Genetic Folding for Solving Multiclass SVM Problems
Mohammad Mezher and Maysam Abbod

School of Engineering and Design,

Brunel University, West London, Uxbridge, UB8 3PH, UK

Email: mohd.mezher@brunel.ac.uk

Abstract
Genetic Folding (GF) is a new class of evolutionary algorithm specialized for complicated computer problems. GF uses sequence of linear numbers of genes structurally organized in integer numbers separated with dots. The encoded chromosomes in the population are evaluated using a fitness function. The fittest chromosome is survived and subjected to modification by genetic operators. The creation of these encoded chromosomes with the fitness functions and the genetic operators allows the algorithm to perform with high efficiency in the genetic folding life cycle. Multiclassification problems have been chosen to illustrate the power and versatility of GF. In classification problems, the kernel function is important to construct binary and multi classifier for support vector machines. Different types of standard kernel functions have been compared with our proposed algorithm. Promising results have been shown in comparing to other published works.
Keywords: Classification, Evolutionary algorithm, Genetic folding programming, GF, Kernel function, SVM.
1. Introduction
Darwin’s principle “Survival of the fittest” was proposed in 1859. This is later used as a starting point in introducing Evolutionary Algorithms (EA). EA optimizes complex behavior by using different levels: the genes, individuals and the population. The EA concept can be applied to problems where optimization or heuristic results are needed. Different frameworks in EA have been proposed: genetic algorithms, genetic programming, evolutionary strategies and evolutionary programming [1, 3]. However, research in developing new EA is very young topic, recently; gene expression programming [7, 8] has been introduced.
Genetic algorithm (GA) is the most popular technique in evolutionary computation research. Traditional GA may encode any potential solution as a fixed-length string of real numbers or typically as a binary bit string. The representation of the solution is achieved using a bit string called the chromosome. Each position in the string is assumed to represent a particular feature of an individual, and the value stored in that position represents how that feature is expressed in the solution. Genetic programming (GP) is becoming increasingly popular technique. In a standard GP, the representation used is a variable-sized tree of functions and values. However, each node in the tree is labeled from an available set of terminal values and each internal node in the tree is labeled from an available set of functions. The entire tree corresponds to a single function to be evaluated. Typically, the tree structure (TS) is expressed in a leftmost depth-first manner.
Evolutionary Strategies (ES) uses fixed-length real-valued vector representation. As with the bit strings of GA, each position in the vector corresponds to a feature of the individual. The main reproduction operators in ES are Gaussian mutation and intermediate recombination. Evolutionary Programming (EP) is the same as ES but no recombination of genes between individuals is made. Thus, only mutation operators are used. In Gene Expression Programming (GEP) representation of a coding sequence of genes is used, which begins with the “start” codon and continues with the amino acid codons to end at a termination codon.
The main differences between the previous approaches are the nature of the population-based structure, the genetic operators and the selection methods.
Genetic folding uses sequence of linear numbers of genes structurally organized in integer numbers separated with dots. The encoded chromosomes in the population are evaluated using a fitness function. The creation of these encoded chromosomes with the fitness functions and the genetic operators allows the algorithm to perform with high efficiency in the GF life cycle. The GF technique has been succeeded in binary classification problems [13]. This paper is an extended version of GF that is used for multiclassification problems. Multiclassification problems have been chosen to illustrate the power and versatility of GF. The remaining of this paper is organized as follows: In section 2, a general introduction to GF. In section 3, details of GF life cycle are introduced. Section 4 is briefly introduced the multiclassification problem. In Section 5, experimental results are discussed. The results show that GF is comparable to GP and GEP algorithm based on the classification accuracy.

