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 Abstract 

 
 

The aim of this paper is to propose a strategy for performing a stability 

enhancement into the Explicit Green’s Approach (ExGA) method applied to the bioheat 

transfer equation. The ExGA method is a time-stepping technique that uses numerical 

Green’s functions in the time domain; these functions are here computed by the FEM. 

Basically, a new two nonequal time substeps procedure is proposed to compute Green’s 

functions at the first time step. This is accomplished by adopting the standard explicit 

Euler scheme and an optimized procedure to yield the best stability constraint, allowing 

a reduction into the number of time steps without loss of accuracy. In addition, the 

concept of local numerical Green’s functions is introduced and explored aiming at 

reducing the computational effort of nodal Green’s functions calculation. Two examples 

are presented in order to show the potentialities of the proposed methodology, one to 

illustrate the accuracy and another applied to skin burn simulations. 
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Nomenclature 
 

  

c   specific heat ( 1 0 1Jkg C− −  ) Greek symbols 
 

 

( )tF  external heat load vector  hΩ  discrete domain 

( )tG  Green’s matrix  
j

h
GΩ  discrete local 

domain around jy   

( ), ,G t t−x y
  

Green’s function i tα ∆  substeps 

I  identity matrix  λ  eigenvalue 
K  conductivity matrix  t∆  time step 
  bω   blood perfusion 

( 1s−  ) 
LM  lumped capacity matrix  κ  thermal 

conductivity 
tensor ( 1 0 1Wm C− −  
) 

nq  number of equations Ψ  tissue damage 
mQ   metabolic heat of tissue ( 3Wm−  ) ρ   density( 3Kgm−  ) 

rQ   spatial heating ( 3Wm−  ) τ   time (or dummy) 
variable (s) 

t  Time (s) Superscripts  
ft  time of analysis k  time index 

aT   arterial temperature Subscripts  

( )tT  time temperature vector b blood 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction  
 
 

In recent years, there has been an increasing motivation in the development of 

mathematical models that describe heat transfer in living tissue with blood perfusion. 

Among many mathematical models of bioheat transfer [1, 2], the Pennes’ equation [3] is 

widely employed due to its simplicity and overall satisfactory representation of the 

physical phenomenon. Indeed, the Pennes’ equation appears in a great number of 

bioheat applications such as hyperthermia, cryosurgery, hypothermia, thermography, 

skin burns, etc.. 

As the mathematical models and their applications in medical sciences are 

becoming more complex and multidisciplinary [1,2], numerical simulations are 

indispensible tools that partially replace laboratory testing, aiding in understanding the 

problem under consideration subjected to different inputs in an effective manner. In 

fact, over the years, the Pennes’ bioheat transfer equation has been numerically solved 

by several numerical techniques such as the finite difference method [1, 4-6], finite 

element method [1, 7, 8], boundary element method [9,10], meshless method [11,12] 

etc.. 

The objective of the present paper is to propose an improvement into the Explicit 

Green’s approach method [13-17] and apply it to solve the Pennes’ equation. As an 

application of the Pennes’ equation, the paper focuses on the numerical simulation of 

skin burns [1, 6-8, 22] that can be used to predict injury depths caused by different 

external heat supplies applied at the skin surface. The generality and success of the 

ExGA method relies heavily on numerical Green’s functions rather than analytical ones 

employed in other formulations. It is well-known that Green’s function methodologies 

are very powerful tools due to the ability to solve the problem under consideration 

subjected to different boundary conditions and heat source terms [18-24]. For instance, 

one can quote the work of Deng and Liu [19] where analytical Green’s functions for the 

Pennes’ equation that satisfy the homogeneous boundary conditions of the same 

problem were employed. However, these analytical Green’s functions, even though very 

important to derive benchmark solutions, are not feasible in practice due to the difficulty 

of finding analytical expressions for Green’s functions with arbitrary geometries and/or 

material properties. In this sense, the ExGA uses numerical Green’s functions that also 

satisfy homogeneous boundary conditions, giving rise to a general time-integral 

expression that can easily handle any kind of geometry and medium. Furthermore, 



unlike time-domain BEM formulations in which analytical free-space Green’s functions 

are generally employed [25, 26], once Green’s functions are computed in the ExGA 

method the solution is explicitly evaluated without the need of solving a system of 

equations.  

The main contributions of the present paper are the proposed use and 

optimization of a new nonequal two time substeps procedure to compute Green’s 

functions at the first time step, a detailed discussion on the computation of local 

numerical Green’s functions and a convergence analysis of the technique. The FEM in 

conjunction with the explicit Euler scheme are employed to compute Green’s functions, 

represented by the so-called Green’s matrix that stores numerical nodal values of the 

Green’s functions. The nonequal time substeps values are calculated such that a 

maximum stability region for the time-integral expression of the ExGA method is 

achieved. Because of the discretization adopted, the numerical Green’s function due to a 

point source possesses a compact support with values different from zero only in a 

small region around the source point and, as a consequence, its computation can be 

carried out locally in a straightforward manner. 

