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An environmental uncertainty-based diagnostic reference tool for evaluating the 

performance of supply chain value streams  

 

Abstract 

This research has responded to the need for diagnostic reference tools explicitly linking the 

influence of environmental uncertainty and performance within the supply chain. Uncertainty 

is a key factor influencing performance and an important measure of the operating 

environment. We develop and demonstrate a novel reference methodology based on the data 

envelopment analysis (DEA) for examining the performance of value streams within the 

supply chain with specific reference to the level of environmental uncertainty they face. In 

this paper, using real industrial data, 20 product supply value streams within the European 

automotive industry sector are evaluated. Two are found to be efficient. The peer reference 

groups for the underperforming value streams are identified and numerical improvement 

targets are derived. The paper demonstrates how DEA can be used to guide supply chain 

improvement efforts through role-model identification and target setting, in a way that 

recognises the multiple dimensions/outcomes of the supply chain process and the influence 

of its environmental conditions. We have facilitated the contextualisation of environmental 

uncertainty and its incorporation into a specific diagnostic reference tool. 

 

Keywords: Diagnostic reference tool; data envelopment analysis; supply chain; performance 

measurement; environmental uncertainty. 



 4 

1. Introduction 

 

Over the past few decades globalisation coupled with hyper competition has pushed supply 

chain management (SCM) to the forefront of research and practice agendas (e.g. Storey et al. 

2006; Christopher 2011). A supply chain consists of a geographically dispersed network of 

actors that transform raw materials into distributed products (Bowersox et al. 1999). The 

coordination, control, and improvement of such a complex network of activity offers a major 

challenge to managers. A properly designed performance measurement system is the 

cornerstone of effective coordination, control and enhanced competitiveness, and hence the 

growing attention to supply chain performance measurement issues (Gunasekaran et al. 

2004). The result is a glut of performance measures (Beamon 1999), many of which have 

been criticised principally because they: (a) fail to reflect the multiple dimensions/goals of 

business units within the supply chain (Bytheway 1995; Beamon 1999), and (b) ignore the 

factors that are beyond the control of management, such as uncertainty (Beamon 1999). 

 

Data envelopment analysis (DEA) offers a solution to such shortcomings. First, it is highly 

versatile enabling analysts to use ordinal, discrete, interval and ratio variables side by side to 

construct a performance model. As such, factors frequently measured using ordinal variables 

such as environmental uncertainty can be included in the analysis. Second, it can 

contextualise and make allowances for factors that are outside the control of management but 

affect the performance of supply chain members. Third, it can help management to establish 

informed improvement targets (Charnes et al. 1994; Liu et al. 2000; Saranga and Moser 

2010). 
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This paper demonstrates a novel application of how DEA can be used to facilitate the 

development of a diagnostic reference tool to analyse the supply chain performance of 

product value streams (business units) operating within a supply chain network. Moreover, it 

demonstrates how the tool can be used to guide management’s efforts to improve the units’ 

performance through role-model identification and target setting, in a way that recognises the 

multiple dimensions/outcomes of the supply chain process and the influence of its 

environmental conditions. 

 

Environmental uncertainties have a major impact on the performance of the supply chain and 

managerial decisions, and the ability to align the organisation with the demands of the 

external environment is an important source of competiveness. The performance 

management technique we present enables managers to establish how well their product 

value stream is aligned with the uncertainties of the external environment in comparison with 

the best aligned value stream. They can discriminate between the most efficient and less 

efficient product value streams. It enables not only comparison of like with like, but allows 

managers to pinpoint weaknesses and set appropriate improvement targets. Managers can 

identify suitable role models (value streams other than those on the best performing frontier) 

and systematically improve target levels. The flexibility to select an appropriate role model is 

of significant benefit. 

 

Environmental uncertainty in this application is derived from the examination of supply-side 

factors, demand-side factors, internal process factors and control factors, across the linkages 

of product value streams extending upstream from a focal business unit to the first-tier 

suppliers, and downstream to the first-tier customers. Real industrial data is used, extracted 

from the European automobile supply chain. 
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The choice of uncertainty as the input variable in the reference model is predicated on the co-

alignment and contingency theories of management. Both theories play an important role in 

organisational research (Carroll 1993; Johnson et al. 2002).  Van der Vorst and Beulens 

(2002) pointed out that the literature unanimously recognises that uncertainties in supply, 

process and demand have a major impact on the manufacturing function. They argued that 

uncertainty propagates throughout the supply chain and leads to inefficient processing and 

non-value-adding activities. As such, uncertain environments bring immense pressure on all 

organisations to make ‘carefully considered effective decisions’ (Koutsoukis et al. 2000). 

 

The motivation for this research stems firstly from the increasing recognition within the SCM 

literature of the critical influence of uncertainty on the efficiency, effectiveness and flexibility 

of supply chains (Koutsoukis et al. 2000; Van der Vorst and Beulens 2002; Lockamy et al. 

2008), secondly from the paucity of empirical research examining the influence of 

uncertainty on supply chain performance, and thirdly from the perceived advantages offered 

by the DEA technique for developing a diagnostic reference tool for comparative 

performance assessment (Talluri and Baker 2002; Saranga and Moser 2010). 

 

The paper is organised as follows. First, we discuss performance measurement within the 

supply chain, followed by DEA’s general principles and an examination of relevant past 

applications. The data sources and research design are then discussed, followed by our 

application of the DEA model. Finally, managerial implications of the use of the diagnostic 

reference model, conclusions and suggested future research are discussed. 

 

2. Supply chain strategy and performance evaluation 
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The supply chain management concept and cycle time compression stem from a shift in 

predominance of price competition to simultaneously competing on a broad range of factors 

(Hewitt 1994; Godsell et al. 2011). Maximising the value added to products and satisfying 

customers has become more and more important. This prompted Hewitt (1994) to suggest 

that an efficient and effective supply chain management strategy ought to address value 

maximisation, process integration, and responsiveness/cycle time reduction simultaneously. 

Bytheway (1995) extended this argument by suggesting that efficiency, effectiveness and 

evolution-based supply chain strategies were open to organisations:. The focus of an 

efficiency strategy is on improving productivity, reducing cost and increasing the profit 

margin. An effectiveness strategy is concerned with quality, service excellence and image. 

