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Abstract

The first finite-dimensional parameterization of a subset of the pipase ©f
the Navier—Stokes equations is presented. Travelling waves in two-donahs
plane Poiseuille flow are shown numerically to approximate maximum-gntrop
configurations. In a coordinate system moving with the phase velocity,rthe e
closed body of the flow exhibits a hyperbolic sinusoidal relationship betwes
vorticity and stream function. The phase velocity and two amplitude paranete
describe the stable manifold on the slow viscous time scale. This original pa-
rameterization provides a valuable visualization of this subset of the sipase
of the Navier—Stokes equations. These new results provide physiggthtinsto
an important intermediate stage in the instability process of plane Poiseuille flow
Parameterization, plane Poiseuille flow, maximum-entropy configurations

Introduction

The maximum-entropy configuration is very interesting addscribes a subset of
the infinite-dimensional phase space by a finite number oflgloarying parame-
ters. However, these configurations have not been repantekd physically important
wall-bounded shear flows; although, Orszag and Patera {I8&®rved that the vor-
ticity has an unknown dependence on the stream functioresetlows and Jones and
Montgomery (1994) anticipated some of our conclusions.hls article, we present
the surprising discovery that a manifold of travelling waireplane Poiseuille flow ex-
hibits the two-sign Joyce-Montgomery equation. This nogsllt not only bridges the
gap between the research taking place on ideal Euler maxieniropy configurations
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and wall-bounded shear flows, but opens alternative roatesstializing, understand-
ing and modelling such flows.

Three motivations for this study are now presented. Firstcansider the physical
significance of the maximum-entropy configuration. Almdsteal channel flows in
medical, engineering and geophysical applications arbrigetdimensions; neverthe-
less, the two-dimensional travelling waves studied in #nigcle are at least an impor-
tant intermediate stage in the initial-value problems aingl Poiseuille flow. Orszag
and Patera (1983) described the instability process i thieps:

(i) primary (linear) instability of the basic shear flow;
(if) nonlinear saturation of the primary instability and forioatof a secondary flow;
(iii) secondary instability.

The two-dimensional travelling waves (or secondary flowdlsd here act as saddles in
phase space: the flow slowly approaches the steady staggth®stable manifold (in
step (ii)) before departing rapidly in the direction of thestable manifold (in step (iii)).
In this article, the two-dimensional flow (in step (ii)) is@stn to be maximizing its
entropy subject to the constraints of slowly varying totialetic energy, total positive
and negative vorticity. This new physical insight assist®ur understanding of the
persistence of the two-dimensional quasi-steady stat&temn(ii).

Secondly, asymptotic solutions of stable travelling wassesrare in wall-bounded
shear flows. Any such solution is a valuable tool in checkiregetccuracy of the results
of computational fluid dynamics. The vorticity-stream ftion relationship derived
in this article is shown to be accurate to at least the ordaghefreciprocal of the
Reynolds number. In practice, numerical simulations pceda greater accuracy due
to the elimination of the secular viscous terms by modufagiquations.

Thirdly, two-dimensional flows play a useful role as a lathona for developing
new mathematical methods and understanding physical mesthg. Stuart (1960)
considered two-dimensional plane Poiseuille flow whenoifiticing weakly nonlin-
ear theory into fluid mechanics. The parameterization desdibelow is essential in
identifying the slowly varying parameters in the fluid floletultimate aim being to
combine this result with the emerging subject of modulagguations for strongly
nonlinear problems in fluid mechanics (see Smith, 2007, 2010

