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Abstract 

In a recent paper, Yoon (2003) shows that the Stochastic Unit Root (STUR) model is 
closely related to long memory processes, and, in particular, that it is a special case of 
an I(d) process, with d = 1.5. In this paper we further examine this issue by using 
parametric and semiparametric techniques for modelling long memory. In particular, 
we extend the analysis by considering both non-normality and seasonality, and shed 
light, theoretically and by means of Monte Carlo methods, on the relationship between 
the seasonal STUR and the seasonal I(d) models. The results show that, even in the case 
of I(1.5) underlying processes, the methods, which are specifically designed for testing 
I(d) statistical models are not appropriate for testing the STUR model. Moreover, they 
have in some cases very low power against STUR alternatives.  
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1. Introduction 

It is widely agreed in the time series literature that many economic and financial time 

series exhibit strong autocorrelation that can be modelled as a long memory process. 

Examples are the studies of Diebold and Rudebusch (1989), Baillie (1996), Gil-Alana 

and Robinson (1997), inter alia. On the other hand, McCabe and Tremayne (1995), 

Leybourne, McCabe and Treymaine (LMT, 1996), Leybourne, McCabe and Mills 

(LMM, 1996) and Granger and Swanson (1997) introduced the Stochastic Unit Root 

(STUR) model, which is a non-linear process that has a unit root only on average. 

Empirical applications using STUR models include those of Wu and Chen (1997), 

Bleaney et al. (1999) and Sollis et al. (2000). 

 The literature on long memory and STUR models has evolved almost 

independently over the years. Granger (2000) examined the relationship between the 

two types of models, and, more recently, Yoon (2003) provided both theoretical and 

Monte Carlo evidence that the STUR model is a particular case of fractional integration 

with an order of integration equal to 1.5. This is an important result, which implies that 

taking first differences will not transform a STUR model into a stationary invertible 

process. Also, it is in stark contrast to the usual assumption that economic and financial 

series are I(1) (or possibly I(2)) processes. Yoon (2003) applied the tests of LMT (1996) 

to different I(d) processes, and showed that the highest rejection frequencies were those 

corresponding to d = 1.5. A similar experiment was also conducted by Taylor and van 

Dijk (2002). 

 The objective of this paper is three-fold. Firstly, we show by means of Monte 

Carlo methods that there is no direct link between the STUR model and various widely 

used techniques for modelling long memory. Moreover, these techniques for estimating 

and testing the fractionally differencing parameter can lead to serious bias in the 
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inference about the stochastic nature of the process, especially in finite samples. 

Secondly, we investigate these issues in the context of non-normal disturbances. Finally, 

we extend the STUR model to the seasonal case, examining its relation to seasonal 

fractional integration. The outline of the paper is the following. Section 2 briefly 

describes the STUR and the I(d) statistical models. In Section 3 we present other 

parametric and semiparametric methods for testing I(d) statistical models, which have 

been extensively employed in the literature. Section 4 analyses the relationship between 

the two types of models by means of Monte Carlo experiments. In Section 5 we extend 

the Monte Carlo analysis to the case of non-Gaussian disturbances. Section 6 examines 

the case of seasonality, and more Monte Carlo evidence is provided on the relationship 

between the two types of model. Section 7 contains some concluding comments. 

 

2. The STUR and I(d) models 

A simple Stochastic Unit Root (STUR) model can be specified as follows: 

,...,2,1,)1( 1 =++= − txx tttt εη    (1) 

 ,0,0 ≤= txt     (2) 

where ηt ≈ i.i.N(0, σ2); εt ≈ i.i.N(0,  and η),2
εσ t and εt are assumed to be independent of 

each other. Clearly, if σ2 = 0, (1) becomes a standard unit root model and, given that Eηt 

= 0, xt is stationary for some periods and mildly explosive for others. However, on 

average, xt may seem to be I(1), according to standard tests. The STUR model can be 

thought of as a special case of the time-varying parameter processes discussed in Andel 

(1976), with the special feature that the variable is nonstationary. In this sense, STUR 

models combine unit roots and time-varying parameter characteristics which are 

relevant for economic time series. Thus, for example, Wu and Chen (1997) found 

evidence supporting a STUR specification in the case of monthly nominal exchange 
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rates, Bleaney et al. (1999) for real exchange rates, and Sollis et al. (2000) for several 

stock market indices. 

Next, we describe the I(d) model. For the moment, we define an I(0) process {ut, 

t =  0, ±1, ...} as a covariance stationary process with a spectral density function that is 

positive and finite at the zero frequency. In this context, we say that a given raw time 

series {xt, t =  0, ±1, ...} is I(d) if: 

...,2,1,)1( ==− tuxL tt
d ,   (3) 

with xt = 0 for t ≤ 01, where ut is I(0) and where L stands for the lag operator (Lxt = xt-1). 

