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Abstract

This paper uses fractional integration to examine the long-run dynamics and the cyclical structure of US inflation, real risk-free rate, real stock returns, equity premium and price/dividend ratio, annually from 1871 to 2000. It implements a procedure which allows to consider unit roots with possibly fractional orders of integration both at the zero (long-run) and the cyclical frequencies. When focusing exclusively on the former, the estimated order of integration varies considerably, and non-stationarity is found only for the price/dividend ratio. When the cyclical component is also taken into account, the series appear to be stationary but to exhibit long memory with respect to both components in almost all cases. The exception is the price/dividend ratio, whose order of integration is higher than 0.5 but smaller than 1 for the long-run frequency, and is between 0 and 0.5 for the cyclical component. Also, mean reversion occurs in all cases. Finally, six different criteria are applied to compare the forecasting performance of the fractional (at both zero and cyclical frequencies) models with others based on fractional and integer differentiation only at the zero frequency. The results, based on a 15-year horizon, show that the former outperforms the others in a number of cases.
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1.
Introduction

The Efficient Market Hypothesis (EMH) in its weak form states that it is not possible to trade profitably on the basis of historical stock market prices and/or return information (see Fama, 1970). This proposition has been tested in numerous empirical studies by trying to establish whether stock prices are I(1), since if stock prices fully reflect available information, they should follow a random walk process, which implies unpredictable returns, and rules out systematic profits over and above transaction costs and risk premia. Therefore, a finding of mean reversion in returns is seen as inconsistent with equilibrium asset pricing models. As stressed in Caporale and Gil-Alana (2002), the unit root tests normally employed impose rather restrictive assumptions on the behaviour of the series of interest, in addition to having low power. That study instead suggests using tests which allow for fractional alternatives, and finds that US real stock returns are close to being I(0). Fractional integration models have also been used for inflation and interest rates (Shea, 1991; Backus and Zhin, 1993; Hassler and Wolters, 1995; Baillie et al., 1996). 
However, it has become increasingly clear that the cyclical component of economic and financial series is also very important. This has been widely documented, especially in the case of business cycles, for which non-linear (Beaudry and Koop, 1993, Pesaran and Potter, 1997) or fractionally ARIMA (ARFIMA) models (see Candelon and Gil-Alana, 2004) have been proposed. Furthermore, from a time series viewpoint, it has been argued that cycles should be modelled as an additional component to the trend and the seasonal structure of the series (see Harvey, 1985, Gray et al., 1989). The available evidence suggests that the periodicity of the series ranges between five and ten years, in most cases a periodicity of about six years being estimated (see, e.g., Canova, 1998; Baxter and King, 1999; King and Rebelo, 1999).

In view of these findings, the present paper extends the earlier work by Caporale and Gil-Alana (2002) by adopting a modelling approach which, instead of considering exclusively the component affecting the long-run or zero frequency, also takes into account the cyclical structure. Furthermore, the analysis is carried out for the US inflation rate, real risk-free rate, equity premium and price/dividend ratio, in addition to real stock returns. More precisely, we use a procedure which allows testing simultaneously for unit roots with possibly fractional orders of integration at both the zero and the cyclical frequencies. This approach, due to Robinson (1994), has several distinguishing features compared with other methods, the most noticeable one being its standard null and local limit distributions. Moreover, it does not require Gaussianity, a moment condition only of order two being sufficient. Also, modelling simultaneously the zero and the cyclical frequencies can solve at least to some extent the problem of misspecification that might arise with respect to these two frequencies. We are able to show that our proposed method represents an appealing alternative to the increasingly common ARIMA (ARFIMA) specifications found in the literature. 
The structure of the paper is as follows. Section 2 briefly describes the statistical model. Section 3 introduces different versions of the test used for the empirical analysis. Section 4 discusses the application to annual data on the US stock market. Section 5 is concerned with model selection for each time series, and the preferred specifications are compared with other more classical representations. Section 6 contains some concluding comments. 
2.
The statistical model

Let us suppose that {yt, t = 1, 2, …, n} is the time series we observe, which is generated by the model:
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where L is the lag operator (Lyt = yt-1), w is a given real number, d1 and d2 can be real numbers, and ut is I(0), defined as a covariance stationary process with a spectral density function that is positive and finite at any frequency.
Let us first consider the case of d2 = 0. Then, if d1 > 0, the process is said to be long memory at the long-run or zero frequency, and it also defined as ‘strong dependent’, because of the strong association between observations far away in time. The differencing parameter d1 plays a crucial role from both economic and statistical viewpoints. Thus, if d1 ( (0, 0.5), the series is covariance-stationary and mean-reverting, with shocks disappearing in the long run; if d1 ( [0.5, 1), the series is no longer stationary but still mean-reverting, while d1  (  1 amounts to non-stationarity and non-mean-reversion. It is therefore crucial to examine if d1 is smaller than, equal to or higher than 1. For example, if d1 < 1, there is less need for policy action than if d1 ( 1, since the series will return to its original level some time in the future. On the contrary, if d1 ( 1, shocks will have permanent effects, and active policies are required to bring the variable back to its original long-term projection. In fact, this is one of the most hotly debated topics in empirical finance. Lo and MacKinlay (1988) and Poterba and Summers (1988) used variance-ratio tests and found evidence of mean reversion in stock market prices. On the contrary, Lo (1991) used a generalised form of rescaled range (R/S) statistic and found no evidence against the random walk hypothesis for the stock price indices. 

