecting or Coriolis force and (�̇�)
2
𝑋 is related to

the centrifugal force. The terms 𝐴𝑇�̈� and �̈�𝐼𝜃𝑋 are related to the forces due to unsteady

translation and rotation.

The pressure is kept unaltered. This not only simplifies the implementation of the

pressure boundary condition for the splitting scheme in the moving frame of reference,

but is also convenient when coupling the flow solver with a structural equation which is

primarily driven by the pressure forces in the absolute frame of reference.

53

For a non-accelerating motion this formulation is effectively stating that the

problem of a moving body in a uniform flow is equivalent to that of a stationary body in

a moving flow. For example, when a body is fixed in a flow and has an angle θ with the

free stream velocity, then according to the above formulation:�̇� = 0, 𝜃 ≠ 0 . Therefore,

the problem becomes flow around a body with not slip boundary conditions where the

inlet velocities are 𝑉 = 𝐴 �́� = (𝑐𝑜𝑠𝜃;−𝑠𝑖𝑛𝜃)𝑇.

3.5.2 Moving frame reference boundary conditions

The far field Dirichlet boundary condition for the transformed Navier–Stokes

equations can be specified using equation (3-41), i.e.,

𝑉 = �̇�𝐼0𝑋 + 𝐴
𝑇(𝑉 ́ − �̇�); (3-40)

𝑉 ́ is velocity in the far field in the absolute frame of reference.

For many numerical schemes, a far field Neumann boundary condition for the far

field is typically defined in the absolute frame of reference, such that:

∇́�́�. �́� = 𝑔𝑁
�́� , ∇́�́�. �́� = 𝑔𝑁

�́� (3-41)

Where �́� is the outward normal to the boundary and 𝑔𝑁
�́� , 𝑔𝑁

�́� are known functions.

Therefore it is necessary to transform this condition into the moving frame of reference.

Li et al. 2002 derived the corresponding Neumann boundary conditions in the

moving frame of reference as:

∇𝑢. 𝑛 = 𝑔𝑁
�́� − �̇�𝑛𝑦 , ∇𝑣. 𝑛 = 𝑔𝑁

�́� + �̇�𝑛𝑥 (3-42)

3.6 Freshly cleared nodes

An important issue arises when the movement of an immersed interface (boundary)

relative to the fixed background grid expose new nodes to the fluid domain that were

originally in the solid body. The new fluid nodes need to be addressed carefully when

using an FSI sharp interface method. Udaykumar et al. 2001 resolved this issue by

introducing a cell-merging formulation along with a quadratic interpolation among

neighbouring points in the fluid for the cut cell approach. Gilmanov and Sotiropolus

2005 reported that in the direct forcing approach or reconstruction method, as long as the

new grid point in the fluid is considered as an immersed cell, there should not be any

problem as according to the definition of the immersed or interface cell, the values of the

parameters at these points are interpolated before updating the fluid governing equation.

In other words, this implies that the movement of the immersed boundary at each time

54

step should be less than a computational cell. To enforce the above conditions they have

introduce the following restriction on the time step.

∆𝑡 ≤
ℎ

max
𝑚=1,𝑀

(|𝑈𝑚
𝑛 |, |𝑉𝑚

𝑛|, |𝑊𝑚
𝑛|)

(3-43)

Where in equation (3-43) U, V and W are the Cartesian components of the velocity

and h is the minimum grid size near the immersed boundary. Gilmanov and Sortirpolous

explained that in the dual time step approach (with extra inner iterations to achieve a

strong coupling at each time step) the above criterion is less restrictive in comparison

with to the Courant condition for the stability of the simulation.

3.7 Mass conservation and pressure treatment near IB

Conservation of mass is a very important factor for the calculation of the pressure as

pressure is a Lagrange multiplier for the continuity equation. There are few methods to

conserve mass near an immersed boundary depending on the IB method. Figure 3-12(a)

shows that in the continuous forcing approach the mass conservation is implemented for

all the cells in the fluid and solid domains by assuming there is no IB. The primary

advantage of this method is that there is no need to take extra measures in order to fulfil

the mass conservation near the IB. However, few other issues need to be addressed.

According to the equations (3-1) and (3-2) the gradient of the pressure in the fluid side

of IB, ΓIB-fluid, and at the immersed boundary ΓIB (and/or solid domain) can be calculated

by equations (3-44) and (3-45), respectively. Where in the equation (3-44), 𝑢𝑓𝑙𝑢𝑖𝑑 is the

flow velocity on the fluid side of domain; while in equation (3-45), the velocity could be

either for the fluid or the solid domain around the IB. Practically, it has not been proven

that the pressure gradients from these two equation are always the same at the IB; unless

the f is zero or there is a discontinuity in the velocity near the immersed boundary (jump

condition). Therefore, applying equations (3-1) and (3-2) to the whole domain (fluid and

solid, Figure 3-12(a)) may not be sufficient to accurately predict the pressure around the

immersed boundary (Kang et al. 2009).

∇𝑃|ΓIB−fluid = [−
𝜕𝑢𝑓𝑙𝑢𝑖𝑑

𝜕𝑡
− 𝑢𝑓𝑙𝑢𝑖𝑑. ∇𝑢𝑓𝑙𝑢𝑖𝑑

+ 𝜗∇2𝑢𝑓𝑙𝑢𝑖𝑑]
ΓIB−fluid

 𝑤ℎ𝑒𝑛 ∇. 𝑢𝑓𝑙𝑢𝑖𝑑 = 0

(3-44)

55

∇𝑃|ΓIB = [−
𝜕𝑢

𝜕𝑡
− 𝑢. ∇𝑢 + 𝜗∇2𝑢 + 𝑓]

ΓIB

 𝑤ℎ𝑒𝑛 ∇. 𝑢 = 0
(3-45)

Another example to show the need for an additional pressure treatment near ΓIB is

the case of very thin IB layer between two channels with a steady laminar flow in

opposite directions. In this case, the pressure gradients at each side of the ΓIB can be

calculated by applying equation (3-44) which results in an independent (decoupled)

solution across ΓIB (more detail see Kang et al. 2009).

Figure 3-12: Various methods for conservation of mass depending on the IB method

a) mostly for the continuous forcing approach (standard approach) b) mostly for the cut

cell approach with a reshaped control volume c) mostly for the reconstruction method,

conservation of mass only in fluid domain (Kang et al. 2009).

The decoupling of the solid domain from the fluid domain across the ΓIB is similar

to the immersed interface method that uses “jump conditions” at the immersed boundary

(Lee and LeVeque 2003). Also Kim et al. 2001 suggested implementing a modified

continuity equation in the solid domain or at ΓIB in order to remove the unwanted

coupling of the non-physical flow field in the solid domain to the actual flow field

domain. The parameter ‘q’ in this equation is known as the mass forcing term.

∇. 𝑢 = q in solid domain and ΓIB (3-46)

In addition, when the immersed boundary, ΓIB, is forced inside the fluid domain

either directly by using a Dirac delta function, f, in equation (3-1) or indirectly, by

reconstructing the velocity at the interface nodes (the nodes on the fluid domain which

have one neighbour in the solid domain) the forcing function and the reconstructed

velocity should satisfy conservation of momentum.

Figure 3-12(b) shows another method to conserve mass around the immersed

boundary, ΓIB. In this method the cells which are crossed by the immersed boundary are

divided into the fluid region which is solved purely by applying the Navier-Stokes

equation, and the solid region which does not need any solution. In this case, ΓIB

56

separates these two regions. Conservation of mass is satisfied in the reshaped control

volumes similar to the Finite volume Method (FVM) for an unstructured grid. A Similar

method was used by Udaykumar et al. 2001 among others in the cut cell approach. The

advantages of this method are that the conservation of mass is automatically enforced at

ΓIB and the pressure gradient and velocity in the fluid region are independent of the

parameters in the solid region. However, this method is very complicated for a moving

complex geometry especially in three dimensions (Iaccarino and Verzicco 2003).

Another shortcoming presented by Kirkpatrick et al. 2003 is that when the size of the

reshape mesh is very small, the matrix condition number rises significantly.

In the final method, according to the Figure 3-12(c), the control volumes which are

in the solid region and the ones crossed by the immersed boundary, ΓIB, are excluded

from the computational region and the mass conservation is only implemented in the

fluid domain. This method does not create a pressure coupling problem between the

fluid and solid region. Also, this method does not suffer from reshaping issues and other

complexities of the cut cell method.

3.7.1 Fictitious adding mass effect

The added mass effect rises only when an immersed body in an oscillatory stream

experiences an oscillatory hydrodynamic force in the direction of the stream. Morison et

al. 1950 modelled this oscillatory force as being composed of an inertial and a drag

force. The inertial force is in phase with the flow’s acceleration whilst the drag force is

in phase with the velocity.

Inertial forces consist of two parts: a ‘buoyance force’ which account for the

pressure gradient required to accelerate the flow past the body and the ‘added mass’. The

added mass is the fictitious mass of the fluid that is considered to be attached to the

structure, and if the structure is permitted to vibrate, it moves with the structure and

therefore adds to its inertia. The contribution of the added mass force to the inertial

forces acting on a vibrating structure is proportional to the relative acceleration of the

fluid with respect to the structure.

3.8 Calculation of force on immersed boundary

Generally, the forces on the immersed boundary can be classified as drag and lift

forces if the component of force is in line with the flow or in transverse direction to the

flow, respectively. Also, the force on a body in a fluid flow arises from two parts; the

57

pressure distribution and the shear stress along the submerged body. Depending on the

type of the immersed boundary method, the calculation of the force on the immersed

boundary is performed in different ways. In the continuous forcing approach (original IB

and feedback forcing method), the force on the IB is calculated directly with a

continuous function to be added to the Navier-Stokes equation which is not subject of

this thesis. In the sharp boundary approach, either using the cell deformation (cut cell

method) or the reconstruction method, calculating the immersed boundary forces is a

challenging task and despite a great number of publications this subject has rarely been

explained properly (Balaras 2004). Lai and Peskin 2000 suggested three methods to

calculate the drag force on an immersed boundary for the continuous forcing approach.

Balaras 2004, based on Lai and Peskin method, suggested to employ conservation of

momentum to calculate the immersed boundary forces in the sharp interface IB methods.

In addition, Choi et al. 2007 used the method proposed by Balaras in their simulation.

Moreover, there are other direct methods presented in literature to integrate the force due

to the pressure as well as the force due to friction. For instance, Li et al. 2002 used a

direct integration of the force on an immersed boundary in a moving reference frame

method. In the section below some of these methods will be discussed in more detail.

3.8.1 Integrating continuous force

This method is only applicable in combination with the continuous forcing

approach. The force, f, in the right hand side of equation (3-1) is integrated in the fluid

domain or the force F (in equation (3-4)) is integrated over the material points at the

immersed boundary (equation (3-47)). In this equation the negative sign can be

explained by Newton’s third law and Lb is the number of material points on the

immersed boundary.

𝐹 = −∫ 𝑓𝑑𝐱 = −∑𝐅𝒊𝑑𝑠𝑖

𝐿𝑏

𝑖=1𝑓𝑙𝑢𝑖𝑑 𝑑𝑜𝑚𝑎𝑖𝑛

(3-47)

3.8.2 Direct calculation of surface forces

The aerodynamical force exerted on a body by the flow is the integral of the local

stress. Equation (3-48) expresses, σ, the local stress in terms of the pressure (normal

stress) and τ, tangential stress (shear stress). The local stress can be integrated over the

immersed boundary to calculate the forces from the fluid on the body (equation (3-49)).

58

𝜎 = −𝑝I + 𝜏 (3-48)

𝐹 = ∫ 𝝈𝐧𝑑𝑠
Γ(𝑡)

= −∫ 𝑝𝐧𝑑𝑠
Γ(𝑡)

+∫ 𝝉𝐧𝑑𝑠 = 𝐹𝑝 + 𝐹𝑣
Γ(𝑡)

(3-49)

Where 𝐧 is the outward unit normal on the body, 𝐹𝑝 refers to the pressure force and

𝐹𝑣 refers to the viscous force. The above integration is defined in the absolute frame of

reference.

3.8.3 Application of momentum conservation

When the under-laying Cartesian mesh for the flow, in an IB method is not aligned

with the material points of the structure in a Lagrangian frame work; it is difficult to

calculate interface forces in an immersed boundary method. To solve this problem,

Balaras 2004 suggested a method based on the conservation of momentum for an

optional control volume around the immersed body. Suppose Γ0 is the boundary of a

fixed control volume surrounding the immersed boundary, Γb. The conservation of

momentum is applied to the bonded surface, Γ= Γ0  Γb. Using this, the force from the

fluid on the immersed boundary is calculated by equation (3-50) in vector notation or by

equation (3-51) in index notation for a two dimensional problems (for more details see

Lai and Peskin 2000 and Balaras 2004).

�⃗� =
𝑑

𝑑𝑡
∫ 𝜌�⃗⃗�𝑑𝐴
𝑏𝑜𝑢𝑛𝑑𝑎𝑒𝑑 𝑎𝑟𝑒𝑎

−∫ (𝜌�⃗⃗��⃗⃗� + 𝑝𝐈 − 𝛕)
Γ0

. 𝐧𝑑𝑠
(3-50)

𝐹𝑖 =
𝑑

𝑑𝑡
∫ 𝜌𝑢𝑖𝑑𝐴
𝑏𝑜𝑢𝑛𝑑𝑎𝑒𝑑 𝑎𝑟𝑒𝑎

−∫ (𝜌𝑢𝑖𝑢𝑖 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗)
Γ0

𝑛𝑗𝑑𝑠
(3-51)

3.8.4 Direct forcing method

Another method to calculate the force from the fluid to the structure is the direct

forcing approach which was introduced initially by Mohd-Yusof 1997. In this method,

after discretization, the force is added to the Navier-Stokes equations. Equation (3-52)

describes the semi-discretisation of equation (3-1). Equation (3-52) is explicitly

rearranged to find the force, f, with respect to the other parameters. Finally, in this

equation 𝑢𝑛+1 is replaced by 𝑉𝑠𝑜𝑙𝑖𝑑𝑛+1 (equation (3-53)). In this equation, f represents

the force of fluid on the immersed boundary (more details see Mohd-Yusof 1997 and

Fadlun et al. 2000)

un+1 − un

∆t
+ u. ∇u = −

1

ρ
∇P + ϑ∇2u + f

(3-52)

59

f =
Vsolidn+1 − un

∆t
+ u. ∇u +

1

ρ
∇P − ϑ∇2u

(3-53)

3.9 Some related Bench mark studies

The flow around a cylinder has been extensively studied both numerically and

experimentally for several decades and several cases have been reviewed by Williamson

1996 and Williamson & Govardhan 2004 and 2008. The flow problem, is sufficiently

simple to be analysed in great detail while, it is still retains the physics of more complex

flows. Separation of the boundary layer from the surface makes the flow around a

cylinder an interesting benchmark for immersed boundary method. In addition, as the

main goal for this research is to simulate FSI for cylindrical oil risers, a study of the flow

around a 2D cylinder is very relevant. In this section some of the numerical and

experimental results which describe the flow field around a moving/stationary cylinder

are presented.

Corbalan and de Souza 2010 suggested using an Eulerian method to predict the

forcing term which is added to Navier-Stokes equations in the continuous force IB

method. To validate and verify the method, four cases have been presented as bench

marks; flow over a stationary cylinder, flow over cylinder with a force oscillation in the

transverse direction to the flow, flow over a cylinder forced to oscillate in line with the

flow and flow over a cylinder with a forced rotational movement. In all cases the flow

was laminar and the amplitude of the oscillation was 0.4 and 0.2 times the cylinder

diameter. The frequency of the oscillation was selected to be 0.6 and 1.05 times of

frequency of the vortex shedding around a stationary cylinder. The lift and drag forces

for the above cases have been reported and compared with were compared the literature.

Choi et al. 2007 proposed a more general IB method that is valid for all Reynolds

numbers and can be implemented for various grid topologies. The immersed boundary

objects are represented by clouds of structured or unstructured nodes rendered as level

sets in the computational domain which can be used to categorise the computational

nodes as being in, near and outside of the flow domain. In addition, they have

decomposed the velocity near the immersed boundary into a component normal to the IB

and a tangential component. The tangential component near the boundary surface is

calculated by using a power-law function of the wall normal distance. They also used

general interpolation/reconstruction techniques to impose the immersed boundary. Five

60

different problems were simulated to verify their methods, including the flow over a

stationary cylinder and over a cylinder oscillating in line with the flow direction.

3.10 Discussion

In a complete Fluid-Structure interaction simulation the main challenges are to

address the complex boundary and large displacement of the immersed boundary. In the

previous chapters the physics and importance of these kinds of study were presented.

Also the general principles of the methodologies to tackle FSI problems are briefly

described. In this chapter the main focus was to explain and compare Immersed

boundary methods, their advantages and disadvantages. In additions, several technical

issue related to this problem were addressed.

It was briefly discussed, that IB methods were originally based on adding an extra

forcing term to the governing equations in order to enforce the boundary conditions. The

way in which this source term was defined was the main difference between various

versions of the IB methods.

As discussed earlier, in the discrete forcing approach the IB is imposed on the flow

domain after the discretization of Navier-Stokes equations. this means that introducing

the boundary conditions and forcing functions is not as straightforward as in the

continuous forcing approach and depends on the discretization method and its

implementation. Also, in the discrete forcing approach the definition of the pressure on

the boundary is not as straightforward as in the continuous forcing approach and requires

special treatment. The advantages of the discrete forcing approach are that the boundary

conditions can be introduced sharply without any extra stability constraint, while the

fluid and solid domains are clearly separated and the equations that describe the flow are

only solved in the fluid domain.

Cut-cell methods for fluid-structure interaction problems with moving boundaries

take significant amount of computational time (Udaykumar et al. 1999, 2001), while the

Ghost-Cell approach will create non-physical results when solving the fluid equations in

the solid domain.

Fadlun et al. 2000, studied the effect of three interpolation methods in the direct

forcing approach for a few different problems. The simulation process has been repeated

on various grids and the solution on the finest grid was assumed to be exact. It has been

shown that in the “step geometry” (without interpolation) the error deceases slower than

first order. Weighting the forcing by the fraction of volume occupied by the structure

61

better results with a nearly first order behaviour were obtained. The results obtained with

a flat boundary showed that the weighting methods underestimate the velocities so the

results are not entirely satisfactory. The linear interpolation method was the best among

these three and showed a second order accuracy. In the linear interpolation, the velocity

profile is assumed to vary linearly very close to the wall and this requires a sufficiently

fine grid near the immersed boundary. This issue could be improved by using a local

refinement with embedded grids (Kravchenko et al. 1996). However, the benefit and

costs of this kind of improvement should be compared with the boundary conforming

mesh method. Also Fadlun et al. 2000 claimed that interpolation methods have the same

effect on both stationary and prescribed moving boundary problem simulations.

Methods for calculating the hydrodynamical forces from the fluid on the structure

were explained as starting points to study the coupling between the fluid and the

structure in an FSI simulation. Some of the coupling strategies introduced were used as

part of solutions in the literature.

In the final section, some important concepts like fictitious mass and treatment of

pressure at immersed boundaries are discussed briefly. Also some of the studies of flow

around a cylinder are introduced. This problem will be used as bench mark later in the

thesis.

In the next chapter the immersed boundary method based on the

interpolation/reconstruction methodology is explained. The focus of the Chapter will be

to explain the details of the procedure and the programming in order to address the key

points that have been discussed thus far.

62

Chapter 4. Methodology

Simulating the flow around a moving boundary has been the subject of study during

the recent decades. The moving boundary is one of the main issues that need to be

solved in order to simulate the flow around a flexible structure. The two main techniques

to tackle this problem are: moving grid methods such as the Arbitrary Lagrangian

Eulerian (ALE) approach (Donea et al. 1982) and the fixed grid methods, such as the

Immersed Boundary (IB) method (Peskin 1972).

 ALE methods employ a grid that adapts to, moves and deforms with the moving

boundary. Such methods have been applied to study the transient aero-elastic response

of airfoils (Farhat et al. 1998), the FSI problem of a shock absorber [Le and Mouro

2001], the blood flow through compliant aortas (Fernandez & Moubachir 2005), etc. A

significant limitation of the ALE approach, however, stems from the fact that the mesh

conforms to the moving boundary and, as such, needs to be constantly displaced and

deformed following the motion of the boundary. The mesh moving step could be quite

challenging and expensive for complicated 3D problems. This situation is further

exacerbated in problems involving large structural displacements for which frequent

remeshing might be the only feasible approach to ensure a well-conditioned mesh at

each time step of the simulation. Because of this inherent limitation, the ALE approach

is only applicable to FSI problems involving relatively small structural displacements.

 In fixed grid approaches, on the other hand, the entire computational domain

including both the fluid and structure domains is discretized with a single, fixed, non-

boundary conforming grid system. In this case most commonly a Cartesian mesh is used

as the fixed background mesh. The effect of a moving immersed boundary is accounted

for by adding forcing terms to the governing equations of fluid motion so that the

presence of a no-slip boundary at the location of the interface can be felt by the

surrounding flow. Because of the fixed grid arrangement, such methods are inherently

applicable to FSI problems involving arbitrarily large structural displacements

(Borazjani et al. 2008).

63

The governing equations for a conventional conforming structural grid are

discretised in a curvilinear coordinate system to simulate the flow over a complex

geometry. The main advantages of this approach are that imposition of boundary

conditions is greatly simplified, and furthermore, the solver can be easily designed to

maintain adequate accuracy and conservation property. However, depending on the

geometrical complexity of the solid boundaries, grid generation and grid quality can be

major issues. A multi-block approach may help to divide the complex geometry into

simpler geometries. Furthermore, transformation of the governing equations to the

curvilinear coordinate system results in a complex system of equations and this

complexity can adversely impact the stability, convergence and operation of the solver.

Imposition of a non-grid-aligned solid boundary in a Cartesian grid method can be

complicated. The main challenge is to construct a boundary treatment which does not

adversely impact the accuracy and conservation properties of the underlying numerical

solver. Especially, for viscous flows, an inadequate resolution of the boundary layers

which form on the immersed boundaries can reduce the accuracy of the numerical

solution (Ye et al. 1999). Immersed boundary methods have also been used successfully

for viscous flow computations. However, in most cases (continuous forcing approach)

the immersed boundary is distributed across a few cell-widths. This is mainly due to

problems associated with representing a point force on a finite size mesh. Similarly, in

the so-called volume-of-fluid (VOF) method (Scardovelli and Zaleski 1999), the process of

interface reconstruction leads to a non-smooth interface. In contrast to these approaches,

in (indirect forcing approach) Cartesian grid methods the boundary is represented by a

sharp interface and this has advantages for high Reynolds number flows as well as flows

with strong two-way coupling between the flow and the boundary motion.

In this chapter the implementation of an interpolation/reconstruction immersed

boundary method (which is a Cartesian grid approach) to simulate flow around a flexible

boundary is presented. It is supposed that the flow is two dimensional with low

Reynolds number. A fractional step method is used to simplify the governing equations.

A finite volume method with staggered variable arrangement in uniform Cartesian mesh

has been used to discretize the Navier-Stokes equations.

The governing equations, discretisation, computational grid, interpolation procedure

and algorithm of the code are explained in detail, together with the calculation of the lift

and drag coefficients. In the immersed boundary method, the fluid grids in the vicinity

of the structure’s boundary which have at least one neighbour in the structural node

64

should be identified and this depends on the type of discretization used for the governing

fluid equation. Therefore, in the following section a brief description of the derivation of

the Navier-Stokes equations and its discretisation procedure is presented. Also, Navier-

Stokes discretised equations are used later in the calculation of the pressure boundary

condition for the pressure Poisson equation in the Chapter 7.

4.1 Governing equation

The derivation of the Navier–Stokes equations begins with an application of

Newton's second law and conservation of momentum is enforced for an arbitrary portion

of the fluid. In an inertial frame of reference, the general form of the equations of fluid

motion is (Batchelor 1967):

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = −∇𝑝 + ∇ ∙ S + 𝑓

(4-1)

Where 𝑉 is the flow velocity, 𝜌 is the fluid density, p is the pressure, S is the stress

tensor and f represents body forces enforced on the fluid to simulate boundary

conditions. The above relation represents conservation of momentum in a fluid and is an

application of Newton’s second law to a continuum. In fact, this equation is applicable

to any non-relativistic continuum and is known as the Cauchy momentum equation

(Batchelor 1967).

The effect of stress in the fluid is represented by the ∇𝑝 and ∇. S terms; these are

gradients of surface forces, similar to the definition of stresses in a solid. ∇𝑝 is called the

pressure gradient and arises from the isotropic part of the stress tensor. This part

corresponds to the normal stress that is present in almost all situations. The anisotropic

part of the stress tensor gives rise to ∇. S , which conventionally describes the viscous

forces. For incompressible flows, there is only a shear effect and hence, T is the

deviatoric stress tensor, so that the stress tensor σ is defined as (Batchelor 1967):

𝜎 = −𝑝𝐼 + 𝑆 (4-2)

The stress terms p and T are unknown, so the general form of the equations of

motion is not applicable to solve problems. A force model is needed in the equations of

motion to relate these stresses to the fluid motion (Feynman et al. 1963). few

assumptions on the specific behaviour of a fluid are applied in order to specify the

stresses in terms of other flow variables, such as velocity and density. Batchelor 1967

65

explained the assumptions on the deviatoric stress tensor S which is needed to obtain the

Navier-Stokes equations.

Equation (4-3) presents the governing equation for an unsteady, incompressible

fluid flow in vector form (Navier–Stokes equation).

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = −∇𝑝 + 𝜇∇2𝑉 + 𝑓

(4-3)

In the above equation
𝜕𝑉

𝜕𝑡
 is the unsteady acceleration, 𝑉 ∙ ∇𝑉 is convection

acceleration, −∇𝑝 is the pressure gradient. 𝜇∇2𝑉 implies that viscosity operates by

diffusion of momentum of a Newtonian fluid, and f is a body force (force per unit

volume), such as gravity or centrifugal force.

Note that only the convective terms are nonlinear for an incompressible Newtonian

flow. The convective acceleration is an acceleration caused by a (possibly steady)

change in velocity over position.

The incompressible Navier-stokes equations in a 2D Cartesian domain is defined as:

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) + 𝜌𝑔𝑥

(4-4)

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
) + 𝜌𝑔𝑦

(4-5)

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

(4-6)

4.2 Non-dimensional governing equation

For reasons of simplicity and easiness of generalization of the solution algorithm

the non-dimensional form of the Navier-Stokes equation is used. When the Navier

Stokes equation is presented using primitive variables, the following definitions are used

to obtain the non-dimensional equations.

𝑡∗ =
𝑡 𝑉

𝐷
, 𝑥∗ =

𝑥

𝐷
, 𝑦∗ =

𝑦

𝐷
, 𝑝∗ =

𝑃

𝜌𝑉2
, 𝑢∗ =

𝑢

𝑉
 , 𝑣∗ =

𝑣

𝑉
,

 𝑅𝑒 =
𝑉𝐷

𝜈
, 𝑔∗ =

𝑔𝐷

𝜌𝑉2

(4-7)

The general form of the non-dimensional Navier-Stokes equation is given in

equation (4-8). The external force used here is the gravity, 𝑔∗, though other volume

forces might also be added.

66

𝜕𝑉∗

𝜕𝑡∗
+ 𝑉∗ ∙ ∇∗𝑉∗ = −∇∗𝑝∗ +

1

𝑅𝑒
∇∗2𝑉∗ + 𝑔∗

(4-8)

In this equation the ‘*’ identifies the non-dimensional variables. It is omitted from

the equations later in the text.

4.3 Discretization method

To ensure the conservation of momentum by the discretization of convection, the

convective term in the momentum equation is written in conservative form before

discretizing. As shown in equations (4-9) and (4-10), this is equivalent to the non-

conservative from.

𝛻 ∙ 𝑉𝑉 = 𝑉 ∙ 𝛻𝑉 (4-9)

𝜕𝑢2

𝜕𝑥
+
𝜕𝑣𝑢

𝜕𝑦
= 2𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑢 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)

= 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦

(4-10)

Applying the same notation in the y direction, the non-dimensional Navier-Stokes

equations become:

∂u

∂t
+
∂u2

∂x
+
∂vu

∂y
= −

∂p

∂x
+ 1/Re (

∂2u

∂x2
+
∂2u

∂y2
) + gx

(4-11)

∂v

∂t
+
∂vu

∂x
+
∂v2

∂y
= −

∂p

∂y
+ 1/Re(

∂2v

∂x2
+
∂2v

∂y2
) + gy

(4-12)

4.3.1 Staggered arrangement

The first issue is to identify the points in the domain at which the values of the

unknown dependent variables have to be computed. The obvious choice is to store all

the variables at the centre of the control volumes; such an arrangement is called a

collocated variable arrangement. Since many of the terms in each of the equations are

essentially identical, the number of coefficients that must be computed and stored is

minimized and the programming is simplified by this choice. However, there is no need

for all the variables to share the same grid; a different arrangement may turn out to be

advantageous. In Cartesian coordinate, the staggered arrangement introduced by Harlow

and Welsh 1965 offers some advantages over the collocated arrangement. Several terms

that require interpolation with the collocated arrangement, can be calculated (to a

second-order approximation) without interpolation.

67

Typical staggered control volumes are shown in Figure 4-1. The control volume for

the ux and uy are displaced with respect to the control volume for the continuity equation.

Both the pressure and diffusion terms are naturally approximated by central difference

approximations without interpolation, since the pressure nodes lie at CV face centres and

the velocity derivatives needed for the diffusive terms are readily computed at the CV

faces. In addition, the mass fluxes in the continuity equation at the faces of a pressure

CV can be directly calculated.

The biggest advantage of the staggered arrangement is the strong coupling between

the velocities and the pressure, which helps to avoid certain convergence problems and a

decoupling of the pressure and velocity fields.

Figure 4-1: Control volumes for a staggered grid: for mass conservation and scalar

quantities (left), for x-momentum (centre) and for y-momentum (right)

4.3.2 Discretization of the momentum equation

The cells are numbered using indices i and j which identify cell centre positions

along the horizontal and vertical directions, respectively. Cell boundary positions are

labelled with half-integer values for the indices. According to Figure 4-2 each parts of

the x-momentum equation is discretized about the point (i+1/2,j) as follows:

∂u2

∂x
=

[
1
2 (ui+3

2
,j
+ u

i+
1
2
,j
)]
2

− [
1
2 (ui+1

2
,j
+ u

i−
1
2
,j
)]
2

(xi+1,j − xi,j)
 𝑜𝑟

(4-13)

∂u2

∂x
=
(ui+1,j)

2
− (ui,j)

2

2(xi+1,j − xi,j)
 where ui,j =

1

2
(𝑢

𝑖−
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗
)

(4-14)

∂uv

∂y
=

1
2
(u

i+
1
2
,j+1

+ u
i+
1
2
,j
) [1

2
(v

i+1,j+
1
2
+ v

i,j+
1
2
)] − 1

2
(u

i+
1
2
,j−1

+ u
i+
1
2
,j
) [1

2
(v

i+1,j−
1
2
+ v

i,j−
1
2
)]

(y
i+
1
2
,j+
1
2
− y

i+
1
2
,j−
1
2
)

 (4-15)

68

𝑂𝑟
𝜕𝑢𝑣

𝜕𝑦
=

(𝑢
𝑖+
1
2
,𝑗−

1
2
) (𝑣

𝑖+
1
2
,𝑗−

1
2
) − (𝑢

𝑖+
1
2
,𝑗+

1
2
) (𝑣

𝑖+
1
2
,𝑗+

1
2
)

(𝑦
𝑖+
1
2
,𝑗+

1
2
− 𝑦

𝑖+
1
2
,𝑗−

1
2
)

(4-16)

Where 𝑢
𝑖+

1

2
,𝑗+

1

2
 =

1

2
(𝑢

𝑖+
1

2
,𝑗+1

+ 𝑢
𝑖+

1

2
,𝑗
) and 𝑣

𝑖+
1

2
,𝑗+

1

2

=
1

2
(𝑣

𝑖+1,𝑗+
1

2

+ 𝑣
𝑖,𝑗+

1

2

) (4-17)

𝜕𝑝

𝜕𝑥
=

𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)

(4-18)

𝜕2𝑢

𝜕𝑥2
=

𝑢
𝑖+
3
2
,𝑗
− 2𝑢

𝑖+
1
2
,𝑗
+ 𝑢

𝑖−
1
2
,𝑗

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)
2

(4-19)

𝜕2𝑢

𝜕𝑦2
=

𝑢
𝑖+
1
2
,𝑗+1

− 2𝑢
𝑖+
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗−1

(𝑦𝑖+1
2
,𝑗+1 − 𝑦𝑖+1

2
,𝑗)

2
(4-20)

Figure 4-2: staggered arrangement used for discretization

In addition to the space index subscripts, there is a superscript for the number of

time cycles. For instant 𝑢
𝑖+1

2
,𝑗

(𝑛+1)
 shows the horizontal velocity at the time t = (n + 1)𝛿𝑡,

in which the 𝛿𝑡 is the time increment per cycle. When there is no superscript, it is

correspond to the value of the parameter at time t = n𝜕𝑡.

𝜕𝑢

𝜕𝑡
=

𝑢
𝑖+1

2
,𝑗

𝑛+1

− 𝑢

𝑖+1
2
,𝑗

𝑛

𝜕𝑡

(4-21)

69

4.3.3 Fractional step method

To solve the Navier-Stokes equations a splitting method is used. In the first part of

the solution an intermediate velocity is calculated by updating the velocity in time by

taking into account only convection and diffusion terms. The results of this stage are

updated by enforcing the Poisson equation for the pressure.

Equations (4-22) and ((4-24) show how the convective and diffusive term is used to

calculated intermediate velocity �̂� and 𝑣 in x and y direction respectively.

�̂�
𝒊+𝟏

𝟐
,𝒋

𝒏+𝟏

–𝒖

𝒊+𝟏
𝟐
,𝒋

𝒏

𝝏𝒕
=
(𝐮𝐢,𝐣)

𝟐
− (𝐮𝐢+𝟏,𝐣)

𝟐

(𝐱𝐢,𝐣 − 𝐱𝐢+𝟏,𝐣)

+

(𝒖
𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐
) − (𝒖

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

(𝒚
𝒊+
𝟏
𝟐
,𝒋−
𝟏
𝟐

− 𝒚
𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

+ 𝝂(

𝒖
𝒊+
𝟑
𝟐
,𝒋
− 𝟐𝒖

𝒊+
𝟏
𝟐
,𝒋
+ 𝒖

𝒊−
𝟏
𝟐
,𝒋

(𝒙𝒊+𝟏,𝒋 − 𝒙𝒊,𝒋)
𝟐

+

𝒖
𝒊+
𝟏
𝟐
,𝒋+𝟏

− 𝟐𝒖
𝒊+
𝟏
𝟐
,𝒋
+ 𝒖

𝒊+
𝟏
𝟐
,𝒋−𝟏

(𝒚
𝒊+𝟏

𝟐
,𝒋+𝟏

− 𝒚
𝒊+𝟏

𝟐
,𝒋
)
𝟐)+𝒈𝒙

(4-22)

�̂�
𝒊,𝒋+𝟏

𝟐

𝒏+𝟏

–𝒗

𝒊,𝒋+𝟏
𝟐

𝒏

𝝏𝒕
=

(𝒖
𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐
) − (𝒖

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)(𝒗

𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

(𝒙
𝒊−
𝟏
𝟐
,𝒋+
𝟏
𝟐

− 𝒙
𝒊+
𝟏
𝟐
,𝒋+
𝟏
𝟐
)

+
(𝐯𝐢,𝐣)

𝟐
− (𝐯𝐢,𝐣+𝟏)

𝟐

(𝐲𝐢,𝐣 − 𝐲𝐢,𝐣+𝟏)

+ 𝝂(

𝒗
𝒊+𝟏,𝒋+

𝟏
𝟐

− 𝟐𝒗
𝒊,𝒋+

𝟏
𝟐

+ 𝒗
𝒊−𝟏,𝒋+

𝟏
𝟐

(𝒙𝒊+𝟏,𝒋 − 𝒙𝒊,𝒋)
𝟐

+

𝒗
𝒊,𝒋+

𝟑
𝟐

− 𝟐𝒗
𝒊,𝒋+

𝟏
𝟐
,
+ 𝒗

𝒊,𝒋−
𝟏
𝟐

(𝒚
𝒊+𝟏

𝟐
,𝒋+𝟏

− 𝒚
𝒊+𝟏

𝟐
,𝒋
)
𝟐)+ 𝒈𝒚

(4-23)

For the velocities values which are not centred at points indicated in the mesh

diagram, an average of adjacent values is applied. For example:

70

𝑢i,j =
1

2
(𝑢

𝑖−
1
2
,𝑗
+ 𝑢

𝑖+
1
2
,𝑗
) and 𝑣𝑖,𝑗 =

1

2
(𝑣

𝑖,𝑗−
1
2
+ 𝑣

𝑖,𝑗+
1
2
)

(4-24)

𝑢
𝑖+

1

2
,𝑗+

1

2
 =

1

2
(𝑢

𝑖+
1

2
,𝑗+1

+ 𝑢
𝑖+

1

2
,𝑗
) and 𝑣

𝑖+
1

2
,𝑗+

1

2

=
1

2
(𝑣

𝑖+1,𝑗+
1

2

+ 𝑣
𝑖,𝑗+

1

2

) (4-25)

In this research equations (4-22) and (4-23) are solved by using 3
rd

 order Range-

Kutta method to calculate the intermediate velocities.

 In the second stage of the fractional step method the intermediate velocities from

Equations (4-22) and (4-23) are updated by adding the effect of pressure.

𝑢
𝑖+1

2
,𝑗

𝑛+1

– �̂�

𝑖+1
2
,𝑗

𝑛

𝜕𝑡
=
𝑝𝑖+1 − 𝑝𝑖
𝑥𝑖+1 − 𝑥𝑖

(4-26)

𝑣
𝑖+1

2
,𝑗

𝑛+1

–𝑣

𝑖+1
2
,𝑗

𝑛

𝜕𝑡
=
𝑝𝑗+1 − 𝑝𝑗

𝑥𝑗+1 − 𝑥𝑗

(4-27)

 The calculation of pressure equation is discussed in the next part.

4.3.4 Calculation of pressure

The solution of the incompressible Navier-Stokes equations is complicated by the

lack of an independent equation for the pressure, whose gradient contributes to

momentum equations. One way to overcome this issue is to construct an equation for the

pressure field to guarantee satisfaction of the continuity equation (Ferziger and Peric

2002).

The form of the continuity equation suggests that if the divergence of the

momentum equation is taken, then the continuity equation could be used to simplify the

resulting terms, which leads to a Poisson equation for the pressure. The procedure is as

follow:

Taking the divergence from the general Cartesian form of Navier-Stokes (equation

(4-3)) or from the non-dimensional form (equation (4-8)) will lead to:

∇ ∙ (
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉) = ∇ ∙ (−∇𝑃 +

1

𝑅𝑒
∇2𝑉 + g)

(4-28)

While in the indices form the equation will look like as:

𝜕

𝜕𝑥𝑖
(
𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑖
(−

𝜕𝑝

𝜕𝑥𝑖
+ 1/𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝑔𝑥𝑖)

(4-29)

Transferring the divergence of the pressure gradient to the left side of the equation:

𝜕

𝜕𝑥𝑖
(
𝜕𝑝

𝜕𝑥𝑖
) = −

𝜕

𝜕𝑥𝑖
(
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
− 1/𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

− 𝑔𝑥𝑖 +
𝜕𝑢𝑖
𝜕𝑡
)

(4-30)

71

It is possible to simplify the above equation more, as the viscous and unsteady

terms disappear by applying the continuity equation:

∂

∂xi
(
∂p

∂xi
) = −

∂

∂xi
(
∂uiuj

∂xj
)

(4-31)

In some research even the temporal and viscous terms are not omitted depending on

the accuracy of the results and in what order the continuity equation is forced in previous

time steps. The above pressure equation (equation (4-31)) can be solved by one of the

numerical methods for elliptic equations. In the pressure equation, the right hand side is

a sum of the derivatives of terms in the momentum equations; these terms must be

approximated in the same way as the momentum equation. To maintain the consistency

among the approximation used, it is best to derive the pressure equation from the

discresized momentum equation. From equations (4-28) and (4-29) one can obtain:

𝐷𝑖,𝑗
𝑛+1

–𝐷𝑖,𝑗

𝑛

𝜕𝑡
= −𝑄𝑖,𝑗 −

𝑝𝑖+1,𝑗 + 𝑝𝑖−1,𝑗 − 2𝑝𝑖,𝑗

𝜕𝑥2
−
𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗−1 − 2𝑝𝑖,𝑗

𝜕𝑦2

+ 1/𝑅𝑒 (
𝐷𝑖+1,𝑗 +𝐷𝑖−1,𝑗 − 2𝐷𝑖,𝑗

𝜕𝑥2
−
𝐷𝑖,𝑗+1 + 𝐷𝑖,𝑗−1 − 2𝐷𝑖,𝑗

𝜕𝑦2
)

(4-32)

 𝐷𝑖,𝑗 =
𝑢
𝑖+
1
2
,𝑗
–𝑢

𝑖−
1
2
,𝑗

𝜕𝑥
+
𝑣
𝑖,𝑗+

1
2

–𝑣
𝑖,𝑗+

1
2

𝜕𝑦

(4-33)

𝑄𝑖,𝑗 =
(𝑢𝑖+1,𝑗)

2
+ (𝑢𝑖−1,𝑗)

2
− 2(𝑢𝑖,𝑗)

2

𝜕𝑥2
−
(𝑣𝑖+1,𝑗)

2
+ (𝑣𝑖−1,𝑗)

2
− 2(𝑣𝑖,𝑗)

2

𝜕𝑦2

+
2

𝜕𝑥 𝜕𝑦
[(𝑢

𝑖+
1
2
,𝑗+

1
2
) (𝑣

𝑖+
1
2
,𝑗+

1
2
) + (𝑢

𝑖−
1
2
,𝑗−

1
2
) (𝑣

𝑖−
1
2
,𝑗−

1
2
)

− (𝑢
𝑖+
1
2
,𝑗−

1
2
)(𝑣

𝑖+
1
2
,𝑗−

1
2
) − (𝑢

𝑖−
1
2
,𝑗+

1
2
) (𝑣

𝑖−
1
2
,𝑗+

1
2
)]

(4-34)

The procedure for determining the pressure is based on the requirement that 𝐷𝑖,𝑗
𝑛+1

vanishes for every cell at the end of the time cycle. This assumption leads to the

equation for the pressure:

𝑝𝑖+1,𝑗 + 𝑝𝑖−1,𝑗 − 2𝑝𝑖,𝑗

𝜕𝑥2
−
𝑝𝑖,𝑗+1 + 𝑝𝑖,𝑗−1 − 2𝑝𝑖,𝑗

𝜕𝑦2
= −𝑅𝑖,𝑗

(4-35)

Where 𝑅𝑖,𝑗 will be:

𝑅𝑖,𝑗 = 𝑄𝑖,𝑗 −
𝐷𝑖,𝑗

𝜕𝑡
− 𝜈 (

𝐷𝑖+1,𝑗 − 𝐷𝑖−1,𝑗 − 2𝐷𝑖,𝑗

𝜕𝑥2
−
𝐷𝑖,𝑗+1 − 𝐷𝑖,𝑗−1 − 2𝐷𝑖,𝑗

𝜕𝑦2
)

(4-36)

72

In principal, it is possible to use 𝑄𝑖,𝑗 instead of 𝑅𝑖,𝑗 in the equation (4-35), since 𝐷𝑖,𝑗

should be zero in previous time steps. However, in practice the use of 𝑅𝑖,𝑗 is desirable so

that equation (4-35) does not have to be solved extremely accurately in order to keep the

accumulative error in the divergence to a sufficiently low level. Harlow and Welch

1965 reported that with a very stringent convergence requirement, the cumulative results

of calculation are independent of using 𝐷𝑖,𝑗 or 𝑅𝑖,𝑗 in equation (4-35).

