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The natural range of fish species in our rivers is related to flow, elevation, temp-

erature, local habitat and connectivity. For over 2000 years, humans have

altered to varying degrees the river habitat. In the past 200 years, we added

to the environmental disruption by discharging poorly treated sewage, nutri-

ents and industrial waste into our rivers. For many rivers, the low point

arrived during the period of 1950s–1970s, when rapid economic development

overrode environmental concerns and dissolved oxygen concentrations

dropped to zero. In these more enlightened times, gross river pollution is a

thing of the past in the Developed World. However, persistent legacy chemical

contaminants can be found in fish long after their discharge ceased. Changes

in habitat quality and morphology caused and continue to cause the dis-

appearance of fish species. The range of fish stressors has now increased as

temperatures rise, and non-native fish introductions bring new diseases. The

threat from pharmaceuticals to fish populations remains hypothetical, and no

studies have yet linked change in fish populations to exposure.
1. Introduction
The exploitation of rivers in the developed Western world is considered to rep-

resent a high threat to biodiversity [1], and freshwater fishes are considered

among the most threatened group of vertebrates worldwide [2]. Given that

fish are vertebrates which share more drug targets with us than other aquatic

wildlife, we might expect they would also respond to pharmaceuticals in a simi-

lar way [3,4]. This review focuses on the challenges faced by fish in the river

environment and tries to put pharmaceuticals in that context. European fish

species have preferences for a wide diversity of conditions from cold, fast flow-

ing, highly oxygenated water at one end to warm, slow and low oxygen

conditions at the other [5]. Fish also have a wide dietary range and foraging

strategies, although most fish larval stages rely on invertebrates [6]. The diver-

sity of species along river networks appears to largely conform to differences in

temperature, flow and habitat [7–9]. There are now increasing attempts to use

fish to help assess the ecological status of rivers, such as with the ‘European fish

index’ (FBI, fish-based index) [10].
2. Factors influenced by man that affect fish growth and
survival

In our modern landscape, which is so dominated by human activity, changes to

the aquatic environment are often due to a combination of both human and

natural events. Here, we review factors where human influence has played a

role in environmental change, and scientists have connected this to some

change in the resident fish populations. What may be disadvantageous to one

species may create opportunities for another. It must be acknowledged that in
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the real world fish are likely to be exposed to multiple coinci-

dent environmental stressors that make changes in fish

populations very difficult to attribute. The stress on fish can

be indirect, such as a reduction in an important food source.

Only in acute cases can individual stressors be identified,

assuming scientists were also present at the right time and

place to witness the change! The FBI process identified 24

potential pressures on fish communities but considered

hydrology (flow), morphology (habitat), connectivity (habitat),

nutrients (eutrophication) and toxic chemicals/acidification to

be the key pressures [10]. Here, we compare nine major factors

potentially influencing fish populations against the challenge

of pharmaceuticals.

(a) Flow
The nature of the flow regime is understood to be one of the

major components that determine the suitability of a habitat

to different fish species [5,7]. Fish which spawn selectively in

their natal fast flowing upland streams, such as salmonids,

are considered most at risk from man-made changes to flow

[7]. The projected lower flows of the future are considered to

be unfavourable for salmonids, and other fish whose spawning

habitats might get clogged through sedimentation [11,12]. In

Spain, declines in brown trout numbers were related to poor

recruitment associated with either very low flows or very

high flows in the critical month of March [13]. A key factor

in the recruitment of fish is survival in the first year and at

least for cyprinids this seems to depend on the flow in that

year [14,15], with high flow events being particularly hazar-

dous [14,16]. Across France, changes in fish diversity and

abundance were most closely correlated to human changes to

river flow, including sudden high flows and abstraction,

rather than to water quality [17]. Conversely, high flow

events leading to flooding may be advantageous for recruit-

ment for some species by reducing the exposure of fry to

predation and/or competition in quiet backwaters [18].

(b) Temperature
Temperature could have a direct stress effect on the physi-

ology of a fish, for example by influencing the sex ratio

[19], or indirectly by influencing the abundance of its food

source. Some species of fish have temperature-dependent

rather than genotypic sex determination, so that a rise in

only a few degrees centigrade can dramatically skew the

sex ratio of offspring [20]. Salmonids as eggs or juveniles

have a narrow temperature tolerance [5]. Consequently,

warmer temperatures in the future could become an impor-

tant stressor for these fish [7]. Warming waters over the

past 69 years have been associated with a decline in graylings

(a salmonid) in Switzerland [21]. By contrast, warm years are

linked to the success of the roach, presumably as they would

tend to generate more food for the young fish [14,15].