Let us now consider the case of d1 = 0 and d2 > 0. The process is then said to exhibit long memory at a cyclical frequency. This model was introduced by Andel (1986) and has been studied, among others, by Gray et al. (1989, 1994), who showed that the series is stationary if (cos w( < 1 and d2 < 0.50 or if (cos w( = 1 and d2 < 0.25. They also showed that the second polynomial on the left-hand side of (1) can be expressed in terms of the Gegenbauer polynomial 
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for all d2 ( 0, where
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where Γ(x) stands for the Gamma function, and a truncation will be required in (2) and below to make (1) operational. Alternatively, we can use the recursive formula:
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For a formal treatment of Gegenbauer polynomials, see, for example, Szego (1975).  Lildholdt (2002) shows that this model can result from cross-sectional aggregation of certain AR(2) processes, while Bierens (2001) concludes that US real GDP can be well characterised as a model of this form with d2 = 1. These processes, for which the crucial issue is to have a spectral density with a peak at (0, (], were later extended to the case of a finite number of peaks (k-factor Gegenbauer processes) by Giraitis and Leipus (1995), Woodward et al. (1998), Ferrara and Guegan (2001), Sadek and Khotanzad (2004) and others. 
Modelling periodicity in stock market returns has been studied by Andersen and Bollerslev (1997). They found evidence of strong intraday periodicity in return volatility in foreign exchange and equity model markets. To model this kind of phenomenon they noted that the lag-j autocovariance was proportional to cos(λj)2d-1 as j → ∞, which has the long memory property of non-summability. However, these autocovariances also oscillate, changing sign every π/λ lags, a property that is satisfied by the Gegenbauer processes described above. The economic implications in (2) are similar to the case of long memory at the zero frequency. Thus, if d2 < 1 and │μ│ < 1, or if d2 < 0.5 and │μ│ = 1, shocks affecting the cyclical part will be mean-reverting (see Gray et al., 1989; Smallwood and Norrbin, 2006), while d2 ( 1 (with │μ│ < 1) implies an infinite degree of persistence of the shocks. This type of model for the cyclical component has not been much used for financial time series (though some recent examples are the papers of Bisaglia et al., 2003, and Smallwood and Norrbin, 2006), and Robinson (2001, pp. 212-213) suggests its adoption in the context of complicated autocovariance structures.

3.
The testing procedure

Robinson (1994) adopts the following model:
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where yt is the observed time series; zt is a (kx1) vector of deterministic regressors that may include, for example, an intercept (e.g., zt ( 1), or an intercept and a linear time trend (in the case of zt = (1,t)T); ( is a (kx1) vector of unknown parameters; and the regression errors xt are such that:
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where ( is a given function which depends on L, and the (px1) parameter vector (, taking the form:
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for real given numbers d1, ds, d2, … dp-1, integer p, and where ut is I(0), and thus it can be specified as white noise or any type of weakly autocorrelated (i.e. ARMA) structure. Note that the second polynomial in (5) pertains to the case of seasonality (i.e. s = 4 in case of quarterly data, and s = 12 with monthly observations), while the third is the product of different cyclical structures. Under the null hypothesis, defined by:

     Ho:   (  =  0



           (6)

(5) becomes:
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d1 indicating the order of integration at the zero frequency, ds representing to the seasonal degree of integration, and the d’js (j ≠ s) the cyclical structures. This is a very general specification that makes it possible to consider different models under the null. In this paper we are concerned with both the long run and the business cycle structure of the series, and thus we assume that ds = 0 and p = 3. In such a case (5) can be expressed as:

      
[image: image12.wmf],

)

L

L

w

cos

2

1

(

)

L

1

(

)

;

L

(

2

2

1

1

d

2

d

q

+

q

+

+

-

-

=

q

r

         

 (8)

and, similarly, (7) becomes:
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Here, d1 represents the degree of integration at the long run or zero frequency (i.e., the stochastic trend), while d2 refers to the cyclical component. The functional form of the test statistic (denoted by 
[image: image14.wmf]R
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) is described in the Appendix.

Based on Ho (6) and given the model described by (3), (4) and (8), Robinson (1994) showed that, under certain regularity conditions:1 
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where n is the sample size and “→d” means convergence in distribution. Thus, as shown by Robinson (1994), this is a classical large-sample testing situation, and furthermore the tests are efficient in the Pitman sense against local departures from the null. Because 
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 involves a ratio of quadratic forms, its exact null distribution could have been calculated under Gaussianity via Imhof’s algorithm. However, a simple test is approximately valid under much wider distributional assumptions: a test of (6) will reject Ho against the alternative Ha: θ ( 0 if 
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) = (. A similar version of Robinson’s (1994) tests (with d1 = 0) was examined in Gil-Alana (2001), where its performance in the context of unit-root cycles was compared with that of the Ahtola and Tiao’s (1987) tests, the results showing that the former outperforms the latter in a number of cases. Other versions of his tests have been applied to raw time series in Gil-Alana and Robinson (1997, 2001) to test for I(d) processes with the roots occurring at the zero and the seasonal frequencies respectively. 
It is important to note that the above approach is based on testing procedures, and therefore we compute the test statistics for given values of the differencing parameters. Since they are based on asymptotic results, it is important to know how their small-sample behaviour. Robinson (1994) conducted several Monte Carlo experiments based on a simple model with the pole or singularity in the spectrum occurring at the zero frequency, that is, using the model given by (1) with d2 = 0 at different sample sizes. His results indicated that the tests performed relatively well even with small samples. Gil-Alana (2001) conducted similar experiments with cyclical fractional structures, i.e., model (1) with d1 = 0, obtaining similar results; using the two structures, a small simulation study is also conducted in Section 4 in the present paper. Although there are some biases in the sizes of the tests in small samples, their performance significantly improves as the number of observations increases.
4.    An empirical application to the US stock market