An evolution strategy focuses on developing the organisation’s ability to respond to change 

in its operating environment. According to Bytheway (1995), efficiency type strategies have 

been the most prevalent, however, these work best in stable and mature markets. In reality, 

not all markets are mature and most encounter instability. The greater environmental 

turbulence means that organisations increasingly have to pursue all of the three supply chain 

strategies simultaneously. Pursuing a single supply chain strategy carries several risks. First, 

it may result in a misalignment with the operating environment. Second, it may result in a 

misalignment with the organisation’s strategic goals. In either case the risk of failure 

increases. Bytheway (1995) also argued that the supply chain evaluation system should 

enable management to understand their business’s strategic position and what can be 

improved in the business, thus, he proposed a supply chain performance measurement model 

consisting of the following three broad dimensions: efficiency, effectiveness, and market 

responsiveness. Li and O’Brien (1999) also recognised multiple goals/dimensions of supply 

chains and suggested that profitability, flexibility, reliability and waste limitation are four 
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important aspects.  Akyuz and Erkan (2010) and Beamon (1999) conducted a comprehensive 

review of supply chain performance measurement models, and concluded that the current 

models suffered from the following limitations: 

 focusing on cost as the primary measure of performance; 

 reliance on a single, mainly economic oriented, supply chain performance measure; 

 ignoring the interactions among different supply chain strategies; and 

 ignoring the potential influence of uncertainty, which is outside management control but 

has a strong influence on supply chain performance. 

 

Beamon (1999) proposed a framework for the measurement of supply chain performance 

comprising of three broad components critical to supply chain success: efficient use of 

resources, quality of products and service, and system flexibility. She further argued that an 

adequate supply chain measurement system must at least contain one measure from each of 

the three broad performance components, and moreover, that the measures used for 

representing each of the dimensions must be consistent with the organisation’s strategic 

goals. Beamon’s (1999) proposed model explicitly assumes that only a comprehensive 

system of measurement could show the effect of interactions between different supply chain 

strategies. A key issue for organisations is the weight to be attached to each of these 

strategies. 

 

There is a broad consensus that process-driven analyses provide essential links between 

strategy, execution, and ultimate value creation (Melnyk et al. 2004). The literature, while 

divided on specific measures, is more united on the desirable attributes of supply chain 

performance measures. These important attributes can be summarised as follows (Beamon 

1999; Akyuz and Erkan 2010): 
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(a) reliance on cost measures is insufficient and could be potentially misleading in a fast-

changing and increasingly competitive environment; 

(b) models ought to reflect a multiplicity of goals and outcomes – they should include 

quantitative and qualitative measures – furthermore, measures ought to reflect the 

strategic priorities of the organisation; 

(c) the measurements used should take into account the effects of contexts or situation-

related factors; and 

(d) to enable management to control and plan, the performance/outcomes should be 

compared and contrasted against the best possible potential performance. 

 

The above requirements increase the complexity of supply chain performance evaluation 

models. One of the biggest problems of using multiple measures is interpretation, because it 

is usual for different metrics to move in different directions. Moreover, it is also often 

difficult to combine different measures and construct a single index. For control and planning 

purposes the performance over one time period can be compared with: 

 past performances of the organisation, that is to say temporal comparisons; 

 the performance of different divisions of an organisation, that is to say internal cross-

sectional performance; or 

 the performance of different organisations, that is to say external cross-sectional 

performance. 

 

These comparisons would be more meaningful if a robust single diagnostic measure could be 

established and the current performance or performance of the division/organisation could be 

compared with the most efficient performance that has occurred. Furthermore, it would be 

more useful to managers if they could identify the reasons for inefficiencies. The data 
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envelopment analysis (DEA) technique can potentially address all the desirable attributes of a 

multi-goal supply chain diagnostic reference model and facilitate the development of a close 

to ideal performance index. 

 

3. Data envelopment analysis (DEA) and its applications 

 

DEA is a linear-programming-based method for assessing the relative performance of 

decision-making units (DMUs). It measures the relative efficiency of each DMU in 

comparison to other DMUs (Liu et al. 2000). The method was initially proposed by Charnes 

et al. (1978) based on the definition of efficiency proposed by Farrell (1957): the ratio of 

attainable output to actual inputs. A distinctive feature of DEA, considered to be its primary 

advantage (Easton et al. 2002; Cherchye et al. 2008), is that it can establish a combined (or 

composite) index of overall performance thus facilitating easy comparison between decision-

making units such as departments, organisations or supply chains. DEA converts multiple 

input and output measures of a DMU into a single comprehensive measure of efficiency, thus 

providing a measure by which one DMU can compare its performance, in relative terms, to 

other homogeneous DMUs (Easton et al. 2002). It can also give information on the 

individual performance measurements that make up the aggregate score thus enabling the 

manager of a DMU to take action on specific measures (Easton et al. 2002). 

 

According to Weber (1996), mathematically DEA starts by identifying an ‘efficient frontier’ 

from the observed inputs and outputs of the set of DMUs under examination. Based on the 

notion of Pareto optimality, this efficient frontier is determined by the most efficient 

DMU(s). A DMU is efficient if there is no other DMU (or combination of other DMUs) that 

can produce at least the same levels of all outputs, with less of some resource input and no 
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more of any other. The relative efficiency of each DMU relative to this efficient frontier is 

then calculated (Weber 1996). 

 

The efficiency score for a DMU is defined as the total weighted score of outputs divided by 

the total weighted score of inputs. To avoid the potential difficulty in assigning these weights 

among various DMUs, DEA computes weights that give the highest possible relative 

efficiency score to a DMU while keeping the efficiency scores of all DMUs less than or equal 

to one under the same set of weights (Liu et al. 2000). It is this approach that ensures that all 

DMUs are evaluated on the basis of relative efficiency (Easton et al. 2002). DEA’s total 

objectivity in the establishment of weights for the input and output measures is considered to 

be a further major benefit (Braglia and Petroni 2000). A further major advantage of the DEA 

technique is its versatility – it enables the analyst to use ordinal, discrete, interval and ratio 

variables side by side to construct a diagnostic model. Thus, factors such as environmental 

uncertainty measured in ordinal variables can be central in the analysis. 

 

Arguably, one of the main benefits of using DEA over other PM tools that are used for 

informing managerial action (for example regression analysis or cost–benefit ratio analysis) 

is its ability to provide benchmarking DMUs and a peer reference group for inefficient 

DMUs (Yang et al. 2011). The technique enables the analyst to construct an overall 

performance index from multiple input and output variables and identify the most efficient 

frontier. By identifying efficient DMUs, benchmarks of performance for inefficient DMUs 

are established for direct comparison, thus guiding managers’ appreciation of how resources 

may be best directed for improvement and enhancing the quality of decision making (Easton 

et al. 2002). Furthermore, it can deal with many different inputs and outputs simultaneously 
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and, by using the non-parametric approach, without prior knowledge of the function of inputs 

and outputs.  

