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New Inference for Constant-Stress Accelerated Life
Tests With Weibull Distribution and Progressively

Type-II Censoring
Bing Xing Wang, Keming Yu, and Zhuo Sheng

Abstract—Constant-stress procedures based on parametric
lifetime distributions and models are often used for acceler-
ated life testing in product reliability experiments. Maximum
likelihood estimation (MLE) is the typical statistical inference
method. This paper presents a new inference method, named
the random variable transformation (RVT) method, for Weibull
constant-stress accelerated life tests with progressively Type-II
right censoring (including ordinary Type-II right censoring). A
two-parameter Weibull life distribution with a scale parameter
that is a log-linear function of stress is used. RVT inference life
distribution parameters and the log-linear function coefficients
are provided. Exact confidence intervals for these parameters are
also explored. Numerical comparisons of RVT-based estimates
to MLE show that the proposed RVT inference is promising, in
particular for small sample sizes.

Index Terms—Accelerated life-testing, censored data, confidence
interval, maximum likelihood estimation, progressively censoring,
random variable transformation, Weibull distribution.

ACRONYMS AND ABBREVIATIONS

ALT accelerated life test

CSALT constant-stress ALT

SSALT step-stress ALT

cdf cumulative distribution function

MLE maximum likelihood estimation

MSE mean squared error

CI confidence interval

RVT random variable transformation

CP coverage probability
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NOTATION

shape parameter of Weibull distribution

MLE of

new estimator of from RVT method

parameters for log-linear stress-level model

MLE of

new estimators of from RVT method

the total number of stress levels

the designed stress level

th accelerated stress level

scale parameter at stress level

the number of test units placed at level

th progressive censoring scheme at level

the total number of failure units under and

th failure time at level

I. INTRODUCTION

I N many industrial fields, it is required for lots of products
to operate for a long period of time. In support, it is impor-

tant to improve reliability in relation to the required lifetime of
products. Fortunately, accelerated life testing (ALT) can quickly
yield information about the lifetime distributions of products
by inducing early failure with stronger stress than normal. The
results obtained at the accelerated conditions are analyzed in
terms of a model to relate life length to stress; they are extrap-
olated to the design stress to estimate the life distribution. The
constant-stress ALT (CSALT) and the step-stress ALT (SSALT)
are two important methods for ALT. The problem of modeling
data from CSALT and SSALT, and making inferences from such
data, have been studied by many authors. For CSALT, Wiel
and Meeker [1] studied accuracy of approximate confidence
bounds for a Weibull CSALT model. Yang [2] considered op-
timum 4-level CSALT plans under a location-scale family of
distributions. Watkins [3] discussed the likelihood method for
fitting Weibull CSALT models. Barbosa et al. [4] proposed the
piecewise exponential model, and gave the estimation procedure
based on generalized linear models. Wang and Kececioglu [5]
further studied this issue, and gave an efficient algorithm to fit
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the Weibull CSALT model. Tang et al. [6] discussed an optimum
CSALT plan for a two-parameter exponential distribution. Dorp
and Mazzuchi [7] discussed Bayes inference for ALT. León et
al. [8] discussed Bayesian modeling of CSALT with random ef-
fects. Watkins and John [9] discussed maximum likelihood es-
timates for CSALT terminated by Type-II censoring at one of
the stress levels. Pascual [10] studied the planning of CSALT
in the presence of competing risks under Weibull distributions.
Ma and Meeker [11] discussed strategies for planning CSALT
with small sample sizes. Liu and Tang [12] considered CSALT
for repairable systems with multiple -independent risks, and
derived accelerated life test plans. Tang and Liu [13] proposed
a sequential CSALT, and discussed its inference procedure and
test plan. Monroe et al. [14] considered the design of the CSALT
experiments based on a generalized linear model approach. Yu
and Chang [15] applied a Bayesian model to average quantile
estimation for CSALT. Liu [16] discussed the model and plan
for CSALT with -dependent failure modes. For SSALT, De-
Groot and Goel [17] proposed the tampered random variable
model. Nelson [18] proposed the cumulative exposure model.
Bhattacharyya and Soejoeti [19] proposed the tampered failure
rate model. It is worth mentioning that Wang [20] gave a nec-
essary condition to decide whether or not a given model such
as the cumulative exposure model is rational. Miller and Nelson
[21], as well as Bai et al. [22], discussed optimum plans for
simple SSALT. Khamis and Higgins [23] obtained the optimum
3-step SSALT plans. Dorp et al. [24] developed a Bayes model
for SSALT. Teng and Yeo [25] used the method of least squares
to estimate the life-stress relationship in SSALT. Balakrishnan
et al. [26] obtained point and interval estimations for the ex-
ponential simple step-stress model. Fan and Wang [27] consid-
ered a SSALT model for Weibull series systems with masked
data. Nelson [28], and Bagdonavicius and Nikulin [29] provided
some excellent information on past and current developments in
the area.