The structure of the paper is organized as follows: In section 2 the Pennes’ 

bioheat transfer equation is briefly described and, in section 3, a brief background is 

given on the theoretical foundations of the time-integral expression regarding the ExGA 

method discretized in a FEM sense. Section 4 presents the time substeps procedure to 

compute the Green’s matrix by means of the explicit Euler scheme and a discussion 

about the convolution integral. Next, in section 5, a detailed study of how to calculate 

the time substeps values by performing a stability and accuracy analysis is provided. In 

section 6, two numerical examples are presented in order to assess the capabilities and 

potentialities of the improved ExGA method, including a convergence study and a 

simulation of skin burns caused by a heated plate. Finally, conclusions on the proposed 

methodology are drawn in section 7. 

 

 

2. Model Equations  
 

In this work, biological systems, more specifically skin tissue subjected to external 

factors leading to burns, are modeled by means of the Pennes bioheat transfer equation. 

Let the biological system (skin tissue) occupy an open and bounded domain dΩ⊂   



where d  is the order of space dimensions. The boundary of Ω  is assumed to be 

sufficiently smooth and is denoted by Γ = ∂Ω  with outward unit normal vector n , 

Ω = Ω ΓΓ  being the closure of Ω . In this way, the Pennes’ bioheat transfer model can 

be formulated as: find the tissue temperature field : 0, fT t Ω× →    such that [1, 2, 

3]:  

 

 ( ) ( )b b b a m r
TT c T T Q Q c
t

ω rr  ∂
∇⋅ ∇ + − + + =

∂
κ   in (0, ft Ω×   (1) 

 T T=   on (0,D ft Γ ×   (2) 

 T q∇ ⋅ =κ n  on (0,N ft Γ ×   (3) 

 ( )T h T T∞∇ ⋅ = −κ n  on (0,R ft Γ ×   (4) 

 0T T=   in Ω  at 0t =  (5) 

 
where the usual Dirichlet, Neumann and Robin (convective) type boundary conditions 

with their respective prescribed values and parameters are applied on DΓ , NΓ  and RΓ , 

respectively, such that D N RΓ = Γ Γ ΓΓ Γ  and D N D R N RΓ Γ = Γ Γ = Γ Γ =∅   . In 

Eq.(1), aT  stands for the arterial temperature which is treated as a constant, :mQ Ω→  

and : 0,r fQ t Ω× →    denote the metabolic heat generation and the supplied heat 

source, respectively. The tissue properties are: : d d×Ω→κ   the thermal conductivity 

tensor, :ρ Ω→  the density and :c Ω→  the specific heat while the blood 

properties are: :bρ Ω→ , :bc Ω→  and :bω Ω→  the blood perfusion. Finally, 

0 :T Ω→  is the initial temperature field. 

 Due to the lack of a precise knowledge of the initial temperature in the whole 

biological system adopted in the model, in many numerical simulations the initial 

temperature ( )0T x  is set as the solution of a previous steady-state problem governed by 

the equation below 

 
 ( ) ( )0 0 0b b b a mT c T T Qω ρ∇⋅ ∇ + − + =κ  in Ω  (6) 

 
subjected to appropriate boundary conditions. For instance, in skin burns simulations, 

the initial temperature may be accomplished by considering that the skin surface is 



under a convective boundary condition, a situation normally encountered previous to 

the heating that causes burns. 

 

 

3. Time Stepping Using the Green’s Matrix 

 
The key feature of the ExGA method is the use of numerical Green’s functions that 

satisfy homogeneous boundary conditions of the problem under consideration. Hence, 

according to Eqs. (1)-(5), the Green’s function for the skin tissue can be derived from 

the following set of equations considering 0τ = : 

 

 ( )( ) ( ) ( ), ,
, , , ,b b b

G t
G t c G t c

t
ω ρ ρ

∂
∇⋅ ∇ − =

∂
x y

κ x y x y , in Ω  and 0t >  (7) 

 ( ), , 0G t =x y , on DΓ  and 0t >  (8) 

 ( ), , 0G t∇ ⋅ =κ x y n , on NΓ  and 0t >  (9) 

 ( ) ( ), , , , 0G t hG t∇ ⋅ + =κ x y n x y , on RΓ  and 0t >  (10) 

 ( ) ( ), ,G t
c

δ
ρ
−

=
x y

x y  in Ω  and 0t =  (11) 

 
where d∈x   denotes the field point and d∈y y  the source point. Notice that the 

Green’s function calculation for 0t t> =  can be carried out replacing the instantaneous 

heat point source by an equivalent initial condition expressed by Eq. (11) [18]. 

 In this paper, the Green’s function is numerically computed by the finite element 

method [27]. Thus, let ( )1
0

h
tS H⊂ Ω  and ( )1

0
hV H⊂ Ω  be the usual finite dimensional 

spaces of continuous piecewise polynomials concerned with trial and test functions on 
h

e
e

Ω = Ω . The discrete counterpart of Eqs. (7)-(11) taking into account the semi-

discretization Galerkin procedure can be stated as: for any 0t ≥  find h h
tG S∈  for jy  

with \ Dj η η∈  such that h hw V∀ ∈ , 

 

 ( ) ( ) ( ), , , , 0
R

h
h h h h h h h

b b b
Gw c w G w c G w hG
t

ρ w ρ
G

 ∂
+ ∇ ∇ + + = ∂ 

κ  (12) 

 ( ) ( )( ), ,h h h
jw cG wρ δ= −x y  (13) 



 
where the standard notation for the 2L  inner product has been used. In addition, η  is the 

total number of nodes in the mesh with Dη  being its subset of nodes belonging to DΓ . 

