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Abstract

In this paper, we propose a new random volatility model, where the volatility has

a deterministic term structure modified by a scalar random variable. Closed-

form approximation is derived for European option price using higher order

Greeks with respect to volatility. We show that the calibration of our model is

often more than two orders of magnitude faster than the calibration of commonly

used stochastic volatility models. such as the Heston model or Bates model.

On fifteen different index option data-sets, we show that our model achieves

accuracy comparable with the aforementioned models, at a small fraction of the

computational cost for calibration. Further, our model yields prices for certain

exotic options in the same range as these two models. Lastly, the model yields

delta and gamma values for options in the same range as the other commonly

used models, over most of the data-sets considered. Our model has a significant

potential for use in high frequency derivative trading.

Keywords: stochastic volatility models, option pricing

1. Introduction

The central assumption of the celebrated Black-Scholes formula for Euro-

pean option pricing is that the volatility of the underlying asset is constant [4].

This is known to be untrue in practice. The observed prices of liquid options

on the same underlying, for a given set of maturities and strikes, imply differ-
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ent volatilities under Black-Scholes formulation. Modelling the future evolution

of the volatility of the underlying asset, which is consistent with the observed

option prices, is obviously essential to price illiquid securities on the same un-

derlying asset. The topic of suitable volatility models which provide a consistent

match with the observed prices has resulted in extensive literature over the past

few decades.

There are two broad classes of volatility models: local volatility models and

stochastic volatility models. Note that this is a rather imprecise taxonomy, but

it will be sufficient for our purpose. The former class of models does not have

an additional source of uncertainty (apart from the sources of uncertainty in the

underlying) incorporated in the volatility model and the volatility is assumed to

be a deterministic function of the current underlying price and time. Examples

of this type of models include the models proposed by Dupire [9], Derman and

Kani [7] and Alexander [1]. In contrast, stochastic volatility models include an

extra source (or sources) of randomness and provide more flexibility in modelling

the dynamics of volatility surface. Significant models in this class, with an

emphasis on option pricing, include those proposed by Hull and White [12],

Merton [15], Heston [11], Bates [3], Kou [14], Duffie et al [8] and Carr et al [6].

Bakshi et al [2] have compared a variety of stochastic volatility models in terms

of their pricing and hedging performance. Heston as well as Bates model yields

semi-closed form solutions in terms of Fourier transform of European option

price and are hence amenable to relatively easy calibration to market data.

Gatheral [10] and Javaheri [13] provide comprehensive reviews of development

of volatility models.

In this work, we propose a new method for modelling the volatility as implied

by option prices. In our model, volatility is represented as a deterministic

function of time, with its level being a random variable on positive support.

The proposed volatility model offers the following benefits:

• It provides a very simple approximate pricing function for calibrating the

model from option price data. In the experiments performed, we demon-
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strate that the proposed model requires only around 1% of the computa-

tional time as the Heston model or the Bates model for calibration, on the

same hardware.

• In fifteen different data sets tested for three different indices and using two

different methods of measuring the pricing error, the proposed model is

shown to be extremely competitive in terms of accuracy with the popular

existing stochastic volatility models.

• When calibrated from the same data-set, the proposed model also yields

prices for path-dependent payoffs which are in the same range as the He-

ston model and Bates model. This is important since the prices of illiq-

uid payoffs are non-unique under stochastic volatility and any new model

which gives significantly different prices from the established models is

unlikely to be accepted by the industrial community.

• When calibrated from the same data-set and using the same numerical

method, the proposed model yields option price sensitivity parameters

which are very close to those found for the Heston model, for most data-

sets. Option sensitivities (or Greeks) are important for risk monitoring

and hedging purposes and our experiments show that hedging using our

model is unlikely to provide significantly different results than hedging

using the Heston model.

Note that, apart from Bates model and Heston model, several other analytically

tractable options exist for modelling volatility (as mentioned earlier). Our pur-

pose is simply to establish that our new model yields accuracy comparable to

some of the popular existing models, while being significantly easier to calibrate,

and easier to simulate from, than those models. Hence we have restricted our

benchmark comparison to the two aforementioned models.