Progressive censoring is a generalized form of censoring
which includes conventional right censoring as a special case.
Compared to conventional censoring, however, it provides
higher flexibility to the experimenter in the design stage
by allowing the removal of test units at non-terminal time
points, and thus it proves to be highly efficient and effective
in utilizing the available resources (Montanari and Cacciari
[30], Balakrishnan and Aggarwala [31]). Another advantage
of progressive censoring is that the degeneration-related in-
formation of the test units is obtained from those removed
units (Balasooriya et al. [32]). For these reasons, we consider
a more general censoring scheme called progressive Type-II
censoring. Progressive Type-II censoring is a method which
enables an efficient exploitation of the available resources
by continual removal of a pre-specified number of surviving
test units at each failure time. Montanari and Cacciari [30]
gave an interesting application of progressive censoring on
an aging study carried out on XLPE-insulated cable models.
Gouno et al. [33], and Balakrishnan and Han [35] discussed
the optimal step-stress ALT plans under progressive Type-I
censoring. Fan et al. [34] considered exponential progressive
SSALT based on Box-Cox transformation. Wang and Yu [36]
discussed the optimal step-stress ALT plans under progressive

Type-II censoring. Wang [37] derived interval estimation for
exponential progressive Type-II censored step-stress ALT.
A book dedicated completely to progressive censoring was
published by Balakrishnan and Aggarwala [31]. Moreover,
Balakrishnan [38] gave an excellent, extensive review of the
progressive censoring methodology.

Under a combination of CSALT and progressive Type-II
censoring, the sample size is typically not large, so that
large-sample based inference methods such as MLE-based
asymptotic unbiased estimates and asymptotic normal con-
fidence intervals (CI) may not be suitable, and can even be
misleading. In this paper, we consider CSALT with progressive
Type-II censoring, and provide RVT inference for parameter
estimation and CIs.

The Weibull CSALT model considered is under the following
two assumptions.

A1. For any stress level , the lifetime distribution of a test
unit is Weibull with cumulative distribution function (cdf)

(1)

where is the shape parameter, and is the scale
parameter.
A2. The stress-life relationship is given by

(2)

where and are unknown parameters.
The log-linear model above for the scale parameter includes

the exponential life distribution as a special case which was
widely studied in the literature.

Under the CSALT model and progressively censored scheme,
Section II outlines the MLE of the Weibull CSALT model.
Sections III details the RVT inference method and properties.
Section IV focuses on exact CIs for unknown parameters and
their functions. Section V evaluates the numerical performance
of the RVT-based estimators, and provides a comparison with
MLE. Furthermore, both methods are applied to a real-data ex-
ample, and the results are discussed in Section VI. Section VII
concludes.

II. MLE

The CSALT under a progressively censored scheme is set as
follows.

Let be the designed stress level, and let
be the accelerated stress levels. Suppose that test units

are placed at stress level . Prior to the experiment, a number
is fixed, and the progressive censoring scheme

with and
is specified. At the first failure time , units are ran-
domly removed from the remaining surviving units. At
the second failure time , units are randomly removed
from the remaining . The test continues until the

th failure time . At failure time , all remaining units
are removed. When ,
then , which corresponds to the conventional
CSALT with a Type-II censoring scheme. In total, let
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be the observed values of lifetime
.