Defining ( ) ( ) ( )
\

, , ,
D

h
j i i j

i

G t N G t
hh ∈

= ∑x y x y  and ( ) ( )
\ D

h
l l

l

w N w
hh ∈

= ∑x x  in 

which ( )N x  are the global finite element shape functions, and after taking into account 

all source points jy , Eqs. (12)-(13) can be rewritten in matrix notation as: find 

: 0 nq nqt ×≥ →G   such that: 

 
 ( ) ( )L t t+ =M G KG 0  (14) 

 ( ) 10 L
−=G M  (15) 

 
where nq nq

L
×∈M  , nq nq×∈K   denote, respectively, the capacitance and conductivity 

matrices [17] with nq  being the number of equations originated from unknown nodal 

values associated with the subset \ Dη η . The Green’s matrix, with entries expressed by 

( ) ( ), ,h
ij i jG t G t≡ x y , actually represents Green’s functions nodal values of the discrete 

system. An advantage of computing the Green’s function numerically by the FEM is 

that the compatibility conditions between layers, for non-homogeneous media, are taken 

into account directly into the FEM formulation. Thus, unlike other methods such as the 

BEM, it is not necessary to adopt, for instance, the subregion technique that makes use 

of the compatibility conditions explicitly in its formulation due to the use of a 

fundamental solution of homogeneous media [26]. In the foregoing equations a lumped 

(diagonal) capacitance matrix originated from a diagonalization procedure such as the 

row sum technique [27, 28] is employed in order to render a more computational 

effective methodology since its inversion is readily obtained. 

To establish the solution of Eqs. (1)-(5) by means of the ExGA method, the 

governing equation is multiplied by the Green’s function discussed above and integrated 

over the space-time domain ( 0 , ft t Ω×  . Afterwards, following some usual procedures 

of standard time domain boundary integral equations and performing a spatial 

discretization similar to that of the FEM, the problem becomes: find the temperature 

vector ( 0: , nq
ft t  →T   such that [14, 17]: 



 

 ( ) ( ) ( ) ( ) ( )
0

0 0

t

L

t

t t t t t dt t t= − + −∫T G M T G F ,  0 , ft t t ∈    (16) 

 
where ( )0: , nq

ft t →F   stands for the usual heat load vector, accounting for boundary 

conditions and heat sources. For more details regarding the derivation of Eq. (16), the 

reader is referred to Loureiro et al. [14]. 

To take advantage of computing the Green’s matrix only at a given time step and 

evaluating the convolution integral only once, the temperature vector computation in 

Eq. (16) is carried out by a step-by-step time-marching process. In this way, the total 

time interval 0 , ft t    is split into N  equal subintervals [ ]1,k kt t +  with 

0 10 N ft t t t= < < < =  and 1 /k k ft t t t N+ − = ∆ = . Finally, after taking into consideration 

the Green’s function translation property, the following recursive expression arises: 

 

 ( ) ( ) ( )1

0

, 0, , 1

t

k k
L kt t t d k Nt t t

∆

+ = ∆ + ∆ − + = −∫T G M T G F   (17) 

 
in which subscript k indicates the time instant, e.g., ( )k

kt≡T T . 

 

 

4. Green’s Matrix Computation 

 
In this section, a discussion concerning the computation of Green’s functions or, in 

other words, the Green’s matrix at the first time instant by a two time substeps 

methodology is presented. Because of the discretization employed, the Green’s function 

possesses compact support and computational advantages can be taken into account 

from this fact in order to establish a more effective algorithm. 

 

4.1 A two time substeps procedure 

 
It is well known that the explicit Euler time integration method is widely 

adopted to solve systems of parabolic ordinary differential equations that arise in many 

finite element simulations [27, 28]. However, the major drawback of this explicit 



method is its severe stability constraint. Motivated by the flexibility offered by the 

ExGA method, the Green’s matrix at time instant t t= ∆  is computed by the Euler 

method in conjunction with a two time substeps procedure, aiming to relax the stability 

constraint. Thus, applying the explicit Euler method to Eqs. (14)-(15), one obtains:  

 
 ( ) ( ) ( )1

1i i L it t tα −
−= − ∆G I M K G , 1, 2i =  (18) 

 

where 
1

i

i jj
t tα

=
= ∆∑  and nq nq×∈I   is the identity matrix. 

Figure 1 illustrates the time subteps procedure which are employed only once, 

for the first time step. The main goal now is to optimize the values of 1 tα ∆  and 2 tα ∆  

such that 1 2t t tα α∆ + ∆ = ∆  (or 1 2 1α α+ = ), focusing on increasing the stability region 

as much as possible without  reducing accuracy. This follows a different approach to 

that proposed by Loureiro and Mansur [16] where the focus was on an increase in the 

order of accuracy. The optimal values for 1α  and 2α  are discussed in detail in the next 

section. 