2. GF: An Overview

Genetic Folding (GF) is a new class of evolutionary algorithms, which depends on generic metaheuristic optimization method. The key aspect of GF algorithm is population-based like in EA [1, 3]. GF mimics the RNA secondary structure folding process of the complementary bases on itself. DNA/RNA [11] is a polymer that is made up of nucleotide units. DNA/RNA sequence has four types of bases: Adenine (A), Thymine/Uracil (T/U), Guanine (G), and Cytosine (C). In DNA/RNA, each base has a complimentary base: A to T/U and G to C. In RNA the Uracil base is used instead of Thymine in DNA. The RNA secondary structure is the sequence of “complementary base'' pair folds back on itself to determine a functional protein. Here, the proposed algorithm mechanism is inspired from the process of the sequences' basses to determine a functional kernel in SVM.
In GF, the characteristic of the algorithm is inspired from the concepts of biological RNA structure. GF can represent complex types of problems using a simple array of numbers. Each gene represents a solution that is structurally dependent on other genes. In addition, GF can draw any mathematical function in a simple way. One of the abilities of GF algorithm is the small number of representations that can be drawn using different orders of numbers. This ability allows GF to represent a solution in a small number of possibilities and fewer numbers of levels. However, GF uses the same evolutionary concepts as in the genetic algorithm (figure 1) but has a different chromosome’s structure. The algorithm combines features of the GA and the GP and has the capability of solving the most complex problems.
3. GF: Life Cycle

A flowchart of the GF algorithm is shown in figure 1. Initially, it starts with a number of operators and terminals as a sequence. GF generates a stem pool of valid operators and their operands (section 3.1). The term stem pool is used to refer to the operators and its complementary operands that are connected to form a valid expression. After that, the initial population is evaluated for valid chromosomes using fitness function (section 3.2). Then, the roulette wheel is utilized to select the fittest chromosomes from the initial population [3]. The fittest chromosome has a large probability to be elected and survive. The survived chromosomes will subject to the genetic operators. Genetic Operators (GO) can be either; mutation (section 3.3) or recombination (section 3.4). A probability value is used to select a GO one at a time (section 3.6). The process is repeated until an optimal solution (kernel) is presented. A validation process is used to check whether the new offsprings are valid expression or not. However, at each iteration the algorithm needs to perform encoding (section 3.1.1) and decoding (section 3.1.2) procedures.

[image: image1]
Figure 1: GF Flowchart

3.1 GF: chromosome Structure
In EA two main components are considered; the chromosomes and the genes pool. In GF, the chromosome consists of a simple floating bit string of genes while the gene pool consists of multiple complexes of genes. Figure 2 shows the GF chromosome structure for a chromosome of N length.
1 2 3 4 6 7 … N-1 N

	2.3
	4.7
	0.3
	6.0
	n-5.n-3
	n-10.0
	
	0.n-1
	0.n

Figure 2: the GF chromosome and gene structure

 GF is simple to understand in terms of string of floating numbers. The following points are important to understand the GF chromosome structure (figure 2):

1 The chromosome structure consists of; position of the gene and bit string of the gene.

2 The gene structure is; left child (LC) side, dot and right child (RC) side.
3 The dot term (simply read and) is to separate the LC and the RC.

4 The operator with two operands has a value in both sides; the LC and the RC sides.
5 The operator with one operand has a value in the LC side and a zero in the RC side.

6 The terminals have a value in the RC side and a zero in the LC side.

In the next two sections, examples will be given to explain the encoding and decoding procedures of the GF chromosome.
3.1.1 Genetic Encoding

The tree structure (TS) representation is useful to demonstrate the encoding and decoding procedure of the GF algorithm. The individuals in TS can be easily evaluated in a recursive manner. Consider, for example, the following algebraic expression to be encoded in GF:

[image: image2.wmf])

(

)

(

2

2

1

1

q

p

q

p

-

+

-

 (1)

The TS diagram of the expression in (1) can be represented as shown in figure 3.

