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Background: Trypanothione is critical for the vitality
and virulence of Trypanosoma brucei, and sensitive to
inhibition of the polyamine pathway.

Results: First mathematical model of polyamine biosyn-
thesis in T. brucei is constructed and validated.

Conclusion: Interruption of polyamine synthesis via
inhibition of multiple polyamine enzymes is optimal for
treating T. brucei.

Significance: Model provides a useful framework for
quantifying the reactions regulating trypanosomal growth.

1 Summary

In this paper, we present a first computa-
tional kinetic model of polyamine metabolism in
bloodstream-form Trypanosoma brucei . The kinetic
model is constructed based on information gleaned
from the experimental biology literature and de-
fined as a set of ordinary differential equations. We
apply Michaelis-Menten kinetics featuring regula-
tory factors to describe enzymatic activities that
are well defined. Uncharacterized enzyme kinetics
are approximated and justified with available phys-
ical properties of the system. Optimization-based
dynamic simulations were performed and inconsis-
tent predictions prompted an iterative procedure of
model refinement. General agreement between sim-
ulation results and measured data reported in var-
ious experimental conditions shows that the model
has good applicability in spite of there being serious

gaps in the required data. Different chemothera-
peutic strategies against T. brucei were investigated
using this model and interruption of polyamine syn-
thesis via joint inhibition of enzymes catalyzing re-
actions of de novo ornithine or AdoMet production
together with other polyamine enzymes was identi-
fied as an optimal therapeutic strategy.

2 Introduction

The development of drugs to combat human African try-
panosomiasis (HAT) has become a major public concern
due to toxicity, inefficacy and availability problems with
current drug treatments [1, 2]. Identification of potential
drug targets within the T. brucei parasite is an invaluable
tool for designing chemotherapeutic agents against the dis-
ease. A challenge in drug design arises from the similarity
of metabolic pathways in parasitic protozoa and their mam-
malian hosts, resulting in toxicity to the host as well as the
parasite. Anti-parasitic drugs that are efficient, non-toxic
and affordable are urgently required.

Polyamines are ubiquitous cellular components that are
essential for cell growth and division. Polyamine metabolism
in mammalian cells has previously been studied using math-
ematical modelling [3]. Polyamine metabolism in T. bru-
cei has a number of key features that distinguish it from
polyamine metabolism in mammals. The major differences
lie in the specificity of metabolites and enzymes as well as
the associated regulation patterns. Most notably, the en-
zyme s-adenosylmethionine decarboxylase (AdoMetDC) is
activated through dimerisation with an enzymatically in-
active homologue termed prozyme. Moreover, spermidine
(Spd), in addition to its plethora of other cellular roles, in
trypanosomatids, is linked to two molecules of glutathione

1



to yield the redox active metabolite trypanothione, which is
a compound critical for trypanosome viability and virulence.

Trypanosomes are sensitive to inhibition of the polyamine
pathway. For example, it has been shown that try-
panosomes depend on Spd for growth and survival, which
ceases when Spd level drops below a certain threshold [4].
There is therefore considerable therapeutic potential in com-
pounds that disrupt polyamine biosynthesis. The suicide in-
hibitor eflornithine (difluoromethylornithine, DFMO) kills
trypanosomes by irreversibly interacting with ornithine de-
carboxylase (ODC) leading to reduced polyamine levels.
Eflornithine is now the first line treatment used in HAT
therapy. Inhibitors of AdoMetDC [5] have also been shown
to be potently trypanocidal. These features have ensured
that the polyamine pathway in T. brucei has been subject
to investigation and details are available for enough of the
enzymes to allow a mathematical model to be constructed
and a recent attempt to model trypanothione metabolism
in Trypanosoma cruzi (T. cruzi) also points to the value in
modelling of this branch of metabolism in trypanosomatids.

Dynamic behaviour of complex biological systems is not
deduced easily from collective descriptions of its individ-
ual parts; requiring instead a systematic approach with ad-
vanced computational technology. Mathematical modelling
offers a route to achieve a system-level understanding [6, 7].
In the context of biological systems, mathematical models of
metabolism allow improved understanding of the contribu-
tion of individual enzymes to the larger system. This can be
achieved by studying the rates at which system components
interact and physical laws that govern the reactions. Good
models enable interpretation and predictions about the con-
sequences of pathway perturbation that can supplement or
even replace in vivo or in vitro experiments. Without a reli-
able model, it is difficult to understand how complexities ev-
ident from experimental data determine cellular behaviour.

In this paper,we develop a kinetic model of polyamine
metabolism in blood-stream form T. brucei, derived from
published information related to system components and
their interactions. We are interested in seeking a model
to reproduce what has already been observed and also to
make predictions about the system to guide future experi-
ments and guide drug design. Since mathematical models
are manipulable, the mechanisms underlying the metabolic
regulation of the polyamine biosynthesis can be evaluated in
silico. This kinetic model aims at understanding the effec-
tiveness of the anti-trypanosomal drug DFMO in detail and
examining other polyamine enzymes as potential targets for
anti-trypanosomal chemotherapy.

3 Materials and Methods

A detailed schematic representation of the trypanothione
metabolic network is depicted in Fig. 1. This diagram indi-
cates the complex interconnections between the main path-
ways, composed in parallel, which comprise the network.
These are the polyamine biosynthetic pathway for the pro-

duction of Spd, the glutathione biosynthetic pathway for the
production of glutathione and pentose phosphate pathway
for production of the NADPH mediating the reduced try-
panothione redox cycle from oxidized trypanothione disul-
fide. Spermine, which is a critical polyamine in mammalian
cells, is not taken into account due to its negligible role in
T. brucei [8, 9, 10, 11]. Here we study the contribution
of the polyamine biosynthetic pathway to the regulation of
total trypanothione contents (TSHtot for short). Metabo-
lites and enzymes constituting the polyamine pathway are
highlighted in bold in Fig. 1. The following considerations
were made to our model in order to study this pathway in
isolation from the entire network.

Firstly, the involvement of the trans-methylation branch
(responsible for the production of cystathionine via homo-
cysteine) was limited to the first step describing the con-
version of AdoMet into AdoHcy (S-adenosylhomo-cysteine).
As observed in [12, 13], metabolic products of trans-
methylation reactions (i.e homocysteine and cystathionine)
are mostly secreted from trypanosomal cells, which leave
their contributions in polyamine biosynthesis and regula-
tion very minimal. AdoHcy, which is toxic if accumulated
in cells [12], was also observed to remain unchanged under
perturbed conditions in T. brucei, i.e. during 36 hours of
DFMO treatment [13], and thus is treated as a constant
metabolite in our study.

Secondly, we excluded glutathione biosynthesis and re-
lated reactions from consideration and modelled the biosyn-
thesis of TSHtot with a single-step reaction from Spd, cat-
alyzed by a synthetic enzyme, named TSHSyn. In T. bru-
cei, TSHtot is synthesized in two steps. First, a single
molecule of Spd is combined with glutathione to generate
a glutathione-spermidine conjugate (GspdSH, not shown in
Fig. 1). This is followed by the addition of a second Spd
creating trypanothione from. It has been reported that both
synthetase and amidase activity are associated with trypan-
othione biosynthesis in T. brucei [14] as well as in Leishma-
nia parasites [15] and Crithidia fasciculata [16]. The con-
flicting activities of synthetase and amidase, which allow for
a bidirectional response between the involved metabolites,
may serve to modulate intracellular levels of the metabo-
lites without additional protein synthesis or degradation of
existing metabolites. There is however very limited infor-
mation for enzyme kinetics of the intermediate steps of glu-
tathione biosynthesis and the regulation mechanism between
synthetase and amidase is not yet precisely characterized in
T. brucei. This approximate description of TSHtot biosyn-
thesis reduces the degrees of freedom and diminishes the im-
pact of unknowns in the model simulations. In the rate equa-
tion of TSHSyn, a regulatory term for the reaction product
TSHtot is explicitly included to reflect the self-regulation
ability of involved metabolites i.e. Spd and TSHtot, as if
modulated by the amidase activity.