The rest of the paper is organized as follows. In the next section, we will

briefly outline the two main stochastic volatility models to which our model

will later be compared. In section 3, we will present our new model. Section
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4 on numerical experiments is split into three subsections: section 4.1 outlines

the data used, section 4.2 explains the methodology employed in comparing the

performance of different models and lastly section 4.3 provides the results and

a discussion. Finally, section 5 summarizes the contributions of the paper and

outlines the directions of future research.

2. Heston model and Bates (SVJ) model

We will first outline the formulae for pricing European options using Heston

and Bates (SVJ) models, since we will later use these two models as benchmarks.

All the subsequent discussion is in a (non-unique) equivalent martingale measure

and we will omit explicit mention of measure for simplicity. For Heston model,

the asset price dynamics is assumed to be governed by:

dSt = rStdt+
√
vtStdW

1
t , (1)

dvt = −θ(v̄ − vt)dt+ σv
√
vtdW

2
t , (2)

where r is the risk-free rate, W 1
t and W 1

t are standard Wiener processes with a

given correlation < W 1
t ,W

2
t >= ρ and ρ, σv, θ, v0, v̄ are known constants. The

price of European call option with strike price K is given by:

CEUR = StP1 −Ke−r(T−t)P2, (3)

where St is a spot price at time t, T is a the expiration time and Pj , j = 1, 2

are called the pseudo-probabilities:

Pj =
1

2
+

1

π

∫ ∞

0

Re

[

eix log(
St
K

)eφj(vt,τ,x)

ix

]

dx. (4)
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Here, τ = T−t and φj(vt, τ, x) = exp{Cj(τ, x)v̄+Dj(τ, x)vt} is the characteristic
function, with

Cj(τ, x) = rxiτ +
θ

σ2
v

[

(bj − ρσvxi + dj)τ − 2 log
1− dje

djτ

1− gj

]

,

Dj(τ, x) =
bj − ρσvxi+ dj

σ2
v

[
1− edjτ

1− gjedjτ

]

,

gj =
bj − ρσvxi+ dj
bj − ρσvxi− dj

, dj =
√

(ρσvxi)2 − σ2
v(2ujxi− x2),

u1 =
1

2
, u2 = −1

2
, and bj = κ+ θ − (1j=1)ρσv.

Bates in [3] proposed adding a compound Poisson process in the underlying

for the above model, which leads to a modification of (1):

dSt

St
= rdt +

√
vtdW

1
t + (eα+βǫ − 1)dJt, (5)

where Jt is Poisson process with a known jump intensity λp, α, β are known

constants and ǫ ∼ N(0, 1). The process Jt is uncorrelated with W i
t , (i = 1, 2).

The volatility dynamics is described by equation (2). The solution for price of

a European call option is given by modifying the characteristic function in the

Heston model above:

φj(vt, τ, x) = exp{Cj(τ, x)v̄ +Dj(τ, x)vt + E(x)τ},

where

E(x) = −λpix(e
α+β2/2 − 1) + λp(e

ixα−x2β2/2 − 1).

While both these models have proved popular and are known to provide

good fits to option prices, they have a few shortcomings. Some of these are

discussed in [16]. In particular, it was shown that Heston model usually fails

to fit to a short term market skew while the SVJ model usually fails to fit

an inverse yield curve. In addition, the option price is given through a fairly

involved numerical integral with several parameters, which presents significant

difficulties in calibration.
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3. High order Moments based Stochastic Volatility model

We will now introduce the basic idea of our model. Recall that, by defini-

tion, European call option is a right to buy an asset at maturity time T for a

strike price K. For a non-divident paying stock, its price at time t is given by

discounted expectation of terminal pay-off:

Ct = e−r(T−t)
E[(ST −K, 0)+].

Under Black-Scholes framework with constant volatility, this discounted ex-

pected value is given by

CBS = StN(d1)− e−rτKN(d2),

d1 = (σ
√
τ )−1[log(St/K) + (r + σ2/2)τ ],

d2 = d1 − (σ
√
τ ),

where r is the constant risk-free rate, σ is the volatility, N(x) is the standard

normal cumulative distribution function and τ = T − t is the time to maturity.