[image: image3]
Figure 3: TS diagram
The TS expression may look like (from top to down and from left to right):

[image: image4.wmf]2

2

1

1

/

q

p

q

p

sqrt

-

+

 (2)
The expression in (2) may read as the following road map: the sqrt is a one operand operator with the value (plus) as an input value. Then the plus operator is a two operands operator with two values (division, minus); the division operator is a two operands operator with the two values (p1, q1), and the minus operator is a two operand operator with the two values (p2, q2). This mini-road map can be considered as the inspired mechanism of the GF. To represent the expression in (2) using GF, two steps must be established which are as follows:

Step 1) gives every element a position number either randomly or in order

[image: image5.wmf]2

2

1

1

/

q

p

q

p

sqrt

-

+

 1 2 3 4 5 6 7 8

Step 2) folds the elements over their complementary position genes:
 2.0 3.4 5.6 7.8 0.5 0.6 0.7 0.8
Therefore, the road map of the GF expression in (2) starts at the operator “sqrt” (position 1) and terminates at the element “q2” (position 8). The “sqrt” operator (position 1) calls the “plus” operator (position 2). The “plus” operator has in the LC (position 3) the “division” operator and in the RC (position 4) the “minus” operator. The “division” operator (position 3) has the terminals (p1, q1) in the LC and RC respectively. The “minus” operator (position 4) has the terminals (p2, q2) in the LC and RC respectively. The terminals in GF are represented using the indices of their positions.
3.1.2 Genetic decoding
In GF, the genotypes' numbers determine the corresponding positions of their arguments. The decoding procedure of the GF is simple since it is the reverse procedure of encoding GF. The decoding procedure needs two steps to be established. Suppose the following GF chromosome:
Step 1) use the value in the genes to call the next gene that have to be read
 2.3 0.2 4.6 5.0 0.5 7.0 0.7

Step 2) substitute each gene’s position with its appropriate operator

[image: image6.wmf]2

1

1

cos

sin

/

p

q

p

+

 1 2 3 4 5 6 7
The diagram in figure 4 shows the representation of GF chromosome in the TS diagram:

[image: image7]
Figure 4: TS diagram presentation

However, to draw the GF chromosome in the TS diagram: it starts with the gene in the position “1”. Position “1” has the division operator with two values (LC.RC). Starting with the LC until a terminal value is found then it swaps into the RC. Therefore, the LC value refers to the position “2” which has “0.2” value. The “0.2” value refers to “p1” terminal value. On the other side, the RC value refers to position “3”. Position “3” is the “plus” operator with two values (LC.RC). The LC refers to position “4” which has the "sine" operator. The sin operator has a value in position “5”. Position “5” has “q1” terminal value referred by value “0.5”. The same process of the LC can be repeated in the LC of the plus operator until the “p1” terminal value has been found.

3.2 GF: Fitness Function
The fitness function is designed to measure the ability of individuals to live longer. The fittest chromosome will have bigger chance to be elected in next generation. However, in this paper, the fitness function is designed to find new SVM kernel functions. At the same time, finding a fittest SVM kernel function is NP problem [1]. For the SVM classification problems, the GF chromosome represents the kernel function. The chromosome is evaluated using the following fitness function:
 Evaluate (GF) = Ncorrect /N
 (3)
where Ncorrect is the sample number of the right classification of the GF chromosome, N is the total sample number of the classification. The fittest chromosome has the maximum accuracy in equation (3). Therefore, the general form of a SVM kernel function can be present in GF by the following formula:

Definition 3 GF fitness function

Let GF =
[image: image8.wmf]i

X

 , GF’ =
[image: image9.wmf]j

X

GF_Kernel= GF • GF’;

Fitness_value= evaluate (GF_Kernel);

Since,

[image: image10.wmf]j

X

,
[image: image11.wmf]i

X

 are the input samples,

GF is the fittest chromosome founded by GF,

GF’ is the symmetric of the GF_Expr and,

GF_Kernel is the dot product of the two expressions,

Evaluation of the fitness function returns the fitness value of SVM.