Equations equations (4-22) to (4-27), (4-35) and (4-36) are the main equations used

in performing the calculation of the flow parameters. 𝑅𝑖,𝑗 is computed for every cell,

using the velocities available at the beginning of the cycle using equations (4-26) and

(4-27). Secondly 𝑝𝑖,𝑗 is calculated using equation (4-35). Finally the intermediate

velocities that are calculated from equations (4-22) and (4-23) are updated by inserting

the new pressure in equations (4-26) and (4-27). The process will be continued in time.

4.3.5 Mesh generation

One of the advantages of using immersed boundary methods is the use of simple

Cartesian mesh generation. In this approach regardless of the location of boundary a

structured grid is created to cover the entire computational domain, including possible

solid objects inserted in the flow domain. In this research staggered grid arrangement is

used. In Figure 4-3, the computational grid is shown by the black lines with coordinates

xcoord(i) and ycoord(j) in x and y direction, respectively. The blue lines are passing

through the centre of the computational cells. These coordinates are stored in the xcrd(i)

and ycrd(j) arrays in x and y direction respectively. Also, as the staggered variable

arrangement is used, in order to define the boundary conditions it was necessary to

define the blue line beyond the computational grid, effectively introducing “ghost” or

virtual grid points. The calculation however is just limited to the main area. Later in

Chapter 5, a special mesh is used which is finer around the solid boundary which

becomes coarser towards the outside in order to limit the number of mesh points.

73

Figure 4-3 : Uniform staggered mesh coordinate

4.3.6 Location of velocities and pressure

In the collocated arrangement the pressure and velocities are defined at the centre of

the grid cells. However, in the staggered arrangement the pressures and the velocities are

not defined at the same locations. According to the Figure 4-4 the pressures are defined

at the cell centres where the lines xcrd(i) and ycrd(j) are intersecting. On the other hand

the velocity in x direction, u(i,j) is introduced at the intersections of the xcoord(i) and

ycrd(j) lines and the velocity in y directions is defined at the intersections of ycoord(j)

and xcrd(i).

74

Figure 4-4: velocities and pressure positions in a staggered arrangement

4.4 Boundary conditions

As the staggered arrangement has been used for the discretization of the governing

equations, the definition of the boundary condition should match this arrangement. For

the inlet, outlet, top and bottom, uniform velocity, convective outflow and symmetry

boundary conditions for the velocity have been used respectively. According to the IB

procedure when the solid boundary is not aligned with the background grid the

definition of the no-slip condition at the immersed boundary (here the cylinder wall)

becomes cumbersome. The definition of the boundary conditions are detailed in the

following sections.

4.4.1 Inlet

At the inlet, it is straight forward to introduce the velocity in the x direction, u, as

this velocity is defined on the cell boundary, xcoord(0), which is the first line of the

computational grid. According to the Figure 4-5, u(0,1), u(0,2) … and u(0,ny) (or

generally u(0,j) j=1,2…ny) has been defined as the inlet velocity in x direction (green

arrows in Figure 4-5). However the inlet velocity in the y direction, v, cannot be defined

directly due to the staggered arrangement of the variables. To resolve the issue, the

velocities v(0,j) and v(1,j) are defined in a way that the average of these two velocities,

corresponds to the actual v-velocity at the inlet. (v(0,0)+v(1,0))/2 or (v(0,1)+v(1,1))/2

75

…. And (v(0,ny)+v(1,ny))/2. For the special case of the zero inlet v-velocity v(0,j)= -

v(1,j) is defined (the red arrows in Figure 4-5).

Figure 4-5 Staggered arrangement – bold lines are cell boundaries which velocities are

calculated, and pressure are calculated on intersection of light lines. Velocities in y

direction need to be interpolated for inlet. Velocities in x direction are specified directly on

the boundaries.

4.4.2 Outlet

As the velocities and the pressure are not known at the exit and the computational

domain must be finite, according to the Orlanski 1976 the convective outflow boundary

conditions are applied for each velocity flux component. The location of the outflow

boundary must be sufficiently downstream of the immersed object and the recirculation

from the IB should not be present and the streamlines should be parallel. Also at the

outflow boundary:

𝜕𝑢

𝜕𝑦
=
𝜕𝑣

𝜕𝑦
= 0 and

𝜕𝑝

𝜕𝑛
= 0

(4-37)

Equations (4-38) and (4-39) present a simplified version of the unsteady convective

boundary conditions in the staggered arrangement. In these equations, 𝑈𝑐𝑜𝑛
∗ is the

convection velocity at the outlet and it is assumed to be a constant value. In Figure 4-5

the purple arrows and orange arrows are the u and v velocities that are used to

implement the outflow boundary conditions in x and y directions respectively.

76

(𝑢(𝑛𝑥,𝑗)
𝑛+1 − 𝑢(𝑛𝑥,𝑗)

𝑛)

𝑑𝑡
= 𝑈𝑐𝑜𝑛

∗
(𝑢(𝑛𝑥,𝑗)

𝑛 − 𝑢(𝑛𝑥−1,𝑗)
𝑛)

𝑑𝑥

(4-38)

(𝑣(𝑛𝑥+1,𝑗)
𝑛+1 − 𝑣(𝑛𝑥+1,𝑗)

𝑛)

𝑑𝑡
= 𝑈𝑐𝑜𝑛

∗
(𝑣(𝑛𝑥+1,𝑗)

𝑛 − 𝑣(𝑛𝑥,𝑗)
𝑛)

𝑑𝑥

(4-39)

4.4.3 Symmetry boundary condition

For the top and the bottom boundaries the symmetry condition has been used. ie. no

flows passes across the boundaries. This implies that the normal velocities are set to

zero and the normal gradient of the u velocity is assumed to be zero as well. In Figure

4-5, the blue arrows represent the velocities in the y direction which are set to zero at the

boundary (Dirichelt boundary conditions) and the yellow arrows define the location of

the Neumann boundary condition for the velocity in x direction. Equations define the

symmetry boundary conditions that are applied for the staggered arrangement.

 v𝑖,𝑛𝑦 = 0 𝑢𝑖,𝑛𝑦+1 = 𝑢𝑖,𝑛𝑦
(4-40)

v𝑖,0 = 0 𝑢𝑖,0 = 𝑢𝑖,1 (4-41)

4.4.4 Solid boundary not conforming mesh (immersed boundary)

It has been mentioned earlier that the use of Cartesian coordinates may result in a

mesh that is not aligned with the solid boundaries. Solid boundaries could cut the grid

cells which complicates the implementation of the boundary conditions. For instance, it

is not always possible to apply no slip boundary conditions directly at the walls of a

solid. To resolve this issue different methods are used to introduce a solid boundary to

the fluid flow. This notion is the main subject of the immersed boundary methods and

has been addressed in the chapter 3.

In this part, the procedure to define the boundary conditions around the non-

conforming solid boundaries is briefly discussed. Firstly, a Cartesian mesh is defined for

the whole of the fluid domain regardless of the location of an immersed solid, see Figure

4-6 left.

The presence of the solid boundary is introduced to the flow solver by using an

interpolation immersed boundary method. As shown in Figure 4-6 right, to update each

velocity component in the CFD solver, 8 neighbouring velocities located around that

specific velocity are needed for the discretization of the Navier-Stokes equations on a

staggered grid.

77

Figure 4-6 Left, a part of domain with not conforming Cartesian mesh, regardless of

solid existence. Right, A specific velocity with its 8 velocities around necessary for its

calculation.

In this figure, it is clearly shown that two out of eight neighbouring velocities are

located inside the solid. The flow solver cannot update this specific velocity

automatically and specific treatment is needed. In these cases the governing equations

are replaced with interpolation equations that use velocities at the wall of the solid and

neighbouring velocities located in the flow field.

Figure 4-7, shows all the velocities in the x and y directions (u and v components)

which need to be interpolated inside the fluid domain. All of these velocities cannot be

calculated automatically by the governing equation as at least one out of the eight

neighbouring velocities components are located inside the solid.

Figure 4-7: A 2D Cartesian grid with staggered arrangement, left: u velocities needed

to be interpolated near immersed boundary. Right: v velocities needed to be interpolated

near the immersed boundary.

78

Interpolation equations are formulated for all “boundary” velocities in the flow

domain that require interpolation.

Interpolation is implemented in the direction perpendicular to the solid boundary,

unlike some of interpolation methods presented in the literature. To simplify the

interpolation procedure, the solid boundary is locally assumed to be a circular cylinder.

Perpendicular lines cut the cylinder on one side and grid lines on the other side. Figure

4-8, shows two possible interpolation scenarios to interpolate ui,j . In Figure 4-8, the

velocity, u2, is interpolated using ui-1,j and ui-1,j+1. Then ui,j is interpolated using u1 (on the

cylinder wall) and u2. This procedure will be repeated for all the u and v boundary

velocities that are presented on Figure 4-7.

Figure 4-8: interpolation method for the velocity near the boundary in two different

scenarios. ui,j has been interpolated between u1=0 on the boundary and u2.

It is assumed that the normal pressure gradient is nearly zero (
𝜕𝑝

𝜕𝑛
≈ 0) near the

stationary (or moving with constant velocity) immersed boundary (if the IB has

acceleration,
𝜕𝑝

𝜕𝑛
≠ 0) therefore pressure is not extrapolated to the immersed boundary.

On the other hand, the pressure of 4 locations is used in the staggered arrangement to

update the pressure inside the fluid governing equation in CFD solver (Pressure Poisson

equation). As shown in Figure 4-9 left, the value of Pi,j depend on Pi,j+1, Pi,j-1, Pi+1,j and Pi-

1,j. If any of these four points were inside of the solid boundary, they are assumed to be

the same value as Pi,j (
𝜕𝑝

𝜕𝑛
= 0). In the case of the moving IB (with acceleration) the

pressure gradient is calculated by projecting the differential form of the momentum

equation perpendicular to the boundary (see chapter 7).

79

In Figure 4-9 right, shaded cells are the cells in which the pressures are updated

using governing equations. On the Figure 4-9 left, although pressures on the shaded

areas are updated using governing equations, they have a neighbour of which their

pressure value is not explicitly updated.

Figure 4-9: Right, shaded area shows the cells in which the pressure is updated in the

CFD solver. Left, cells with at least one immersed boundary pressure points is shown.

In the next section the algorithm of the code is explained briefly and the flow chart

of the program is presented.

4.5 Solving procedure

The solution algorithm consists of four main parts.

 At the beginning a simple Cartesian grid is created as a computational domain.

Three attributes, umask, vmask and pmask are defined for u and v velocities and

pressure respectively at entire domain. These attributes are zero for the cells of

the domain that are covered by the immersed solid (they are not directly updated

by governing equations). The interface cells which were not updated by

governing equations are categorised and the interpolation coefficients for the

velocity component are calculated (in the “Ingrid “part of the following

flowchart). Also, the initial condition and constant parameters are defined at this

stage (in the “init” part of the algorithm). The boundary conditions are

implemented in the “bounds” algorithm. The interpolation formulas are applied

to the governing equations as boundary conditions. In addition the discretised

equations matrix is decomposed using an incomplete LU decomposition

algorithm in the “inisol” section of the program.

80

Figure 4-10: flowchart of the flow solver used to apply interpolation method

81

 In the second stage, a Runge-Kutta algorithm is used to calculate the

intermediate velocity components by implementing the convective and diffusive

part of the Navier-Stokes equations and updated boundary conditions.

 In the third stage, using the intermediate velocities the pressure Poisson equation

is solved in the ’solve’ subroutine. This algorithm is the most time consuming

part of the codes and is repeated to find a converged solution for the pressure (to

a user define range) at each time step (or at least 5000 times).

 In the final stage the velocity is updated using the new pressure from the

previous stage which effectively projects the intermediate velocities on a

divergence-free velocity field. This part is performed in the ‘calcuv’ subroutine.

The program is marched in time from the second stage to reach a developed

solution. At each time step the minimum and maximum divergence of the velocities

are calculated. And the results are saved at each time step. The above algorithm is

presented at Figure 4-10. In this flow chart the moving immersed boundary is not

included. In the next section the solution of the Naiver –Stokes equations in moving

frame of reference is discussed and the related algorithm is explained in Chapter 7.

4.6 Moving frame of reference

Moving frame of reference has been widely used to solve the Fluid-Structure

interaction for the problems in which a rigid body is displacing/rotating in a steady flow

field (for instance Li et al. 2002). This method which is presented in Section 3.5 is

capable of handling large displacement/rotation of a body in two dimensions. However,

there are two main differences in the simulation used here and the one that Li et al 2002

has introduced. First of all, Li et al. used a spectral/hp spatial discretization, while, here

an FVM with a staggered variable arrangement is used for the discretization. Secondly,

here an immersed boundary with interpolation method is used to force the solid

boundary, while in Li et al. the solid boundary was resolved with the unformatted mesh,

so the no-slip boundary conditions would be directly enforced. For simplification, the

cylinder was only allowed to move in transverse direction so that equation (3-37) could

be simplified to incorporate only the acceleration of the solid boundary in the transverse

direction. The moving frame of reference method is used to simulate the flow around an

oscillating cylinder in the cross flow direction in chapter 7 in more detail. The

82

simulation results using this method are compared with the literature and results of

simulation in an inertial frame of reference.

To evaluate the simulation and also to couple the fluid governing equation to the

structural solver (for the fluid structure interaction), the forces and moment acting on a

body in the moving frame of reference should be calculated. In the next sections, the

calculation of force and moments acting on an immersed boundary with both an inertial

frame of reference and a moving frame of references is addressed.

4.7 Evaluating forces and moment on an immersed boundary

To simulate Fluid-Structure-Interaction (FSI) and Vortex Induced Vibration (VIV)

using immersed boundaries and the interpolation method, it is necessary to calculate the

body forces explicitly. Here, the method used to calculate the lift and drag force due to

pressure and shear stress is discussed. It is assumed that drag and lift forces are positive

in the x and y direction, respectively. Figure 4-11(left) and equations (4-5) to (4-7)

illustrate the calculation method for the lift and drag force due to the pressure on an

immersed body.

The forces will be resolved into components parallel and perpendicular to the free

stream velocity.

The hydrodynamic force exerted on a body by the flow can be obtained by the

integration of local stress:

𝜎 = −𝑝I + 𝜏 (4-42)

𝐹 = ∫ 𝜎�́�𝑑�́�
Γ(𝑡)

= −∫ 𝑝�́�𝑑�́�
Γ(𝑡)

+∫ 𝜏�́�𝑑�́� = �́�𝑝 + �́�𝑣
Γ(𝑡)

(4-43)

Where �́� is the outward unit normal on the body, �́�𝑝 refers to the pressure force and

�́�𝑣 refers to the viscous force. Note that the above integration is defined in the absolute

frame of reference.

The total force, however, can be evaluated in the transformed plane and then

mapped back onto the absolute frame of reference since:

𝐹 = �́�𝑝 + �́�𝑣 = 𝐴(𝐹𝑝 + 𝐹𝑣) (4-44)

Where 𝐹𝑝, 𝐹𝑣 are the forces calculated in the transformed plane.

𝑑𝐹 = 𝑃𝑑𝐴 (4-45)

𝑑𝐹𝐿𝑖𝑓𝑡𝑝 = 𝑃𝑑𝐴(−𝑠𝑖𝑛𝜃) (4-46)

𝑑𝐹𝐷𝑟𝑎𝑔𝑝 = 𝑃𝑑𝐴(−𝑐𝑜𝑠𝜃) (4-47)

83

P is the pressure on the immersed boundary, 𝑑𝐹𝐿𝑖𝑓𝑡𝑝 and 𝑑𝐹𝐷𝑟𝑎𝑔𝑝 are the

component of lift and drag due to pressure. 𝑑𝐴 is the area between two consecutive

locations on the immersed boundary in which the pressure was used to calculate lift and

drag forces. In IB methods, especially when using interpolation, the pressure on the

immersed boundary is not known directly, however for the stationary cases it is assumed

that the gradient of pressure is zero near the immersed boundary; hence the nearest

pressure on the fluid domain is taken as the pressure on the immersed boundary (Figure

4-12). In the following part, the pressure calculation method is discussed in more details.

Figure 4-11: calculation of lift and drag component of force due to pressure (left) and

shear force (right)

Lift and drag due to shear stress are calculated as illustrated in Figure 4-11 right,

equations (4-48) and (4-49).

𝑑𝐹𝑆ℎ𝑒𝑎𝑟 = 𝜏𝑤𝑎𝑙𝑙𝑑𝐴 (4-48)

𝑑𝐹𝑦 = 𝑑𝐹𝑙𝑖𝑓𝑡𝑠 = (𝜏𝑤𝑎𝑙𝑙𝑑𝐴) 𝑐𝑜𝑠𝜃 (4-49)

𝑑𝐹𝑥 = 𝑑𝐹𝑑𝑟𝑎𝑔𝑠 = (𝜏𝑤𝑎𝑙𝑙𝑑𝐴)(−𝑠𝑖𝑛𝜃) (4-50)

𝜏𝑤𝑎𝑙𝑙 is the shear stress on the immersed boundary. 𝑑𝐹𝑑𝑟𝑎𝑔𝑠 and 𝑑𝐹𝑙𝑖𝑓𝑡𝑠 are the

components of drag and lift due to the shear forces on the IB. The Shear stress

calculation method is presented in the next part. To simulate the solid body with a

rotational degree of freedom, calculation of the angular momentum is necessary. The

momentum due to shear force can be calculated using the equation (4-51), in this

equation, R is the radius of the immersed boundary (circular cylinder).

𝑑𝑀𝑆ℎ𝑒𝑎𝑟 = 𝑅 𝜏𝑤𝑎𝑙𝑙𝑑𝐴

(4-51)

Generally, in the inertial frame, the moment of the forces on a surface Γ(𝑡) of a

body about an origin O (for instance the centre of the body) is given by:

84

�́� = ∫ �́� × (𝜎. �́�)𝑑�́�
Γ(𝑡)

= ∮𝑝(�́� × �́�)𝑑�́� + ∮ �́� × (𝜏. �́�)𝑑�́� = �́�𝑝 + �́�𝑣 ,
(4-52)

where �́� is a vector from the origin to the element of the surface Γ(𝑡). The origin is

an optional point due to the definition of momentum; moment is a free vector. Therefore

the resultant moment for both moving frame and inertial frame of reference is the same.

Which simply states that �́� is the rotated vector from the origin in the moving frame of

reference. Therefore for a two-dimensional problem:

�́� = 𝑀 = −∮𝑝(𝐱 × 𝐧)𝑑𝐬 + ∮𝐱 × (𝜏. 𝐧)𝑑𝐬
(4-53)

In the above equations, �́� and 𝑀 are the moments of the interaction forces in the

inertial and moving frames of reference, respectively. Also x is the location of the

element on the surface Γ(𝑡) in the moving frame. The moments calculated either in the

moving frame of reference or in the inertial inertia frame of reference will be the same.

4.8 Direct calculation of pressure over an IB

Finding the pressure around the immersed boundary is an important issue when

calculating lift and drag forces. After finding the pressure on the immersed boundary,

the body force due to the pressure on the immersed body can be calculated by

integrating the pressure over its boundary. The vertical and horizontal components of the

force will be Lift and Drag forces due to the pressure, respectively. The pressure on the

immersed body can be calculated either directly or by extrapolation.

4.8.1 Calculation of pressure force without extrapolation

For a stationary immersed boundary or a boundary with constant velocity, one can

assume that the gradient of the pressure in the perpendicular direction to the surface is

zero close to the boundary. Therefore, the pressure on the immersed boundary will be

the same as the pressure in the nearest cell when looking outward in the radial direction.

These pressures are located in the flow domain and updated by the governing equations

of the fluid flow. Figure 4-12 left, illustrates how, the pressure near the cylinder was

used as the pressure on top of the cylinder.

If the immersed body undergoes acceleration, the gradient of the pressure near the

IB is not negligible and the gradient of the pressure can be calculated by projecting the

momentum equation in the direction perpendicular to the immersed boundary. The

subject will be address in the Chapter 7.

85

Figure 4-12: left, pressure near the immersed boundary directly used as pressure on

the boundary. Right, linear extrapolation method to calculate pressure on the immersed

boundary.

4.8.2 Extrapolating the pressure

This method could be either linear or nonlinear (second order, exponential…). In

this research only the linear extrapolation of the pressure to the cylinder wall is studied.

For the linear extrapolation of the pressure on the cylinder, two consecutive pressure

values in the perpendicular direction to the immersed boundary are needed for each

point. Figure 4-12 shows a schematic of the extrapolation method. A line perpendicular

to the immersed boundary is used to find two pressure values at 2 locations. The first

pressure, Pi,j is used directly, however, the second pressure, Pint, is interpolated using

two other pressure points. Following the calculation of Pi,j and Pint, the pressure on the

cylinder can be found by linear extrapolation.

4.8.3 Calculation of the shear forces around a cylinder

As it has been mentioned earlier, to calculate shear forces around the immersed

boundary it is necessary to find the gradient of the velocities around the boundary. The

gradient of velocity parallel to the cylinder is assumed to be linear at each point around

the cylinder. As the velocity of the cylinder is known (from the structural analysis), the

first step is to find the velocities in the centre of the boundary cells around the cylinder.

In the staggered arrangement, the u and v velocities in the centre of the cell are

calculated by averaging their values from the cell edges. The location of tangential

velocity around the cylinder is shown in Figure 4-13 left. In the second step, the

tangential velocity is calculated by projecting the velocities vector on the local tangent to

86

the solid boundary. It is supposed that the tangential velocity is positive in the counter-

clock wise direction in order to obtain a unique formula for the calculation of the

tangential velocities around the boundary. Equation and Figure 4-13 right depict the

calculation of the tangential velocity for a specific point around the cylinder. In the final

step, shear stress and shear force on the boundary are calculated using equation (4-56).

In addition, the lift and drag forces are calculated by projecting the shear forces in x and

y direction respectively. It is worth mentioning that taking the counter clock wise

direction as the positive direction is optional and this does not change the generality of

the method. However, it should be noted that in the calculation of both the lift and drag

forces the same assumption is made.

Using the above, the total lift and drag forces around the cylinder can be calculated

by integrating their partial values around the immersed boundary.

Figure 4-13: Calculating tangential velocity around the immersed boundary

𝑈𝑡𝑎𝑛 = −𝑈𝑠𝑖𝑛𝜃 + 𝑉𝑐𝑜𝑠𝜃 (4-54)

𝑈𝑡𝑎𝑛0 = −𝑈𝑠𝑜𝑙𝑖𝑑𝑠𝑖𝑛𝜃 + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑜𝑠𝜃 (4-55)

In the above equations, 𝑈𝑡𝑎𝑛0 and 𝑈𝑡𝑎𝑛 are the tangential velocities on the

immersed boundary and the boundary cell, respectively. The shear stress on the

boundary can be calculated by equation (4-56). In this equation 𝑑𝑟 is the distance

between 𝑈𝑡𝑎𝑛 𝑎𝑛𝑑 𝑈𝑡𝑎𝑛0 in the radial direction and 𝜇 is the dynamic viscosity of the

fluid.

𝜏𝑤𝑎𝑙𝑙 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜇

𝑈𝑡𝑎𝑛−𝑈𝑡𝑎𝑛0

𝑑𝑟
 (4-56)

In general, shear stress is defined by 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 , however if the two side of this

equation are divided by density, then 𝜏 𝜌⁄ =
𝜇
𝜌⁄
𝑑𝑢

𝑑𝑦
 and 𝜗 =

𝜇
𝜌⁄ . Also, in the numerical

87

simulation of fluid flow for simplicity, it is assumed that 𝑢∞ = 1 and 𝐷 = 1, so that

𝑅𝑒 =
𝜌𝑢∞𝐷

𝜇
=

1

𝜗
 or 𝜗 = 1 𝑅𝑒⁄ and therefore 𝜏 𝜌⁄ = 𝜗

𝑑𝑢

𝑑𝑦
. Using the shear stress over the

density on the immersed boundary can be calculated by 𝜏 𝜌⁄ = 1 𝑅𝑒⁄
𝑑𝑢

𝑑𝑦
 .

The above idea can be explained using non-dimensional parameters as well.

According to equation (4-7), the non-dimensional form of the shear stress is given by

equation (4-57). In equation (4-58) it is simply shown that 1 𝑅𝑒⁄
𝑑𝑢

𝑑𝑦
 is a non-dimensional

value as long as the velocity and displacement are non-dimensional.

𝜏∗ =
𝜏

𝜌𝑢∞
2
 (4-57)

𝜏∗ = 1 𝑅𝑒⁄
𝑑𝑢∗

𝑑𝑦∗
=

1

𝜌𝑢∞𝐷
𝜇

×

𝑑𝑢
𝑢∞
𝑑𝑦
𝐷

=
1

𝜌𝑢∞
2
× 𝜇 ×

𝑑𝑢

𝑑𝑦
=

𝜏

𝜌𝑢∞
2

(4-58)

Figure 4-14: Location of Immersed boundary (IB), control volume (C.V.), Control

Surface (C.S.) to apply Conservation of momentum law

4.8.4 Application of momentum conservation to calculate force on IB

The accurate calculation of lift and drag forces on an IB is a challenging task,

especially when an interpolation/reconstruction IB is used. The reason is that on the one

hand the forces on the IB surface strongly depend on the formation of vortices and on

the other the way boundary conditions are forced affect vortices when using a non-

conforming mesh method. Despite the existence of extensive literature about the FSI

methods, the calculation of body forces have received much less attention (Balaras

2D

88

C.V

P

v n(0,1)

n(1,0) n(-1,0)

n(0,-1)

P

P

P

u

v

u

2004). In this section, as mentioned earlier in section 3.8.3, conservation of momentum

is applied to calculate the forces around an immersed boundary.

As illustrated in the Figure 4-14, conservation of momentum (equation (3-51)) is

applied to the control volume limited between the IB and C.S in horizontal (x) direction

and vertical (y) direction to calculate drag and lift forces respectively.

𝐹𝐷𝑟𝑎𝑔 =
𝑑

𝑑𝑡
∫ 𝜌𝑢𝑑𝐴
𝐶.𝑉

−∫ (𝜌𝑢𝑢𝑗 + 𝑝𝛿1𝑗 − 𝜏1𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠
(4-59)

𝐹𝐿𝑖𝑓𝑡 =
𝑑

𝑑𝑡
∫ 𝜌𝑣𝑑𝐴
𝐶.𝑉

−∫ (𝜌𝑣𝑢𝑗 + 𝑝𝛿2𝑗 − 𝜏2𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠
(4-60)

Figure 4-15: Surface normal vector n, velocity (u,v) and pressure on the control

surfaces

According to the Figure 4-15, the last integrals (the control surface integral) in

equations (4-59) and (4-60) are expanded to enable calculating the lift and drag forces on

the immersed boundary. Using this, the control surface integral in equation (4-58)

becomes:

∫ (𝜌𝑢𝑢𝑗 + 𝑝𝛿1𝑗 − 𝜏1𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠

= ∫ (𝜌𝑢(−𝑢) + (−𝑝)
𝐶.𝑆.𝑤𝑒𝑠𝑡

− (−𝜏11))𝑑𝑠

+ ∫ (𝜌𝑢(𝑣) + (0) − (𝜏12))𝑑𝑠
𝐶.𝑆.𝑛𝑜𝑟𝑡ℎ

+∫ (𝜌𝑢(𝑢) + (𝑝) − (𝜏11))𝑑𝑠
𝐶.𝑆.𝑒𝑎𝑠𝑡

+∫ (𝜌𝑢(−𝑣) − (0) − (−𝜏12))𝑑𝑠
𝐶.𝑆.𝑠𝑜𝑢𝑡ℎ

 (4-61)

89

 The first integral in (4-59)

resent the temporal changes of the momentum in the control volume.

∫ (𝜌𝑣𝑢𝑗 + 𝑝𝛿2𝑗 − 𝜏2𝑗)
Γ0=C.S

𝑛𝑗𝑑𝑠

= ∫ (𝜌𝑣(−𝑢) + (0)
𝐶.𝑆.𝑤𝑒𝑠𝑡

− (−𝜏21))𝑑𝑠

+ ∫ (𝜌𝑣(𝑣) + (𝑝) − (𝜏21))𝑑𝑠
𝐶.𝑆.𝑛𝑜𝑟𝑡ℎ

+∫ (𝜌𝑣(𝑢) + (0) − (𝜏22))𝑑𝑠
𝐶.𝑆.𝑒𝑎𝑠𝑡

+∫ (𝜌𝑣(−𝑣) − (𝑝) − (−𝜏22))𝑑𝑠
𝐶.𝑆.𝑠𝑜𝑢𝑡ℎ

 (4-62)

Where in the above equations, the stresses 𝜏11, 𝜏22, 𝜏12 are defined by:

𝜏11 = −
2

3
𝜇∇. 𝑉 + 2𝜇

𝜕𝑢

𝜕𝑥

(4-63)

𝜏22 = −
2

3
𝜇∇. 𝑉 + 2𝜇

𝜕𝑣

𝜕𝑦

(4-64)

𝜏12 = 𝜏21 = 𝜇 (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)

(4-65)

The first term on the left hand side of equations (4-59) and (4-60) become near zero

in the steady state condition and can be neglected, however, in this study in order to be

able to present the results in the transient conditions, they are integrated in the control

volume/surface (surface bounded between the IB boundary and the control surface

(C.S.).

4.9 Lift and drag coefficient

The dimensionless drag, CD, and lift, CL, coefficients are defined by:

𝐶𝐷 =
𝐹𝐷𝑟𝑎𝑔
1
2
 𝜌𝑢∞2 𝐷

(4-66)

𝐶𝐿 =
𝐹𝐿𝑖𝑓𝑡

1
2
 𝜌𝑢∞2 𝐷

(4-67)

90

where 𝐹𝐷𝑟𝑎𝑔, 𝐹𝐿𝑖𝑓𝑡, 𝜌, 𝑢∞, 𝐷 are drag force, lift force, fluid density, free stream

velocity and the cylinder diameter, respectively. In these equations the value of the drag

and lift forces are dimensional. On the other hand, the values of the drag and lift forces

which are calculated in the equations (4-59) and (4-60) are non-dimensional because all

parameters on the right hand side of these equations are non-dimensional. Therefore, to

calculate the lift and drag coefficients from the drag and lift forces (equations (4-59)

and (4-60)), equations (4-66) and (4-67) become:

𝐶𝐷 = 2 × 𝐹𝐷𝑟𝑎𝑔 (4-68)

𝐶𝐿 = 2 × 𝐹𝑙𝑖𝑓𝑡 (4-69)

In addition, as discussed earlier, the drag and lift forces on a cylinder submerged in

a flow arise from two sources, the shear stress and the pressure distribution over the

body. Therefore:

𝐶𝐷 = 2 × 𝐹𝐷𝑟𝑎𝑔𝑝 + 2 × 𝐹𝐷𝑟𝑎𝑔𝑠 (4-70)

𝐶𝐿 = 2 × 𝐹𝐿𝑖𝑓𝑡𝑝 + 2 × 𝐹𝐿𝑖𝑓𝑡𝑠 (4-71)

4.10 Summary

In this chapter the main body of the algorithm that is developed to simulate flow

around a solid boundary is outlined. Most of the details are explained in a way to support

the interpolation/reconstruction immersed boundary method. At the beginning, the

governing equations and their discretisation procedures are discussed. It is explained that

a fractional step method is used to update the velocities at each new time step. Then the

background Cartesian grid was introduced using a staggered arrangement of velocities.

The boundary conditions at the inlet, outlet, symmetry and immersed boundaries are

introduced in detail in Section 4.4. In chapter 7 it will be shown that the boundary

conditions play a vital role in the definition of the moving frame of reference.

 One of the contributions of this research is the implementation of the immersed

boundary in a Cartesian grid using the interpolation method presented in Section 4.4.4.

In that part, the way in which velocities are interpolated near the immersed boundary is

explained. In Section 4.5 the solution algorithm is briefly explained. In this procedure,

one of the main challenges is the calculation of the pressure and the shear forces at the

cylinder due to the fact that the immersed boundary is not aligned with the grid. This

problem is addressed in sections 4.7 and 4.8. In these sections the methods used to

91

calculate lift and drag forces on the immersed boundary are presented and briefly

compared. The accurate calculation of lift and drag forces is necessary to be able to

implement the fluid structure interaction for a flexible solid body. This issue is discussed

in more details in chapter 7.

 In the next chapter, the algorithm outlined here is validated by comparing the

results with a bench mark. As flow around a circular cylinder has been studied

extensively, it was decided to use this as a bench mark; this case has similarities to the

simulation of the oil riser pipe, the study of which is the ultimate aim of this research.

In addition, to clarify the role of the computational grid on the results, a

comprehensive parametric study is performed for the two dimensional flow around a

circular cylinder in next chapter.

92

Chapter 5. Parametric study and validation

In the previous chapter the algorithm which was developed to simulate the flow

around an immersed boundary was presented. An immersed boundary interpolation

method was used to apply the solid boundary conditions. In this chapter, the fluid flow

around a stationary cylinder in two dimensions at a low Reynolds number is selected as

a bench mark to validate the code written in FORTRAN. This bench mark has been used

by many researchers to validate their methods resulting in several experimental and

numerical simulations which are available in the literature for comparison purposes.

At first a parametric study is performed. Here, six parameters related to the size of

computational domain which might affect the simulation results are investigated. In

addition, the results of the lift and drag coefficients at low Reynolds number, Re=100 are

compared with those in the literature to assess the accuracy of the method. In this study,

the hydrodynamic forces are calculated by two methods: 1) by application of the

conservation of momentum and 2) by a direct integration of pressure and shear force on

the immersed boundary.

5.1 Parametric study

The ultimate goal of this research is to apply the strip theory to simulate the

interaction of the fluid flow and oil risers. In this theory, the flow around the cross

section of the riser is simulated at several levels along the pipe. The hydrodynamics

forces that are calculated at each level are linked through the structural model to update

the location/shape of the riser. This process is repeated several times to obtain a

converged solution at every time step. This simulation requires very high computational

power. Therefore, identifying methods that allow minimizing the computational demand

needed to solve the Fluid-Structure interaction (FSI) problems and in particular the riser

problem is of paramount importance. In this chapter the parameters that might affect the

simulation of flow around a cross section of the riser are investigated. The criterion was

to select the parameters in such a way as to minimized computational power while still

93

providing acceptable results. To achieve this goal, the two-dimensional flow around a

stationary cylinder was taken as a bench mark.

In the first place a grid refinement study is performed to investigate the dependancy

of the interpolation method on the size of the mesh near the immersed boundary. Also,

the size of the compuational domain might be very important. On the one hand, the

domain boundaries should be far enough away (large computational domain) from the

cylinder to be able to neglect the effect of the boundaries on the accuracy of simulation

and, on the other, the domain should be small enough to limit the computational

demand. The overal effect of the domain in the y direction is addressed by studying the

blockage effect in the literature. The effect of the domain size upstream of the cylinder is

referred to as the entrance effect and is addressed for the first time in this thesis as far as

the author is aware. This part is labelled ’c’ in Figure 5-2.

Figure 5-1: flow pattern around a stationary cylinder at Re=100. High pressure area

(Continuous line), low pressure area (dash line), blue and red counters are the vortices.

In general, the places where the variables exhibit large gradients are the most

sensitive regions with regard to the grid size. According to Figure 5-1, the areas around

the cylinder with very high pressure and velocities gradients coincide. Therefore a very

94

dense mesh is necessary around the cylinder. On the other hand, there are hardly any

gradients far from the cylinder; therefore, a coarse mesh can be used in these locations.

To address this issue, a uniform mesh around the cylinder is used. However the size of

this uniform grid area might be important as well. To investigate this effect, the size of

uniform grid before and after the cylinder (x direction) and also the size of uniform area

in the y direction are studied separately; these lengths are identified by ‘e’, ‘f’ and ‘b’ in

the Figure 5-2.

In addition, using a streching factor is necessary to maintain a coarse grid far from

the cylinder (area with low gradients) and to have a fine grid near the cylinder. The

effect of the stercthing factor is studied as well. To fulfil these criteria a comprehensive

investigation is presented in this chapter to show the effect of the domain and grid sizes

on the simulation results.

Figure 5-2: Background Cartesian mesh- parametric studies guide.

5.1.1 Parametric study - Mesh refinement effect

The size of the mesh near the Immersed Boundary (IB) plays a significant role both

in the accuracy of the results and in the computational expenses. To find the proper

 f

 d

 e

 c
 b

 a

 a

 g

95

mesh size for the numerical simulation and also maintain the second-order accuracy of

the model, a mesh refinement study is performed. In this study, the centre of the cylinder

is located at centre of the Cartesian coordinate and the size of computational domain in

both the x and y directions is taken as [-15D,15D], and the uniform grid around the

cylinder in both the x and y directions covers the regions [-1D,1D]х [-1D,1D] (2 times of

the cylinder diameter in each direction). In this uniform area around the cylinder 6 grid

sizes ranging from 0.2D to 0.00625D are used for the simulation (see Table 5-1). A

stretching factor of 3 is used to extend the grid from uniform area to the computational

boundary in all 6 cases and the Strouhal number, the drag and the lift coefficients for the

flow problem are compared. Table 5-1 shows the details of the grids and their results.

The stretching factor helps to reduce the actual number of nodes in the grid. For

instance, in a 30Dх 30D domain using a grid size of 0.2D (without stretching) the

number of points in each direction becomes 150. This number reduces to 57 grid points

when using a stretching factor of 3. The effect of stretching on hydrodynamic forces

will be discussed later in this chapter.

Figure 5-3: simulation accuracy of the immersed boundary based on the mesh size

dx=dy=0.2 dx=dy=0.1 dx=dy=0.05

dx=dy=0.025 dx=dy=0.0125 dx=dy=0.00625

96

In non-conforming boundary approaches, when the grid get finner near the

immersed boundary the shape of the cylinder (IB) is approximated more accurately.

Figure 5-3 compares the effect of the grid size close to the cylinder on the approximation

of the cylinder boundary. Clearly, the finer grids lead to a better approximation and are

likely to produce more accurate results.

Table 5-1: Results of mesh refinement study around a stationary cylinder at Re=100.

∆𝑥 = ∆𝑦 Number of grid at

each direction

Total no. of grid

points

Strouhal

No.

Mean drag

coefficient

Max lift

coefficient

0.2 57*57 3’249 0.147 1.467 0.285

0.1 109*109 11’881 0.154 1.315 0.225

0.05 213*213 45’369 0.159 1.334 0.305

0.025 423*423 178’929 0.1637 1.329 0.314

0.0125 837*837 700’569 0.174 1.327 0.315

0.00625 1669*1669 2’785’561 0.1743 1.328 0.316

Figure 5-4 presents the drag coefficient, drag due to pressure and drag due to the

shear stress for 5 different grid sizes from dx=dy=0.1D to 0.00625D. The results for

dx=dy=0.2D are not shown as it is out of the range compared to the other results. The

results show that the components of the drag (drag due to pressure and shear stress) are

more affected by the grid size than the drag coefficient. For instance, the mean drag

coefficient due to pressure reduces from 1.15 to 1.1, which is about 4.5%, when the grids

become finer from 0.1D to 0.05D; while the mean drag increased from 1.315 to 1.335,

which is about 1.5%.

In addition, Figure 5-4 and Figure 5-6 show that by increasing the number of grid

points the mean drag due to pressure reduces and converges to the value of 1.05. This

trend, however, is reversed for the drag due to the shear stress. The results show that the

mean drag due to shear stress increases and converges to a value of 0.33 by increasing

the number of the grid points in each direction from 50 to 1600. Therefore, the drag

coefficients for sufficiently fine grids (approximately finer than 0.025D) are less

dependent on the grid size due to the fact that the errors in the calculation of the drag due

to the shear stress and pressure tend to cancel one another.

97

Figure 5-4: Mesh refinement study, drag, drag due to pressure and shear stress for

five different grid sizes from dx=dy=0.1 to 0.00625 around the circular cylinder

The lift coefficient, the lift due to pressure and shear stress are compared in Figure

5-6 for five different grid sizes from dx=dy=0.1 to 0.00625. The results for the grid with

dx=dy=0.2 (coarsest grid) is not shown as it is out of range in compare to the other

cases. The numerical results show that (unlike the drag coefficient components) the lift

coefficient, lift due to the pressure and the shear stress have similar trends. For instance,

if the grid sizes are reduced from 0.1D to 0.05D the total lift, lift due to pressure and lift

due to shear stress increase from 0.22 to 0.3, from 0.21 to 0.28 and from 0.01 to 0.02

respectively. Also, Figure 5-5 shows that the drag due to pressure and friction are

converging for the grid size smaller than 0.025 (see Table 5-1).

98

Figure 5-5: Drag coefficient due to pressure and shear stress verses the number of

grid in each direction of the domain around a stationary cylinder at low Reynolds number,

Re=100

Figure 5-6: Mesh refinement study for lift, lift due to pressure and friction for various

grid size where computational domain in x and y is [-15,15] and Stretching factor is 3.