Our dataset includes annual series for US inflation, real risk-free rate, real stock returns, equity premium and price/dividend ratio, from 1871 to 2000, leaving the last seven observations for the out of sample forecasting experiment, and is a slightly updated version of the dataset used in Cecchetti et al (1990) (see that paper for further details on sources and definitions).
As a first step, we focus exclusively on the long-run frequency and implement a simple version of Robinson’s (1994) test, which is based on a model given by (3) and (4), with zt = (1,t)T, t ( 1, (0,0)T otherwise, and ((L; () = (1 – L)d+(. Thus, under Ho (6), we test the model:
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for values d = 0, …, (0.01), …, 2, that is, we test from d = 0 to d = 2 with 0.01 increments, and use different types of disturbances. In this context, the test statistic greatly simplifies, taking the form given by 
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 in the Appendix, with (((s) being exclusively defined by (1((s) and 
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 with a standard N(0,1) distribution. Note that testing the null with d = 1 in (12) becomes a classical unit-root test of the same form as those proposed by Dickey and Fuller (1979) and others. 
Table 1 displays the test results under the assumption that the error term ut is white noise. Note that Robinson’s (1994) parametric approach does not require preliminary differencing; thus, it allows to test any real value d, encompassing both stationary (d < 0.5) and nonstationary (d ≥  0.5) hypotheses. The numbers in parentheses are the estimates of d obtained with the Whittle function.2  We also report (in squared brackets) the 95% confidence bands for the non-rejections of d using Robinson’s (1994) approach; these are the values of the differencing parameter d when the null cannot be rejected at the 5% level. We examine separately the cases of (0 = (1 = 0 a priori (i.e., with no regressors in the undifferenced model (11)); (0 unknown and (1 = 0 (with an intercept); and (0 and (1 unknown (an intercept and a linear time trend). The inclusion of a linear time trend may appear unrealistic in the case of financial time series. However, it should be noted that in the context of fractional (or integer) differences, the time trend disappears in the long run. Then, testing Ho (6) in (11) and (12) with d = 1 and white noise ut, the series becomes, for t > 1, a pure random walk process if (1 = 0, and a random walk with an intercept if both (0 and (1 are unknown. The results are rather similar for the three cases of no regressors, an intercept, and an intercept with a linear trend, though they differ substantially from one series to another. For instance, for inflation and the real risk-free rate the values are always higher than 0 but smaller than 0.5, oscillating between 0.07 (inflation rate with a linear trend) and 0.49 (real risk-free rate with no regressors). For real stock returns and equity premium, the values of d for which Ho (6) cannot be rejected oscillate widely around 0, ranging between –0.18 (equity premium with a linear trend) and 0.14 (stock returns with no regressors). Finally, for the price/dividend ratio all the non-rejection values are higher than 0.5, implying non-stationarity with respect to the zero frequency. One can also see that the I(0) hypothesis (i.e. d = 0) is rejected in favour of positive orders of integration in the cases of inflation, real risk free rate and price/dividend ratio, and the I(1) hypothesis (d = 1) is rejected in favour of d < 1 in all series.
 [Insert Tables 1 and 2 about here]

The significance of the results in Table 1 may be partly due to the fact that I(0) autocorrelation in ut has not been taken into account. Thus, we also performed the tests imposing AR(1) disturbances (see Table 2). Higher AR orders were also tried and the results were very similar. For all series, except the price/dividend ratio, the values oscillate around 0, implying that the series may be I(0) stationary. However, for the price/dividend ratio, the values are still statistically significantly above 0, ranging from 0.13 (with a linear time trend) to 0.83 (in the case of no regressors). Comparing the results of Table 2 with those of Table 1, one can see that the orders of integration are smaller by about 0.20 when autocorrelation is allowed for. This might reflect the fact that the estimates of the AR coefficients are Yule-Walker, which entails AR roots that, although automatically less than one in absolute value, can be arbitrarily close to one. Hence, they might compete with the order of integration at the zero frequency when describing the behaviour at such a frequency.


We also examined d, independently of the way of modelling the I(0) disturbances, still at the same zero frequency. For this purpose, we used two semiparametric methods: an approximate local Whittle approach (Robinson, 1995), and an exact local Whittle estimator recently proposed by Phillips and Shimotsu (2005). In the two cases the conclusions were very similar: for inflation and the real risk-free rate some estimates are within the I(0) interval, especially if the bandwidth parameter is small; however, for most values of that parameter, they are not. For real stock returns and the equity premium almost all values are within the I(0) confidence intervals, but not so for the price/dividend ratio. Also, for the latter series, the values are lower than those within the unit root interval, clearly suggesting that d is greater than 0 but smaller than 1. Therefore, the findings are the same as with the parametric procedure, namely there is strong evidence in favour of I(0) stationarity for real stock returns and the equity premium, some evidence of long memory for inflation and the real risk-free rate, and strong evidence of fractional integration for the price/dividend ratio. Of course, stationarity of stock returns and equity premium is not a surprising result, as the absence of long memory (at the zero frequency) in these two series is a well-established fact in the literature (Lo, 1991; Cheung and Lai, 1995, etc.).
The above approach to investigating the long-run behaviour of the series consists in testing a parametric model and estimating two semiparametric ones, relying on the long run-implications of the estimated models. The advantage of the first procedure is the precision gained by providing all the information about the series through the parameter estimates. A drawback is that these estimates are sensitive to the class of models considered, and may be misleading because of misspecification. It is well known that the issue of misspecification can never be settled conclusively in the case of parametric (or even semiparametric) models. However, the problem can be partly addressed by considering a larger class of models. This is the approach used in what follows, where we employ the version of the tests of Robinson (1994) presented in Section 2 that allows simultaneously consider roots at the zero and the cyclical frequencies.

Before discussing the test results we describe a small Monte Carlo experiment we carried out to examine the power properties of the procedure employed below. We suppose that the true model is given by equation (1) with d1 = 0.7; d2 = 0.1 and w = wr = 2π/6, implying long memory and nonstationarity at the long run frequency, stationary long-memory behaviour of the cyclical component, and cycles with a periodicity of about 6 periods.3  We also assume that ut is a white noise, though similar conclusions were obtained under weak autocorrelation for the error term.