3.3 GF: Reproduction Operators
GF like evolutionary algorithms uses the genetic operators to produce new offsprings [3, 11]. The GF offsprings chromosomes are generated using one of the following operators: mutation, recombination or reproduction. Since each genetic operator can work alone efficiently. GF uses one operator at a time. This mechanism of GF saves time of a long life process.
3.3.1 Static Mutation Operator:

In the GF chromosome, mutation may occur in the gene’s position (the operator) or in the gene’s values (the operands). When the mutation occurs in the operators a replacement of an operator is engaged. However, when the mutation occurs in the operands, it must be replaced with the same number of operands. Static mutation operator has the following restriction:
1 The mutated genes should be replaced with bigger value than the referred address.
2 Two operands operator should be replaced with another two operands operator.
3 One operand operator should be replaced with another one operand operator.
4 The terminals should be replaced with another terminal.
Consider the following GF chromosome:
 2.3 4.5 6.7 8.9 0.5 10.11 0.7 12.0 0.9 0.10 0.11 0.12

[image: image12.wmf]2

4

3

1

1

3

/

p

q

q

p

sqrt

p

p

+

-

+

´

 1 2 3 4 5 6 7 8 9 10 11 12

Each gene will be subjected to the mutation operator if and only if the gene’s probability was less than 0.1. Suppose the mutations occurred in these positions 1, 3, 5, 8. In position 1 the “×” operator has been replaced by the “/” operator. The mutation occurs in position 3 mutate the operands from “6.7” into “2.8”; and the mutation occurs in position 5 mutate the “0.5” into “0.11”; and the last mutation occurred in position 7 mutate the program from “12.0” into “9.0”, the expression becomes:
 2.3 4.5 5.8 8.9 0.11 10.11 0.7 9.0 0.11 0.10 0.11 0.12

[image: image13.wmf]2

4

3

1

1

3

/

/

p

q

q

p

sqrt

p

p

+

-

+

 1 2 3 4 5 6 7 8 9 10 11 12

3.3.2 Dynamic Mutation Operator:
The dynamic mutation has fewer restrictions on the mutation positions to be held. One restriction on the operands must be satisfied, which obliges no positions refer to itself. Consider the same previous example for easy explanation. Furthermore, suppose the mutation occurred on positions 1,3,5,8. In position 1, the “×” operator, can be replaced with “/”. In position 3 the address may mutate “6.7” to “2.5”. In position “8” may mutate from “9.0” to “3.0”.
 2.3 4.5 2.5 8.9 0.5 10.11 0.7 6.0 0.11 0.10 0.11 0.12

[image: image14.wmf]2

4

3

1

1

3

/

p

q

q

p

sqrt

p

p

+

-

+

´

 1 2 3 4 5 6 7 8 9 10 11 12

This flexibility gives GF the dynamic size with keeping the phenotype within the chromosome. Note that, the mutation operator does not affect the genotype of the original chromosome. The dynamic mutation can be used with different sizes of offsprings. On another hand, the static operator is used when the chromosome’s size is fixed.
3.3.3 One point Crossover
Crossover is the process of taking two parent solutions to reproduce a child. After the selection (reproduction) process, the population is enriched with better individuals. The recombination operator applies to GF when good offspring from the old population is requested to be produced.
The algorithm chose two parents to produce two offsprings depending on a passing probability value. However, to produce new offspring using one point crossover, two chromosomes are selected at the same random position to be swapped one to each other. Suppose in the following example the one point crossover has occurred in the 12th position as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
8.9 5.4 7.9 8.11 0.5 0.6 0.7 3.5 0.9 12.4 9.12 0.12 0.13 0.14 16.17 0.16 0.17
2.3 5.6 6.8 0.4 8.9 10.7 0 .7 3.13 0.9 9.4 9.12 0.12 14.15 16.11 0.15 15.17 0.17

The first parents is presented in bold and second is the normal font, the new offspring will be:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8.9 5.4 7.9 8.11 0.5 0.6 0.7 3.5 0.9 12.4 9.12 0.12 14.15 16.11 0.15 15.17 0.17
2.3 5.6 6.8 0.4 8.9 10.7 0 .7 3.13 0.9 9.4 9.12 0.12 0.13 0.14 16.17 0.16 0.17
3.3.4 Two point crossover:
The same process as in the one point crossover is repeated but with two cut off points. The same two parents in section 3.4.1 are used. Suppose the cut off points were in 6th and 13th positions. The produced offsprings are as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8.9 5.4 7.9 8.11 0.5 0.6 0 .7 3.13 0.9 9.4 9.12 0.12 14.15 0.14 16.17 0.16 0.17

