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Abstract

The e�ects of link rewiring are considered for the class of directed networks where each node has the same �xed
out-degree. We model a network generated by three mechanisms that are present in various networked systems; growth,
global rewiring and local rewiring. During a rewiring phase a node is randomly selected, one of its out-going edges is
detached from its destination then re-attached to the network in one of two possible ways; either globally to a randomly
selected node, or locally to a descendant of a descendant of the originally selected node. Although the probability
of attachment to a node increases with its connectivity, the probability of detachment also increases, the result is an
exponential degree distribution with a small number of outlying nodes that have extremely large degree. We explain
these outliers by identifying the circumstances for which a set of nodes can grow to very high degree.

1 Introduction

The question of how complex patterns can be produced by
the collective behaviour of many interacting agents such
as particles, cells or people, is one of the most important
considerations in complexity science. The techniques of
statistical physics that originated from the study of gasses
and magnets have been adapted to address this question
to explain a much wider range of emergent phenomena
seen in biological and social systems. Fundamentally,
mathematical models are used to derive statistical infor-
mation about the system as a whole from the assumptions
made about its constituent agents, or more speci�cally, the
�rules� that govern their interactions. While in most phys-
ical systems agents interact with their closest neighbours
in a spatial sense, many other systems are not constrained
in this way, these are typically modelled as networks where
the concept of distance between two points is rede�ned
as the path-length between two nodes. An example of a
local rule is triadic closure, the creation of a link between
two nodes separated by a path-length of 2.

When the growth and evolution of a network is driven
by local rules, nodes tend to be selected with a frequency
proportional to how well connected they are. This is sim-
ply because a node with x connections is present in the
neighbourhood of x other nodes, in other words there are
x possible ways to discover the node via a local search. It
is not suprising then, that the scale-free networks gener-
ated by global preferential attachment can also be created
by numerous processes that use only local rules i.e. with
no global knowledge of the network structure [1].

Typically in these models, a network will begin as a
small set of nodes connected by edges, then with each
iteration, more nodes are introduced and connections
made, thus increasing the degree of those that are already
there. Networks of this type are partly static in the sense
that once an edge has been placed between two nodes
it remains in that position for the rest of the network's
lifetime. The class of network whose edges are dynamic,
i.e. at any point could potentially be removed or rewired,
has far wider scope of application.

This paper studies networks that combine dynamic
edges with locally driven processes. Our model is an it-
erative process that evolves a network, the parameters
are the rate of growth, and the rates of local and global
(random) rewiring. We examine only networks with di-
rected edges and nodes of a �xed out-going degree. For
particular regions of the parameter space, we examine in
detail a phenomenon whereby a small set of nodes, owing
to their position in the network, gather signi�cantly larger
number of connections than those outside the set. These
considerations lead to a good approximation of the ex-
treme tail of the degree distribution, giving probabilities
for the existence of outlying nodes of the distribution,
sometimes refered to as dragon kings [2].

In Section 3 we introduce a model of growth and
rewiring in directed networks and show the main results.
The following sections describe the mathematical models
and their solutions. In Section 4 we �nd the distribution
of cycles of size n in the initial randomly wired graph. In
Section 5 we �nd a formula for the degree distribution in
the large t limit. In Section 6 we model the total degree
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of the dominant nodes and for selected parameter values
derive the degree distribution tail.

2 Related work

Local rules for growing networks have been in the liter-
ature for some time [1, 3]. In the model most similar
to the one presented here [4], the preferential attachment
mechanism is generalised to include rewiring events. They
�nd both exponential and power-law degree distributions
depending on the choice of parameters. Preferential at-
tachment in rewiring has been studied on a network of
�xed size with the interesting conclusion that a power law
degree distribution can be achieved without a growing
network [5]. This result relies on the use of a non-linear
attachment kernel (heavily biased towards nodes with
large degree) to ensure that nodes with large degree con-
tinue to grow in spite of the preferential detachment that
also occurs through rewiring. This work has been ex-
tended to bipartite networks [6] which have an advantage
of being free of degree correlations between neighbouring
nodes, thus the results in [7] for the mean �eld solution
to the degree distribution are exact. The same model
also exhibits a condensation phenomenon, also know as
gelation [3], where one node becomes connected to almost
every other, this is relevant to the study of the dominant
nodes presented here.