Note that the polynomial above can be expressed in terms of its Binomial expansion, 

such that for all real d, 

∑
∞

=

−
−

+−=−⎟⎟
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⎝

⎛
=−
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2 ....
2
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j

jjd LddLdL
j
d

L  

The macroeconomic literature has stressed the cases of d = 0 and 1; however, d can be 

any real number. Clearly, if d = 0 in (1), xt = ut, and a “weakly autocorrelated” xt is 

allowed for. However, if d > 0, xt is said to be a long memory process, also called 

“strongly autocorrelated”, and so named because of the strong association between 

observations widely separated in time. As d increases above 0.5 and towards 1, xt can be 

viewed as becoming “more nonstationary”, in the sense, for example, that the variance 

of the partial sums increases in magnitude. These processes were initially introduced by 

Granger (1980, 1981), Granger and Joyeux (1980) and Hosking (1981) (though earlier 

work by Adenstedt, 1974, and Taqqu, 1975 shows an awareness of its representation), 

and were theoretically justified in terms of aggregation of ARMA processes with 

randomly varying coefficients by Robinson (1978) and Granger (1980). Similarly, 

Cioczek-Georges and Mandelbrot (1995), Taqqu et al (1997), Chambers (1998) and 

                                                           
1   For an alternative definition of fractionally integrated process (the type I class), see Marinucci and 
Robinson (1999). 
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Lippi and Zaffaroni (1999) also use aggregation to motivate long memory processes, 

while Parke (1999) uses a closely related discrete time error duration model. Moreover, 

Diebold and Inoue (2001) report another source of long memory based on structural 

change/regime-switching. Empirical applications based on fractional models like (3) can 

be found, inter alia, in the studies of Diebold and Rudebusch (1989), Baillie and 

Bollerslev (1994), Gil-Alana and Robinson (1997) and Gil-Alana (2000).2

The I(d) model is a particular case of a wider class of models exhibiting long 

memory. The literature provides several definitions of long memory. The first two 

definitions are as follows. Given a discrete covariance stationary process, say {xt}, with 

autocovariance function E[(xt – Ext)(xt-j – Ext)] = γj, according to McLeod and Hipel 

(1978), the process is a long memory one if: 

∑
=

−=
∞→ γ

Tj

Tj
jTlim     (4) 

is infinite.  

A second way to characterise this process is in the frequency domain. For that 

purpose, suppose that {xt} has spectral density, denoted f(λ), and defined as 

 ∑
∞=

∞−=
π≤λ<π−λγ

π
=λ

j

j
j .,jcos

2
1)(f    (5)  

Then, we say that xt displays the property of long memory if the spectral density 

function has a pole at some frequency λ in the interval [0, π]. A popular technique 

within this framework is the fractionally integrated model described by (3). It may be 

shown that this model satisfies:3

,cfor,jasjc 1
1d2

1j ∞<∞→≈γ −   (6) 

and 

                                                           
2   See also Baillie (1996) for an interesting review of I(d) models. 
3  Condition (6) is satisfied by the fractional ARIMA(0, d, 0) case. However, when including ARMA 
components, it is required that all γj be eventually non-negative.  
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,c0for,0asc)(f 2
d2

2 ∞<<→λλ≈λ +−  (7) 

where the symbol ≈  means that the ratio of the left-hand-side and the right-hand-side 

tends to 1 as j → ∞ in (6), and as λ → 0+ in (7). Conditions (6) and (7) are not always 

equivalent but Zygmund (1995, Cap.V Sect. 2) and Yong (1974) provide conditions 

under which both  expressions are equivalent. 

 A final definition of long memory involves the rate of growth of variances of 

partial sums, 

∑
=

+ ==
T

1t
tT

1d2
T .xSwith),T(O)S(Var    (8) 

There is a tight connection between this variance-of-partial-sum definition of long 

memory and the previous ones, since the spectral density at zero frequency is the limit 

of (1/T)ST. Yoon (2003) related STUR and I(d) models using the third of the above 

definitions. He showed that if σ2 in (1) is O(T-2k) and k > 0, then the variance of the 

partial sums of xt grows at a rate corresponding to an I(1.5-k) process. In the standard 

STUR model, k = 0, so that a STUR is I(1.5). 

 

3. Estimation and testing of I(d) statistical models 

There exist many approaches to estimating and testing the fractional differencing 

parameter d (see, e.g., Geweke and Porter-Hudak, 1983; Dahlhaus, 1989; Sowell, 1992; 

Tanaka, 1999; Dolado et al., 2002; etc.). In this paper we will use various parametric 

and semiparametric methods, already employed in the literature, which have several 

distinguishing features compared with alternative ones. First, we present a parametric 

testing procedure due to Robinson (1994a) which is the most efficient method for 

appropriate (fractional) alternatives. Then, we outline a semiparametric estimation 

procedure. 
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3.1 A parametric testing procedure 

Robinson (1994a) proposed a Lagrange Multiplier (LM) test of the null hypothesis: 

oo ddH =: ,      (9) 

in a model given by: 

    ...,2,1,' =+= txzy ttt β ,     (10) 

and (3), for any real value do, where yt is the time series we observe; β = (β1, …, βk)’ is 

a (kx1) vector of unknown parameters; and zt is a (kx1) vector of deterministic 

regressors that may include, for example, an intercept, (e.g., zt ≡ 1), or an intercept and a 

linear time trend (in case of zt = (1,t)’).  Clearly, xt is the series that is filtered through 

the fractional differencing polynomial in (3). Specifically, the test statistic is given by: 
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I(λj) is the periodogram of ut evaluated under the null, i.e., 
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and the function g above is a known function coming from the spectral density function 

of ut,  
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στσλ ≤<−= gf  

Note that this test is purely parametric and, therefore, it requires specific modelling 

assumptions about the short memory specification of ut. Thus, if ut is white noise, g ≡ 1, 

and if it is an AR process of the form φ(L)ut = εt, g = |φ(eiλ)|-2, with σ2 = V(εt), so that 

the AR coefficients are a function of τ.4

 Based on the null hypothesis Ho (9), Robinson (1994a) established that under 

certain regularity conditions:5

.,ˆ 2
1 ∞→→ TasR d χ             (12) 