[Insert Table 3 about here]

We perform the procedure described in Section 2, testing the null hypothesis for d1o-values equal to 0, 0.1, …, 2, and d2o = -0.5, -0.4, …, 1.5, and r = 6, for sample sizes n = 120, 240, 360, 480 and 960 observations. We generated Gaussian series using the routines GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 replications in each case. Table 3 reports the rejection frequencies of the testing procedure at the 5% significance level, and the values corresponding to d1o = 0.7 and d2o = 0.1 indicate the empirical size of the test. One can see that if the sample size is small (e.g. n = 120) the size of the test is slightly above its nominal value, though it approximates the 5% level with n. Looking at local departures from the null (e.g., d1 = 0.6 & d2 = 0.1, and d1 = 0.8 & d2 = 0.1), one finds that the rejection frequencies with n = 120 are 0.202 and 0.207 respectively. For n = 240 the corresponding values are 0.392 and 0.334, and, for n = 480 or 960, they are higher than 0.9 in all cases. For the remaining departures from the null, the rejection probabilities are higher than 0.9 in practically all cases, even for small sample sizes. Similar conclusions were reached with other values of d1 and d2.
The procedure is then applied to the five series under investigation. We consider the model given by (3) and (4), with ((L; () as in (8) and zt = (1,t)T. Thus, under Ho (6), the null model becomes:
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and, if d2 = 0, the model reduces to the case previously studied of long memory exclusively at the long-run or zero frequency. We assume that w = wr = 2(j/n, j = n/r, r indicating the number of time periods per cycle, and j referring to the frequency with a pole or singularity in the spectrum.

[Insert Table 4 about here]


We first computed the statistic 
[image: image29.wmf]R
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 given in the Appendix for values of d1 and d2 = -0.50, …, (0.10), …, 2, and r = 2, …, (1), …,  n/2,4  assuming that ut is white noise. For brevity’s sake, we do not report the results for all statistics. In brief, the null hypothesis (6) was rejected for all values of d1 and d2 if r was smaller than 4 or higher than 9, implying that, if a cyclical component is present, its periodicity is constrained to be between 4 and 9 years. This is consistent with the empirical finding in Canova (1998), Burnside (1998), King and Rebelo (1999) and others that cycles have a periodicity between five and ten years. We report in Table 4 the values of 
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 for the (d1, d2) cases where the null cannot be rejected at the 5% level in at least one of the series for the case of an intercept and r = 6. The results with a linear time trend were very similar, and its coefficient was found to be insignificantly different from zero in virtually all cases. Note that the test statistic is obtained from the null differenced model, which is assumed to be I(0), and therefore standard t-tests apply. Further, we focus on r = 6 since the non-rejection values with r = 4, 5, 7, 8 and 9 were found to be a subset of those obtained with r = 6. We see that for inflation and the real risk-free rate the non-rejection values oscillate between 0.10 and 0.40 for d1, and between 0 and 0.3 for d2. They are slightly smaller for the two orders of integration in the case of stock returns and the equity premium, in some cases even being negative. Finally, for the price/dividend ratio, the values of d1 range between 0.5 and 1, while d2 seems to be constrained between 0 and 0.5.5
[Insert Figure 1 about here]


In order to have a more precise view about the non-rejection values of d1 and d2, we re-computed the tests but this time for a narrower grid, with d1, d2 = -0.50, …, (0.01), …, 2. Figure 1 displays the regions of (d1, d2) values where Ho cannot be rejected at the 5% level. It shows that the combination of non-rejection (d1o, d2o)-values results in clusters, though there are also some values far from the clusters in four of the five series examined. These values of the statistics are in fact close to the critical values of the 
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- distribution. Essentially, the series can be grouped into three categories: inflation and the real risk-free rate; real stock returns and the equity premium; finally, the price/dividend ratio. Starting with the first group (inflation and the real risk-free rate), we observe that the values of d1 range between 0.1 and 0.5 while d2 seems to lie between 0 and 0.3. Thus, there appears to be a slightly higher degree of integration at the long-run or zero frequency compared to the cyclical one. For real stock returns and equity premium, the values of both orders of integration oscillate around 0. Finally, for the price/dividend ratio the values of d1 range between 0.5 and 1, while d2 is between 0 and 0.5, implying non-stationarity with respect to the zero frequency but stationarity with respect to the cyclical component, and mean reversion with respect to both. Consequently, shocks to the latter series will disappear in the long run, with those affecting the cyclical part tending to disappear faster than those having an impact on its long-run or trending behaviour. 

5.
Forecasting and comparisons with other models

In this section, we try first to determine the best model specification for each time series. Then, we compare the selected models with other approaches based on I(0) and I(1) hypotheses.


Given the lack of efficient procedures for jointly estimating the parameters in the model using fractional integration and cyclical fractional integration in (13) and (14), we use the following strategy: after computing the values of the test statistic for d1, d2 = -0.50, …, (0.01), …, 2 and r = 2, …, (1), .., n/2, for the three cases of no regressors, an intercept and an intercept with a linear time trend, we discriminate between these three deterministic cases on the basis of the significance of the estimated coefficients in (13), and choose the values of d1, d2 and r which produce the lowest statistic. Note that, for each r, the values of d1 and d2 producing the lowest statistic should be an approximation to the maximum likelihood estimates since the procedure employed in the paper is based on the LM principle and uses the Whittle function, which is an approximation to the likelihood function. The selected model for each time series is reported in the second column of Table 5. We find that, for the inflation rate and the real risk-free rate, both orders of integration are between 0.10 and 0.30, the order of integration at zero (d1) being slightly higher than the cyclical one (d2), which is found to be insignificant in both series; for real stock returns and the equity premium, the values of the d’s are close to zero, being slightly negative for the zero frequency and statistically insignificant in all cases; finally, the price-dividend ratio appears to be non-stationary at the long-run frequency (d1 = 0.68), and stationary with d2 close to zero and insignificant (d2 = 0.09) for the cyclical component. Note that all models are based on white noise disturbances, the reason being that, as mentioned in the previous section, the inclusion of autocorrelated disturbances did not alter the conclusions except for the price/dividend ratio - for this series the associated AR coefficient was very close to one, thus making the estimate of d1 invalid. Moreover, the cyclical fractional polynomial can be considered as an alternative to the ARMA specification when describing the short-run dynamics of the series.