 

4.2 Convolution integral  

 
Once the Green’s matrix has been computed by the Euler method, one can proceed with 

the approximation of the convolution integral in order to initialize the time marching 

process for the temperature vector calculation given by Eq. (17). Actually, the 

convolution integral is dealt with analytically considering a type of time variation for 

the heat load vector and the only error is due to the use of an approximate Green’s 

matrix given by Eq. (18) as shown in appendix A. As presented in Appendix A, the 

convolution integral reads: 

 

 ( )2 1
1 1 2 1 2

0

( ) ( ) (0) ( )

t

k k k
kt t d t t t tt t t α α α α α

∆

+∆ − + ≈ ∆ + ∆ + ∆ ∆∫G F G F F G F  (19) 

 
The above expression assumes that the heat load vector varies linearly for each 

time subinterval [ ]1,k kt t + . This assumption is normally used in several time integration 

methods [27, 28] and is sufficient to yield accurate results for a small enough time step 



when compared to the time range of the analysis. However, other types of time shape 

functions for the heat load vector can be considered as well. 

 

4.3 Local Green’s functions  

 
Due to the discretization adopted in both time and space, the Green’s function nodal 

values obtained from Eq. (18) correspond to a column of the Green’s matrix, and admit 

compact support. This means that the Green’s function associated to a specific source 

point , \j Dj η η∈y  needs to be computed only in a small portion of the mesh 

surrounding the source point jy  with its respective discrete local subdomain (submesh), 

namely, , \
j

h h
G Dj hh Ω ⊆ Ω ∈ . Figure 2 displays non-null nodal values of the Green’s 

function in 
j

h
GΩ  by employing, for instance, quadrilateral elements that are adopted 

here. 

Further considerations about the Green’s functions computation can be taken 

into account by invoking the reciprocity relation. The reciprocity relation states that the 

Green’s function is symmetric when the source and field points are interchanged 

independent of the position of these points or, in other words, 

( ) ( ),, , ,G t G tt t− = −yx y x . It is readily seen from Eq. (18) that this property also 

holds for the Green’s matrix implying in a symmetric matrix and, therefore, only nodal 

Green’s function values for indices say i j≤  must be computed, reducing the 

computational cost by half. 

In some simulations, it is quite common to adopt uniform elements at least in 

some portion of the finite element mesh and a piecewise homogeneous material where 

material properties are constant in each subdomain. If the local Green’s function 

subdomain 
j

h
GΩ  is generated only by regular elements with the same kind of material, it 

is very useful to compute the Green’s function considering only one-quarter of the 

model as depicted in Figure 2(b). This not only decreases the computational cost but 

also indicates that the Green’s function can be reused for other equal local subdomains 

j

h
GΩ  which is more likely to occur when a fine mesh is employed, increasing drastically 

the computational efficiency. Notice that the Dirichlet type boundary condition is 

adopted to truncate the local mesh inside the original mesh, i.e. nodal values from the 

local boundary to the rest of the mesh are null. On the other hand, if the local boundary 



j

h
GG  intercepts the original boundary, the last local boundary with its respective 

boundary condition must be considered. Although not addressed in this work, it is 

important to stress that the proposed formulation is highly parallelizable since Green’s 

functions with their corresponding discrete local subdomains are computed 

independently and only matrix-vector operations are required in the recurrence relation 

(17) for the temperature vector. 

 

 

5 Optimal Values for the Time Substeps 

 
The parameters 1α  and 2α  which define the substeps in the proposed time-stepping 

scheme play a central role in the time convergence. It is well-known from the Lax 

equivalence theorem that a time-stepping technique for linear problems is convergent if 

and only if it is stable and consistent. Following [27, 28], this section presents a detailed 

study on the influence of these parameters into the stability and accuracy in time, taking 

into account a decoupled procedure for the system of equations. 

 

5.1 Decoupled equations 

 
Let ( ) ( ) ( )1 1 2 2, , , , , ,nq nqλ λ λφ φ φ  be the eigenvalues and their corresponding 

eigenvectors associated with the eigenvalue problem [27, 28] 

 
 ( ) { }1 , 1, ,L l i i nql− − = ∈M K I φ 0   (20) 

 
for which 10 nqλ λ≤ ≤ ≤ . The eigenvectors satisfy the orthonormality relations 

T
i L i ijδ=φ M φ  and T

i i i ijλδ=φ Kφ . Then, as , 1, ,i i nq=φ   form a basis for nq
 , one  

can write ( ) ( )
1

nq

i i
i

t T t
=

=∑T φ . Finally, substituting the aforementioned expression for the 

temperature vector into Eq. (17), taking into consideration Eq. (18) and Eq. (19), and 

with the aid of the orthonormality relations, the following decoupled scalar recursive 

expressions are obtained: 

 
 ( )1

1, , 1, ,k h k h
i i i i iT g t T L i nqλ α+ = ∆ + =   (21) 



 
where ( )1,h

i ig tλ α∆  can be interpreted as the approximate Green’s function or the so-

called amplification factor, and h
iL  is the approximate convolution integral or the load 

operator. Owing to the relation 2 11α α= −  their expressions are written as 

 
 ( ) ( ) ( )( )1 1 1, 1 1 1h

i i i ig t t tλ α α λ α λ∆ = − ∆ − − ∆  (22) 

 ( )2 1
1 1 2 1 21h k k k

i i i i iL tr tr t trα α α α λ α+= ∆ + ∆ + − ∆ ∆  (23) 

 
in which ( ) ( )T

i ir t t= φ F . Conversely, analytical counterparts of the Green’s function 

and the load operator for a SDOF system are ( ) i t
i ig t e λλ − ∆∆ =  and 

( ) ( )
0

i
t

t
i i kL e r t dλ t t t

∆
− ∆ −= +∫ , respectively. 