Thus, unlike in other procedures, we are in a classical large-sample testing situation for 

the reasons explained in Robinson (1994a), who also showed that the tests are efficient 

in the Pitman sense against local departures from the null. Because  involves a ratio of 

quadratic forms, its exact null distribution can be calculated under Gaussianity via 

Imhof’s algorithm. However, a simple test is approximately valid under much wider 

distributional assumptions: an approximate one-sided 100α% level test of H

R̂

o (9) against 

the alternative: Ha: d > do (d < do) will be given by the rule: “Reject Ho if r̂  > zα ( r̂   < - 

zα)”, where the probability that a standard normal variate exceeds zα is α.  This version 

of the tests of Robinson (1994a) was used in empirical applications in Gil-Alana and 

Robinson (1997) and Gil-Alana (2000), and other versions of his tests, based on 

seasonal (quarterly and monthly) and cyclical data respectively, can be found in Gil-

Alana and Robinson (2001) and Gil-Alana (1999, 2001). 

 There exist other procedures for estimating and testing parametrically the 

fractionally differenced parameter, some of them also based on the likelihood function. 

As in other standard large-sample testing situations, Wald and LR test statistics against 

                                                           
4  If ut is AR(1): ut = αut-1 + εt, g(λ; τ) = |1 - αeiλ|-2, so that α = τ. 
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fractional alternatives will have the same null and local limit theory as the LM tests of 

Robinson (1994a). Sowell (1992) essentially employed such a Wald testing procedure, 

but his method requires an efficient estimate of d, and, while such estimates can be 

obtained, no closed-form formulae are available, and therefore the LM procedure of 

Robinson (1994a) seems computationally more attractive. 

A problem with parametric procedures is that the model must be correctly 

specified; otherwise, the estimates can be inconsistent. In fact, misspecification of the 

short run components of the process may invalidate the estimation of the long run 

parameter d. This is the main reason for also using here the semiparametric procedure 

which we now describe. 

 

3.2 A semiparametric estimation procedure 

There exist several methods for estimating the fractional differencing parameter in a 

semiparametric way. Examples are the log-periodogram regression estimator (LPE), 

initially proposed by Geweke and Porter-Hudak (1983) and modified later by Künsch 

(1986) and Robinson (1995a), the average periodogram estimator (APE, Robinson, 

1994b) and the quasi maximum likelihood estimator (QMLE, Robinson, 1995b). In this 

paper we use the QMLE of Robinson (1995b) which we now describe. 

The QMLE is essentially a local “Whittle estimator” in the frequency domain, 

based on a band of frequencies that degenerates to zero. The estimator is implicitly 

defined by: 

,log12)(logminarg
1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

m

j
jd m

ddCd λ (13) 

                                                                                                                                                                          
5   These conditions are very mild, regarding technical assumptions to be satisfied by ψ(λ). 
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where I(λj) is the periodogram of the raw series, and d ∈ (-0.5, 0.5).6 Under 

finiteness of the fourth moment and other mild conditions, Robinson (1995a) proved 

that: 

,Tas)4/1,0(N)dd̂(m do ∞→→−  

where do is the true value of d, with the only additional requirement that m → ∞ slower 

than T. Robinson (1995a) showed that m must be smaller than T/2 to avoid aliasing 

effects. A multivariate extension of this estimation procedure can be found in Lobato 

(1999).  

Other methods also based on semiparametric models (like the APE and the LPE) 

have been applied to economic time series (see, e.g. Gil-Alana, 2002). However, in the 

present study we use the QMLE, primarily because of its computational simplicity. Note 

that this also means that we do not need to employ any additional user-chosen numbers 

in the estimation (which is instead required by the LPE and the APE). Also, we do not 

have to assume Gaussianity in order to obtain an asymptotic normal distribution, the 

QMLE being more efficient than the LPE.  

 

4. Simulation results 

Yoon (2003) showed that the STUR and the I(d) models are related, specifically that in 

the standard STUR model, d = 1.5. Several Monte Carlo experiments have confirmed 

this result. Taylor and van Dijk (2002) carried out an extensive simulation study of the 

performance of the STUR tests of LMT (1996) applied to I(d) processes. They noticed 

that the rejection frequencies of the tests initially increased with d, and then decreased 
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as d → 2. New simulations were conducted by Yoon (2003), who obtained the highest 

frequencies at d = 1.5. In these two papers, I(d) processes are generated, and then the 

tests of LMM (1996) are performed. Here, the experimental setup is the opposite. We 

generate a STUR model, obtained from Gaussian series, using the routines GASDEV 

and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), and then perform the 

tests for long memory described in Section 3. 

 In Tables 1 – 4 we report the rejection frequencies of the version of the tests of 

Robinson (1994a) described in Section 3.1, testing Ho (9) in (3) for values do = 0, (0.25), 

2, for sample sizes T = 100, (100), 500, 1000 and 2000. In Tables 1 and 3 the tests are 

performed assuming that ut in (3) is white noise, while Tables 2 and 4 report the results 

assuming that ut is an AR(1) process. First, in Tables 1 and 2, we assume that the true 

model is a simple STUR model as in (1). In Tables 3 and 4, the true model is given by 

(1) with 

...,2,1,1 =+= − tttt νηαη    (14) 

where α = 0.50 and vt is i.i.d. (0, σ2) independent of εt. Then, yt is a first order random 

coefficient autoregressive (RCAR(1)) model with mean unit root, called STUR by LMT 

(1996) and Granger and Swanson (1997). 