It has been established for many years that the simulatidheofwo-dimensional
high-Reynolds-number Navier-Stokes equations with piéitwoundary conditions
may relax to a quasi-steady state whose kinetic energy detayrate which is approx-
imately inversely proportional to the Reynolds number (de¢thaeust al., 1991a,b;
Montgomeryet al., 1992). The quasi-steady state was first computed for aiallpit
turbulent run at a Reynolds number above 14000 which shovetalrdy varying hy-
perbolic sinusoidal dependence between the vorticity smedus function. Joyce and
Montgomery (1973) and Montgomery and Joyce (1974) firstipted this dependence
in the context of the mean-field treatment of ideal line \e@siand it has subsequently
become known as the two-sign Joyce-Montgomery equati@) {gseexample, Chorin,
1994). An explanation of why an ideal Euler maximum-entrappfiguration should
describe the long-time Navier—Stokes simulations remaingpen problem.
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An alternative formulation of maximum-entropy configucatihas also been in-
troduced (see Robert and Sommeria, 1991, 1992; Milled., 1992) and compared
with a Navier—Stokes decay (see éhal., 2003). This formulation models vorticity
as finite-area, mutually exclusive convected regions. @imoensional high-Reynolds-
number Navier—Stokes simulations with periodic boundanditions have been inves-
tigated, but originating from initial conditions which czisted of large areas of nearly
flat vorticity patches plus random noise. Quasi-steadgstaere found which exhib-
ited a vorticity-stream function relationship consistesith this alternative maximum-
entropy configuration.

For two-dimensional plane Poiseuille flow with constanéatnwise pressure gra-
dient, linear instability of the basic flow occurs at a Reylsohumber of 5772. The
Reynolds number is defined Bs= pUch/ 1, whereh is the channel half-widthy the
dynamic viscosityp the density andl; is given byU, = Gh?/2u in which —G is the
constant pressure gradient. The existence of neutral-finitelitude travelling waves
has been demonstrated numerically for a Reynolds numbategrinan approximately
2900 and a finite band of wavenumbers (see Herbert, 1976)ulfrisical Reynolds
numbers, there are either zero or two finite-amplitude tliagewaves on this neutral
surface. If there are two, then the lower-energy branch &almhe while the higher-
energy branch is stable to periodic disturbances. Eadhlingndition within the basin
of attraction of the stable branch first evolves on the shamt/ective time scale to a
manifold of quasi-steady travelling waves and then apgresithe travelling wave on
the slow viscous time scale (see Orszag and Patera, 1981).

Gibsonet al. (2008) reported a novel technique for visualizing low-dirsienal
projections of trajectories in the infinite-dimensionahph space of the Navier—Stokes
equations. This projection method is much more widely aaplie than the approach
described in this article, but it is numerical and unsugafar use in an asymptotic
analysis.

The dimensionless initial-boundary-value problem is folaed in Section 2 and
Section 3 summarizes the computational scheme which has daepted. In Sec-
tion 4, the validity of the proposed parameterization ofgghgpace is analyzed using
the numerical evidence from the computed trajectory. Téied¢tory in the stable man-
ifold of travelling waves is then visualized using the paesenization of phase space.
In Section 5, the parameterization is shown to be unifornalydvfor all quasi-steady
travelling waves, but invalid for Reynolds numbers abowsHlopf bifurcation. Finally,
Section 6 gives a brief discussion of the results.

2 Mathematical model

The two-dimensional Navier—Stokes and continuity equetimay be written

99

_ L r2ga 0% _
5t T(@Da+0p=g[0Fa+28, 0-9=0,

in which R is the Reynolds numbefx,y)" are the spatial coordinatesis time, q is
the velocity vector(u,v)T, pis pressure ang is the unit vector along the-axis. The
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boundary conditions are

q(x,=Lt)=0, q(0,y,t) =q(2m/a,y,t),

whereaq is a constant streamwise wavenumber. An initial conditsoadopted within
the basin of attraction of the quasi-steady travelling wafse=e Orszag and Patera,
1981), withR = 4000 andor = 1.25.

3 Numerical method

The two-dimensional incompressible Navier—Stokes eqnatare discretized on a uni-
form staggered mesh using a fourth-order accurate, kiregtérgy conserving dis-
cretization of the convective terms (see Wissink, 2004) lmioed with a sixth-order-
accurate central discretization of the diffusive terms arstcond-order accurate dis-
cretization of the Poisson equation for the pressure. The integration is performed
using the second-order-accurate Adams-Bashforth metbody @ non-dimensional
time step ofdt = 0.0002. The results presented in this article are obtained on a
200x 200 point mesh.