The derivation of Black-Scholes price also assumes that short-selling as well

as trading in continuous time is possible. One of the simplest frameworks to

introduce a stochastic component in the volatility is to consider a Hull-White

type model of the asset price process [12]:

dSt = rStdt+
√
vtStdW

1
t , (6)

dvt = f1(t, vt)dt+ f2(t, vt)dW
2
t , (7)

where W 1
t and W 2

t are uncorrelated Wiener processes and f1, f2 are smooth

functions bounded by linear growth such as vt remains non-negative almost

surely. [12] shows that the price of European vanilla call option at time 0, for

a time to maturity τ can be derived as expectation of Black-Scholes price with

respect to the variance rate:

CEUR = E

[

CBS

(
1

τ

∫ τ

0

vtdt

)]

(8)
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where CBS(x) denotes Black-Scholes price evaluated at variance x. The above

formula is independent of the exact process followed by vt (under normal as-

sumptions about t− continuity and uniqueness). Denoting the variance rate

1
τ

∫ τ

0
vtdt by V̄τ and assuming that the moments in question exist, we can ex-

pand the right hand side of (8) around E(V̄τ ) in Taylor series as

CEUR ≈ CBS(E(V̄τ )) +

M∑

i=2

∂iCBS

∂V̄τ
i

E(V̄τ − E(V̄τ ))
i

i!
, (9)

where the partial derivatives are evaluated at E(V̄τ ). Our aim is to construct

a process for vt for which the right hand side of the above equation is easy to

evaluate (for a reasonably large M), while remaining sufficiently flexible to fit

the observed option prices. Note that truncating after the first term will mean

that prices of options with all strikes for a fixed time to maturity should be

the same, which is obviously nonsense. This illustrates the need for non-zero

higher moments for V̄τ (and hence the need for randomness in volatility) in an

intuitively simple fashion.

Without loss of generality, let t = 0 be the current time and let t0 > 0 be an

arbitrary time which is less than the shortest time to maturity of any derivative

product which we want to price using our model. We will allow the diffusion

term in the volatility process of (7) to be non-zero only within [0, t0). This

will allow us to use a single random variable, rather than an evolving random

process, to model the randomness in volatility when pricing securities at time

t = 0, whose payoffs are beyond t0. Note that option pricing models are always

used for pricing securities with finite, rather than infinitesimal, time to maturity.

Further, t0 itself does not appear in the pricing formulae (only an integrated

variance term does, as we shall see) and can be assumed to be arbitrarily small.

Next, we assume that vt in (7) is governed by the following, specific stochastic

process:

dvt = (µtdt+ γtdW
2
t )vt, (10)

where µt is a positive deterministic and integrable function, γt is a positive

deterministic function which is piecewise continuous, with γt = 0, t > t0 and
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W 2
t is a standard Wiener process uncorrelated with W 1

t . Using Itô’s lemma, it

is straightforward to show that

vt = exp

(∫ t

0

µsds

)

ζt,

where ζt is a log-normal process with unit mean and a constant variance for

t > t0. In particular,

Var(ζt) =

(

exp

{∫ t0

0

γ2
sds

}

− 1

)

, t > t0.

We will henceforth assume that t > t0 holds. Let k =
√

Var(ζt). Then the

third and the forth centered moments of ζt, m3 and m4 respectively, can be

expressed as:

m3 = k4(3 + k2), (11)

m4 = k4{(1 + k2)4 + 2(1 + k2)3 + 3(1 + k2)2 − 3}. (12)

We will parameterize the standard deviation k of the lognormal random

variable ζt directly, with no reference to γt or t0. Finally, we parameterize

exp(
∫ t

0 µsds) as

exp

(∫ t

0

µsds

)

= σ̂2
0e

−λt + σ̂2
1λte

−λt + σ̂2
2 ,

where σ̂0, σ̂1, σ̂2, λ are scalar parameters. This gives our variance model param-

eterization as

vt = ζt(σ̂
2
0e

−λt + σ̂2
1λte

−λt + σ̂2
2), ζt ∼ LN(1, k2), t > t0. (13)

Along with (6), (13) completely specifies our pricing model within the chosen

pricing measure, which is implicitly specified by the data used for calibration.