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

C
D

 -
 d

u
e

 t
o

 p
re

ss
u

re

Number of grid in each direction

0

0.1

0.2

0.3

0.4

0 500 1000 1500 2000

C
D

-d
u

e
 t

o
 f

ri
ct

io
n

Number of grid in each direction

99

In addition, Figure 5-7 shows that the lift highly depends on the grid size in the

coarse grid range. For instance, the lift coefficient increases significantly from 0.225 to

0.305 by decreasing the grid size from 0.1D to 0.05D which is about a 26% rise; while

for the relatively fine grids (finer than 0.025D), the lift coefficient is less dependent on

the grid size (at low Reynolds number).

Figure 5-7: Lift coefficient verses the number of grid points in each direction of the

domain around a stationary cylinder at Low Reynolds number, Re=100

A comparison between the results obtained for the lift and drag coefficients shows

that the lift coefficient, more than the drag coefficient, depends on the grid size for the

coarse meshes. For the fine meshes both of them are relatively independent of the grid

size. For instance, by decreasing the grid size from 0.1D to 0.05D the drag and lift

coefficients change by 1.5% and 26% respectively. A further decrease in grid size from

0.025D to 0.0125D leads only to a lift and drag coefficient change of about 0.15% and

0.3% respectively. It should be noted that for any grid size the drag coefficient is not as

grid dependent as the lift coefficient. This is due to the fact that the errors in the drag due

to the pressure and shear stress cancel each other out. For the cases dx=dy=0.025D and

0.0125D , the difference in the drag due to pressure is about 2.5% and the drag due to

shear stress changes by about 8%. However, the change in the drag coefficient is just

about 0.15%.

0.2

0.25

0.3

0.35

0 500 1000 1500 2000

C
L

(l
if

t
co

e
ff

ic
ie

n
t)

Number of grid in each direction

100

Figure 5-8: The Power Spectral density of lift coefficient for six different grids size in

frequency domain, where computational domain in x and y is [-15, 15] and Stretching

factor is 3.

The numerical results also show that the Strouhal frequencies are affected most by

the coarse grids. For instance, for grid size dx=dy=0.2D, the Strouhal frequency is

0.147, which it is 4.5% lower than the Strouhal frequency for the grid size 0.1D. Figure

5-8 shows the power spectral density (PSD) of the lift coefficient for six different grid

sizes ranging from 0.2D to 0.00625D at low Reynolds flow, Re=100. For fine grids the

Strouhal number is much less dependent of the grid size and converges to the value

fs=0.164 (Figure 5-9).

Figure 5-9: Strouhal number verses the number of grid point in each direction of the

domain around a Stationary cylinder at low Reynolds number, Re=100

0.145

0.15

0.155

0.16

0.165

0.17

0 500 1000 1500 2000

St
ro

u
h

al
 f

re
q

u
e

n
cy

Number of grid in each direction

101

5.1.2 Parametric study – size of domain in front of cylinder

The size of the computational domain in front of the cylinder is an important

parameter in the study of the flow over a circular cylinder at low Reynolds number. To

study this effect the flow over a stationary cylinder at Re=100 is simulated. Four

different flow domain sizes ranging from 5D to 20D upstream of the cylinder are

compared, whilst other domain parameters are kept constant. The size of the domain in

the transverse direction is 30 D; the grid size in the uniform area around the cylinder is

dx=dy=0.025, and the sizes of the uniform grid area is 1D and 5D in front of and after

the cylinder in the x direction and 3D above and below the cylinder in the y direction

(Figure 5-2). The grid stretching factor for the mesh from the uniform area to the border

of the computational grid is 3.

Figure 5-10: Effect of the Size of the fluid domain in front of the circular cylinder in x

direction on the Drag coefficient

102

It can be seen that the size of computational domain significantly affects the results

(Figure 5-10). The drag coefficient changes by 10% (from 1.44 to the 1.32) when the

domain size changes from 5D to 20D behind the cylinder. This value is decreased by

0.6% when the size of domain in front of the cylinder is increased from 15D to 20D

(from 1.328 to 1.32). The simulation results show that this trend is similar for the drag

coefficients due to the pressure and friction. It can be concluded that the size of 15D

behind the cylinder gives sufficiently accurate results at relatively low computational

cost.

By increasing the size of the domain in front of the cylinder form 5D to 20D the lift

coefficient is affected in a similar way as with the drag coefficient (Figure 5-11). In this

case, the lift coefficient decreases from 0.337 to 0.3 (about 12%). This change becomes

less than 3%, when the sized of the domain in front of the cylinder increases from 15D

to 20D.

Figure 5-11: Effect of the Size of the fluid domain in front of the circular cylinder in x

direction on the lift coefficient

103

By using larger computational domain in front of the cylinder the simulation results

show that the lift due to pressure is affected slightly more than the lift due to friction. For

instance the lift coefficient is changed by about 12% while the computational domain in

front of the cylinder is changed from 5D to 15D. In this case, the lift force due to

pressure is changed slightly more than 13% and the lift due to the friction is changed by

less than 10%.

Another important parameter which is affected by the size of the domain in front of

the cylinder is the Strouhal number. By increasing the size of domain in front of the

cylinder from 5D to 20D this parameter is decreased from 0.173 to 0.164 (about 5.5%).

However, for a sufficiently large domain in front of the cylinder (15D and above) there

is hardly any difference in the Strouhal number results (Figure 5-12).

Figure 5-12: The power spectral density of the Lift coefficient- Effect of the Size of the

fluid domain in front of the cylinder in x direction on the lift coefficient.

It is worth mentioning that some of the differences in the results reported by

different researcher could be explained by this parameter. For example Choi et al. 2007,

used a grid with the dimension of the 80Dх 80D for their simulation and obtained 1.34,

0.315 and 0.164 for Drag, lift coefficient and Strouhal number, while Lai and Peskin

2000 used a computational domain with 6D in front of the cylinder and reported a

higher value for the drag coefficient (see Table 5-3).

104

5.1.3 Parametric study – Blockage effect

In the case of flow passing a bluff body, the blockage effect was reported by

Karniadakis and Triantafyllou 1992, who showed that the simulation results will be

affected by the size of the computational domain in the cross flow direction. On the

other hand, solving the flow governing equations in a very large domain is very

expensive and might not improve the results noticeably. In this section a parametric

study is carried out to determine the minimum domain size for which the blockage effect

is negligible. To achieve this goal, the flow (low Reynolds number, Re=100) over a

circular cylinder with diameter D, is simulated for 5 different domain sizes from 10D ([-

5,5]) to 50D ([-25,25]) in y direction (perpendicular to the flow, x direction). In this

problem the cylinder is located at (x,y)=(0,0) and has equal distance to the domain’s

upper and lower boundaries.

Figure 5-13: Effect of the size of the computational domain in the y direction on the drag

105

The Hydrodynamic quantities (lift and drag) and Strouhal number for these cases

are compared. Other computational domains parameters remain constant during the

simulation; the size of the domain in the x direction is [-15D,15D]; the size of uniform

grid area around the cylinder is [-2D,4D] х [-2D,2D] in the x and y directions

respectively where dx=dy=0.025. The grid is stretched by a factor of 3 from the uniform

area around the cylinder to the domain boundaries. The numerical results show that the

blockage effect significantly affects the hydro-dynamical quantities in the small domain.

For instance, the mean drag and maximum lift coefficients for the domain with y∈ [-

5D,5D] are 1.43 and 0.322, respectively while for the domain y∈ [-10,10] these

quantities are 1.34 and 0.285, respectively. These results show that at Re=100 if the size

of domain is doubled from 10D to 20D in the cross flow direction the lift and drag

coefficients decrease by about 7 % and 12% respectively.

Figure 5-14: Effect of the Size of the fluid domain in y direction on the Lift coefficient.

106

However, as shown in Figure 5-13, for the domain that is larger than [-15D,15D]

the blockage effect on the lift and drag coefficient is very limited . For instance, by

enlarging the vertical direction of the domain from 30D to 50D, the drag coefficient only

decreases by less than 1%, and the change in the lift coefficient is negligible. Also,

Figure 5-13 shows that the blockage has similar effect on the drag coefficient, the drag

due to the pressure and the shear stress.

Figure 5-14 shows the blockage effect on the lift coefficient at low Reynolds

number. The numerical simulation shows that enlarging the domain in the cross flow

direction by more than 20D will not affect the lift coefficient.

 In addition, the numerical results (Figure 5-14) show that the lift coefficient due to

the pressure is more affected by the size of the domain in the y direction than the lift

coefficient due to the shear stress. For instance, by doubling the size of domain in the

cross flow direction from 10D to 20D, the lift coefficient due to pressure and shear stress

decrease 12.3%, and about 11%, respectively.

Figure 5-15: Power Spectral Density (PSD) of the Lift coefficient - Effect of Size of the

domain in y direction on the lift coefficient.

The Strouhal number is affected by the blockage effect as well as lifts and drag

coefficient. Figure 5-15 shows the power spectral density (PSD) of the lift coefficient

for the flow around a cylinder at Re=100 for five different domain sizes in the y

107

direction from 10D to 50D. The numerical results show that for small domains the

blockage effect is more severe. For instance, by increasing the domain from 10D (the

case [-5,5] in Figure 5-15)to 20D (the case [-10,10] in Figure 5-15) the Strouhal number

changes from 0.175 to 0.168. However, for the domain that is larger than 30D (the case

[-15,15] in Figure 5-15) in the cross flow direction, the Strouhal number remains about

0.164 and does not change when further enlarging in the size of the domain in the y

direction.

Figure 5-16 to Figure 5-18 show that at low Reynolds numbers, if the size of

domain is more than 30D in the cross flow direction, the blockage effect on the lift, drag

and Strouhal number is negligible. The drag coefficient for a cylinder in the cross flow

direction at Re=100, was reported to be1.44 (by Corbalan & de Souza 2010) and 1.33

(by Kim et al. 2001); the blocking effect might be one of the reasons for this difference.

Figure 5-16: Drag coefficient verse domain size in cross flow direction,

Figure 5-17: Lift coefficient verse the size of domain in perpendicular direction to the

main stream velocity (cross flow direction).

1.3

1.325

1.35

1.375

1.4

1.425

1.45

10 20 30 40 50

D
ra

g
C

o
e

ff
ic

ie
n

t

Domain size in cross flow direction (*D)

0.3

0.32

0.34

0.36

0.38

10 20 30 40 50

Li
ft

 C
o

e
ff

ic
ie

n
t

Domain size in cross flow direction (*D)

108

Figure 5-18: Strouhal number verse the size of domain in perpendicular direction to

the main stream velocity (cross flow direction).

5.1.4 Parametric study – Stretching factor

According to the mesh refinement study for the flow around a bluff body (Section

5.1.1) in order to obtain accurate hydro-dynamical forces, a fine grid around the

immersed boundary is recommended. On the other hand, to minimize the blockage and

entrance length effects (Section 5.1.2 and 5.1.3) on the simulation results a relatively

large computational domain is needed. These issues lead to high computational costs. A

stretching technique allows refining the grid near the IB, while using a coarse mesh in

the outer region to ensure that the computational domain is sufficiently large. In this way

the number of grid points and the computational resources needed are minimised without

compromising the accuracy of the simulation. In this section the effect of the stretching

factor on the lift, drag and Strouhal number is presented.

Figure 5-19: Effect of the grid stretching factor on the Drag coefficient

0.16

0.165

0.17

0.175

0.18

10 20 30 40 50
St

ro
u

h
al

 n
u

m
b

e
r

Domain size in cross flow direction (*D)

109

To study the effect of the stretching factor, the flow around a stationary cylinder at

low Reynolds number, R=100 is simulated on a uniform grid using four grids with

stretching factors ranging from 2 to 5. Other domain parameters remain constant; the

size of domain in both the x and y directions is 30D, the size of uniform grid area around

the cylinder is 6D (2D in front and 4D after) in the x direction and 4D (2D on each side)

in y the direction. The size of the grid in the uniform grid area around the immersed

boundary is dx=dy=0.025D.

Figure 5-20: Effect of the grid stretching factor on the Lift coefficient.

Numerical results show that the high stretching factor could slightly affect the drag

and lift coefficients and Strouhal number. Figure 5-19 and Figure 5-20 show that a

stretching factor of 5 leads to a mean drag of 1.3375 and max lift of 0.327 which is about

1% higher than the values obtained when using a stretching factor of 4, where the mean

drag coefficient is about 1.3225 and maximum lift is about 0.31. In the case where the

stretching factor is less than 4, the drag and lift coefficients are hardly affected by the

stretching factor and the simulation results are matching well with the results on the

uniform grid.

According to the Table 5-2, at Re=100 the grid-stretching could significantly reduce

the number of nodes and hence the computational expense while the lift, drag and

Strouhal number have a small effect of only one present.

110

Table 5-2: parametric study of the Stretching factor, minimum grid size is 0.025D, the

domain size [-15,15] in x and y direction, and the uniform domain size [-2,4]in x and

[-2,2]in y direction.

Stretching

factor

No. grid

(x

direction)

No. grid

(y

direction)

Total No. CD(mean) CL(Max) Strouhal

number

5 310 235 72’850 1.3375 0.327 0.166

4 385 317 122’045 1.3225 0.31 0.164

3 531 475 252’225 1.3215 0.305 0.164

2 771 735 566’685 1.3215 0.305 0.164

Uniform grid 1200 1200 1’440’000 1.3215 0.305 0.164

According to the Figure 5-21, the stretching factor hardly affects the Strouhal

number (the frequency of vortex shedding around a cylinder) at low Reynolds numbers.

It can be seen in this figure that the Strouhal number changes from 0.166 to 0.164 when

the stretching factor changes from 5 to 4, however there is hardly any variation in the

Strouhal number when the stretching factor becomes less than 4.

Figure 5-21: Effect of the grid stretching factor on Strouhal number.

5.1.5 Parametric study – size of uniform area, x direction after cylinder

In the simulation of free flow passing a circular cylinder at low Reynolds number,

the gradient of the velocity and pressure are relatively high near and in the wake of the

111

cylinder. Therefore, a higher resolution grid (dense mesh) is necessary in these areas in

order to obtain an accurate simulation. A coarser grid should be sufficient to resolve the

far field where the flow parameters do not vary very much. The size of uniform grid

around the cylinder should be large enough to guarantee the accuracy of the results and

it should be small enough to minimise the computational costs. In this section the

optimum size of this area downstream of the cylinder (dimension “f” in the Figure 5-2)

is investigated. The size of the uniform mesh before the cylinder in the x direction

(dimension “e” in the Figure 5-2) and the size of the symmetric uniform mesh in the y

direction (dimension “g” in the Figure 5-2) are presented in Sections 5.1.6 and 5.1.7

respectively. The flow around a cylinder at Re=100 is simulated in two dimensions. The

overall size of the computational domain in the x and y directions is taken as [-15,15].

The size of the grid in the uniform area is dx=dy=0.025.

Figure 5-22: Effect of the uniform area after the circular cylinder in x direction on the

Drag coefficient.

The size of the uniform area after the cylinder is changed from 1D to 5D while the

rest of the domain parameters remain constant. In this study the uniform domains [-1,1],

[-1,2], [-1,3], [-1,4], [-1,5] in the x direction are compared. The uniform grid area around

the cylinder in the y direction is maintained at [-5,5].

112

Figure 5-23: Effect of the uniform grid area after the circular cylinder in x direction

on the lift coefficient.

Figure 5-22 shows the effect of the length of the uniform mesh after the cylinder on

the overall drag coefficient. The simulation results show about one percent increase in

the drag coefficient when the uniform area after the cylinder is changed from 5D ([-1,5])

to 1D ([-1,1]). However, when this size is changed from [-1,3] to [-1,5] the changes in

the drag coefficient were found to be negligible. Both the drag due to pressure and

friction were found to behave in a similar way.

Figure 5-23 shows the results of varying the length of the uniform grid area behind

the cylinder on the lift coefficient. The maximum lift coefficient was found to reduce

from 0.333 to 0.307 when comparing case [-1,1] to case [-1,5] respectively, which is

about 8 percent. However, the difference just changed by less than one percent when the

uniform grid size ahead of the cylinder changes from 3D to 5D. A similar trend is

observed for the lift coefficients due to pressure and shear stress. In other words, the

uniform size [-1,3] in the x direction is a good choice to obtain accurate results for both

the lift and drag coefficient.

Figure 5-24 shows the power spectral density (PSD) of the lift coefficient in the

frequency domain for different uniform sub-grid length after the cylinder in the x

direction. The results show that this parameter does not affect the Strouhal number as all

cases show the same frequency for the lift coefficient.

113

Figure 5-24: Power Spectral density (PSD) of the Lift coefficient - Effect of the

uniform Size of the fluid domain after the circular cylinder in x direction on the Strouhal

number.

5.1.6 Parametric study- uniform size x direction before cylinder

In this section the effect of the uniform grid size in front of the cylinder in x

direction (dimension “e” in the Figure 5-2) on the hydrodynamic forces is investigated.

The size of the uniform grid length in front of the cylinder is changed from 1D to 5D

while the rest of the domain parameters remain unchanged. The size of the uniform

domain in the y direction is [-5,5]. Figure 5-25 shows that the mean drag coefficient

decreases from 1.3285 to 1.325 when the uniform area in front of the cylinder increases

from 1D to 2D, respectively, which is about 0.3%. However, if the size of the uniform

grid area in front of cylinder is longer than 2D, the effect of this parameter on the mean

drag coefficient is absolutely negligible. The simulation results show a similar effect on

the drag due to pressure and due to shear stress. Therefore, if the size of the uniform grid

in front of the cylinder is taken to be longer than 2D, the effect of this parameters can be

neglected at Re=100.

114

Figure 5-25: Effect of the uniform grid in front of the circular cylinder in the x

direction on the drag coefficient.

Figure 5-26 hardly shows any changes in the lift coefficient due to changing the

uniform grid in front of the cylinder from 1D to 5D. Also the simulation results hardly

show any changes in the lift due to pressure and shear stress by changing this parameter.

In addition, the power spectral density of the lift coefficient results shows that the

Strouhal number is not affected by this parameter either.

Figure 5-26: Effect of the uniform grid in front of the circular cylinder in x direction

on the Lift coefficient.

5.1.7 Parametric study- uniform grid area in y direction

In this section the effect of the size of the uniform grid area around the cylinder in

the y direction (dimension “g” in the Figure 5-2) on the lift and drag coefficient is

presented. Here, this parameter is changed from 2D ([-1,1]) to 10D ([-5,5]), while the

rest of the domain parameters remains constant. The total size of the grid in both the x

115

and y directions is 30D, the uniform grid size in the x direction around the cylinder is

 [-1D,5D] and the size of the grid cells around the cylinder is dx=dy=0.025D.

Figure 5-27: Effect of the vertical extend of the uniform area around the circular

cylinder on the Drag coefficient.

Figure 5-27 andFigure 5-28 show that the drag and lift coefficients are hardly

affected by increasing the size of the uniform area around the cylinder in the y direction

beyond [-2,2].

Figure 5-28: Effect of the vertical extends of the uniform area around the circular

cylinder on the Lift coefficient.

According to Figure 5-27, by increasing size of the uniform grid area from [-1,1] to

[-2,2] in the y direction the mean drag coefficient increases from 1.325 to 1.33

116

respectively, which is less than 0.3 percent. Also, according to Figure 5-28, the

maximum lift coefficient changes from 0.303 to 0.309 when the size of the uniform grid

in the y direction is changed from [-1,1] to [-2,2] which is less than 0.6%. The

simulation results show a similar trend for the lift and drag due to pressure and shear

stress. Moreover, the power spectral density (PSD) of the lift coefficient shows that the

Strouhal frequency is not affected at all by changing the size of uniform grid area in the

y direction.

5.2 Validation

In this section, the numerical code and the IB interpolation method are validated by

comparison with other numerical and experimental results presented in the literature.

The flow around a stationary circular cylinder at a low Reynolds number of Re=100 is

chosen as a bench mark. According to the parametric study presented, the domain sizes

in the x and y directions are selected as [-15D, 15D] while the uniform grid area in the x

and y directions around the cylinder is [-2,4] х [-2,2] (see Figure 5-29). The grid size in

the uniform area is 0.025D and the grid is stretched towards the computational

boundaries by a stretching factor of 3. The numerical results for the lift and drag

coefficients and the Strouhal number are compared with those given the literature.

15D 15D

15D

15D

2D

2D

4D

Inflow

Symmetric

Outflow

Symmetric

Figure 5-29: Schematic of the computational domain

117

A Dirichlet boundary conditions (U=1 and V=0) is applied at the inflow; to model

the far field a symmetric boundary (U(i,ny)=U(i,ny-1) and V(i,ny)=0) is used while a

convective boundary condition is applied at the outflow.

Figure 5-30: Drag coefficient, Drag due to pressure and friction for a stationary

cylinder at Re=100 versus non dimensional time.

Figure 5-30 shows the drag coefficient plotted against the non-dimensional

simulation time. The results took about 150 non-dimensional time units to reach the

steady state solution without adding an external perturbation to trigger the vortex

shedding. The drag due to the shear stress and the pressure are integrated around the

cylinder to obtain the total drag coefficient.

At Re=100 the mean drag coefficient, the drag due to pressure and shear stress are

1.325, 1.05, 0.275 respectively. Also, according to the Table 5-3 the results match the

experimental and other numerical results very well.

Figure 5-31 presents the numerical results for the lift coefficient at Re=100. The

results show that the amplitude of the lift due to the pressure dominates the lift

coefficient. The simulation results show that the amplitude of lift coefficient, lift due to

pressure and shear stress are about 0.31, 0.282 and 0.03, respectively. The pattern of the

lift and drag coefficient and also the Strouhal number (St=0.164) are matching very well

with the literature.

118

Figure 5-31: Lift coefficient, the lift due to pressure and friction for a stationary

cylinder at Re=100 verses non dimensional time.

The flow around a cylinder is a well-known test case which has received a great

deal of attention in the literature. Table 5-3 shows the results of a few of these studies

(more details are presented on chapter 6). Interestingly, the reported results show

differences of about 10% and 7% between the reported drag and lift coefficients

respectively. At first glance it looks like these differences are due to the various

algorithms and approaches that have been applied to solve the problem. Some of the

differences are caused by the use of various computational domain sizes. Apart from the

mesh sizes that were employed, also the size of the computational domain maybe one of

the causes of these differences. The size of domain could affect the results in three ways,

either the domain is not high enough to prevent the blockage effect, or the length of the

domain before the cylinder is not large enough to prevent an inflow effect or the size of

the domain after the cylinder is not large enough to be able to neglect the outflow

affecting the simulation results. For instance, the size of the domain in front of the

cylinder in the case of Corbalan & de Souza 2010 is 6.5D and in the case of Lai &

Peskin (2000) is about 6D (1.85/0.3), the higher mean drag that is predicted in

comparison to the other cases (for instance Kim et al. 2001) was due to the use of the

relatively small inflow domain used by former researcher in front of the cylinder.

In addition, in the simulation of Lima E Silva et al. 2003, the inflow length is

sufficiently long but the blockage effect due to the limited vertical extend of the domain

causes the drag coefficient increases to 1.39.

119

According to the parametric study conducted in this chapter for the flow around the

cylinder at Re=100, the size of the domain before the cylinder should be more than 15D

and the size of the domain in the cross flow direction should be more than 30D in order

to ensure that domain size does not influence the drag coefficient. In all cases, the size of

domain after the cylinder was long enough to prevent an additional effect on the drag

coefficient form the outflow boundary condition. According to Table 5-3 , the size of the

computational domain has a similar effect on both lift and Strouhal number as well as on

the drag coefficient (more results are presented on Table 6-2).

Table 5-3: Drag, lift and Strouhal number for present study and well known

numerical and experimental studies for the flow around a circular cylinder at low Re=100.

 Domain

before

cylinder

Domain

size in y

direction

Domain

size in x

cylinder

D CD CL St.

Corbalan & de souza

2010

(IB- Force)

6.5D 15D 19.2D 1 1.44 ±0.31 ---------

Lima E Silva et al.

2003 (IB- PVM)
16D 15D 30D 1 1.39 ------- ---------

Lai & Peskin 2000

(IB- Force)
1.85 8 8 0.3 1.447 ±0.329 0.165

Kim et al. 2001

(IB- Force+ mass

source)

--------- 100D 70D 1 1.33 ±0.32 0.165

Roshko1954

(experiment)
---------- --------- ----------- ------- ------- -------- 0.164

Williamson 1988

(experiment)
--------- --------- ---------- ------- ------- ------- 0.166

Present study (IB –

Interpolation)
15D 30D 30D 1 1.33 ±0.31 0.164

5.3 Summary

Fluid Structure Interaction (FSI) has received a great deal attention in the recent

decades and many approaches have been adopted to solve this problem. In this thesis,

the focus is on the Immersed Boundary approach with interpolation/reconstruction

methodology. On the one hand, the IB method makes it possible to model FSI problems

with complex boundary and large structural displacement, on the other the IB method

needs special care and a high mesh resolution near the immersed boundary. In general

FSI problems, and in particular IB approach, are relatively expensive and therefore a

selection of optimum parameters to model this problem is important. In this chapter the

developed methodology and code is validated and a comprehensive parametric study is

120

conducted for flow around a stationary cylinder at low Reynolds number, Re=100. This

particular case is a well-known benchmark and several experimental and computational

results are reported in the literature. It is shown that the size of the domain significantly

affects the flow parameters and this could be a potential reason for some of the

discrepancies in results reported in the literature. Numerical simulation results show that

if the size of the domain is increased from 5D to 10D before the cylinder, the lift and

drag coefficients decrease by about 10%. However, a further enlargement of the domain

does not change these values any more. In addition, the size of the domain in the cross

flow direction is important. When the size of the domain in the y direction is increased

from 10D to 25D, the lift and drag coefficients decrease by about 10%.

 However, numerical results show that the sizes of the uniform grid patch around

the cylinder and the grid stretching factor only have a limited effect on the lift and drag

coefficients. The results show that any size of the uniform grid area in the y direction

larger than [-2,2] does not affect the results. Also, the uniform size in the x direction is

proposed to be [-2,4] to limit affecting the flow parameters. Also, stretching factor less

than 4, have very limited influence on the lift and drag coefficients.

In addition, the Strouhal number and lift and drag coefficients for the optimum

domain sizes were compared with the reported values in the literature. All the

parameters were found to be in very good agreement with the numerical and

experimental results reported elsewhere.

In the next chapter, the present IB approach is compared with alternative

interpolation/reconstruction methods reported in the literature.

121

Chapter 6. Comparative study of the interpolation

methods - Stationary cylinder

Peskin 1972 introduced the Immersed boundary (IB) approach. In this method,

using a Cartesian grid the solid boundary is imposed on the flow by adding a forcing

function to the flow equations. Since 1972, Peskin’s method has been developed further

by many researchers (see Chapter 3 for more details) and most of the modern immersed

boundary approaches use an interpolation procedure to enforce the non-grid conforming

boundaries. In the direct forcing approaches, the interpolation is used to implement the

forcing functions at the interface cells in order to enforce the immersed boundary on the

governing equations. In the IB interpolation method, the forcing function, f, which is

needed to enforce the boundary conditions is not calculated directly; but instead, the

flow velocity is interpolated at the interface cells and the solid boundary is imposed

indirectly on the discrete equations. The interface points are identified as those points in

the fluid domain whose at least one of its neighbouring points is inside the solid domain.

Therefore, the flow parameters (i.e. velocities and pressures) related to these points

cannot be updated directly by the governing equation (Figure 3-2right). Any cells that

contain one or more interface points are called the interface cells. In the indirect forcing

approach (interpolations approach), at every time step the flow parameters in the

interface cells are updated by direct interpolation formulas and the results are used as the

boundary condition in the flow solver. In this chapter, the flow around a circular cylinder

at low Reynolds number is selected as a bench mark and four IB

interpolation/reconstruction methods which have been introduced previously in the

literature review chapter are compared with the proposed interpolation method in this

research.

6.1 Governing equation and computational domain

The unsteady, incompressible Navier-Stokes equations (4-3) are used as the

governing equations. A staggered variable arrangement, as introduced by Harlow and

Welch 1965, is used to discretize the governing equations on a Cartesian grid (equations

(4-11) to (4-20)). The continuity equation is enforced by taking the divergence of the

momentum equations to form a Poisson equation for the pressure (equations (4-32) to

122

(4-36)). The governing equations were solved by a two steps fractional method

(equations (4-22) and (4-23)).

Based on the parametric study conducted in chapter 5, the size of the computational

domain is selected in a way to ensure that the boundaries have limited effect on the

simulation results (Figure 6-1). Therefore, the size of the domain in y and x directions

are taken to be 20D and 15D, respectively and the grid size is chosen to be

dx=dy=0.05D which is the coarsest grid that gives acceptable results (according to the

mesh refinement study presented in section 5.1.1).

Since the entire domain is meshed using a uniform Cartesian grid, the

implementation of the grid-conforming inlet, outlet and side boundary conditions was

straightforward and the boundary conditions along the circular cylinder are implemented

using five different immersed boundary interpolation methods.

Figure 6-1: Fluid domain size and boundary conditions.

6.2 Interpolation method cases

Several methods are used in the literature to interpolate/reconstruct the velocity in

the boundary cells near the immersed boundary (section 3.3). Four interpolation methods

plus the interpolation method introduced in this thesis are compared to one another. To

do so, the first step is to define the interface cells in the specific geometry, which could

be complicated for geometries with unknown analytical functions (Iaccarino & Verzicco

123

2003). Here, the flow around a stationary circular cylinder at low Reynolds number,

Re=100 is selected as a bench mark. The next step is to determine the interpolation

formulas for each individual interpolation method. These formulas will be used to

update the flow parameters (velocities and pressure) in the interface cells adjacent to the

solid boundaries. The flow solver uses these values as the boundary conditions for the

rest of the flow domain. In the following part, these interpolation methods are explained

briefly.

6.2.1 Case A: No interpolation

The simplest possible method is to add the interface cells to the solid domain. In

this case an interpolation is not needed and the solid boundary assumes a stepwise shape

(Figure 3-5a). The immersed boundary is diffused, in the staggered variable arrangement

as the velocity components are defined at different sides of an element. Fadlun et al.

2000 proposed a similar method for imposing forcing functions for the immersed

boundaries. As no interpolation is conducted in this method, it is expected to be

relatively faster while still giving acceptable results. In the case of a moving body

(displacement/ deformation) this method is potentially more efficient as the interpolation

formulas do not need to be updated in the course of the displacement/deformation. In the

simulation of the flow around a complex geometry with curved boundaries, this method

could lead to inaccurate results for the lift and drag coefficient when using relatively

course grids. On a fine grid this method could give more accurate results, but this would

compromise the advantage of the method which is the lower computational demand.

6.2.2 Case B: Weighting method

This method is similar to the one discussed above as Case A. The major difference

is that the values for the velocities in the boundary cells are associated with the area of

the cell which is covered by the fluid over the total cell area. In this method the area of

cells which are common between the fluid and structures are used to calculate this

weighting coefficients. Figure 3-5 (right) shows the location of these weighted

boundary velocities in the cells that are part fluid and part solid. For each of the velocity

components a coefficient is determined that corresponds to the ratio of the fluid part of

the two adjacent cells to the whole area of the two cells.

124

6.2.3 Case C: linear interpolation method

The third method is a linear interpolation method where the velocities in the

interface cells are calculated by interpolating between the velocity at the solid boundary

applying the no slip condition and one point in the fluid domain. Fadlun et al. 2000

suggested using this interpolation method to enforce the boundary condition to the fluid

domain in the forcing IB approaches. The linear interpolation is ideal for the problems in

which the immersed boundaries are parallel to the Cartesian grids lines. The advantage

of this method is that the interpolation formula is simple as the interpolation points

coincide with grid nodes on the Cartesian coordinates where the velocities are defined in

the discretised governing equations; however for the inclined and curved immersed

boundaries the interpolation direction (either x or y direction in two dimensional

simulation) might slightly affect the simulation results.

Figure 6-2: Bilinear proposed interpolation in this study for the cells near the solid

boundary in vertical (Left) and horizontal (right) velocity components.

6.2.4 Case D: Bilinear interpolation method

Kang et al. 2009 presented various interpolation methods for the immersed

boundary method in two dimensions considering the effect of the pressure near the

boundary as well as velocity in the previous time step. In this comparison study his

interpolation schemes where only involve a pure velocity interpolation were selected. In

the Standard Reconstruction method (SRM), Kang et al. 2009, used the two

neighbouring velocities in the horizontal and vertical directions that were located closest

to the immersed boundary to interpolate velocities at the interface points (Figure 3-9).

The resulting interpolation formula for the velocity in the horizontal direction is

presented by equation (3-15), where the coefficients represent the interpolation weights.

This method is similar to the linear methods (Case C), however, interpolations are

125

performed in both x and y directions in order to find boundary velocities. For some

points, due to the curvature of the immersed boundary, the interpolation is only possible

in one of the directions; therefore this method reduces to a linear interpolation method at

those points (Figure 3-10).

6.2.5 Case E: Proposed interpolation method

The bilinear interpolation method proposed in this paper is based on interpolating

the boundary velocity values in the direction perpendicular to the immersed boundary. In

this method, perpendicular lines from the boundary surface are drawn which intersect

the locations of the boundary velocities and cut the line between the first two known

velocities in the fluid domain (Point A, Figure 6-2 right). The velocity is interpolated

between two known velocities at the intersection point A. Then, the boundary cell

velocity values will be interpolated using the solid boundary velocity (for a stationary

cylinder with no-slip conditions this velocity is zero) and the velocity at point A. Figure

6-2 (left) shows this interpolation for velocities in the y direction and Figure 6-2 (right)

shows the interpolation for the velocity in the x direction.

There are some alternative interpolation methods presented in the literature that

interpolate the interface cell velocities in the perpendicular direction to the immersed

boundary (Balaras 2004, Gilmanov et al. 2003 among others); but in these methods the

procedure to find the interpolation points is very time consuming (see section 3.3.3). For

the stationary cases, the interpolation formulas are calculated only once, prior to the

simulation, and at each time step the values of the boundary cells are updated using the

same formulas. However, as for the problems with moving immersed boundaries, the

interpolation formulas should be recalculated at each time step, the interpolation method

should not be too time consuming to execute.

6.3 Results and discussion

The flow around a stationary circular cylinder at low Reynolds number, Re=100, is

taken as a bench mark. Five different interpolation treatments are implemented

separately to represent the immersed boundary (the circular cylinder). The Strouhal

number (St), drag (CD) and lift (CL) coefficients for various cases are compared.

For any solid body both the pressure distribution and the friction along the solid

surface may contribute to the lift and drag forces. In this chapter, the pressure at the

surface is obtained by taking the wall-nearest pressure values in the flow domain on the

126

outside of the solid body, thereby assuming that the wall normal gradient of the pressure

near the surface is negligibly small. The component of the drag and lift forces due to

pressure distribution is calculated by integrating the pressure along the solid boundary.

On the other hand, the shear-force component of the lift and drag forces is calculated

from near the surface of the solid. The tangential velocity near the solid surface is

obtained at the wall-nearest point outside of the body and is subsequently used to

calculate the wall-shear stress at the cylinder surface (see chapter 4 for more details).

Table 6-1: Real computational time, 20 vortex shedding

 Case A Case B Case C Case D Case E

Real

time (s)

3231 3225 3379 4441 3383

The simulation times for 20 complete vortex shedding periods are measured for

these five different interpolation cases. Once vortex shedding commenced all

simulations were found to run at virtually the same speed (Table 6-1) showing that the

computational effort needed for the interpolation was negligible as most of the

computational time (more than 70%) is taken by the Pressure Poisson solver. However,

for a non-stationary cylinder, it is expected that updating the interpolation formulas may

lead to an increment in the execution time for the linear and bilinear methods.

Figure 6-3 (left) shows that Case C (linear interpolation) is the quickest method to

develop vortex shedding, which indicates that the implementation of boundary

conditions with linear interpolation causes significant numerical noise. In Case E

(proposed bilinear method), on the other hand, the vortex-shedding instability kicks in

much later evidencing that the level of numerical noise introduced by this type of

interpolation is very small.

Figure 6-3 (right), shows a comparison of the drag coefficients obtained in

calculations of flow over a stationary cylinder at Re=100 using various interpolation

methods. It can be seen that in the cases C, D and E, (linear and Bilinear interpolation

methods) the results are converging to a value of CD = 1.43. However, Case A (without

interpolation) leads to a higher drag coefficient, CD=1.46 and Case B (weighting

method) leads to a lower drag coefficient CD=1.42. In the literature for this bench mark

(at Re=100), the drag coefficient is reported in the range from 1.33 to 1.47 (Table 6-2).

127

Therefore, all the interpolation methods are predicting acceptable values for the drag

coefficient.

Figure 6-3: Drag coefficient for the flow around a stationary cylinder at Re=100, Case

A, without interpolation; Case B: area weighting method; Case C, Linear interpolation

method; Case D, Bilinear interpolation; Case E, Suggested bilinear interpolation.

The drag coefficient due to pressure and shear stress show a slightly different

behaviour (Figure 6-4). The drag coefficient due to the pressure for linear (case C) and

bilinear (cases D and E) methods are about 1.18, however for Case A (without

interpolation) and case B (weighting method) these values are 1.11 and 1.06

respectively. The results show that both case A and B predict smaller values (by about

8%) pressure drag coefficient in comparison to the other linear and bilinear interpolation

methods.

On the other hand, in the case A and B, the mean drag coefficient due to shear stress

(Figure 6-4 right) are predicted to be 0.345 and 0.355 respectively, which is about 40%

higher than the values predicted by linear and bilinear methods (case C, D and E) which

are about 0.245. The numerical results show that the two cases A and B are predicting a

lower value for the drag coefficient due to the pressure (about 8%) and a higher value for

the drag due to the shear stress (about 40%) in comparison to the linear and bilinear

cases. But the drag coefficient for cases A and B differ only about 2% from those

obtained in the other interpolation methods. This can be explained by the fact that

accumulated errors are cancelling out. Therefore, it is important to notice that the

difference among the methods should not be judged only by the drag coefficient and the

128

drag components should be investigated as well. In addition, according to the Figure 6-3

right and Figure 6-4, in the linear and bilinear interpolation (case C, D and E) methods,

the drag coefficient, the drag due to pressure and drag due to the shear stress are

converging nearly to the same values. The numerical results confirm that the suggested

bilinear interpolation method (case E) has the same accuracy as the linear (case C) and

bilinear (case D) methods.

Figure 6-4: Drag coefficient due to pressure (left) and due to shear stress (right) for

the flow around a stationary cylinder at Re=100, Case A, without interpolation; Case B:

area weighting method; Case C, Linear interpolation method; Case D, Bilinear

interpolation1; Case E, proposed bilinear interpolation method

Figure 6-5: Lift coefficient for the flow around a stationary cylinder at Re=100, Case

A, without interpolation; Case B: area weighting method; Case C, Linear interpolation

method; Case D, Bilinear interpolation method; Case E, suggested bilinear interpolation

method

129

Figure 6-5 and Figure 6-6 show the comparison of the lift coefficients for the

various interpolation cases. It can be seen that, like the drag coefficients, also the lift

coefficients for the bilinear cases are nearly the same (Case D and E) with CL ≈ ±0.31.

Case B (weighting method) shows the lowest value for the lift (CL = ±0.27) and Case C

(linear interpolation), shows the highest value for the lift coefficient (CL=±0.325).

The simulation results show that the lift coefficient predicted by the linear (case C)

and bilinear (case D and E) methods are matching well with the results reported in the

literature (Table 6-2). However Case A (without interpolation) and case B (weighting

method) show a lift coefficient that is slightly lower than the values reported in the

literature.

The Power Spectral density (PSD) of the lift coefficient is presented in the Figure

6-7. The PSD graph illustrates that interpolation methods could affect the frequency of

the vortex shedding (Strouhal number) for the stationary cylinder. The numerical results

show that, apart from cases A (without interpolation) and B (weighting method) that

predict a higher Strouhal number (0.174 and 0.176), the other interpolation methods do

not affect severely the Strouhal number. The Strouhal number for the linear interpolation

method (Case C), for the bilinear interpolation method (Case D) and for the proposed

bilinear interpolation method (Case E) is predicted about 0.169.

Figure 6-6: Lift coefficient due to pressure (left) and shear stress (right) for the flow

around a stationary cylinder at Re=100. Case A, without interpolation method; Case B:

area weighting method; Case C, Linear interpolation method; Case D, Bilinear

interpolation method; Case E, suggested Bilinear interpolation

In the numerical literature, the Strouhal number for the flow around a circular

cylinder at Re=100 is reported in the range from 0.164 to 0.175. However, most of the

130

experimental results reported show a Strouhal number in the range from 0.164 to 0.167.

According to the parametric study (Chapter 6), the reason that these numerical

simulations present higher values for the Strouhal number is related to the entrance

length (before the cylinder), which it is taken to be 5D in this chapter.

Figure 6-7: Power Spectral density of the lift coefficient; five different interpolation

methods

Table 6-2: Strouhal number, lift and drag coefficient for the flow around a stationary

cylinder and Re=100.

simulation methods

Strouhal

Number

 Drag

Coefficient

 Lift

coefficient

Case A 0.174 1.46 0.29

Case B 0.175 1.42 0.27

Case C 0.169 1.432 0.325

Case D 0.169 1.434 0.305

Case E 0.168 1.432 0.312

Park 1998, fitted method 0.165 1.33 0.33

Williamson 1988(exp.) 0.166 …. ….

Kim et al. 2001 0.165 1.33 0.32

Roshko 1954(exp.) 0.164 …. ….

Lai and Peskin 2000 0.165 1.4473 0.3299

Choi et al. 2007 …. 1.351 0.315

Corbalan & de Souza 2010 …. 1.44 0.31

131

Table 6-2 shows a comparison of the Strouhal number, lift and drag coefficient for

the flow around a stationary cylinder at Re=100 using various methods; ranging from the

experimental methods (Roshko 1954 and Willamsion 1988) to the body fitted mesh

(Park et al. 1998) and immersed boundary methods (Kim et al. 2001, Lai & Peskin 2000,

Choi et al. 2007 and Corbalan & de Souza 2010). It can be seen that the Strouhal number

varies between 0.16 and 0.18; the drag coefficient between 1.33 and 1.4473 and the lift

coefficient between 0.31 and 0.33.

6.4 Conclusion

The objective of the present study was to compare the accuracy and computational

efficiency of various IB interpolation methods and select the most accurate and least

expensive method for future use in the simulations of flow around a deformable

cylinder. The fractional step method and a staggered variable arrangement on a

Cartesian grid have been used to solve the governing equations. In the proposed IB

method the velocities near non-conforming boundaries were interpolated in the normal

direction to the walls, thereby considering the curvature of the geometry. The Strouhal

number, drag and lift coefficient for 5 different IB interpolation methods are compared.