As an initial condition, disturbances are added to the Rdlselow profile

q=(1-y?)(1,0.1sinax))+(0,V),

whereV are random disturbances with r(@§ = 0.001. After 100 time units of sim-
ulation, the velocity field is re-initialized by significayptboosting the fluctuations
q=(1-y?0)+125(q— (1—y?,0)) which forced the flow to become turbulent. After
about 1000 time units and every subsequent 100 time untsspfénvo instantaneous
flow fields (one time unit apart) are recorded.

4 Resaults

We now describe the evidence that the vorticity and streamtion obey, to a good
approximation, the local relationship

w = Asinh(B[y — Uy)), (4.2)

wherew is the vorticity, i is the stream functiorl) is the slowly varying phase ve-
locity and A and B are slowly varying amplitude parameters. The phase veldsit
evaluated by considering two snapshots of velocity sepdrby one time unit. The
two parameteré\ and B are then determined using a least-squares approximation in
the enclosed body of the flojw — Uy| < 0.15 and|y| < 0.6, where a single-valued
function exists between the vorticity and the stream fumcti

The simulation runs until the vorticity-stream functiotatéonship becomes single-
valued in the body of the flow; this is designateg 0 and the first recording of data
takes place. Fig. 1 shows two scatter plots of the computetified stream function
Y — Uy versus the computed vorticity, taken pointwise over space at time 2500.
Fig. 1(a) corresponds fg — Uy| < 0.15 and]y| < 0.6 and Fig. 1(b) tap —Uy > 0.15



4 RESULTS 5

and|y| < 0.6, it being clear that the relationship is not single-valire&ig. 1(b). The
solid line is the least-squares fit to (4.1) using the datenffgy — Uy| < 0.15. Fig. 2
is the associated contour plot of the modified stream functibich illustrates that
the enclosed body of the floviif — Uy| < 0.15 and|y| < 0.6) is between the counter-
rotating eddies. The cross correlation is defined to be

Clap — (@ @)b-1))
[{(a—(a))2){(b— (b))2)]*/2

where the angle brackets denote a spatial average over thediahe flow. Ta-

ble 1 shows computed values of the cross correlat@og sinh(B[y — Uy])] at dif-

ferent times; a cross correlation of one would indicate depeproportionality. The

cross correlation shows that vorticity-stream functiolatienship is extremely accu-

rate throughout the simulation.

Every one hundred time units, the least-squares fit is refdestd the results are
recorded. The three parametéysB andU define the vorticity-stream function rela-
tionship. Fig. 3 illustrates a trajectory in the stable nfigidiof travelling waves in this
three-dimensional parameter space; the manifold spoaarts its steady state. When
t > 2500, Fig. 4(a) shows th&t~ 4.67 and the approach to the steady state is projected
onto a two-dimensional parameter space. The evolutighaddU fort > 0 is shown
in Fig. 4(b) and 5. The parameterization is an extremely alipg visualization of the
phase space of the Navier—Stokes equations.

The accuracy of the results are assessed by performing eefjridment study com-
prising two further simulations employing 150150 and 3006 300 point meshes. The
approximations to the travelling wave of the Navier—Sto&gsations obtained on the
three meshes are found to be in very good agreement: theesbarssh (not illustrated
here) approximation converged to amplitude®\ef 0.860 andB = 4.70 and a phase
velocity ofU = 0.3344, while the 20& 200 and 30 300 point mesh approximations
converged tdA,B,U) = (0.863 4.67,0.3348 and (A,B,U) = (0.8654.65,0.3352),
respectively (see Fig. 5).

Jones and Montgomery (1994) obtained a travelling waR-at#000 andx = 1.25
which is consistent with the simulations in this article.eytalso reported a travelling
wave atR= 15000 andx = 1.5. In this second case, the body of the flow corresponds to
|y —Uy| < 0.05 and the parameterization is given(®8yB,U ) = (0.453 14.6,0.2315.