Thirdly, the link between TSHtot and the remaining sys-
tem (i.e. the pentose phosphate pathway in the grey box in
Fig. 1) was modelled as a black box. Black-box modelling
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is a popular approach for modelling chemical processes that
lack physical insight or are highly abstract [17, 18]. This
facilitates the practical construction of a useful model of
polyamine metabolism with predictive capabilities; this can
only be achieved when all intra-cellular metabolites are mod-
elled as time-dependent variables. Black-box structures are
parameterized descriptions, which can be approximated in
the form of, for example, power series polynomials and fuzzy
logic. In this study, a combination of a Hill equation and
a linear decay function proportional to the concentration of
TSHtot is used to model this reaction (this is explained in
detail in the next section). Inclusion of total trypanoth-
ione in the model allows us to quantify explicitly the conse-
quences of polyamine interruption on cell growth arrest in
the context of the model.

Finally, in T. brucei the lack of a classical arginase [19]
has led to the identification of ornithine (Orn) uptake from
blood as the main mechanism to accumulate this metabolite
and the related kinetics were included in the model.

Model development involved converting the reaction
scheme in Fig. 1 into a set of ordinary differential equa-
tions (ODEs). The ODE formalism has previously been
employed to model quantitatively the glycolysis pathway
in bloodstream-form T. brucei [20]. In our model the
polyamine biosynthetic pathway is described mathemati-
cally by eight ODEs (Table 1), which associate the changes
in concentration levels of system components (on the left)
with the rate equations of enzymatic reactions involved (on
the right). The ODE model takes exogenous methionine
(Metexg) and ornithine (Ornexg) as the only inputs, since T.
brucei does not have an efficient mechanism for the assimila-
tion of exogenous putrescine (Put) and Spd, and relies on de
novo synthesis to acquire these two polyamines[21, 22]. Con-
centrations of both external (Metexg and Ornexg in blood)
and constant (AdoHcy) metabolites are fixed at their phys-
iological levels.

In our study, simultaneous fitting against both the physio-
logical steady state and in vivo DFMO-mediated polyamine
inhibition reported in [10] is applied to tune the unknown
parameters of the given model structure (refer to the section
on Model Calibration for more details). DFMO-induced per-
turbation is the most comprehensive data source available
for training the model (inhibition profiles being given for 6
out 8 metabolites of the pathway in T. brucei); however, cor-
rections had to be made before the dataset can be used (i.e.
AdoMet dynamics, as explained later). Gene perturbation
measurements on ODC [23], SpdS [21, 23], prozyme [24],
AdoMetDC [25, 24] and TSHSyn [26], which are not used
for training the model, are then employed as validation data
to evaluate the candidate models.

It is important to point out that this modelling activ-
ity is not only challenged by the lack of prior knowledge,
i.e. several kinetic parameters are absent, but also by the
fact that experimental observations involve different try-
panosome strains grown in different conditions - work by
Fairlamb et al. was from trypanosomes grown in rats whilst

Variables Differential Equations

[Met]
d[Met]

dt
= VMetPt − VMAT + VMetRcy

[AdoMet]

d[AdoMet]

dt
= VMAT − VAdoMetDCT

−VAHS

[dAdoMet]
d[dAdoMet]

dt
= VAdoMetDCT − VSpdS

[Orn]
d[Orn]

dt
= VOrnPt − VODC

[Put]
d[Put]

dt
= VODC − VSpdS

[MTA]
d[MTA]

dt
= VSpdS − VMetRcy

[Spd]
d[Spd]

dt
= VSpdS − VTSHSyn

[TSHtot]
d[TSHtot]

dt
= VTSHSyn − VTSHCpt

Table 1: The ODE model of polyamine metabolism.

other gene-perturbation experiments involved in vitro culti-
vated strains. Inevitably, therefore, absolute quantification
of metabolite levels which is strain and growth condition
sensitive cannot emerge from such limited studies, although
the general trends in quantification are conserved.

A cyclic workflow from model construction to model val-
idation is often required to render models satisfactory. In
the standard approach (see [27, 28] for details), and initial
model topology is constructed that approximates the input-
output relationship of the system is constructed, and then
a parameter estimation process is applied to match a par-
ticular dataset against model structure. Once a candidate
model is built in this way, it can be tested on validation data,
i.e. data not used in the parameter estimation step. If the
estimate-containing model demonstrates predictive power it
may be considered to be relevant in describing the underly-
ing processes. Where inconsistency emerges between model
predictions and experimental observations the model is re-
fined and iteratively evaluated against validation data.

Following the above system identification procedure, four
candidate models were generated, which share the same
topology but differ with respect to the mathematical rep-
resentations of enzyme kinetics, as summarized in Table 2.
The final model performed the best on both the estimation
data and validation data and its description form the basis
of the rest of this paper.

There are several instances where published observations
conflict. For example, AdoMet levels in trypanosomes dur-
ing ODC inhibition by DFMO treatment, were reported as
being elevated 75 times by Fairlamb et al. [10] whilst lev-
els of this metabolite were almost unchanged during DFMO
treatment studied by Xiao et al. [23]. The parameter esti-
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No. Descriptions Results

V1

We modelled all enzymes on the basis of standard
irreversible Michaelis-Menten (MM) kinetics and
incorporated the regulatory effect of production

inhibition where specified in the literature.

Model failed to fit Orn, Spd and TSHtot dynamics
(i.e. the trend of concentration changes). For

example, within 12 hours of DFMO treatment, Orn
linearly increased to almost 30 fold of the initial

value, which was reported as having an exponential
approach in the estimation data. Spd and TSHtot

were reduced by a small amount only, which
disagrees with the considerable depletions reported

in the literature.

V2

We modelled the enzyme catalyzing Orn uptake
(V Ornupt ) with reversible MM kinetics, as we

suspected that rate descriptions of Orn-centered
reactions may be ill-characterized, but there is no
available biological knowledge about T. brucei

that can be used for postulating the rate
equations. Keq (equilibrium constant) and KOrn

mP

(Michaelis constant of product) associated with
the reaction are estimated along with existing

unknown parameters.

Orn dynamics under DFMO treatment were
significantly improved in terms of the trend in

transient concentration changes in comparisons to
Model V1. No obvious improvements were seen for
Spd and TSHtot from the changes imposed on the

rate expression of Orn uptake. The enzyme
catalyzing the simplified reaction between Spd and

TSHtot may be ill characterized.

V3

Since TSHtot production from Spd is highly
abstract in our system, selecting an appropriate
function to approximate kinetics for TSHSyn is
not straightforward. We refined enzyme kinetics

catalyzing TSHtot synthesis by adding a
regulatory term representing product inhibition by

TSHtot to the irreversible MM kinetics used
previously. This ensures resources not devoted to

making TSHtot when it is plentiful.

Simulation results agreed with the estimation data
in terms of the trend in transient concentration

changes for all metabolites under DFMO treatment.
Together with the best set of parameter estimates,
the model can also represent most of the validation
data except SpdS-induced inhibition. A dramatic
linear increase in Put is predicted in response to

SpdS knockdown, which is counter to experimental
observations that Put is not significantly

accumulated.

V4
(final
model)

On the basis of Model V3, we postulated an active
regulation between SpdS on ODC through
trial-and-error simulation experiments. This
regulation prevents Put accumulation by
restricting Put production rate when its
consumption rate is largely reduced.

This model properly fits the DFMO-mediated
profiles and reproduces all the validation data well,
providing evidence of the validity of the model.

This model is comprehensively explored in the rest
of this paper.

Table 2: Different versions during the refinement of model design.
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mation process was applied to Model V4 to match the esti-
mated data with an increased AdoMet concentration. Sim-
ulation results, however, predicted that AdoMet contents
are largely unchanged and all other metabolites are well fit-
ted. Thus, Xiao et al.’s observations on this metabolite were
adopted for the parameter estimation data set together with
observations made by Fairlamb et al. for all other metabo-
lites.