The decoupled procedure allows, without loss of generality, the analysis of the 

stability and accuracy of a given time-stepping scheme in a straightforward manner, and 

conclusions drawn for decoupled equations remain valid for the original system of 

coupled equations.  

 

5.2 Time stability region 

 
It is easy to see from the analytical Green’s function ( ) i t

i ig t e λλ − ∆∆ =  that the recursive 

expression (21) is unconditionally stable only if the condition 

( ) { }1, 1, 1, ,h
i ig t i nqλ α∆ ≤ ∀ ∈   holds; otherwise, the time-stepping scheme is said to 

be conditionally stable. Since the approximate Green’s function also depends on the 

parameters 1α  and 2 11α α= −  , these parameters are optimized to ensure a maximum 

stability region. In other words, we seek the value of 1α  such that ( )1, 1h
i ig tλ α∆ ≤  for 

the largest range of i tλ ∆ .  

Figure 3 shows the 3D and stability region plots of ( )1,h
i ig tλ α∆  in terms of 

i tλ ∆  considering [ ]1 0,1α ∈ . Like the standard explicit Euler method, it is readily 

observed from Figure 3 that the proposed time-stepping is only conditionally stable. 

Because the stability is greatly affected by the parameter 1α , the goal is to find an 



optimal value of 1α  that yields the largest stability region. This optimal value is 

illustrated by a line in Figure 3(b), and it is determined by solving the equations  

 

 ( ) ( )
( )

1
1

,
, 1& & 0

h
i ih

i i
i

g t
g t

t
λ α

λ α
λ

∂ ∆
∆ = − =

∂ ∆
 (24) 

 

which leads to 1
2 2

4
α −

= . In fact, the optimal value is that for which the vertical line 

in Figure 3(b) is tangent to the point  ( )1
2 2, , 4

4i tα λ
 −

∆ =   
 

. In addition, three curves 

for ( )1,h
i ig tλ α∆  considering different values of 1α  are plotted in Figure 4 and some 

features about the two time substeps can also be outlined from this figure and Figure 3, 

namely: i)  if 1 1α =  no substep is established and the standard Euler stability constraint 

given by 2i tλ ∆ ≤  is obtained; ii) for 1 1/ 2α = , i.e. equal substeps [13, 15], the stability 

constraint is 4i tλ ∆ ≤  and iii) for the optimal 1α , the stability constraint is increased to 

8i tλ ∆ ≤ . In this sense, the two time substeps procedure with 1
2 2

4
α −

=  is capable of 

enlarging the critical time step by a factor of 4 in comparison with the standard Euler 

method and a factor of 2 when compared to the equal substeps. Hence, a new time-

stepping scheme with stability improvement is established. 

 

5.3 Order of accuracy in time 

 
The final task to achieve a convergent solution is concerned with the order of accuracy 

of the time integration method. The order of accuracy can be analyzed by comparing the 

Taylor series of the analytical Green’s function ( )i ig tλ ∆  with that of ( )1,h
i ig tλ α∆  [27, 

28].  The Taylor series ( )i ig tλ ∆  is written as 

 

 ( ) ( )2 2

0

1 11 1
2 ! !

i

n n
nt n n

i i i i i
n

tg t e t t t
n n

λ λλ λ λ λ
∞

− ∆

=

∆
∆ = = − ∆ + ∆ − + ∆ − = −∑   (25) 

 
while the expansion for ( )1,h

i ig tλ α∆  is given by 

 



 ( ) ( )2 2 2
1 1 1, 1h

i i i ig t t tλ α λ α α λ∆ = − ∆ + − ∆  (26) 

 
By definition [27, 28], a time integration scheme is said to be of order p if all 

terms of the Taylor series regarding the analytical Green’s function up to ( ) p
i tλ ∆  match 

exactly those of the numerical Green’s function.  In other words, the local truncation 

error for the proposed formulation can be defined as 

( ) ( ) ( )( )2
1 1,h

i i i i ig t g t c tλ λ α α λ∆ − ∆ ≤ ∆ , where ( ) 2
1 1 11/ 2c α α α= − +  is a constant 

dependent of 1α . Clearly, the proposed time-stepping method is first order accurate and, 

consequently, it is consistent. Furthermore, from a theoretical point of view, when 

( )1c α  approaches to zero a better accuracy is obtained. A few comments about the 

constant ( )1c α  whose graph is plotted in Figure 5 can be outlined, namely: i) the best 

accuracy is achieved when 1 1/ 2α = , i.e., when equal time substeps are employed; ii) 

when 1 1α =  (Euler method) one has ( )1 0.5c α = , whereas when 1
2 2

4
α −

=  gives 

( )1 0.375c α =  and, therefore, the proposed method is slightly more accurate than the 

explicit Euler one; iii) there is no 1α ∈  such that ( )1 0c α = , i.e., a second order 

accurate method, and one needs to rely on the complex plane to increase the order of 

accuracy resulting in 1α ∈ , as shown by Loureiro and Mansur [16]. Although equal 

substeps yield the best accuracy, the maximum stability generated by 1
2 2

4
α −

=  is 

much more important than the accuracy when dealing with finite element simulations 

containing a large number of equations since the time step is constrained by the largest 

eingenvalue which, in general, is inaccurately computed by the FEM and not very 

important to the problem analysis. 