The overall results show a good agreement with the literature for most of the

interpolation methods for the stationary cylinder at a low Reynolds number, Re=100.

The drag coefficient results for the five different interpolation methods differ by no more

that 2%, while the drag due to shear stress shows differences of up to 40% due to the

accumulated errors, however simulation results only show a 2% difference in drag

coefficients. The Strouhal numbers for five different interpolation methods differ only

by a maximum of 3%. The simulation results show a difference of about 15% on the lift

coefficient between the interpolation methods. However the lift coefficients calculated

by linear and bilinear interpolation methods were formed to match well with literature.

In addition, the bilinear interpolation method took about 2% more computational

time per vortex shedding cycle compared to the other methods. In the next chapter the

proposed interpolation method is used to simulate body cross flow oscillation of a

circular cylinder.

132

Chapter 7. Body cross flow oscillation

Having studying the flow over a stationary bluff body in previous chapters, the

focus of this chapter is on the flow over a moving body with a degree of freedom in the

cross flow direction. This chapter briefly presents the theory and governing equations

necessary to simulate a moving body in a uniform stream. Also, it is explained how the

Navier-Stokes equations with IB interpolation are modified to allow modelling of a

moving boundary in the presence of either forced oscillations or with prescribed motion

and Vortex-Induced Vibrations (VIV) in the cross flow. In this model the IB

interpolation technique is used to represent the immersed boundary on a Cartesian grid.

To simulate the FSI problem, two approaches are followed; an inertial frame of

reference and a moving (non-inertial) frame of reference. In the latter case, the frame of

reference is attached to the body and the governing equations are solved in a relative

frame of reference.

7.1 Forced Oscillation of a body in cross flow direction

In a forced excitation of a body, the body oscillates at the forcing frequency with a

prescribed motion in the cross flow direction. At some specific range of oscillation the

frequency of vortex shedding around the body becomes similar to the oscillation

frequency. From the literature it is known that the frequency of vortex shedding can be

controlled for a limited range of reduced velocities, where the vortex shedding frequency

and the body oscillation frequency become synchronized. This phenomenon is usually

known as ‘lock-in’. Simulation results show that the lock-in occurs only in a frequency

range close to the system’s natural frequency, above a threshold of oscillation amplitude.

The lock-in range increases with increasing the amplitude (Figure 1-4). Moreover, a

dramatic change might occur in the flow patterns and lift and drag forces by increasing

the oscillation amplitude in the lock-in region. Another important issue in a cross flow

oscillation is the phase change between the vortex shedding and the forced oscillation. In

some cases the amplitude of the lift coefficient for the vibrating cylinder is lower than a

stationary case, due to the fact that the inertial part of the lift force dominates in this

range of oscillations and has a different phase than the lift due to the vortex shedding.

This issue in low amplitude vibration could lead to a lock-in and beating pattern. The

body’s motion in the y direction is defined as a sinusoidal motion as,

133

𝑦𝑐(𝑡) = 𝐴0𝑦𝑆𝑖𝑛(𝜔𝑡) = 𝐴0𝑦𝑆𝑖𝑛(2𝜋𝑓𝑡) (7-1)

Where 𝑦𝑐(𝑡) is the location of the centre of the cylinder and 𝐴0𝑦, 𝜔 and 𝑓 is the

amplitude, the frequency in rad/s and the frequency in Hz of the prescribe oscillation,

respectively.

7.2 Fluid-Structure interaction due to Vortex induced Vibration

When a flow passes a bluff body, Fluid-Structure Interaction (FSI) and vortex

shedding phenomena may incur the bluff body to oscillate. This oscillation is known as

Vortex-Induced Vibration (VIV) in the literature. If the frequencies of the VIV and the

natural frequency of the structure become similar, the flow may induce resonance in the

structure. The governing equation of a structure (Figure 7-1) that is flexible (one degree

of freedom) in the cross flow direction is given by:

Figure 7-1: Flow over a circular cylinder at two dimensions with vertical degree of

freedom

𝑚
𝑑2𝑦

𝑑𝑡2
+ 𝐶

𝑑𝑦

𝑑𝑡
+ 𝑘𝑦 = 𝐹𝐿(𝑡)

(7-2)

Where m, C and K are mass, damping and stiffness of the structure, respectively,

while y corresponds to the transverse displacement of the centre of the body. 𝐹𝐿 is the

hydrodynamic force in the cross flow direction. The same non-dimensional scaling as in

the flow governing equation is applied here to non-dimensionalize the structural

governing equation.

𝑑2𝑦∗

𝑑𝑡∗2
+ 2 × 𝜉 × (

2𝜋

𝑉𝑟
)
𝑑𝑦∗

𝑑𝑡∗
+ (

2𝜋

𝑉𝑟
)
2

𝑦∗ =
2×𝐶𝐿(𝑡)

𝜋𝑚∗
(7-3)

Where, the non-dimensional parameters are labelled by a ‘*’. In the reminder of this

thesis this sign is dropped for simplicity. 𝑉𝑟 =
𝑈∞
𝑓𝑁𝐷

 is the reduced velocity where

134

𝑓𝑁 = (1
2𝜋
)√𝐾

𝑚
 is the natural frequency of the undamped structural system (mass and

spring), 𝑈∞ and 𝐷 are the free stream velocity and cylinder diameter, respectively (the

same reference scales as used to non-dimensionalized the Navier-Stokes equations) .

𝐶𝐿 =
𝐹𝐿

1
2
𝜌𝑈∞

2 𝐷𝐿𝑐
 is the lift coefficient where 𝜌 is the fluid density and 𝐿𝑐 is the length of the

cylinder (This length is assumed to be Lc=1 in the two dimensional simulation).

𝑚∗ = 𝑚

𝑚𝑓
= 𝑚

𝜌𝑓𝜋(
𝐷2

4
)𝐿𝑐

 is the mass ratio, i.e. the mass of the structure (cylinder) m, over

the mass of the fluid replaced by the structure 𝑚𝑓. 𝑦∗ = 𝑦

𝐷
 is the non-dimensionalized

vertical displacement. 𝑡∗ = 𝑡 × 𝐷

𝑈∞
 is the non-dimensional time and 𝜉 = 𝐶

𝐶𝑐
 is the

structural damping ratio where 𝑐𝑐 = 2√𝐾𝑚 is the critical damping.

In an FSI simulation, at every time step the hydrodynamic forces are calculated by

solving the flow governing equations and the displacement of the structure based on

these forces is predicted. In the same time step the flow governing equations for the new

configuration of the structure is solved to predict the new hydrodynamic forces. This

process is continued iteratively to obtain a converged solution with the convergance

criteria being a constant position of the structure before going to the next time step i.e

strong coupling.

The free vibration (VIV) and forced vibration of a structure can be presented in

either a moving frame of reference or an inertial frame of reference. In the following

sections these two approaches are briefly presented. Also, the simulation results based

on these two approaches will be compared.

7.3 First approach-moving frame of reference

In this approach the reference frame is fixed to the moving body and the boundary

conditions are defined in a way to resemble the same problem for an observer moving

with the body. This can be explained due the fact that the flow about a circular cylinder

forced to oscillate in the transverse direction to a free stream is kinematically the same

as the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross

flow. It should be noted that these two flows differ dynamically due to the inertial

effects. This effect is known as the Froude-Krylov force in the literature (Meneghini and

Bearman1995).

135

𝐶𝐿 = (𝐶𝐿)𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 +
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

(7-4)

In this equation 𝐶𝐿 is the lift coefficient in the inertial frame of reference,

(𝐶𝐿)𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 is the lift coefficient which is calculated in the moving frame of

reference and
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the non-dimensional inertial term for a circular cylinder. D is

the cylinder diameter and
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the acceleration of the cylinder in the inertial frame

of reference.

In the discussion of the methodology (Chapter 4) it was explained that regardless of

the simulation approach (conforming grid, e.g. ALE or non-conforming grid, e.g. IB), it

is possible to simulate moving boundaries in a non-inertial frame of reference. The

combination of the conforming grid approach with a non-inertial frame of reference

could be the best algorithm to simulate FSI for a single two dimensional rigid body

motion in fluid flow. On the other hand, the relative reference frame could improve non-

conforming grid approaches significantly as the IB formulation does not need to be

updated because relative displacement of the body and the background computational

grid is zero. In this approach, the governing equation of the flow is solved in a moving

reference frame which is attached to the cylinder. To solve the governing equation in the

relative frame two fundamental changes are necessary. First of all, the governing

equation should be derived in the relative frame of reference. This subject has been

addressed in section 3.5 for a general case. The Navier-Stokes equation in the relative

frame of reference has additional terms to compensate for the effect of the moving frame

in the calculation. Also, the boundary conditions should be introduced in the relative

reference frame as well. Here, only the movement in the transverse direction is

considered. The updating of the governing equations and boundary conditions is

described below.

7.3.1 Moving frame-governing equation

Equations (3-35) to (3-39) govern the flow in the moving frame of reference given a

general movement in the two dimensional case. For the movement of the body in the

cross flow direction the governing equations can be written as:

∇. V = 0 (7-5)

∂V

∂t
+ V ∙ ∇V = −∇p + ϑ∇2V − �̈�

(7-6)

136

In these equations the velocities are all relative. The 𝐺(𝑣, 𝑡) term in equation (3-37)

is simplified to only �̈� which is the transverse acceleration of the moving body in the

inertial frame of reference. The other terms in equation (3-37) cancel due to the fact that

the moving frame is not rotating, hence 𝜃 = �̇� = �̈� = 0 and the rotation matrix 𝐴 =

𝐴𝑇 = 𝐼. For instance, in the case of a transverse sinusoidal oscillation (equation (7-1)) of

the cylinder, �̈� reads:

�̈� = �̈�𝑐(𝑡) = −𝐴0𝑦𝜔
2𝑆𝑖𝑛(𝜔𝑡) (7-7)

7.3.2 Moving frame-velocity boundary conditions

The boundary conditions should be applied in the relative frame of reference.

Equation (3-39) ows the velocity in the relative frame of reference. For the transverse

oscillation of the body the frame does not have an angular velocity, i.e. �̇� = 0, hence

𝑉 = 𝑉 ́ − �̇� = 𝑉 ́ − �̇�𝑐(𝑡) = 𝑉 ́ − 𝐴0𝑦𝜔𝐶𝑜𝑠(𝜔𝑡) (7-8)

𝑉 ́ is the velocity in the absolute frame of reference, in this frame a symmetric

boundary condition is applied in the top and bottom of the computational domain hence

in the absolute frame of reference the velocities normal to this boundaries are zero,

𝑉 ́ = 0. Therefore equation (7-8) can be simplified for the above case (movement of

body in the transverse direction) to give:

𝑉 = −�̇� = −�̇�𝑐(𝑡) = −𝐴0𝑦𝜔𝐶𝑜𝑠(𝜔𝑡) (7-9)

7.3.3 Moving frame-Neumann boundary for pressure Poisson equation

 Finding a proper pressure boundary condition for the elliptic pressure Poisson

equation (PPE), equation (7-10) , has been the subject of some controversy (Gresho &

Sani 1987 and Sani et al. 2006). First of all, as a necessary condition for the existence of

a solution to a problem with a Neumann boundary condition (equation (7-11)), the

boundary condition should be well-posed i.e. the source and the boundary data should

satisfy the compatibility condition (equation (7-13)).

−∇2𝑝 = 𝑓 (7-10)

𝜕𝑝

𝜕𝑛
= 𝑔

(7-11)

The compatibility condition is obtained by applying the divergence theorem (also

known as Gauss’ theorem) to the integration of the Poisson equation over the domain

137

(equation (7-12)). To do so, the Laplace operator is written as the divergence of the

gradient vector.

−∫∇2𝑝

Ω

= −∫∇. ∇𝑝

Ω

= −∫
𝜕𝑝

𝜕𝑛
𝜕Ω

=∫𝑓

Ω

(7-12)

∫𝑔

𝜕Ω

+∫𝑓

Ω

= 0
(7-13)

More precisely, equation (7-13) states that the outward flux of the vector field

(gradient of pressure on the boundaries) is equal to the volume integral (here surface) of

the divergence (of the pressure gradient) over the region inside the boundaries. In other

words, it states that the sum of all sources minus the sum of all sinks gives the net flow

out of a region.

A natural method to define the Neumann boundary for the pressure is by using the

normal component of the momentum equation at the boundaries (Blackburn and

Henderson 1999). By taking the dot product of the domain outward normal unit vector,

n, with the momentum equation (7-6), the Neumann pressure boundary condition is

obtained as

n ∙ ∇p =
∂p

∂n
= −n ∙ [

∂V

∂t
+ V ∙ ∇V + ϑ(∇ × ∇ × V) + A�̈�]

(7-14)

In the above equation, according to the suggestion of the Orsag et al. 1986, the

viscous term is presented by using the vectors identify:

∇2V = ∇(∇ ∙ V) − ∇ × ∇ × V (7-15)

Also, Blackburn and Henderson 1999 suggested writing the non-linear term

(convection term) as a skew symmetric form (equation (7-16)).

V ∙ ∇V = (V ∙ ∇V + ∇ ∙ VV) 2⁄ (7-16)

7.3.4 Moving frame of reference algorithm

Using a non-inertial reference frame allows to simulate FSI problems with moving

boundaries in a fixed Cartesian grid (as compared to an ALE approach with

moving/deforming grid) while the interpolation coefficient maintains unchanged (in

comparison to an IB approach in an inertial frame). Therefore using a moving frame of

reference would be potentially an efficient approach; however this method is limited to a

single moving object or synchronised moving objects. The algorithm for the simulation

of a forced vibration of a rigid body using a moving frame of reference is as follows.

138

1. The flow boundary condition (location and velocities) are updated according to

the prescribed motion of the cylinder in time.

2. The flow velocity is updated at the new time step using an explicit Rung-Kutta

method.

3. The pressure Poisson equation with Neumann boundary conditions is solved by

an iterative method.

4. The velocity vectors are updated by using the pressure term from the previous

step.

The above algorithm is repeated until a steady state solution is reached.

7.4 Second approach, moving IB or fixed grid (inertial frame of

reference)

When simulating flow around a stationary cylinder, the interpolation formulas are

calculated once and the interface velocities (around the cylinder) are updated using

interpolation formulae for every iteration. Therefore, the interpolation formulae at the

boundary cells remain unchanged. However, in a moving cylinder, the position of the

cylinder is changing, and therefore the boundary cells and interpolation formulae could

potentially change. In other words, at each time step, if the position of the cylinder is

changed, the interpolation formulae should be updated as well. To do this, before

updating the interpolation formulae each time step, the position of centre of cylinder is

updated automatically to the new position using the prescribe motion (equation (7-1)).

One of the important issues is the relation between the time steps of the fluid flow

and the time steps of prescribed motion of the structure. Choosing the time step of the

structure and the flow depends on the CFL number in the fluid flow and the prescribed

motion of the structure. It is important that the time step in the fluid should not lead to

instability. However, choosing a very small time step will be expensive. Firstly, because

the interpolation formulae and also the LU decomposition matrices should be

recalculated each time step and secondly, the boundary conditions of the flow will

change at each time step which leads to a higher number of inner iteration for the flow

(Poisson solver) to resolve these perturbations.

Choosing different time step for the flow and the structure is not recommended as it

may cause a spurious phase between the lift coefficient and the displacement of the

139

cylinder. An approach, like artificial incompressibility that uses dual time stepping is a

potential remedy for this problem (Gilmanov and Sotiropoulos 2005).

7.4.1 Inertial frame-governing equation and boundary conditions

Equation (4-8) presents the momentum equation in the non-dimensional form. This

equation and the continuity equation are solved by the fractional step (Chorin projection

approach) method as explained in section 4.3.3. In this context, the vector form of the

governing equation is as follows:

∂V

∂t
= −V ∙ ∇V + ϑ∇2V

(7-17)

∂V

∂t
= −∇p

(7-18)

In equation (7-17) (by ignoring the pressure in the momentum equation), an

intermediate velocity that does not satisfy the incompressibility constraint is calculated.

The intermediate velocity will be projected to a solenoidal space (divergence-free

velocity field) using equation (7-18). In this equation, the pressure field is calculated by

solving the pressure Poisson equation (PPE). (PPE is formed by forcing the mass

conservation to the divergence of the momentum equation).

The boundary conditions for the domain remain unchanged compared to the

stationary case. However, the boundary around the moving object should be updated in

time according to the prescribed motion of the cylinder. Also the Neumann condition for

the pressure Poisson equation should be updated according to the following equation as

explained in the previous section:

∂p

∂n
= −n ∙ [

∂V

∂t
+ V ∙ ∇V + ϑ(∇ × ∇ × V)]

(7-19)

7.4.2 Inertial frame of reference algorithm

The main advantage when using an immersed boundary approach is the ability to

simulate the Fluid-Structure-Interaction (FSI) for a moving object on a fixed grid. In this

approach, unlike the Arbitrary-Lagrangian-Eulerian (ALE) approach the computational

grid is not deforming or displacing, even though at each time step the interpolation

formula needs to be updated. To simulate a cylinder moving with a prescribe oscillation

in the cross flow direction the following algorithm is used.

1. From the prescribed motion and the simulation time, the position of the cylinder

is known and is used to calculate the interpolation formulae and LU matrices.

140

2. The velocity around the cylinder at each new position is updated with new

interpolation formula.

3. The pressure Poisson equation with Neumann boundary conditions is used to

enforce the continuity equation.

4. The velocity field is updated using the new pressure gradient as calculated in step

3.

The above algorithm is continued in time to reach a fully developed solution.

7.5 Calculation of the force on moving boundary

In the non-conforming boundary approach, the computation of local forces on a

moving boundary is not a trivial problem (Yang & Balaras 2006). Lai and Peskin 2000

compared three methods of force calculation to their own approach (immersed

boundary-continuous forcing approach). In section 4.8 a direct method is presented to

calculate the local force on the stationary (or moving with constant velocity) immersed

boundary. In this section the method is developed for the moving boundary case as well.

The simulation results show that for low amplitudes of oscillation (i.e. small

acceleration) the same procedures are acceptable. However, for oscillations with higher

acceleration, corresponding to higher amplitude and/or frequency of oscillation, some

special treatment (extrapolation of the pressure near the boundary) could improve the

simulation accuracy (Gilmanov and Sotiropoulos 2005).

7.6 Parametric study

In this section various parameters which could potentially affect hydrodynamic

forces from the uniform free stream on an oscillating cylinder are briefly addressed.

According to the parametric study for a stationary cylinder the mesh size, domain size

up stream of the cylinder and the domain size in the transverse direction to the flow are

the most influential factors. Here, these effects are studied for cylinder oscillating in

cross flow direction with an amplitude of A/D=0.2, while the frequency of excitation is

fe=1.05х fs. The parametric study is performed at Re=100, based on the free stream

velocity and cylinder diameter. So that the Strouhal frequency is fs=0.167. The effects of

different prescribe motions (amplitude and frequency) on the lift and drag coefficient are

presented later in the results section.

141

7.6.1 Parametric study- mesh size

The size of the grid around the immersed boundary is an important parameter in the

study of the flow around the bluff body. The boundary conditions can be applied more

precisely while there are fine grids around the IB; however, using a very fine mesh near

the IB is very expensive and might slow down the simulation process significantly. The

results of the mesh refinement study for the flow around a circular cylinder is presented

in this section to show the optimum grid size for this problem.

Table 7-1: mesh refinement study of oscillating cylinder – Parameters and results

∆𝑥 = ∆𝑦 Number

of grid

at each

direction

Total

no. of grid

points

Actual computational

time (s) (for 100 time-units)

Mean-

Drag

coefficient

Max-

Lift

coefficient

0.1 122х 97 11’834 2’500 (45 minutes) 1.33 0.45-0.71

0.05 240х 191 45’840 5’800 (1.6 hours) 1.58 0.575

0.025 468х 375 175’500 27’800 (7.2 hours) 1.59 0.55

0.0125 942х 742 698’964 237’000 (2.74 days) 1.59 0.545

0.00625 1880х 1489 2’799’320 2’206’000 (25.7days) 1.60 0.55

According to the Figure 5-2, the centre of the cylinder is located at the origin of the

computational grid and the size of domain the in x, y directions is

[-15D, 30D] х [-20D,20D]. The size of the embedded uniform grid area is [-2D,4D]х

[-2D,2D] and the stretching factor is 4. The cylinder is forced to oscillate in the cross

flow direction with an amplitude of 0.2D and a frequency of F=fo/fs=1.05.

In this study, the mesh size of the embedded uniform mesh is changed from 0.1D to

0.00625D. The numerical results show that for the coarse mesh (dx=dy=0.1D) the lift

and drag coefficient are highly affected by the size of the mesh, however for the fine

meshes, this effect is negligible. For instance, if the size of the mesh changes from 0.1D

to 0.05D, the mean drag coefficient increases by about 16%, while a decreases in the

grid size from 0.025D to 0.0125D results changes is negligible in lift and drag

coefficients (less than 1%).

142

Figure 7-2: mesh refinement study- Drag coefficient

In Table 7-1 the accuracy of the numerical results and the computational time

needed to achieve the accuracy is presented for five different mesh sizes. It is shown that

the computational time to simulate hundred non-dimensional time step increases from

1.6 hours to 25.7 days (385.5 times increase) when the mesh is refined from a size of

0.05D to 0.00625D (8 times decrease), respectively.

Figure 7-2 andFigure 7-3 show the time history of the lift and drag coefficients for

the five different mesh sizes listed in Table 7-1. The graphs show that the drag

coefficient, the drag due to the pressure and due to shear stress are more sensitive to the

mesh size than the lift coefficient. It can be seen that the lift and drag coefficient

converge to the steady solution after about 50 non-dimensional simulation time.

143

Figure 7-3: mesh refinement study – Lift coefficient

7.6.2 Parametric study-size of domain before the cylinder

One of the important parameters which highly affects the hydrodynamic forces is

the length of the computational domain upstream of the solid body which received less

attention in the literature. The size of domain upstream of the cylinder is changed from

5D (five times of the cylinder diameter) to 30D. The size of the domain in the y direction

for this study remains 40D. The simulation results (Figure 7-4) show that mean drag

coefficient decreases by 4.4% and the maximum lift coefficient increases by 23.6%,

respectively, by increasing the size of the domain upstream of the cylinder from 5D to

15D. However, if the size of the domain upstream of the cylinder is further increased

from 20D to 30D, the mean drag and maximum lift coefficients only change by -0.2%

and 1.5% respectively.

Figure 7-4: Parametric study of the effect of size of domain before cylinder in x

direction on the mean drag and maximum lift; cross flow oscillation with A/D=0.2 and

fe/fs=1.05 at Re=100

1.56

1.59

1.62

1.65

1.68

0 5 10 15 20 25 30 35

C
D

m
ea

n

Size of domain before cylinder

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30 35

C
Lm

ax

Size of domain before cylinder

144

7.6.3 Parametric study- blockage effect

Another important parameter affecting hydrodynamic forces is the size of the

domain in the transverse direction which is addressed as the blockage effect in the

literature. In this simulations the size of the domain in the transverse direction is

increased from 10D to 100D; while the rest of the parameters is kept constant; in this

case, according to the parametric study in the chapter 5, the size of the domain in the x

direction is [-15D,30D].

The simulation results (Figure 7-5 and Figure 7-6) show that if the size of the

domain in the transverse direction changes from 10D to 40D the mean drag and

maximum lift coefficients are decreased and increased by 4% and 24.6% respectively.

Figure 7-5: Parametric study of the effect of size of domain in y direction on drag

coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

However if the size of the domain in the y direction is further increased from 50D to

100D the mean drag and maximum lift coefficients change by about -0.1% and 1.6%,

respectively. Figure 7-7 show the drag and lift coefficients based on the oscillation time

for various domain sizes in the y direction.

145

Figure 7-6: Parametric study of the effect of the size of the domain in the y direction

on the lift coefficient; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

Figure 7-7: Parametric study of the effect of size of domain in y direction on the mean

drag and maximum lift; cross flow oscillation with A/D=0.2 and fe/fs=1.05 at Re=100

7.7 Results

In this section, to validate the FSI algorithm presented in the previous sections,

several cases with various amplitudes and frequencies of oscillation were selected as a

bench mark. The simulations were repeated for various Reynolds numbers and the

simulation results were compared with the literature and with inertial reference frame

simulation results.

1.58

1.6

1.62

1.64

1.66

0 20 40 60 80 100

C
D

m
ea

n

size of domain in y direction

0.4

0.45

0.5

0.55

0.6

0 20 40 60 80 100

C
Lm

ax

size of domain in y direction

146

7.7.1 Inertial effect - Froude-Krylov force

As explained in section 7.3, it is possible to solve the flow governing equations in

the moving frame of reference (equation (7-6)) as well as in the inertial frame of

reference (equation (7-17)). This can be explained by the fact that the flow about a

circular cylinder forced to oscillate in the cross flow direction is kinematically similar to

the flow about a fixed cylinder in a free stream with a superimposed oscillatory cross

flow (Meneghini and Bearman 1995). It should be noted that these two flows differ

dynamically due to inertia effects (Froude-Krylov force). However, if the flow

governing equations are fully derived in the moving reference frame (equation (4-6)) the

inertia term has already been added to the equations, and the hydrodynamic forces

comprise the inertia effect too. Therefore, the inertia effects should be added to the

relative hydrodynamic forces if the flow governing equation (equation (4-17)) is solved

with the relative velocities instead of absolute one without deriving the equation in a

moving frame. To demonstrate the effect of inertial forces, the flow around a cylinder

that is forced to vibrate in the cross flow direction is solved in the moving frame of

reference using the following two methods. In the first case (Case A), equation (7-17) is

used and in the second case (Case B), equation (7-6) is used. In both cases, Re=150,

𝐹 =
𝑓𝑒
𝑓𝑠
⁄ =0.9 and the cylinder is forced to oscillate in the cross flow direction ((7-20)

equation (7-20)).

yc(t) = A0ySin(ωt) = A0ySin(2π × F × f𝑠t)

= 0.15 𝑆𝑖𝑛 (2𝜋 × 0.9 × 0.196 × 𝑡)

(7-20)

In addition, in both cases the reference frame is attached to the cylinder and the

relative velocities are defined at the inlet and far-field boundaries (top and bottom). At

the outflow the convective boundary condition is used.

The simulation results show that in both cases (Case A and B) the pressure, the lift

due to shear, the drag coefficient due to pressure and the shear stress are the same

(Figure 7-9). However the inertial force shows a difference in the lift coefficients due to

pressure (equation (7-4)) between cases A and B. In Figure 7-8, the red line and the

green line show the lift coefficient (due to pressure) for cases A and B, respectively. In

this figure, if the lift in case A (red line) and the inertial effect (orange line) are added

together (back dots), the results are similar to the lift coefficient obtained in the case B

(Green line).

147

Figure 7-8: Using Froude-Krylov force (inertial force) to correct lift coefficient

calculated in moving frame of reference

According to the equation (7-4), the effect of inertial force on the lift component for

the above case is calculated as follows:

𝐶𝐿𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
𝜌𝜋𝐷

2

4
× 1 ×

𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

1
2
𝜌𝑈2𝐷 × 1

=
𝜋𝐷

2𝑈2
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑
𝑑𝑡2

(7-21)

Where ρ is the density of the fluid flow; 𝜌𝜋𝐷
2

4
× 1, is the mass of the displaced flow

by the cylinder and
𝑑2𝑦𝑠𝑜𝑙𝑖𝑑

𝑑𝑡2
 is the acceleration of the oscillating cylinder in the cross flow

direction (referred to as �̈� in equation (7-6)).

Figure 7-9: The drag (CD) due to pressure and shear stress, lift due to shear stress

and pressure for cases A and B in the moving frame of reference

148

7.7.2 Moving frame verses inertial frame of references

The governing equations are solved in both the moving frame of reference (Section

7.3) and the inertial frame of reference (Section 7.4). In both approaches an IB

interpolation method is used to enforce the immersed boundary. In the moving frame of

reference, however, the interpolation formulas are not updated so that the simulation is

less time consuming and the results are much smoother. In this section, a comparison

between these two approaches is presented. In both cases a cylinder is forced to oscillate

in the cross flow direction, the Reynolds number is 100 (Re=100), the amplitude of the

oscillation is 0.2D and the frequency of the oscillation is 1.05 times the vortex shedding

frequency (0.167). The Reynolds number is based on the free stream velocity and the

cylinder diameter, D.

The lift and drag due to pressure for both approaches (moving and fixed frame of

reference) are shown in the Figure 7-10. The results from the inertial frame of reference

simulations show noise in the lift and drag signal due to pressure (dotted line). The

reason for this is that the interpolation formulas are updated at each time step.

Figure 7-10: lift (lower curve) and drag (upper curve) due to pressure; dotted lines,

inertia frame of reference(without smoothing); dash lines, moving frame of reference

Despite the noise that the inertial frame produces for the lift and drag due to

pressure, both frames of reference calculate nearly the same values for the lift and drag

coefficient after smoothing the graph of the inertial frame of reference results by

omitting the noise (Figure 7-11).

149

Figure 7-11: lift (lower curve) and drag (upper curve) due to pressure; dotted lines,

inertia frame of reference (with smoothing); dashed lines, moving frame of reference

Figure 7-12 shows the lift and drag due to shear stress for both non-inertial and

inertial frame of reference simulations. The simulation results do not show any noise in

the lift and drag due to shear stress for both approaches. It can be concluded that the

noise in the lift and drag coefficient are due to the calculation of the pressure. Also it can

explain why the inertial frame of reference approach is so time consuming. Not only

updating the interpolation formulas is taking extra simulation time but also the Pressure

Poisson equation (as the most expensive part of the code) needs more iterations to

converge due to the noise in the pressure.

Figure 7-12: lift (lower curve) and drag (upper curve) due to shear stress; dotted lines,

inertia frame of reference; dash lines, moving frame of reference

150

7.7.3 Cross flow oscillation of circular cylinder – validation

In this section, the simulation results induced by a transverse oscillation of a

circular cylinder in a steady free stream are compared with those in the literature. The

Reynolds number is calculated based on the cylinder diameter and the free stream

velocity. The cylinder is forced to oscillate in the cross flow direction according to:

 yc(t) = A0ySin(ωt) = A0ySin(2πf𝑒t) (7-22)

Where, yc(t) is the location of circular cylinder that changes in time, A0y is the

amplitude of the transverse oscillation and f𝑒 is the excitation frequency. The simulation

is performed at low Reynolds numbers, Re=185 and R=200, 0.05 ≤ A0y D⁄ ≤ 0.6 and

0.8 ≤ fe fs⁄ ≤ 1.2 in order to carry out a comparison with the results presented by Kim

and Choi 2006 and Meneghini and Bearman 1995. fs is the frequency of the vortex

shedding for a stationary cylinder (Strouhal number). To calculate the Strouhal

frequency at each Reynolds number, the flow around the stationary cylinder is simulated

separately. The grid is distributed similarly to what is shown in Figure 5-1 andFigure

5-2. The number of the grid points in x (stream wise) and y (cross flow) direction are

531х 478, respectively. Around the cylinder a uniform grid with dx=dy=0.025 is used.

The size of computational domain is [-15D to 15D] in both x and y directions.

Figure 7-13: Force coefficient and phase angle verses fe/fs. Left-Mean drag coefficient

(CD), rms of drag and lift fluctuation coefficients (CDrms and CLrms respectively); Right-

Phase angle between CL and the vertical position of the cylinder. -■-, present study; -▲-,

Kim & Choi 2006.

The flow governing equations are solved in the moving frame of references, in

which the origin corresponds with the centre of the circular cylinder and a dirichlet

CD

CLrms

CDrms

0

0.4

0.8

1.2

1.6

0.7 0.9 1.1 1.3

fo
rc

e
co

ef
fi

ci
en

t

fe/fo
-20

20

60

100

140

180

0.7 0.9 1.1 1.3

p
h

as
e

an
gl

e
(d

eg
)

fe/fo

151

boundary condition (u/u∞=1 and v=-vcylinder) is defined at the inlet; at the top and bottom

(farfield) of the computational domain a Neumman boundary condition (
𝜕𝑢

𝜕𝑦
= 0) and a

dirichlet boundary condition (v=-vcylinder) is used; and the convective boundary condition

(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑐

𝜕𝑢𝑖

𝜕𝑥
= 0) is conducted at the outflow, where c is the space-averaged streamwise

velocity.

The hydrodynamic forces (the force due to pressure and shear stress) are resolved in

the x and y directions in the physical domain yielding Fx and Fy. These two forces are

non-dimensionalized according to equations (4-66) and (4-67). In these equations 𝑢∞ is

the free stream velocity.

In the first place, the effect of frequency of excitation on the hydrodynamic forces

at a constant amplitude of oscillation, A0y D⁄ = 0.2 is investigated. The simulation is

performed at fe/fs=0.8, 0.9, 1, 1.1, 1.12 and 1.2. In this simulation the Reynolds number

is Re=180.

Figure 7-13-left shows the mean drag coefficient (CD) and the root mean square

(rms) of the drag and the lift fluctuations (CDrms and CLrms, respectively); and Figure

7-13-right shows the phase angle between the lift coefficient and the location of

cylinder. The simulations results are in good agreement with the results presented by

Kim and Choi 2006. However, in the present study, the rms of the lift coefficient in the

excitation frequencies below the Strouhal frequency are predicted to be smaller, while

for the excitation frequency above the Strouhal number, these values are calculated to be

higher than Kim and Choi’s prediction. The Drag coefficient and the rms of the drag at

all frequencies of excitation are predicted to be slightly higher than the results presented

by Kim and Choi. In other word, the fluctuations in the drag coefficient are predicted to

be higher in this research. This can be explained by the definition of the lift and drag

coefficients to be either perpendicular to the free stream or perpendicular to the relative

velocity.

Figure 7-14 shows how the frequency of excitation might affect the amplitude and

the pattern of the hydrodynamic forces. In this figure the amplitude of oscillation is 0.2D

and the Reynolds number is Re=180. For the frequencies of excitation lower than or

equal to the Strouhal frequency the lift and drag coefficients reach a steady solution

(synchronization) however at frequencies of excitation higher than the Strouhal

frequency a beating phenomenon is observed. It can be concluded that for excitation

frequencies above the Strouhal frequency, the boundary where lock-in occurs is much

152

closer to fe/fs=1 than for excitation frequencies below the Strouhal frequency. This is in

complete agreement with the numerical results presented by Meneghini and Bearman

1995 and experimental results reported by Bearman and Curie 1979 where lock-in was

observed only below the Strouhal frequency. However, at higher Reynolds numbers,

experimental results reported by Koopmann 1967 show an almost symmetrical boundary

of lock-in around the Strouhal frequency.

Figure 7-14: Drag (CD), Lift (CL) coefficient and yc/D time history for A/D=0.2 and

Re=185, (a) f/fs=0.8, (b) f/fs=0.9, (c) f/fs=1, (d) f/fs=1.1, (e) f/fs=1.12, (f) f/fs=1.2. CD: dash dot

curve; CL: Continuous curve; yc/D: dot curve

Figure 7-15 shows time histories of hydrodynamic forces at an excitation frequency

of fe/fs=0.75, and a Reynolds number of Re=200 for four different amplitudes of

153

excitation, A/D=0.25, 0.3, 0.45, 0.6. The lock-in does not occur for fe/fs<0.70. For the

case fe/fs=0.75 and A/D=0.25 a very light beating phenomena is observed (albeit not

very clear). By increasing the amplitude of excitation, a synchronization between the

forcing excitation and the vortex shedding frequency occurs. It seems that at this range

of frequencies (fe/fs=0.75) and for A/D<0.3, the flow cannot decide whether to shed at

the frequency of vortex shedding or at the frequency of excitation. Meneghini and

Bearman 1995 got similar results, however, they observed synchronization above

A/D=0.5.

Figure 7-15: Drag (CD), Lift (CL) coefficient and yc/D time history for fe/fs=0.75 and

Re=200, (a) A/D=0.25, (b) A/D=0.30, (c) A/D=0.45, (d) A/D=0.6.

In Figure 7-16 to Figure 7-18 the lift and drag coefficient for three cases with

A/D=0.15 and fe/fs=0.9, A/D=0.25 and fe/fs=0.8 and A/D=0.05 and fe/fs=1.025 are

presented. The Results show excellent agreement with the results presented by

Meneghini and Bearman 1995. Meneghini and Bearman used a mesh conforming

method with a moving reference frame, but they did not directly include the effect of a

moving frame inside the governing equations. Instead, they used the Froude-Krylov

force to add the inertial effect to the hydrodynamic forces. In the first case (Figure

154

7-16), the phase difference between the excitation frequency and the lift coefficient is

about 175ª so that this case is inside the lock-in range (Figure 1-4). After starting the

numerical simulation the frequency of the vortex-shedding gradually changes to the

excitation frequency.

Figure 7-16: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.90, A/D=0.15,

Re=200. Left figure present study, right figure shows results of Meneghini and Bearman

1995.

By decreasing the excitation frequency, the amplitude of the excitation should

increase to remain in the lock-in region (Figure 1-4). In Figure 7-17, the results of the

case A/D=0.25 and fe/fs=0.8 is presented. In this case, the phase difference between the

lift coefficient and the cylinder displacement is nearly 180ª and the amplitude of the lift

coefficient is lower than in the case of the stationary cylinder. Meneghini and Bearman

1995 explained that this could be due to the fact that inertial part of the lift force (due to

the cross flow oscillation of cylinder) cancels out the lift due to vortex shedding which is

dominant in stationary cases.

Figure 7-17: Drag (CD), Lift (CL) and yc/D over time for fe/fs=0.80, A/D=0.25,

Re=200. Left figure present study, right figure shows results of Meneghini and Bearman

1995.

155

A comparison for the case A/D=0.05 and fe/fs=1.025 is shown in Figure 7-18. The

phase difference in this case between the frequency of the excitation and the cylinder

displacement is about 15ª. The numerical results show that the above fe/fs=1.075 lock-in

does not occur for any amplitude of excitation.

Figure 7-18: Drag (CD), Lift (CL) and yc/D over time for fe/fs=1.025, A/D=0.05,

Re=200; left figure) present study; Right figure) Meneghini and Bearman 1995.

7.7.4 Vortex induced vibration in cross flow direction

In this section, to demonstrate the accuracy of the formulation provided in section

7.2.2, the flow around a circular cylinder in two dimensions with one degree of freedom

in the cross flow direction is simulated. Several runs are performed at high and low mass

ratios and the results are validated in compare to experimental and numerical results

presented in the literature. Also the lock-in region is investigated.

In the first stage, the simulation results for the low mass ratio are compared to the

results provided by Borazjani et al. 2008 and Ahn and kallinderis 2006 who employed

IB method and ALE approach, respectively. In this case the Reynolds number, mass

ratio and damping ratio are fixed at 150, 2, 0, respectively and the stiffness of the

structural system is changed by varying the reduced velocity from 3 to 8. The size of

computational domain is [-15D,15D] both in x and y direction and the cylinder is in the

centre of the domain. Also, there is a uniform grid around the cylinder in the area [-

2D,2D] in x and y direction, the uniform grid in this area is dx=dy=0.025D and the non-

dimensional time step is dt=0.001. Simulation of the flow around a stationary cylinder

shows that the vortex shedding frequency or Strouhal number is St=0.2 at Re=150,

therefore the lock-in phenomenon should occur around this frequency and hence reduce

frequency of Vr=5.

The simulation results show that the applied IB reconstruction method accurately

predicted the lock-in range, however, the maximum amplitude is predicted lower than

156

the one predicted by Borazjani et al. 2008 and Ahn & Kallinderis 2006. This might be

due to the definition of the pressure boundary for the pressure Poisson equation.

Table 7-2 : Amplitude of oscillation (ymax/D) at various reduced velocity at constant

Reynolds number, Re=150, and low mass ratio, m
*
=2.

Reduced Velcotiy Vr=3 Vr=4 Vr=5 Vr=6 Vr=7 Vr=8 Vr=25

Recent Research 0.04 0.42 0.38 0.30 0.20 0.06 0.03

Borazjani et al. 2008 0.06 0.52 0.48 0.43 0.38 0.08 -----

Ahn & Kallinderis 2006 0.06 0.56 0.52 0.42 0.37 0.08 -----

In the second stage, for the high mass ratio, the results presented by

Anagnostopoulos and Bearman 1992 are used for validation; these results have been

used for validation by several researcher (see for example, Yang et al. 2008, Li et al.

2002 among others). Therefore, to be able to compare the results, a mass ratio, 𝑚∗ =

149.10 and a damping ration, 𝜉 = 0.0012, is selected. The Reynolds number changes

in the range of 90 to 140 which is euqivalent to the reduced velocity of 5.02 to 7.81.

Table 7-3: Amplitude of oscillation (ymax/D) at various Reynolds number and

reduced velocity at high mass ratio, m
*
=149.10.

Vr and Re Vr=5.02

Re=90

Vr=5.30

Re=95

Vr=5.58

Re=100

Vr=5.8

Re=105

Vr=6.41

Re=115

Vr=7.81

Re=140

Anagnostopoulos and

Bearman 1992 (exp.)

------- 0 0 0.54 0.5 0

Yang et al. 2008 (Nu.) 0 0.42 0.41 0.36 0.22 0

Schulz and Kallinderis

1998 (Neu.)

0 0.5 0.48 0.45 0.43 0

Present computation 0 0.1 0.24 0.36 0.22 0.0012

Simulation results (Table 7-3) show that the applied IB model in this study has a

good agreement with the experimental results presented by Anagnostopoulos and

Bearman 1992 in terms of predicting the range of reduced velocities which VIV occurs.

For instance, the amplitude of oscillations reported by Yang et al. 2008 and Schulz &

Kallinderis1998 at reduced velocity of Vr=5.30 (Re=95) are 0.42 and 0.5, respectively.

However, at present study the amplitude of oscillation at Vr=5.30 is 0.1 which shows

better agreement with the experimental results which shows zero amplitude at this

reduce velocity.

157

Generaly numerical results presented in the literature predict lower amplitude of

oscillation in comparison to the experimental results. In the present study the same trend

is observed. The reason behind this might be that although the reduced velocity is the

same for both experiment and numerical simulation, the numerical simulation is

normally performed at low Reynolds number in which vortices can be assumed two

dimensionls. Therefore the two dimensional numerical simulations cannot model three

dimensional aspects of the vorticities which occur at higher Reynolds numbers.