(Insert Tables 1 and 2 about here) 

 In Table 1, where ut is assumed to be white noise, we notice, first of all,  that the 

lowest rejection probabilities are obtained at d = 0.75 with T = 100, and at d = 0.50 for 

all the other sample sizes. Increasing T, the rejection frequencies also increase, and, if T 

≥ 500, the values are exactly 1 for all d except 0.50. If we assume that ut is AR(1), the 

rejection frequencies are relatively high in all cases, being higher than 0.9 for d ≥ 0.25 

even for T = 100. Here, the lowest probabilities are obtained at d = 0. This might be due 

                                                                                                                                                                          
6   Velasco (1999a,b) has recently shown that the fractionally differencing parameter can also be 
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to the fact that the AR estimates are of the Yule-Walker type, which entails roots that, 

though automatically less than 1 in absolute value, can be arbitrarily close to unity, and 

thus might be competing with d in describing nonstationarity. 

(Insert Tables 3 and 4 about here) 

 Tables 3 and 4 are analogous to Tables 1 and 2 but are based on the alternative 

model given by (1) and (14). The rejection frequencies for the case of white noise 

disturbances are given in Table 3. We can see that the values are much lower than in 

Table 1, and the lowest probabilities are obtained at d = 0.75 for all T, and, although the 

values increase with T, they only reach 1 for d = 1.75 and 2 even with T = 2000. If ut is 

AR(1), the lowest probabilities are obtained with d = 0, which is consistent with the 

results in Table 2, and, although the values in this table are smaller, they are in all cases 

close to 1 for T = 2000. 

 The results reported in Tables 1 – 4 clearly contradict the findings of Yoon 

(2003), who argues that the STUR model corresponds to an I((1.5) model. Two points 

are noteworthy. The first is that Robinson’s (1994a) procedure is fully parametric and, 

therefore, specifies the model in its complete form, i.e., 

,x)L1( tt
do ε=−  

in Tables 1 and 3, and 

,,)1( 1 ttttt
d uuuxL o εα +==− −  

in Tables 2 and 4, both of which are clearly different from the theoretical STUR model 

(1) (and (14)). The second is related to the definition of I(d) used by Yong (2003). This 

is based on the concept of the rate of growth of the variances of the partial sums, while 

the I(d) model used in Robinson’s (1994a) tests is simply defined as a process that is 

I(0) once it has been do-differenced. Thus, though both processes share the same rate of 

                                                                                                                                                                          
consistently and semiparametrically estimated in nonstationary contexts by means of tapering. 
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decay of the autocorrelations, they are not identical, explaining why the tests reject the 

null with d = 1.5. 

(Insert Tables 5 and 6 about here) 

In order to solve the first of these two problems, we report, in Tables 5 and 6, the 

rejection probabilities using the semiparametric method presented in Section 3.2. Using 

the same do-values and sample sizes as in Tables 1 – 4, we calculate the rejection 

frequencies for values of the bandwidth parameter m = T/10, T/5, T/4, T/3 and (T/2)-1.7 

Table 5 uses as the true model the simple STUR model (1), while its more elaborated 

form (1) and (14)) is used in Table 6. We notice that the null of d = 1.5 is always 

rejected with a probability higher than 0.9, which is consistent with the results produced 

by the parametric procedure. Using the simple model (1), the lowest rejection 

probabilities are obtained at d = 1 (Table 5), implying that the STUR specification is 

easily confused with the I(1) process. Using the model with AR(1) components ((1) and 

(14))  the lowest values are obtained now at d = 0.5  (Table 6). 

To sum up, both parametric and semiparametric methods tend to reject the 

hypothesis of I(1.5) processes for the STUR model. Moreover, they have in some cases 

very low power against the STUR alternatives and tend not to reject the null of d = 0.5 

or d = 1. This is a serious problem for the practitioner, since if the true process follows a 

STUR model, the two methods described in Section 3 can produce spurious results 

about the order of integration of the series, with the implications that this might have in 

terms of theorising, modelling and/or forecasting. 

 

5. The STUR model with non-Gaussian disturbances 

                                                           
7 Some attempts to calculate the optimal bandwidth numbers have been examined in Delgado and 
Robinson (1996) and Robinson and Henry (1996). However, in the case of the Whittle estimator 
(QMLE), the use of optimal values has not been theoretically justified. 
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In this section, the Monte Carlo experiments conducted in Section 4 are extended to the 

case where the true model is a STUR one, but non-Gaussian disturbances are used. In 

particular, we assume a t3 distribution in εt, in ηt, and in both of them. The results were 

very similar in all cases. Thus, we only report those corresponding to the t3 distribution 

for εt. 

(Insert Tables 7 – 10 about here) 

 Tables 7 - 10 are analogous to Tables 1 – 4, but based on non-Gaussian 

disturbances. The results are completely in line with those obtained in the case of 

Gaussian ut. In Table 7 we consider the simple STUR model (1), and perform 

Robinson's (1994a) tests with a white noise ut. (Note that Gaussianity is not required in 

the tests of Robinson, 1994a – the only requirement is a moment condition of order 2). 

We see that, similarly to Table 1, if T = 100, the lowest values occur at d = 0.50. When 

imposing AR(1) ut in the specification of the tests (Table 8), the lowest values occur at d 

= 0, and the same pattern as in Tables 7 and 8 is obtained when using the more 

elaborated versions of the STUR (STUR*) model in Tables 9 and 10. 