We will call our model as high order Moments-based Stochastic Volatility (MSV)

model, since it is based on the use of higher order moments of the aforementioned

random variable. With this definition of vt, we have

V̄τ :=
1

τ

∫ τ

0

vtdt = ζt

(
σ̂2
0 + σ̂2

1

λτ
+ σ̂2

1 +
σ̂2
2 − σ̂2

1

1− e−λτ

)

(1− e−λτ )

︸ ︷︷ ︸

Qτ

, (14)
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where Qτ is a deterministic function. As we can see in the equation (14) Qτ is

actually the equation for Nelson-Siegel [17] spot rate curve used in interest rate

modelling. While our application is unrelated to modelling interest rates, we

chose this parametrization for its known ability to represent a variety of relevant

shapes of term structure (both concave and convex), with a suitable choice of

parameters. Since, European option price for any τ > 0 is a smooth function

with respect to V̄τ , one can apply Taylor series expansion to the Black-Scholes

option price CBS around a point E(V̄τ ) = Qτ :

CEUR(V̄τ ) ≈ CBS +
∂2CBS

∂V̄ 2
τ

E(V̄τ −Qτ )
2

2
+

∂3CBS

∂V
3

τ

E(V̄τ −Qτ )
3

6

+
∂4CBS

∂V̄ 4
τ

E(V̄τ −Qτ )
4

24
, (15)

where CBS and its partial derivatives are evaluated at V̄τ = Qτ . These partial

derivatives for a European call option can be evaluated as:

ν :=
∂CBS

∂V̄τ
= Ke−rτφ(−d2)

√
τ,

∂2CBS

∂V̄ 2
τ

= ν
d1d2
Qτ

,

∂3CBS

∂V̄ 3
τ

=
−ν

Q2
τ

[
d1d2(1− d1d2) + d21 + d22

]
,

∂4CBS

∂V̄ 4
τ

= ν
12d1d2 + 3τQ2

τ (1 − d1d2)− d21d
2
2(9 − d1d2)

Q3
τ

, (16)

with d1 =
log(S0/K)+(r+Q2

τ/2)τ

Qτ

√
τ

, d2 = d1 −Qτ
√
τ and

φ(x) = (
√
2π)−1

∫ x

0 e−0.5u2

du. Similar expressions can easily be derived for an

approximation to the price of a European put option.

We can now re-write the first four moments of V̄ as the following:

E(V̄τ ) = Qτ ,

E(V̄τ −Qτ )
2 = k2Q2

τ ,

E(V̄τ −Qτ )
3 = k4(3 + k2)Q3

τ ,

E(V̄τ −Qτ )
4 = k4{(1 + k2)4 + 2(1 + k2)3 + 3(1 + k2)2 − 3}Q4

τ . (17)

Equations (13)-(15) together with equations (16)-(17) define our approximate

option pricing model. Along with the parameters σ̂0, σ̂1, σ̂2, λ which appear in
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Q(τ), the parameter k which characterises the distribution of ζt completes the

set of parameters for our volatility model specification.

A few remarks on this model are in order.

• In empirical experiments which follow in the next section, we found that

a third or a fifth order Taylor series approximation, in place of the fourth

order approximation used here, makes very little difference. However,

using k = 0 leads to very poor fits on calibration, again indicating that

randomness is necessary to model the volatility dynamics adequately.

• There is zero correlation between the sources of randomness in the un-

derlying and the volatility, and there is no risk premium attached to the

randomness in volatility. However, our choice of simpler volatility model

seems to provide a fit which is quite competitive in terms of accuracy

when compared to models with non-zero correlation, at a small fraction

of calibration cost, over a large number of data sets. Our admittedly lim-

ited evidence indicates that choosing a sufficiently flexible parameterized

function of time can compensate at least partially for not modeling the

correlation between the volatility and the price of the underlying.