7.8 Summary

In this chapter, the forced vibration and the vortex induced vibration of a bluff body

in a uniform flow are discussed and the simulation results are compared and validated

using well-established experimental and numerical bench marks. It was shown that the

immersed boundary interpolation approach used for the stationary cylinder in chapters 5

and 6 could be applied for the moving immersed boundary as well. A comprehensive

parametric study is performed to show how the computational domain parameters could

affect the hydrodynamic forces and computational costs. Based on a parametric study,

for low Reynolds numbers simulation a domain size of [-15D,30D] х [-20D,-20D] in x

and y direction respectively and a mesh size of dx=dy=0.025 around the immersed

boundary are recommended.

 To simulate moving boundaries two approaches were followed, using either a

moving (non-inertial) frame or fixed (inertial) frame of references. Compared to the

inertial frame of reference, the moving frame of reference results were much smoother

and the computational time was lower. However, the moving frame approach is limited

to simulations of single or synchronized moving bluff bodies in the fluid flow.

Also, it is shown by deriving the governing equations in the moving frame of

reference that the Froude-Krylov force should not be added to the hydrodynamic forces

to compensate for the inertial effect.

In addition it is shown that the noise in the results from the inertial frame of

reference simulation is due to the calculation of the pressure which maybe improved by

using a dual time step formulation or by using an accurate interpolation of the pressure

at the immersed boundary. Moreover, the VIV simulations show that the results are in

good agreement with the literature.

158

Chapter 8. Conclusion and Future work

The simulation of Fluid Structure Interaction (FSI) is a multi-disciplinary and a

multi-physics problem and a full FSI simulation has to address many issues. The main

goal in this research was to develop an FSI code to simulate Vortex-Induced Vibration

(VIV) in the flexible riser application. The riser problem involves simulation of a

flexible, slender structure with large displacement and bending in an unsteady fluid flow.

A full simulation of this problem with the current knowledge and computational power

is not feasible at the moment due to the multi-physics nature of the problem. Many

research groups have worked in the past to model this problem and suggested various

models and due to recent developments in computational power, CFD and Structural

algorithms, a continuous progress in the research in this area is being made.

A partitioned strategy has been used to link the CFD and structural codes to be able

to model the riser problem in a quasi-three dimensional using the strip theory. In the

strip theory, the flow is computed in a number of two dimensional planes that are

positioned at intervals along the pipes. The flow in each plane of the strip theory model

is solved using a two dimensional Navier-Stokes solver. The response of the pipe to the

flow loading is computed using various beam theories through a structural code. At this

stage, a loose or strong coupling strategy will be used to alternatively pass the load from

the flow to the structure and pass the new location of the structure to the flow solvers.

In an FSI problem, an initial and vital step for a feasible and accurate simulation is

to study the physics of the problem. In this PhD thesis the main focus was to simulate

the flow around a flexible body in the two dimensional plain. The outcome of this

research will be used for a future modelling of the riser problem in the frame work of the

strip theory. Using the strip theory for the riser problem, the problem was reduced to a

well-documented simulation of the flexible circular cylinder in two dimensions.

However, due to the fact that this two dimensional simulation will be used as a part of a

bigger model special attention was needed. The first issue was that the two dimensional

flow solver should be able to handle large displacements/deformations of the structure.

Secondly, the flow solver should be computationally efficient. Thirdly, it was needed to

integrate the flow solver with a structural code. Finally, the algorithm has to be

159

expandable to three dimensions to be able to model turbulent high Reynolds number

flow in the future. Therefore, considering the physics of the problem and the restriction

on the computational facilities, a comprehensive study of the available FSI approaches

was conducted to find an appropriate algorithm that fulfils the set criteria.

8.1 Simulation approaches

There are two main simulation approaches for FSI problems: monolithic and

partitioned approaches. In the monolithic approach both fluid and structure are

formulated in the same mathematical framework and a unique algorithm is used to solve

the entire fluid and structure domain. However, in order to link the CFD code with a

structural code using the strip theory in future, a partitioned approach was preferred.

Within this approach the fluid and the structure were treated as two separate

computational entities and to be solved with their own respective discretisation and

solution algorithm. Interface conditions were used to communicate information between

the flow and structural solvers.

Another important feature for the FSI code is that the code should be able to model

large displacements. There are two main discretisation method; the conforming method

and the non-conforming method. In the former, the interface boundary condition is

identical to the physical boundary condition making the interface location part of the

solution requiring the grid to conform to the interface. By advancing in time, re-meshing

might become necessary due to deformation/ displacement of structure. Therefore, this

approach is expensive due to the regular re-meshing in every time step. In addition this

method is good for low displacement due to inherit limitation in mesh deformation.

However, in the non-conforming approach, the boundary location and interface

conditions were imposed as constraints on the governing equations defined on a

background Cartesian grid, and no re-meshing procedure is needed. As the solid

boundary cuts the Cartesian grid, to define the proper boundary condition the flow

governing equations need to be modified near the immersed boundary. The

modifications of the governing equations near the structure are the subject of the

immersed boundary method which were addressed and evaluated in this thesis.

Immersed boundary methods comprise various ways of enforcing boundary

condition. By adopting the indirect forcing approach, interpolation/ reconstruction was

used to enforce the moving boundary. In this approach however unlike the continuous

forcing approach in which a diffused boundary is created, sharp interfaces are created.

160

The method also allows the possibility of modelling in three dimensions which is not

easily possible in the cut cell approach due to its very complex application procedure in

in three dimensions.

In this PhD thesis a new IB interpolation/reconstruction method is proposed. In this

method the interpolation is performed in a direction perpendicular to the IB boundary,

similar to that proposed by Gilmanov & Sotiropoulos 2005. However, in this model a

different logic and a direct approach is used to select the interpolation points without

trial and error. The simulation results were compared with other interpolation methods

proposed in the literature and the results of lift and drag coefficient showed a very good

agreement between the methods.

The definition and calculation of the lift and the drag forces in an FSI problem

using an IB approach is not a trivial problem. In this thesis two methods were conducted

which were found to match well with one another; the direct integration of the pressure

and shear forces on the immersed boundary and the application of the conservation of

momentum in integral form. The lift and drag coefficient results were used to validate

the methodology and the code for both a stationary circular cylinder and a flexible

cylinder oscillating in the cross flow direction.

A circular cylinder oscillating in the cross flow direction was modelled in two

dimensions as an initial stage in the study of the riser problem. At this stage two

methods were presented, an inertial and a non-inertial frame of reference method. In the

former, the Navier-Stokes equations were solved in an inertial frame of reference and the

movement of the structure was modelled using an IB method. Due to the fact that at each

time step the interpolation formulas were updated, the algorithm was relatively slow

(time consuming). In the second method, the frame of reference was fixed to the cylinder

and the fluid flow was solved using an observer point of view on the circular cylinder,

therefore, the flow governing equation (Navier-Stokes equations) were defined and

solved in a moving frame of reference. Although, this method was more efficient, it is

only really suitable for a single object oscillating in the flow, for instance a single riser.

To solve the pressure Poisson equation, the normal gradient of the pressure at the

immersed boundaries (Neumann boundary condition) was assumed to be zero in the case

of a stationary cylinder in a uniform flow. However, the definition of the correct

pressure boundary conditions for the FSI problem was a challenging issue because the

structure undergoes acceleration relative to the flow. In this case, the gradient of the

pressure in the perpendicular direction to the immersed boundary was calculated by

161

projection of the differential form of the momentum equation in that direction. This

boundary was defined carefully to maintain the well-posed conditions for the pressure

Poisson equation.

In the final stage of this thesis, some VIV simulations of a flexible cylinder in the

cross flow direction were presented. To maintain the two dimensionality of the flow, the

simulation was carried out at a low Reynolds number. The vortex shedding from the

cylinder was creating oscillating force on the cylinder. These forces were used to solve

the structural governing equations. In this thesis the equation of motion of an elastically

supported cylinder is used. The force from the Eulerian flow field was transferred to the

Lagrangian marker points on the solid boundary and the displacement and velocities of

the moving boundary were interpolated to the flow domain to enforce no-slip boundary

conditions. In the case of a rigid cylinder the force is transferred to the centre of the mass

of the cylinder.

8.2 Validation of the results and feasibility of the method

The flow around a circular cylinder in two dimensions was taken as a benchmark

due to its similarity to the physics of the riser. Also, the flow around a circular cylinder

is a famous benchmark that has been used extensively to validate many FSI

methodologies. Many experimental and analytical results are presented in the literature

for this specific case. In addition, the choice of the overall size of the domain and the

size of the grids near the immersed boundary were found to be important when accurate

simulation results were desired from an FSI simulation in general and partiulcarly when

the IB approach is used. On the one hand, the parameters were selected in a way to give

accurate, reliable and repeatable results whilst on the other, the methodology and the

solution were found to be computationally inexpensive. Generally, it is important to

determine the optimum parameters for an FSI problem in order to control the size of the

problem. However, for a riser problem in which several two dimensional simulations

and a structural code will be executed simultaneously using the optimum parameters for

the simulation is vital. To achieve this objective, a comprehensive parametric study was

performed to find the optimum range of the parameters for the domain which gives good

results with minimum computational cost. This study was able to address some of the

discrepancies found in the literature in respect of the reported Strouhal number, lift and

drag coefficients.

162

For the flow around a circular cylinder at a low Reynolds number seven parameters

were studied. Of these parameters the grid size around the IB, the entrance length before

cylinder and the size of the domain in cross flow direction (blockage effect) were found

to be the most important. The numerical results as well as results published in the

literature showed that these parameters could significantly affect the results. For instance

in the literature the drag coefficient for the steady flow around a stationary cylinder at

Re=100 was reported in the range of 1.447 to 1.32 showing a 9% difference in the

reported results. Also, the reported Strouhal numbers for the same cases varied from

0.182 to 0.164 showing discrepencies of up to 10% in the results. By relating the

simulation results to the simulation parameters it was possible to explain these

discrepencies. Some of these differences stemmed from the size of domain in the

numerical calculation rather than the methodology of the solution. The results of the

parametric study at Re=100 showed that if the entrance length increased from 5D to 10D

the Strouhal number, lift and drag coefficient tends to decrease by about 10%. A further

enlargement of the domain behind the cylinder had negligible effect on the Strouhal

number, lift and drag coefficient. Therefore, for this specific problem an inflow length of

10D before the cylinder was found to be optimum. Similarly, the size of the domain in

the cross flow direction (blockage effect) was also found to be important.

The mesh refinement study for the drag coefficient showed an interesting behaviour

between the drag coefficient’s components (pressure drag and friction drag). As far as

the author is aware, this issue has not been reported before in the literature. The

numerical results showed that the drag coefficient was less affected (about 3%) than the

lift coefficient (about 12%) when changing the size of the mesh from 0.1 to 0.00625 (4

times) in the mesh refinement study. This issue can be explained by the fact that the

components of the drag coefficient were reversely responding to the grid size. i.e. by

further refinement of the grid, the drag due to the pressure converged to a lower value

while the drag due to friction converged to a higher value. This shows that the drag is

less sensitive to the size of the grid.

Additionally, a comparison was presented of IB Interpolation / Reconstruction

methods. Four different interpolation methods were compared with the proposed

interpolation method in this thesis. The numerical results showed that the proposed

interpolation method was stable and gave accurate results compared to other linear and

bi-linear methods. Also this method does not suffer from the problem associated with the

163

bi-linear methods in finding interpolation points in the othorgonal directions when

modelling high curvature IB.

To fulfil the objective of this research, in the final step the numerical simulation of

the flow around a cylinder oscillating in the cross flow direction was presented. This

problem was presented in both fixed and moving frames of reference and the results

were found to match well. The simulation of the flow around a cylinder is a well-known

problem and has been used to validate FSI methodology by many researchers. To the

best knowledge of author this was the first time that this problem was modelled using a

sharp immersed boundary Interpolation/ Reconstruction technique along with a moving

frame of reference.

In the next part, the main draw backs of the applied methodology will be discussed

and also some works will be proposed to address these issues as future research.

8.3 Drawbacks verses advantages of the IB interpolation

The Immersed Boundary with an Interpolation/reconstruction approach was used in

this thesis to enable modelling moving boundaries with large displacements. As any

other FSI method, this method has also some drawbacks. The most important of which,

incompariosn to an ALE approach is that it is not straight forward to apply the boundary

conditions on the moving boundary, especially for curved boundaries. This is common

with all IB approaches and becomes more complicated because a staggered grid

arrangement is used in the discretisation of the governing equations.

Another important issue was the calculation of the hydrodynamic forces at the

immersed boundaries. Calculating the lift and the drag forces on the IB immersed

boundary was not a trivial problem, especially, when an Interpolation method was

applied to the FSI problem. However, using momentum principle could help to address

this problem.

Despite these short comings, however, it is concluded form the experience gained

from this research work that the IB the interpolation/Reconstruction method, is

considered as an appropriate method to apply to the flexible riser problem with large

displacement/deformation using the strip theory approach. Firstly, this method could

handle large displacements where a conforming method like ALE would be

computationally more expensive. Also as the IB method adopted here was a sharp

interface method, unlike the IB forcing approach it does not create diffuse boundaries

near solid bounaries. This method can be simply developed to three dimensions, where

164

the IB cut cell method would become very expensive and complicated. Finally, this

method does not create a secondary flow inside the solid boundary, unlike the ghost cell

methods which create non-physical flow inside the solid boundaries.

8.4 Future work

This PhD research was part of a larger research project which aims to model the

VIV for a slender oil riser and publication of some journal paper are planed during the

completion of project in near future. In this study, the methodology to solve the flow

around a flexible circular cylinder in two dimensions was addressed. This will be used as

part of strip theory to model FSI for whole flexible risers used in the offshore industries.

In this section, the suggestions for future work are all directly related to this PhD thesis.

 All the simulations in this thesis, including the parametric study, were limited to

a low Reynolds number, Re=100. The parametric study to show the effect of the

Reynolds number on the FSI parameters is recommended for further low

Reynolds numbers 40<Re<200.

 In a real riser problem, the Reynolds number is of order of O(10
4
), therefore

adding a suitable algorithm to model the turbulence is necessary.

 The Neumann boundary conditions for the pressure,
𝜕𝑝

𝜕𝑛
, do not noticeably affect

the lift and drag forces. A proper parametric study will help to understand the

range of oscillations that the ‘standard’ boundary condition
𝜕𝑝

𝜕𝑛
= 0 is sufficiently

accurate.

 The moving frame of reference presents promising results for the cylinder

oscillation in the cross flow direction. It is suggested to further develop this

simulation for inline oscillations using the IB and interpolation approaches.

 Finally, to improve the results for the moving cylinder in the inertial frame of

reference, it is suggested to use a dual time integration to reduce the fluctuation

of the response. Also, this method is very slow in comparison to the moving

frame of reference approach. It is suggested to use a parallel processing

capability to improve this method. For simulations with more than one cylinder

oscillating in the flow domain, this method offers the only solution, as the

moving frame of reference method cannot be used in multi-cylinders simulations.

165

References

Ahn, H.T. and Kallinderis, Y. 2006, strongly coupled flow/structure interactions with

geometrically conservative ALE scheme on general hybrid meshes, Journal of

Computational Physics, 219(2), pp. 671-696.

Anagnostopoulos, P. and Bearman, P. 1992, Response characteristics of a vortex-excited

cylinder at low Reynolds numbers, Journal of Fluids and Structures, 6(1), pp. 39-50.

Baaijens, F.P., 2001, A fictitious domain/mortar element method for fluid-structure

interaction, International Journal for Numerical Methods in Fluids, 35(7), pp. 743-761

Badia, S., Nobile, F., Vergara, C. 2008, Fluid-Structure partitioned procedures based on robin

transmission conditions, journal of computational physics, vol. 227, pp. 7027-75051.

Balaras, E. 2004, Modelling complex boundaries using an external force field on fixed

Cartesian grids in large-eddy simulations, J. computers and fluids, vol. 33 pp. 375-404.

Batchelor, G. K. 1967, An Introduction to Fluid Dynamics, Cambridge University Press,

ISBN 0-521-66396-2

Bazilevs, Y., Calo V.M., Zhang, Y., Hughes, T.J.R. 2006 Iso geometric fluid–structure

interaction analysis with applications to arterial blood flow, Computational Mechanics,

vol. 38 pp. 310–322

Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R. 2007, YZβ discontinuity-capturing

for advection-dominated processes with application to arterial drug delivery, International

Journal for Numerical Methods in Fluids, vol. 54 pp. 593–608.

Bazilevs, Y., Hsu, M.C., Kiendl, J., Uchner, R. W., Bletzinger K.U. 2011, 3D simulation of

wind turbine rotors at full scale. Part II: Fluid–structure interaction modelling with

composite blades, International Journal for Numerical Methods in Fluids, vol. 65 pp. 236–

253.

Bazilevs, Y., Takizawa, K., Tezduyar, T.E. 2013a, Computational Fluid–Structure

Interaction: Methods and Applications, Wiley, Chichester.

Bazilevs, Y., Korobenko, A., Deng, X., Tippmann, J., Hsu, M.C. 2013b, Wind turbine

simulation: structural mechanics, FSI and computational steering, V International

Conference on Computational Methods for Coupled Problems in Science and Engineering

COUPLED PROBLEMS, pp, 229-240.

Bearman, P.W. 1969, On vortex shedding from a circular cylinder in the critical Reynolds

number regime, Journal of Fluid mechanics, vol. 37, no. 03, pp. 577-585

Bearman, P.W., Curie, I.G. 1979, Pressure fluctuation measurements on an oscillating

circular cylinder, Journal of fluid mechanics, vol. 91 pp. 661-677.

Belytschko, W., Liu, W., Moran, B. 2000, Nonlinear Finite elements for Continua and

Structures, ed. Wiley, Chichester.

Berger, M. and Aftosmis, M. 1998, Aspects (and aspect ratios) of Cartesian mesh methods,

Sixteenth International Conference on Numerical Methods in Fluid Dynamics. Springer,

pp. 1-12

Beyer, R.P., LeVeque, R.J. 1992, Analysis of a one dimensional model for the immersed

boundary method, SIAM Journal Number Annual vol. 29 pp. 332–364

Bishop, R.E.D., Hassan, A.Y. 1964, the lift and drag forces on a circular cylinder oscillating

in a flowing fluid. Proc. R. Soc. London Ser, vol. 277, pp. 51-75.

Blackburn, H.M. and Henderson, R.D. 1999, A study of two-dimensional flow past

an oscillating cylinder, Journal of Fluid Mechanics, 385, pp. 255-286.

http://en.wikipedia.org/wiki/George_Batchelor
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-521-66396-2

166

Bletzinger, K.U, Wuchner, R., Kupzok, A. 2006, Algorithmic treatment of shells and free

form-membranes in FSI, In Fluid–Structure Interaction, Bungartz H-J, Schafer M (eds).

Lecture Notes in Computational Science and Engineering. Springer: Berlin, pp. 336–355.

Briscolini, M., Santangelo, P. 1988, Development of the mask method for incompressible

unsteady flows, J. Computational Physics, pp. 84-57.

Borazjani, I., Ge, L., Sotiropoulos, F. 2008, Curvilinear immersed boundary method for

simulating fluid structure interaction with complex 3D rigid bodies, Journal of

Computational Physics vol. 227 pp. 7587–7620, Available online at

www.sciencedirect.com

Bungartz, H.J, Schafer, M. 2006 (eds). Lecture Notes in Computational Science and

Engineering. Springer: Berlin, pp. 82–100.

Causin, P., Gerbeau, J.F., Nobile, F. 2005, Added-mass effect in the design of partitioned

algorithms for fluid–structure problems, Comput. Methods Appl. Mech. Eng., vol. 194,

pp. 4506–4527.

Ceniceros, H.D., Fisher, J.E., Roma, A.M. 2009, efficient solutions to robust, semi-implicit

discretization of the immersed boundary method, Journal of computational physics, Vol.

228, pp. 7137-7158.

Choi, J.I. Oberio, R.C., Edwards, J.R., Rosati, J.A. 2007, An immersed boundary method for

complex incompressible flows, Journal of computational physics vol. 224, pp. 757-784.

Clarke, D., Salas, M., Hassan, H. 1986, Euler calculations for multi-element airfoils using

Cartesian grids, AIAA J. vol. 24 pp. 1128–1135.

Codina, R. (2001) 'Pressure stability in fractional step finite element methods for

incompressible flows', Journal of Computational Physics, 170(1), pp. 112-140.

Corbalan Gois E.R., de Souza L.F. 2010, An Eulerian Immersed Boundary Method for flow

simulations over stationary and moving rigid bodies. J. Braz. Soc. Mech. Sci. & Eng.

[online]. vol.32, pp. 477-484, Available online: <http://www.scielo.br/ scielo.

Deparis, S., 2004, Numerical analysis of axisymmetric flows and methods for fluid-structure

interaction arising in blood flow simulation, EPFL.

Dettmer, W., 2004, Finite element modeling of fluid flow with moving free surfaces and

interfaces including fluid–solid interaction. Ph.D. Thesis, University of Wales Swansea.

Dettmer, W., Peric, D., 2006a, A computational framework for fluid–rigid body interaction:

finite element formulation and applications. Computer Methods in Applied Mechanics and

Engineering, vol. 195 pp. 1633–1666.

Dettmer, W., Peric D.A. 2006b, computational framework for fluid–structure interaction:

finite element formulation andapplications. Computer Methods in Applied Mechanics and

Engineering (Available Online).

Donea, J., Giuliani, S., Halleux, J. 1982, An arbitrary Lagrangian–Eulerian finite element

method for transient dynamic fluid–structureinteractions, Computer Methods in Applied

Mechanics and Engineering vol. 33, pp. 689–723.

Fadlun, E.A., Verzicco, R., Orlandi, p., Mohd-Yusof, j. 2000, Combined immersed boundary

finite difference methods for three-dimensional complex flow simulations, Journal of

computational physics vol. 161, pp. 35-60.

Faludi, R., Szulik, M., D’hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G., Voigt, J.U.

2010. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral

valves: an in vivo study using echocardiographic particle image velocimetry, Journal of

Thoracic and Cardiovascular Surgery, vol. 139, no. 6, pp. 1501–1510

167

Farhat, C., Lesoinne, M., LeTallec, P. 1998, Load and motion transfer algorithms for

fluid/structure interaction problems with nonmatching discrete interfaces: Momentum and

energy conservation, optimal discretization and application to aeroelasticity, Computer

Methods in Applied Mechanics and Engineering vol. 157, no.1, pp. 95–114.

Farhat, C., van der Zee, K. G., Geuzaine, P. 2006, Provably second-order time-accurate

loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity,

Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 1973-2001.

Fauci L.J., Fogelson A.L. 1993, Truncated newton methods and the modelling of complex

immersed elastic structures, Communication on pure and applied mathematics, vol. 46, no.

6, pp. 787-818.

Feng, C.C. 1968, The measurements of vortex-induced effects in flow past a stationary and

oscillating circular and D-section cylinders. Master’s thesis, University of British

Colombia, Vancouver, Canada.

Fernandez, M., Moubachir, M. 2005, A Newton method using exact jacobians for solving

fluid–structure coupling, Computers and Structures, vol. 83 no.1-3, pp. 127–142.

Ferziger, J.H., Peric M. ed. 2002, computational methods for fluid dynamics, third edition,

ISBN 3-540-42074-6 Springer-Verlag Berlin Heidelberg NewYork.

Feynman, R. P., Leighton, R. B., Sands, M. 1963, The Feynman Lectures on Physics,

Reading, Mass.: Addison-Wesley, ISBN 0-201-02116-1, vol. 1, no. 9–4 and no.12–1

FitzHugh, R. 1961, Impulses and physiological states in theoretical models of nerve

membrane. Biophysical J. Vol. 1, pp.445–466.

Förster, C., Wall W.A., Ramm E. 2007, Artificial added mass instabilities in sequential

staggered coupling of nonlinear structures and incompressible viscous flows, Comput.

Methods Appl. Mech. Eng., 196 (7), pp. 1278–1293.

Ghias, R., Mittal, R., Lund, TS. 2004, A non-body conformal grid method for simulation of

compressible flows with complex immersed boundaries. AIAA vol. 80

Ghias, R., Mittal, R., Dong, H. 2007, A sharp interface immersed boundary method for

compressible viscous flows, journal of computational physics vol. 225, pp. 528-553.

Gilmanov, A., Sotiropoulos, F. 2005, A hybrid Cartesian/immersed boundary method for

simulating flows with 3D, geometrically complex, moving bodies, Journal of

Computational physics, vol. 207, pp. 457-492.

Gilmanov, A., Sotiropoulos, F., Balaras, E. 2003, A general reconstruction algorithm for

simulating flows with complex 3D immersed boundaries on Cartesian grids, J.

Computational physics vol.191, pp. 660-669.

Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D. 1999, A distributed Lagrange

multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow vol. 25,

pp. 755-794.

Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J. 2000, A fictitious domain

approach to the direct numerical simulation of incompressible viscous flow past moving

rigid bodies: application to particulate flow. J. Comput. Phys. Vol. 169, pp. 363-426.

Goldstein, D., Handler, R., Sirovich, L. 1993, Modeling a no-slip flow boundary with an

external force field, journal of computational physics vol. 105, no. 2, pp. 354-366.

Gomez-Iradi, S.G, Steijl, R., Barakos, G.N. 2009, Development and validation of a CFD

technique for the aerodynamic analysis of HAWT. Journal of Solar Energy Engineering,

vol. 131, pp. 031009–1–13.

Gresho, P.M., Sani R.L. 1987, On pressure boundary conditions for the incompressible

Navier-Stokes equations. Internat. J. Numer. Methods Fluids, vol. 7, pp. 1111–1145.

http://en.wikipedia.org/wiki/R._P._Feynman
http://en.wikipedia.org/wiki/R._B._Leighton
http://en.wikipedia.org/wiki/M._Sands
http://en.wikipedia.org/wiki/The_Feynman_Lectures_on_Physics
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-02116-1

168

Haines, E., 1994, Point in polygon strategies, Graphics gems IV, 994, pp. 24-26.

Harlow, F.H, Welch, J.E. 1965, Numerical calculation of time dependent viscous

incompressible flow of fluid with free surface, Phys. Fluids, vol. 8, pp. 2182-2189.

Hernández, A., Valdés, J.G. 2013, Determination of 3d wind induced vibration of cables for

cable–stayed bridges, V International Conference on Computational Methods for Coupled

Problems in Science and Engineering COUPLED PROBLEMS, pp. 458-466.

Hong, G.R., Pedrizzetti G., Tonti G., Li P., Wei Z., Kim J.K., Baweja A., Liu S., Chung N.,

Houle H., Narula J., Vannan M.A. 2008, Characterization and quantification of vortex

flow in the human left ventricle by contrast echocardiography using vector particle image

velocimetry, Journal of the American College of Cardiology Imgaging, 1 (6), pp. 705–717

Hou, T.Y., Shi, Z. 2008, An efficient semi-implicit immersed boundary method for the

Navier-Stokes equation, journal of computational physics, Vol. 227, pp. 8968-8991.

Hou, G., Wang, J., Layton, A. 2012, Numerical Methods for Fluid-Structure Interaction: A

Review ARTICLE, Commun. Comput. Phys. doi: 10.4208/cicp.291210.290411s, Vol. 12,

No. 2, pp. 337-377.

Hubner, B., Walhorn, E., Dinkler, D. 2004, A monolithic approach to fluid-structure

interaction using space-time finite elements, Journal of computer methods in applied

mechanics and engineering, vol. 193, no. 23-26, 2004, pp. 2087-2104.

Hsu, M.C., Akkerman, I., Bazilevs Y. 2013, Finite element simulation of wind turbine

aerodynamics: Validation study using NREL Phase VI experiment. Wind Energy,

2013.Accepted.

Iaccarino, G., Verzicco, R. 2003, Immersed boundary technique for turbulent flow

simulations. Appl. Mech. Rev. vol. 56 pp. 331–47.

Idelsohn, S.R., Pin, F.D., Rossi, R., Oñate, E. 2009, Fluid–structure interaction problems with

strong added-mass effect, Int. J. Numer. Methods Eng., vol. 80, pp. 1261–1294.

Kang, S. 2008, An improved immersed boundary method for computational of turbulent

flows with heat transfer, P.h.D thesis, Stanford University.

Kang, S., Iaccarino, G., Moin, P. 2009, Accurate immersed boundary reconstructions for

viscous flow simulations, AIAA Journal, vol. 47, no. 7.

Karniadakis, G.E. and Triantafyllou, G.S. 1992, Three-dimensional dynamics and transition

to turbulence in the wake of bluff objects, Journal of Fluid Mechanics, 238, pp. 1-30.

Khurram, R.A., Masud, A. 2006, A multi-scale/stabilized formulation of the incompressible

Navier–Stokes equations for moving boundary flows and fluid–structure interaction.

Computational Mechanics, vol. 38, pp. 403–416.

Kiendl, J., Bletzinger, K.U., Linhard, J., uchner, R.W.2009, Isogeometric shell analysis with

Kirchhoff–Love elements, Computer Methods in Applied Mechanics and Engineering,

vol. 198 pp. 3902–3914.

Kim, D., Choi, H. 2006, Immersed boundary method for flow around an arbitrarily moving

body, Journal of computational physics vol. 212, pp. 662-680.

Kim, J., Kim, D., Choi, H. 2001, An immersed boundary finite volume method for simulation

of flow in complex geometries, Journal of computational physics vol.171, pp.132-140.

Kim.,H.Y., Kim, H.J., Kim, T.H. 2013, Evaluation of automotive weather-strip by coupled

analysis of fluid-structure-noise interaction, V International Conference on Computational

Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS

2013, pp. 1365-1372.

169

Kirkpatrick, C., Unger, R., Krump-Konvalinkova, V., Peters, K., Schmidt, H. and Kamp, G.,

2003, Experimental approaches to study vascularization in tissue engineering and

biomaterial applications, Journal of Materials Science: Materials in Medicine, 14(8), pp.

677-681.

Koopmann, G. 1967, The vortex wakes of vibrating cylinders at low Reynolds numbers,

Journal of Fluid Mechanics, 28(03), pp. 501-512.

Korobenko, A., Hsu, M.C., Akkerman, I., Tippmann, J., Bazilevs, Y. 2013, Structural

mechanics modelling and FSI simulation of wind turbines, Mathematical Models and

Methods in Applied Science, vol. 23, pp. 249–272, DOI: 10.1142/S0218202513400034.

Kravchenko, A., Moin, P. and Moser, R., 1996, Zonal embedded grids for numerical

simulations of wall-bounded turbulent flows, Journal of Computational Physics,

127(2), pp. 412-423.

Kuttler, U., Forster, C., Wall, W.A. 2006, A solution for the incompressibility dilemma in

partitioned fluid–structure interaction with pure Dirichlet fluid domains. Computational

Mechanics, vol. 38, pp. 417–429.

Kuttler, u., Wall, W.A. 2008, Fixed-point fluid-structure interaction solvers with dynamic

relaxation, Journal of computational mechanics, vol. 43, pp. 61-72.

Kvitting, J.P.E., Dyverfeldt P., Sigfridsson A., Franzn S., Wigstrm L., Bolger A.F., Ebbers T.

2010, In vitro assessment of flow patterns and turbulence intensity in prosthetic heart

valves using generalized phase-contrast MRI, Journal of Magnetic Resonance Imaging,

Vol. 31, No. 5, pp. 1075–1080

Lai, M.C., Peskin C.S. 2000, An immersed boundary method with formal second-order

accuracy and reduced numerical viscosity, Journal of Computational. Phys, vol. 160, pp.

705–19.

Le, T.P., Mouro, J. 2001, Fluid structure interaction with large structural displacements,

Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 24, pp. 3039–

3067.

Le, D.V., Khoo, B.C., Peraire, J. 2006, An immersed interface method for viscous

incompressible flows involving rigid and flexible boundaries, Journal of Computational

Physics, vol. 220, pp. 109-138

Le, T.B., Sotiropoulos, F. 2013, fluid structure interaction of an aortic heart valve prosthesis

driven by an animated anatomic left ventricle, J. of computational physics, vol. 244, pp.

41-62.

Lee, J., Niederer, S., Nordsletten, D., Le, Grice, I., Smail, B., Kay, D., Smith, N. 2009,

Coupling contraction, excitation, ventricular and coronary blood flow across scale and

physics in the heart, Philosophical Transactions of the Royal Society A, vol. 367 (1896),

pp. 2311–2331.

Lee, L., LeVeque, R.J.2003, An immersed interface method for incompressible Navier–

Stokes quations, SIAM J. Sci. Comput, vol. 25 no. 3, pp. 832–856.

LeVeque, R.J., and Li, Z. 1994, The immersed interface method for elliptic equations with

discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis,

vol. 31, pp. 1091-1044.

LeVeque, R.J. and Li, Z. (1997) 'Immersed interface methods for Stokes flow with elastic

boundaries or surface tension', SIAM Journal on Scientific Computing, 18(3), pp. 709-

735.

170

Li, L., Sherwin, S.J., Bearman, P.W. 2002, A moving frame of reference algorithm for

fluid/structure interaction of rotating and translating bodies, Int. J. Numer. Meth. Fluids,

vol. 38, pp. 187-206.

Li, Y., Carrica, P.M., Paik, K.J., Xing, T. 2012, Dynamic overset CFD simulations of wind

turbine aerodynamics, Renewable Energy, vol. 37 pp. 285–298.

Lima E Silva, A.L.F., Silveira-Neto, A., Damasceno, J.J.R. 2003, Numerical simulation of

two-dimensional flows over a circular cylinder using the immersed boundary method,

Journal of Computational Physics vol. 189, no. 2, pp. 351–370.

Lohner, R., Cebral, JR., Yang, C., Baum, JD., Mestreau, EL., Soto, O. 2006, Extending the

range of applicability of the loose coupling approach for FSI simulations. In Fluid–

Structure Interaction, lecture note in computational science and engineering volume,

Springer: Berlin, vol. 53, pp. 82-100.

Maday, Y., Mavriplis, C., Patera, A.T. 1989, Nonconforming mortar element methods:

application to spectral discretizations, in Domain decomposition methods (Los Angeles,

CA, 1988), SIAM, Philadelphia, PA, pp. 392-418.

Masud, A., Bhanabhagvanwala, M., Khurram. R.A. 2007, An adaptive mesh rezoning

scheme for moving boundary flows and fluid–structure interaction. Computers and

Fluids, vol. 36, pp. 77–91.

Mayo, A.A., Peskin, C.S. 1993, An implicit numerical method for fluid dynamics problems

with immersed elastic boundaries. J. of Fluid Dynamics in Biology (Cheer AY and van

Dam DP, eds.), Oxford University Press, 1993, paper No.11., Contemporary Mathematics

vol. 141, pp. 261-277,

Meneghini, J.R., Bearman, P.W. 1995, Numerical simulation of high amplitude oscillatory

flow about a circular cylinder, j. of fluids and structures, vol. 9, pp. 435-455.

Mittal, R., Bonilla, C., Udaykumar, H.S. 2003, Cartesian grid methods for simulating flows

with moving boundaries. In Computational Methods and Experimental Measurements ed.

XI, Brebbia C.A., Carlomagno G.M., Anagnostopoulos p.

Mittal, R., Seshadri, V., Udaykumar, H.S. 2004, Flutter, tumble and vortex induced

autorotation, Theor. Comput. Fluid Dyn., vol. 17 no. 3, pp. 165–70.

Mittal, R., Iaccarino, G. 2005, Immersed Boundary Methods, Annual Review of Fluid

Mechanics, vol. 37, pp. 239–261. doi:10.1146/annurev.fluid.37.061903.175743

Mohd-Yusof J. 1997, Combined immersed boundaries/B-Spline Methods for simulations of

flows in complex geometries, CTR Annual Research Briefs, NASA AMES/Stanford

University.

Mok, D.P., wall, W.A. 2001, Partitioned analysis schemes for the transient interaction of

incompressible flows and nonlinear flexible structures, In: Wall, W.A., Bletzinger, k.U.,

Schweitzerhof, K., (eds) Trends in computational structural mechanics.

Moller, T., Trumbore B. 1997, Fast, minimum storage ray-triangle intersection, Journal of

Graphics Tools, vol. 2 no.1, pp. 21-28.

Mori, Y., Peskin, C.S. 2008, Implicit second order immersed boundary methods with

boundary mass, Computer Methods in Applied Mechanics and Engineering, vol. 197, no.

25-28, pp. 2049-2067.

Morison, J., Johnson, J. and Schaaf, S., 1950, The force exerted by surface waves on piles,

Journal of Petroleum Technology, 2(05), pp. 149-154.

Newren E., Fogelson A., Guy R., Kirby M. 2008, A comparison of implicit solvers for the

immersed boundary equations, computer methods in applied mechanics and engineering,

vol. 197, pp. 2290-2304.

http://www.math.nyu.edu/faculty/peskin/papers/MayoPeskin_1993.pdf
http://www.math.nyu.edu/faculty/peskin/papers/MayoPeskin_1993.pdf
http://www.ams.org/bookstore-getitem/item=CONM-141
http://www.ams.org/bookstore-getitem/item=CONM-141
http://dx.doi.org/10.1016/j.cma.2007.05.028
http://dx.doi.org/10.1016/j.cma.2007.05.028

171

Newman, D., Karniadakis, GE. 1988, A direct numerical simulation study of flow past a

freely vibrating cable. Journal of Fluid Mechanics, vol. 344, pp. 95–136.

Ohayon, R. 2001, Reduced symmetric models for modal analysis of internal structural-

acoustic and hydroelastic-sloshing systems. Computer Methods in Applied Mechanics and

Engineering, vol. 190, pp. 3009–3019.

Orlanski, I. 1976, A simple boundary condition for unbounded hyperbolic flows. J. Comput.

Phys., vol. 21 pp. 251–69.

Peskin, C.S. 1972, Flow patterns around heart valves: a numerical method, Journal of

Computational Physics, vol. 10, pp. 252–271.

Peskin, C.S. 2002, The immersed boundary method, Acta Numerica, pp. 479-517.

Quarteroni, A., Tuveri, M., Veneziani, A. 2000, Computational vascular fluid dynamics:

problems, models and methods, in Computing and Visualization in Science, vol. 2, no. 4,

pp. 163-197.

Roshko, A. 1954, On the drag and shedding frequency of bluff cylinders, NACA TN, 3169.

Ryzhakov, P., Rossi, R., Idelsohn, S.R., Oñate, E. 2010, a monolithic Lagrangian approach

for fluid-structure interaction problems, J. Computational Mechanics, vol. 46 no. 6, pp.

883-899.

Ryzhakov, P., Oñate, E., Rossi, R., Idelsohn, S.R. 2012, Improving mass conservation in

simulation of incompressible flows, International Journal for Numerical Methods in

Engineering, vol. 90 no.12, pp. 1435-548.

Ryzhakov, P., Rossi, R., Vina, A., Oñate, E. 2013, Modelling and simulation of the sea-

landing of aerial vehicles s using the particle finite element method, J. of Ocean

engineering vol. 66 pp. 92-100.

Saiki, EM, Biringen, S. 1996, Numerical simulation of a cylinder in uniform flow:

application of a virtual boundary method. Journal of Computational Physics, vol. 123, pp.

450–65.

Sani, R.L., Shen, J., Pironneau, O., Gresho, P.M. 2006, Pressure boundary condition for the

time-dependent incompressible Navier-Stokes equations, Internat. J. Numer. Methods

Fluids, vol. 50, pp. 673–682.

Scardovelli, R., Zaleski, S. 1999, Direct numerical simulation of free surface and interfacial

flow, Ann. Rev. Fluid Mech., vol. 31, pp. 567.

Schulz, K.W. and Kallinderis, Y. 1998, Unsteady flow structure interaction for

incompressible flows using deformable hybrid grids, Journal of Computational Physics,

143(2), pp. 569-597.

Sumer, B.M., FredsΦe, j. 2006, Hydrodynamics around cylindrical Structures, Revised

Edition, Advanced series on ocean engineering- vol. 26, World Scientific publishing

Co.Pte.Ltd.

Takizawa, K., Wright, S., Moorman, C. and Tezduyar, T.E. 2011, Fluid–structure interaction

modeling of parachute clusters, International Journal for Numerical Methods in Fluids,

65(1‐3), pp. 286-307.

Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K. 2004, Space-Time Techniques for Finite

Element Computation of Flows with Moving Boundaries and Interfaces, Proceedings of

the III International Congress on Numerical Methods in Engineering and Applied

Sciences, Monterrey, Mexico.

Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K. 2006, Space-Time Finite Element Techniques

for Computation of Fluid-Structure Interactions, Computer Methods in Applied

Mechanics and Engineering, vol. 195, pp. 2002-2027, doi: 10.1016/j.cma.2004.09.014.

http://dx.doi.org/10.1016/j.cma.2004.09.014

172

Tezduyar, T.E., Sathe, S. 2007, Modeling of Fluid-Structure Interactions with the Space-

Time Finite Elements: Solution Techniques, International Journal for Numerical Methods

in Fluids, vol. 54, pp. 855-900, doi: 10.1002/fld.1430.

Tezduyar, T.E. 1992a, Stabilized Finite Element Formulations for Incompressible Flow

Computations, Advances in Applied Mechanics, vol. 28, pp. 1-44, doi: 10.1016/S0065-

2156(08)70153-4.

Tezduyar, T.E., Behr, M., Liou, J. 1992b, A New Strategy for Finite Element Computations

Involving Moving Boundaries and Interfaces, The Deforming-Spatial-Domain/Space-

Time Procedure: I. The Concept and the Preliminary Numerical Tests, Computer Methods

in Applied Mechanics and Engineering, vol. 94, pp. 339-351, doi: 10.1016/0045-

7825(92)90059-S.

Tezduyar T.E., Behr M., Mittal, S., Liou, J. 1992c, A New Strategy for Finite Element

Computations Involving Moving Boundaries and Interfaces -- The Deforming-Spatial-

Domain/Space-Time Procedure: II. Computation of Free-surface Flows, Two-liquid

Flows, and Flows with Drifting Cylinders, Computer Methods in Applied Mechanics and

Engineering, vol. 94, pp. 353-371, doi: 10.1016/0045-7825(92)90060-W.

Tezduyar, T.E., 2001, Finite element methods for flow problems with moving boundaries and

interfaces, Archives of Computational Methods in Engineering, 8(2), pp. 83-130.

Tezduyar, T.E. 2003, Computation of Moving Boundaries and Interfaces and Stabilization

Parameters, International Journal for Numerical Methods in Fluids, vol. 43, pp. 555-575,

doi: 10.1002/fld.505.

Tezduyar, T.E., Sathe, S., Schwaab, M., Conklin, B.S. 2008, Arterial Fluid Mechanics

Modelling with the Stabilized Space-Time Fluid-Structure Interaction Technique,

International Journal for Numerical Methods in Fluids, vol. 57, pp. 601-629.

Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E. 2007, Numerical

investigation of the effect of hypertensive blood pressure on cerebral aneurysm—

dependence of the effect on the aneurysm shape. International Journal for Numerical

Methods in Fluids, vol. 54, pp.995–1009.

Tu, C., Peskin, C.S. 1992, Stability and instability in the computation of flows with moving

immersed boundaries: a comparison of three methods. SIAM Journal on Scientific and

Statistical Computing vol. 13, pp. 1361-1376.

Udaykumar, H.S., Kan, H.C., Shyy, W., Tran-Son-Tay R. 1997, Multiphase dynamics in

arbitrary geometries on fixed Cartesian grids, J. Computational Physics, vol. 137, pp. 366.

Udaykumar, H.S., Mittal, R., Shyy, W. 1999, Computation of solid-liquid phase fronts in the

sharp interface limit on fixed grids, J. Comput. Phys., vol. 153, pp. 534–74.

Udaykumar, H.S., Mittal, R., Rampunggoon, P., Khanna, A. 2001, A sharp interface

Cartesian grid method for simulating flows with complex moving boundaries, J. Comput.

Phys., vol. 174 pp. 345–80.

Verzicco, R.m, Mohd-Yusof, J., Orlandi, P., Haworth, D. 2000, Large eddy simulation in

complex geometric configurations using boundary body forces, AIAA J. vol. 38 no. 3,

pp.427.

Vierendeels, J., Dumont, K., Verdonck, P.R. 2008, A partitioned strongly coupled fluid-

structure interaction methods to model heart valve dynamics journal of computational and

applied mathematics, Vol. 215, pp. 602,609.

Wall, W.A. 1999, Fluid–structure interaction with stabilized finite elements. Ph.D. Thesis,

University of Stuttgart.

Wall, W.A., Gerstenberger, A., Gamnitzer, P., Forster, C., Ramm, E. 2006, Large

deformation fluid–structure interaction–advances in ALE methods and new fixed grid

http://dx.doi.org/10.1002/fld.1430
http://dx.doi.org/10.1016/S0065-2156(08)70153-4
http://dx.doi.org/10.1016/S0065-2156(08)70153-4
http://dx.doi.org/10.1016/0045-7825(92)90059-S
http://dx.doi.org/10.1016/0045-7825(92)90059-S
http://dx.doi.org/10.1016/0045-7825(92)90060-W
http://dx.doi.org/10.1002/fld.505
http://dx.doi.org/10.1137/0913077
http://dx.doi.org/10.1137/0913077

173

approaches. In Fluid–Structure Interaction, Lecture Notes in Computational Science and

Engineering. Springer: Berlin, pp. 195–232.

Wall, W.A., Genkinger, S., Ramm, E. 2007, A strong coupling partitioned approach for

fluid–structure interaction with surfaces, Computers and Fluids, vol. 36, pp. 169–183.

Wang, X.S. 2006, from immersed boundary method to immersed continuum method,

international journal for multi-scale Computational engineering, vol 4. no.1, pp. 127-145.

Wang, X.S. 2007, An interactive matrix-free method in implicit immersed

boundary/continuum method, computers and structures, vol. 85, pp. 739-748.

Wang, X.S. (eds.) 2010, Immersed boundary/continuum methods, in computational

modelling in Biomechanics, De S. et al., Springer, pp.3-48.

Williamson, C.H. 1988, Defining a universal and continuous Strouhal–Reynolds number

relationship for the laminar vortex shedding of a circular cylinder, Physics of Fluids

(1958-1988), 31(10), pp. 2742-2744.

Williamson C.H.K. 1996a, Vortex dynamics in the cylinder wake, annual review of fluid

mechanics, annu. Rev. Fluid Mechanics, vol. 28, pp. 477-526.

Williamson, C.H.K. 1996, Three-dimensional vortex dynamic in wakes, invited Review in

special edition on Jets, wakes and shear layers of experimental, Thermal and Fluid

science, vol. 12, pp. 150-168.

Williamson, C.H.K., Govadhan, R. 2004, Vortex-induced vibration, Annu. Rev. Fluid Mech.

vol. 36, pp. 413-55.

Williamson, C.H.K., Govardhan, R. 2008, A brief review of recent results in vortex-induced

vibrations, journal of wind Engineering and industrial aerodynamics vol. 96, pp. 713-735.

Williamson, C.H.K., Roshko, A. 1988, Vortex formation in the wake of an oscillating

cylinder. j. Fluids Structure, vol. 2, pp. 355-381.

Wood, C., Gil, A.J., Hassan, O., Bonet, J. 2010, Partitioned block-gauss-seidel coupling for

dynamic fluid-structure interaction, Computers and Structures, vol. 88, pp. 1367-1382.

Wüncher, R. 2006, Mechanics and Numerics of form finding and fluid-structure interaction

of Membrane structures. Doctoral Thesis, Technical University of Munich.

Xu, S., Wang, Z.J. 2006, An immersed interface method for simulating the interaction of a

fluid with moving boundaries, Journal of Computational Physics, vol. 216, pp. 454-493.

Yang, J., Balaras, E. 2006, An embedded-boundary formulation for large-eddy simulation of

turbulent flows interacting with moving boundaries, Journal of computational physics,

vol. 215, pp. 12-40.

Yang, J., Preidikman, S. & Balaras, E. 2008, A strongly coupled, embedded-boundary

method for fluid–structure interactions of elastically mounted rigid bodies, Journal of

Fluids and Structures, vol. 24, no. 2, pp. 167-182.

Ye, T., Mittal, R., Udaykumar H.S., Shyy, W. 1999, An Accurate Cartesian Grid Method for

Viscous Incompressible Flows with Complex Immersed Boundaries, Journal of

Computational Physics, vol. 156, pp. 209–240,

Yu, Z. 2005, A DLM/FD method for fluid/flexible-body interactions, Journal of

computational physics, 207(1), pp. 1-27.

Zhang, W., Jiang Y., Ye, Z. 2007, two better loosely coupled solution algorithms of CFD

based aeroelastic simulation, engineering applications of computational fluid mechanics,

vol. 1, no. 4, pp. 253-262.

174

Appendix A, Fortran Code, FSI by Reconstruction method

c

 PROGRAM DISCO

c

 implicit none

c

 integer nnx,nny,MxSurf,Mxy ! grid dimension in x and y direction

 common /cylsize/ acyl, bcyl, Rcyl

 double precision acyl, bcyl, Rcyl ! cylinder center point x and y

dirction plus its radious

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

cc parameter (acyl=5.00000,bcyl=10.00000,Rcyl=0.5000000000)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

 double precision maxdiv,divm

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 integer nt,i,j,k,t,ksub

 logical EX

c

 inquire(file='movie.dat',exist=EX)

 if (EX) go to 15

 open(12, file = 'movie.dat',position='append',

 & form='formatted')

 write(12,'(A)') 'variables="x","y","u","v","p"'

 close(12)

15 continue

c

c

 time=0.D0

 call inigrid()

 call init()

 call interpolate()

 call bounds()

 call inisol()

c

 do nt = 1,1000000

 time=time+dt

 write(*,*) 'time = ',time

 ksub=0

 call structuremain

c call structure(ksub)

c

cc call convec()

175

cc call fillf()

cc call calcuv()

c ************** FSI Part ***********

c if ((mod(nt,100) .EQ. 1) .AND.

c & (nt .NE. 1)) then

c call forcvib

c call structure()

c call structuretwo()

c end if

c call convergence(ksub)

c ************ end of FSI **********

c STOP

 if (mod(nt,1000) .EQ. 0) then

 write(*,*) 'Saving field.dat...'

 call wrtfld()

 call savfld()

 end if

 if (mod(nt,10).EQ.0) then

 call mean()

 end if

 call bounds() ! this line is added in test7

 divm=maxdiv()

 write(*,*) 'Maximum Divergence = ',divm

 end do

c

 call wrtfld()

 call savfld()

 call etimetest

 end

cc

c

 subroutine inigrid()

c

c ** initialize the grid, blocking, extrapolation of velocities at

c ** boundaries

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

cc parameter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common /maskdiv/ idiv(Mxy),jdiv(Mxy),ndiv

 integer idiv,jdiv,ndiv

c

 common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2),

 & vins(0:nnx+2,0:nny+2)

 double precision pins,uins,vins

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn,nx3,nn1

 double precision Re, RRe,dt,time,dts

 integer t,k,nx1,ny1

c

176

 double precision yj,y0,y1,delta,tanh0,tanh1,coef1

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 double precision dx,dy,fact,offset,alpha,xtg,ytg,dnorm,dy1

 double precision gradient,intercept, xint,yint,weight,a1,c1,PI

 logical EX

c

 common /homeadd/ home

 character*40 home

c

 RRe=1D0/Re

c write(*,*)'ingrid,home',home

c STOP

c

c *******Reading an arbitrary grid from a file if exist otherwise

c making a uniform grid *************

c

cc inquire(file='grid.bin',exist=EX)

c

cc if (EX) then

cc open(unit=12,file='grid.bin',form='UNFORMATTED')

cc rewind(12)

c

cc read(12) nx,ny

cc read(12) (xcrd(i),i=0,nx+1)

cc read(12) (ycrd(j),j=0,ny+1)

c read(12) (txu(i),i=1,nx)

c read(12) (txv(i),i=1,nx)

c read(12) (tyu(i),i=1,nx)

c read(12) (tyv(i),i=1,nx)

c read(12) (vnoru(i),i=1,nx)

c read(12) (vnorv(i),i=1,nx)

c read(12) (fyu(i),i=1,nx)

c read(12) (fyv(i),i=1,nx)

c read(12) (jyu(i),i=1,nx)

c read(12) (jyv(i),i=1,nx)

cc close(12)

c

cc do i=0,nx

cc xcoord(i)=0.5D0*(xcrd(i)+xcrd(i+1))

cc end do

c

cc do j=0,ny

cc ycoord(j)=0.5D0*(ycrd(j)+ycrd(j+1))

cc end do

c

cc do i=1,nx

cc do j=1,ny

cc pmask(i,j)=1.D0

cc umask(i,j)=1.D0

cc vmask(i,j)=1.D0

cc end do

cc end do

c

cc do i=1,nx

cc do j=1,jyv(i)

cc pmask(i,j)=0.D0

cc end do

cc end do

cc write(*,*) (i,jyv(i),pmask(i,jyv(i)),i=1,nx)

c

c do i=1,nx

c do j=1,ny

c if (pmask(i,j) .EQ. 0.D0) then

cc amask(i,j)=0.D0

c if (i .GT. 1) amask(i-1,j)=0.D0

177

c end if

c end do

c end do

c

cc return

cc end if

c

c ** Grid does not exist, produce a mesh which is uniform in x and y

c ** direction, later we need to increase the density of mesh near

c ** the cylidner to capture the vorticity

c

c********** ! This part is for making fine mesh around cylinder x

direction

cc i=0

cc dx=0.1D0

cc xcrd(0)=-0.5D0*dx

cc xcrd(1)=0.5D0*dx

cc xcoord(0)=0.D0

cc100 i=i+1

cc xcoord(i)=xcoord(i-1)+dx

c xcrd(i+1)=xcrd(i)+dx

cc xcrd(i)=(xcoord(i)+xcoord(i-1))/2

cc If (xcoord(i) .LT. 6.0) then

cc dt=0.1D0

cc else If ((xcoord(i) .LE.9.05) .AND. (xcoord(i) .GE. 6.0)) then

cc dx=dx-0.00125D0

c dx=dx-0.00126

cc else if ((xcoord(i) .GT. 11) .AND. (xcoord(i) .LT. 13.9)) then

cc dx=dx+0.00125D0

c dx=dx+0.00126

cc else if ((xcoord(i) .GT. 9.05) .AND. (xcoord(i) .LE. 11)) then

cc dx=0.05D0

c dx=0.025D0

c dx=0.0125

c dx=0.00675

cc else

cc dx=0.1D0

cc end if

c write(*,*)'i,dx,xcoord(i)', i,dx, xcoord(i)

c write(*,*)'i,xcoord,xcrd',i,xcoord(i),xcrd(i)

cc if (xcoord(i) .LE. 25) go to 100

cc xcrd(i+1)=xcoord(i)+0.5D0*dx

cc nx=i

c ********* ! end of making fine mesh around cylinder x direction

 delta=5.D0 !3.D0

c

 nx2 =37 !78

 nx3 =37 !66

 dx =0.0250D0!0.025D0

 nn =4.0D0/dx

 nx=nx2+nx3+nn

 xcoord(0) = -15.0D0

 xcoord(nx2)= -2.0D0

c

 do i=1,nx2-1

 yj=1.D0*i

 y0=delta/2.D0*yj/nx2

 y1=delta/2.D0

 tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0))

 tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1))

 coef1 = tanh0/tanh1

 xcoord(i) = (1.D0-coef1)*xcoord(0)+coef1*xcoord(nx2)

 xcrd(i)=(xcoord(i)+xcoord(i-1))/2.0D0

 end do

c

 write(*,*)'nx2, dx',nx2,xcoord(nx2)-xcoord(nx2-1)

c

 do k=1,nn-1

178

 xcoord(nx2+k)=xcoord(nx2)+k*dx

 xcrd(nx2+k) =(xcoord(nx2+k)+xcoord(nx2+k-1))/2.0D0

 end do

c

 xcoord(nx2+nn) = 2.0D0

 xcoord(nx) =15.0D0

c

 do i=1,nx3-1

 yj=1.D0*(nx3-i)

 y0=delta/2.D0*yj/nx3

 y1=delta/2.D0

 tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0))

 tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1))

 coef1 = tanh0/tanh1

 xcoord(nx2+nn+i) = coef1*xcoord(nx2+nn)+

 & (1.0D0-coef1)*xcoord(nx)

 xcrd(nx2+nn+i)=(xcoord(nx2+nn+i)+xcoord(nx2+nn+i-1))/2

 end do

 write(*,*)'nx2+nn,dx',nx2+nn,xcoord(nx2+nn+1)-xcoord(nx2+nn)

c

 xcrd(nx) =(xcoord(nx)+xcoord(nx-1))/2.0D0

 xcrd(nx+1)=2*xcoord(nx)-xcrd(nx)

 xcrd(0)= xcoord(0)-(xcrd(1)-xcoord(0))

 xcrd(nx2)=(xcoord(nx2)+xcoord(nx2-1))/2.0D0

 xcrd(nx2+nn)=(xcoord(nx2+nn)+xcoord(nx2+nn-1))/2.0D0

c k=0

c nx=2*nx2+nn

c do i=nx2+nn+1,nx

c k =k+1

c xcoord(i)= -xcoord(nx2-k)

c xcrd(i)=(xcoord(i)+xcoord(i-1))/2

c end do

c xcrd(nx+1)=xcoord(nx)+(xcoord(nx)-xcrd(nx-1))

c xcrd(0)= xcoord(0)-(xcrd(1)-xcoord(0))

c xcrd(nx2)=(xcoord(nx2)+xcoord(nx2-1))/2

 do i=0,nx+1

 write(*,*)'i,dx,xcoord,xcrd',

 & i,2*(xcoord(i)-xcrd(i)), xcoord(i),xcrd(i)

 end do

c

cc open(unit=12,file='trial.out')

cc write(12,*)'variables="x","y"'

cc write(12,*)

cc & 'ZONE T="scalar field",I=',2*ny2+nn,'J =',2*ny2+nn,'F=BLOCK'

c

cc write(12,'(5E16.8)')((y(i),i=1,2*ny2+nn),j=1,2*ny2+nn)

cc write(12,'(5E16.8)')((y(j),i=1,2*ny2+nn),j=1,2*ny2+nn)

c

cc close(12)

ccccc

c ! making uniform mesh xdirction

cc nx=250

cc ny=300 ! was 400 for 20D in y direction

cc dx = 25D0/nx

cc xcrd(0)=-0.5D0*dx

cc do i=0,nx ! this part has change to make a bit new andices

cc xcoord(i)=i*dx

cc xcrd(i+1)=xcrd(i)+dx

cc end do

c ******** ! end of uniform mesh x direction

c alpha = 1.02 ! stretching of 2 per cent.

c dy = 1D0/ny ! this is the mean dy

179

c

c ycoord(ny)=1D0

c do j=ny-1,0,-1

c ycoord(j)=ycoord(j+1)-dy

c dy=alpha*dy

c end do

c offset=ycoord(0)

c fact=ycoord(ny)-offset

c

c do j=0,ny

c ycoord(j)=(ycoord(j)-offset)/fact

c end do

c

c ycrd(0)=-0.5D0*ycoord(1)

c

c ******** ! creating fine mesh around the cylinder in y direction

c

cc j=0

cc dy=0.1D0

cc ycrd(0)=-0.5D0*dy

cc ycrd(1)=0.5D0*dy

cc ycoord(0)=0.D0

cc

cc110 j=j+1

cc ycoord(j)=ycoord(j-1)+dy

c ycrd(j+1)=ycrd(j)+dy

cc ycrd(j)=(ycoord(j)+ycoord(j-1))/2

cc if ((ycoord(j) .LE. 11.0) .OR. (ycoord(j) .GE.18.9)) then

cc dy=0.1D0

cc else if ((ycoord(j) .GT. 11.0) .AND. (ycoord(j) .LE. 14.05)) then

cc dy=dy-0.00125D0

c dy=dy-0.001262

cc else if ((ycoord(j) .GE. 16) .AND. (ycoord(j) .LT. 18.9)) then

cc dy=dy+0.00125D0

c dy=dy+0.001262

cc else

cc dy=0.05D0

c dy=0.025D0

c dy=0.0125

c dy=0.00535

cc end if

c write(*,*)'j,dy,ycoord(j)', j,dy, ycoord(j)

cc if (ycoord(j) .LE. 30) go to 110

cc ycrd(j+1)=ycoord(j)+0.5D0*dy

cc ny=j

cc write(*,*)'ny',ny

c ******** end of creating fine mesh around the cylidner in y direction

c

c ny1=119

 ny2=37

 delta=5.D0 !3.D0

 nn = 160!160

c

c ny2 = (ny1+1)/2

 ycoord(0) = -15.0D0

 ycoord(ny2)= -2.0D0

c

 do j=1,ny2-1

 yj=1.D0*j

 y0=delta/2.D0*yj/ny2

 y1=delta/2.D0

 tanh0 = (exp(y0)-exp(-y0))/(exp(y0)+exp(-y0))

 tanh1 = (exp(y1)-exp(-y1))/(exp(y1)+exp(-y1))

 coef1 = tanh0/tanh1

 ycoord(j) = (1.D0-coef1)*ycoord(0)+coef1*ycoord(ny2)

 ycrd(j)=(ycoord(j)+ycoord(j-1))/2

c write(*,*)'j,dy,ycoord(j)',j,dy, ycoord(j)

180

 end do

c

 nn1 = INT(4/ABS(ycoord(ny2)-ycoord(ny2-1)))

 dy1 = 4.0D0 /nn1

c

 dy = 4.0D0/nn

 write(*,*)'dy,nn =',dy,nn,dy1,nn1

c

 do k=1,nn-1

 ycoord(ny2+k)=ycoord(ny2)+k*dy

 ycrd(ny2+k)=(ycoord(ny2+k)+ycoord(ny2+k-1))/2

c write(*,*)'j,dy,ycoord(j)',ny2+k,dy, ycoord(ny2+k)

 end do

c

 k=0

 ny=2*ny2+nn

 do j=ny2+nn,ny

c k =k+1

 ycoord(j)= -ycoord(ny2-k)

 ycrd(j)=(ycoord(j)+ycoord(j-1))/2

 k =k+1

c write(*,*)'j,dy,ycoord(j)', j,dy, ycoord(j)

 end do

 ycrd(ny+1)=ycoord(ny)+(ycoord(ny)-ycrd(ny))

 ycrd(0)= ycoord(0)-(ycrd(1)-ycoord(0))

 ycrd(ny2)=(ycoord(ny2)+ycoord(ny2-1))/2

 do j=0,ny+1

 write(*,*)'j,dy,ycoord(j)',j,ycoord(j)-ycoord(j-1),

 & ycoord(j),ycrd(j)

 end do

c

c ***** creating uniform mesh

c

cc dy= 30D0/ny !was 20 in y direction

cc ycrd(0)=-0.5D0*dy

cc ycoord(0)=-dy

cc do j=0,ny ! this part has change to make a bit new

andices

cc ycoord(j)=j*dy

cc ycrd(j+1)=ycrd(j)+dy

cc end do

c

c ycrd(ny+1)=1D0+0.5D0*(ycoord(ny)-ycoord(ny-1))

c

 open(unit=12,file='grid.dat')

 write(12,*) 'variables="x","y"'

 write(12,*)

 & 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'

 write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny)

 close(12)

c STOP

 open(unit=12,file='grid2.dat')

 write(12,*) 'variables="x","y"'

 write(12,*)

 & 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'

 write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny)

 close(12)

c STOP

c *********************define u and v and p absolute inside of the

cylinder*****

cc uins=1

cc vins=1

cc pins=1

cc

181

cc do i=2,nx-1

cc do j=2,ny-1

cc if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then

cc vins(i,j)=vsolid

cc end if

cc if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc uins(i,j)=usolid

cc end if

cc if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc pins(i,j)=0

cc end if

cc end do

cc end do

c ********************************end of part ******************

c

c do i=1,nx

c xtg = xcrd(i)

c ytg = 0.269D0*sqrt(0.1D0 * xtg)

c fxdm = MAX(1.D0-2.D0*MAX(xtg-4.D0,0.D0),0.D0)

c txv(i)=1D0

c tyv(i)=0.05D0*0.269D0/sqrt(0.1D0 * xtg)

c dnorm = SQRT(txv(i)**2+tyv(i)**2)

c txv(i)=txv(i)/dnorm

c tyv(i)=tyv(i)/dnorm

c vnorv(i)=fxdm*0.081/sqrt(0.1D0 * xtg) ! scaled by inlet vel.

c vnorv(i)=0.D0

c do j=1,ny

c jyv(i)=j

c pmask(i,j)=0.D0

c if (ycoord(j)-ytg .GT. 0D0) GoTo 20

c end do

c STOP 'ERROR 002'

c 20 continue

c jyu(i)=jyv(i)+1

c

c fyv(i)=ytg

c end do

c

c open(unit=12,file='checkv.dat')

c write(12,*) '*** v: i, j, ycoord, ytg: '

c do i=1,400

c write(12,*) i,jyv(i),ycoord(jyv(i)),fyv(i)

c end do

c close(12)

c

c STOP 'check it'

c do i=1,nx

c do j=1,ny

c if (pmask(i,j) .EQ. 0.D0) then

c amask(i,j)=0.D0

c if (i .GT. 1) amask(i-1,j)=0.D0

c end if

c end do

c end do

c

c do i=1,nx

c do j=2,ny

c if ((amask(i,j) .EQ. 1.D0) .AND. (amask(i,j-1) .EQ. 0.D0)) then

c jyu(i)=j

c end if

c end do

c end do

c

cc open(unit=12,file='grid.bin',form='UNFORMATTED')

cc rewind(12)

c

cc write(12) nx,ny

cc write(12) (xcrd(i),i=0,nx+1)

182

cc write(12) (ycrd(j),j=0,ny+1)

cc write(12) (txu(i),i=1,nx)

cc write(12) (txv(i),i=1,nx)

cc write(12) (tyu(i),i=1,nx)

cc write(12) (tyv(i),i=1,nx)

cc write(12) (vnoru(i),i=1,nx)

cc write(12) (vnorv(i),i=1,nx)

cc write(12) (fyu(i),i=1,nx)

cc write(12) (fyv(i),i=1,nx)

cc write(12) (jyu(i),i=1,nx)

cc write(12) (jyv(i),i=1,nx)

cc close(12)

c

 return

 end

cc

 subroutine interpolate()

c

c ** initialize the grid, blocking, extrapolation of velocities at

c ** boundaries

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c parameter (acyl=5.000000,bcyl=10.0000000,Rcyl=0.5000000)

c

 common /cylzise/ acyl, bcyl, Rcyl

 double precision acyl, bcyl, Rcyl

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy),

 & ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy),

 & nbndp

 integer ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp

c

 common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy),

 & wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy)

 double precision teta,unitvi,unitvj,wp1,wp2,delta1

c

 common /maskdiv/ idiv(Mxy),jdiv(Mxy),ndiv

 integer idiv,jdiv,ndiv

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

183

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2),

 & vins(0:nnx+2,0:nny+2)

 double precision pins,uins,vins

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

 integer t,k

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 double precision dx,dy,fact,offset,alpha,xtg,ytg,dnorm

 double precision gradient,intercept, xint,yint,weight,a1,c1,PI

 logical EX

c

 common /homeadd/ home

 character*40 home

c

 xsolid=0.D0

 RRe=1.D0/Re

 bcyl=0.D0!+ysolid

 acyl=0.D0!+xsolid

 Rcyl=0.5D0

cc

c *********************define u and v and p absolute inside of the

cylinder*****

cc uins=1

cc vins=1

cc pins=1

cc

cc do i=2,nx-1

cc do j=2,ny-1

cc if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then

cc vins(i,j)=vsolid

cc end if

cc if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc uins(i,j)=usolid

cc end if

cc if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc pins(i,j)=0

cc end if

cc end do

cc end do

c ********************************end of part ******************

 umask=0.D0

 vmask=0.D0

 do i=1,nx-1

 do j=1,ny

 umask(i,j)=1.D0

 end do

 end do

c

 do i=1,nx

184

 do j=1,ny-1

 vmask(i,j)=1.D0

 end do

 end do

c

c *** to define where vmask(i,j)=0 and umask(i,j)=0 and pmask(i,j)=0

 do i=2,nx-1

 do j=2,ny-1

 if

 &((sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i-1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i)-acyl)**2+(ycoord(j+1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LE. Rcyl))

 & then

 vmask(i,j)=0

 end if

 if

 &((sqrt((xcoord(i+1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i-1)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j-1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcrd(i)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl) .OR.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LE. Rcyl) .OR.

 & (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j-1)-bcyl)**2) .LT. Rcyl))

 & then

 umask(i,j)=0

 end if

 end do

 end do

c

c c ******* definition of pmask

 do i=1,nx

 do j=1,ny

 if ((umask(i-1,j)+umask(i,j)+vmask(i,j-1)+vmask(i,j)).EQ.1) then

 umask(i ,j)=0

 umask(i-1,j)=0

 vmask(i ,j)=0

 vmask(i ,j-1)=0

 end if

 end do

 end do

c

c ******* end of definition of pmask

 pmask=0.D0

 do i=1,nx

 do j=1,ny

 if ((umask(i-1,j)+umask(i,j)+vmask(i,j-1)+vmask(i,j)).GE.1) then

 pmask(i,j)=1.D0

 end if

 end do

 end do

c

c ************************ v-velocities *******************

*******************interpolation to find the boundary value of vmask(i,j)

 k=0

 nbndv=0

 do j=2,ny-1

 do i=2,nx-1

185

c

 deltal=sqrt(((xcrd(i)-acyl)**2)+(ycoord(j)-bcyl)**2)

 If ((vmask(i,j) .EQ. 0.D0) .AND. (deltal .GE. Rcyl)) then

 k=k+1

 gradient=((bcyl-ycoord(j))/((acyl-xcrd(i))))

 intercept=bcyl-acyl*gradient

c write(*,*)'gradient, intercept', gradient,intercept

c !

******** third quarter of circle *****************

c

 if ((ycoord(j) .LE. bcyl) .AND. (xcrd(i) .LE. acyl))

 & then

 xint=(ycoord(j-1)-intercept)/gradient

c

 If ((acyl . EQ. xcrd(i)) .OR.

 & ((xint .GE. xcrd(i-1)) .AND.

 & (xint .LE. xcrd(i)))) then

 yint=ycoord(j-1)

 weight=((xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))) ! weight

of grater I indices of v on interpolation point

 If (acyl .EQ. xcrd(i)) then

 weight=1

 xint=xcrd(i)

 End if

 ip1v(k)=i

 jp1v(k)=j-1

 ip2v(k)=i-1

 jp2v(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd

c & third1',k,i,j,weight,xcrd(i-1),xint,xcrd(i),gradient,intercept

 Else

 xint=xcrd(i-1)

 yint=gradient*xint+intercept

 weight=((yint-ycoord(j-1))/(ycoord(j)-ycoord(j-1)))

 If (bcyl .EQ. ycoord(j)) then !new 20/5/13

 weight=1 !new 20/5/13

 yint=ycoord(j) !new 20/5/13

 End if !new 20/5/13

 ip1v(k)=i-1

 jp1v(k)=j

 ip2v(k)=i-1

 jp2v(k)=j-1

c write(*,'(A,3I4,6F8.2)')'i,ik,jk,wet,yco

c & third2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),intercept,gradient

 End if

 End if

c

c

 If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i) .LE. acyl))

!******** second quater of circle

 & then

 xint=(ycoord(j+1)-intercept)/gradient

c

 If ((xint .GE. xcrd(i-1)) .AND. (xint .LE. xcrd(i))

 & .OR. (acyl .EQ. xcrd(i))) Then

 yint=ycoord(j+1)

 weight=((xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))) ! weight of

grater I indices of v on interpolation point

 If (acyl .EQ. xcrd(i)) then

 weight=1

 xint=xcrd(i)

 End if

 ip1v(k)=i

 jp1v(k)=j+1

 ip2v(k)=i-1

 jp2v(k)=j+1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd

c &scond1',k,i,j,weight,xcrd(i-1),xint,xcrd(i),gradient,intercept

186

 Else

 xint=xcrd(i-1)

 yint=gradient*xint+intercept

 weight=((yint-ycoord(j))/(ycoord(j+1)-ycoord(j)))

 ip1v(k)=i-1

 jp1v(k)=j+1

 ip2v(k)=i-1

 jp2v(k)=j

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord

c &scond2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),gradient,intercept

 End if

 End if

c

c

 If ((ycoord(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl))

!******** first quater of circle

 & then

 xint=(ycoord(j+1)-intercept)/gradient

c

 If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1)))

 & then

 yint=ycoord(j+1)

 weight=((xint-xcrd(i))/(xcrd(i+1)-xcrd(i))) ! weight of

grater I indices of v on interpolation point

 ip1v(k)=i+1

 jp1v(k)=j+1

 ip2v(k)=i

 jp2v(k)=j+1

c

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord

c & first1',k,i,j,weight,xcrd(i),xint,xcrd(i+1),gradient,intercept

 Else

 xint=xcrd(i+1)

 yint=gradient*xint+intercept

 weight=((yint-ycoord(j))/(ycoord(j+1)-ycoord(j)))

 ip1v(k)=i+1

 jp1v(k)=j+1

 ip2v(k)=i+1

 jp2v(k)=j

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord

c & firt2',k,i,j,weight,ycoord(j),yint,ycoord(j+1),gradient,intercept

 End if

 End if

c

c

 If (((ycoord(j) .LE. bcyl) .AND. (xcrd(i).GT. acyl)))

!******* fourth quater of circle

 & then

 xint=(ycoord(j-1)-intercept)/gradient

c

 If ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1)))

 & then

 yint=ycoord(j-1)

 weight=((xint-xcrd(i))/(xcrd(i+1)-xcrd(i))) ! weight of

grater I indices of v on interpolation point

 ip1v(k)=i+1

 jp1v(k)=j-1

 ip2v(k)=i

 jp2v(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd

c & four1',k,i,j,weight,xcrd(i),xint,xcrd(i+1),gradient,intercept

 Else

 xint=xcrd(i+1)

187

 yint=gradient*xint+intercept

 weight=((yint-ycoord(j-1))/(ycoord(j)-ycoord(j-1)))

 if (bcyl .EQ. ycoord(j)) then ! 21/5/13

 weight=1 ! 21/5/13

 yint= ycoord(j) ! 21/5/13

 endif ! 21/5/13

 ip1v(k)=i+1

 jp1v(k)=j

 ip2v(k)=i+1

 jp2v(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycoord

c & four2',k,i,j,weight,ycoord(j-1),yint,ycoord(j),gradient,intercept

 End if

 End if

c

 iinterpv(k)=i

 jinterpv(k)=j

 a1=sqrt((acyl-xcrd(i))**2+(bcyl-ycoord(j))**2)-Rcyl ! distance of

bounary point to the bondary of circle

 c1=(sqrt((acyl-xint)**2+(bcyl-yint)**2))-Rcyl ! distance of

interpolation point to the boundary of circle

cc wv1(k)=(a1/c1)*weight

cc wv2(k)=(a1/c1)*(1-weight)

 wv1(k)=weight

 wv2(k)=(a1/c1)

 if (a1 .EQ. 0) then ! point is on the solid c1 to a1

 wv1(k)=0

 wv2(k)=0

 end if

c write(*,'(A,3I5,7F10.2)')'i,ik,jk,weight,wv1,wv2,

c & final',k,i,j,weight,wv1(k),wv2(k),a1,c1,xint,yint

 End if

c

 end do

 end do

 nbndv=k

 write(*,*) 'k,nbndv=',k,nbndv

c ** *************** u-velocities

*********:

c ********interpolation to find the bounadry value of umask(i,j)

 k=0

 nbndu=0

c

 do j=2,ny-1

 do i=2,nx-1

 deltal= sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2)

 If ((umask(i,j) .EQ. 0) .AND.(deltal .GE. Rcyl)) then

 k=k+1

 gradient=(bcyl-ycrd(j))/(acyl-xcoord(i))

 intercept=bcyl-acyl*gradient

c

c

 If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .LE. acyl)) !

****** third quater of circle *****************

 & then

 yint=gradient * xcoord(i-1)+intercept

c

 If ((bcyl .EQ. ycrd(j)) .OR. ! 21/5/13

 & ((yint .GE. ycrd(j-1)) .AND.

 & (yint .LE. ycrd(j)))) then

 xint=xcoord(i-1)

 weight=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1)) ! weight

of grater I indices of v on interpolation point

 if (bcyl .EQ. ycrd(j)) then !21/5/13

188

 weight = 1 !21/5/13

 yint =ycrd(j) !21/5/13

 endif !21/5/13

 ip1u(k)=i-1

 jp1u(k)=j

 ip2u(k)=i-1

 jp2u(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd

c & third1',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient,intercept

 Else

 yint=ycrd(j-1)

 xint=(yint-intercept)/gradient

 weight=(xint-xcoord(i-1))/(xcoord(i)-xcoord(i-1))

 IF (acyl .EQ. xcoord(i)) then

 weight=1

 xint=xcoord(i)

 End if

 ip1u(k)=i

 jp1u(k)=j-1

 ip2u(k)=i-1

 jp2u(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c &third2',k,i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept

 End if

 End if

c

 If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .LE. acyl)) !

****** second quarter of circle *****************

 & then

 yint=gradient * xcoord(i-1)+intercept

c

 If ((yint .GE. ycrd(j)) .AND.

 & (yint .LE. ycrd(j+1))) then

 xint=xcoord(i-1)

 weight=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j)) ! weight of

grater I indices of v on interpolation point

 ip1u(k)=i-1

 jp1u(k)=j+1

 ip2u(k)=i-1

 jp2u(k)=j

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,ycrd

c &scond1',k,i,j,weight,ycrd(j),yint,ycrd(j+1),gradient,intercept

 Else

 yint=ycrd(j+1)

 xint=(yint-intercept)/gradient

 weight=(xint-xcoord(i-1))/(xcoord(i)-xcoord(i-1))

 If (acyl .EQ. xcoord(i)) then

 weight=1

 xint=xcoord(i)

 End if

 ip1u(k)=i

 jp1u(k)=j+1

 ip2u(k)=i-1

 jp2u(k)=j+1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c &scond2',k,i,j,weight,xcoord(i-1),xint,xcoord(i),gradient,intercept

 End if

 End if

c

 If ((ycrd(j) .GT. bcyl) .AND. (xcoord(i) .GT. acyl)) !

****** first quarter of circle *****************

 & then

 yint=gradient * xcoord(i+1)+intercept

c

 If ((yint .GE. ycrd(j)) .AND.

 & (yint .LE. ycrd(j+1))) then

 xint=xcoord(i+1)

189

 weight=((yint-ycrd(j))/(ycrd(j+1)-ycrd(j))) ! weight of

grater I indices of v on interpolation point

 ip1u(k)=i+1

 jp1u(k)=j+1

 ip2u(k)=i+1

 jp2u(k)=j

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c &first2',k,i,j,weight,ycrd(j),yint,ycrd(j+1),gradient,intercept

 Else

 yint=ycrd(j+1)

 xint=(yint-intercept)/gradient

 weight=((xint-xcoord(i))/(xcoord(i+1)-xcoord(i)))

 ip1u(k)=i+1

 jp1u(k)=j+1

 ip2u(k)=i

 jp2u(k)=j+1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c &first2',k,i,j,weight,xcoord(i),xint,xcoord(i+1),gradient,intercept

 End if

 End if

c

 If ((ycrd(j) .LE. bcyl) .AND. (xcoord(i) .GT. acyl)) !

****** fourth quater of circle *****************

 & then

 yint=gradient * xcoord(i+1)+intercept

c

 If ((bcyl .EQ. ycrd(j)) .OR.

 & ((yint .GE. ycrd(j-1)) .AND.

 & (yint .LE. ycrd(j)))) then

 xint=xcoord(i+1)

 weight=((yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1))) ! weight

of grater I indices of v on interpolation point

 if (bcyl .EQ. ycrd(j)) then

 weight = 1

 yint = ycrd(i)

 end if

 ip1u(k)=i+1

 jp1u(k)=j

 ip2u(k)=i+1

 jp2u(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c &four1',k,i,j,weight,ycrd(j-1),yint,ycrd(j),gradient,intercept

 Else

 yint=ycrd(j-1)

 xint=(yint-intercept)/gradient

 weight=((xint-xcoord(i))/(xcoord(i+1)-xcoord(i)))

 ip1u(k)=i+1

 jp1u(k)=j-1

 ip2u(k)=i

 jp2u(k)=j-1

c write(*,'(A,3I5,6F10.2)')'i,ik,jk,weight,xcoord

c & four2',k,i,j,weight,xcoord(i),xint,xcoord(i+1),gradient,intercept

 End if

 End if

c

c

 iinterpu(k)=i

 jinterpu(k)=j

 a1=sqrt((acyl-xcoord(i))**2+(bcyl-ycrd(j))**2)-Rcyl ! distance of

bounary point to the bondary of circle

 c1=sqrt((acyl-xint)**2+(bcyl-yint)**2)-Rcyl ! distance of

interpolation point to the boundary of circle

cc wu1(k)=(a1/c1)*weight

cc wu2(k)=(a1/c1)*(1-weight)

 wu1(k)=weight ! 21/5/13

 wu2(k)=(a1/c1) !21/5/13

190

 if (a1 .EQ. 0) then ! point on the solid boudnary

 wu1(k)=0 !21/5/13

 wu2(k)=0 !21/5/13

 endif !21/5/13

 End if

c

 end do

 end do

 nbndu=k

 write(*,*)'k,nbndu',k,nbndu

c

c

c *** pressure interpolation indices on

moving boundary******************

 k=0

 nbndp = 0

 PI=4.*ATAN(1.)

 do j=8,ny-8

 do i=8,nx-8

 if ((pmask(i,j) .EQ. 1) .AND.

 & ((pmask(i+1,j) .EQ. 0) .OR. (pmask(i-1,j) .EQ. 0) .OR.

 & (pmask(i,j+1) .EQ. 0) .OR. (pmask(i,j-1) .EQ .0))) then

c

 deltal= sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2)

 gradient=(bcyl-ycrd(j))/(acyl-xcrd(i))

 intercept=bcyl-acyl*gradient

 k=k+1

 teta(k)=ATAN2((ycrd(j)-bcyl),(xcrd(i)-acyl))

 if (teta(k) .LE. 0) then

 teta(k)=teta(k)+ 2*PI

 end if

c teta(k)=ATAN2((bcyl-ycrd(j)),(acyl-xcrd(i)))

 unitvi(k)=(xcrd(i)-acyl)/deltal

 unitvj(k)=(ycrd(j)-bcyl)/deltal

 ip1p(k)=i

 jp1p(k)=j

 If ((ycrd(j) .LE. bcyl) .AND. (xcrd(i) .LE. acyl)) then !

****** third quater of circle *****************

 yint=ycrd(j-1)

 xint= (yint- intercept)/gradient !update 21/5/13

c teta(k)=(2*PI/3)-(ATAN(gradient))

c if (acyl .EQ. xcrd(i)) teta(k)=2*PI/3

 if ((xint .GE. xcrd(i-1) .AND. (xint .LE. xcrd(i))) .OR.

 & (acyl .EQ. xcrd(i))) then

 wp1(k)=(xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))

c

 if (acyl .EQ. xcrd(i)) then

 wp1(k)=1

 xint=xcrd(i)

 end if

c

 ip2p(k)=i

 jp2p(k)=j-1

 ip3p(k)=i-1

 jp3p(k)=j-1

 else

 xint=xcrd(i-1)

 yint=gradient * xint+intercept

 wp1(k)=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1))

 if (bcyl .EQ. ycrd(j)) then !21/5/21

 wp1(k)=1 !21/5/21

 yint=ycrd(j) !21/5/21

 endif !21/5/21

 ip2p(k)=i-1

 jp2p(k)=j

 ip3p(k)=i-1

 jp3p(k)=j-1

191

 end if

 end if

c

 If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .LE. acyl)) then !

****** second quarter of circle *****************

 yint=ycrd(j+1)

 xint= (yint- intercept)/gradient !update 21/5/13

c

 if ((xint .GE. xcrd(i-1) .and. (xint .LE. xcrd(i))) .OR.