2.3 5.6 6.8 0.4 8.9 0.7 3.5 0.9 12.4 9.12 0.12 0.13 10.7 16.11 0.15 15.17 0.17
3.4 Operator Selection
Genetic Operators (GO) is useful to discover new regions in the search space. GO (recombination, mutation) should not occur very often, because then GA will be, in fact changed to, a random search algorithm. When GO are performed, one or more parts of a chromosome are changed or exchanged. If GO’s probability is 100%, the whole chromosome will be changed, if it is 0%, nothing will be changed. GO generally prevents GA from converging into local extremes and the operator selection makes clones of good strings to be kept in the next generation. On the other hand, GO should not occur often, because an inadequate diversity of the initial genetic material is unnecessary, especially in huge populations or if the crossover dominates the variations.
However, it is good to leave some fittest parent of old population survives to next generation. Therefore, allowing some parents to live for long generation will give chances for new offsprings to exchange genes from the previous parent’s knowledge. It is like having grandparents in your family who allows for more knowledge to be shared. At the same time, frequent use of GO guarantee no optimality in producing offsprings than if one not use both GO. Consequently, GF allows the algorithm to select one of the two GO operators.
4. Case Study: SVM Multiclassification
SVM are an innovative learning machine based on the structural risk minimization principle, and have shown excellent performance in a variety of applications [2, 4-6]. However, SVM is designed originally for binary classification problems and the extension of SVM to the multi-classification is still ongoing research. The formulation to solve multiclass SVM problem has a number of proposed methods. The Maxwins [12] approach in which k (k-1)/2 classifiers are constructed is based on a data that trains from two different classes. For training data
[image: image15.wmf])

,

(

),...,

,

(

1

1

l

l

y

x

y

x

where
[image: image16.wmf]l

i

R

x

n

,...,

1

,

=

Î

 and
[image: image17.wmf]}

,...,

1

{

k

y

Î

 is the class of xi, the ith SVM solves the following classification problem:

[image: image18.wmf]å

+

t

ij

ij

t

ij

ij

b

w

w

C

w

w

ij

ij

ij

'

'

,

,

)

(

2

)

(

min

x

x

 (4)

[image: image19.wmf]0

,

,

1

)

(

)

(

,

1

)

(

)

(

Subject to

'

'

>

=

-

£

+

=

-

³

+

ij

t

t

ij

t

ij

t

ij

t

ij

t

ij

t

ij

j

y

if

b

x

w

i

y

if

b

x

w

x

x

f

x

f

where the training data x are mapped
[image: image20.wmf])

(

x

f

 to a higher dimensional space, C is the penalty parameter,
[image: image21.wmf]x

 is a slack value. SVM classifies a new data points if x in the ith class voted by the decision function (
[image: image22.wmf])

)

(

)

((

'

ij

ij

b

x

w

sign

+

f

). Otherwise, the jth class is voted. The maxwins (one versus one) strategy is commonly used to determine the class of a test pattern x [4].

In a huge number of classifiers, the kernel function is important to be selected intelligently. Therefore, GP and GA have been involved in multi-classification with some limitation [4-6]. The major drawback of both approaches is the absence of a framework that can be used to find a new classifier that is conducted intelligently for future dataset.
One of the crucial properties that should be carefully selected in binary and multi-class problems is the kernel function. Since no optimal hyperplane can be found in explicit mapping of the feature space correspond to their kernel. Typically, to ensure that a kernel function is actually corresponding to some feature space it required to satisfy Mercer’s theorem, which states that the feature matrix has to be symmetrical and positive definite, i.e. it has non-negative eigenvalues. These conditions ensure that the solution produce a global optimum kernel function. An option to be used is one of the predefined kernels, which satisfied the conditions and suited to a particular problem [2, 10]. However, good results have been achieved with non-Mercer's rule kernels function, despite the fact that there is no guarantee of optimality [5].