[Insert Table 5 about here]


The third column in Table 5 reports the selected fractional models taking into account only the component affecting the long run or zero frequency, while the fourth refers to the case of integer differentiation with respect to such a frequency. In both cases, we model the cyclical structure using ARMA specifications. Starting with the case of fractional integration, we observe that the highest degree of integration is obtained for the price/dividend ratio (d = 0.73), followed by inflation (d = 0.19). Both coefficients are statistically significantly different from zero. For the remaining three series, the values are close to zero and insignificant (0.04 for the real risk-free rate; 0.01 for real stock returns, and –0.04 for the equity premium). Here we have followed the same strategy as above, i.e., testing sequentially for a grid of values of d, and then choosing the value that produces the lowest statistic in absolute value.6 Imposing integer orders of integration, for the first four variables, we use d = 0 while for the price-dividend ratio we try both d = 0 and 1. For the short-run components we use ARMA(p, q) models, with p, q ( 3, and choose the best specification using both LR tests and likelihood criteria (AIC, BIC). We see that, for most of the series, the short-run structure can be described by simple MA models, the only exceptions being the real risk-free rate where an AR(1) process is imposed, and the inflation rate (ARMA(2,1)).

Next, we compare the various models in terms of their forecasting performance using standard measures of forecast accuracy such as the Theil’s U, the mean absolute percentage error (MAPE), the mean-squared error (MSE), the root-mean-squared error (RMSE), the root-mean-percentage-squared error (RMPSE) and mean absolute deviation (MAD).  

The three selected time series models (fractional and cyclical differencing, FCD; fractional differencing, FD; and integer differencing, ID) for each of the series were used to generate the following 7-year-ahead out-of-sample forecasts. Each forecast value was calculated and compared with the actual value of the series. Then, the above six criteria were used to rank the three forecasting models for each series. The ranking in terms of forecasting performance is given in Table 6, and is based on the average value of the forecasts for each criterion. We observe that for inflation and the real risk-free rate the FCD model outperforms FD and ID according to all the criteria. For real stock returns and the equity premium, the ID specification seems to be the most adequate, while for the price/dividend ratio the results are mixed: on the basis of the MAPE, MSE, RMPSE and RMSE criteria, the fractional and cyclical (FCD) model emerges as the best specification, while the other two criteria, MAD and Theil’s U, suggest that the simple fractional model (with d = 0.73) is the most adequate one.

[Insert Table 6 about here]

In Table 7 we focus on the forecasts for inflation and the price/dividend ratio over a longer time-horizon. The reason for focusing on these two series is that they are the two that clearly exhibit non-zero (and fractional) degrees of integration. We consider the forecasting performance of the three types of models discussed above (FCD, FD and ID) over the period 1979 – 2000, based on specifying and estimating the models over the time period 1871 – 1978. The new selected models are displayed in Table 7 and they are very similar to those presented in Table 5.

[Insert Tables 7 and 8 about here]


Table 8 reports the MSE forecasts for these two series, using the time horizons h = 1, 3, 6, 9, 12, 15 and 20. In many cases the lowest MSEs are obtained with the fractional cyclical models. However, the MSE measure used for comparing the relative forecasting performance of our models is a purely descriptive device. There exist several statistical tests for comparing different forecasting models. One of these tests, widely employed in the time series literature, is the asymptotic test for a zero expected loss differential of Diebold and Mariano (DM, 1995) as modified by Harvey, Leybourne and Newbold (M-DM, 1997). Harvey et al. (1997) and Clark and McCracken (2001) show that the M-DM statistic performs better than the DM, and also that the power of the test is improved when p-values are computed with a Student distribution.

Using the M-DM test statistic, we further evaluate the relative forecast performance of the different models by making pairwise comparisons. In Table 8 we indicate with an asterisk, for each prediction-horizon, the rejections of the null hypothesis that the forecast performance of model i and j is equal in favour of the one-sided alternative that model i’s performance is superior at the 5% significance level.7  Given the fact that we have three potential models for each prediction and we make pairwise comparisons, only the preferred model - when there is consistency for all three specifications - is indicated with an asterisk, cases not being chracterised by consistency being left out. We note here that over long horizons the fractional cyclical model produces for both series significantly superior forecasts. Similar results were obtained when using other sets of forecasts based on rolling window statistics.

5.
Conclusions

In this paper we have examined the time series behaviour of five series related to the US stock market by means of statistical techniques based on long memory processes. Specifically, we have used a procedure that allows testing for unit roots with integer or fractional orders of integration, not only at the zero but also at a cyclical frequency.

Initially, we focused only on the long-run or zero frequency, applying a suitable version of Robinson’s (1994) parametric tests along with various semiparametric estimation procedures. The order of integration estimated using these methods varies considerably from one series to another, but non-stationarity is found only in the case of the price/dividend ratio.