Therefore, based on the likelihood function

with and , we have
the log-likelihood function as

Hence the MLEs of the parameters
are the solutions of the equations

Note that

Numerical solutions of these estimators will be studied in
Section V. The Fisher-information matrix is often used to cal-
culate the covariance matrices associated with MLE. Here, the
observed Fisher-information matrix for is given by

III. RVT INFERENCE

We first consider the case with the known shape parameter
, and propose new estimators for parameters , and

, then extend the estimation for unknown .

A. The Known Shape Parameter Case

When parameter is known, let

Then it is well known that follows the distribution
with degrees of freedom.

According to the property of the log-Gamma distribution
(for example, see Lawless [39]), the log-transformation of
satisfies

where , .
Therefore, we consider the following regression model.

where .
According to the Gauss-Markov theorem (for example, see

Rao [40]), the unbiased estimators of are respectively
given by

(3)
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where , ,
, ,

.
Further, we have

Therefore, the scale parameter at designed stress level
could be estimated by .

Along the same line as Wang and Yu [36], we obtain the fol-
lowing results for the estimation of .

Theorem 1: Let , and defined in (3) be the unbiased es-
timators of , and respectively, and

. Then, we have the following.
1) If , then the expectation of

exists, but is a biased estimator of . However, an
unbiased estimator of is then given by

(4)

Furthermore, if , then the
variance of exists, and is given by

2) If , , then has the smaller
mean squared error than that of .

In summary, contrary to the MLE in this case, whose estima-
tors are asymptotic unbiased with asymptotic variances, we have
obtained exact unbiased estimators of parameters ,
and exact variances of these estimators.

B. The Unknown Shape Parameter Case

Now we consider the case with unknown shape parameter .
For each , let

From Wang et al. [41], we have

and is a strictly monotone function of .
Notice that are -independent; thus, we

define

(5)

and .

Then, based on the inverse transformation method proposed
by Wang, Yu, and Jones [41], the shape parameter can be
estimated from the solution of

(6)

Due to the strictly increasing function of , (6) has exactly one
unique solution. Let be a solution of (6). Then plugging into
(3) and (4), we obtain the estimators of :

(7)

(8)

(9)
where

The estimators of given by (6)
through (9) are new estimators of the parameters .
We shall study the finite sample properties of the proposed es-
timators in Section V.

IV. INTERVAL ESTIMATION OF UNKNOWN PARAMETERS

In this section, we will first obtain an exact CI for the shape
parameter, then derive the generalized CIs for other parameters,
and some important quantities of the Weibull distribution at de-
signed stress level , such as its mean, quantiles, and the reli-
ability function.

A. Exact CI for the Shape Parameter

Consider the pivotal quantity . Note that is a func-
tion of only, and does not depend on other parameters. Hence,
we obtain an exact CI for the shape parameter as follows.

Theorem 2: Suppose
are progressively Type-II censored samples from the
Weibull CSALT with the progressive censoring scheme

. Then, for any
,
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is a CI for the shape parameter , where is the upper
percentile of the distribution with degrees of freedom,

and for , is the solution in of the equation
.

B. Generalized CIs for Other Parameters

We now derive generalized CIs for other parameters, and
some important quantities of the Weibull distribution at de-
signed stress level .

Let

(10)

(11)

Then,

(12)

(13)

where . It is obvious from (12) and
(13) that the distributions of and do not depend on any
unknown parameters. Thus , and are pivotal quantities.

Note that is a strictly increasing function of . Then
has the unique solution , where

. In addition, from (10) and (11), we have

(14)

(15)

According to the substitution method given by Weerahandi
[42], [43], we substitute for in the expression for
and in (14) and (15); and we obtain the following generalized
pivotal quantities for the parameters and .

(16)

(17)
where .

Notice that , and respectively reduce to , and when
; and the distributions of , and are free of any un-

known parameters, thus , and are indeed generalized piv-
otal quantities. If , and denote the upper percentiles
of , and , then , and are
the generalized CIs for , and respectively.

The percentiles of and can be obtained from (16) and
(17) using the following Monte Carlo simulation algorithm.
Step 1) For a given data set , generate

,
separately and -independently. Using

these values, compute , , and from
, (12), and (13).

Step 2) In terms of (16) and (17), compute the values of
and .