5. Experimental Design
The experiments are performed on Matlab 2009b platform of with 2GB RAM memory. Table 1 describes the datasets used with mu-SVC in LIBSVM. These are Iris, Glass, Vehicle, Segment and Vowel [10]. Repeatedly, the algorithm runs for 200 generations for each data set with 50 populations set. Five cross-validations were implemented to check the validity of Mercer's rules and to predict the classification accuracy. The GP tree expression is used to be encoded into GF chromosomes. Every GP tree node has been given a number between 1 to the length of the GP tree. The package that has been used to produce the GP tree is GPLAB [9]. The parameters conducted in the experiments are shown in the table 2. To performe the multiclassification, LIBSVM [10] has been adopted with Maxwins approach.

Database Samples Features Classes

Vehicle 846 18 4
Iris 150 4 3

Glass 214 9 6

Segment 2,310 19 7
Vowel 990 10 11

Table 1: Dataset Structure
Table 2 shows the compression of GF to pre-defined kernel functions. GF shows promising results with good contributions in the accuracy classification except in Vehicle dataset.
	 Kernel

Dataset
	Linear
	Polynomial
	RBF
	Sigmoid
	GF

	Iris
	92.66
	94.33
	95.66
	96.66
	98.00

	Vehicle
	82.94
	73.52
	82.84
	72.94
	76.33

	Glass
	61.66
	61.75
	62.58
	64.38
	75.42

	Segment
	93.63
	93.76
	93.76
	93.80
	96.97

	Vowel
	72.78
	71.58
	74.73
	74.73
	84.04

Table 2: GF vs. well known kernel functions

Another compression is to compare GF verses GEP [7], KGP [5] and DAG [4]. The parameters used in the comparisons are listed in tables 3 and 4 which are derived from their respective papers. The same definition of GEP function set is used in our new function set and some other extended functions set are shown in table 3. The optimal GF chromosome was found has a length of five genes.

 Property name GEP parameter [6] GF parameter

 Generation 200 200
 Population 50 50
 Number of Genes 7 Dynamic
 Mutation 0.044 0.044
 Crossover One/Two/Gene (0.3) One(0.3)

 Function set {+S,-S, •S, +V,-V} {+S,-S, •S, +V,-V,
 sine, cosine, tanh, log}

 Attribute Set Xi, Xj Xi, Xj

 Fitness Function (3) (3)
 (C, gamma)
 (1,-)

 (10, 1/no_features)

 Cross-validation 5- fold

Table 3: GF and GEP parameters

 Property name KGP parameter [5] DAG parameter [4]

 Generation 400 -
 Population 50 -
 Function set {plus, multiply, power} RBF
 Attribute Set Xi, Xj Xi, Xj
 Fitness Function (3) (3)
 (C, gamma)
 (0.05, 2-15-23)
 (22-212, 2-9-22)

 Cross-validation
 10-fold

10-fold

Table 4: KGP and DAG parameters
Table 5 shows the compression of GF to other published works. GF shows promising results with good contributions in the accuracy of the multiclassification except in Vehicle dataset.