However, the non-rejection values obtained for the orders of integration at the zero frequency could be partly due to the fact that attention has not been paid to other possible (cyclical) frequencies of the process. Thus, we adopted a method suitable for simultaneously testing for the presence of roots at the zero and the cyclical frequencies. The results suggest that the periodicity of the series ranges between 5 and 10 years, which is consistent with most of the empirical literature on cycles finding a periodicity of about six years (see, e.g., Baxter and King, 1999, Canova, 1998, and King and Rebelo, 1999). Further, the series can be grouped into three different categories: inflation and the real risk-free rate, with the order of integration at the zero frequency, d1, fluctuating between 0.1 and 0.5 and d2 (cyclical integration) between 0.1 and 0.3; real stock returns and the equity premium, with both orders of integration fluctuating around 0; and finally, the price/dividend ratio, with d1 ranging between 0.5 and 1 and d2 between 0 and 0.5. Thus, we found evidence of stationary long memory with respect to both components for inflation and the real risk-free rate; I(0) stationarity for stock returns and the equity premium; and nonstationary long memory at the zero frequency but stationarity at the cyclical component for the price/dividend ratio. Finally, the fact that all orders of integration are smaller than 1 suggests that mean reversion takes place with respect to both components for all series, though the rate of adjustment varies across them. The selected models for each time series were then compared with other approaches based on fractional and integer differentiation at the zero frequency. Six forecasting criteria were employed and the results showed that the fractional cyclical model outperforms the others in a number of cases.


Further research could be carried out using this framework. For instance, the tests can be extended to allow for more than one cyclical component. The existence of multiple cycles in financial series has yet to be thoroughly examined empirically, and might be of interest in the context of various latent variates. One could consider, for instance, two cyclical frequencies, one governing business expansions and the other business contractions, and if one dominates the other, it would be of interest to check if the presence of the second frequency affects the performance of the test results. Along the same lines, time varying parameter models for the fractional differencing parameters and the seasonal-cyclical ω-parameter could be specified, although the relevant theory has not yet been fully developed. Further, daily data could also be used to examine intraday periodicity, e.g. in the volatility of asset returns. As an alternative to the cyclical fractional approach, Andersen and Bollerslev (1997) modelled periodicity in returns by means of deterministic weights. The inclusion of deterministic components is possible in Robinson’s (1994) set-up, and its significance can be tested by means of a joint test of the deterministic regressors and the order of integration. 
Appendix 

We observe {(yt, zt), t = 1,2,…n}, and suppose that the I(0) ut in (4) have parametric spectral density given by:
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Unless g is a completely known function (e.g., g ( 1, as when ut is white noise), we need to estimate the nuisance parameter (, for example by 

, where T* is a suitable compact subset of Rq Euclidean space, and
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 is the periodogram of ut evaluated under the null at the Fourier discrete frequencies
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The test statistic, which is derived through the Lagrange Multiplier (LM) principle, takes the form:
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where n is the sample size, and
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	TABLE 1

	Confidence intervals of the non-rejection values of d using 
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 in Appendix 1 with ((L; () = (1 – L)d+(  and white noise ut

	Time Series 
	No regressors
	An intercept
	A linear trend

	INFLATION RATE
	[0.12  (0.25)  0.45]
	[0.13  (0.25)  0.46]
	[0.07  (0.22)  0.44]

	R. RISK-FREE RATE
	[0.19  (0.31)  0.49]
	[0.17  (0.30)  0.47]
	[0.15  (0.29)  0.47]

	R. STOCK RETURN
	[-0.09  (0.00)  0.14]
	[-0.10  (0.00)  0.13]
	[-0.10  (0.00)  0.13]

	EQUITY PREMIUM
	[-0.12  (-0.04)  0.10]
	[-0.14  (-0.04)  0.10]
	[-0.18  (-0.07)  0.08]

	PRICE / DIVIDEND 
	[0.72  (0.83)  1.02]
	[0.58  (0.73)  0.92]
	[0.59  (0.73)  0.92]


We test the null hypothesis: d = do in the model (1-L)dxt = (t. In parentheses, the Whittle estimates for d.
	TABLE 2

	Confidence intervals of the non-rejection values of d using 
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 in Appendix 1 with ((L; () = (1 – L)d+(  and AR(1) ut

	Time Series 
	No regressors
	An intercept
	A linear trend

	INFLATION RATE
	[-0.13  (-0.07)  0.19]
	[-0.18  (-0.08)  0.20]
	[-0.44  (-0.18)  0.11]

	R. RISK-FREE RATE
	[-0.11  (0.04)  0.33]
	[-0.08  (0.04)  0.28]
	[-0.14  (-0.06)  0.27]

	R. STOCK RETURN
	[-0.17  (-0.04)  0.20]
	[-0.25  (-0.04)  0.18]
	[-0.26  (-0.05)  0.18]

	EQUITY PREMIUM
	[-0.22  (-0.11)  0.00]
	[-0.30  (-0.12)  0.00]
	[-0.41  (-0.19)  -0.04]

	PRICE / DIVIDEND 
	[0.24  (0.72)  0.83]
	[0.15  (0.55)  0.58]
	[0.13  (0.48)  0.60]


We test the null hypothesis: d = do in the model (1-L)dxt = ut;  ut = (ut-1 + (t. In parentheses, the Whittle estimates for d.
	TABLE 3