4. Numerical Experiments

4.1. Data Specification

For calibration and validation of our model, we used option price data {Strike
price, Maturity, Implied Volatility, Bid, Ask and underlying values on the date

of reading} obtained from Bloomberg Option Monitor (OMON). Implied risk

free rates were calculated using implied volatilities and option prices by simple

nonlinear least squares, for each maturity. We chose European call options with

a minimum of 30 days to maturity and up to 3 years to maturity, with strike

prices to be both in-the-money and out-of-the money values. The total data

consisted of closing option prices on 3 different stock indices {S&P500, FTSE

100 and DAX} on five different, arbitrarily chosen days {01 November 2012, 26
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November 2012, 25 July 2013, 26 July 2013, 29 July 2013}, with 100 options for

each index and day. This gave a total of 15 data sets (one for each index and

each day), from two different years, with 100 prices in each data set. 1

4.2. Methodology

To calibrate and validate the models (Heston model, Bates model and our

MSV model), we randomly separated the option prices with proportion 80 and

20 percent for in-sample and out-of-sample model evaluation respectively, within

each of the fifteen data-sets. Changing this proportion to 90%− 10% or 70%−
30% does not make any qualitative difference to the results. The in-sample data

was used for calibration as well as validation and the out-of-sample data was

used for validation only. For calibration, we solve the following minimization

problem for each of the three models:

min
Θ

N∑

i=1

|Cmarket
i − Cmodel

i (Θ)|2
|Bidi −Aski|4

,

where Θ is the vector of parameters, Cmodel
i (Θ) is the price given by the model

parametrised by Θ, N is the number of options in the in-sample data and

Bidi, Aski are closing bid and ask prices of the ith option, respectively. Cmarket
i

is the market price of the ith option which is obtained as an arithmetic average

of Bidi, Aski for each option. The choice of weight, which is inverse of (option

price spread)4, under-emphasizes any illiquid options during calibration. Three

different powers of bid-offer spread were tried (1, 2, 4) for the choice of weight

and 4 seems to offer the best fit for all of the models. Calibration was done

using Matlab 2012b on a Windows 8 laptop, with Intel i7 processor and 8 Gb

memory. As mentioned earlier, Heston stochastic volatility model and Bates,

i.e. stochastic volatility with jumps model (SVJ) [3] are used as benchmarks for

option pricing models. For Heston and Bates models, 8192 point FFT was used

in approximating the option price evaluation integral.

1Note that the authors have carried out numerical experiments over more data-sets and

the results presented here are deemed to be representative.
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The calibrated models are compared with each other in three different ways:

1. For each in-sample and out-of-sample data set after calibration (30 data-

sets in all - with each of 15 data-sets split into in-sample and out-of-sample

subsets), we will use two commonly used error metrics, viz Mean Relative

Absolute Error (MRAE) and Root Mean Square Error (RMSE). Further,

since computational speed is one of the main selling points of our method,

we will also compare the models on the computational time for model

calibration. The two error metrics are defined below:

MRAE =
1

N

N∑

i=1

|Cmarket
i − Cmodel

i |
Cmarket

i

,

RMSE =

√
√
√
√

N∑

i=1

(Cmarket
i − Cmodel

i )2

N
,

where N is the number of data points. These two error metrics and the

computation time will be reported for all the data-sets.

2. Since we are treating Heston and SVJ models as ‘benchmark’ models, one

expects that any new, sensible model calibrated from the same data-set

as one of these models will yield similar prices for illiquid or non-traded

payoffs. We test whether this is the case for our model by pricing down-

and-out-call barrier options for a range of strikes, barriers and expiration,

using the three models calibrated from the same data-set. We repeat the

experiments with floating strike, arithmetic average Asian calls. Note that

in both these cases, there are no ‘true’ or unique prices and we are simply

expecting the models calibrated from the same data to yield similar prices

for illiquid securities.

3. Finally, one also expects the models calibrated from the same data to

yield similar option price sensitivity parameters, which are crucial in risk

monitoring and hedging purposes. This fact is tested by numerically cal-

culating ∆ = ∂C
∂S and Γ = ∂∆

∂S for options for each of the models, over all

the data sets.
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The next subsection and the accompanying tables and figures in the Appendix

provide representative results to support our arguments.