 & (acyl .EQ. xcrd(i))) then

 wp1(k)=(xint-xcrd(i-1))/(xcrd(i)-xcrd(i-1))

c

 If (acyl .EQ. xcrd(i)) then

 wp1(k)=1

 xint=xcrd(i)

 End if

c

 ip2p(k)=i

 jp2p(k)=j+1

 ip3p(k)=i-1

 jp3p(k)=j+1

 else

 xint=xcrd(i-1)

 yint=gradient * xint+intercept

 wp1(k)=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j))

 ip2p(k)=i-1

 jp2p(k)=j+1

 ip3p(k)=i-1

 jp3p(k)=j

 end if

 end if

c

 If ((ycrd(j) .GT. bcyl) .AND. (xcrd(i) .GT. acyl)) then ! upadte

21/5/13 ****** first quarter of circle *****************

 yint=ycrd(j+1)

 xint= (yint - intercept)/gradient !update 21/5/13

c

 if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) then

 wp1(k)=(xint-xcrd(i))/(xcrd(i+1)-xcrd(i))

 ip2p(k)=i+1

 jp2p(k)=j+1

 ip3p(k)=i

 jp3p(k)=j+1

 else

 xint=xcrd(i+1)

 yint=gradient * xint+intercept

 wp1(k)=(yint-ycrd(j))/(ycrd(j+1)-ycrd(j))

 ip2p(k)=i+1

 jp2p(k)=j+1

 ip3p(k)=i+1

 jp3p(k)=j

 end if

 end if

c

 If ((ycrd(j) .LE. bcyl) .AND. (xcrd(i) .GT. acyl)) then ! update

21/5/13 ****** fourth quater of circle *****************

 yint=ycrd(j-1)

 xint= (yint- intercept)/gradient

c

c teta(k)=2*PI*ATAN(abs(aradient))

c if (acyl .EQ. xcrd(i)) teta(k)=3*PI/2

c

 if ((xint .GE. xcrd(i)) .AND. (xint .LE. xcrd(i+1))) then

 wp1(k)=(xint-xcrd(i))/(xcrd(i+1)-xcrd(i))

 ip2p(k)=i+1

 jp2p(k)=j-1

 ip3p(k)=i

 jp3p(k)=j-1

192

 else

 xint=xcrd(i+1)

 yint=gradient * xint+intercept

 wp1(k)=(yint-ycrd(j-1))/(ycrd(j)-ycrd(j-1))

 if (bcyl .EQ. ycrd(j)) then

 wp1(k)=1

 yint=ycrd(j)

 endif

 ip2p(k)=i+1

 jp2p(k)=j

 ip3p(k)=i+1

 jp3p(k)=j-1

 end if

c

 end if

c

 iinterpp(k)=i

 jinterpp(k)=j

 a1=sqrt((acyl-xcrd(i))**2+(bcyl-ycrd(j))**2)-Rcyl ! distance of

first pressure point to the bondary of circle

 c1=sqrt((acyl-xint)**2+(bcyl-yint)**2)-Rcyl ! distance of

interpolation point to the boundary of circle

 wp2(k)=(a1/c1)

 delta1(k)=a1

 end if

 end do

 end do

 nbndp=k

 write (*,*)'nbndp',nbndp

 do k=1,nbndp

 do j=k+1,nbndp

 if (teta(j) .LT. teta(k)) then

 temp1=teta(j)

 temp2=iinterpp(j)

 temp3=jinterpp(j)

 temp4=ip1p(j)

 temp5=jp1p(j)

 temp6=ip2p(j)

 temp7=jp2p(j)

 temp8=ip3p(j)

 temp9=jp3p(j)

 temp10=wp1(j)

 temp11=wp2(j)

 temp12=unitvi(j)

 temp13=unitvj(j)

 temp14=delta1(j)

c

 teta(j)=teta(k)

 iinterpp(j)=iinterpp(k)

 jinterpp(j)=jinterpp(k)

 ip1p(j)=ip1p(k)

 jp1p(j)=jp1p(k)

 ip2p(j)=ip2p(k)

 jp2p(j)=jp2p(k)

 ip3p(j)=ip3p(k)

 jp3p(j)=jp3p(k)

 wp1(j)=wp1(k)

 wp2(j)=wp2(k)

 unitvi(j)=unitvi(k)

 unitvj(j)=unitvj(k)

 delta1(j)=delta1(k)

c

 teta(k)=temp1

 iinterpp(k)=temp2

 jinterpp(k)=temp3

 ip1p(k)=temp4

 jp1p(k)=temp5

 ip2p(k)=temp6

193

 jp2p(k)=temp7

 ip3p(k)=temp8

 jp3p(k)=temp9

 wp1(k)=temp10

 wp2(k)=temp11

 unitvi(k)=temp12

 unitvj(k)=temp13

 delta1(k)=temp14

c

 end if

 end do

 end do

 teta(nbndp+1)=teta(1)+2 * 4. * ATAN (1.)

 iinterpp(nbndp+1)=iinterpp(1)

 jinterpp(nbndp+1)=jinterpp(1)

 ip1p(nbndp+1)=ip1p(1)

 jp1p(nbndp+1)=jp1p(1)

 ip2p(nbndp+1)=ip2p(1)

 jp2p(nbndp+1)=jp2p(1)

 ip3p(nbndp+1)=ip3p(1)

 jp3p(nbndp+1)=jp3p(1)

 wp1(nbndp+1)=wp1(1)

 wp2(nbndp+1)=wp2(1)

 unitvi(nbndp+1)=unitvi(1)

 unitvj(nbndp+1)=unitvj(1)

 delta1(nbndp+1)=delta1(1)

c

 teta(0)=teta(nbndp)-2 * 4. * ATAN (1.)

 iinterpp(0)=iinterpp(nbndp)

 jinterpp(0)=jinterpp(nbndp)

 ip1p(0)=ip1p(nbndp)

 jp1p(0)=jp1p(nbndp)

 ip2p(0)=ip2p(nbndp)

 jp2p(0)=jp2p(nbndp)

 ip3p(0)=ip3p(nbndp)

 jp3p(0)=jp3p(nbndp)

 wp1(0)=wp1(nbndp)

 wp2(0)=wp2(nbndp)

 unitvi(0)=unitvi(nbndp)

 unitvj(0)=unitvj(nbndp)

 delta1(0)=delta1(nbndp)

c****end of pressure indices interpolation ************************************

 return

 end

cc

 subroutine bounds()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

c

 common /cylzise/ acyl, bcyl, Rcyl

 double precision acyl, bcyl, Rcyl

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /velotemp/ utemp(0:nnx,0:nny+1),vtemp(0:nnx+1,0:nny)

 double precision utemp,vtemp

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

194

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 double precision vi,vip,uip,uip2,xtg,ytg,dnorm,ubound,vbound,vtan,

 & flux,bflux,fact,dux,yc1,uint,vint,

 & vsolidRelative,usolidRelative

c

 common /homeadd/ home

 character*40 home

c

 logical EX

c

c write(*,*)'********** at the beginning of bounds**********'

c

c ** inlet boundary at the left grid-line

c

 do j=1,ny

 u(0,j)=1.D0

 end do

c

 do j=0,ny

c v(0,j)=-v(1,j)

 v(0,j)=-vsolid

 end do

c

c ** symmetry boundary at the upper and lower side

this is not fullfilled (except for 1<x<2)

c

c do i=0,nx

c v(i,ny)=0

c u(i,ny+1)=u(i,ny) ! indices should be check to see if ny

is correct or ny+1 !

195

c v(i,0)=0

c u(i,0)=u(i,1)

cc v(i,ny)=vup(i)

c end do

c *** relative velocity at the upper and lower side

 do i=0,nx

 v(i,ny)=-vsolid

 v(i, 0)=-vsolid

c u(i, 0)= u(i,n+1) !period bondary for the u

 u(i,0)=u(i,1)

 u(i,ny+1)=u(i,ny)

 end do

c ********************************solid boundary around the cylinder (immersed

boudnary) ************************

c

c write(*,*)'nbndu,nbndv', nbndu,nbndv

 vsolidRelative=0

 usolidRelative=0

 do i=1,nbndv !nbndv

 ik=iinterpv(i)

 jk=jinterpv(i)

 v(ik,jk)=(1-wv2(i))*vsolidRelative +

 & wv2(i)* wv1(i) *vtemp(ip1v(i),jp1v(i))+

 & wv2(i)*(1-wv1(i)) *vtemp(ip2v(i),jp2v(i))

c write(*,'(A,3I5,5F16.8)') 'i,ik,jk,x(ik),y(jk),v(ik,jk),wv1,wv2='

c & ,i,ik,jk,xcrd(ik), ycrd(jk),v(ik,jk),wv1(i),wv2(i)

 end do

c

 do i=1,nbndu !nbndu

 ik=iinterpu(i)

 jk=jinterpu(i)

 u(ik,jk)=(1-wu2(i))*usolidRelative+

 & wu2(i) * wu1(i) *u(ip1u(i),jp1u(i))+

 & wu2(i) *(1-wu1(i))*u(ip2u(i),jp2u(i))

c if ((u(ik,jk) .GE. 1) .OR. (u(ik,jk) .LE. -1)) then

c write(*,*) 'i,ik,jk,u(ik,jk)=',i,ik,jk,u(ik,jk)

c end if

 end do

c

cccc************** 22/5/13 defining velocity inside the solid**************

c

 do i=2,nx-1

 do j=2,ny-1

 if (sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .LT. Rcyl) then

 v(i,j)=vsolidRelative

 end if

cc if (sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc uins(i,j)=usolid

cc end if

cc if (sqrt((xcrd(i)-acyl)**2+(ycrd(j)-bcyl)**2) .LT. Rcyl) then

cc pins(i,j)=0

cc end if

 end do

 end do

c ********************************end of part ******************

c

c ********** part to improve divergence around the cylinder

c

ccc do i=1,nx

ccc do j=1,ny

ccc if (umask(i,j)+umask(i-1,j)+vmask(i,j)+vmask(i,j-1) .EQ. 1) then

ccc if (umask(i,j) .NE.1) then

196

ccc u(i,j)=u(i-1,j)-

ccc & ((xcoord(i)-xcoord(i-1))/(ycoord(j)-ycoord(j-1)))*

ccc & (v(i,j)-v(i,j-1))

ccc end if

c

ccc if (umask(i-1,j) .NE. 1) then

ccc u(i-1,j)=u(i,j)+

ccc & ((xcoord(i)-xcoord(i-1))/(ycoord(j)-ycoord(j-1)))*

ccc & (v(i,j)-v(i,j-1))

ccc end if

c

ccc if (vmask(i,j) .NE. 1) then

ccc v(i,j)=v(i,j-1)-

ccc & ((ycoord(j)-ycoord(j-1))/(xcoord(i)-xcoord(i-1)))*

ccc & (u(i,j)-u(i-1,j))

ccc end if

c

ccc if (vmask(i,j-1) .NE. 1) then

ccc v(i,j-1)=v(i,j)+

ccc & ((ycoord(j)-ycoord(j-1))/(xcoord(i)-xcoord(i-1)))*

ccc & (u(i,j)-u(i-1,j))

ccc end if

c

ccc end if

ccc end do

ccc end do

c STOP

c

cc do i=0,nx

cc u(i,ny+1)=2*uup(i)-u(i,ny)

cc end do

c

c

c

cc do i=2,nx-1

cc do j=1,ny-1

cc if (amask(i,j) .NE. amask(i-1,j)) then

cc bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1))

cc end if

cc end do

cc end do

c

c

c ** Exit boundary conditions

c

 flux=0.D0

 do j=1,ny

 u(nx ,j)=u(nx ,j)-umask(nx-1,j)*dt*(u(nx,j)-u(nx-1,j))/

 & (xcoord(nx)-xcoord(nx-1))

 v(nx+1,j)=v(nx+1,j)-vmask(nx-1,j)*dt*(v(nx+1,j)-v(nx,j))/

 & (xcrd(nx+1)-xcrd(nx))

 flux=flux+umask(nx-1,j)*u(nx,j)*(ycoord(j)-ycoord(j-1))

 end do

c

 if (flux .LT. 1D-6) then

 flux=0.D0

 do j=1,ny

 u(nx,j)=umask(nx-1,j)

 flux=flux+umask(nx-1,j)*u(nx,j)*(ycoord(j)-ycoord(j-1))

 end do

 end if

c

c ** Updata outflow for global mass conservation

c

cJW WARNING CHANGE THIS BACK LATER

 bflux=0.D0

197

c******************** this part took out to check the convergence problem

c

 do nbnd=1,nbndu

 i=iinterpu(nbnd)

 j=jinterpu(nbnd)

 if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then

 if (pmask(i+1,j) .EQ. 1.D0) then

 bflux=bflux+u(i,j)*(ycoord(j)-ycoord(j-1))

 else if (pmask(i,j) .EQ. 1.D0) then

 bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1))

 end if

 end if

 end do

c

 do nbnd=1,nbndv

 i=iinterpv(nbnd)

 j=jinterpv(nbnd)

 if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then

 if (pmask(i,j+1) .EQ. 1.D0) then

 bflux=bflux+v(i,j)*(xcoord(i)-xcoord(i-1))

 else if (pmask(i,j) .EQ. 1.D0) then

 bflux=bflux-v(i,j)*(xcoord(i)-xcoord(i-1))

 end if

 end if

 end do

c

c ************** this part has been added to improve the divergence problem

ccc do i=2, nx-1

ccc do j=2, ny-1

ccc if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then

ccc if (pmask(i+1,j) .EQ. 1.D0) then

ccc bflux=bflux+u(i,j)*(ycoord(j)-ycoord(j-1))

ccc else if (pmask(i,j) .EQ. 1.D0) then

ccc bflux=bflux-u(i,j)*(ycoord(j)-ycoord(j-1))

ccc end if

ccc end if

ccc if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then

ccc if (pmask(i,j+1) .EQ. 1.D0) then

ccc bflux=bflux+v(i,j)*(xcoord(i)-xcoord(i-1))

ccc else if (pmask(i,j) .EQ. 1.D0) then

ccc bflux=bflux-v(i,j)*(xcoord(i)-xcoord(i-1))

ccc end if

ccc end if

ccc end do

ccc end do

c write(*,*) 'outflux,bflux = ',flux,bflux

c

 fact=(influx+bflux)/flux

c write(*,*) 'influx, BFLUX, fact = ',influx,bflux,influx-bflux,fact

 do j=1,ny

 u(nx,j)=fact*umask(nx-1,j)*u(nx,j)

 end do

c call fillf()

c STOP

c

c write(*,*)' ************** at the end of bounds*****************'

 return

 end

cc

cc

 subroutine init()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

198

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 double precision vi,vip,uip,uip2,xtg,ytg,dnorm,ubound,vbound,

 & vtan,flux,fact,dx

 double precision cdx(100),udx(100),vdx(100)

 integer nil,one

 logical EX

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

c

 common /epsili/epstemp

 double precision epstemp

c

 common /homeadd/ home

 character*40 home

c

 epstemp=5.0D-7

c

 write(*,*)' ********beginning of init*********'

 Re = 100.D0

199

 RRe = 1D0/Re

 dt = 0.001D0 ! it was 0.001D0

 time= 0.D0

 vsolid =0.D0

 ysolid =0.D0

 usolid =0.D0

 xsolid =0.D0

c

c ** Set the initial velocities and pressure

c

 u=1.D0

 urk=1.D0

 do i=1,nx-1

 u(i,0)=1.D0

 u(i,ny+1)=1.D0

 end do

 do j=0,ny ! it was ny+1

 do i=1,nx-1 ! it was nx

 u(i,j)=1.D0*umask(i,j)

 urk(i,j)=1.D0 !*umask(i,j)

 end do

 end do

c

 do j=0,ny ! it was ny

 do i=0,nx+1 ! it was nx+1

 v(i,j)=0.D0

 vrk(i,j)=0.D0

 end do

 end do

c

c do j=10,ny-10

c do i=10,nx-10

c u(i,j)=1.D0 *umask(i,j)

c urk(i,j)=1.D0*umask(i,j)

c v(i,j)=1.D0*vmask(i,j)

c vrk(i,j)=1.D0*vmask(i,j)

c end do

c end do

c

 do j=1,10

 br(j) = 0.0D0

 do i=1,10

 ar(i,j) = 0.0D0

 end do

 end do

C

 nrk = 3

 ar(2,1) = 2.0D0/3.0D0

 ar(3,2) = 2.0D0/3.0D0

 br(1) = 0.250D0

 br(2) = 0.375D0

 br(3) = 0.375D0

C

 do l=1,4

 do j=1,ny

 do i=0,nx

 a(i,j,l)=0.D0

 end do

 end do

 end do

c

 do l=1,4

 do j=0,ny

 do i=1,nx

 b(i,j,l)=0.D0

 end do

 end do

 end do

200

c

 do j=0,ny+1

 do i=0,nx+1

 p(i,j)=0.D0

 end do

 end do

c ** Determine influx

c

 influx=0.D0 ! this part need

further study

 do j=1,ny

 influx=influx+u(0,j)*(ycoord(j)-ycoord(j-1))

 end do

c

 write(*,*) 'influx = ',influx

c

 call getfld(ex)

 if (ex) then

 write(*,*) 'data has been read from file'

 write(*,*) 'time = ',time

 end if

c

c write(*,*)'**************end of init*********'

 return

 end

cc

cc

 subroutine convec

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

201

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 common /homeadd/ home

 character*40 home

cc

 integer i,j,k

c

c write(*,*)' *********** at the beginning of convec ************'

 call bounds()

c

c ** Save velocity at old time

c

 do j=0,ny+1

 do i=0,nx

 urk(i,j) = u(i,j)

 end do

 end do

c

 do j=0,ny

 do i=0,nx+1

 vrk(i,j) = v(i,j)

 end do

 end do

c

c ** Start doing RK substeps

c

 do k1 = 1, nrk

C

 do j=1,ny

 do i=1,nx-1

 u(i,j) = urk(i,j)

 if (k1 .GT. 1) then

 do j1=1,k1-1

 u(i,j)=u(i,j)+dt*umask(i,j)*ar(k1,j1)*a(i,j,j1)

 end do

 end if

 end do

 end do

c

 do j=1,ny-1

 do i=1,nx

 v(i,j) = vrk(i,j)

 if (k1 .GT. 1) then

 do j1=1,k1-1

 v(i,j)=v(i,j)+dt*vmask(i,j)*ar(k1,j1)*b(i,j,j1)

ccc v(i,j)=v(i,j)+dt*ar(k1,j1)*b(i,j,j1)

 end do

 end if

 end do

 end do

c

 call bounds

c

 do j=1,ny

 do i=1,nx-1

c

 a(i,j,k1)=-0.25D0*umask(i,j)*(

 & ((u(i,j)+u(i+1,j))*(u(i,j)+u(i+1,j))-

202

 & (u(i,j)+u(i-1,j))*(u(i,j)+u(i-1,j)))/(xcrd(i+1)-xcrd(i))+

 & ((u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j))-

 & (u(i,j)+u(i,j-1))*(v(i,j-1)+v(i+1,j-1)))/

 & (ycoord(j)-ycoord(j-1)))+ umask(i,j)*

 & RRe*((u(i+1,j)-2*u(i,j)+u(i-1,j))/((xcrd(i+1)-xcrd(i))**2)+

 & (u(i,j+1)-2*u(i,j)+u(i,j-1))/((ycoord(j)-ycoord(j-1))**2))-

 & axsolid

c

 end do

 end do

c

 do i=1,nx

 do j=1,ny-1

c

 b(i,j,k1)=-0.25D0*vmask(i,j)*(

ccc b(i,j,k1)=-0.25D0*(

 & ((v(i,j)+v(i,j+1))*(v(i,j)+v(i,j+1))-

 & (v(i,j)+v(i,j-1))*(v(i,j)+v(i,j-1)))/(ycrd(j+1)-ycrd(j))+

 & ((v(i,j)+v(i+1,j))*(u(i,j)+u(i,j+1))-

 & (v(i,j)+v(i-1,j))*(u(i-1,j)+u(i-1,j+1)))/

 & (xcoord(i)-xcoord(i-1)))+ vmask(i,j)*

ccc & (xcoord(i)-xcoord(i-1)))+

 & RRe*((v(i,j+1)-2*v(i,j)+v(i,j-1))/((ycrd(j+1)-ycrd(j))**2)+

 & (v(i+1,j)-2*v(i,j)+v(i-1,j))/((xcoord(i)-xcoord(i-1))**2))-

 & aysolid

c

 end do

 end do

c

 end do

C

 do j=1,ny

 do i=1,nx

 u(i,j) = urk(i,j)

 v(i,j) = vrk(i,j)

 do j1=1,nrk

 u(i,j)=u(i,j)+dt*umask(i,j)*br(j1)*a(i,j,j1)

 v(i,j)=v(i,j)+dt*vmask(i,j)*br(j1)*b(i,j,j1)

ccc v(i,j)=v(i,j)+dt*br(j1)*b(i,j,j1)

 end do

 end do

 end do

c

 call bounds()

c

c write(*,*)'******************** at the end of convec *********'

 return

 end

cc

cc

 subroutine calcuv

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

203

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

 common /epsili/epstemp

 double precision epstemp,eps

c

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c

c

 eps = epstemp

c

c

 call solve(eps,iterat)

c

 do j=1,ny

 do i=1,nx-1

 u(i,j) = u(i,j) - dt*umask(i,j)*

 & (p(i+1,j)-p(i,j))/(xcrd(i+1)-xcrd(i))

 end do

 end do

c

 do j=1,ny-1

 do i=1,nx

c v(i,j) = v(i,j) - dt*pmask(i,j)*pmask(i,j+1)*

 v(i,j) = v(i,j) - dt*vmask(i,j)*

 & (p(i,j+1)-p(i,j))/(ycrd(j+1)-ycrd(j))

 end do

 end do

c

 return

 end

cc

cc

 subroutine mean()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

204

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

 & uu(nnx,nny), vv(nnx,nny), uv(nnx,nny)

 double precision um,vm,pm,uu,vv,uv

c

 common /parmen/ nmean

 integer nmean

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 double precision fac

c

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c

 if (nmean .EQ. 0) then

 do j=1,ny

 do i=1,nx

 um(i,j)=0.0D0

 vm(i,j)=0.0D0

 pm(i,j)=0.0D0

 uu(i,j)=0.0D0

 vv(i,j)=0.0D0

 uv(i,j)=0.0D0

 end do

 end do

 end if

c

 nmean=nmean+1

 fac=1.D0/nmean

 do j=1,ny

 do i=1,nx

 um(i,j)=(1.D0-fac)*um(i,j)+0.50D0*fac*(u(i-1,j)+u(i,j))

 vm(i,j)=(1.D0-fac)*vm(i,j)+0.50D0*fac*(v(i,j-1)+v(i,j))

 pm(i,j)=(1.D0-fac)*pm(i,j)+ fac* p(i,j)

 uu(i,j)=(1.D0-fac)*uu(i,j)+0.25D0*fac*(u(i-1,j)+u(i,j))**2

 vv(i,j)=(1.D0-fac)*vv(i,j)+0.25D0*fac*(v(i,j-1)+v(i,j))**2

 uv(i,j)=(1.D0-fac)*uv(i,j)+0.25D0*fac*(u(i-1,j)+u(i,j))*

 & (v(i,j-1)+v(i,j))

 end do

 end do

c

 return

 end

cc

cc

 subroutine inisol()

c

 parameter (nnx=600,nny=850,nnxy=nnx*nny,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,ny2,nn,nx3,nn1

 double precision Re, RRe,dt,time,dts

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

205

 double precision xcoord, ycoord

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common /indi / li(nnx),maxit

 integer li

c

 common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy),

 & fp(nnxy),alfa

 double precision ae,aw,an,as,ap,fp,alfa

c

 common /ludeco/ un(-nny:nnxy),ue(-nny:nnxy),lw(nnxy),

 & ls(nnxy),lpr(nnxy)

 double precision un,ue,lw,ls,lpr

c

 double precision p1,p2

c

 common /epsili/epstemp

 double precision epstemp

c

 common /homeadd/ home

 character*40 home

c

c write(*,*)' ************** at the beginning of inisol**********'

 maxit = 5000

 alfa = 0.92D0

 do i=-nny,nnxy

 ue(i)=0.D0

 un(i)=0.D0

 end do

c

 nxy=nx*ny

c do i=1,nx

c li(i)=(i-1)*ny

c END DO

C

 do i=1,nx

 do j=1,ny

c ij=li(i)+j

 ij=(i-1)*ny+J

 ae(ij)=(ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i))

 an(ij)=(xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j))

 aw(ij)=(ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1))

 as(ij)=(xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1))

 end do

 end do

c ! solid boundary

 do i=1,nx-1

 do j=1,ny-1

206

 ij=(i-1)*ny+j

 If (pmask(i,j) .NE. 0) then

 if (pmask(i+1,j).EQ.0) then

 ae(ij)=0.D0

 end if

 if (pmask(i-1,j).EQ.0) then

 aw(ij)=0.D0

 end if

 if (pmask(i,j+1).EQ.0) then

 an(ij)=0.D0

 end if

 if (pmask(i,j-1).EQ.0) then

 as(ij)=0.D0

 end if

 end if

 end do

 end do

c ! west and east boundary

 do j=1,ny

 i=1

 aw((i-1)*ny+j)=0.D0

 i=nx

 ae((i-1)*ny+j)=0.D0

 end do

c

 do i=1,nx ! north and south bonudary

 ij=(i-1)*ny+1

 as(ij)=0.D0

 ij=(i-1)*ny+ny

 an(ij)=0.D0

 end do

c

c do i=1,nx

c as(li(i)+jyv(i))=0.D0 ! this is for the immersed boundary

c as(li(i)+ 1)=0.D0

c an(li(i)+ ny)=0.D0

c do j=1,ny

c ij=li(i)+j

c if (amask(i,j).EQ.0.D0) then

c ae(ij)=0.D0

c end if

c if (i .GT. 1) then

c if (amask(i-1,j).EQ.0.D0) aw(ij)=0.D0

c end if

c if (j .GT. 1) then

c if (pmask(i,j-1).EQ.0.D0) as(ij)=0.D0

c end if

c end do

c end do

c

c do j=1,ny

c aw(li(1)+j)=0.D0

c ae(li(nx)+j)=0.D0

c end do

c

 do i=1,nx

 do j=1,ny

 ij=(i-1)*ny +j

 ap(ij)=-(ae(ij)+aw(ij)+an(ij)+as(ij))

 end do

 end do

C

C.....CALCULATE ELEMENTS OF [L] AND [U] MATRICES

c

 do i=1,nx

 do ij=(i-1)*ny+1,(i-1)*ny+ny

 lw(ij)=aw(ij)/(1.D0+alfa*un(ij-ny))

207

 ls(ij)=as(ij)/(1.D0+alfa*ue(ij- 1))

 p1=alfa*lw(ij)*un(ij-ny)

 p2=alfa*ls(ij)*ue(ij- 1)

 lpr(ij)=1.D0/(ap(ij)+p1+p2-lw(ij)*ue(ij-ny)-ls(ij)*un(ij-1))

 un(ij)=(an(ij)-p1)*lpr(ij)

 ue(ij)=(ae(ij)-p2)*lpr(ij)

 end do

 end do

c

c

c

c write(*,*)'**************** at the end of inisol*************'

 return

 end

cc

 subroutine fillf()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,nnxy=nnx*nny,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /coefs/ ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy),

 & fp(nnxy),alfa

 double precision ae,aw,an,as,ap,fp,alfa

c

 common /pcorterm/ pctw(nnx,nny),pcte(nnx,nny),!pressure correction

 & pctn(nnx,nny),pcts(nnx,nny),

 & pctIBn(nnx,nny),pctIBs(nnx,nny),

 & pctIBe(nnx,nny),pctIBw(nnx,nny)

 double precision pctw,pcte,pctn,pcts,pctIBn,pctIBs,pctIBe,pctIBw

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

208

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 common /indi / li(nnx),maxit

 integer li, maxit

c

 double precision sumf,flux,pctIBsc,pctIBsd,pctIBnc,pctIBnd

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c

c ** f is basically the divergence of (u,v) as calculated in convec

c

c write(*,*) 'dt = ',dt

c ************* calculating correction term neumann boundary****

c ************ poisson pressure equation **********

c

 pctw=0.D0

 pcte=0.D0

 pctn=0.D0

 pcts=0.D0

 pctIBn=0.D0

 pctIBs=0.D0

 pctIBe=0.D0

 pctIBw=0.D0

 pctIBnc=0.D0

 pctIBnd=0.0D0

 pctIBsc=0.D0

 pctIBsd=0.D0

 pctIBec=0.D0

 pctIBed=0.0D0

 pctIBwc=0.D0

 pctIBwd=0.D0

c

c *********west and east boundary

c do j=1, ny

c i=1

c pctw(1,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)))*!aw(ij)

c & ((u(1,j)**2-u(0,j)**2)/(xcrd(1)-xcrd(0))-

c & RRe*(u(2,j)-2*u(1,j)+u(0,j))/(xcrd(i+1)-xcrd(i))**2)*

c & (xcrd(1)-xcrd(0))

c i=nx

c pcte(nx,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i)))*!ae(ij)

c & (-1*(u(nx,j)**2-u(nx-1,j)**2)/(xcrd(i)-xcrd(i-1))+

c & RRe*((u(nx-2,j)-2*u(nx-1,j)+u(nx,j))/(xcrd(i)-xcrd(i-1))**2+

c & (u(nx,j-1)-2*u(nx,j)+u(nx,j+1))/(ycrd(j+1)-ycrd(j))**2))*

c & (xcrd(nx+1)-xcrd(nx))

c

c end do

c *********north and south boundary

 do i=1,nx

 j=ny

 pctn(i,ny)=((xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j)))* !an(ij)

 & (((v(i,ny)**2-v(i,ny-1)**2)/(ycoord(j)-ycoord(j-1)))+

 & ((u(i,ny)*v(i,ny)-

209

 & u(i-1,ny)*v(i,ny))/

 & (xcoord(i)-xcoord(i-1)))+

 & (v(i,j+1)-vrk(i,j+1))/dt)*! this might not be ture

 & (ycrd(j+1)-ycrd(j))!*0.D0

 j=1

 pcts(i,j)=((xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1)))* !as((ij)

 & ((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1))+

 & (u(i,0)*v(i,0)-

 & u(i-1,0)*v(i,0))/

 & (xcoord(i)-xcoord(i-1))+

 & (v(i,j-1)-vrk(i,j-1))/dt)*! this might not be true

 & (ycrd(j)-ycrd(j-1))!*0.D0

 end do

c write(*,*)'i=202,pcts,pctn,pt,pb',pcts(202,1),pctn(202,ny),

c & p(202,286),p(202,198)

 call bounds

c

 do nbnd=1,nbndv

 i=iinterpv(nbnd)

 j=jinterpv(nbnd)

 if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then

 if (pmask(i,j+1) .EQ. 1.D0) then !top half

 if ((pmask(i+1,j)+pmask(i+2,j)) .EQ. 0) then!left half

 pctIBsc=((v(i,j+1)**2-v(i,j)**2)/(ycoord(j+1)-ycoord(j))+

 & (u(i,j+1)*0.5*(v(i,j)+v(i,j+1))-

 & u(i-1,j+1)*0.5*(v(i,j)+v(i,j+1)))/

 & (xcoord(i)-xcoord(i-1)))!*0.D0

 pctIBsd=RRe*(-1*(v(i,j)-2*v(i-1,j)+v(i-2,j))/

 & (xcrd(i)-xcrd(i-1))**2+

 & ((u(i,j+2)-u(i-1,j+2))/(xcoord(i)-xcoord(i-1))-

 & (u(i,j+1)-u(i-1,j+1))/(xcoord(i)-xcoord(i-1)))/

 & (ycrd(j+2)-ycrd(j+1)))!*0.D0

 Fycon=fycon+v(i,j)*v(i,j)

c

 else! right half

 pctIBsc=((v(i,j+1)**2-v(i,j)**2)/(ycoord(j+1)-ycoord(j))+

 & (u(i,j+1)*0.5*(v(i,j)+v(i,j+1))-

 & u(i-1,j+1)*0.5*(v(i,j)+v(i,j+1)))/

 & (xcoord(i)-xcoord(i-1)))!*0.D0

 pctIBsd= RRe*(-1*(v(i,j)-2*v(i+1,j)+v(i+2,j))/

 & (xcrd(i+1)-xcrd(i))**2+

 & ((u(i,j+2)-u(i-1,j+2))/(xcoord(i)-xcoord(i-1))-

 & (u(i,j+1)-u(i-1,j+1))/(xcoord(i)-xcoord(i-1)))/

 & (ycrd(j+2)-ycrd(j+1)))!*0.D0

 end if

 pctIBs(i,j+1)=((xcoord(i)-xcoord(i-1))/(ycrd(j)-ycrd(j-1)))*

 & (pctIBsc+pctIBsd+(v(i,j)-vrk(i,j))/dt+aysolid)*

 & (ycrd(j+1)-ycrd(j))

c write(*,*)'i,j,pctIBs',i,j,pctIBsc,pctIbsd,pctIBs(i,j+1),v(i,j),

c &vrk(i,j)

c

 else if (pmask(i,j) .EQ. 1.D0) then!bottom

 if ((pmask(i+1,j)+pmask(i+2,j)) .EQ. 0) then!left half

 pctIBnc=(((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1)))+

 & (u(i,j)*0.5*(v(i,j)+v(i,j-1))-

 & u(i-1,j)*0.5*(v(i,j)+v(i,j-1)))/

 & (xcoord(i)-xcoord(i-1)))!*0D0

c

 pctIBnd=RRe*(-1*(v(i,j)-2*v(i-1,j)+v(i-2,j))/

 & (xcrd(i)-xcrd(i-1))**2+

 & ((u(i,j)-u(i,j-1))/(ycrd(j)-ycrd(j-1))-

 & (u(i-1,j)-u(i-1,j-1))/(ycrd(j)-ycrd(j-1)))/

 & (xcoord(i)-xcoord(i-1)))!*0.D0

c

 else !right half

 pctIBnc=((v(i,j)**2-v(i,j-1)**2)/(ycoord(j)-ycoord(j-1))+

210

 & (u(i,j)*0.5*(v(i,j)+v(i,j-1))-

 & u(i-1,j)*0.5*(v(i,j)+v(i,j-1)))/

 & (xcoord(i)-xcoord(i-1)))!*0.D0

 pctIBnd= RRe*(-1*(v(i,j)-2*v(i+1,j)+v(i+2,j))/

 & (xcrd(i+1)-xcrd(i))**2+

 & ((u(i,j)-u(i,j-1))/(ycrd(j)-ycrd(j-1))-

 & (u(i-1,j)-u(i-1,j-1))/(ycrd(j)-ycrd(j-1)))/

 & (xcoord(i)-xcoord(i-1)))!*0.D0

c

 end if

 pctIBn(i,j)=((xcoord(i)-xcoord(i-1))/(ycrd(j+1)-ycrd(j)))*

 & (pctIBnc+pctIBnd+(v(i,j)-vrk(i,j))/dt+aysolid)*

 & (ycrd(j-1)-ycrd(j-2))

c write(*,*)'i,j,pctIBn',i,j,pctIBnc,pctIBnd,pctIBn(i,j),v(i,j)

c &,vrk(i,j)

 end if

 end if

 end do

c

 do nbnd=1,nbndu

 i=iinterpu(nbnd)

 j=jinterpu(nbnd)

 if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then

 if (pmask(i+1,j) .EQ. 0.D0) then !left half

 if ((pmask(i+1,j-1)+pmask(i+1,j-2)) .EQ. 0) then!top half

 pctIBec=((u(i,j)**2-u(i-1,j)**2)/(xcoord(i)-xcoord(i-1))+

 & (0.5*(u(i-1,j)+u(i,j))*(v(i,j)-v(i,j-1)))/

 & (ycoord(j)-ycoord(j-1)))!*0.D0

 pctIBed=RRe*(-1*(u(i,j)-2*u(i,j+1)+u(i,j+2))/

 & (ycrd(j+1)-ycrd(j))**2+

 & ((v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))-

 & (v(i-1,j)-v(i-1,j-1))/(ycoord(j)-ycoord(j-1)))/

 & (xcrd(i)-xcrd(i-1)))!*0.D0

c

 else! bottom half

 pctIBec=((u(i,j)**2-u(i-1,j)**2)/(xcoord(i)-xcoord(i-1))+

 & (0.5*(u(i-1,j)+u(i,j))*(v(i,j)-v(i,j-1)))/

 & (ycoord(j)-ycoord(j-1)))!*0.D0

 pctIBed=RRe*(-1*(u(i,j)-2*u(i,j-1)+u(i,j-2))/

 & (ycrd(j)-ycrd(j-1))**2+

 & ((v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1))-

 & (v(i-1,j)-v(i-1,j-1))/(ycoord(j)-ycoord(j-1)))/

 & (xcrd(i)-xcrd(i-1)))!*0.D0

 end if

 pctIBe(i,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i+1)-xcrd(i)))*

 & (pctIBec+pctIBed+(u(i,j)-urk(i,j))/dt)*

 & (xcrd(i+1)-xcrd(i))

c write(*,*)'i,j,pctIBe',i,j,pctIBec,pctIbed,pctIBe(i,j),u(i,j)

c &urk(i,j)

c

 else if (pmask(i+1,j) .EQ. 1.D0) then!Right half

 if ((pmask(i,j-1)+pmask(i,j-2)) .EQ. 0) then!top half

 pctIBwc=((u(i+1,j)**2-u(i,j)**2)/(xcoord(i+1)-xcoord(i))+

 & (0.5*(u(i+1,j)+u(i,j))*(v(i+1,j)-v(i+1,j-1)))/

 & (ycoord(j)-ycoord(j-1)))!*0.D0

 pctIBwd=RRe*(-1*(u(i,j)-2*u(i,j+1)+u(i,j+2))/

 & (ycrd(j+1)-ycrd(j))**2+

 & ((v(i+1,j)-v(i+1,j-1))/(ycoord(j)-ycoord(j-1))-

 & (v(i+2,j)-v(i+2,j-1))/(ycoord(j)-ycoord(j-1)))/

 & (xcrd(i+2)-xcrd(i+1)))!*0.D0

 else !bottom half

 pctIBwc=((u(i+1,j)**2-u(i,j)**2)/(xcoord(i+1)-xcoord(i))+

 & (0.5*(u(i+1,j)+u(i,j))*(v(i+1,j)-v(i+1,j-1)))/

 & (ycoord(j)-ycoord(j-1)))!*0.D0

211

 pctIBwd=RRe*(-1*(u(i,j)-2*u(i,j-1)+u(i,j-2))/

 & (ycrd(j)-ycrd(j-1))**2+

 & ((v(i+1,j)-v(i+1,j-1))/(ycoord(j)-ycoord(j-1))-

 & (v(i+2,j)-v(i+2,j-1))/(ycoord(j)-ycoord(j-1)))/

 & (xcrd(i+2)-xcrd(i+1)))!*0.D0

c

 end if

 pctIBw(i+1,j)=((ycoord(j)-ycoord(j-1))/(xcrd(i)-xcrd(i-1)))*

 & (pctIBwc+pctIBwd+(u(i,j)-urk(i,j))/dt)*

 & (xcrd(i+1)-xcrd(i))

c write(*,*)'i,j,pctIBw',i,j,pctIBwc,pctIBwd,pctIBw(i+1,j),u(i,j)

c &,urk(i,j)

 end if

 end if

 end do

c

 sumf = 0D0

 do i=1,nx

 do j=1,ny

 ij=(i-1)*ny+j

 fp(ij)=pmask(i,j)*

 & (((u(i,j)-u(i-1,j))*(ycoord(j)-ycoord(j-1))+

 & (v(i,j)-v(i,j-1))*(xcoord(i)-xcoord(i-1)))/dt)-

 & pctw(i,j)-pcte(i,j)+pctn(i,j)-pcts(i,j)+

 & pctIBn(i,j)-pctIBs(i,j)-pctIBe(i,j)+pctIBw(i,j)

 sumf=sumf+fp(ij)

 end do

 end do

c

 write(*,*) 'GLOBAL: ',sumf

c

 close(12)

c STOP 'in fillf'

c

 return

 end

cc

 double precision function maxdiv()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

212

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 double precision div(nnx,nny),divmx,divmn

c

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c

c ** f is basically the divergence of (u,v) as calculated in convec

c

 divmx = 0.D0

 divmn = 100000.D0

 imx=0

 jmx=0

 do i=1,nx

 do j=1,ny

 div(i,j)=pmask(i,j)*

 & ((u(i,j)-u(i-1,j))/(xcoord(i)-xcoord(i-1))+

 & (v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1)))

c div(i,j)=pmask(i,j)*

c & ((u(i,j)-u(i-1,j))/(xcoord(i)-xcoord(i-1))+

c & (v(i,j)-v(i,j-1))/(ycoord(j)-ycoord(j-1)))

 if (ABS(div(i,j)) .GT. divmx) then

 imx=i

 jmx=j

 divmx=ABS(div(i,j))

 end if

 if ((pmask(i,j)).GT.0.5D0) then

 divmn=MIN(divmn,ABS(div(i,j)))

 end if

 end do

 end do

c

 write(*,*) 'Minimum divergence = ', divmn

 write(*,'(A,2I4,4E12.4)') 'Max. divergence reached at (x,y)= ',

 & imx,jmx, !xcrd(imx),ycrd(jmx),

 & u(imx,jmx),u(imx-1,jmx),v(imx,jmx),v(imx,jmx-1)

 maxdiv=divmx

 return

 end

cc

cc

 subroutine solve(eps,iterat)

c

 double precision eps

 integer iterat

c

 parameter (nnx=600,nny=850,nnxy=nnx*nny,nnyy=nnx*nny+nny)

213

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /prestemp/ptemp(0:nnx+1,0:nny+1)

 double precision ptemp

c

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common /indi / li(nnx),maxit

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

 integer li

c

 common /coefs / ae(nnxy),aw(nnxy),an(nnxy),as(nnxy),ap(nnxy),

 & fp(nnxy),alfa

 double precision ae,aw,an,as,ap,fp,alfa

c

 common /ludeco/ un(-nny:nnxy),ue(-nny:nnxy),lw(nnxy),

 & ls(nnxy),lpr(nnxy)

 double precision un,ue,lw,ls,lpr

c

 double precision res(-nny:nnyy),res0,resn,rsm

c

 common /homeadd/ home

 character*40 home

 double precision temp1,temp2

c

 temp1=0.D0

 temp2=0.D0

 res = 0.D0

c

C.....CALCULATE RESIDUAL AND AUXILLIARY VECTORS; INNER ITERATION LOOP

C

 do n=1,maxit

c

 resn=0.D0

 do i=1,nx

 do j=1,ny

 ij=(i-1)*ny+j

 res(ij)=pmask(i,j)*(fp(ij)-ap(ij)*p(i,j)-an(ij)*p(i,j+1)-

 & as(ij)*p(i,j-1)-ae(ij)*p(i+1,j)-aw(ij)*p(i-1,j))

 resn=MAX(res(ij),resn)

 res(ij)=(res(ij)-ls(ij)*res(ij-1)-lw(ij)*res(ij-ny))*lpr(ij)

 end do

 end do

c

c

c open(unit=12,file='gridp.dat')

c

c write(12,*) 'variables="x","y","u","v","p",

c & "ap","an","as","aw","ae"'

c write(12,*)

c & 'ZONE T="scalar field",I = ',nx,' J = ',ny,' F=BLOCK'

c write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny)

214

c write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((ap((i-1)*ny+j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((an((i-1)*ny+j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((as((i-1)*ny+j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((aw((i-1)*ny+j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((ae((i-1)*ny+j),i=1,nx),j=1,ny)

c write(12,'(5E16.8)') ((res((i-1)*ny+j),i=1,nx),j=1,ny)

c close(12)

 if (n .EQ. 1) res0=resn

c

c.....CALCULATE INCREMENT AND CORRECT VARIABLE

c

 do i=nx,1,-1

 do j=ny,1,-1

 ij=(i-1)*ny+j

 res(ij)=res(ij)-un(ij)*res(ij+1)-ue(ij)*res(ij+ny)

 p(i,j)=p(i,j)+pmask(i,j)*res(ij)

 end do

 end do

c

c.....CONVERGENCE CHECK

c

 rsm=resn/(res0+1.D-20)

 if (mod(n,20) .EQ. 0) then

 temp2=temp1

 temp1=resn

 write(*,*) n,' sweep, res = ',resn

 end if

c

 if ((resn .LT. eps) .OR.