Michaelis-Menten kinetics (for one substrate) were used
to model the non-linear evolution of the enzymatic ve-
locities of intra-cellular ODC, the MTA recycling enzyme
(MetRcy) and the transporter of exogenous Met (MetPt).
Michaelis-Menten kinetics with two substrates has been
applied for the enzymes SpdS and MAT. More complex
mechanisms have been employed for exogenous Orn uptake
(OrnPt), AdoMetDC, TSHSyn and TSHCpt to which stan-
dard Michaelis-Menten kinetics are not appropriate (as an-
alyzed blow). Available parameter values for pathway en-
zymes are shown in Table 1 in the supplementary material.
Regarding the information not available from the literature
we made estimates by fitting the model to observed exper-
imental data (in this case DFMO-mediated pathway pro-
files).
ODC catalyses the initial step in the pathway leading

to Put production from Orn. ODC has an extremely short
intra-cellular half-life in mammals, reportedly 15 min to 1
hr, which is in contrast to the more stable protein in T.
brucei, which has a turnover rate greater than 6 hrs. A
mathematical rate expression for ODC is modelled in the
form below, which is subject to product inhibition by Put
and postulated correlation of SpdS on ODC (see Table 2).
When SpdS remains uninduced, parameter λSpdS is zero
and thereby the catalytic capacity of ODC becomes time-
independent. Under SpdS perturbations, a positive value
has been deduced for parameter λSpdS from the given in-
hibitory profile of SpdS deactivation to mimic the temporal
changes of SpdS activity over time and in this case the cat-
alytic capacity of ODC becomes time-variant and influenced
by the activity changes of SpdS.

VODC = V ODCmax · e(−λSpdS · t) ·

[Orn]

KODC
mOrn

1 +
[Orn]

KODC
mOrn

+
[Put]

KODC
iP

(1)

AdoMetDC is responsible for the formation of dAdoMet,
the aminopropyl donor for the biosynthesis of Spd from Put.
As is the case for T. brucei ODC, T. brucei AdoMetDC
is a stable enzyme and has a lower turnover rate than in
mammalian cells. AdoMetDC is also a regulatory enzyme,
regulated by an allosteric mechanism with ‘prozyme’, which
is an enzymatically inactive close homologue of AdoMetDC
itself. The regulation of AdoMetDC is induced by a con-
formational change of the prozyme structure, which alters
the half-saturation constant of AdoMetDC activity. Willert
et al. [29] discovered that in T. brucei neither AdoMetDC
nor prozyme per se is sufficiently active to prompt normal

cell growth, and only the complex of AdoMetDC|prozyme
can maintain the physiological level of Spd. Recent work
by Willert and Phillips [24] has extended the subject to
examining the influence of AdoMetDC RNAi inhibition
and prozyme knockout on polyamine synthesis and para-
site growth. A similar mechanism of allosteric regulation
was also found for T. cruzi AdoMetDC [30].

The binding of AdoMetDC with prozyme contributes to
dynamical control of metabolic fluxes in the polyamine path-
way [29]. We represent the enzyme-ligand binding between
AdoMetDC and prozyme as a one-step conformation sys-
tem, with the plausible assumption that the ligand can in-
teract rapidly with the enzyme as prozyme concentration is
not comparable with AdoMetDC concentration [29], caus-
ing the reaction to occur at a rapid equilibriating rate fol-
lowing linear mass action kinetics (i.e. [E]>>[S]). Because
prozyme levels are restricted, AdoMetDC is present in try-
panosomal cells in both ligand-occupied form and free form.
Accordingly, we express the velocity equation of the total
AdoMetDC as a superposition of two terms stemming from
the individual forms of the enzyme (Eq. 2). The repre-
sentation of regulatory capabilities in summation of distinct
states has been verified for allosteric enzymes in [31].

VAdoMetDCT = VAdoMetDCL + VAdoMetDCO (2)

where

VAdoMetDCL = kAdoProcat · [AdoMetDCT ] · (1− β)·
[AdoMet]

KAdoPro
mAdoMet

1 +
[AdoMet]

KAdoPro
mAdoMet

VAdoMetDCO = kAdoMetDCO

cat · [AdoMetDCT ] · β ·
[AdoMet]

KAdoMetDCO

mAdoMet

1 +
[AdoMet]

KAdoMetDCO

mAdoMet

+
[dAdoMet]

KAdoMetDCO

idAdoMet

+
[KAdoMetDCO

aPut ]

[Put]

In these equations, VAdoMetDCL and VAdoMetDCO stand
for the velocity contributed by the ligand-occupied (bind-
ing with prozyme) and free form of the enzyme, modelled
as above. A factor β represents the percent of free-form
AdoMetDC (AdoMetDCO) taking up the total enzyme con-
centration ([AdoMetDCT ]), thus the ligand-occupied form
(AdoMetDCL) is expressed as 1 − β of the total concen-
tration. Since the prozyme concentration is smaller than
that of AdoMetDC [24], β is assumed to vary between
0.5 and 1 in order to reflect the experimental observation
and still allow the ligand-occupied AdoMetDC to change
within a physiologically feasible range. Note that in the
above rate equations, Put and dAdoMet have a stimula-
tory and inhibitory effect respectively on the activity of
free-form AdoMetDC but not on the AdoMetDC|prozyme
heterodimer (the ligand-occupied form) [29]. We derived
the activation constant KAdoMetDCO

aPut from [32], which gave
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a value of 1.5 µM. T. brucei AdoMetDC was thought to be
insensitive to dAdoMet, which is in contrast to the strong
product inhibition exerted by its counterpart in many other
species (e.g. mammalian cells) [33]. A wide range of 1 to
1000 µM is applied for the parameter KAdoMetDC

idAdoMet . The pa-
rameter estimates from in silico simulations can be used to
qualitatively assess contradictory biological findings.
MAT catalyses production of AdoMet from Met in the

presence of ATP. AdoMet plays an important role in a va-
riety of cellular functions, such as methylation and sulphu-
ration. Polyamines are not inhibitory to the enzyme within
the range of 10 to 5000 µM, and positive cooperativity was
only realised at higher concentrations of ATP with a Hill
constant (nMAT ) equal to 2.0 [34]. The enzyme velocity
is modelled in the form below, where AdoMet only exerts a
weak inhibition on MAT, which is competitive with respect
to the substrate Met.

VMAT = VMAT
max ·


[Met]

KMAT
mMet

1 +
[Met]

KMAT
mMet

+
[AdoMet]

KMAT
iAdoMet

 ·


(
[ATP ]

KMAT
mATP

)nMAT

1 +

(
[ATP ]

KMAT
mATP

)nMAT


(3)

SpdS catalyses Spd biosynthesis from Put in the pres-
ence of dAdoMet, with methylthioadenosine (MTA) as a
by-product. MTA is not detectable in mammals because
of its rapid degradation rate [3, 35], which gives rise to the
intra-cellular concentration of this compound being low [36].
Since no data is available for the physiological level of MTA
in T. brucei, according to the observation in mammalian
cells, MTA is assumed to hold a small value of 20 µM in our
study. The kinetic mechanism of this enzyme is modelled be-
low, subject to the product inhibition [37, 3]. Not that when
SpdS remains wild-type, parameter λSpdS is 0, and thereby
the catalytic capacity of SpdS becomes time-independent.
Under perturbed conditions, the catalytic capacity of SpdS
becomes time-variant and defined in accordance with the
value of parameter λSpdS .

VSpdS = V SpdSmax · e(−λSpdS · t) ·

[Put]

KSpdS
mP

1 +
[Put]

KSpdS
mP

+
[Spd]

KSpdS
iD

·

[dAdoMet]

KSpdS
mdAdoMet

1 +
[dAdoMet]

KSpdS
mdAdoMet

+
[MTA]

KSpdS
iMTA

(4)

MetRcy catalyses the synthetic transition from MTA
to Met. MTA is recycled to Met via a series of en-

zymatic steps in trypanosomes [38]. It is first con-
verted to methylthioribose-1-phosphate by MTA phospho-
rylase; the latter product is then metabolised to keto-
methylthiobutyrate, and ultimately to Met [39]. Because
of the importance of MTA recycling in cell viability, inter-
ference with Met metabolism has been explored as a po-
tential drug target in mammals and Plasmodium falciparum
[40, 41, 42]. In mammalian cells, Met can be regenerated via
enzymatic catalysis of homocysteine [40]; however debate re-
mains as to whether homocysteine remethylation exists in
T. brucei, given that the enzyme catalysing this chemical
transition is absent in other related parasitic species (e.g.
T. cruzi and Leishmania) [43].