4.3. Results

The application of out model to the real market data is now discussed.

As mentioned above, we consider three different sets of results: the accuracy

in matching the traded option prices, comparison of illiquid option prices via

simulation and comparison of the sensitivity parameters via numerical approx-

imation.

• The in-sample and the out-of-sample errors (as measured by MRAE and

RMSE in both the cases) of all the data-sets are presented in the Appendix.

The in-sample errors are denoted by MRAE-I, RMSE-I and the out-of-

sample errors are denoted by MRAE-O, RMSE-O. In particular, tables

1-5 provide the achieved errors for data on five different days, with each

table reporting in-sample as well as out-of-sample error metrics for the

three indices for that day. Boldface numbers in each column indicate the

worst value for the error metric obtained for that data subset (in-sample

or out-of-sample subset, for each data-set). With three indices, five days,

two data subsets for each index on each day and two error metrics, we have

a total of 60 error columns to compare the three models (Heston, Bates

and MSV) with. From the tables 1-5, MSV has the worst performance

(out of the three models) only 9 out of 60 times, with one of the two

benchmark models being the worst performer in all of the remaining 51

cases. This supports our modest claim that our model is very competitive

in terms of accuracy with our benchmark models. The other important

set of numbers is the calibration times. As the tables 1-5 show, MSV can

be calibrated within 1.25 seconds in all the fifteen cases, while the lowest

calibration time for the other two models is 41.32 seconds. In summary,

tables 1-5 indicate that we can obtain a very good fit to option prices with

our model at a fraction of the calibration cost, as compared to some of

the existing popular models.
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• Next, we compared the three models for prices of illiquid options, when

calibrated from the same data set. Table 6 outlines the prices obtained

for down and out barrier call options, priced using each of three models

calibrated from the 1st November 2012 DAX and FTSE options data-set.

It may be recalled that down-and-out call barrier option with strikeK and

barrier B has a payoff max(ST −K, 0) at expiration time T unless St < B

at any point between t = 0 and t = T , in which case the option ceases

to exist. Two choices of barriers and strikes for DAX and one choice for

FTSE are considered for demonstrating performance. We simulated the

option prices using Euler discretisation for all the models with 10000 steps

for each sample path and with 10000 sample paths. The obtained prices

and confidence intervals (denoted as CI) for various values of expiration

times T , interest rates r, barriers and strike prices are reported in table 6.

As can be seen, the prices given by our model are within 10% (in the worst

case) of either Heston price or SVJ price. As there is no unique option

price in this case, our aim is simply to establish that our model gives

believable prices, which are not too far from those given by benchmark

models. Moreover, the prices by Heston and SVJ models can themselves

differ by 10% or more. It should also be noted that simulation using our

model is computationally somewhat cheaper than that with either of the

other two models.

We also priced floating strike, arithmetic average Asian call options with

the three models, calibrated from the 1st November 2012 data-sets (for all

the three indices). This generally illiquid option has a payoff max(0, ST −
Sav) at expiration, where Sav represents the time average of the underlying

price between t = 0 and t = T , T being the expiration. In this case as

well, we simulated the option prices using Euler discretisation, 10000 steps

for each sample path and 10000 sample paths. The results are reported

in table 7, along with 95% confidence intervals. As can be seen, the prices

obtained by our model are close to those obtained by SVJ model.
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Similar experiments were performed with other data-sets with the same

qualitative conclusions; hence results are omitted for brevity.

• As a final measure of performance, we compare the three models in terms

of the sensitivity parameters delta and gamma for the options. We com-

pare these parameters over all the fifteen data-sets. For all the models,

approximate values of these parameters are obtained using a central dif-

ference approximation scheme as follows:

∆ ≈ C(S + δ)− C(S − δ)

2δ
and

Γ ≈ C(S + δ)− 2C(S) + 2C(S − δ)

δ2
,

where C(x) indicates option price evaluated at the price of underlying

equal to x, S is the price of the underlying and δ is a small increment.