Step 3) Repeat Steps 1 and 2 a large number of times, say,
times. The values of and

can be obtained respectively.
Step 4) Arrange all and values in ascending order

respectively: and
. Then the percentile

of , and are estimated by , and
respectively.

Now note that the mean, th quantile , and
reliability function of the Weibull distribution at designed stress
level are given by ,

, and respectively. Along the
same lines as the derivation of and for the parameters
and , we obtain the generalized pivotal quantities , , and

for , and respectively:

(18)

(19)

(20)

Let denote the upper percentiles of
respectively. Then , and are the upper con-
fidence limits for , and , respectively. Just as in the
cases of and , the percentiles of can be obtained
by Monte Carlo simulations.

We study the performance of coverage probabilities of these
CIs by simulation. Such simulation results are reported in
Section V.

V. SIMULATION STUDY

To evaluate and compare the performance of the MLE and
proposed estimators with the RVT method, we perform simu-
lation comparisons with data generated via various scenarios.
Because the estimators are appropriately scale equivariant and
invariant, without loss of generality we take in our
simulation study. We consider different stress levels ( ,
3, 4 for simulation design scenarios 1 through 3, 4 through
6, and 7 through 9, respectively), combined with different
censoring schemes (for example, progressive and conventional
Type-II censoring). Details of the simulation design scenarios
are summarized in Table I. For each scenario, 10,000 replicates
of progressively Type-II censored samples were generated
from the Weilbull distribution, as specified in (1), with three
different parameter settings: 1) , 2)

, 3) , respec-
tively.

Then Tables II to IV compare the relative-biases and rela-
tive-MSE (mean squared error) values of parameter estimators
from the proposed RVT method with the MLEs of those param-
eters under different simulation scenarios, with respect to three
different parameter settings. The relative-biases, and the rela-
tive-MSE are defined as follows.
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TABLE I
THE SIMULATION DESIGN SCENARIOS

TABLE II
RELATIVE-BIAS AND RELATIVE-MSE OF MLE ESTIMATES AND

THE NEW METHOD’S ESTIMATES. SAMPLES GENERATED WITH

. 10000 REPLICATES

where denotes the true value, and denotes its estimator.
Observe from Tables II, III, and IV that the relative-bias and

relative-MSE of the RVT method for is significantly smaller
than those from the MLE method. The new estimator is almost
unbiased, and very accurate. The MLE-based estimator shows
slight over-estimation, as biases are all positive.

For , both RVT and MLE methods have their estimators
with small relative-bias and relative-MSE. The performances
of both methods are very close. In both cases, the MSE of
decrease, as the true value of increases, namely, the right tail
of the Weibull distribution becomes thinner. For example, when

TABLE III
SAMPLES GENERATED WITH . 10000 REPLICATES

TABLE IV
SAMPLES GENERATED WITH . 10000 REPLICATES

, the relative-MSE of from MLE and RVT lie in
the interval between . When , the interval
reduced to ; and when , the interval reduced
to .

For , its RVT-based estimator has smaller relative-bias,
whereas the MLE estimator tends to over-estimate. The rela-
tive-MSE for both methods are about the same, and signifi-
cantly decrease as the true value of increases. For , the
MLE estimator still tends to over-estimate, while its RVT-based
estimator seems to slightly under-estimate for most cases.
The MLE has much larger relative-MSE than the new method
does, especially when the true value of is small (heavy-tailed).
For example, in Table II, the relative-MSE for for simu-
lation scheme 2 are 84.562 for the MLE, and 12.960 for the
RVT estimator. Also, as the value of depends on values of
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TABLE V
AVERAGE CP AND INTERVAL LENGTH (IN PARENTHESES) OF 95% CI

ESTIMATION. SAMPLES GENERATED WITH . 1000
REPLICATES

and , estimation bias and MSE for significantly decrease
as the true value of increases. For example, when ,
the relative-MSE for under simulation scheme 2 are 0.180
for the MLE, and 0.146 for the RVT estimator (in Table IV).
Overall, as the number of stress levels increasing leads to larger
sample sizes, estimation bias and MSE decrease as sample size
increases.