 

6. A seasonal STUR model and seasonal fractional integration 

The STUR specification described in Section 2 can be easily extended to the seasonal 

case by considering the model, 

,...,2,1,)1( =++= − txx tsttt εη    (15) 

where s again corresponds to the number of time periods within a year (s = 4 with 

quarterly data; s = 12, monthly; etc.), with ηt ≈ N(0, σ2) and εt ≈ i.i.N(0,  If σ).2
εσ

2 = 0, xt 

becomes a seasonal unit root model of the form advocated by Dickey, Hasza and Fuller 

(DHF, 1984), Hylleberg, Engle, Granger and Yoo (HEGY, 1990), Tam and Reinsel 
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(1997) and others. As in the non-seasonal case, given that Eηt = 0, on average xt may 

appear to be a seasonal I(1) process. 

On the other hand, in fractional contexts, the I(d) model presented in Section 2 

can be extended to 

...,2,1,)1( ==− tuxL tt
ds ,   (16) 

where ut is I(0), and d can be any real number. Here, the seasonal fractional polynomial 

can also be expressed in terms of its Binomial expansion, such that, for all real d, 
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We can test the same null hypothesis (9) in the model given by (10) and (16) and the 

test statistic takes a similar form as  in (11), the only difference being in the estimated 

residuals, which are now: 
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Robinson (1994a) showed that the test is still characterised by the same standard null 

limit distribution. Empirical applications of this version of Robinson’s (1994a) tests can 

be found in Gil-Alana and Robinson (2001) and Gil-Alana (2002), inter alia. 

 It can be easily proved that, after recursive substitutions, (15) becomes: 

,)1(x jst

s
1tint

0j

s
1jint

0k
t skt −

⎥⎦
⎤

⎢⎣
⎡ −

=

⎥⎦
⎤

⎢⎣
⎡ −

=
ε

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

η+= ∑ ∏
−

 

implying that 
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2tint
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1jint

0k
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s ε+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

η+η=− ∑ ∏
⎥⎦
⎤

⎢⎣
⎡ −

=

⎥⎦
⎤

⎢⎣
⎡ −

=
−−  

Following Abadir (2003), it can be proved that (1-Ls)xt can be approximated by taking 

the linear terms in the product of the ,sη  such that (1-Ls)xt can be expressed as + 

ε

1ttS −η

t, where St =  and some of the ∑
=

t

1i
i ,x sη will be exactly 0 for the non-seasonal values. 

Using now the same proposition as in Yoon (2003), if σ2 = O(T-2k) and k > 0, the 

variance of the partial sums of x, , grows at a rate corresponding to I(1.5 – k) 

behaviour. Thus, in the standard case, k = 0, so that the seasonal STUR model is I(1.5). 

⎟
⎠
⎞

⎜
⎝
⎛
∑
=

T

1i
ixVar

In Tables 11 - 14 we perform the same type of analysis as before, but focus on 

the seasonal case with s = 4. Thus, we compute the rejection frequencies of the new 

tests, for the same (do/T) combinations as in the previous cases, using the versions of 

Robinson's (1994a) tests for seasonality. In Tables 11 and 13 we assume that ut is a 

white noise process, while Tables 12 and 14 report the results based on a seasonal 

AR(1) process of the form: 

,4 ttt uu εα += −  

with α = 0.50 and white noise εt. Tables 12 and 14 consider a more elaborated version 

of the STUR model, consisting of (1) and  

,4 ttt v+= −ηαη        (17) 

with white noise vt, independent of εt. 

(Insert Tables 11 -14 about here) 

 As expected, the same problem encountered before occurs again, and the null 

hypothesis of d = 1.5 is almost always rejected. Starting with the simple STUR model, 

the lowest rejection frequencies occur at d = 0.5 when white noise disturbances are 
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assumed, and at d = 0.25 with AR(1) ut (in Tables 11 and 12 respectively), and the same 

happens when the model with (16) and (17) is employed (Tables 13 and 14). 

 Thus, as in the non-seasonal case, we do not find evidence of I(1.5) in the 

seasonal STUR model when using the seasonal version of Robinson’s (1994a) tests, 

and, more worryingly, if the sample size is not very large, the tests tend not to reject the 

null for d = 0.25 or d = 0.5 in many cases. 

 

7. Conclusions 

This paper makes a contribution to the recent literature by examining if long memory 

and stochastic unit root models, which have evolved independently, are in fact closely 

related as claimed by other authors as well (see, e.g., Granger, 2000). Specifically, in a 

recent study, Yoon (2003) shows that the Stochastic Unit Root (STUR) model is a 

special case of an I(d) process, with d = 1.5.8 The present paper further examines this 

issue by means of parametric and semiparametric techniques for modelling long 

memory. Moreover, it extends the analysis by considering both non-normality and 

seasonality, and shows theoretically and by means of Monte Carlo simulations that the 

seasonal stochastic unit root model and seasonal long memory are closely related.  

Our findings suggest that the current practice of assuming that most economic 

variables are I(1) or at most I(2) is not warranted, which obviously has important 

implications for economic modelling and policy-making. However, they also call into 

question the adequacy of STUR specifications for many economic and financial series. 