While more sophisticated methods to calculate these parameters exist (and

it is trivial to find these analytically for our model by differentiation), our

purpose is to compare whether the values given by our method are in the

same range as the values given by the other two methods. A selection of

results is presented in figures 1-3. The remaining results are qualitatively

similar, and are omitted for brevity. Note that the apparent periodicity

is simply a result of the same set of strikes being repeated for different

expirations. For FTSE and S & P data-sets, the sensitivity parameter

estimates from MSV tends to be close to one of the other two models,

except at short maturities. The deviation of MSV delta and gamma from

those given by the other two models is the highest for 25 July 2013 DAX

data set. This is also the only data-set when the RMSE and MRAE errors

for MSV model are the worst among the three models; please see table

3. Gamma values of all the three models at short maturities vary quite

significantly and it is not immediately obvious which values should serve

as benchmark values.

It is also worth mentioning that we did not find any evidence whether MSV

model performs consistently better or consistently worse at short or long time
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maturities, or for in-the-money or out-of-the money options.

5. Conclusion and future research

The contribution of this paper are threefold. First and the main contri-

bution is that we have proposed a new random volatility model, called high

order moments-based stochastic volatility model (or MSV model), in which the

volatility is a function of time with its level being modulated by a random vari-

able. By using a Taylor series expansion of the option price, we have shown

that the model yields an easy formula for approximate option prices and hence

can be calibrated extremely fast. The proposed model can even be implemented

on a spreadsheet. Secondly, we have demonstrated through comprehensive nu-

merical experiments that MSV model is very competitive in terms of accuracy

with Heston model and SVJ model, while being computationally significantly

cheaper to calibrate. Lastly, we have backed up our claims for the usefulness of

our model with simulation experiments for comparison of exotic option prices

as well as comparison of numerically evaluated option price sensitivity parame-

ters. MSV model thus provides a competitive alternative to the existing option

pricing models; it is particularly suitable for high frequency financial trading

due to its speed of calibration.

Note that it is conceptually straightforward to use a semi-parametric model,

by using a piecewise linear γt in (10) which is non-zero for t > t0, to match the

observed option prices even more accurately. The use of such semi-parametric

models with piecewise constant volatilty parameters is quite common in financial

modelling, e.g. it is used in calibrating a LIBOR forward model to observed

caplet prices (see [5] and references therein, for example). Exploring calibration

of such model as well as experiments with derivatives in other markets such as

currencies is the topic of current research.
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6. Appendix

Table 1: 01 November 2012

MRAE-I RMSE-I Time (sec.) MRAE-O RMSE-O

FTSE

Heston 4.79 10.43 148 4.97 14.85

SVJ 3.33 11.29 407.70 3.53 3.38

MSV 3.30 9.62 1.24 2.08 5.77

S&P500

Heston 8.20 5.99 605.72 7.13 6.9

SVJ 1.23 1.38 1419 1.28 0.54

MSV 4.75 3.30 0.44 4.73 3.27

DAX

Heston 2.45 9.74 77.35 3.72 9.51

SVJ 4.75 35.38 771.17 4.38 2.80

MSV 4.37 20.51 0.24 5.60 23.42
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Table 2: 26 November 2012

MRAE-I RMSE-I Time (sec) MRAE-O RMSE-O

FTSE 100

Heston 6.36 12.04 109 6.21 10.45

SVJ 3.09 12.97 378.7 2.98 1.73

MSV 3.33 7.82 0.76 4.32 8.63

S&P 500

Heston 4.68 4.42 193 4.83 5.46

SVJ 3.31 3.13 1115.62 3.2 0.65

MSV 3.81 2.32 0.36 3.84 3.15

DAX

Heston 6.32 55.19 95.87 5.78 46.05

SVJ 7.25 61.94 910.39 6.78 45.85

MSV 4.79 42.80 0.28 4.42 40.38

Table 3: 25 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100

Heston 7.34 22.26 1332.88 6.20 14.31

SVJ 4.50 10.87 671.12 5.15 5.23

MSV 4.15 9.80 0.81 5.27 11.11

S&P 500

Heston 4.78 3.26 252.93 6.28 3.45

SVJ 3.59 2.63 1156.91 3.80 1.79

MSV 3.97 3.11 1.01 4.30 2.34

DAX

Heston 10.32 88.39 145.26 12.56 102.16

SVJ 8.20 89.12 600.71 11.89 34.93

MSV 13.81 110.51 0.71 17.18 114.35
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Table 4: 26 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100