 & ((abs(temp1-temp2) .LT. 1.0D-8) .AND.

 & (n .GT. 500) .AND.

 & ((resn .LT. 1.0D-5) .AND. (resn .GT. 1.0D-6))) .OR.

 & ((abs(temp1-temp2) .LT. 1.0D-9) .AND.

 & (n .GT. 300) .AND.

 & (resn .LT. 1.0D-6))) then

 GoTo 100

 end if

c

 end do

 100 continue

 pmean=0.D0

 nn=0

 do i=1,nx

 do j=1,ny

 if (pmask(i,j) .GT. 0.5) then

 nn=nn+1

 pmean=pmean+p(i,j)

 end if

 end do

 end do

c

 pmean=pmean/(1.D0*nn)

 do i=1,nx

 do j=1,ny

 p(i,j)=pmask(i,j)*(p(i,j)-pmean)

 ptemp(i,j)=p(i,j)

 end do

 end do

c

 return

 end

cc

 subroutine force()

215

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 common /cylzise/ acyl, bcyl, Rcyl

 double precision acyl, bcyl, Rcyl

c

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy),

 & ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy),

 & nbndp

 integer ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp

c

 common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy),

 & wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy)

 double precision teta,unitvi,unitvj,wp1,wp2,delta1

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn,nx3,nn1

 double precision Re, RRe,dt,time,dts

c

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

 integer i,j,k

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision dliftf,dliftp,ddragf,ddragp,dpres,

 & dliftptemp,ddragptemp

216

 double precision dliftf2,dliftp2,ddragf2,ddragp2,beta,

 & liftf2,liftp2,dragf2,dragp2

c

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

c

 double precision utan,utan0,unorm,lift,drag,psurface

 double precision Fy1,Fy2,Fy3,Fy4,Fy5,Fx1,Fx2,Fx3,Fx4,Fx5,Fbflux

c

 common /homeadd/ home

 character*40 home

c

 write(*,*)'force subrotine'

 ddragf=0.D0

 dliftf=0.D0

 ddragp=0.D0

 dliftp=0.D0

c

 ddragf2=0.D0

 dliftf2=0.D0

 ddragp2=0.D0

 dliftp2=0.D0

 liftf2=0.D0

 dragf2=0.D0

 liftp2=0.D0

 dragp2=0.D0

c

 dpres=0.D0

 liftf=0.D0

 dragf=0.D0

 liftp=0.D0

 dragp=0.D0

 pres=0.D0

 Fy1=0.D0

 Fy2=0.D0

 Fy3=0.D0

 Fy4=0.D0

 Fy5=0.D0

 FLift=0.D0

 Fx1=0.D0

 Fx2=0.D0

 Fx3=0.D0

 Fx4=0.D0

 Fx5=0.D0

 Fdrag=0.D0

 Fa=0.D0

 Fbflux=0.D0

 FLold=FL

c

C*****************new method of calculation of force*************

 nx1=37

 nx12=197

 ny1=37

 ny12=197

 do i=nx1,nx12

 do j=ny1,ny12

 if ((sqrt((xcrd(i)-acyl)**2+(ycoord(j)-bcyl)**2) .GE. Rcyl) .AND.

 & (sqrt((xcrd(i+1)-acyl)**2+(ycoord(j)-bcyl)**2) .GE. Rcyl)) then

 if ((j .LT. ny12) .AND. (i .LT. nx12)) then

 Fy1=Fy1+0.5*(v(i,j)+v(i+1,j)-vrk(i,j)-vrk(i+1,j))*

 & (xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j))/dt

 Fa=Fa+aysolid*(xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j))

 end if

 if ((i .EQ. nx1) .AND. (j .LT. ny12)) then

 Fy2=Fy2+(-1*v(i,j)*0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1))+ !v(-u)

217

 & RRe*(((v(i+1,j)-v(i-1,j))/(xcrd(i+1)-xcrd(i-1)))+0.5*!t21

 &((u(i-1,j+1)+u(i,j+1)-u(i-1,j)-u(i,j))/(ycrd(j+1)-ycrd(j)))))*!t12

 & (ycrd(j+1)-ycrd(j)) !deltay

 end if

 if ((i .EQ. nx12) .AND. (j .LT. ny12)) then

 Fy3=Fy3+(v(i,j)*0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1))-

 & RRe*(((v(i+1,j)-v(i-1,j))/(xcrd(i+1)-xcrd(i-1)))+0.5*!-t21

 &((u(i-1,j+1)+u(i,j+1)-u(i-1,j)-u(i,j))/(ycrd(j+1)-ycrd(j)))))*!t12

 & (ycrd(j+1)-ycrd(j))

 end if

 if ((j .EQ. ny12) .AND. (i .LT. nx12)) then

 Fy4=Fy4+((0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))**2+ !vv

 & 0.5*(p(i,j)+P(i+1,j))-

c &(((-2/3)*RRe*(((u(i+1,j)-u(i-1,j))/(xcoord(i+1)-xcoord(i-1)))+0.5*

c &(v(i,j)+v(i+1,j)-v(i-1,j)-v(i-1,j+1))/(ycoord(j)-ycoord(j-1))))+

 & 2*RRe*0.5*(v(i,j)+v(i+1,j)-v(i,j-1)-v(i,j-1))/

 & (ycoord(j)-ycoord(j-1)))*

 & (xcrd(i+1)-xcrd(i))

 end if

 if ((j .EQ. ny1) .AND. (i .LT. nx12)) then

 Fy5=Fy5+(-1*(0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))**2- !-vv

 & 0.5*(p(i,j)+P(i+1,j))+

c &(((-2/3)*RRe*(((u(i+1,j)-u(i-1,j))/(xcoord(i+1)-xcoord(i-1)))+0.5*

c &(v(i,j)+v(i+1,j)-v(i-1,j)-v(i-1,j+1))/(ycoord(j)-ycoord(j-1))))+

 & 2*RRe*0.5*(v(i,j)+v(i+1,j)-v(i,j-1)-v(i+1,j-1))/

 & (ycoord(j)-ycoord(j-1)))*

 & (xcrd(i+1)-xcrd(i))

 end if

 end if

 end do

 end do

c

c do nbnd=1,nbndv

c i=iinterpv(nbnd)

c j=jinterpv(nbnd)

c if (pmask(i,j+1)+pmask(i,j) .EQ. 1) then

c if (pmask(i,j+1) .EQ. 1.D0) then!top of the cylinder

c Fbflux=Fbflux-v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1))

c write(*,*)'i,j,top,-vv,Fbflux',i,j,

c & -1*v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)),Fbflux

c else if (pmask(i,j) .EQ. 1.D0) then!bottom of the cylinder

c Fbflux=Fbflux+v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1))

c write(*,*)'i,j,bot,vv,Fbflux',i,j,

c & v(i,j)*v(i,j)*(xcoord(i)-xcoord(i-1)),Fbflux

c end if

c end if

c end do

cc

c do nbnd=1,nbndu

c i=iinterpu(nbnd)

c j=jinterpu(nbnd)

c if (pmask(i+1,j)+pmask(i,j) .EQ. 1) then

c if (pmask(i+1,j) .EQ. 1.D0) then !right

c Fbflux=Fbflux-u(i,j)*(0.5*(v(i+1,j)+v(i+1,j-1)))*

c & (ycoord(j)-ycoord(j-1))

c write(*,*)'i,j,right,uv,Fbflux',i,j,

c & u(i,j)*(-0.5*(v(i,j)+v(i,j))*(ycoord(j)-ycoord(j-1)),Fbflux

c else if (pmask(i,j) .EQ. 1.D0) then !left

c Fbflux=Fbflux-u(i,j)*(0.5*(v(i,j)+v(i,j-1)))*

c & (ycoord(j)-ycoord(j-1))

c write(*,*)'i,j,left,uv,Fbflux',i,j,

c & u(i,j)*(-0.5*(v(i,j)*v(i,j-1))*(ycoord(j)-ycoord(j-1)),Fbflux

c

c end if

c end if

c end do

cc

 FLift=Fy1+Fy2+Fy3+Fy4+Fy5+Fa!+Fbflux

218

 open(unit=12,file='FLlift.dat',

 & position='append')

 write(12,'(8F15.6)')time,FLlift,Fy1,Fy2,Fy3,Fy4,Fy5,Fa!,Fbflux

 close(12)

 do i=nx1,nx12

 do j=ny1,ny12

 if ((sqrt((xcoord(i)-acyl)**2+(ycrd(j)-bcyl)**2) .GE. Rcyl) .AND.

 & (sqrt((xcoord(i)-acyl)**2+(ycrd(j+1)-bcyl)**2) .GE. Rcyl)) then

 if ((j .LT. ny12) .AND. (i.LT. nx12)) then

 Fx1=Fx1+0.5*(u(i,j)+u(i,j+1)-urk(i,j)-urk(i,j+1))*

 & (xcrd(i+1)-xcrd(i))*(ycrd(j+1)-ycrd(j))/dt

 end if

 if ((i .EQ. nx1) .AND. (j .LT. ny12)) then

 Fx2=Fx2+(-1*(0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1)))**2- !u(-u)

 & 0.5*(p(i,j)+p(i,j+1))+

 & 2*RRe*0.5*(u(i,j+1)+u(i,j)-u(i-1,j)-u(i-1,j+1))/

 & (xcrd(i+1)-xcrd(i)))*!t12

 & (ycrd(j+1)-ycrd(j)) !deltay

 end if

 if ((i .EQ. nx12) .AND. (j .LT. ny12)) then

 Fx3=Fx3+((0.25*(u(i,j)+u(i-1,j)+u(i-1,j+1)+u(i,j+1)))**2+

 & 0.5*(p(i,j)+p(i,j+1))-

 & 2*RRe*0.5*((u(i,j+1)+u(i,j)-u(i-1,j)-u(i-1,j+1))/

 & (xcrd(i+1)-xcrd(i))))*!t12

 & (ycrd(j+1)-ycrd(j))

 end if

 if ((j .EQ. ny12) .AND. (i .LT. nx12)) then

 Fx4=Fx4+(u(i,j)*(0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))- !uv

 & (RRe*(0.5*(v(i+1,j)+v(i+1,j-1)-v(i,j)-v(i,j-1))/

 & (xcrd(i+1)-xcrd(i))+

 & (u(i,j+1)-u(i,j-1))/(ycrd(j+1)-ycrd(j-1)))))*

 & (xcrd(i+1)-xcrd(i))

 end if

 if ((j .EQ. ny1) .AND. (i .LT. nx12)) then

 Fx5=Fx5+((-1*u(i,j)*0.25*(v(i,j)+v(i+1,j)+v(i+1,j-1)+v(i,j-1)))+ !-uv

 & RRe*((0.5*(v(i+1,j)+v(i+1,j-1)-v(i,j)-v(i,j-1))/

 & (xcrd(i+1)-xcrd(i)))+

 & (u(i,j+1)-u(i,j-1))/(ycrd(j+1)-ycrd(j-1))))*

 & (xcrd(i+1)-xcrd(i))

 end if

 end if

 end do

 end do

 Fdrag=Fx1+Fx2+Fx3+Fx4+Fx5

 open(unit=12,file='Fdrag.dat',

 & position='append')

 write(12,'(9F15.6)')time,Fdrag, Fx1,Fx2,Fx3,Fx4,Fx5

 close(12)

 beta=ATAN(vsolid)

 write(*,*)'beta,vsolid',beta,vsolid

ccc open(unit=12,file='degree.dat',

ccc & position='append')

c rewind(12)

 do k=1,nbndp

c

 psurface=(1-wp2(k))*p(ip1p(k),jp1p(k))+

 & wp2(k)*(wp1(k)*p(ip2p(k),jp2p(k))+(1-wp1(k))*p(ip3p(k),jp3p(k)))

c

 utan=-((u(ip1p(k),jp1p(k))+u(ip1p(k)-1,jp1p(k)))/2)*sin(teta(k))

 & +((v(ip1p(k),jp1p(k))+v(ip1p(k),jp1p(k)-1))/2)*cos(teta(k))

c utan0=-usolid*sin(teta(k))+vsolid*cos(teta(k)) !added on 11/5/13

 utan0=0 ! as the reference frame is on the cylinder

c

 dliftf=2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k)))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 ddragf=2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k)))*0.5*

219

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 dliftp=2*psurface*(-1*sin(teta(k)))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 ddragp=2*psurface*(-1*cos(teta(k)))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 dpres=p(ip1p(k),jp1p(k))*0.5*(0.5*ABS(teta(k-1)-teta(k+1)))

c

 dliftf2=2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k)+beta))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 ddragf2=2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k)+beta))*

 & 0.5*(0.5*ABS(teta(k-1)-teta(k+1)))

 dliftp2=2*p(ip1p(k),jp1p(k))*(-1*sin(teta(k)+beta))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

 ddragp2=2*p(ip1p(k),jp1p(k))*(-1*cos(teta(k)+beta))*0.5*

 & (0.5*ABS(teta(k-1)-teta(k+1)))

c write(*,*)'dLp,dLp2,dLf,dLf2',dliftp,dliftp2,dliftf,dliftf2,beta

c

 liftf2=liftf2+dliftf2

 dragf2=dragf2+ddragf2

 liftp2=liftp2+dliftp2

 dragp2=dragp2+ddragp2

c

 liftf=liftf+dliftf

 dragf=dragf+ddragf

 liftp=liftp+dliftp

 dragp=dragp+ddragp

 pres=pres-dpres

c write(*,*)'nbndp',nbndp

ccc write(12,'(8F15.6)')teta(k),p(ip1p(k),jp1p(k)),dpres,

ccc & 2*RRe*((utan-utan0)/delta1(k))*(cos(teta(k))),

ccc & 2*RRe*((utan-utan0)/delta1(k))*(-1*sin(teta(k))),

ccc & 2*RRe*((utan-utan0)/delta1(k)),

ccc & 2*p(ip1p(k),jp1p(k))*(-1*sin(teta(k))),

ccc & 2*p(ip1p(k),jp1p(k))*(-1*cos(teta(k)))

 end do

ccc close(12)

 FL2=0.5*(liftf2+liftp2)

 FD2=0.5*(dragf2+dragp2)

 FL=0.5*(liftf+liftp)

 FD=0.5*(dragf+dragp)

 write(*,*)'FL,FL2,lf,lf2,lp,lp2',FL,FL2,liftf,liftf2,liftp,liftp2

c STOP

 return

 end

c

cc

 subroutine forcvib()

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

220

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

 double precision, Dimension(0:nnx,0:nny):: umaskt,vmaskt

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolidtemp, xsolidtemp, usolidtemp, ysolidtemp

 & sstiff,smass,sdamping, fst,Fco,omega

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

 integer i,j,k

c

 common /epsili/epstemp

 double precision epstemp

c

 common /homeadd/ home

 character*40 home

c *****

cc

 fst= 0.167 ! strouhal number

 Fco=1.05D0

 omega= 2*(4*Atan(1.D0))*Fco* fst

 ysolid= 0.2 * sin(omega*time)

 vsolid= 0.2 * omega * cos(omega*time)

 aysolid=-0.2 * omega * omega * sin(omega*time)

c vmaskt=vmask

c umaskt=umask

c call interpolate()

c call inisol()

c vmaskt=vmask-vmaskt

c umaskt=umask-umaskt

c if ((sum(umaskt) .EQ. 0) .AND.

c & (sum(vmaskt) .EQ. 0))

c & goto 18

c call inisol()

c epstemp=5.0D-7

c do i=1,10

c u=urk

c v=vrk

c call convec()

c call fillf()

c call calcuv()

c end do

c write(*,*)'sum(vmask-vmaskt)', sum (vmaskt)

c STOP

c18 continue

 epstemp =5.0D-7

cc open(unit=12,file='vysolid.dat',

cc & position='append')

cc write(12,'(3E16.8)') time, vsolid, ysolid

cc close(12)

 return

 end

 subroutine structuremain

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=550,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

221

c

c integer, intent(inout)::ksub

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /velotemp/ utemp(0:nnx,0:nny+1),vtemp(0:nnx+1,0:nny)

 double precision utemp,vtemp

c

 common /prestemp/ptemp(0:nnx+1,0:nny+1)

 double precision ptemp

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts

 integer nx,ny

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision xsolidn, usolidn,

 & sstiff,smass,sdamping

 double precision vsolidtemp0, ysolidtemp0,

 & vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns

 & fn,fn05s,fn05ss,fn1ns

 double precision eps1,eps2,eps

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision eta, mratio,Vr,PI,CLift

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision coeff0, coeff1

 double precision vksub,dvksub,dvksub0,yksub,dyksub,dyksub0

 double precision alfa,landa,landav,small

 double precision ytemp,vstemp,ytemp0,vtemp0,aytemp

 integer i,j,k,l

c

 common /homeadd/ home

 character*40 home

c *****

c *************** non-dimensional format of structure*******

 eps=0.000001 ! convergence cirterion

 small=1e-20

 PI=4.D0*ATAN(1.D0)

 eta=0.0012D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 20/4/14

 mratio=149.10 !(4/PI)*2 ! mass ratio=msolid/mfluid 23/4/14

 Vr=5.58 !at Re=100 radious velocity=U/(Fn.D) 20/4/14

c

 ysolidn=ysolid !to record inital value at time n

 vsolidn=vsolid

c write(*,*)'yn1,vn,ysolid,vsolid',ysolidn,vsolidn,ysolid,vsolid

 FLn=FL

c **

c Start outter iteration

c **

 l=1

101 continue

c********** start flow updating **********

222

 call convec

 call fillf

 call calcuv

 call force

 write(*,*)'time,l,FLn,FL',time,l,FLn,FL

c******** end flow updating ***********

 k=1

113 continue

 dyksub0=dyksub

 dvksub0=dvksub !14/04/14

 yksub=ysolid ! to record inital value at k

 vksub=vsolid

c

c********** start solving the structure **********

c

 ysolid=ysolidn+0.5*dt*(vsolid+vsolidn)

 aysolid=-2*eta*(2*PI/Vr)*vsolid-

 & ((2*PI/Vr)**2)*ysolid+

 & 2*(2*FL)/(PI*mratio) ! Clift=2*FL

 vsolid=vsolidn+dt*aysolid

c

 write(*,'(A,I5,5E16.4)')'k1,time,ysolidn,ysolid,vsolidn,vsolid',

 &k,time,ysolidn,ysolid,vsolidn,vsolid

 if (((k .LE. 5) .OR.

 & (abs(ysolid-yksub) .GT. eps)) .AND.

 & (k .LT. 15)) then

 k=k+1

 Go to 113

 end if

c write(*,*)'ytemp,vstemp,aytemp',time,k,ytemp,vstemp,aytemp

c

********** end of solving structure equation********

c

c if (k .EQ. 1) then

 landa=0.3

 landav=0.3

c else

c

 dvksub=vksub -vsolid !14/04/14

 dyksub=yksub -ysolid

 landav= landav+(landav-1)*

 & (dvksub0-dvksub)*dvksub/((dvksub0-dvksub)**2+small)

 landa= landa+(landa-1)*

 & (dyksub0-dyksub)*dyksub/((dyksub0-dyksub)**2+small)

c write(*,('A,I5,6E15.6'))'k,time,dyksub,yksub,dyksub0,ysolid',

c &k,time,dyksub,yksub,dyksub0,ysolid,landa

c end if

c ysolid=landa*ysolidn+(1-landa)*ysolid

c vsolid=landa*vsolid+(1-landa)*vsolidn

c write(*,*)'landa,ysolid,vsolid',time,k,landa,landav,

c & ysolid,vsolid

c

c write(*,*)'ysolidn,vsn,aysn',time,k,ysolidn,vsolidn,aysolidn

c

c write(*,*)'ytemp,vstemp,aytemp',time,k,ytemp,vstemp,aytemp

c

 if (((abs(ysolid-yksub) .GT. eps).OR.!23/4/14

 & (k .LT. 5)) .AND.

 & (k .LT. 15)) then

c

 write(*,*)' *************No. of outter-iteration,ksub=',l

 l=l+1

cc call interpolate ()

cc call inisol ()

223

c

 do j=0,ny+1

 do i=0,nx

 utemp(i,j)=u(i,j)! to use in bounds to update boundaries

 u(i,j) = urk(i,j) !to start fluid solver from time n

 end do

 end do

c

 do j=0,ny

 do i=0,nx+1

 vtemp(i,j)=v(i,j) !to use in bounds to update boundaries

 v(i,j) = vrk(i,j) !to start fluid solver from time n

 end do

 end do

c

 goto 101

 end if

c***

c end of outter iteration

c **

c

 open(unit=12,file='pld1.dat',

 & position='append')

 write(12,'(10E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD,

 & vsolid,ysolid

 close(12)

c

 return

 end

c

 subroutine solidsolver()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=550,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

c integer, intent(inout)::ksub

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /prestemp/ptemp(0:nnx+1,0:nny+1)

 double precision ptemp

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts

 integer nx,ny

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision xsolidn, usolidn

 double precision sstiff,smass,sdamping

 double precision vsolidtemp0, ysolidtemp0,FLtemp0

 & vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns

 & fn,fn05s,fn05ss,fn1ns

 double precision eps1,eps2

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision eta, mratio,Vr,PI,CLift

224

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision ytemp,vtemp,ytemp0,vtemp0,small,aytemp

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c *****

c

 small=1e-20

 PI=4.D0*ATAN(1.D0)

 eta=0.0D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 20/4/14

 mratio=(4/PI)*2 ! mass ratio=msolid/mfluid 23/4/14

 Vr=8 !at Re=100 radious velocity=U/(Fn.D) 20/4/14

c

 Call force()

c

c

 write(*,*)'solid solver,vtemp',vtemp

 aysolidn=-2*eta*(2*PI/Vr)*vsolidn-

 & ((2*PI/Vr)**2)*ysolidn+

 & 2*(2*FLn)/(PI*mratio) ! Cliftn=2*FLn

c

 ytemp=ysolidn+dt * vsolidn

 vtemp=vsolidn+dt * aysolidn

c

 aytemp=-2*eta*(2*PI/Vr)*vsolidn-

 & ((2*PI/Vr)**2)*ysolidn+

 & 2*(2*FL)/(PI*mratio) ! Clift=2*FL

c

 ysolid=ysolidn+0.5*dt*(vsolidn+vtemp)

 write(*,*)'here',ysolid,ysolidn,vsolidn,vtemp,dt

 vsolid=vsolidn+0.5*dt*(aysolidn+aytemp)

c write(*,*)'ysolidn,vsolidn,aysolidn',time,k,ysolidn,vsolidn,aysolidn

c write(*,*)'ytemp,vtemp,aytemp',time,k,ytemp,vtemp,aytemp

c

 return

 end

c

 subroutine structure(ksub)

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=550,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 integer, intent(inout)::ksub

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /prestemp/ptemp(0:nnx+1,0:nny+1)

 double precision ptemp

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts

 integer nx,ny

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

225

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision xsolidn, usolidn,

 & sstiff,smass,sdamping

 double precision vsolidtemp0, ysolidtemp0,

 & vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns

 & fn,fn05s,fn05ss,fn1ns

 double precision eps1,eps2

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision eta, mratio,Vr,PI,CLift

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision coeff0, coeff1

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c *****

c *************** non-dimensional format of structure*******

 eta=0.D0 ! damping ration, eta=C/Cc=C/(2(km)^0.5) 6/2/14

 mratio=2 ! mass ratio=msolid/mfluid 6/2/14

 Vr=3 !at Re=100 radious velocity=U/(Fn.D) 6/2/14

 PI=4.D0*ATAN(1.D0)

c CLift=2*FL ! lift coefficient

cc sstiff = 6.05 !1.1 ! strouhal number=0.167 then f=2*3.14*sqrt

cc smass = 5.0D0 ! f= (1/2*3.14)*sqrt (k/m)

cc sdamping=5.5 ! damping ratio=0.5

c critical damping=2*sqrt(km)

cc

c state space for the solid,

c d^2x/dt^2+(c/m)dx/dt+(k/m)x=CL*(1/2)*density*v^2

c v=dx/dt

c dv/dt= CL*(1/2)*density*v^2-(c/m)v-(k/m)x

c

c

 if (ksub .EQ. 0) then

 coeff0=3/2

 FL=coeff0*FLn+(1-coeff0)*FLold

 Clift=2*FL ! 6/2/2014

 end if

c

cc coeff1=1+(sdamping/smass)*0.5*dt+(sstiff/smass)*0.25*dt*dt

cc aysolid=

cc & (FL /smass)-

cc & (sdamping/smass)*(vsolidn+0.5*dt*aysolidn)/coeff1 -

cc & (sstiff/smass)*(ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn)/coeff1

 aysolid=

 & 2*CLift/(PI*mratio)-

 & 2*eta*(2*PI/Vr)*(vsolidn+0.25*dt*aysolidn)-

 & ((2*PI/Vr)**2)*(ysolidn+dt*vsolidn+0.25*dt*dt*aysolidn)

c

 vsolid=vsolidn+0.5*dt*(aysolidn+aysolid)

 ysolid=ysolidn+0.5*dt*(vsolidn+vsolid)

c

 call interpolate()

 call inisol()

c

 return

 end

c

c

 subroutine convergence(ksub)

c

 integer nnx,nny,MxSurf,Mxy

226

 parameter (nnx=600,nny=550,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 integer, intent(inout)::ksub

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common /prestemp/ptemp(0:nnx+1,0:nny+1)

 double precision ptemp

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts

 integer nx,ny

 double precision Re, RRe,dt,time,dts

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision xsolidn, usolidn

 double precision sstiff,smass,sdamping

 double precision vsolidtemp0, ysolidtemp0,FLtemp0

 & vs05ns,ys05ns,vs05nss,ys05nss,vs1ns,ys1ns

 & fn,fn05s,fn05ss,fn1ns

 double precision eps1,eps2

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c *****

 eps1=0.005 ! should relate to mesh size

 eps2=0.0001

c

c vsolidn=vsolid

c ysolidn=ysolid

c

c vsolidtemp0=vsolid

c ysolidtemp0=ysolid

c**************** forth order Rung-Kutta calculation of structure****

cc fn=(CL/smass-(sdamping/smass)*vsolidn-(sstiff/smass)*ysolidn)

cc vs05ns=vsolidn+0.5* dts*fn ! above CL is total lift force

(0.5*CL*1*1**2

cc ys05ns=ysolidn+0.5*dts*vsolidn

cc

cc fn05s=(CL/smass-(sdamping/smass)*vs05ns-(sstiff/smass)*ys05ns)

cc vs05nss=vsolidn+0.5*dts*fn05s ! above CL is total lift force

(0.5*CL*1*1**2

cc ys05nss=ysolidn+0.5*dts*vs05ns

cc

cc fn05ss=(CL/smass-(sdamping/smass)*vs05nss-(sstiff/smass)*ys05nss)

cc vs1ns=vsolidn+dts*fn05ss

cc ys1ns=ysolidn+dts*vs05nss

cc

cc fn1ns=(CL/smass-(sdamping/smass)*vs1ns-(sstiff/smass)*ys1ns)

cc vsolid=vsolidn+(1.0D0/6)*dts*(fn+2*fn05s+2*fn05ss+fn1ns)

cc ysolid=ysolidn+(1.0D0/6)*dts*(vs05ns+2*vs05nss+2*vs1ns+vsolid)

227

cc write(*,*) CL

c write(*,*) fn, fn05ns, fn05nss,fn1ns

c write(*,*) vs05ns, vs05nss, vs1ns

c write(*,*) ysn05ns, ys05nss,ys1ns

cc

17 FLtemp0=FL

 Call force()

c

 write(*,*)'convergence subroutine ksub=',ksub

 write(*,*)'FL,FLtemp0', FL, FLtemp0,abs((FL-FLtemp0)/FL)

 if ((ksub .LE. 10) .AND.

 & (abs((FL-FLtemp0)/FL) .GT. eps1)) then

c

 ksub=ksub+1

 write(*,*)' *************No. of sub-iteration, Ksub=',ksub

 write(*,*)'abs((FLn+1 -FLn+1old)/FLn+1)',

 & abs((FL-FLtemp0)/FL)

c

c *********************Starting outer iteration for creating strong

c ********************coupleing between the structure and fluid

c******************* at the same time step with the same initial

c ***************** velocity, but with the new position and velecity of

c ****************** structure

 do j=0,ny+1

 do i=0,nx

 u(i,j) = urk(i,j)

 end do

 end do

c

 do j=0,ny

 do i=0,nx+1

 v(i,j) = vrk(i,j)

 end do

 end do

c

 call structure(ksub)

c

 call convec

 call Fillf

 call calcuv

 go to 17

c

 else

 aysolidn=aysolid

 vsolidn =vsolid

 ysolidn =ysolid

 FLold =FLn

 FLn =FL

 end if

c

cc open(unit=12,file='pld1.dat',

cc & position='append')

cc write(12,'(10E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD,

cc & vsolid,ysolid

cc close(12)

c

 return

 end

c

c

cc

 subroutine wrtfld()

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

228

 parameter (Mxy=2*nnx+2*nny)

c

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common / bndpinfi/ip1p(0:Mxy),jp1p(0:Mxy),ip2p(0:Mxy),jp2p(0:Mxy),

 & ip3p(0:Mxy),jp3p(0:Mxy),iinterpp(0:Mxy),jinterpp(0:Mxy),

 & nbndp

 integer ip1p,jp1p,ip2p,jp2p,ip3p,jp3p,iinterpp,jinterpp,nbndp

c

 common / bndpinfR/ teta(0:Mxy),unitvi(0:Mxy),unitvj(0:Mxy),

 & wp1(0:Mxy),wp2(0:Mxy),delta1(0:Mxy)

 double precision teta,unitvi,unitvj,wp1,wp2,delta1

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common /minsx/ pins(0:nnx+2,0:nny+2),uins(0:nnx+2,0:nny+2),

 & vins(0:nnx+2,0:nny+2)

 double precision pins,uins,vins

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

 & uu(nnx,nny), vv(nnx,nny), uv(nnx,nny)

 double precision um,vm,pm,uu,vv,uv

c

229

 common /parmen/ nmean

 integer nmean

c

 integer i,j,k

c

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 double precision dliftf,dliftp,ddragf,ddragp,dpres

c

 common /FCDCL/ FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

 double precision FL,FD,liftf,dragf,liftp,dragp,pres,FLift,Fdrag,Fa

c & ,FL2,FD2

c

 common /homeadd/ home

 character*40 home

c

c

cc call force()

cc open(unit=12,file='pld1.dat',

cc & position='append')

cc write(12,'(15E15.6)')time,pres,liftp,liftf,dragp,dragf,FL,FD,

cc & vsolid,ysolid,FLift,Fdrag,Fa,FL2,FD2

c write(12,'(6E16.8)') time,pres,lift,drag,lift1,drag1

cc close(12)

c

cc open(unit=12,file='degree.dat',

cc & position='append')

cc write(12,'(6E16.8)') degree,dpres,dliftp,ddragp,dliftf,ddragf

cc close(12)

c

c *********velocity out put for test of the divergenc

cc open(unit=12,file='velocity.dat')

cc rewind(12)

cc do i=89,111

cc do j=89,111

cc write(12,'(A,2I4,5E16.8)')'i,j,u,umask,v,vmask,pmask',i,j,u(i,j),

cc & umask(i,j),v(i,j),vmask(i,j),pmask(i,j)

cc end do

cc end do

cc close(12)

c******** output by results on the Coordinate line

cc open(unit=12,file='fieldcoord.dat')

cc rewind(12)

c

cc write(12,*) 'variables="x","y","u","v","p","umask",

cc & "vmask","pmask"'

cc write(12,*)

cc & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

cc write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)

cc close(12)

c

 open(unit=12,file='field.dat')

230

 rewind(12)

c

 write(12,*) 'variables="x","y","u","v","p","umask",

 & "vmask","pmask"'

 write(12,*)

 & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

 write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny)

 write(12,'(5E16.8)')

 & ((0.5D0*pmask(i,j)*(u(i-1,j)+u(i,j)),i=1,nx),j=1,ny)

 write(12,'(5E16.8)')

cc22/5/13 & ((0.5D0*pmask(i,j)*(v(i,j-1)+v(i,j)),i=1,nx),j=1,ny)

 & ((0.5D0*(v(i,j-1)+v(i,j)),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)

 close(12)

cc open(unit=12,file='fieldu.dat')

cc rewind(12)

c

cc write(12,*) 'variables="x","y","u","umask","vmask"'

cc write(12,*)

cc & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

cc write(12,'(5E16.8)') ((xcoord(i),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((u(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)

cc close(12)

c

c

cc open(unit=12,file='fieldv.dat')

cc rewind(12)

c

cc write(12,*) 'variables="x","y","v","pmask"'

cc write(12,*)

cc & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

cc write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((ycoord(j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((v(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)

cc close(12)

c

cc open(unit=12,file='f.dat')

cc rewind(12)

c

cc write(12,*) 'variables="x","y","f","umask","vmask","pmask"'

cc write(12,*)

cc & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

cc write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((f(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((umask(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((vmask(i,j),i=1,nx),j=1,ny)

cc write(12,'(5E16.8)') ((pmask(i,j),i=1,nx),j=1,ny)

cc close(12)

c

c

 return

 end

cc

cc

 subroutine savfld()

c

 integer nnx,nny,MxSurf,Mxy

231

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

 double precision u,v,p,a,b

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

 & uu(nnx,nny), vv(nnx,nny), uv(nnx,nny)

 double precision um,vm,pm,uu,vv,uv

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /parmen/ nmean

 integer nmean

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

c

 integer i,j,k

c

 common /homeadd/ home

 character*40 home

c

 open(unit=12,file='field.bin',

 &form='UNFORMATTED')

 rewind(12)

c

 write(12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid,

 &vsolidn,ysolidn,aysolidn,FLn,FLold

 write(12) ((u(i,j),i=0,nx),j=0,ny+1)

 write(12) ((v(i,j),i=0,nx+1),j=0,ny)

232

 write(12) ((p(i,j),i=0,nx+1),j=0,ny+1)

 write(12) ((urk(i,j),i=0,nx),j=0,ny+1)

 write(12) ((vrk(i,j),i=0,nx+1),j=0,ny)

c

 close(12)

c

 open(unit=12,file='means.bin',

 &form='UNFORMATTED')

 rewind(12)

c

 write(12) nmean

 write(12) ((um(i,j),i=1,nx),j=1,ny)

 write(12) ((vm(i,j),i=1,nx),j=1,ny)

 write(12) ((pm(i,j),i=1,nx),j=1,ny)

 write(12) ((uu(i,j),i=1,nx),j=1,ny)

 write(12) ((vv(i,j),i=1,nx),j=1,ny)

 write(12) ((uv(i,j),i=1,nx),j=1,ny)

c

 close(12)

c

 open(12, file = 'movie.dat',position='append',

 & form='formatted')

c write(icmov,'(A)') 'variables="x","y","u","v","p"'

c write(12,*)

c & 'ZONE T="t=',time,'" I = ',nx,'J = ',ny,'F=BLOCK'

 write(12,*) 'ZONE T="t=',time,'", I=',nx,' J=',ny,' F=BLOCK'

 write(12,'(A,f16.6)') 'SOLUTIONTIME=',time

c write(12) nx,ny,time

 write(12,'(5E16.8)') ((xcrd(i)+xsolid,i=1,nx),j=1,ny) ! test4

 write(12,'(5E16.8)') ((ycrd(j)+ysolid,i=1,nx),j=1,ny) ! test4

ccc write(12,'(5E16.8)') ((xcrd(i),i=1,nx),j=1,ny) ! test2 and test3

ccc write(12,'(5E16.8)') ((ycrd(j),i=1,nx),j=1,ny) ! test2 and test3

ccc write(12,'(5E16.8)')

c

ccc & (((0.5D0*(u(i-1,j)+u(i,j))),i=1,nx),j=1,ny)

ccc write(12,'(5E16.8)')

ccc & (((0.5D0*(v(i,j-1)+v(i,j))),i=1,nx),j=1,ny)

ccc write(12,'(5E16.8)') ((p(i,j),i=1,nx),j=1,ny)

c

 write(12,'(5E16.8)')

 & ((pmask(i,j)*(0.5D0*(u(i-1,j)+u(i,j))+usolid),i=1,nx),j=1,ny)

 write(12,'(5E16.8)')

 & ((pmask(i,j)*(0.5D0*(v(i,j-1)+v(i,j))+vsolid),i=1,nx),j=1,ny)

 write(12,'(5E16.8)') ((pmask(i,j)*p(i,j),i=1,nx),j=1,ny)

 close(12)

c

 return

 end

cc

cc

 subroutine getfld(ex)

c

 logical ex

c

 integer nnx,nny,MxSurf,Mxy

 parameter (nnx=600,nny=850,MxSurf=50)

 parameter (Mxy=2*nnx+2*nny)

c

 double precision w

 parameter (w=0.5D0)

c

 common /veloxx/ u(0:nnx,0:nny+1),v(0:nnx+1,0:nny),

 & p(0:nnx+1,0:nny+1),a(0:nnx,nny,4),b(nnx,0:nny,4)

233

 double precision u,v,p,a,b

c

 common / bndinf/ txu(nnx),txv(nnx),tyu(nnx),tyv(nnx),

 & vnoru(nnx),vnorv(nnx),fyu(nnx),fyv(nnx),

 & vup(0:nnx+1),uup(0:nnx),influx

 double precision txu,txv,tyu,tyv,vnoru,vnorv,fyu,fyv,vup,uup,

 & influx

c

 common / bniinf/ jyu(nnx),jyv(nnx)

 integer jyu,jyv

c

 common / griddx/ xcoord(0:nnx), ycoord(0:nny)

 double precision xcoord, ycoord

c

 common / griddd/ xcrd(0:nnx+1), ycrd(0:nny+1), scalar(nnx,nny),

 & xfree(Mxy,MxSurf),yfree(Mxy,MxSurf)

 double precision xcrd, ycrd, scalar, xfree, yfree

c

 common /SORpar/ aim(nnx,nny),aip(nnx,nny),ajm(nnx,nny),

 & ajp(nnx,nny),diag(nnx,nny),f(nnx,nny)

 double precision aim,aip,ajm,ajp,diag,f

c

 common / bndvinfi/ ip1v(Mxy),jp1v(Mxy),ip2v(Mxy),jp2v(Mxy),

 & iinterpv(Mxy),jinterpv(Mxy),nbndv

 integer ip1v,jp1v,ip2v,jp2v,iinterpv,jinterpv,nbndv

c

 common / bnduinfi/ ip1u(Mxy),jp1u(Mxy),ip2u(Mxy),jp2u(Mxy),

 & iinterpu(Mxy),jinterpu(Mxy),nbndu

 integer ip1u,jp1u,ip2u,jp2u,iinterpu,jinterpu,nbndu

 common / bndvinfR/ wv1(Mxy),wv2(mxy)

 double precision wv1,wv2

c

 common / bnduinfR/ wu1(Mxy),wu2(Mxy)

 double precision wu1,wu2

c

 common /masksx/ pmask(0:nnx,0:nny),umask(0:nnx,0:nny),

 & vmask(0:nnx,0:nny)

 double precision pmask,umask,vmask

c

 common / dimenx/ nx,ny,Re,RRe,dt,time,dts,nx2,ny2,nn

 integer nx,ny,nx2,ny2,nn

 double precision Re, RRe,dt,time,dts

c

 common /velmen/ um(nnx,nny), vm(nnx,nny), pm(nnx,nny),

 & uu(nnx,nny), vv(nnx,nny), uv(nnx,nny)

 double precision um,vm,pm,uu,vv,uv

c

 common /parmen/ nmean

 integer nmean

c

 common /rkcom / urk(0:nnx,0:nny+1), vrk(0:nnx+1,0:nny),

 & ar(10,10), br(10), nrk

 double precision urk, vrk, ar, br

 integer nrk

c

 common /sbody/ vsolid, ysolid, usolid, xsolid,aysolid,axsolid

 double precision vsolid, ysolid, usolid, xsolid,aysolid,axsolid

c

 common/FaVYold/FLn,FLold,aysolidn,vsolidn,ysolidn

 double precision FLn,FLold,aysolidn,vsolidn,ysolidn

c

 integer i,j,k

 double precision dt1

c

 common /homeadd/ home

 character*40 home

c

234

 inquire(file='field.bin',EXIST=ex)

 if (.not. ex) return

c

 open(unit=12,file='field.bin',

 &form='UNFORMATTED')

 rewind(12)

c

 write(*,*) 'Reading from field.bin '

c

 read(12) time,dt,Re,vsolid,ysolid,aysolid,usolid,xsolid,

 &vsolidn,ysolidn,aysolidn,FLn,FLold

 RRe=1D0/Re

 read(12) ((u(i,j),i=0,nx),j=0,ny+1)

 read(12) ((v(i,j),i=0,nx+1),j=0,ny)

 read(12) ((p(i,j),i=0,nx+1),j=0,ny+1)

 read(12) ((urk(i,j),i=0,nx),j=0,ny+1)

 read(12) ((vrk(i,j),i=0,nx+1),j=0,ny)

c

 close(12)

c

c

 return

 end

c--

c etime.f: Demonstrate measurement of elapsed time

c--

 subroutine etimetest

 real etime ! Declare the type of etime()

 real elapsed(2) ! For receiving user and system time

 real total ! For receiving total time

 integer i, j

 print *, 'Start'

 total=etime(elapsed)

 open(unit=12,file='ptime')

 rewind(12)

 write(12,*)'End:*total=', total, ' user=', elapsed(1),

 & 'system=', elapsed(2)

 close(12)

c Stop

 Return

 end

235

Appendix B

236

237

238

239

240

241

242

243

Appendix C

244

245

246

247

248

249

250

251

252

253

254