A large body of literature, much of which is commer-
cially motivated, comes from the analysis of the network
properties of web 2.0 systems [8, 9]. We believe our
results here are relevant in this �eld since rewiring, lo-
cal dynamics and directed links are present in many of
these self-organising systems. Twitter, for example, gives
its users the option to �unfollow� other users meaning the
edges are not static as they are in the majority of complex
network models. Local rules, speci�cally triadic closure
contribute to the growth of the network [10], however the
distribution does not follow a power-law [11].

Recommendation algorithms designed to facilitate
sharing online news articles, music, �lms etc. connect
users together based on the similarity of the content they
have responded to positively. The content a user is ex-
posed to in this way is limited to a small number of items
shared by her neighbours. When the algorithm updates
the links based on the most recent data, we can expect
the strength of the similarity between her and her sec-
ond neighbours to increase, making triadic closure likely.
The network topologies of these networks has been stud-
ied in [12]. In this work the network is treated as a
static object at one instant in time, clustering is found
to be signi�cantly higher than the random network which
suggests that triadic closure could be part of the net-
works dynamics. The evolution of a theoretical model
network [13] considers directed edges between �leaders�

and �followers� that are rewired periodically according to
a similarity score. A scale-free structure is found but the
authors do not go into detail about the rewiring dynam-
ics. The network evolution of recommendation networks
perhaps deserves more attention since it exhibits cumu-
lative advantage e�ects that have consequences for many
commercial areas.

Our decision to restrict the model only to the case
where every node has the same number of out-going links
was motivated mostly by the considerable simplicity this
would bring to the analysis. There is, however, some jus-
ti�cation for this assumption regarding the suggested ap-
plications. Some product websites link each product to
a �xed number of recommended products (amazon.com
would be the most famous example although technically
the number of recommended products is not �xed as it
varies according to the size of the web browser). In the
case of Twitter, it is sensible to assume that the num-
ber of accounts that a user will follow will, after enough
time has passed, remain close to a steady value and not
increase to in�nity. Each user will di�er in the number
of other accounts they follow, but if we treat every user
as an identical agent with the mean number of followings,
then the model we present is appropriate.
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Figure 1: The two possible ways to locally rewire. The left image
shows part of the network before rewiring. We consider two possible
interpretations of our model. In both, we initially select a random
node, in the diagram it is represented by the black node. We then
randomly select a target node from all of the nodes that are are a
distance of 2 away from the initially selected node (following the di-
rection of the edges), such as j in the diagram. One of the out-going
edges from the black node is then rewired to the target node, it can
either be the node that connects the black node to j, shown in (a),
or it can one which completes the triad, shown in (b).

3 Model and results

Let G(N,mN) be a random graph in which each of the
N nodes has m out-going directed edges, the destination
of each directed edges is selected randomly. Throughout
this paper we use `degree' to refer to the in-coming degree
of a node. In each time-step the network develops in one
of the following ways

• Local rewiring: With probability p, randomly se-
lect a node and rewire one of its out-going edges to
a randomly selected descendant of one of its descen-
dants (see Fig.(1)).
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• Global rewiring: With probability q, randomly
select a node and rewire one of its out-going edges
to a randomly selected node.

• Growth: With probability r, introduce a node to
the network with m out-going edges, attach the
edges to randomly selected nodes in the network.