The hyperbolic sinusoidal relationship is derived by assgra statistical-mechanical
behaviour for the system which only conserves the totaltidremergy,

4.2)

1
> /Q q- o dxdy,
and the total positive and negative vorticity,
/ w™ dxdy.
Q

In this article,Q is the two-dimensional region defined py —Uy| < 0.15 and|y| <
0.6. We havew = w" — w~, wherew™ (w™) is the positive (negative) vorticity. These
integrals are evaluated using one-point Gaussian quadriuthe 200x 200 simula-
tion and their values are shown in Fig. 6. On this trajecttitgse three integrals are
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not conserved, but vary slowly on a time scale which is apprately proportional to

the Reynolds number. The total positive and negative \tyrtéze initially not equal,

but their difference diminishes. It would appear that a lasaximum of entropy has
been reached at each time on this trajectory correspondiriget constraints of the
slowly varying total kinetic energy, the total positive amehative vorticity. The stable
manifold may be considered to be a sequence of quasi-steady}ling waves.

5 Asymptotic analysis

5.1 Introduction

We have confirmed numerically that quasi-steady travellrages exhibit a statistical-
mechanical behaviour of an information-theoretic kind maving frame of reference.
This behaviour is consistent with the leading-order problen the short time scale
being the Euler equations, where the model is singularlyupeed ine = 1/R < 1.
At larger Reynolds number, the travelling wave becomesalstand undergoes a
supercritical bifurcation into a limit cycle. At still lasg Reynolds number, the solu-
tion bifurcates again into a two-frequency torus (seetfiez, 1990). In fact, Jiemez
(1990) adopted constant volume flux instead of the constasspre gradient used in
this article. It remains to be established whether or nobthay of the flow for these
cycles and tori exhibit maximum-entropy configurationsraRgeterization would be
even more valuable in understanding the phase space araliziisg the different at-
tractors of the Navier—Stokes equations in these casesidmcontext, it may appear
reasonable to investigate at higher Reynolds nhumber abevddpf bifurcation; how-
ever, the following asymptotic analysis will demonstrédtattthis is incorrect.

5.2 Multi-phased waves

After each bifurcation, the solution acquires a new freqyeand phase, therefore
multi-phased waves must be studied. We consider the entclosgdy of the flow in
which the leading-order problem is inviscid. We addptast phased;) defined by
06j)/9x = k(j) anddgj) /ot = —oy;(t) and a slow time-scale= &t, wherek ;) is a
constant streamwise wavenumber ang is a local frequency. We introduce expan-
sions of the form

u ~ Uo(B1),02),- 0NV, T) +€Ur(81), 012); - -, Oy, Y E),
(61):0(2)- -+ Ony, Y5 D) +€va(6(3), B12) - - - By, Vi ),

(611),012)- - O(ny, Y5 D) +€P1(8(2), B2), - -, By > Vi ),
w ~ (641,02, -, 0n),YT) +Ew(641),62),...,0n), 1),

ase — 0. At leading order, we obtain

ot S k2P g (5.1a)
o+ 2,0 ge, =© '
J:
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Cvo+ %" —o, (5.1b)
%k-ﬂ—f—%—o (5.1c)
& Voey oy T '
with the differential operator
N 17} 7}

L= (KjUo— 0(j)) =n— + Vo=
(i) () 26 ay
We take the curl of (5.1a)-(5.1b) to obtainy = 0 where the leading-order vorticity
wy is given by
N 0V0 an
w=S kijyz=———.
,Zl Vag; oy

A stream functionp is defined by the equations

oP N oP
=22 Vo= Kjyame,
ay ,Zl Va6,

so that (5.1c) is satisfied and the vorticity equation mayebeitten as

N d day N o dwy
JZf(j)g,(‘l’—UmY)W(_)—;lk<j>ﬁm(4’—u<i>y>7y—0, (5.2)

whereU;) = a(;) /kj).
In the caseN = 1, we have quasi-steady travelling waves. The first integfréd.2)
is a functional of the form

wo =V (P —-Uuy:Al),B(),...), (5.3)

whereA(f),B(f),... are slowly varying parameters determined by modulatioraequ
tions at next order. This functional was anticipated by @gsand Patera (1983). In a
coordinate system moving with the phase velocity and onhibet $ime scale, (5.3) is
independent of Reynolds number and aspect ratio. Theréf@éunctional holds for
one Reynolds number and aspect ratio, then it holds for atlbdoations of Reynolds
number and aspect ratio below the Hopf bifurcation. Herlepairameterization (4.1)
is uniformly valid for all quasi-steady travelling waves.