To sum up, simulation for parameter estimation of the Weibull
distribution shows that, in terms of estimation bias and MSE, the
performance of the proposed RVT method is significantly better
than that of the MLE method. The performance of both methods
are somewhat sensitive to the value of the shape parameter of
the Weibull distribution. A smaller value of leads to less ac-
curate results, as the Weibull distribution becomes more heavily
tailed.

We also compare the estimation of the CI from the MLE
method and the RVT method. 1000 replicates of progressively
Type-II censored samples were generated from a Weibull dis-
tribution with parameters , under
simulation design scenarios 1, 4, and 7 (conventional Type-II
censoring), and scenarios 3, 6, and 9 (progressive censoring).
We calculate the 95% CI based on the MLE method, and the
RVT method, for different estimators. The average interval
lengths and coverage probabilities of the two methods were
reported in Table V. It is obvious that MLE-based 95% CIs have
smaller interval lengths than the RVT-based CIs under small
samples, except for the CI of , but the coverage probabilities
(CP) from MLE-based CIs are significantly poorer than those
from RVT-based CIs. The CPs of MLE-based CIs are lower than
the nominal confidence level for all tested statistics. On the other
hand, the RVT-based generalised CIs have better CPs which are
around the 1% range of the nominal 95% confidence level.
For example, for samples generated from simulation scheme 1,
MLE-based CIs have smaller interval lengths, but poor average
CPs that are all under 90%. RVT-based generalised CIs have
CPs between 94.5% and 95.5%.

VI. A REAL EXAMPLE AND ITS ANALYSIS

Nelson [44] presented some data on the times to breakdown
of a type of electrical insulting fluid subject to various constant

TABLE VI
DATA OF THE TIMES TO BREAKDOWN OF A TYPE OF ELECTRICAL INSULTING

FLUID SUBJECT TO VARIOUS CONSTANT VOLTAGE STRESSES AS IN NELSON

[44]

TABLE VII
VALUES OF ESTIMATORS AND 95% CI (IN PARENTHESES) OF THE LIFETIME

WEIBULL DISTRIBUTION OF THE ELECTRICAL INSULTING FLUID SUBJECTS

voltage stresses. The purpose of the experiment was to esti-
mate the distribution of time to breakdown at 20 kilovolt (kv).
For the purpose of illustrating the methods presented in this
paper, two Type-II progressively censored samples have been
randomly generated from the , and obser-
vations recorded at 30, and 36 kilovolts in Nelson [44] respec-
tively. The observations and the progressive censored plans are
reported in Table VI. The design stress level . Param-
eter estimation and CI estimation results are shown in Table VII.

The estimates from RVT method for the parameter and for
the mean time to breakdown largely depart from the estimates
of the MLE. For example, the mean time to breakdown estimated
using the proposed RVT method is 8613.56, which is approxi-
mately 40% shorter than the value estimated by MLE, 14740.47.
Note that, in the simulation tests, we found that the MLE tend to
overestimate by as much as nearly one third. Hence, in these
data, the mean time to breakdown estimated by MLE is pos-
sibly also overestimated. See Fig. 1 for the difference.

VII. CONCLUSION

In this paper, we have considered a constant-stress ALT model
with a Weibull distribution when the data are progressively cen-
sored. A new method, based on random variable transformation
(RVT), and totally different from MLE-based inference, is pro-
posed. We have derived the estimators of unknown parameters,
the exact confidence interval of shape parameters, and the gener-
alized CIs of other parameters. The numerical analysis and com-
parison show that the RVT method is promising, particularly for
small samples, and different censoring rates or schemes.

APPENDIX

Proof of (3): Let
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Fig. 1. The reliability plot over a range of time.

, and

Then the unbiased estimators of are given by

and the covariance matrix of the unbiased estimators
is given by

The proof is completed.
Proof of Theorem 1: Let . Notice

that

and

so we have

Hence,

Because , we have

Thus, is the unbiased estimator of . Similarly, we can
derive the variance of .

Similar to the proof of Theorem 6 in Wang and Yu [36], we
can prove that has a smaller mean squared error than that
of . The proof is completed.

Proof of Theorem 2: Because has the distribution
with degrees of freedom, and is strictly increasing on

, we have

where . The proof is completed.
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