For convenience we set r = 1 − p − q. As we iterate
this process, the binomial degree distribution of the ini-
tial network converges towards an exponential distribu-
tion for every choice of p, q and m (Fig.(2)). When q is
small and p is relatively large we observe additional dy-
namics where we see a small number of outlying nodes
with degrees much higher than predicted by the exponen-
tial distribution (Figures (2b) and (3)). These are the
conditions for �rich-clubs� to develop, small sets of nodes
whose growth in degree is magni�ed by the fact that the
set has very few out-going links.
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(a) p = 2/3, q = 1/6, m = 4.
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(b) p = 9/10, q = 1/20, m = 4.

Figure 2: The degree distribution of the network after 105 iter-
ations, starting from an initial random network of 10 nodes. The
line in (2a) shows the predicted result in Eq.(18). In (2b) an outlier
exists owing to the high rate of local rewiring compared with the
other mechanisms.

The outlying nodes, which we call `dominant nodes',
exist because their out-going edges belong to small cycles.
This is illustrated most easily in the case where m = 1;
over time the outliers increase in degree until the cycle

they belong to is broken, at this point the degree rapidly
falls while a new dominant node begins its rise (Fig.(4a)).
For su�ciently small q, the node remains dominant long
enough to reach a state where its degree, on average, is
neither increasing or decreasing, this causes a small spike
in the tail of the degree distribution (Fig(4b)).
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Figure 3: The level of agreement quanti�ed by the Kolmogorov-
Smirnov statistic between the prediction for the degree distribution
Eq.(20) and the corresponding numerical simulation. The results
presented are for the special case where growth is excluded i.e. when
r = 0 and q = 1−p, N = 103. We consider the model to be accurate
up to a KS value of 20 since this is the value found when we test the
prediction of Eq.(20) against data generated by a pseudo-random
numbers drawn from the same probability distribution.

4 Random graphs with directed

edges and �xed out-degree

For the mN edges in the network, each is attached to the
node i with probability 1/N the probability that i has
degree k is the probability of k successes in mN trials.
Letting Pk denote the probability that any node has de-
gree k we have

Pk =

(
mN

k

)(
1

mN

)k (
1− 1

mN

)N−k
. (1)

Let li,j be the length of a path from node i to node j
where no nodes are visited more than once, and let Ln be
the average number of such paths that have li,j = n. We
can �nd solutions for the average of Ln over the network
ensemble from the recursion

Ln = Ln−1
m(N − n)

N
. (2)
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(a) Time dependent dynamics of dominant nodes (p = 0.9,
N = 103).
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(b) Mean degree distribution of the whole network (p = 0.9,
N = 105).

Figure 4: Shown here are results when r = 0 (no growth) and
m = 1. Shown in (4a) is an example of how the degree of the most
connected nodes changes over time (top), and the equivalent approx-
imation using the method outlined in B. Each colour represents a
di�erent node. The distribution is divided into two regimes; the ex-
ponential part when 〈nk〉 ≥ 1 and the tail. The prediction comes
from Eq.(36) for the �rst part and Eq.(31) for the second.

The fraction on the right hand side is the probability
that the next edge in the path does not link to any of its
ancestor nodes in the path or to itself. We have L0 = N
so

Ln =
mn

Nn−1

(N − 1)!

[N − (n+ 1)]!
. (3)

This also gives a formula for the average number of cycles
Cn of length n

nCn = Ln−1
m

N
(4)

giving

Cn =
mn

nNn−1

(N − 1)!

(N − n)!
. (5)

It is important to note that every network in this class will
have at least one cycle and that every node either belongs
to a cycle or is connected to a cycle by a directed path.