 

From its origins in the not-for-profit sector (Charnes et al. 1981), the use and applications of 

DEA have expanded to the private/for-profit sectors (Easton et al. 2002). Applications have 

included: healthcare/hospitals (e.g. Pina and Torres 1992), education (e.g. Beasley 1995) 

governmental organisations (e.g. de Boer and Telgen 1998), manufacturing (e.g. Xu et al. 

2009), retailing (e.g. Vaz et al. 2010), banking (e.g. Al-Faraj et al. 1993) and transport (e.g. 

Forsund and Hemaes 1994). 

 

Since the early 1990s, the use of DEA in SCM-related situations has also expanded. For 

example, Talluri and Baker (2002) applied DEA to determining the optimal number of 

suppliers, manufacturers and distributors for supply chain network design. The nature and 

utility of a range of real-world empirical DEA applications in SCM are presented in Table 1. 

 

“take in Table 1” 

 

This paper extends such applications. Its unique contributions lie in its application to value 

stream performance diagnosis within the supply chain and its incorporation of environmental 

uncertainty in the measurement model, neither of which have been covered in prior research. 

 

4. An environmental uncertainty-based diagnostic tool 

 

The single input, multiple output DEA evaluation model used in this study is based upon the 

Charnes–Cooper–Rhodes (CCR) ratio model (Charnes et al. 1978, 1994).  This is a well-
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established and extensively applied model, and as such its discussion and mathematical 

notation is limited in the main body of this paper. A description of the model as used in our 

analysis is presented in Appendix 1. The CCR model was chosen for its appropriateness to 

this application given its ability to establish a best-practice frontier based on best observed 

performance, and evaluate the efficiency of each decision-making unit (DMU) relative to this 

frontier. CCR remains one of the most frequently used DEA models in practical applications 

(Green and Cooks 2004). It is recognised as one of the most influential models by researchers 

(Seiford 1996), and has been successfully applied in many operations and supply chain 

performance studies (for example, Azadeh et al. 2007; Li and Dai 2009; Azadi and Saen 

2011; Yang et al. 2011). Furthermore, it is appropriate in applications, such as the present 

application, where there are no economies (or diseconomies) of scale present due to 

significant variations in the size of DMUs.  We deploy the diagnostic reference model to 

compare the performance of 20 product delivery value streams in the European car industry. 

 

4.1 Data sources and research design 

The primary data used in this application were drawn through the Quick Scan (QS) audit 

approach (Naim et al. 2002; Childerhouse 2002; Towill et al. 2002). This choice was 

influenced by two important considerations. First, the purpose of the QS study was to collect 

information to assess and evaluate supply chain performance. More specifically it was to 

study the uncertainty and related factors capable of influencing the performance. Second, the 

organisations covered by the study sample were from the European automotive industry and 

thus the data set was homogenous. This eliminated potential variations in supply chain 

performance due to industrial contingencies, making direct comparison plausible. A detailed 

description of the Quick Scan methodology can be found in Naim et al. (2002) and Towill et 

al. (2002).  Specifically, for this study the focal decision-making units (DMUs) to be 
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evaluated and compared are (single echelon) business units representing automotive product 

delivery processes. Data incorporated in the DEA model’s input variable are derived from the 

examination of the characteristics of (i) the supply-side linkage of each of the business units 

to their first-tier suppliers, and (ii) the demand-side linkage of each of the business units to 

their first-tier customers, in addition to the business unit’s internal process and control 

factors. As such, the evaluation model incorporates data from beyond the boundaries of a 

single business unit. The DMUs are referred to in this paper as (product delivery) value 

streams for accuracy. An organisation typically consists of a number of delivery value 

streams, and by focusing on a single delivery value stream we avoid aggregating 

environmental conditions that are likely to be different for different value streams. This 

approach helps us to avoid loss of important data and provides a more focused and 

meaningful reference model and analysis. 

 

4.2 Selection of DEA variables 

The selection of input and output variables plays a key role in the efficacy of the diagnostic 

model. The choice is influenced by the strategic goals of the supply chain, ease of defining 

the relevant variables, the ability to measure the selected variables at regular intervals, level 

of aggregation, ease of understanding, and cost/benefit trade-off of the measures involved. 

The model presented in this paper is based on the assumption that the goal of the supply 

chain is simultaneous improvement of its efficiency, effectiveness and flexibility. The 

variables selected for the model are given in Table 2. 

 

“take in Table 2” 

 

4.2.1 DEA input variable – environmental uncertainty 
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Traditionally, input in the operations management context is defined as the labour, material 

and capital cost. However, in highly complex systems in a supply chain it is very difficult if 

not impossible to identify the labour, material and capital cost that is a direct input to a 

complex multistage process. On the other hand, many authors have identified uncertainty as a 

key factor influencing the efficiency, effectiveness and flexibility of the supply chain 

(Koutsoukis et al. 2000; Van der Vorst and Beulens 2002; Lockamy et al. 2008). Sabri and 

Beamon (2000) state that ‘uncertainty is one of the most challenging but important problems 

in supply chain management’, and the existing body of knowledge suggests that uncertainty 

is an important input to any supply chain performance measurement model. 

 

In this application, uncertainty is deliberately chosen as the sole input variable defining the 

reference model. The literature suggests that the environment is a source of constraints, 

contingencies, problems and opportunities that affect the terms on which organisations 

transact business (Khandwalla 1977; Mintzberg 1979). As open systems, organisations need 

to adapt to the changing environment through changes in the way they transact business 

(Katz and Kahn 1966; Lawrence 1981). Environment is defined as the aggregate of factors 

that have an impact or the potential to have an impact on an organisation’s functioning 

(Emery and Trist 1965; Thompson 1967). The choice of uncertainty as the sole input variable 

is predicated on the co-alignment and contingency theories which both play an important role 

in organisational and operations management research (Hofer 1975; Carroll 1993; Johnson et 

al. 2002).  

 

The co-alignment theory suggests that the ability of an organisation to adapt to the changing 

environmental contingencies to ‘fit’ with the operating context is the key to survival and 

enhanced performance (Chandler 1962; Jauch et al. 1980; Lawrence 1981; Yasai-Ardekani 
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and Nystrom 1996). The effectiveness of the adaptive response is dependent on aligning the 

response to the environmental circumstances faced by the organisation (Miles and Snow 

1978; Hambrick 1983; Lee and Miller 1996; Strandholm et al. 2004). Contingency theory 

suggests that managers play an active but limited role in the continuous process of adapting 

to the emerging contingencies (Thompson 1967; Hofer 1975; Grandori 1984). Managers are 

viewed as a component of the total system that is technically constrained by the environment 

(Astley and Fombrun 1983; Bourgeois 1984). The focus of managerial decision making is 

not primarily choice, but on gathering correct information about changes in the environment 

and examining the consequences of alternative responses because strategic choice among 

contingencies are more consequential (Astley and Van de Ven 1983). In other words, the key 

input to an organisational unit is provided by the environment and managers who respond 

appropriately are likely to achieve superior performance. As such, the uncertainty is an 

important measure of the operating environment and an input that managers need to react to. 