(c) Habitat change
It will be appreciated that there are many direct and indirect

ways that man’s activities could change the quality of a river

as a habitat for fish. Early human development was associated

with prolific weir fishing and impoundments for mills and

forges. This was followed by the straightening and deepening

of channels for trade navigation, followed by flood protection

levees [22,23]. These interruptions to flow, particularly in the
headwaters, were associated with the disappearance of the

migratory salmon from the Berlin area of the Elbe from 1787

and the Thames in the 1820s [22]. Other migratory fish, such

as the sea lamprey and sturgeon, disappeared in the 1860s

[23,24]. The canalization caused habitat changes which were

implicated in the subsequent disappearance of barbel and

burbot from these rivers [23]. In a review of altered water

bodies in Germany (associated with assessment for the Euro-

pean Water Framework Directive), the river bank conditions

were considered the most important factor influencing the

presence and abundance of fish communities [25]. An investi-

gation into decline of the barbel in the R. Lee in the UK found

that man-made river alterations had reduced connectivity

which was vital for the development of adult fish [26]. In

Spain and North Africa, habitats formerly conducive to eels

have suffered drastic habitat changes associated with marsh

draining and the construction of dams since the 1980s,

making them now unsuitable for these fish [27]. River connec-

tivity, enabling fish immigration and emigration, is also vital

for maintaining gene flow and genetic effective population

size in salmonid species [28], but in other species, such as

roach, this appears to be less important [29].
(d) Parasites and disease
Outbreaks of disease and parasite infestations have been linked

with significant decline in year class success [30,31] and, in

exceptional circumstances, a disease can result in mass mortal-

ities [32]. Proliferative kidney disease is considered one of the

strongest candidates to explain the decline in brown trout in

Swiss rivers [31]: it is caused by Tetracapsuloides bryosalmonae
which flourishes in warm water temperatures (more than

158C). Native salmon were reported to have declined by 95%

in Norway 7 years after the arrival of T. bryosalmonae and the

ectoparasite Gyrodactylus salaris [33]. In some eel populations,

a fish species still in decline, the parasite Anguillicoloides crassus
is considered a potentially significant danger owing to the

associated deterioration of the swimbladder [33–35]. Fish

with poor health indicators in polluted rivers in southeast

USA were those with parasite infections rather than those

with the highest chemical pollutant burdens [36].
(e) Alien fish introductions
Alien, or non-native, fish have been introduced into Euro-

pean river habitats from the early Middle Ages, beginning

with the common carp, followed by such species as the

European catfish, pikeperch, rainbow trout in the middle

nineteenth century, followed by a new wave of fish species

in the 1980s such as sunbleak and topmouth gudgeon [37].

Probably, many of the introduced species did not prosper

[37]. There are some suggestions that these intruders have

displaced native fish by perhaps being better adapted to

existing or evolving habitats [38,39]. But, the presence of

alien fish may not be harmful, and indeed, a large rec-

reational industry depends on many of these introduced

species [40]. However, the associated introduction of new dis-

eases arriving with the alien fish remains a matter for concern

[33,41]. Restocking with ‘native fish’ from fish farms may be

detrimental to fish populations, potentially causing loss of

genetic diversity, lowered fitness, decreasing return rates

and increased susceptibility to disease [42].
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( f ) Fishing
Historically, freshwater fish were an important food source,

with large nets often stretching across the whole river. But

such nets were banned in rivers such as the Thames in 1860

as recreational angling became popular and sea fish could

be preserved and sold inland [22]. However, there can be pro-

blems with migrating species and recreational anglers. There

is an example in Switzerland with grayling and trout

populations reducing with the increasing number of fishing

licences in some locations [43]. In Spain, the timing of angling

intensity was considered to be causing a demographic shift to

smaller migrating Atlantic salmon who arrived later in the

fishing season. Perhaps not surprisingly, industrial fishing

of salmon with gillnets, where it does occur, has been

linked to a progressive selection towards smaller-sized fish

who could pass through the nets unharmed [44]. However,

recreational fishing may sometimes lead to diversifying selec-

tion, increasing variability in growth rate and size at age, as

shown for pike in Windermere [45].