5 Degree distribution

In a single time-step the probability of attaching to a node
i with degree ki is

Πa(ki) = p

[
ki
mN

]
+ q

[
1

N

]
+ r

[m
N

]
. (6)

This assumes that node degree correlations do not e�ect
the attachment probability, i.e. the degree of a parent
node of i is approximated well by the mean degree m.
Therefore the number of edges that can potentially be
rewired to i is mki, multiplying by the probability 1/m
that once selected, i will be the node redirected to gives
the �rst term on the left hand side of Eq.(6). The proba-
bility of removing an adjacent edge from i is

Πr(ki) = (p+ q)

[
ki
mN

]
. (7)

We are interested in �nding nk(t), the number of nodes
with in-coming degree k. At k = 0

∂n0

∂t
= r +

(p+ q)

mN
n1 −

q + rm

N
n0. (8)

The terms on the right hand side respectively represent
the addition of a node to the network, creation of a node
of degree 0 by removing an edge from a node of degree
1, and destruction by attaching an edge and making it a
node of degree 1. Similarly for k ≥ 1,

∂nk
∂t

=
(p+ q)

mN
[(k + 1)nk+1 − knk]

+
p

mN
[(k − 1)nk−1 − knk]

+
q + rm

N
[nk−1 − nk].

(9)

The �rst pair of terms on the right hand side represent
the mean change in nk by either creating or destroying a
node of degree k by removing one of its edges, the second
pair are similar except for attachment by local rewiring,
the third is for global rewiring.

As t grows large, the proportion of node of degree k
will converge to constant values. Therefore in the asymp-
totic limit as t→∞ Eq.(9) reduces to the following second
order recursion relation, found by substituting N(t) = rt
and Pk = nk(t)/N .[
r + (q + rm) +

2p+ q

m
k

]
Pk = [(q + rm) +

p

m
(k − 1)]Pk−1

+
p+ q

m
(k + 1)Pk+1

(10)

and Eq.(8) becomes

[q + (m+ 1)r]P0 = r +
p+ q

m
P1. (11)
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We introduce the generating function

g(x) =
∑
k=0

Pkx
k, (12)

following the method outlined in Appendix A we get[
−p
m
x2 +

2p+ q

m
x− p+ q

m

]
g′(x)

+[−(q + rm)x+r + q + rm]g(x)

=− p+ q

m
P1 + (r + q + rm)P0.

(13)

The right hand side equates with Eq.(11) to give

p

m
(1−x)

(
x− p+ q

p

)
g′(x)+[r+(q+rm)(1−x)]g(x) = r

(14)
for q, r 6= 0. The solution is

g(x) =

−rm
p

(x− (p+ q)/p)−µ
∞∑
n=0

(
µ− 1

n

)(
−q
p

)µ−n−1
(x− 1)n

n+ λ

(15)

where

λ(p, q,m) =
rm

q
(16)

and

µ(p, q,m) = m

[
q + rm

p
− r

q

]
. (17)

Notice that the terms in λ and µ are simply the ratios
of the di�erent rates of attachment by the three di�erent
mechanisms in the process. To return the degree distribu-
tion Pk we equate the coe�cients of xk in the expansion of
g(x)with Eq.(12). This is easily done when µ is a positive
integer, for example when µ = 1,

Pk =
q

p+ q

(
p

p+ q

)k
(18)

and µ = 2

Pk =

m(1− p− q)
(p+ q)2

(
p

p+ q

)k [(
q

1 + λ
− q

λ

)
k −

(
p

1 + λ
+
q

λ

)]
.

(19)

In fact when µ is any positive integer the form of Pk is the
product of an exponential part and a polynomial in k of
order µ. In the case of a network with �xed size N , r = 0,
we solve Eq.(14) to �nd

Pk =
pk(1− p)m(1−p)/p

k!
(k − 1− α) (k − 2− α) ... (−α)

where

α = − (1− p)m
p

. (20)

An interesting result occurs when we set the parameter
values in terms of m,

p =
m

m+ 2
and q = r =

1

m+ 2
. (21)

The generating function in this case is found to be

g(x,m) =
1

(m+ 1)−mx
(22)

which gives the result

Pk =
1

m+ 1

(
m

m+ 1

)k
. (23)

Remarkably, this is exactly the result found in [14] for the
uniform attachment model, which is also a specialisation
of the present model when p = q = 0.