The nature of the reaction, to a large extent, determines the likelihood of organisational 

success. 

 

Measuring uncertainty is not simple. Both Davis (1993) and Mason-Jones and Towill (1998) 

segmented supply chain uncertainties into four areas within the supply chain so that root-

causes and methods for minimisation can be developed. The latter identify the four areas of: 

value-adding process uncertainty, supply uncertainty, demand uncertainty and control 

(system) uncertainty. 

 

The measure for the DEA input variable uncertainty score was the aggregate (sum) of four 

individual scores (each on a four point Likert scale) given for (i) supply-side uncertainty, (ii) 

demand-side uncertainty, (iii) process uncertainty and (iv) [system] control uncertainty. 



 17 

Accordingly, an uncertainty score of 16 represents the highest perceived value stream 

uncertainty, and an uncertainty score of one the lowest. Table 3 shows the simple 

questionnaire completed with respect to each value stream (Towill et al. 2000, 2002; 

Childerhouse 2002), and Appendix 2 summarises the primary data collected and used for 

assessing uncertainty in the four supply chain areas during the QS audits. Each QS audit 

involved multiple site visits to each value stream by the QS team (a multidisciplinary team of 

researchers, site engineers and managers, and experts from the research partner). The 

questionnaire was completed by members of the QS team on the basis of the total 

information relating to uncertainty at their disposal. To ensure comparability, the 

questionnaires for all 20 value streams were activated only once all had been analysed, and 

where necessary the Likert scores were verified by cross-reference to detailed QS reports and 

re-visiting various data banks. The choice of a four point Likert scale was aimed at reducing 

any tendency to regress towards the mean, and instead to focus on strengths and weaknesses 

of individual value streams (Saunders et al. 2002). In summary, the uncertainty score 

measure is an assessment of the environmental conditions in which the business is operating. 

 

“take in Table 3” 

 

4.2.2 DEA output variables 

The three output variables used in the diagnostic model were chosen very carefully and are 

profit margin, delivery window and schedule stability (Table 2). These three variables were 

chosen, in the context of the European automobile industry, to reflect the three essential 

dimensions of supply chain strategies identified by Beamon (1999). Profit margin measures 

the efficient use of resources. Efficient resource management is critical to profitability 

(Beamon 1999). Profit margin is a generally accepted performance measure and is used to 
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measure efficient use of resources in this application because unlike other measures such as 

total cost of manufacturing and amount of obsolete inventory, it provides a more extensive 

representation of each value stream’s resource performance. The measure for profit margin is 

price minus variable cost, divided by price. Delivery window is the measure of on-time 

delivery, a critical component in customer service. The measure for delivery window is the 

percentage of orders delivered by the value stream to the customer on or before the specified 

due date. Schedule stability is a measure of each value stream’s flexibility. It is a measure of 

the value stream’s achieved response to its changing requirements in terms of product 

volume, delivery and product mix. The measure of schedule stability is the percentage 

variation of the actual monthly schedule for the value-adding process against the planned 

monthly schedule. These measures were collected from the 20 value streams by the 

researchers while on their site visits to conduct the QS audits. 

 

Arguably it may be considered desirable to construct a diagnostic model containing a wider 

set of input and output measures. However, it is a requirement to restrict the numbers of 

variables utilised in the DEA model, since too many variables would result in loss of 

discrimination among value streams (Thanassoulis et al. 1987). There is a need to strike a 

balance between the number of measures deployed and the discriminatory power of the DEA 

model. The set of output measures used here meets the requirement of any DEA-based 

analysis for robust measures whilst at the same time providing the power to discriminate. 

These output measures are in alignment with the overall supply chain strategy of the industry 

sector. 

 

5. Diagnostic results and analysis 
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All of the value streams were located in Europe, with the majority in England, three in 

Germany and in Wales respectively, and two in Scotland. All of the value streams were from 

the automotive manufacturing sector and resided within the local supply network supplying 

automotive components or assemblies to larger original equipment manufacturers (OEMs). 

All of the value stream products were automotive components/assemblies and were primarily 

from the engine or braking system areas. The major value-adding processes represented by 

the value streams in the sample were machining and assembly; machining; automated/final 

assembly; heat treatment; forging; and distribution warehousing. Appendix 3 summarises the 

location, product types and major value-adding processes of the data set. The DEA results 

and analysis are presented in the following sections. 

 

5.1 Overall value stream performance scores  

For planning and control purposes, an important starting point when assessing value stream 

performance is to determine which value stream or value streams have achieved the best 

output results given the input. In our model, we need to identify which value streams have 

achieved the best output results (profit maximisation, high level of customer service and 

system flexibility) given the different degrees of uncertainty faced by the value streams. In 

the analysis that follows, DEA results for value stream six (VS6) are highlighted in order to 

illustrate the managerial interpretation. 

 

DEA identifies a group of value streams that performed optimally and assigns them a score 

of one. These value streams are then used to create a frontier, or data envelope, against which 

the performance of other value streams is assessed and compared. The value streams that 

produce less weighted output per weighted input than the best-performing value streams (the 

frontier) are considered technically inefficient. They are given a score of less than one, but 
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greater than zero. The closer the DEA rating is to one, the closer the value stream is to the 

efficient frontier. The DEA ratings of overall performance for each value stream are shown in 

Table 4. 

 

“take in Table 4” 

The DEA analysis identified two value streams – VS4 and VS17 – that lie on the efficient 

frontier. That is to say, they have performed most efficiently given the uncertainty conditions 

and were rated as 100 percent efficient relative to the other value streams in the sample. The 

DEA ratings of the other value streams ranged from a low of 0.1414 to a high of 0.7475. 

Value streams 18 and 19 have the poorest performance. In addition to the overall rating 

scores, DEA also provides management with further useful information that can be used to 

guide improvement of the performance of the value streams. Peer reference comparisons are 

discussed more fully in the next section. As shown in Table 4, value streams four and 17 

have been identified (either jointly or solely) as the peer references for each of the value 

streams rated as inefficient. In the first instance therefore, value streams four and 17 could be 

further studied by management to reveal operating or management processes and practices 

that lead to improved performance. 