 

 

6 Numerical Aspects and Applications   

 
In the present section two examples are considered. In the first one, the convergence of 

the proposed formulation according to the time substeps selection is studied by 

considering a two-degree-of-freedom model. In the second example, an application 



related to skin burn depth simulations is analyzed with the goal of describing the main 

features of the proposed method. 

 

6.1 Convergence study 

 
In order to show that the order of accuracy demonstrated previously for the decoupled 

equations remains valid for the system of coupled equations originated from the FEM 

semi-discretization applied to the Pennes’ equation, the following two-degree-of-

freedom model is considered:   

 

 ( )
( )

( )
( )

11

22

4 0 5 3 1
0 3 3 3 0

T t tT t
T tT t
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



  (27) 

with 

 
( )
( )

1

2

0 1
0 0

T
T
   

=   
  

  (28) 

 
The convergence rate or order of accuracy of the proposed time-stepping 

technique is numerically estimated by computing the solution at a specific time instant 

considering different time steps. The error is calculated by the following expression:  

 

 ( )
( ) ( )

( )
2

2

num an

an

t t
e t

t

−
=

T T

T
  (29) 

 
where ( )an tT , ( )num tT  stand for analytical and numerical solution vectors, 

respectively. The expression for the analytical solution reads 

 

 
( )
( )

( )

( )

2 /4

1

2 /42

1 63 13 48 14
28
1 77 13 64 14
28

t t

t t

e e tT t
T t e e t

− −

− −

 + − −     =   
    − − −

  

  (30) 

 
 Figure 6 shows the convergence rate at the time instant 1rt =  for the standard 

explicit Euler method and the ExGA method. From this figure, it can be concluded that 

the ExGA method has the same order of accuracy as the Euler scheme (first order 

accurate). However, it is slightly more accurate (smaller error) than the Euler scheme 



with the ExGA method with 1 1/ 2α =  (equal substeps) being the most accurate as stated 

previously in the theoretical discussion.  

 

6.2 Skin burn simulation  

 
As an application of a bioheat transfer model, the tissue temperature and its 

effects into tissue damage when the skin surface is exposed to a heated plate are studied. 

Numerical simulations can be effectively used to better understand burn injuries caused 

by different heat-supply situations and, as a consequence, aiding in the investigation of 

more appropriate postburn cooling therapies and the development of clinical protocols 

[5, 7, 8, 6]. A two dimensional model is considered as depicted in Figure 7 where the 

tissue is formed by four layers, namely, Epidermis, Dermis, Subcutaneous and Muscle. 

On the skin surface, the heated plate is applied at a portion of the boundary at a 

prescribed temperature while the remaining boundary is subjected to a convection 

boundary condition. The core boundary is at 037 C  while the upper and lower ones are 

assumed to be insulated. The thickness and material properties of the layers are given in 

Table 1 and the metabolic heat generation and the arterial temperature are set to be 
3420 /mQ W m=  and 037aT C= , respectively. Due to symmetry, only half of the 

domain is considered and a total of 12745 bilinear elements are adopted for the spatial 

discretization. 

Since the tissue is subjected to a convection boundary condition at the skin 

surface before exposure to the heated plate, the initial temperature of the model is 

calculated by solving the steady state version of the bioheat transfer equation. Due to 

the boundary conditions the problem is actually reduced to a 1D model as shown in 

Figure 8, considering an ambient temperature of 020T C∞ =  and a convective heat 

transfer coefficient of 2 010 /h W m C= . As expected, temperatures near the skin surface 

are below that of the body core, which is around 037 C .  

In skin burn simulations, it is very important to classify the degree of tissue 

burn. To accomplish this, the thermal tissue damage (or injury) region  

[ ]: 0, tΨ Ω× →  is measured by the Arrhenius model [1], which in its integral form is 

given by 

 



 ( )273

0

t E
R Te dξ t

∆
−

+Ψ = ∫   (31) 

 
where R  is the universal gas constant and [ ]: 0,T tΩ× →  is the local temperature. 

Furthermore, E∆  stands for the free energy barrier to molecular denaturation while ξ  is 

a constant determined by the tissue properties.  The burn injury is classified according 

to the values of Ψ  with 0.53 1≤ Ψ < , 41 10≤ Ψ <  and 410Ψ ≥  being first, second and 

third degree burns, respectively. 