(g) Gross organic pollution
The major problem with high organic loading of rivers is the

loss of oxygen associated with its consumption by bacteria

(the loss of dissolved oxygen downstream of sewage discharge

points is frequently called the ‘DO sag’). The early-nineteenth

century saw increasing popularity of the flushing toilet, with

domestic waste discharge to sewers. As cities grew and in

the absence of sewage treatment, this growing waste discharge

was very detrimental for rivers. The loss of fish from the lower

Thames (UK) was reported in the 1850s and linked to gross

sewage pollution [46], with low oxygen remaining an issue

in the tidal Thames up to the 1970s [22]. The introduction of

some sewage treatment allowed fish to return to the Mersey

(UK) in the 1930s–1940s, but by 1950, organic loading was

such that the fish had disappeared once more [47]. Even

with piecemeal improvements in sewage treatment, dissolved

oxygen frequently fell to zero in a 15 km stretch near the tidal

limit in the period up to the 1970s [47]. In the Rhine in the

1960s and 1970s, summer dissolved oxygen concentrations

dropped to 2 mg l21, an inhibitory level for most fish [48].

(h) Eutrophication
Between 1921 and 1975, the phosphorus load was estimated

to have increased 10-fold in the rivers around Berlin and

the associated eutrophication led to the near total loss of sub-

merged macrophytes. This was associated with a decline in

phytophilic fish such as pike, carp and tench, but favoured

bream [24]. However, more eutrophic conditions from

sewage have been associated with increased roach popu-

lations in the Baltic region [49]. Roach are described as

omnivores, able to eat plant material, invertebrates and mol-

luscs and are unaffected by low light intensities [49]. Thus,

eutrophication and associated turbidity could affect fish in

several ways, for example by changing the food availability,

affecting their ability to find food, predation or even find a

mate [50]. Improvements in sewage treatment along the

R. Trent from the mid-1970s coincided with declines in

roach and dace catches [51]. Over the same period, chub,

bream and eel increased. The reduction of phosphate (P) pol-

lution from sewage effluent was considered the key factor in

reduced roach growth rates in the R. Wensum in the UK [52].
In contrast to its fellow cyprinid the roach, growth rates of the

barbel were positively related to rivers with lower sewage

effluent contents (phosphate) [53].

(i) Metals and toxic chemicals
Metal pollution of rivers began with mining 2000 years ago

and then also occurred through direct industrial discharge

and atmospheric deposition from combustion processes

[54]. Particulate levels of metals were considered to have

reached toxic levels in the Rhine in the 1960s [55]. The devel-

opment of industries added increasing chemical pollutants

such as sulfuric acid, metals, cyanides and ammonia to the

Mersey basin in the nineteenth century and was such that

by 1850 all fish had gone from the river and most of its

tributaries [56]. In the Moselle River, its deterioration as an

ecosystem began with industrialization in the 1860s. By the

1920s, some important tributaries were described as devoid

of life [57].

Fish caught today in the rivers of developed countries

typically contain a range of persistent organic pollutants

(POPs) that were phased out, or banned, decades ago

[36,58]. Eels in Belgium with the highest metals and POPs

levels had the lowest condition levels [59]. Given their high

fat content and propensity to accumulate organic pollutants,

it has been suggested that the dioxin-like polychlorinated

biphenyls (PCBs) may be reducing the eel’s ability to repro-

duce by harming the embryos [60]. Studies in the

Netherlands and Belgium revealed the decline in eel numbers

corresponded with a decline in their fat content. A low fat

content may mean it cannot make its trans-ocean migration

successfully [61]. Perhaps this decline in fat content is

linked to the stress-related demands of POP and metal

contamination that reached critical levels in the 1980s [61].

In a study of 117 fish species across 695 sites across Ohio

(USA), the potential local effects of the combined mixture of

toxic chemicals were compared with other local ecological

drivers [62]. The analysis suggested that 50–55% of sites

had some chemical toxicity pressure but that on average,

over all sampling sites, the relative contribution of chemical

mixture effects to local ecological impacts was only 3%.