 

5.2 Peer references for under-performing value streams 

With respect to each of the inefficient value streams, DEA identifies its peer references. The 

peer references for each of the inefficient value streams are one or more of those that have an 

overall DEA performance rating of unity. The DEA calculation allows each value stream to 

choose values for the input variable and output variable weights that serve to show it in the 

best possible light. These weights render its peers relatively efficient. This makes the peers 

useful reference points because they have better performance in precisely the areas that the 
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value stream chooses to emphasise (i.e. weight heavily) when compared with other value 

streams. As a result it is likely that there is a measure of agreement (explicit or implicit) 

between a value stream and its efficient peers on the relative values of the outcomes and the 

relative strength of the environmental influences on these outcomes. Thus, the efficient peers 

for each value stream can act as its role models in its effort to improve its performance. 

 

Value stream six was found to have relative efficiency of 0.56 (Table 4). This means that 

relative to its efficient peers, the overall output level of VS6 is only 56 percent of its potential 

level. The efficient peers for VS6 are both VS4 and VS17. The performance of VS6 can now 

be contrasted with that of its efficient peers to see why it has attained a lower relative 

efficiency score. 

 

Table 5 shows the original data for VS6 and its peer references VS4 and VS17. In order to 

make the comparison between the inefficient value stream and its efficient peers as clear as 

possible, the data have been scaled by the factor labelled ‘scale’. Thus, both inefficient VS6 

and its efficient peer VS17 have been scaled so that their input levels are the same as the 

input level of efficient peer VS4. With the input level for all three value streams adjusted to 

the same amount (i.e. 6.0), a relatively simple comparison can now be performed on the 

outputs. 

“take in Table 5” 

 

Table 5 clearly shows that the efficient peers VS4 and VS17 perform better than VS6 when 

the scale data are compared. The data show that with the same input level as VS4 and VS17, 

almost all of the outputs of VS6 are significantly lower than those of VS4 and VS17. 

Compared with efficient peer VS17, VS6 has achieved significantly lower performance in 
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both delivery window and schedule stability, although it has a marginally higher value in the 

case of profit margin. With reference to efficient peer VS17, given the uncertainty 

conditions, the expected performance of VS6 for delivery window is 13.09, however VS6’s 

actual relative performance is only 7.2. The scaled data in Table 5 show that compared with 

its efficient peer VS17, VS6 is only achieving 55 percent of VS17’s performance level in 

delivery window and only 4.5 percent of VS17’s performance level in schedule stability even 

though they would both be operating under the same level of environmental uncertainty. It is 

worth noting that although both VS4 and VS17 are peer references for VS6, it is reasonable 

to argue that VS4 is in fact a better role-model to VS6 than is VS17, because the output 

levels for VS4 are more challenging for VS6 to reach than those for VS17. Notice also, from 

Table 4, that VS4 is a peer reference to more inefficient value streams than VS17. On the 

other hand, the management of VS6 may choose to be more conservative in their 

improvement drive and hence select VS17 as the immediate role-model. On the basis of this 

analysis, we can conclude that as a strategic decision, the management of value stream six 

should concentrate on improving schedule stability in order to be as efficient as their efficient 

peers because this lag in performance compared with its efficient peers is the largest. 

 

Contrasting low overall scores of value streams with their peers in this way can help 

reinforce the case that the inefficient value streams need to improve their performance. Yet 

an inefficient value stream can, of course, study and adopt operating practices of any other 

value stream regardless of whether it is one of its efficient peers. What makes the reference 

peers special is that they are efficient with the very value system that would show the 

inefficient value stream in the best light, and hence they are likely to offer operating practices 

and environmental comparability with those of the inefficient value stream. This is what 
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makes them particularly suitable as role models, which the under-performing value stream 

can seek to emulate to improve its performance. 

 

5.3 Setting targets for improvement 

Apart from identifying peer references for the managers of inefficient value streams to study 

more closely, the DEA assessment also yields the target values of input and outputs that, in 

principle, the inefficient value stream ought to be able to achieve. These target values can be 

deduced directly from the optimal solution of model M1 (Appendix 1). However, they are 

more conveniently explained with reference to the optimal solution to the dual to model M1, 

which is designated as model M2 (Appendix 1). 

 

Through the linear programming solution, one can obtain all the targets for each of the value 

streams. These are presented in Table 6. The targets indicate the best possible achievement 

for a value stream given its uncertainty condition. The data indicate that for at least 14 of the 

inefficient value streams there is considerable room for improvement, despite the demands of 

their operating environment. All efficient value streams have already attained the optimal 

performance for the data set, compared with the inefficient value streams. These efficient 

value streams are used as benchmarks to derive the goals for inefficient value streams. For 

instance, value stream six has only achieved 56.00 percent, 1.88 percent and 55.99 percent of 

its potential performance for delivery window, schedule stability, and profit margin 

respectively. In other words, given its current operating level of environmental uncertainty, 

this value stream can improve 44 percent, 98 percent and 44 percent in delivery window, 

schedule stability and profit margin respectively. Similarly, the management of value stream 

10 know that given its current operating level of environmental uncertainty, it should be able 

to improve its performance in delivery window, schedule stability and profit margin 
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respectively by as much as 27 percent, 25 percent and 59 percent respectively. In both cases 

therefore, there is significant room for improvement. 

 

Targets such as those in Table 6 do not reflect any emphasis on improving a specific output 

of a value stream; they merely indicate the maximum pro rata improvement feasible to all 

outputs of a value stream. However, it is often desirable to have variable degrees of 

improvement across all the outputs of a value stream, in that it may be desirable at a 

particular time to improve, for example, profit margin by a larger proportion than say 

schedule stability. In such circumstances, more advanced DEA allows weights to be imposed 

on a particular output or group of outputs to make more restrictive comparative evaluation. 

 

“take in Table 6” 

 

6. Managerial implications 

 

A key attribute of a robust diagnostic reference model is its ability to provide information to 

enhance the organisation’s strategic goal. The traditional performance measurement 

techniques offer a useful first step but they are not sufficiently future-oriented or externally 

focused. Furthermore, traditional techniques are not sufficiently robust in allowing 

management to identify the desired level of improvement. The DEA approach allows 

management to link performance with external factors, in this case, uncertainties in supply, 

process, demand and control. In doing so, it allows managers to address key questions 

important in making strategic as well as tactical decisions. Questions such as: how does the 

performance of our supply chain compare with the performance of best performing supply 

chain actors with reference to the environmental uncertainties faced collectively by all supply 
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chain actors?; and where do we need to improve our performance and by how much given 

the environmental uncertainties we face on the supply, processing, demand and control side? 