Once the initial temperature is known the analysis can proceed. In the present 

simulation, a hot plate at 060 C  is suddenly applied at the skin surface and the exposure 

is maintained for 294s , which is mathematically represented by the prescribed 

temperature function ( ) ( )( )60 294T H t H t= − −  with ( )H   being the generalized 

Heaviside function. Afterwards, the plate is removed and the whole skin surface is again 

subjected to the natural convective boundary condition described above, which will now 

have a cooling effect. The objective is to analyze both temperature variations inside the 

tissue and the tissue thermal damage during the exposure and after the hot plate has 

been removed. The parameters used in Eq. (31) are 983.1 10 1/ sξ = ×  and 
86.28 10 /E J kmol∆ = ×  [7]. 

The solution is carried out considering the standard explicit Euler scheme, which 

is used as a reference solution, and the proposed ExGA method. The time step length is 

selected owing to the stability constraint of each method. The maximum eigenvalue for 

the mesh adopted in the problem is max 135.538λ = . This means that 0.014756t∆ ≤  for 

the Euler scheme and 0.05902t∆ ≤  for the ExGA method to guarantee stability of the 

numerical results, so that 0.014t s∆ =  is employed here for the Euler scheme and 

0.056t s∆ =  for the ExGA method. In practice, the maximum eigenvalue may be readily 

estimated through a much less computationally demanding procedure, owing to the fact 

that max max ee
λ λ≤  in which eλ  are element eigenvalues. It is important to stress that the 

time step length concerning the ExGA method is four times greater than that of the 

Euler scheme; besides, the former is more accurate than the latter as discussed 

previously. These are major advantages of the proposed formulation over the Euler 

scheme since a reduction of 75%  for the number of time steps is achieved without 



deteriorating the solution. Moreover, concerning local Green’s functions, one can 

observe that a regular mesh is employed in the inner layer (Muscle) and, thus, local 

Green’s functions that share the same submesh (i.e., 
j

h
GΩ ) with the same material 

properties when source nodal points are placed at the inner layer are equal, reducing 

drastically the Green’s functions calculation. Hence, in this case, the computation of the 

local Green’s function at nodal points is performed just once with the symmetry shown 

in Figure 2(b) being taken into account to further reduce the computational cost. 

Therefore, this example reveals that in a great deal of cases one can take advantage of 

the mesh pattern in order to reduce the computational cost of evaluating local Green’s 

functions.  

Some results of the numerical simulation are presented in Figure 9-11, and it can 

be observed the results provided by the ExGA method are in a very good agreement 

with those of the Euler scheme. Before discussing the results, it is worth mentioning 

that the tissue thermal damage starts to occur at 043 C . Figure 9(a) shows the 

temperature-time histories at three distinct points with the first one located at the 

interface between Epidermis and the Dermis, the second at the middle of the Dermis 

layer and the third at the middle of the Subcutaneous layer, with all of them at 0y = . As 

expected, temperatures are higher near the skin surface where we can see that the 

temperature is clearly above 043 C  at points in the Epidermis and Dermis. After the hot 

plate is removed the temperature starts to decrease due to the convective cooling. In 

Figure 9(b) the temperature distribution at time instants 294t s=  (just before the plate 

has been removed) ant 588t s=  considering 0y =  are plotted, and it is seen that as the 

position y  increases the temperature values decrease since the hot plate is applied only 

at one portion of the boundary. An interesting fact to be observed is that the thermal 

injury continues to occur at inner layers even after the hot plate removal.  This is more 

clearly observed in Figure 10 for the tissue thermal damage where its values at time 

588t s=  are higher than those at 294t s=  for inner layers (Subcutaneous and Muscle). 

Moreover, according to this figure, a second degree burn occurs at the Epidermis, 

Dermis and at the beginning of the Subcutaneous layers. Finally, Figure 11 shows the 

temperature field at 294t s=  and 588t s=  where once again we can see the temperature 

increase in inner layers after the hot plate is removed.  

 

 



7 Conclusions 

 
In this work, an improvement into the Explicit Green’s Approach (ExGA) formulation 

regarding stability has been presented for the Pennes bioheat transfer equation. The 

ExGA method is divided into two phases, namely, computation of the Green’s functions 

represented by the Green’s matrix and solution of the problem, i.e., finding the 

temperature vector through a recursive time relation that depends on the Green’s matrix. 

The new feature of the proposed formulation is to compute the Green’s matrix at 

t t= ∆  by splitting this time step into two nonequal time substeps, with their values 

being determined such that a maximum stability region is achieved for the temperature 

recursive relation. The explicit Euler scheme is chosen to compute the Green’s matrix 

since it is widely used and very easy to program. After finding optimal values for the 

time substeps the following advantages over the standard Euler scheme arise: i) the 

stability constraint is increased by a factor of four; ii) the first-order accuracy is 

maintained but with a lower error; iii) the temperature vector time advancement is 

carried out with a time step length t∆  without any substeps procedure; and iv) Green’s 

functions can be saved and reused when multiple analyses with different boundary and 

source terms are considered. Thus, the proposed methodology allows the use of larger 

time steps without decreasing the accuracy, rendering a very efficient and accurate time 

stepping scheme. 