6 Dominant nodes

Consider the extreme example where m = 1 and p = 1,
the steady state solution for the degree distribution is
a network comprising of one node of degree N which
is linked to by every node the network including itself.
Hence, as p approaches 1 we anticipate the existence of
nodes with degree much higher than predicted in Section
5, and a possible alteration to the topology of the entire
network. The mathematical formulation of the model in
Section 5 (Equations (8) and (9)), did not account for
this and so we model speci�cally the degree of the nodes
which are likely to dominate the network. Previous work
has examined the similar concept of gelation, where a gel
node takes a �nite proportion of the network's N nodes
as N goes to in�nity [3, 7]. To become dominant a node
must belong to a subset of nodes called a �rich-club�; a
small set of nodes characterised by the large number of
links between its members relative to the small number
of links that leave the set [15]. In this section we present
the equation that describes the dynamics of the total de-
gree of the rich-club before taking a detailed look at the
simplest case, when m = 1 and r = 0.

Let R be a subset of nR nodes, let kinR (t) denote the to-
tal number of in-coming edges adjacent to R and koutR (t)
the number of out-going edges. Using a continuum ap-
proximation

∂kinR
∂t

= [q+rm]
nR
N

+p
kinR
m2N

(
mN − kinR

N

)
−
(
koutR

mnR
p+ q

)
kinR
mN

(24)
The �rst term on the left hand side comes from attach-
ment during growth or global rewiring, the second term
comes from local rewiring and is the product of the prob-
ability that a second neighbour of R is selected, and the
the probability that once selected it will rewire to R (it
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assumes only one edge exits from the neighbour to R), the
last term shows the decrease when one of the edges com-
ing into R is rewired away, koutR /mnR is the probability
that the edge which guides the local rewiring is one that
leaves the set R. When N >> nR and O(1/N) terms are
disregarded Eq.(24) becomes

∂kinR
∂t

=
kinR
m2N

(
p− pk

in
R

N
− qm− pk

out
R

nR

)
(25)

If a set R exists such that this derivative is positive, i.e. if

kinR > N

(
qm

p
−
[
1− koutR

nR

])
(26)

then the nodes in R will begin to dominate the network.
However, the edges in this model are transient, and R will
only maintain its structure until one of its internal edges
is selected for rewiring.

6.1 Rich-club structure

Rich-clubs are characterised by a large number of inter-
nal links relative to their number of nodes. It is therefore
likely that such sets will contain small cycles. Nodes which
have out-going edges that link back on themselves have
less chance of losing adjacent edges from local rewiring
than those which don't, and the same can be said for re-
ciprocated links (cycles of length 2). We are therefore
interested in the dynamics of cycles. Each cycle of length
n will exist for precisely ∆t iterations with probability

πn(∆t) =

[
1− (p+ q)n

mN

]∆t
(p+ q)n

mN
(27)

giving a mean lifespan of

〈∆t〉n =
mN − (p+ q)n

(p+ q)n
. (28)

These formula give some indication of the structure of the
network, particularly in those subsets of nodes that are
highly interconnected, however, modelling the evolution
of a rich-club is an intricate problem. We continue by in-
vestigating only the simple case where r = 0, m = 1 and
q = 1− p.

6.2 r = 0, m = 1 and q = 1− p

Suppose R is a single node. Let k(t) = kinR (t). The solu-
tion to Eq.(25) is

Tdown(kτ , k) =
N

1− p
ln

[
kτ

N(1− p)/p+ kτ

N(1− p)/p+ k

k

]
.