Clear answers to these questions allow managers to better align the supply chain they manage 

to the demands of the external environment by allocating scarce resource to where it is 

needed and instigating improvement projects. 

 

The reference tool described in this paper enables managers of a DMU to compare their 

performance with the best performing DMUs or a selected reference DMU. This provides 

managers with a totally objective account of how well their DMU is performing relative to 

other DMUs as well as the most efficient DMUs. By applying this technique, managers can 

discriminate between the most efficient and less efficient DMUs (supply chains). It enables 

not only comparison of like with like, but allows managers to pinpoint weaknesses and set 

appropriate improvement targets. Moreover, managers can identify suitable role models 

(DMUs other than those on the efficient frontier) and systematically improve target levels. 

The flexibility to select an appropriate role model is of significant benefit.  

 

The diagnostic model presented is applied in a cross-sectional manner and includes a group 

of independent DMUs. However, comparison between a group of DMUs belonging to a 

single organisation and temporal performance comparison are among key benchmarking 

approaches (Ghobadian et al. 2001). Managers can therefore use the same ideas to develop 

internal cross-sectional comparison. This is particularly useful in the case of multinational 

companies operating many different DMUs. Alternatively the model could be used to 

identify periods where performance was optimal in the temporal study of a single supply 

chain value stream. That is, instead of comparing one value stream to another, the DEA 

evaluation can be conducted in a longitudinal manner to determine if a value stream is 



 26 

becoming more or less efficient over time given its environmental uncertainty conditions. 

This would enable the managers of the value stream to identify the periods when the value 

stream best demonstrates its capacity to deal with its environmental uncertainty 

characteristics. The supplementary managerial analysis could then be used to identify 

particular management or manufacturing practices that have underpinned this performance. 

The deployment of this DEA-based diagnostic tool to evaluate the overall performances of 

value streams for the purpose of performance improvement could equally be applied to other 

manufacturing sectors. To this end, the output side of the model can be modified according to 

various contextual manufacturing goals and considerations. 

 

Despite the perceived advantages of DEA a few caveats regarding its use generally and in 

this diagnostic reference application need to be made. It should be noted that DEA is only an 

evaluation technique. Whilst our application incorporates considerable information about 

each value stream’s supply and demand environment, through the specifically selected DEA 

input variable uncertainty, it applies no judgement in reaching its evaluation. As such, the 

managers of the value streams under investigation should use DEA only as an indicator of 

any problems or inefficiencies, and further analysis should be undertaken prior to 

implementing DEA recommendations or taking action based on them (Easton et al. 2002). It 

may be the case that the targets identified by the diagnostic evaluation are neither desirable 

nor achievable in reality (Easton et al. 2002). Additional managerial analysis should be 

undertaken to delineate the connections between the management and manufacturing 

practices of the value streams and the diagnostic results.  

 

7. Conclusions and future research directions 
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The exploratory study presented in this paper demonstrates the value of DEA in enabling 

DMU managers to establish an externally linked and future-oriented performance 

measurement system that permits them not only to identify where the performance of their 

DMU lags behind that of best performing DMUs, but also allows them to establish realistic 

improvement targets. In this application the DMUs were supply chain value streams in the 

European automotive industry sector. The model used in this study shows how 

environmental uncertainty of the whole system (supply, processing, demand and control) can 

be contextualised and incorporated into a diagnostic reference model. This is of significant 

importance because it links performance with the external environment and both contingency 

and co-alignment theories suggest that environmental alignment is a key source of sustained 

competitive advantage. 

 

DEA overcomes some of the key shortcomings of the traditional approaches to measuring 

performance within the supply chain, such as ratio analysis and financial measures. The 

traditional methods are not externally focused in that they do not seek to link performance 

with the operating environment. Furthermore, they predominately take an economic 

perspective, focusing on cost and time and ignoring other factors that influence the overall 

performance of the value stream such as institutional factors. Therefore, they are unable to 

fully reflect the efficiency/effectiveness of the value stream because they fail to completely 

reflect the multi-goal/dimensional nature of modern supply chains. They also do not readily 

lend themselves to construction of a single performance index taking into account continuous 

and categorical variables side by side. DEA overcomes these shortcomings and has enabled 

the construction of a diagnostic reference model that reflects the multi-goal, input and output 

character of modern supply chains. 
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A key contribution of the study presented in this paper is the development of a comparative 

performance evaluation model that measures and incorporates the influence of environmental 

uncertainty. Nevertheless, the authors are aware that uncertainty is one dimension of external 

environment and, as is pointed out later in this section, future research should consider 

inclusion of a more comprehensive dimension of environment. Furthermore, output measures 

might bear re-examination particularly if the industry context is different. The three output 

variables in our model were chosen to reflect the three essential dimensions of supply chain 

strategies identified by Beamon (1999), in the context of the European automobile industry. 

Although these output measures are generally useful in most manufacturing industry 

contexts, they may be considered to be context specific. In general, when using the CCR 

DEA model adopted here, there is a need for the number of decision-making units to be 

greater than the product of inputs and outputs in the model. This is a recognised and accepted 

limitation of DEA. Without a sufficient number of decision-making units, a large proportion 

of DMUs would be included on the efficient frontier and it would be difficult to determine 

which value streams in fact are the role models. The data sets used in this application have 

met this specification. Based on Dyson et al.’s (2001) guidelines, there would nevertheless be 

some scope in our model for extending the set of output measures without the requirement 

for extending the number of data points, if this were deemed appropriate to other industry 

contexts or in further research. 

 

Arguably, the availability of data represents a potential hurdle to the full exploitation of this 

diagnostic reference model. Specifically, the focal business units have to make a commitment 

to collect the necessary data on a regular basis. However, it should be recognised that this 

situation is not specific to comparative performance evaluation using DEA. It equally applies 

to other non-mathematical benchmarking and reference model approaches. Repeated 
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application periodically over time would facilitate continual evaluation and organisational 

learning and value stream process improvement. 

 

In this study we relied on a composite measure of environment, that is to say, environmental 

uncertainty. We considered and developed a measure of environmental uncertainty for each 

element of supply chain and used these to create a system measure of uncertainty. However, 

environment has a number of other important dimensions (Misangyi et al. 2006), for 

example, munificence (the capacity to support organisations) and velocity (the rate of 

change). In future studies it is important to develop and include additional dimensions of the 

environment. Recent developments in the field of strategic management suggest that 

institutional polycentricity – formal and informal institutional forces – influence performance 

(Sirmon et al. 2007). The formal institutional forces refer to regulations at national and local 

level, while the informal refer to culture and dominant beliefs. We suggest that future studies 

should include institutional dimensions. Finally, we looked at the performance of the whole 

system. In future research it would be useful to examine and compare the performance of 

constituent elements of supply chain to determine any difference between component and the 

whole system. 
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Appendix 1. The DEA model 

 

(a) Rating the overall supply chain performance 

 

Model M1 set up to assess the performance of observation j0. 