	Rejection frequencies of Robinson’s (1994) procedure described in Section 3

	d1
	d2
	T = 120
	T = 240
	T = 360
	T = 480
	T = 960

	0.7
	-0.2
	0.851
	0.996
	1.000
	1.000
	1.000

	0.8
	-0.2
	0.833
	0.995
	1.000
	1.000
	1.000

	0.9
	-0.2
	0.842
	0.995
	1.000
	1.000
	1.000

	1.0
	-0.2
	0.859
	0.998
	1.000
	1.000
	1.000

	1.1
	-0.2
	0.888
	0.999
	1.000
	1.000
	1.000

	0.5
	-0.1
	0.880
	1.000
	1.000
	1.000
	1.000

	0.6
	-0.1
	0.691
	0.985
	1.000
	1.000
	1.000

	0.7
	-0.1
	0.535
	0.916
	0.995
	0.999
	1.000

	0.8
	-0.1
	0.524
	0.896
	0.991
	0.998
	1.000

	0.9
	-0.1
	0.578
	0.934
	0.992
	1.000
	1.000

	1.0
	-0.1
	0.679
	0.985
	1.000
	1.000
	1.000

	1.1
	-0.1
	0.816
	1.000
	1.000
	1.000
	1.000

	0.5
	 0  
	0.693
	0.973
	0.999
	1.000
	1.000

	0.6
	 0  
	0.323
	0.717
	0.911
	0.975
	1.000

	0.7
	 0  
	0.143
	0.338
	0.550
	0.731
	0.967

	0.8
	 0  
	0.160
	0.377
	0.615
	0.769
	0.995

	0.9
	 0   
	0.305
	0.723
	0.944
	0.987
	1.000

	1.0
	 0. 
	0.601
	0.974
	1.000
	1.000
	1.000

	1.1
	 0  
	0.898
	1.000
	1.000
	1.000
	1.000

	0.4
	 0.1
	0.870
	0.995
	1.000
	1.000
	1.000

	0.5
	 0.1
	0.558
	0.896
	0.976
	0.998
	1.000

	0.6
	 0.1
	0.202
	0.392
	0.578
	0.688
	0.925

	0.7
	 0.1
	0.075
	0.068
	0.054
	0.047
	0.051

	0.8
	 0.1
	0.207
	0.334
	0.490
	0.588
	0.912

	0.9
	 0.1
	0.521
	0.878
	0.977
	0.996
	1.000

	1.0
	 0.1
	0.856
	0.996
	1.000
	1.000
	1.000

	0.4
	0.2
	0.857
	0.993
	1.000
	1.000
	1.000

	0.5
	0.2
	0.583
	0.912
	0.985
	0.999
	1.000

	0.6
	0.2
	0.319
	0.598
	0.781
	0.887
	0.998

	0.7
	0.2
	0.331
	0.561
	0.736
	0.843
	0.989

	0.8
	0.2
	0.621
	0.904
	0.976
	0.991
	1.000

	0.9
	0.2
	0.897
	0.996
	0.999
	1.000
	1.000

	0.5
	0.3
	0.746
	0.986
	1.000
	1.000
	1.000

	0.6
	0.3
	0.662
	0.964
	0.998
	1.000
	1.000

	0.7
	0.3
	0.795
	0.973
	0.999
	1.000
	1.000


10,000 replications were used in each case. In bold, the empirical size of the test. The nominal size is 0.050.
	TABLE 4