Heston 8.32 23.82 1146.46 7.07 14.75

SVJ 4.50 10.87 671.12 5.15 5.23

MSV 4.45 9.37 0.62 5.83 10.80

S&P 500

Heston 5.00 3.34 257.44 6.30 3.43

SVJ 3.01 2.65 1337.72 3.06 1.79

MSV 3.86 3.06 1.09 1.00 2.43

DAX

Heston 4.33 34.34 286.69 4.19 22.75

SVJ 2.70 26.32 418.64 2.99 4.59

MSV 4.24 17.55 0.65 8.01 18.17

Table 5: 29 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100

Heston 8.66 23.58 667.25 7.70 14.53

SVJ 4.78 12.38 590.72 4.40 4.65

MSV 4.52 9.35 0.85 5.74 10.73

S&P 500

Heston 5.78 3.50 41.32 6.01 3.20

SVJ 2.57 19.43 291.20 3.81 5.87

MSV 4.71 2.99 1.00 5.29 2.30

DAX

Heston 4.26 28.49 134.29 4.47 19.44

SVJ 2.70 26.32 418.64 2.99 4.59

MSV 4.34 18.35 0.64 8.03 18.75
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Table 6: Down-and-out Call Barrier option prices (models calibrated from 1st

November 2012 DAX and FTSE data)

DAX S 7281.18 Barrier 7100.00 Strike 7250.00

SVJ Heston MSV

T r Price CI Price CI Price CI

0.10 0.0051 92.93 90.18 95.67 83.13 80.03 86.24 94.66 91.59 97.72

0.21 0.0049 132.92 122.56 143.27 117.24 112.83 121.65 135.96 130.93 140.99

0.32 0.0052 137.97 132.14 143.80 131.89 126.48 137.30 143.25 137.10 149.41

0.43 0.0056 144.88 138.38 151.39 141.61 135.36 147.86 153.09 145.96 160.23

DAX S 7281.18 Barrier 7200.00 Strike 7300.00

SVJ Heston MSV

T r Price CI Price CI Price CI

0.10 0.0051 55.16 52.92 57.41 53.24 50.75 55.73 60.75 58.00 63.50

0.21 0.0049 63.16 60.17 66.16 60.67 57.36 63.98 68.46 64.58 72.35

0.32 0.0052 69.14 65.52 72.76 67.40 63.43 71.37 73.65 68.99 78.32

0.43 0.0056 77.26 60.28 94.24 73.40 68.67 78.14 78.96 73.48 84.45

FTSE S 5812.06 Barrier 5750.00 Strike 5820.00

SVJ Heston MSV

T r Price CI Price CI Price CI

0.06 0.0051 61.63 55.40 67.86 40.07 38.56 41.58 54.88 51.50 58.25

0.20 0.0049 61.26 53.02 69.49 53.11 50.57 55.66 58.66 53.77 63.54

0.31 0.0052 65.69 55.56 75.82 55.68 52.72 58.65 64.78 58.73 70.83

0.42 0.0056 59.17 49.33 69.01 57.67 54.35 60.98 66.69 60.03 73.35

Table 7: Arithmetic average Asian option with floating strike (1st November

2012, all indices)

SVJ Heston MSV

Index S0 T r Price CI Price CI Price CI

FTSE 5812.06 0.42 0.0056 89.31 86.02 92.59 84.94 82.49 87.38 88.41 85.82 91.00

S&P 1412.16 0.31 0.003 21.56 21.04 22.08 14.88 13.84 15.91 20.44 19.84 21.04

DAX 7281.18 0.10 0.001 60.88 59.18 62.58 56.04 53.93 58.15 61.73 59.91 63.55
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Figure 1: FTSE100: Delta and Gamma on 25.07.2013
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Figure 2: S&P 500:Delta and Gamma on 25.07.2013
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Figure 3: DAX:Delta and Gamma on 25.07.2013
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