 The idea of local numerical Green’s functions, where their values are non-zero 

only for a few nodal points around the source point, has also been presented. The 

objective is to compute the nodal Green’s functions at a low cost, taking into account 

some properties of the discrete local subdomain as well as the symmetry of the local 

mesh. This is illustrated by the skin burn numerical example where regions with the 

same local mesh have the same nodal numerical Green’s function and, therefore, their 

computation needs to be performed just once. Hence, the proposed formulation is a very 

attractive time-stepping technique based on local numerical Green’s functions that can 

be easily extended to other bioheat mathematical models governed by parabolic 

equations. 

 

 

 

 



Appendix A  

 
A discussion on the analytical evaluation of the convolution integral matrix that 

appears in Eq. (17) is provided here. The convolution integral is written as: 

 

 
0

( ) ( )

t

c kt t dt t t

∆

= ∆ − +∫I G F  (A1) 

 
From the theory of ordinary differential equations the analytical Green’s matrix 

governed by Eqs. (14)-(15) reads ( ) 1 1L t
A Lt e

−− −= M KG M . Finally, assuming for instance 

that the heat load has a linear time variation, i.e., 

( ) [ ]1( ) / , 0,k k k
kt t tt t t++ = + − ∆ ∈ ∆F F F F , the integral (A1) can be analytically 

evaluated, giving rise to  

  

 ( ) ( )( ) ( )
1 1 1

1 1 0

0

/L

t

t k k k
c L A Le t d t tt t t

−

∆

− ∆ − − += + − ∆ = − ∆ + + ∆∫ M KI M F F F G M ψ ψ ψ  (A2) 

 
where vectors 0ψ  and 1ψ  are defined as 

 

 
( )1

0

k k

t

+
−

−
=

∆
1

F F
ψ K  (A3) 

 ( )1 0
k

L
−= −1ψ K F M ψ  (A4) 

 
This is indeed the so-called particular or steady-state solution studied by 

Loureiro and Mansur [15, 16], for which the time shape function concerned with the 

heat load vector is represented exactly into the final solution. The key feature now is to 

replace the analytical Green’s matrix by its numerical counterpart, i.e., 

( ) ( )A t t∆ ≈ ∆G G . Hence, substituting the numerical Green’s matrix given by Eq. (18) 

into Eq. (A2) and after some algebraic manipulations, one finally obtains: 

 

 ( )2 1
1 1 2 1 2

0

( ) ( ) (0) ( )

t

k k k
kt t d t t t tt t t α α α α α

∆

+∆ − + ≈ ∆ + ∆ + ∆ ∆∫G F G F F G F  (A5) 



 
It is worth mentioning that the approximation of Eq. (A5) is not due to a 

quadrature formula but rather due to the use of an approximate Green’s matrix. Thus, it 

can be inferred that the error for the temperature vector in the time marching process is 

originated only from the Green’s matrix approximation.  
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Table 1. Thickness and thermal properties for the layers in the skin model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property Epidermis Dermis Subcutaneous  Muscle 

Li (m)  8.0x10-5 2.0x10-3 1.0x10-2 3.0x10-2 

c(J.kg-1.0C-1) 3.6x103 3.6x103 2.5x103 3.8x103 

k(W.m-1.0C-1) 0.22 0.4 0.2 0.45 

ρ (kg.m-3) 1.2x103 1.2x103 1.0x103 1.0x103 

cb (J.kg-1.0C-1) 4.2x103 4.2x103 4.2x103 4.2x103 

ρb (kg.m-3) 1.1x103 1.1x103 1.1x103 1.1x103 

wb (s-1) 0.0 5.0x10-4 5.0x10-4 5.0x10-4 



Figure Captions 

 

Figure 1. Illustration of the two time substeps procedure. 
 
Figure 2. Schematic of a local Green’s function discrete domain 

j

h
GΩ  for a mesh of four-node 

quadrilateral elements: a) non-zero values of the Green’s function (compact support discrete 
domain); b) simplified model considering regular elements and taking advantage of the 
symmetry. 
 
Figure 3. Numerical Green’s function ( )1,h

i ig tλ α∆  for a SDOF system: a) 3D plot; b) stability 
region plot. 
 
Figure 4. Comparison of the functions ( )i ig tλ ∆  and ( )1,h

i ig tλ α∆  for different values of 1α . 
 
Figure 5. Graph for the accuracy constant ( )1c α . 
 
Figure 6. Convergence rate comparison at time 1rt =  between the explicit Euler method and the 

ExGA method with ( )1 2 2 / 4α = −  and 1 1/ 2α = .   

 
Figure 7. Sketch of the skin burn model: (a) Geometry definitions; b) 2D finite element mesh 
with 12745 bilinear elements. 
 
Figure 8. Initial temperature field, which is the solution of the steady-state bioheat equation 
before the heated plate exposure.  
 
Figure 9. Comparative results between the standard Euler scheme and the proposed ExGA 
method: a) Temperature- time histories at point ( ) ( ), 0.00008,0x y = ; b) Temperature profiles 
at positions 0y m= , 0.027y m=  and 0.03y m=  at times 294t s= and 588t s= . 
 
Figure 10. Tissue thermal damage at position 0y m=  at times 294t s= and 588t s= . 
 
Figure 11. Temperature field at two time instants using the ExGA method: a) 294t s= ; b) 

588t s= .  
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FIGURE 7 
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FIGURE 10 
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FIGURE 11 
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