	Testing Ho (6) in (3), (4) and (8) with zt ( 1, w = wr, r = 6 and white noise ut

	d1
	d2
	INFLATION
	RISK RATE
	STOCK RT
	PREMIUM
	PRICE / DIV

	-0.10
	-0.10
	39.49
	51.69
	4.03
	4.84
	236.63

	-0.10
	 0.00
	36.06
	55.05
	3.38*
	0.69*
	254.45

	-0.10
	 0.10
	36.86
	58.98
	4.64*
	0.90*
	265.93

	-0.10
	 0.20
	37.25
	60.01
	6.61
	3.03*
	272.99

	 0.00
	-0.10
	28.25
	30.70
	0.14*
	4.35*
	170.35

	 0.00
	 0.00
	16.73
	24.09
	0.43*
	0.54*
	186.83

	 0.00
	 0.10
	13.29
	23.03
	2.96*
	1.81*
	197.19

	 0.00
	 0.20
	12.66
	22.78
	6.60
	5.29*
	202.97

	 0.10
	-0.10
	25.25
	22.51
	1.32*
	5.49*
	112.99

	 0.10
	 0.00
	8.42
	9.72
	1.95*
	2.74*
	125.92

	 0.10
	 0.10
	3.04*
	6.19
	5.64*
	5.11*
	133.05

	 0.10
	 0.20
	2.72*
	6.26
	10.39
	9.57


	137.62

	 0.10
	  0.30
	4.70*
	7.72
	15.49
	14.84
	141.08

	 0.20
	-0.10
	24.90
	20.29
	3.41*
	6.91
	68.85

	 0.20
	 0.00
	5.70*
	4.50*
	5.18*
	5.48*
	76.73

	 0.20
	 0.10
	0.20*
	0.50*
	9.78
	8.87
	81.48

	 0.20
	 0.20
	1.09*
	1.78*
	15.19
	13.99
	83.13

	 0.20
	 0.30
	4.84*
	5.32*
	20.69
	19.63
	82.15

	 0.30
	-0.10
	25.10
	20.09
	5.89*
	8.23
	38.97

	 0.30
	 0.00
	5.65*
	3.62*
	8.78
	8.19
	41.56

	 0.30
	 0.10
	0.98*
	0.40*
	14.06
	12.43
	43.27

	 0.30
	 0.20
	3.32*
	3.19*
	19.81
	18.00
	43.31

	 0.30
	 1.00
	26.02
	25.29
	32.69
	34.37
	4.71*

	  0.40
	 0.00
	6.45
	4.45*
	12.23
	10.73
	19.63

	 0.40

 0.10
	 0.10
	3.30*
	2.70*
	17.98
	15.68
	19.12

	 0.40
	 0.70
	34.13
	23.32
	31.40
	31.13
	5.73*

	 0.40
	 0.80
	26.00
	25.28
	31.98
	32.02
	5.08*

	 0.40
	 0.90
	27.50
	26.85
	32.64
	32.80
	5.11*

	 0.50
	 0.00
	7.49
	5.84*
	15.38
	13.12
	7.89

	 0.50
	 0.10
	6.14
	5.83*
	21.44
	18.62
	6.30

	 0.50
	 0.20
	11.24
	11,36
	27.34
	24.62
	5.81*

	 0.50
	 0.30
	18.20
	18.46
	32.72
	30.33
	5.86*

	 0.60
	 0.00
	8.59
	7.38
	18.23
	15..40
	2.70*

	 0.60
	 0.10
	9.02
	9.15
	24.48
	21.31
	1.00*
*

	 0.60
	 0.20
	15.22
	15.70
	30.31
	27.36
	1.25*

	 0.60
	 0.30
	22.70
	23.22
	35.51
	32.95
	2.59*

	 0.60
	 0.40
	29.91
	30.36
	40.08
	37.95
	4.70*

	 0.70
	 0.00
	9.77
	9.00
	20.82
	17.60
	1.22*

	 0.70
	 0.10
	12.04
	12.49
	27.15
	23.80
	0.04*

	 0.70
	 0.20
	19.01
	19,76
	32.86
	29.84
	1.26*

	 0.70
	 0.30
	26.72
	27.46
	37.85
	35.28
	3.77*

	 0.80
	 0.00
	11.09
	10.73
	23.20
	19.75
	1.72*

	 0.80
	 0.10
	14.97
	15.66
	29.54
	26.13
	1.39*

	  0.80
	 0.20
	22.57
	23.51
	35.10
	32.10
	3.57*

	 0.90
	 0.00
	12.57
	12.58
	25.41
	21.85
	3.19*

	 0.90
	 0.10
	17.86
	18.77
	31.70
	28.33
	3.82*

	 1.00
	 0.00
	14.22
	14.56
	27.49
	23.90
	5.05*


The non-rejection values of the null hypothesis at the 5% significance level are in bold and with an asterisk.

	FIGURE 1

	Non-rejection values of d1 and d2 in (3), (4) and (8) with zt = 1, r = 6 and white noise ut
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d1 represents the order of integration at the zero frequency while d2 is the cyclical one.
	TABLE 5

	Selected models for each time series

	 Models  / Series
	Fractional and cyclical differencing (FCD)
	Fractional differencing           (FD)
	Integer differencing           (ID)

	Inflation rate
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	Real risk free rate
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	Real stock returns
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	Equity premium
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	Price–Dividend ratio
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Standard errors and the 95% confidence bands for the fractionally differencing parameters are in parentheses.
	TABLE 6

	Overall ranking of forecasting performance using different criteria

	Series
	Model
	Theil’s U
	MAPE
	MSE
	RMSE
	RMPSE
	MAD

	Inflation rate
	FCD
	2
	1
	1
	1
	1
	1

	
	FD
	1
	2
	2
	2
	2
	3

	
	ID
	3
	3
	3
	3
	3
	2

	

	Real risk 

free rate
	FCD
	1
	1
	1
	1
	1
	1

	
	FD
	3
	3
	3
	3
	3
	2

	
	ID
	2
	2
	2
	2
	2
	3

	

	Real stock 

return
	FCD
	3
	3
	3
	3
	2
	3

	
	FD
	2
	2
	2
	2
	3
	2

	
	ID
	1
	1
	1
	1
	1
	1

	

	Equity 

premium
	FCD
	3
	3
	3
	3
	3
	3

	
	FD
	1
	2
	2
	2
	2
	1

	
	ID
	2
	1
	1
	1
	1
	2

	

	Price – Dividend ratio
	FCD
	2
	1
	1
	1
	1
	2

	
	FD
	1
	2
	2
	2
	2
	1

	
	ID
	3
	3
	3
	3
	3
	3


FCD stands for Fractional and Cyclical Differentiation, FD for Fractional Differentiation, and ID for Integer Differentiation. Seven out-of-sample observations were considered in each case and the ranking was computed on the basis of the average value of the forecasts for each criterion.

	TABLE 7

	Selected models for Inflation and Price/Dividend ratio (1871 – 1978)

	
	FCD
	FD
	ID

	Inflation
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    Standard errors and the 95% confidence bands for the fractionally differencing parameters are in parentheses.
	TABLE 8

	MSE forecasts for inflation and price/dividend ratio

	a) inflation

	
	1 period
	3 period
	6 period
	9 period
	12 period
	15 period
	20 period

	FCD
	1.3732
	1.6221
	1.5902*
	1.6114
	1.6110*
	1.7071*
	1.8985*

	FD
	1.2165*
	1.4093
	1.7735
	1.6551
	1.6895
	1.8112
	2.0113

	ID
	1.3233
	1.3921
	1.7483
	1.6643
	1.7420
	1.9921
	2.0987

	b) price/dividend ratio

	
	1 period
	3 period
	6 period
	9 period
	12 period
	15 period
	20 period

	FCD
	2.2819
	2.0420
	1.9617*
	1.8447*
	3.3683*
	3.9035*
	4.3536*

	FD
	2.3850
	2.1614
	2.1920
	2.9957
	4.9017
	4.8902
	4.5567

	ID
	2.3480
	1.7070
	2.4346
	2.1656
	4.2935
	5.1132
	4.9808


*: indicates that the corresponding model outperforms the others at the 5% significance level.
1 These conditions are very mild and consist of a martingale difference assumption for ut in (4) and some technical assumptions to be satisfied by (1(() and (2(() as specified in Appendix 1


2 They are in fact the values of d corresponding to the lowest statistics when using Robinson’s (1994) test for a range of values of d. Simulations experiments indicate that this is a good approximation to the maximum likelihood estimates.


3 We focus on the case of w  = 2π6/T since this is the standard business cycle frequency employed in the macroeconomic literature with annual data.


4 Note that, in the case of r = 1, the model reduces to the case previously studied of long memory exclusively at the long-run frequency.


5 It should be noted that, although d2 = 0 cannot be statistically rejected in most cases, in general, it is “less clearly non-rejected” than for positive values of d2. (By “less clearly non-rejected” we mean that the value of the test statistic is closer to the critical value. See the results in Table 5).


6 We discriminate between the white noise and the AR specifications by using LR tests. Also, note that for the real risk-free rate, the inclusion of AR disturbances substantially reduces the order of integration at the zero frequency (from 0.25 in the FCD model to 0.04 in FD).


7 Note that, since the forecasts are measured by MSE, the quadratic loss function is � EMBED Equation.3  ��� = � EMBED Equation.3  ��� 
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