In our study, the MTA recycling path is considered as
the unique source of Met reproduction, which is assumed to
occur via a single-step reaction, as kinetics for the interme-
diate reactions are not known experimentally. In T. brucei,
available quantitative descriptions for the recycling path are
limited to the half-saturation constant of MTA phosphory-
lase with respect to its substrate MTA. Since the enzyme
has a broad substrate specificity [44], the in vivo maximum
velocity is hard to obtain, but it is assumed to hold a very
high value [45]. Again, standard Michaelis-Menten kinetics
are applied to describe the enzyme kinetics, shown below:

VMetRcy = VMetRcy
max ·

[MTA]

KMetRcy
mMTA

1 +
[MTA]

KMetRcy
mMTA

(5)

AHS catalyses the production of AdoHcy from AdoMet.
The enzyme velocity is modelled as follows, subject to strong
product inhibition by AdoHcy [46].

VAHS = V AHSmax ·

[AdoMet]

KAHS
mAdoMet

1 +
[AdoMet]

KAHS
mAdoMet

+
[AdoHcy]

KAHS
iAdoHcy

(6)

AdoHcy is regarded as a constant metabolite during
the in silico simulation and a methylation index of 2:1
[12] is assumed for the ratio of [AdoMet] to [AdoHcy]
under wild-type conditions (resulting in the constraint
[AdoHcy]=0.5·[AdoMet]) to approximate the relationship
between the concentrations of the metabolites.
TSHSyn denotes the synthetic enzyme catalyzing one-

step TSHtot production from Spd in the model. Willert
et al. [24] reported that in trypanosomes reduced trypan-
othione displays a sigmoidal response of the reaction rate
to the concentration of intra-cellular Spd. We employed an
irreversible Hill equation (with nSyn standing for the Hill
coefficient) to model this enzyme, which is characterized by
competitive product inhibition by TSHtot, shown as follows.
This kinetic structure allows the model to mimic the in vivo
state where TSHtot levels can be compensated by elevating
its production rate during T. brucei growth interruption (via
reducing TSHtot level).
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VTSHSyn = V TSHSynmax ·

(
[Spd]

KTSHSyn
mSpd

)nSyn

1 +
[TSHtot]

KTSHSyn
iTSH

+

(
[Spd]

KTSHSyn
mSpd

)nSyn
(7)

TSHCpt denotes the sink reaction responsible for
TSHtot involvement with the remaining system to prevent it
from accumulated unrestrictedly. Designing a suitable ex-
pression for this abstract enzyme is challenging. A linear
function of consumption rate (estimated with others) mul-
tiplying concentration of total trypanothione was initially
proposed as a minimum consumption requirement; however
the simulated behaviour of TSHtot failed to reproduce ei-
ther the steady-state or DFMO-perturbed data. We refined
the rate definition by adding to this function an irreversible
Hill equation representing enzyme-catalyzed breakdown of
the metabolite. To relieve the pain due to the amount of
existing unknowns, we approximated the consumption rate
(in the liner function) as specific growth rate (µ) to which
the consumption of total trypanothione is proportional in
reality. This combined expression was later proved to be
satisfactory for total trypanothione to be converged at the
expected steady state and consumed rapidly under pertur-
bation conditions.

The current representations for rate equations of TSHSyn
and TSHCpt are capable of reproducing observed behav-
ior of trypanothione under various experimental conditions
(see below). These kinetic structures will inevitably be dif-
ferent when the remaining metabolites in the network are
integrated into this model.

VTSHCpt = µ · [TSHtot]−V TSHCptmax ·

(
[TSHtot]

KTSHCpt
mTSH

)nCpt

1 +

(
[TSHtot]

KTSHCpt
mTSH

)nCpt
(8)

MetPt is responsible for the uptake of exogenous Met in
our model. Trypanosomes rely on a constant supply of Met,
and de novo synthesis is energetically expensive [41, 47].
Again, standard Michaelis-Menten kinetics are applied to
model MetPt as below

VMetPt = VMetPt
max ·

[Metexg]

KMetPt
m

1 +
[Metexg]

KMetPt
m

(9)

OrnPt is responsible for the uptake of exogenous Orn,
which is modelled based on the reversible Michaelis-Menten
kinetics Exogenous Orn is considered as a constant supply
into the system, with the plasma concentration assumed to

be 77 µM (representative in human serum [48]). Parameters
KOrn
eq andKOrnPt

mP stand for the equilibrium constant and the
half-saturation constant of product Orn, respectively.

VOrnPt = ([Ornexg]−
[Orn]

KOrn
eq

) ·

V OrnPtmax

KOrnPt
m

1 +
[Ornexg]

KOrnPt
mS

+
[Orn]

KOrnPt
mP

(10)
Overall, the ODE model of polyamine metabolism con-

tains 40 kinetic parameters, where 20 are unknown and two
are solved analytically. The incomplete model description
makes parameter estimation a necessary step prior to dy-
namic simulations. In addition, to ensure unit consistency
of the model parameters, we express all wild-type maximum
velocities V Emax (E refers to specific enzyme name) in units
of µM per minute and hence in all these rate equations,
the derivatives of the concentrations (d[Metabolite]/dt) are
expressed in µM per minute. Some known enzyme veloci-
ties were measured in different units, i.e. µmol per minute
per number of cells or per mg of protein, conversion of which
into the desired units was required before carrying out model
simulations. Unit conversions are elucidated in the methods
section of the supplementary materials.

Model Calibration

Model calibration involves determination of model parame-
ters that can reproduce the system behaviour. A common
procedure is to first fit model parameters to experimental
data generated by a reference cell type (wild type) and then
test the estimates on data generated by a variation (mutant).
In our study, we adopt a novel estimation methodology - the
multi-objective optimisation algorithm MoPSwarm [49] - to
estimate unknowns, where both the steady-state (wild type)
and the perturbed (drug treated or genetic mutant) condi-
tions of the pathway are handled simultaneously. It has
been demonstrated in [49] that accounting for more than
one state of the system in parameter estimation process is
an advantageous approach for obtaining reliable parameter
estimates. In this study, the model was trained via simulta-
neous fitting against both the physiological steady state and
DFMO-mediated inhibition.

The polyamine model under steady-state (wild type) and
DFMO-treated (perturbed) conditions differ in the mathe-
matical representation of VODC , as enzyme activity of ODC
(VODC) is a time-invariant parameter in the former case and
a time-dependent exponential decay in the latter. Uptake
kinetics of DFMO have not been measured. Despite the
absence of a quantitative description, the DFMO-induced
inhibition of ODC is well understood in a qualitative sense,
where ODC activity decreased by more than 99% within
12-hour of treatment with DFMO [10]. ODC activity in
response to DFMO is therefore modelled with an exponen-
tial decay function by multiplying the rate equation of ODC
(defined in Eq. 1) with term e−λODC ·t to reflect the time-
dependent response of ODC activity to the drug inhibition,
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shown below (Eq. 11). Parameter λODC takes a value of
0.007 in this instance, solved by simple curve fitting using
the qualitative description.

VODC = e(−λODC · t) · V ODCmax · e(−λSpdS · t)·
[Orn]

KODC
mOrn

1 +
[Orn]

KODC
mOrn

+
[Put]

KODC
iP

(11)

Note that in this equation parameters λODC and λSpdS
correspond to different inhibitory scenarios, namely ODC in-
hibition (resulting from DFMO drug uptake or ODC enzyme
perturbation) and SpdS inhibition, respectively. It is only
when ODC and SpdS inhibition are applied in tandem that
both parameters are given non-zero values. In other words,
except in SpdS-inhibited conditions, λSpdS equals zero un-
der both steady-state and DFMO-induced conditions as well
as all other perturbed conditions.