More precisely, both seasonal and non-seasonal STUR models imply I(1.5) processes, 

in the sense that the autocorrelation function of their first differences decays at a 

hyperbolic rate according to the law O(T2d+1). Our analysis, which is based on various 

                                                           
8   Other, more elaborate, STUR models have been proposed by Granger and Swanson (1997), Brandt 
(1996), Pourahmandi (1989), etc. 
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parametric and semiparametric techniques for estimating the fractional differencing 

parameter widely used in the literature, shows that, indeed, the same hyperbolic decay 

property characterises both types of models. However, it also implies a strong rejection 

of the null hypothesis represented by this particular law of motion. In fact, if one has 

reasons to assume that the process underlying the series is of a STUR type, we would 

highly recommend using at the outset procedures which are specifically designed for 

testing STUR specifications, such as those developed by McCabe and Tremayne (1995), 

Leybourne et al. (LMM, 1996), Leybourne et al. (LMT, 1996), Distaso (2003) etc. On 

the other hand, if the correlograms show some evidence of a hyperbolic decay in the 

autocorrelations and there is no prior evidence of a STUR process, standard approaches 

based on I(d) statistical models should be used.  
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TABLE 1 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR model 

True model:   STUR model (1) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.857 0.517 0.129 0.126 0.386 0.726 0.887 0.942 0.960 

200 0.918 0.632 0.239 0.330 0.694 0.893 0.969 0.987 0.994 

300 0.933 0.721 0.302 0.420 0.790 0.945 0.988 0.996 0.997 

400 0.945 0.737 0.384 0.495 0.825 0.957 0.991 0.998 0.999 

500 1.000 1.000 0.666 1.000 1.000 1.000 1.000 1.000 1.000 

1000 1.000 1.000 0.726 1.000 1.000 1.000 1.000 1.000 1.000 

2000 1.000 1.000 0.898 1.000 1.000 1.000 1.000 1.000 1.000 

 

 

TABLE 2 

Rejection frequencies of Robinson’s (1994a) tests (with AR (1) ut) in a STUR model 

True model:   STUR model (1) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.402 0.752 0.908 0.959 0.975 0.988 0.993 0.995 0.998 

200 0.705 0.903 0.970 0.991 0.997 0.999 0.999 0.999 0.999 

300 0.793 0.950 0.991 0.997 0.999 1.000 1.000 1.000 1.000 

400 0.829 0.959 0.992 0.997 0.998 1.000 1.000 1.000 1.000 

500 0.862 0.960 0.992 0.999 0.999 1.000 1.000 1.000 1.000 

1000 0.943 0.991 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

2000 0.958 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
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TABLE 3 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR* model 

True model:   STUR* model in (1) and (9) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.848 0.583 0.309 0.259 0.410 0.579 0.758 0.861 0.902 

200 0.903 0.712 0.411 0.382 0.573 0.774 0.894 0.938 0.965 

300 0.941 0.773 0.477 0.422 0.650 0.848 0.942 0.967 0.984 

400 0.941 0.789 0.525 0.500 0.739 0.887 0.952 0.978 0.992 

500 0.953 0.789 0.589 0.546 0.743 0.889 0.952 0.980 0.999 

1000 0.963 0.853 0.687 0.668 0.818 0.917 0.971 0.986 0.998 

2000 0.966 0.883 0.754 0.746 0.862 0.941 0.999 1.000 1.000 

 

 

 

TABLE 4 

Rejection frequencies of Robinson’s (1994a) tests (with AR (1) ut) in a STUR* model 

True model:   STUR* model in (1) and (9) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.385 0.571 0.768 0.867 0.920 0.949 0.967 0.974 0.979 

200 0.556 0.772 0.894 0.942 0.965 0.980 0.981 0.982 0.987 

300 0.632 0.836 0.937 0.967 0.987 0.991 0.992 0.992 0.994 

400 0.728 0.880 0.951 0.975 0.988 0.991 0.993 0.994 0.996 

500 0.735 0.883 0.956 0.988 0.990 0.999 0.999 1.000 1.000 

1000 0.821 0.927 0.981 0.995 0.998 0.999 1.000 1.000 1.000 

2000 0.881 0.959 0.987 0.999 0.999 1.000 1.000 1.000 1.000 
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TABLE 5 

Rejection frequencies of Robinson (1995a) tests in a simple STUR model 

m T  /  d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 1.000 0.810 0.810 0.470 0.340 0.190 0.839 0.970 1.000 

200 1.000 1.000 0.949 1.000 0.150 0.720 0.980 1.000 1.000 

300 1.000 1.000 0.980 1.000 0.059 0.899 1.000 1.000 1.000 

400 1.000 1.000 0.990 1.000 0.079 0.910 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 0.070 0.930 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 0.050 1.000 1.000 1.000 1.000 

 

 

T/10 

2000 1.000 1.000 1.000 1.000 0.070 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.920 1.000 0.140 0.670 1.000 1.000 1.000 

200 1.000 1.000 0.970 1.000 0.079 0.930 1.000 1.000 1.000 

300 1.000 1.000 1.000 1.000 0.079 0.970 1.000 1.000 1.000 

400 1.000 1.000 1.000 1.000 0.079 0.990 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 0.120 1.000 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 0.059 1.000 1.000 1.000 1.000 

 

 

T/5 

2000 1.000 1.000 1.000 1.000 0.012 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.920 1.000 0.200 0.790 1.000 1.000 1.000 

200 1.000 1.000 0.970 1.000 0.090 0.949 1.000 1.000 1.000 

300 1.000 1.000 1.000 1.000 0.079 0.980 1.000 1.000 1.000 

400 1.000 1.000 1.000 1.000 0.079 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 0.080 1.000 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 0.039 1.000 1.000 1.000 1.000 