Thus, the assemblages of fish species could be predicted in

most cases by factors such as latitude/longitude, slope, habi-

tat and general water chemistry [62]. An alternative way of

viewing this result is that if these habitats could be made per-

fect in every way for the fish, then chemical pollution would

then prevent the naturally expected fish assemblage from

occurring in half the sites.

( j) Pharmaceuticals
Fish in the developed world have been exposed to an ever

increasing range of pharmaceuticals for at least the past 60

years without dramatic change in their populations being

noted. The most consistent and widespread exposure of fish

to pharmaceuticals is likely to be from sewage effluent and

indeed pharmaceuticals can be found in the bile of wild fish

found in proximity to sewage plants [63,64]. It would then

follow that if pharmaceuticals harm fish then the worst effects

would be seen in rivers with the highest effluent content. With

endocrine disruption and reduced breeding potential for indi-

viduals, this does appear to be the case [65–67], with the

pharmaceutical ethinylestradiol (EE2) likely to be an important

contributor [68,69]. We are not aware of any studies showing
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Figure 1. Suggested timeline of stressors faced by fish in urbanized catchments in the Western world and the magnitude of threat they posed. The width of a band
at any time point reflects its considered relative impact on fish. The greater the width, the more harmful the impact on fish. (Online version in colour.)
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population effects of pharmaceuticals on wild fish. But are

there any messages to be inferred from studies on fish popu-

lations in proximity to sewage effluent, or those inadvertently

exposed to the highest concentrations of pharmaceuticals

during low flows? Roach populations do well in warm sum-

mers, which might be considered to be periods of low flows

(consequently higher effluent and pharmaceutical contents)

[14,15]. Living in rivers with a large treated sewage effluent

content does appear to bring its compensations, at least for

stickleback and roach, as these fish tend to be bigger and hea-

vier than those where the effluent content (or P content) is

much less [52,70]. Thus, to date, there does not seem to be

any clear links between the post-1970s regular domestic

sewage effluent content of rivers and fish success or failure.

Perhaps we have not looked carefully enough, or the issue is

complicated by some fish species being more sensitive to

certain pharmaceuticals than others?
3. Summary
Humans have been changing the environment and inadver-

tently the resident fish populations in our rivers in a major

way for over 1000 years. It is possible to rank these chal-

lenges to fish populations (albeit subjectively) through

recent history (figure 1). The timing of these deleterious

impacts would of course vary between rivers. From what

we can understand of our river history, the biggest cata-

strophes, where fish were wiped out en masse, were

related to gross industrial and human waste pollution fre-

quently causing oxygen depletion, and so these factors

were ranked highest in the figure. But, we have also

learnt that habitat loss can lead to a critical loss of species.

The ‘perfect storm’ of poorly treated sewage, toxic industrial

chemicals and habitat loss, which peaked for many rivers

between 1950 and 1975, has now passed, although lethal

accidental spills can still occur [71]. While the biggest

threats to fish survival may now be history, the range of
stressors has increased, with a new one, pharmaceuticals,

having recently appeared. We have evidence that in combi-

nation, or even alone, gross sewage or toxic chemicals

pollution have on occasions eliminated all fish from a

river. Evidence also exists for changes in habitat, flow and

eutrophication as capable of causing changes in species

diversity in rivers. Warming temperatures, introduced dis-

eases and some toxic chemicals may be harming, but not

necessarily currently eliminating, fish species. As yet the

risk to fish populations from pharmaceuticals, acting both

independently and in combination with each other and

with different stressors, remains hypothetical. The literature

on pharmaceuticals and fish is dominated by laboratory and

caged fish studies, where a range of effects and potentially

harmful endpoints have been reported. But, until harmful

effects on fish populations in the wild are identified,

pharmaceuticals cannot be ranked as one of the most

dangerous challenges to fish. The apparent absence of evi-

dence for fish population damage from pharmaceuticals

should not, however, lead us to complacency for the

following reasons:

— the evidence may be there, but we have not collected it in

a systematic way;

— future damage to fish populations may occur if we exceed

a threshold level owing to reduced flows or increased

human/veterinary consumption. For EE2, this would

need to be a concentration rise of only 10-fold;

— mixtures of similarly acting pharmaceuticals may be

already, or close to, having effects where a single

compound may be ignored; and

— more potent pharmaceuticals may enter the market and

ultimately the aquatic environment.
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