Our choices of the initial metabolite concentrations are re-
stricted to ±20% of the measured physiological levels when
fitting the polyamine model to the given steady state. This
helps the convergence of the algorithm from random po-
sitions in the search space. The solutions returned from
the estimation procedure are ranked according to their im-
portance in satisfying both pathway states using the root
mean square of the two objectives with respect to an indi-
vidual state, and the best trade-off solution with the highest
rank is selected for investigation. More details are given in
the supplementary materials (in the Results section) on the
objective functions as well as the ranking method used for
parameter estimation and selection.

Model metabolites simulated with the ‘best’ trade-off so-
lution reached a steady state after less than the simulation
time period of two days and maintained it until the end of
day 6. The best trade-off set of parameter estimates is re-
ported in Table 1 in the supplementary material. A good
match between steady-state levels of polyamine metabolites
from model predictions (termed the basal condition) and
the reference data is shown in Table 3. We further inves-
tigated model sensitivity to different initial concentrations
of pathway metabolites (varied by as much as ±80% of the
estimated initial values). We found that the behaviour of
these model variants converged to almost the same basal
condition over a simulated time span of 4 days, indicating
good stability. Simulation results for this are included in the
supplementary material.

Model simulations of DMFO induction over an interval
of 48 hours show good agreement with experimental data
in terms of both exact values and transient changes in the
metabolite concentrations, as shown in Fig. 2. A dras-
tic decrease of Put was captured, which caused a signifi-
cant increase in the dAdoMet level and a decrease in Spd.
AdoMet was well fitted, and remained unchanged as ob-
served in [23]. This may be attributed to the fact that
free-form AdoMetDC is insensitive to the reaction product

dAdoMet as indicated by the high value of 970.6 µM pre-
dicted for KAdoMetDCO

idAdoMet (inhibitory constant by dAdoMet),
which agrees with the hypothesis made in [33]. An in-
crease of Orn was observed within the first 12 hours of
DFMO treatment, followed by attainment of an accurate
steady state. Note that when plotting the time course of
polyamines under perturbed conditions, the basal condition
acts as the initial status for the simulation of DFMO-treated
model, which also applies to model simulation under other
perturbed conditions investigated below.

4 Results and Discussion

We set out to construct a model of polyamine metabolism
in bloodstream form African trypanosomes given the poten-
tial of this pathway in providing therapeutic targets against
the disease caused by trypanosomes. The task was con-
strained by a lack of many of the kinetic parameters re-
quired to produce a functioning kinetic model. A model
of glutathione/trypanothione metabolism has recently been
constructed for the related parasite, T. cruzi, and in that
study it was decided to measure previously unknown pa-
rameters. Ultimately this is a productive route to gener-
ating model components. Here we take a different route,
introducing two enzymatic reactions including the one-step
conversion of Spd into TSHtot catalyzed by TSHSyn and
the consumption of TSHtot for trypanosomal growth cat-
alyzed by TSHCpt to link the polyamine pathway with to-
tal trypanothione without physically modelling glutathione
and trypanothione metabolism and while still maintaining
the predictive capability of the model. We ensured that
the mathematical formulation of the rate equations approx-
imated biochemical behaviour and applied the technique of
parameter estimation to fill small gaps within the pathway
where parameters are absent.

Comparison between model predictions using estimated
parameter values and independent data sets obtained from
distinct states of the system allows assessment of model
use. To this end, data from available drug treatment and
gene-knockdown perturbation experiments on ODC, SpdS,
prozyme, AdoMetDC and TSHSyn are used as validation
data. When simulating the model for each of the pertur-
bation experiments, in the corresponding rate equations, an
exponential decay function, in the form of V Emax ·e−λE ·t with
V Emax representing the wild-type maximum velocity, is used
to represent the inhibitory profile of the individual enzymes
over time. Exponential decay constant, λE , was derived
for individual instances by parameter fitting according to
the given inhibitory profiles of corresponding enzymes. In
each of the following perturbation experiments, all the ki-
netic parameters were fixed at the values reported in the
supplementary materials, apart from those for the inhibited
enzyme whose maximum velocity was decreased exponen-
tially.
Model predictions on the consequences of ODC knockdown

- DFMO is used to treat HAT and acts by inhibiting ODC
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Met AdoMet dAdoMet Orn Put MTA Spd TSHtot

from Model (µM) 3341.5 20.3 8.2 86.2 587.3 20 2049 340

from refs. (µM) [10] 3978 19 9 43 517 20 2069 340

Table 3: Basal condition of polyamine concentrations.

with knock on effects on polyamine production, for exam-
ple, reducing Put and Spd. As shown in Fig. 3, our model
replicated the reduction in concentrations of Put, Spd and
TSHtot over 48 hours of model simulation where ODC activ-
ity is reduced by 90% within 24 hours of induction (as sep-
cified in Ref. [23]). dAdoMet serves to provide the amino-
propyl group in Spd production which accumulates dramat-
ically, while AdoMet is unchanged as reported in Ref. [23].
Model predictions on the consequences of SpdS knock-

down - Spd plays multiple roles in trypanosomes including
a critical role in producing the redox reactive thiol metabo-
lite trypanothione, which underlines the sensitivity of try-
panosomes to the loss of Spd through reduced capability to
maintain cellular redox. SpdS has been validated as a po-
tential drug target in T. brucei [21, 23]. Xiao et al. [23]
observed that after 6 days of RNAi-mediated Spd depletion
(SpdS activity knocked down by 90% within 2 days of in-
duction), Spd and trypanothione decreased to 20% and 5%
of the uninduced controls. Our model predicted a similar
trend in concentration changes that Spd and TSHtot re-
duced to 17% and 6% of the controls, as shown in Fig. 4(c)
and 4(d). No significant changes were found for AdoMet
and our model predicted this as well for this metabolite (see
Fig. 4(a)).

Put is an interesting metabolite regarding its response to
SpdS down-regulation. Xiao et al. reported a 45% decrease
in Put concentration over 3 days after SpdS depression. Tay-
lor et al. [21] also showed that, within 3 days, repressing
SpdS by just 5% compared to wild type caused a 60% de-
cline in Spd contents but, unexpectedly, no significant build
up of Put was found. In T. brucei therefore, cellular overpro-
duction of Put is avoided, possibly as excessive Put can elicit
oxidative stress as reported in mammalian cells [50, 51].

In our model we included a term reflecting the apparently
correlated regulation of SpdS on ODC activity (defined in
Eq. 1) which serves to prevent Put accumulation, as demon-
strated in Fig. 4(b). We observed that when this term is
removed from the model while keeping the remaining pa-
rameters unchanged, a 90% knockdown of SpdS leads to a
dramatic buildup in Put level (refer to the supplementary
material for details). Inclusion of this regulatory term en-
ables the model to simulate experimental observations. It
will now be of interest to determine the biological basis of
this regulation.
Model predictions on the consequences of AdoMetDC

knockdown and prozyme knockout - AdoMetDC has already
been validated as a drug target in T. brucei. Loss of

AdoMetDC or prozyme was observed to lead to decreases in
Spd and trypanothione and to cell death [24]. In our model,
simulations of prozyme knockout (over a simulated time
span of 4 days with a complete removal of the ligand-binding
form of AdoMetDC) and AdoMetDC knockdown (over a
simulated time span of 6 days with a 70% down-regulation of
total AdoMetDC concentration within 2 days of induction,
as specified in Ref.[24]) both resulted in a large increase
in Put levels and substantial reduction in Spd and TSHtot.
Simulation of the time-dependent effects on polyamine levels
of Put, Spd and TSHtot, induced by AdoMetDC knockdown
and complete prozyme knockout are reported in Figs. 5(a)
to 5(c). An 80% reduction due to prozyme knockout ver-
sus 65% reduction from AdoMetDC knockdown for Spd and
a 94% reduction due to prozyme knockout versus 70% re-
duction from AdoMetDC knockdown for TSHtot, were seen.
These results are in good agreement with the tendencies de-
scribed by real experimental observations [24].