(29)
Here Tdown(kτ , k) represents the average time taken for R
to decrease from degree kτ to k. Suppose R is self-cyclic
(meaning that its one outgoing edge links back on itself).
Now, if an edge adjacent to R is selected for local rewiring

it will be rewired to exactly the position it was in initially.
The solution to Eq.(25) becomes

Tup(kτ , k) =
N

2p− 1
ln

[
N(2p− 1)/p− kτ

kτ

k

N(2p− 1)/p− k

]
.

(30)
Here Tup(kτ , k) represents the average time taken for R to
increase from degree kτ to k.

To predict the tail of the degree distribution 〈nk〉 we
assume that it is proportional to the expectation of the
length of time for which a dominant node has degree k.
Suppose i is a node of degree ki which becomes self-cyclic.
The probability that the degree of i will grow to size k+1
or greater is the probability that i will not be selected
for global rewiring in Tup(ki, k+ 1) consecutive iterations.
Given that this occurs, the total time for which i has de-
gree k is given by Eqs.(29) and (30). Putting this together
we get

〈nk〉 ≈ C
(

1− 1− p
N

)Tup(ki,k+1)

[Tup(k, k+1)+Tdown(k+1, k)]

(31)
where C is the constant of proportionality and depends
on ki. In Appendix B we show how the mean of ki can
be approximated and the results are plotted in Fig.(4b).
Eq.(31) only approximates the shape of the tail of the
degree distribution, it should be noted that we have ne-
glected the time for which a node has degree k but 〈nk〉
does not reach degree k + 1, for this reason 〈nk〉 quickly
approaches in�nity as k approaches its upper bound.

6.3 E�ect on the rest of the network

Previously we have used the mean degree to approximate
the number of second neighbours of any given node, and
hence the attachment probability for local rewiring. In
cases where a signi�cant proportion of the edges are at-
tached to a small number of dominant nodes the expec-
tation of the number of second neighbours of a node is
less and Eq.(20) fais to give an accurate prediction (see
Fig.(3)). If we let 〈k−e〉 be the mean degree of the net-
work excluding any number of edges then the equivalent
of Eq.(6) is

Πa(ki) = (1− p) 1

N
+ p
〈k−e〉ki
m2N

(32)

which gives

mN
∂nk
∂t

=(k + 1)nk+1 − knk + (1− p)m[nk−1 − nk]

+
p〈k−e〉
m

[(k − 1)nk−1 − knk].

(33)

This can be solved in a similar way to before, but since
we are not considering growth we can adopt a simpler
method, used in [5], and assume that for large t a steady
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state has been reached and the left hand side is 0. Eq.(33)
can be rewritten

knk − (k + 1)nk+1 =

[
(1− p)m+

p〈k−e〉
m

(k − 1)

]
nk−1

−
[
(1− p)m+

p〈k−e〉
m

k

]
nk.

(34)

We immediately see that

knk =

[
(1− p)m+

p〈k−e〉
m

(k − 1)

]
nk−1 (35)

and so we �nd

nk =

(
p〈k−e〉
m

)k
1

k!
(k − 1− α) (k − 2− α) ... (−α)n0

(36)
where

α = − (1− p)m2

p〈k−e〉
. (37)

Knowing that the sum over all k is N we also �nd

n0 = N(1− p)−α. (38)

7 Conclusion

The model presented is one of the simplest possible treat-
ments of rewiring in directed networks and although we
have not related it to any particular application, these re-
sults add to the understanding of this class of network
as a whole. We have looked at local rules that naturally
lead to the preferential selection of nodes for attachment,
and global rules that select nodes randomly. Edges are
selected with equal probability for rewiring which leads to
nodes being selected proportionally to their degree. The
combined e�ect of the these two mechanisms is a net-
work with predominantly a exponential degree distribu-
tion. The vast majority of nodes do not accumulate edges
to create a long (power-law) tail. Instead we �nd a small
number of dominant nodes who conspire to develop an
immunity to local detachment causing a large number of
links to condense around them.
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A Solving the �rst order recursion

relation

For the recursion relation

[m0k+c0]Pk+[m−1(k−1)+c−1]Pk−1+[m1(k+1)+c1]Pk+1 = 0
(39)

�rst multiply by xk

m0kPkx
k + c0Pkx

k +m−1(k − 1)Pk−1x
k + c−1Pk−1x

k

+m1(k + 1)Pk+1x
k + c1Pk+1x

k = 0.