 

Min Z = UusUSj0 

subject to  

Vpm PMj0 + VdwDWj0 + VssSSj0 = 100 

VpmPMj0 + VdwDWj0 +VSSSSj0 – UusUSj0   0         (M1) 

Vpm, Vdw, Vss , Uus   0.0001 

 

where 

US = uncertainty score 

PM = profit margin 

DW = delivery window 

SS = schedule stability 

 

N.B. In the formulation, the subscript j identifies each of the observed supply chains (j = 1…  

.j0 ...20). Vpm, Vdw, Vss, Uus are weights attaching to PM, DW, SS and US respectively, and they 

are the variables in this model. The notation j0 denotes a focal supply chain. Each supply 

chain becomes a focal one, in turn, when its efficiency score is computed. The relative 

performance of supply chain j0 is Ej0 = 100/Z*, Z* being the optimal value of Z in model M1. 

(For the derivation of the full DEA model see Charnes et al. (1994).) Ej0 is the proportion 

supply chain j0 achieves of the maximum output levels it could have achieved if it operated 

efficiently. Supply chain j0 is relatively efficient if Ej0 = 1. 

 

(b) Peer references for under-performing supply chains 

 

Efficient peers for supply chain j0 are readily identified by the fact that if the jth supply chain 

is an efficient peer to supply chain j0 then at the optimal solution to model M1 the constraint  

 

VpmPM j0 + VdwDW j0 +VssSSj0 – UusUS j0   
0      J =1 .....j0….20 is binding. 

(c) Setting targets for improvement 

 

Max Z =  + 0.001 (SUS + SDW + SPM + SSS) 

 subject to  

US SUS USj

j

j j

21

0    

PM SPM PMj

j

j j

21

0     
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DW SDW DWj j

j

j
21

0         (M2) 

SS SSS SSj j

j

j
21

0     

 

 j
j = 1.....21, SSS, SDW, SPM and SUS   

0,    is unconstrained. 

 

In this model,  j
, , SSS, SDW, SPM and SUS are the variables. Notation is otherwise as in 

model M1. This model identifies feasible output levels which offer the maximum pro rata 

increase that is represented by the optimal value of the factor  to the current output levels of 

supply chain j0 given its uncertainty levels. The optimal values of SSS, SDW, SPM and SUS 

identify any further input reductions or output increases that might have been feasible after 

the pro rata rises in the output levels. These input and output levels are SS’, DW’, PM’ and 

US’ for schedule stability, delivery window, profit margin and uncertainty score respectively, 

where: 

*'
20

j

i

jSSSS   

*'
20

j

j

jDWDW   

*'
20


j

jjPMPM   

*'
20

j

j
j

USUS   

 

The superscript * denotes the optimal values of  j
in model M2. The level of DW’, PM’, US’ 

and SS’ would render supply chain j0 relatively efficient, and they can be used as targets for 

the supply chain. (For the full derivation of model M2, see Charnes et al., 1978.) 
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Appendix 2. Primary data used for assessing uncertainty during Quick Scan (QS) 

investigations 

 

Uncertainty score Typical primary data used during Quick Scan investigation 

 

Supply side MOPs placed on suppliers especially schedule adherence, invoices, call-offs, 

BOM, forecasts, receipts, supplier quality reports, MRP, lead times, stock 

reports 

Demand side Delivery frequency, echelons to end consumer, marketplace variability, stage 

of product life cycle, customer ordering procedures, forecast accuracy 

Process side Scrap reports, cycle times and variability of cycle times, production targets 

and output, downtime reports, stock consolidations, costed BOM, capacity 

planning, asset register 

Control side Time series of customer orders, supplier orders, demand forecasts, kanban 

logic, batching rules, MRP logic, call-offs, purchase orders, BGOM number 

of variants, delivery frequency, number of completing PDPs 

Sources: Childerhouse et al. (2000); Towill et al. (2002) 

 

 

 

Appendix 3. Overview of the value stream sample  
 

Location Product Description Value 

stream ID 

Major value-adding 

process(es) 

England  Diesel engine component 1 Machining and assembly 

England  Petrol engine component 2 Automated assembly 

England  Automotive sensor 3 Automated assembly 

England  Automotive engine system component 4 Machining and assembly 

England  Diesel engine 5 Final assembly 

England  Diesel engine component 6 Machining 

England  Automotive component 7 Heat treatment 

England  Automotive component 8 Heat treatment 

Scotland  Automotive component 9 Machining 

Scotland  Automotive component 10 Machining 

England  Automotive engine component 11 Machining and assembly 

England  Automotive engine component 12 Machining and assembly 

Germany  Petrol engine component 13 Forging 

Germany  Diesel engine component 14 Forging 

England  Petrol engine component 15 Machining and assembly 

England  Diesel engine component 16 Machining and assembly 

Germany  Automotive braking component 17 Machining 

Wales  Automotive braking component 18 Distribution warehousing 

Wales  Automotive braking component 19 Machining and assembly 

Wales  Automotive braking component 20 Machining and assembly 
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Table 1. DEA applications in supply chain management 

Author(s) Application area Contribution of the study 

Easton et al. (2002) Comparison of purchasing performance 

of 18 companies in the US petroleum 

industry. 

Demonstrates the perceived utility of 

DEA towards an enhanced performance 

evaluation system. 

Talluri and Baker (2002) Presentation of a proposed multi-phase 

mathematical programming approach 

for effective supply chain design. 

Demonstrates the use of DEA in 

identifying the optimal number of 

suppliers, manufacturers and 

distributors for supply chain network 

design. 

Biehl et al. (2006) Comparison of the effectiveness of 

joint decision making within 87 pairs 

of buyer–supplier relationships. 

Demonstrates the use of DEA to 

examine the impact of the contingent 

variables on efficiency in supply chain 

relationships. 

Min and Joo (2006) Comparison of operational 

performance of six major third party 

logistics (3PL) firms with four 

consecutive years of performance 

measures. 

Demonstrates the utility of DEA for 

measuring the competitiveness of third 

party logistics services. 

Reiner and Hofmann (2006) Comparison of supply chain 

efficiency/company performance in 65 

European and North American 

companies. 

Demonstrates the use of DEA as an 

integrated benchmarking tool. 

Li and Dai (2009) Comparison of operational efficiency 

of 25 and 50 respectively suppliers to 

the Taiwanese PC/notebook industry. 
 