We further compared the resulting TSHtot content when
the same degree of inhibition (70% knockdown applied to to-
tal AdoMetDC inhibition) was applied to ODC. Our model
predicted a relatively lower TSHtot level at the end of the
simulated time span of 4 days from AdoMetDC inhibition
(70% depletion) compared with that from ODC inhibition
(40% depletion), which agrees with [25] that AdoMetDC
could be a more promising chemotherapeutic target than
ODC for T. brucei. Additionally, a 70% AdoMetDC knock-
down or prozyme knockout caused an almost full depletion
of dAdoMet accompanied by a 6-fold increase in Orn while
AdoMet remained constant. These model predictions can
be verified when the relevant experimental data is available.
Our model simulations also reveal that activity of free-form
(homodimeric) AdoMetDC (VAdoMetDCO ) is 0.03% of the
activity of heterodimer AdoMetDC|prozyme (VAdoMetDCL),
which is consistent with the experimental observations [24]
that the former is as low as <0.1% of the latter, indicating
that prozyme reacting with AdoMetDC is a limiting factor
for AdoMetDC activity.

Our model has also been validated on the consequences
of inhibiting AdoMetDC activity by a specific inhibitor
MDL73811 (5’-{[(Z)-4-amino-2-butenyl]methylamino}-5’-
deoxyadenosine). When AdoMetDC was almost completely
inhibited (to 2% of control enzyme activity within 1 hour
of administration), a modest 33% decrease in Spd was
observed by 4 hours post-administration of MDL73811
[25]. Our model predicted a similar 30% reduction in Spd
over a simulated time span of 1 hour in response to the
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strong AdoMetDC down-regulation (via reducing total
AdoMetDC enzyme concentration [AdoMetDC]T to 2%
of the control value) and a 20% depletion in TSHtot was
predicted. Simulation results are depicted in Fig. 5(d).
Model predictions on the consequences of TSHSyn knock-

down - Trypanothione synthase (TryS), which catalyzes try-
panothione production from Spd and glutathione has been
recognised as a good drug target for trypansomes [26]. It
has been the focus of anti-trypanosomal research, owing not
only to its significant role in trypanosomal viability but also
its capability in regulating the levels of GspdSH, Spd and
glutathione. In our model, this enzyme is represented as
TSHSyn and a one-step production of total trypanothione
from Spd is assumed (as stated previously in the methods
section). Ariyanayagam et al. [26] reported that, within 3
days of TryS inhibition, TryS activity decreased 10-fold, giv-
ing rise to a 85% reduction in trypanothione level at the end
of 8 days of RNAi induction, whereas the reactants of the
reaction, Put and Spd, are not significantly increased. De-
spite the absence of glutathione in the model, knockdown
simulations of TSHSyn (following the inhibitory profile of
TryS) predicted a good match with the measured concen-
tration changes of Put (no profound changes observed) and
trypanothione (a 80% decrease in TSHtot predicted) at the
end of simulation duration of 8 days (illustrated in Fig. 6).

However, our model predicted a 10-fold increase in Spd
level, which contradicts the measured dynamics. We postu-
late that this may result from the exclusion of glutathione
in the model, which is found to accumulate markedly over
8 days of TryS inhibition in our simulation study. A po-
tential elevation in Spd levels could be averted if it reacts
with increased glutathione levels to produce TSHtot. In
the absence of quantitative inclusion of glutathione in our
model, Spd was unconstrained to be rapidly increased. We
tested this hypothesis by combining the 10-fold depletion of
TSHSyn activity (at the end of 3 days) with an increased
utilization of Spd (modelled through reduction in Spd pro-
duction rate to 5% of the uncontrolled level at the end of 3
days). The model predicted a 30% drop in Spd accompa-
nied with a considerable (90%) reduction in TSHtot, sup-
porting the possibility that Spd levels may be regulated by
the interaction with glutathione. When adequate kinetic
information becomes available regarding glutathione kinet-
ics and intermediate metabolites in T. brucei, integration of
the polyamine model with glutathione biosynthesis would be
useful for improving quantitative predictions on inhibition
consequences.
Sensitivity analysis - Sensitivity analysis describes

changes of metabolite concentrations as result of changes
in model parameters. We examined model sensitivity prop-
erties by running the model with the maximum velocity
(V Emax) of key pathway enzymes varied independently by
±10% of the nominal values. The model then evolves to
a new steady state over a simulated time span of 6 days
(plots not shown). Changes of maximum activities of en-
zyme MAT and MetPt resulted in a global effect on the sys-

tem, whereas some parameters influenced specific metabo-
lites; for example, changes of TSHSyn led specifically to
changes of Spd and TSHtot and the function of TSHCpt
is limited to TSHtot only. The other input to the model,
OrnPt, also showed an impact on Orn, Put and TSHtot.
With this analysis, we observed that when ODC is inhib-
ited, Orn built up rapidly over 2 days leading to a new steady
state, which is proportional to the degree of knockdown ap-
plied to ODC (illustrated in Fig. 7). This figure may ex-
plain why reversible inhibitors of ODC are not successful in
killing trypanosomes as the extensive increase in Orn con-
centration (almost 7.5 times of the normal Orn value) will
out-compete the reversible inhibitors interacting with ODC.
The binding of the enzyme with irreversible inhibitors can
however prevent competition from the substrate, but the in-
hibitors have to be sufficiently potent to cause apparent loss
of TSHtot content (discussed later).

We compared the changes in TSHtot dynamics over a
simulated time span of 5 days. Individual enzymes were
subject to a 90% knockdown within 24 hours of simula-
tion. These enzymes included ODC, SpdS, prozyme, MAT,
OrnPt, MetPt and TSHSyn - enzymes involved in de novo
synthesis of total trypanothione. Fig. 8(a) indicates that a
90% knockdown of each enzymes led to decreased TSHtot,
with levels dropping to less than 10% of the unperturbed
level at the end of simulation span. MetPt, MAT, prozyme
and OrnPt exhibit a much stronger inhibitory effect on
TSHtot than ODC and SpdS. TSHSyn displayed a faster
converging trajectory after 48 hours of simulation and a
more complete depletion of TSHtot than all other enzymes.

We further analyzed TSHtot concentration changes (at
the end of a simulated time span of 5 days) with respect to
different knockdown levels for individual enzymes. Fig. 8(b)
revealed that all of these enzymes can almost completely
deplete TSHtot when they are each perturbed by at least
90%. This is recapitulated in Fig. 8(b), which indicates
that when activity knockdown is more than 70%, TSHSyn
has the strongest inhibitory effect on TSHtot, whereas when
the knockdown is less than 70%, MAT, MetPt, Prozyme
and OrnPt exert the most effective control on TSHtot re-
duction. Under all scenarios, ODC and SpdS displayed
a relatively weaker inhibitory impact on TSHtot. We ob-
served that a 70% loss of ODC and SpdS led to the
same effect as a 60% loss of TSHSyn or a 50% reduc-
tion of MAT, MetPt, Prozyme or OrnPt, indicating that
to achieve the same level of TSHtot depletion (70%), the
knockdown strength required for different enzymes should
follow ODC,SpdS>TSHSyn>MAT,MetPt,Prozyme,OrnPt.
This could point to the enzymes MAT, MetPt, Prozyme
and OrnPt as good potential drug targets, which lead to
TSHtot depletion with only small perturbations.
Combination chemotherapy for T. brucei. Enzymes re-

sponsible for polyamine biosynthesis are proven drug tar-
gets. Simulations generated by our model indicate that
strong down-regulation of polyamine pathway enzymes in-
cluding ODC, prozyme, SpdS and TSHSyn lead to reduc-
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tions in TSHtot levels, demonstrated to be potential targets
for drug design.