 

 

T/4 

2000 1.000 1.000 1.000 1.000 0.059 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.959 1.000 0.110 0.880 1.000 1.000 1.000 

200 1.000 1.000 1.000 1.000 0.051 0.970 1.000 1.000 1.000 

300 1.000 1.000 1.000 1.000 0.059 0.990 1.000 1.000 1.000 

400 1.000 1.000 1.000 1.000 0.070 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 0.080 1.000 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 0.059 1.000 1.000 1.000 1.000 

 

 

T/3 

2000 1.000 1.000 1.000 1.000 0.079 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.990 1.000 0.059 0.970 1.000 1.000 1.000 

200 1.000 1.000 1.000 1.000 0.039 1.000 1.000 1.000 1.000 

300 1.000 1.000 1.000 1.000 0.039 0.990 1.000 1.000 1.000 

400 1.000 1.000 1.000 1.000 0.070 1.000 1.000 1.000 1.000 

500 1.000 1.000 1.000 1.000 0.050 1.000 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 0.030 1.000 1.000 1.000 1.000 

 

 

(T/2)-1 

2000 1.000 1.000 1.000 1.000 0.059 1.000 1.000 1.000 1.000 
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TABLE 6 

Rejection frequencies of Robinson (1995a) tests in a simple STUR* model 

m T  /  d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 1.000 0.140 0.140 0.005 0.860 0.860 1.000 1.000 1.000 

200 1.000 1.000 0.051 1.000 0.949 0.990 1.000 1.000 1.000 

300 1.000 1.000 0.039 1.000 0.970 0.990 1.000 1.000 1.000 

400 1.000 1.000 0.029 1.000 0.970 1.000 1.000 1.000 1.000 

500 1.000 1.000 0.029 1.000 0.970 1.000 1.000 1.000 1.000 

1000 1.000 1.000 0.012 1.000 1.000 1.000 1.000 1.000 1.000 

 

 

T/10 

2000 1.000 1.000 0.012 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.170 1.000 0.870 0.930 0.990 1.000 1.000 

200 1.000 1.000 0.100 1.000 0.930 0.980 0.990 1.000 1.000 

300 1.000 1.000 0.090 1.000 0.930 0.990 1.000 1.000 1.000 

400 1.000 1.000 0.079 1.000 0.971 0.990 1.000 1.000 1.000 

500 1.000 1.000 0.070 1.000 0.940 0.990 1.000 1.000 1.000 

1000 1.000 1.000 0.039 1.000 0.959 1.000 1.000 1.000 1.000 

 

 

T/5 

2000 1.000 1.000 0.019 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.230 0.980 0.820 0.940 0.980 1.000 1.000 

200 1.000 1.000 0.160 1.000 0.880 0.970 0.990 1.000 1.000 

300 1.000 1.000 0.140 1.000 0.899 0.959 1.000 1.000 1.000 

400 1.000 1.000 0.090 1.000 0.940 0.990 1.000 1.000 1.000 

500 1.000 1.000 0.100 1.000 0.910 0.990 1.000 1.000 1.000 

1000 1.000 1.000 0.110 1.000 0.889 1.000 1.000 1.000 1.000 

 

 

T/4 

2000 1.000 1.000 0.130 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.300 1.000 0.750 0.959 0.970 1.000 1.000 

200 1.000 1.000 0.259 1.000 0.790 0.979 1.000 1.000 1.000 

300 1.000 1.000 0.209 1.000 0.829 0.980 0.990 1.000 1.000 

400 1.000 1.000 0.190 0.990 0.850 0.970 1.000 1.000 1.000 

500 1.000 1.000 0.170 1.000 0.860 0.990 1.000 1.000 1.000 

1000 1.000 1.000 0.200 1.000 0.829 0.980 1.000 1.000 1.000 

 

 

T/3 

2000 1.000 1.000 0.232 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 0.411 1.000 0.671 0.959 0.959 1.000 1.000 

200 1.000 1.000 0.479 1.000 0.630 0.959 0.980 1.000 1.000 

300 1.000 1.000 0.410 1.000 0.670 0.970 1.000 1.000 1.000 

400 1.000 1.000 0.360 0.990 0.730 0.970 0.990 1.000 1.000 

500 1.000 1.000 0.410 1.000 0.690 0.980 0.990 1.000 1.000 

1000 1.000 1.000 0.430 1.000 0.670 0.959 1.000 1.000 1.000 

 

 

(T/2)-1 

2000 1.000 1.000 0.497 1.000 1.000 1.000 1.000 1.000 1.000 
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TABLE 7 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR model 

True model:   STUR model with a t3 distribution for εt

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.853 0.557 0.155 0.116 0.378 0.707 0.874 0.941 0.977 

200 0.911 0.676 0.240 0.237 0.679 0.875 0.965 0.984 0.993 

300 0.914 0.731 0.352 0.414 0.766 0.927 0.970 0.988 0.996 

400 0.966 0.749 0.339 0.511 0.837 0.957 0.986 0.997 0.997 

500 0.964 0.793 0.418 0.523 0.868 0.973 0.994 0.999 0.999 

1000 0.978 0.852 0.555 0.671 0.941 0.991 0.998 0.999 0.999 

2000 1.000 0.999 0.997 0.999 1.000 1.000 1.000 1.000 1.000 

 

 

 

TABLE 8 

Rejection frequencies of Robinson’s (1994a) tests (with AR (1) ut) in a STUR model 