In the caséN = 2, we have limit cycles. A first integral of the form (5.3) omyists
if the problem is degenerate. Thus, the parameterizatidr) {@ invalid for Reynolds
numbers above the Hopf bifurcation. Similar comments afipiyN > 2.

6 Conclusions

The parameters for quasi-steady travelling waves in plarigeRille flow arise from
three sources, whetl® > 1 and the viscous terms are negligible at leading order in
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an enclosed body of the flow. The first source correspondsettottal frequency (or,
equivalently, the phase velocity). The first integral of Ehéer equations given by (4.1)
requires two further parameters. The stream function is tietermined by solving the
sinh-Poisson equation, which would typically require dimite number of additional
parameters. We do not seek an exact representation of garstunction, because
this solution of the Navier—Stokes equations is also a mamirentropy configuration.
The three parametefs B andU are sufficient to characterize the nature of the solution
because (4.1) defines the maximum-entropy configuration.

There are four principal differences between the two-disi@ral decay with pe-
riodic boundary conditions and the one reported here: é)pthase velocity is an ad-
ditional parameter; (ii) we approach a travelling wave witin-zero kinetic energy;
(iii) there is no possibility of an alternative maximum-ggy configuration (see Robert
and Sommeria, 1991, 1992; Milletal., 1992; Yinet al., 2003) as the hyperbolic sinu-
soidal relationship is a property of our travelling waved &iv) the total kinetic energy,
positive and negative vorticity are all slowly varying inntrast to the spatially peri-
odic domain where the vorticities were both exactly conseéiigee Montgomerst al.,
1992).

The stable steady state described in this article correlspimna generalized saddle
for the three-dimensional problem with periodic boundawpditions in the third di-
mension (see Orszag and Patera, 1983). Our two-dimensiEsats have established
that this saddle and its two-dimensional manifold are patanzed by the two-sign
Joyce-Montgomery equation. The intriguing possibilitisas that the unstable steady
states in other wall-bounded shear flows (for which a singltiaity and stream func-
tion may be defined) may also possess maximum-entropy coafigns. The exam-
ination of the time evolution of kinetic energy, positivedanegative vorticity in the
inviscid body of these flows may be employed to flag up the asetwaes of these con-
figurations.

In conclusion, ideal Euler maximum-entropy configuratibase been numerically
shown to exist in plane Poiseuille flow. It proved necessadopt a coordinate sys-
tem moving with the slowly varying phase velocity in orderréveal the hyperbolic
sinusoidal relationship between the vorticity and streancfion. The resulting slowly
varying parameters and phase velocity described the stadigfold on the viscous
time scale. This finite-dimensional parameterization hatsbeen previously discov-
ered in the description of travelling waves in wall-boundéeéar flows.
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Selected times  Spatially averaged cross correlation

t Claw, sinh(B[y — Uy))]
0 0.999991
100 0.999995
200 0.999997
300 0.999998
400 0.999999
1000 1.000000
2500 0.999999
4000 0.999999
6200 0.999999

Table 1: The time evolution of the spatially averaged crassetation (4.2).
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Figure 1: Scatter plots of the modified stream functipr Uy versus the vorticityw
at timet = 2500 for @) |¢ —Uy| < 0.15 and|y| < 0.6 and ) ¢ —Uy > 0.15 and
ly| < 0.6. The curve drawn through the plotted pointgis= Asinh(B[y —UYy]).
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Figure 2: Three-dimensional contour plot of the modifiedaitn functiony —Uy as a
function ofx andy att = 2500. The enclosed body of the flojy(— Uy| < 0.15 and
ly| < 0.6) is between the counter-rotating eddies.

Figure 3: A trajectory in the stable manifold of travellingives visualized using the
parameterization of phase space. The steady state condssfwba generalized focus.
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Figure 4: @) The slow variation oB with timet and ) the projection in theA, U)-
plane.
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Figure 5. An enlargement of the projection in thie U)-plane near the steady state.
The two simulations have different initial conditions andshes.
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Figure 6: The slow variation of total kinetic energly q-q dxdy/2, total positive and
negative vorticity [, w* dxdy with timet for the 200x 200 mesh.