The use of mathematical models not only provides a mech-
anistic understanding but can also drive new and more ef-
fective experiments. Combination chemotherapy for African
sleeping sickness is attractive as it offers the potential for
lower doses of drugs and reduced risk of resistance emerging
for individual compounds. We are particularly interested
in enzyme(s) that, when used in tandem with weak pertur-
bation of other enzymes, result in a similar or even more
potent inhibitory effect than when these enzymes alone are
strongly perturbed.

Studying effects of inhibiting pairs of enzymes on TSHtot,
as illustrated in Fig. 9(a), shows that a combination of a
70% knockdown of enzyme MAT, prozyme or OrnPt with
a weak (10%) down-regulation of ODC produces a similar
effect on TSHtot depletion as when ODC is almost com-
pleted removed. In conjunction with a 50% loss of MAT,
prozyme or OrnPt, a weaker TSHtot inhibition is obtained
at the end of a simulated time span, but a faster depletion
rate is displayed over the first 24 hours of inhibition than
using a 90% ODC knockdown alone. A 10% prozyme de-
pression (Fig. 9(b)), together with a 50% down-regulation
of MAT or OrnPt reduced TSHtot concentration to the
same level at the end of a simulated time span as when
only a 50% prozyme depression was applied. In conjunction
with a 70% MAT or OrnPt down-regulation, the same 10%
prozyme knockdown reduced TSHtot to the same extent as
a 90% prozyme knockdown alone. Furthermore, combining
the same 10% prozyme knockdown with a 70% loss of ODC
resulted in the same degree of TSHtot depletion as lower-
level joint perturbations (50%) with MAT or OrnPt.

In individual cases, combining a 10% knockdown of ODC
or prozyme with a 70% TSHSyn inhibition reduced TSHtot

to the same amount as when the respective enzyme is per-
turbed by 90%, but with a slower inhibitory trajectory
compared to combination therapies with MAT and OrnPt.
When prozyme is reduced by less than 30%, all other en-
zymes have to be down-regulated by at least 90% in order to
obtain the same level of TSHtot depletion as a 90% prozyme
depression alone (results not shown).

Fig. 9(c) to 9(d) support our previous conclusion that
TSHSyn and prozyme alone are capable of adequately re-
moving TSHtot when it is subject to a sufficiently strong
deactivation. As indicated in Fig. 9(c), the combination of
a down-regulation of 70% in prozyme with a 70% depres-
sion of enzyme MAT produces the same temporal dynamics
and final depletion of TSHtot as a 90% prozyme knockdown
alone. The maximum level of TSHtot depletion occurs when
prozyme (knocked down by 50% or 70%) is combined with a
more potent 90% MAT down-regulation. Combining a 70%
loss of prozyme with a medium to strong OrnPt perturba-
tion can lead to a similar level of TSHtot depletion, but not
as strong as exerted by MAT. In Fig. 9(d), when TSHSyn is
down-regulated by more than 50%, down-regulation of MAT
or OrnPt by as much as 70% is required in tandem to ob-

tain the same level of TSHtot depletion as a 90% TSHSyn
down-regulation alone. We observed that even though com-
bination therapies for TSHSyn and prozyme result in ap-
proximately the same level of TSHtot depletion at the end
of the simulated time span, they exhibited faster inhibitory
trajectories, giving rise to more TSHtot removal at earlier
stages (the first 2-3 days of simulation span, see Fig. 9(d)).
In both cases, combining a 70% knockdown of prozyme or
TSHSyn with a 70% OrnPt down-regulation led to the same
final TSHtot level, but with slower temporal dynamics than
other strategies over the same duration.

As indicated in Fig. 8, MAT and MetPt knockdown both
result in almost the same depletion pattern for TSHtot. As
such, MetPt related perturbation was found to be applicable
to the perturbation experiments carried out here in the same
way as MAT. It has been verified that a constant supply
of Met is imperative for trypanosomal cell growth [41, 47],
supporting the credibility of the predictions made by this
model. Similarly, the results observed for ODC are appli-
cable to SpdS, however SpdS displayed a better inhibitory
effect than ODC (likely due to the regulatory link predicted
for the enzymes) but still not comparable with that from
MAT or OrnPt.

The combination chemotherapeutic strategy suggests that
enzymatic reactions of AdoMet production and Orn uptake,
catalyzed by MAT and OrnPt, respectively, are key regula-
tory points in the pathway. When used alone or in tandem
with weak down-regulation (i.e. 10%) of other enzymes, a
moderate perturbation (i.e. 50%) of MAT and OrnPt exhib-
ited a strong inhibitory impact on the total trypanothione
production, with the former being more effective than the
latter, in particular, when MAT knockdown is used in con-
junction with medium or strong perturbation of prozyme
and TSHSyn. The regulation of polyamine synthesis via
MAT or OrnPt is likely to be a good chemotherapeutic tar-
get.

Conclusions - Mathematical models of metabolism have
begun to find utility in drug discovery. One of the most use-
ful and advanced models is that of glycolysis in protozoan
T. brucei, the causative agent of HAT. Here we present a
first model of a second branch of metabolism, the polyamine
pathway, which can be linked to glycolysis via the second
route of glucose metabolism in T. brucei, the pentose phos-
phate pathway that creats NADPH, which is the ultimate
source of lectrons required in reduction of trypanothione and
the cell’s primary reactive thiol species.

This model complements a recent attempt at modelling
trypanothione metabolism in the related parasite T. cruzi
[52]. The T. cruzi model focuses on the glutathione synthe-
sis branch and the redox cycle of trypanothione. Polyamine
synthesis, which is the focus of this work, is not included.
Our simulation results (Fig. 8) agreed with observations
made in the T. cruzi model that at 80%-100% down-
regulation, most of the involved enzymes were found to be
essential for parasite survival. In particular, TSHSyn (TryS
in the T. cruzi model) has to be inhibited by 70% to suffi-
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ciently deplete trypanothione contents, which is consistent
between the two models. Both studies attempt to identify
promising therapeutic strategies and this issue is viewed
from the aspect that "suitable drug targets should be en-
zymes for which low pharmacological inhibition have a high
impact on pathway function [52]". Pathway enzymes in the
T. cruzi model were ranked according to control efficiency
of individual enzyme and simultaneous inhibition of those
enzymes with top scores were recommended as being good
candidates for multi-target strategies, whereas in our T. bru-
cei model, different combination therapies of key pathway
enzymes were simulated and time-dependent concentration
changes were measured against total trypanothione contents
(Fig. 9(a) to 9(d)), providing us with a direct comparison
among alternatives. We would like to take this work further
by merging these two models to evaluate the perturbation
effect on trypanothione level when the good targets iden-
tified from the respective work are jointly used. However,
this is challenged considerably not only by the differences
in the specificity of parameter values but also the kinetic
reactions specific to individual organisms. For example, the
cysteine uptake reaction that was not modelled in the T.
cruzi model has proven to be critical for trypanosomal sur-
vival in T. brucei [47]. Additionally, both organisms can
synthesize Spd de novo from dAdoMet and Orn but T. cruzi
also holds the capability to assimilate exogenous Spd (only
this uptake reaction was modelled in the T. cruzi model).
Integration of these models could further assist in gaining
an in-depth understanding of the overall metabolic system
in trypanosomes.

Our modelling activities focused on studying the effec-
tiveness of DFMO the first line drug licensed to target stage
2 HAT. Previous work has generated a significant amount
of information regarding the network topology and kinetic
analysis of many of the enzymatic reactions has made kinetic
modelling possible. However, parameters for a significant
number of the enzymes involved in the pathway were un-
known. Therefore it was necessary to introduce assumptions
and simplifications to the pathway were required. Qualita-
tive knowledge of the pathway guided the assumptions made
and optimization-enabled dynamic simulations were used to
test how assumption-containing models performed relative
to outputs measured in experiments. Discrepancies between
model simulations and experimental observations prompted
a cyclic procedure of model design. All proposed models
share the same pathway topology but differ in mathematical
expressions of the enzyme rate equations. We demonstrated
that one model (V4 in Table 2) faithfully reproduces most
experimentally measured properties of the pathway. The
model can be further tested as new information becomes
available from experiments aimed to measure fluxes through
the pathway, as proposed in the silicon trypanosome project
[53].