True model:   STUR model with a t3 distribution for εt

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.3931 0.715 0.875 0.957 0.985 0.997 0.999 0.999 0.999 

200 0.672 0.899 0.972 0.990 0.995 1.000 1.000 1.000 1.000 

300 0.769 0.930 0.985 0.993 1.000 1.000 1.000 1.000 1.000 

400 0.838 0.958 0.984 0.993 1.000 0.999 1.000 1.000 1.000 

500 0.864 0.971 0.995 0.997 1.000 1.000 1.000 1.000 1.000 

1000 0.945 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2000 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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TABLE 9 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR* model 

True model:   STUR* model with a t3 distribution for εt

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.871 0.589 0.261 0.221 0.371 0.570 0.738 0.843 0.893 

200 0.932 0.714 0.382 0.352 0.548 0.785 0.882 0.947 0.977 

300 0.922 0.754 0.490 0.472 0.679 0.849 0.932 0.967 0.984 

400 0.956 0.775 0.519 0.525 0.730 0.888 0.955 0.985 0.994 

500 0.955 0.796 0.590 0.545 0.745 0.907 0.975 0.986 0.997 

1000 0.966 0.876 0.683 0.677 0.835 0.929 0.975 0.993 0.998 

2000 0.998 0.996 0.983 0.984 0.998 1.000 1.000 1.000 1.000 

 

 

 

TABLE 10 

Rejection frequencies of Robinson’s (1994a) tests (with AR (1) ut) in a STUR* model 

True model:   STUR* model with a t3 distribution for εt

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.364 0.590 0.774 0.871 0.934 0.956 0.979 0.983 0.985 

200 0.555 0.782 0.898 0.940 0.972 0.979 0.980 0.986 0.999 

300 0.639 0.842 0.939 0.967 0.985 0.998 0.998 0.997 0.997 

400 0.715 0.874 0.948 0.977 0.985 0.991 0.993 0.995 0.997 

500 0.735 0.887 0.949 0.979 0.987 0.994 0.995 0.994 0.998 

1000 0.819 0.937 0.983 0.997 0.998 1.000 0.999 0.999 0.999 

2000 0.989 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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TABLE 11 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR model 

True model:   Seasonal STUR model (16) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.351 0.150 0.046 0.071 0.229 0.482 0.683 0.801 0.874 

200 0.792 0.459 0.188 0.241 0.526 0.786 0.897 0.944 0.963 

300 0.898 0.610 0.258 0.333 0.662 0.868 0.947 0.973 0.982 

400 0.930 0.667 0.300 0.399 0.740 0.926 0.968 0.989 0.995 

500 0.931 0.705 0.356 0.454 0.784 0.934 0.977 0.987 0.996 

1000 0.963 0.791 0.471 0.600 0.882 0.975 0.995 0.997 0.998 

2000 0.999 0.976 0.945 0.869 0.991 0.993 0.999 1.000 1.000 

 

 

 

TABLE 12 

Rejection frequencies of Robinson’s (1994ª) tests (with AR (1) ut) in a STUR model 

True model:   Seasonal STUR model (16) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.083 0.157 0.339 0.654 0.852 0.934 0.973 0.988 0.991 

200 0.289 0.232 0.488 0.800 0.935 0.975 0.987 0.993 0.998 

300 0.508 0.282 0.546 0.872 0.964 0.981 0.989 0.995 0.997 

400 0.638 0.370 0.618 0.914 0.979 0.996 0.999 0.999 0.999 

500 0.684 0.410 0.666 0.928 0.984 0.995 0.998 0.999 0.999 

1000 0.798 0.701 0.893 0.995 0.999 1.000 1.000 1.000 1.000 

2000 0.988 0.982 0.994 1.000 1.000 1.000 1.000 1.000 1.000 
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TABLE 13 

Rejection frequencies of Robinson’s (1994a) tests (with white noise ut) in a STUR* model 

True model:   Seasonal STUR* model (16) and (17) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.353 0.213 0.120 0.102 0.209 0.367 0.528 0.635 0.716 

200 0.827 0.570 0.323 0.296 0.449 0.654 0.788 0.854 0.892 

300 0.896 0-691 0.460 0.395 0.560 0.745 0.866 0.908 0.926 

400 0.931 0.752 0.464 0.434 0.628 0.811 0.903 0.952 0.967 

500 0.927 0.771 0.513 0.485 0.676 0.837 0.919 0.957 0.971 

1000 0.954 0.912 0.893 0.877 0.934 0.995 1.000 1.000 1.000 

2000 1.000 0.999 0.994 0.991 0.996 1.000 1.000 1.000 1.000 

 

 

 

TABLE 14 

Rejection frequencies of Robinson’s (1994a) tests (with AR (1) ut) in a STUR* model 

True model:   Seasonal STUR* model (16) and (17) 

T 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

100 0.105 0.133 0.285 0.490 0.688 0.803 0.861 0.895 0.912 

200 0.306 0.227 0.379 0.655 0.822 0.893 0.920 0.930 0.942 

300 0.587 0.397 0.476 0.728 0.870 0.924 0.946 0.959 0.965 

400 0.677 0.424 0.528 0.807 0.916 0.956 0.972 0.978 0.981 

500 0.722 0.502 0.564 0.821 0.934 0.960 0.978 0.983 0.988 

1000 0.912 0.823 0.856 0.912 0.974 0.999 1.000 1.000 1.000 

2000 0.994 0.946 0.957 0.996 1.000 1.000 1.000 1.000 1.000 
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