(40)

Rewrite this as

xm0kPkx
k−1 + c0Pkx

k + x2m−1(k − 1)Pk−1x
k−2

+xc−1Pk−1x
k−1 +m1(k + 1)Pk+1x

k + x−1c1Pk+1x
k+1 = 0.

(41)

Summing over k ≥ 1

xm0

∑
k=1

kPkx
k−1 + c0

∑
k=1

Pkx
k + x2m−1

∑
k=0

kPkx
k−1

+xc−1

∑
k=0

Pkx
k +m1

∑
k=2

kPkx
k−1 + x−1c1

∑
k=2

Pkx
k = 0.

(42)

Introduce the generating function

g(x) =
∑
k=0

Pkx
k (43)

and we have

xm0g
′(x) + c0[g(x)− P0] + x2m−1g

′(x) + xc−1g(x)

+m1[g′(x)− P1] + x−1c1[g(x)− P0 − P1x] = 0

(44)

or

[x2m−1 + xm0 +m1]g′(x) + [xc−1 + c0 + x−1c1]g(x)

= [m1 + c1]P1 + [c0 + c1x
−1]P0

(45)

Since g(1) = 1 and g′(1) = 〈k〉

[m−1+m0+m1]〈k〉+[c−1+c0+c1] = [m1+c1]P1+[c0+c1]P0

(46)

B Estimating the mean degree of

dominant nodes

We consider a model that describes the time dependent
behaviour of the dominant nodes with the following sim-
plifying assumptions:

1. At any time there will be exactly one self-cyclic node
whose degree increases according to Eq.(30).

2. The times for which nodes remain self-cyclic are ge-
ometrically distributed with mean N/(1− p).

3. After the out-edge of a self-cyclic node is rewired
globally its degree decreases according to Eq.(29).

Additionally we assume that the degree of a node when it
initially becomes self-cyclic is k0, which we �nd by simul-
taneously solving

ktop =
Nβ(

Nβ

k0
− 1

)
exp

(
1− 2p

1− p

)
+ 1

(47)

where ktop is the degree of a self-cyclic node after the
average amount of time it remains cyclic (from Eq.(30)),
β = (2p− 1)/p, and

k0 ≈
k2
top

2N
. (48)

To understand this approximation consider that when
global rewiring of the self-cyclic node occurs, it may rewire
to form a 2-cycle with probability kt/N , then when local
rewiring happens on one of the edges in the 2-cycle a self-
cyclic node is created and the expectation of its degree is
kt/2. If this does not occur then we assume that the new
self-cyclic node has small degree (close enough to 0 to be
ignored). Eq.(48) is the expected outcome of those two
possibilities. Solving Eqs. (47) and (48) gives

k0 =
N

2

(
β

2(1− θ)

[
1 +

√
1− 8θ(1− θ)

β

])2

(49)

where

θ = exp

(
1− 2p

1− p

)
. (50)

Through numerical investigation we determine that k0 is
real valued for p > 0.77.

The expectation of the number of nodes that have de-
gree k > k0 at any time t is given by the length of time a
self-cyclic node has degree k divided by the mean length
of time a node remains self-cyclic. For k > k0,

nk ≈
1− p
N

(
1− 1− p

N

)Tup(k0,k+1)

[Tup(k, k+1)+Tdown(k+1, k)].

(51)
The average number of edges linking to dominant nodes
is

〈k−e〉 =

N∑
k′=k0

k′nk′ . (52)

Fig.(4a) compares the model described here, and the mean
found from simulating the actual model.
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