The model already offers opportunities to explore new
strategies for targeting this pathway in anti-trypanosomal
drug design. Combination chemotherapeutic studies

revealed that most polyamine enzymes can influence
polyamine biosynthesis, but when targeted alone, high levels
of inhibition are required to inhibit the pathway sufficiently
to kill cells. Most importantly, reactions catalyzed by en-
zyme MAT or OrnPt appear to be critical control points of
the pathway, with MAT being preferable than OrnPt. Mod-
erate disruption of MAT or OrnPt, both in isolated and
joint form, led to dramatic changes in polyamine concen-
trations as well as total trypanothione contents. Our study
also shows that prozyme and TSHSyn could be used for
multi-target therapy but only when they are potently inhib-
ited (at least 50% knockdown) together with similar down-
regulation of MAT or OrnPt. Combined down-regulation of
key pathway enzymes offers an effective chemotherapeutic
strategy. The additional requirements for regulatory ap-
proval of combination therapies makes de novo production
of combination therapies difficult, but it is worth noting
that for HAT it was possible to introduce a nifurtimox-
eflornithine combination therapy (NECT) which has advan-
tages over eflornithine monotherapy alone. Metabolomics
analysis did not indicate a role in polyamine pathway inhibi-
tion by nifurtimox [19], however the precedent to introduce,
rapidly, a combination partner to work alongside eflornithine
has been set.

In conclusion, it has been necessary to include multiple as-
sumptions and simplifications to build a model of polyamine
metabolism in T. brucei because insufficient data was avail-
able to produce a full description. Notwithstanding, the
available of several datasets where measurements of metabo-
lite levels following pathway perturbation has enabled us
to adjust assumed parameters and simplifications in a way
that allows reasonable simulations of measured activity. The
model has then been used to make predictions on poten-
tial co-inhibition of different enzymes of the pathway to in-
form possible strategies for combination chemotherapy and
can report on possible regulatory components of the path-
way which can now be approached experimentally. The ba-
sic model description here can be further improved as new
information becomes available in T. brucei on specific ki-
netic parameters of enzymes in the pathway and measured
metabolite levels under different perturbed conditions.
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Figure 1: A detailed graphical representation of trypanothione metabolism. Ovals in the blood compartment
represent constant exogenous metabolites to be assimilated into the cytosolic compartment. Ovals in the cytosolic compart-
ment represent intra-cellular metabolites that are time-dependent variables. Edges represent chemical conversions between
model components with arrows indicating reaction directionality. Metabolites and reactions constituting the polyamine
biosynthetic pathway that are considered in this model are highlighted in bold, with time-variant metabolites shown in
green and constant metabolites shown in pink. Enzymes catalysing each active elementary step in the pathway are de-
noted with blue boxes. The remaining modules of the network shown in grey are not modelled but help gaining an overall
picture of the metabolism. Abbreviations of polyamine metabolites: Met, methionine; AdoMet, S-adenosylmethionine;
dAdoMet, decarboxylated AdoMet; MTA, methylthioadenosine; AdoHcy, S-adenosylhomocysteine; Orn, ornithine; Put,
putrescine; Spd, spermidine; TSHtot, total trypanothione; Metexg, exogenous methionine; Ornexg, exogenous ornithine;
. Abbreviations of intra-cellular polyamine enzymes: MetPt, Met uptake enzyme; MAT, AdoMet synthase; AHS, methyl-
transferase; AdoMetDC, AdoMet decarboxylase; MetRcy, Met recycling enzyme; OrnPt, Orn uptake enzyme; ODC, Orn
decarboxylase; SpdS, Spd synthase; TSHSyn, TSHtot synthesis catalyst; TSHCpt, TSHtot consumption catalyst.
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Figure 2: Model predictions on polymaine dynamics under DFMO treatment compared with experimental
data provided by Fairlamb et al. [10]. Enzyme activity of ODC was modelled as a time-dependent variable. AdoMet
contents are measured by Xiao et al. [23].
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Figure 3: Time-series simulation of the effect of ODC inhibition on polyamine levels (lines without symbols)
compared with observed values in vitro (lines with symbols). Enzyme specificity of ODC was modelled as a
time-dependent variable during the simulation with λE equal to 0.0016. AdoMet dynamics observed by Xiao et al. [23]
were adopted as experimental data.
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Figure 4: Time-series simulation of SpdS knockdown on polyamine levels (lines without symbols) compared
with observed values in vivo (lines with symbols). Enzyme specificity of SpdS was modelled as a time-dependent
variable with λE equal to 0.0016. Observed values made by Xiao et al. [23] are used in the figure.
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Figure 5: Effects of AdoMetDC knockdown (KD) and prozyme knockout (KO) on polyamine levels in
time-dependent simulations (a-c). In KD simulations, total AdoMetDC concentration ([AdoMetDCT ]) was modelled
as a time-dependent variable with λE equal to 0.0004 to represent the 70% activity down-regulation within 2 days of
induction. In KO simulations, the factor 1 − β representing the percent of the complex AdoMetDC|prozyme taking up
the total enzyme AdoMetDC is set to zero to represent full prozyme removal. Observed values made by Willert et al. [24]
are used in the figure. In (d), Put and Spd dynamics in response to a 98% knockdown of AdoMetDC concentration by
interacting with the MDL component are compared with the experimental observations from [25]. During the simulation,
total enzyme concentration of AdoMetDC was modelled using a exponential decay function with λE set to 0.07 to mimic
a 98% knockdown within 1 hour of induction.
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Figure 6: TSHtot dynamics over 8 days of TSHSyn RNAi induction. During the simulation, TSHSyn activity
(V TSHSynmax ) was modelled as a time-dependent variable using the exponential decay function with λE set to 0.00045.
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Figure 7: Orn dynamics over 2 days after ODC activity depression. During the simulation, ODC activity (V ODCmax )
was modelled as a time-independent constant by multiplying the normal value by the percentage amount.

21



0 24 48 72 96 120
Time (hours)

0

20

40

60

80

100

[T
SH

to
t] K

D
/[

T
SH

to
t] N

om
 (

%
)

MetPt
MAT
Prozyme
ODC
SpdS
TSHSyn
OrnPt

(a) Key Enzymes (90% KD)

0 20 40 60 80 100
KD (%)

0

20

40

60

80

100

[T
SH

to
t] K

D
/[

T
SH

to
t] N

om
 (

%
)

MetPt
MAT
Prozyme
ODC
SpdS
TSHSyn
OrnPt

(b) Key Enzymes (KD %)

Figure 8: Studies of changes in TSHtot concentration under different perturbations. In (a) time-series TSHtot

concentration values are calculated over a simulated time span of 5 days subject to a 90% decrease of individual enzyme
activity. A 90% knockdown of AdoMetDC enzyme concentration and a 90% prozyme knockdown were found to follow a
similar pattern of TSHtot dynamics, and only prozyme inhibition is shown. In (b) TSHtot concentration values at the end
of the simulated time span (5 days) are calculated subject to various degrees of knockdown (KD) for individual enzymes. In
both figures, the percentage of TSHtot concentration under perturbed ([TSHtot]KD) and normal ([TSHtot]Nom) conditions
is plotted. In all cases, enzyme activities (V Emax) are time-dependent variables subject to specific inhibition within 24 hours
of simulation.
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Figure 9: Studies of combination chemotherapeutic regimens. Percentage of TSHtot concentration under perturbed
([TSHtot]KD, over a simulated time span of 5 days) and normal ([TSHtot]Nom) conditions. In individual model simulations
(a) and (b), a 10% enzyme knockdown (KD) of ODC and prozyme is applied in conjunction with down-regulation of other
key pathway enzymes and the simulation results from individual and combined perturbations are compared. In (c) and
(d), the inhibitory effects on TSHtot were examined for combinations of medium to strong depression of prozyme and
TSHSyn and different levels of knockdowns of other enzymes. In all cases, enzyme activities (V Emax) are time-dependent
variables subject to specific inhibition within 24 hours.
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