	 Kernel

Dataset
	DAG
	KGEP
	KGP
	GF

	Iris
	97.33
	94.54
	97.40
	98.00

	Vehicle
	80.85
	 -
	 -
	76.33

	Glass
	63.55
	78.11
	 -
	75.42

	Segment
	95.84
	 -
	 -
	96.97

	Vowel
	81.43
	 -
	66.45
	84.04

 Table 5: GF in comparing with other published works

 [image: image23.emf]0

20

40

60

80

100

120

Iris Vehicle Glass Segment Vowel

Accuracy

DAG

KGEP

KGP

GF

Figure 5: GF vs. DAG, KGEP and KGP
To show the ability of the GF algorithm a comparison to other published papers has been conducted. Figure 5 shows four dataset included in our comparing accuracy classification results. Some papers have not tested all the datasets included that were using GP (such as GEP and KGP). DAG algorithm is widely used and very famous. Figure 5 shows superior results for the one uses GF in comparing two experiments use GP. DAG algorithm has shown best results in Vowel dataset. An example of the best kernel found for Iris dataset is:
 2.3 4 5 0.4 0.5
 • sign sign Xi Xj
Conclusion
Genetic Folding Programming is a class of an evolutionary algorithm which has a new mechanism that is inspired from the RNA secondary structure. Here, a description of GF for a multi-class classifier with an application to UCI dataset with multiclass problems. Emphasis is placed on the selection of new kernel function using the proposed algorithm. The kernel function produced is selected using GF search procedure based on a set of candidate values.
We have demonstrated that the classification performance of the multi-class SVM using GF is less sensitive to changes in the parameters. The GF mechanism harnesses the capability of a standard evolutionary algorithm like GA and GP to search for the best value for the SVM kernel function. The multi-class GF SVM, using a small number of optimized parameters, has shown very good classification results between three classes to eleven classes of the data sets, with maximum accuracy of 100%.
The proposed algorithm can be implemented in regression problems as our future work will be. Other suggestions may involve other multi class algorithm into GF chromosome with different SVM algorithm.
Reference
[1] Koza, J., “Genetic Programming: on the Programming of Computers by Means of Natural Selection”, 74-147, Cambridge, MA: The MIT Press, 1992.
[2] Cristianini, N. and Shawe-Taylor, J.,“An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods”. 1st edn. Cambridge University Press, 2000.
[3] Sivanandam S. N. and Deepa S. N., “Introduction to Genetic Algorithms”. Springer, 2-13. 2008.
[4] Hsu, C. W. and Lin, C. J. A., “Comparison of Methods for Multi-Class Support Vector Machines”. IEEE Transaction on Neural Networks, 13:415–425, 2001.

[5] Howley, T. and Madden, M.G., “The Genetic Kernel Support Vector Machine: Description and Evaluation”. Artificial Intelligence Review, 24(3-4):379–395, 2005.
[6] Sullivan, K. and Luke, S., “Evolving Kernels for Support Vector Machine Classification”. Genetic and Evolutionary Computation Conference, place and time, 1702–1707, 2007.
[7] Jiang, Y., Tang, C., Li, C., Li, S., Ye, S., Li, T. and Zheng, H., “Automatic SVM Kernel Function Construction Based on Gene Expression Programming”. Proceedings of the 2008 International Conference on Computer Science and Software Engineering, place and date, 4:415-418, 2008.
[8] Ferreira, C., “Gene Expression Programming: a New Adaptive Algorithm for Solving Problems”, ArXiv Computer Science e-prints, 2001.

[9] Silva, S., ”GPLAB: A Genetic Programming Toolbox for MATLAB”, 2007.

[10] Chang, C.C. and Lin, C.J., “LIBSVM: A Library for Support Vector Machines”, 2001. http://www.csie.ntn..edu.tw/~cjlin/libsvm. 2007.8.1.
[11] "Genes & Gene Expression". The Virtual Library of Biochemistry and Cell Biology. http://www.BioChemWeb.com. 2010.
[12] Knerr, S., Personnaz, L. and Dreyfus G., “Single-layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network” in Neurocomputing: Algorithms, Architectures and Applications, J. Fogelman, Ed. New York: Springer-Verlag, 1990.
[13] Mezher, M. and Abbod, M. “Genetic Folding: A new Class of Evolutionary Algorithm” AI-2010 Thirtieth SGAI International Conference on Artificial Intelligence, Cambridge, UK. Accepted

 Stem pool

 Validate

 Mutation operator

Crossover Operator

 Initial population

operator's probability

 Next generation

 N+1

 Fitness function

Validate

 Optimal Expression

GF sequence

50%

50%

sqrt

 +

 /

 p1

 q1

 -

 p2

 q2

 /

p1

 +

 sin

 cos

 p2

 q1

_1339545282.unknown

_1339634127.unknown

_1342114062.unknown

_1342114347.unknown

_1342114404.unknown

_1342115384.unknown

_1342114207.unknown

_1342105740.unknown

_1342106087.unknown

_1342106499.unknown

_1339634133.unknown

_1339634101.unknown

_1339634110.unknown

_1339553075.unknown

_1339196818.unknown

_1339215223.unknown

_1339197116.unknown

_1339187727.unknown