Demonstrates the use of DEA and 

sensitivity analysis to measure supply 

chain collaborative performance. 

Xu et al. (2009) Comparison of the supply chain 

network operation efficiency of six 

furniture manufacture supply chains in 

southwest China. 

Demonstrates the use of rough DEA by 

integrating classical DEA and rough set 

theory for performance evaluation. 

Kuo et al. (2010) Comparison of the operational 

capabilities of 10 suppliers to an auto 

lighting system OEM in Taiwan. 

Demonstrates the use of the fuzzy AHP 

method and fuzzy DEA for assisting 

organisations to make the supplier 

selection decision. 

Saranga and Moser (2010) Comparison of 120 firms across the 

globe with >US$3 billion turnover. 

Demonstrates the use of a two-stage 

value chain DEA method for 

purchasing and supply management 

performance evaluation. 

Jalalvand et al. (2011) Comparison of supply chain (SC) 

performance of seven SCs in the Iran 

broiler industry. 

Demonstrates the use of DEA and 

PROMETHEE II, as tools to compare 

SCs at the process level, business stage 

level and whole SC level. 

Liang et al. (2011) Comparison of the supply chain 

performance of 50 Chinese universities. 

Demonstrates the use of DEA to model 

efficiency in two-stage 

serial processes where feedback 

variables are present. 

N.B. The applications of DEA in the specific related sub-field of supplier selection/rating, for example Saen 

(2009), which demonstrates non-discretionary factors–imprecise DEA models for supplier selection, are too 

numerous to include in this table. Recent examples can be found in Saen (2009), Wu and Olson (2010), Liang 

and Fang (2011), Dotoli and Falagario (2012) and Mahdiloo et al. (2012). 
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Table 2. The variables used in the current DEA model 

 
Variable type 

 

Dimension Variable  

Input Uncertainty condition Uncertainty score (Total score of uncertainty) 

Output Resources utilisation Profit margin [= (price-variable cost)/price] 

Output Customer satisfaction 

 

Delivery window [= percent of orders delivered on 

or before the due date] 

Output System flexibility Schedule stability [= percent variation of monthly 

actual against monthly schedule] 

 

 

 

 

Table 3. Questionnaire used to assess the process, supplier, demand and control uncertainty 

sources 
 Rating by QS team 

 

Questions asked of each supply chain 

 

Strongly 

agree 

Weakly 

agree 

Weakly 

disagree 

Strongly 

disagree 

The value added process(es) generates low system 

uncertainty 

 

1 

 

2 

 

3 

 

4 

The supplier side generates low system uncertainty 1 2 3 4 

The demand side generates low system uncertainty 1 2 3 4 

The system controls do not generate uncertainty 1 2 3 4 

Source: Towill et al. (2002)
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Table 4. Value stream data and DEA performance ratings   
 

 

 

Value 

stream 

 

 

Uncertainty 

score 

 

 

Profit 

margin 

 

 

Delivery 

window 

 

 

Schedule 

stability 

 

 

DEA rating 

Peer 

reference 

value 

streams 

VS1 13 1 12 76 0.4513 4, 18 

VS2 11 1 12 15 0.5013 4, 18 

VS3 8 5 12 70 0.7290 4, 18 

VS4 6 15 12 99 1.0000 - 

VS5 11 5 12 50 0.5197 4, 18 

VS6 10 5 12 1 0.5600 4, 18 

VS7 13 5 12 90 0.4575 4, 18 

VS8 9 5 12 90 0.6609 4, 18 

VS9 9 8 12 95.5 0.6644 4, 18 

VS10 8 8 12 95.5 0.7475 4, 18 

VS11 11 1.5 12 50 0.5197 4, 18 

VS12 12 4 12 86 0.4937 4, 18 

VS13 1 1.5 12 89 0.5402 4, 18 

VS14 10 1.5 12 89 0.5942 4, 18 

VS15 14 5 12 95.5 0.4271 4, 18 

VS16 12 5 12 95 0.4983 4, 18 

VS17 11 5 24 25 1.0000 - 

VS18 8 5 1 25 0.2500 4 

VS19 15 5 2 35 0.1414 4 

VS20 12 5 2 77 0.3914 4 

 
 

 

 

Table 5. Comparison of VS6 performance with its efficient peers 

 
 VS4:  VS17:  VS6: 

Variables actual input/ 

outputs 

 actual input/ 

outputs 

scaled actual 

input/ 

outputs 
(scale=0.5454) 

 actual input/ 

outputs 

scaled actual 

input/ 

outputs 
(scale=0.6000) 

Input: 

uncertainty score 

 

6.0 

  

11.0 

 

6.0 

 

 

 

10.0 

 

6.0 

Outputs: 

delivery window 

schedule stability  

profit margin 

 

12.0 

99.0 

15.0 

  

24.0 

25.0 

5.0 

 

13.09 

13.63 

2.73 

  

12.0 

1.0 

5.0 

 

7.2 

0.6 

3.0 
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Table 6. Output targets for each DEA inefficient value stream 

 

 Delivery window Schedule stability Profit margin 

Value stream  

ID 

target achieved 

(percent) 

target achieved 

(percent) 

target achieved 

(percent) 

VS1 26.59 45.13 168.4 45.13 25.87 3.87 

VS2 23.94 50.13 29.92 50.13 5.71 17.51 

VS3 16.64 72.12 96.02 72.90 14.18 35.26 

(VS4) (12) (100) (99) (100) (15) (100) 

VS5 23.09 51.97 96.21 51.97 15.24 32.81 

VS6 21.43 56.00 53.21 1.88 8.93 55.99 

VS7 26.23 45.75 196.71 45.75 29.94 16.70 

VS8 18.16 66.08 136.18 66.09 20.73 24.12 

VS9 18.06 66.45 143.73 66.44 21.81 36.68 

VS10 16.50 72.73 127.76 74.75 19.39 41.26 

VS11 23.09 51.97 96.21 51.97 15.24 9.84 

VS12 24.30 49.38 174.18 49.37 26.58 15.05 

VS13 22.21 54.03 164.75 54.02 25.09 5.98 

VS14 20.19 59.44 149.78 59.42 22.81 6.58 

VS15 28.09 42.72 223.59 42.71 33.93 14.74 

VS16 24.08 49.83 191.65 49.83 29.09 17.19 

(VS17) (24) (100) (25) (100) (5) (100) 

VS18 16.00 6.25 132.00 18.94 20.00 25.00 

VS19 30.00 6.67 247.50 14.14 37.50 13.33 

VS20 24.00 8.33 198.00 39.14 30.00 16.67 

 

 


