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Abstract

The first finite-dimensional parameterization of a subset of the phase space of
the Navier–Stokes equations is presented. Travelling waves in two-dimensional
plane Poiseuille flow are shown numerically to approximate maximum-entropy
configurations. In a coordinate system moving with the phase velocity, the en-
closed body of the flow exhibits a hyperbolic sinusoidal relationship between the
vorticity and stream function. The phase velocity and two amplitude parameters
describe the stable manifold on the slow viscous time scale. This original pa-
rameterization provides a valuable visualization of this subset of the phasespace
of the Navier–Stokes equations. These new results provide physical insight into
an important intermediate stage in the instability process of plane Poiseuille flow.
Parameterization, plane Poiseuille flow, maximum-entropy configurations

1 Introduction

The maximum-entropy configuration is very interesting as itdescribes a subset of
the infinite-dimensional phase space by a finite number of slowly varying parame-
ters. However, these configurations have not been reported for the physically important
wall-bounded shear flows; although, Orszag and Patera (1983) observed that the vor-
ticity has an unknown dependence on the stream function in these flows and Jones and
Montgomery (1994) anticipated some of our conclusions. In this article, we present
the surprising discovery that a manifold of travelling waves in plane Poiseuille flow ex-
hibits the two-sign Joyce-Montgomery equation. This novelresult not only bridges the
gap between the research taking place on ideal Euler maximum-entropy configurations
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and wall-bounded shear flows, but opens alternative routes to visualizing, understand-
ing and modelling such flows.

Three motivations for this study are now presented. First, we consider the physical
significance of the maximum-entropy configuration. Almost all real channel flows in
medical, engineering and geophysical applications are in three dimensions; neverthe-
less, the two-dimensional travelling waves studied in thisarticle are at least an impor-
tant intermediate stage in the initial-value problems of plane Poiseuille flow. Orszag
and Patera (1983) described the instability process in three steps:

(i) primary (linear) instability of the basic shear flow;

(ii) nonlinear saturation of the primary instability and formation of a secondary flow;

(iii) secondary instability.

The two-dimensional travelling waves (or secondary flow) studied here act as saddles in
phase space: the flow slowly approaches the steady state along the stable manifold (in
step (ii)) before departing rapidly in the direction of the unstable manifold (in step (iii)).
In this article, the two-dimensional flow (in step (ii)) is shown to be maximizing its
entropy subject to the constraints of slowly varying total kinetic energy, total positive
and negative vorticity. This new physical insight assists in our understanding of the
persistence of the two-dimensional quasi-steady states instep (ii).

Secondly, asymptotic solutions of stable travelling wavesare rare in wall-bounded
shear flows. Any such solution is a valuable tool in checking the accuracy of the results
of computational fluid dynamics. The vorticity-stream function relationship derived
in this article is shown to be accurate to at least the order ofthe reciprocal of the
Reynolds number. In practice, numerical simulations produce a greater accuracy due
to the elimination of the secular viscous terms by modulation equations.

Thirdly, two-dimensional flows play a useful role as a laboratory for developing
new mathematical methods and understanding physical mechanisms. Stuart (1960)
considered two-dimensional plane Poiseuille flow when introducing weakly nonlin-
ear theory into fluid mechanics. The parameterization described below is essential in
identifying the slowly varying parameters in the fluid flow, the ultimate aim being to
combine this result with the emerging subject of modulationequations for strongly
nonlinear problems in fluid mechanics (see Smith, 2007, 2010).

It has been established for many years that the simulation ofthe two-dimensional
high-Reynolds-number Navier–Stokes equations with periodic boundary conditions
may relax to a quasi-steady state whose kinetic energy decays at a rate which is approx-
imately inversely proportional to the Reynolds number (seeMatthaeuset al., 1991a,b;
Montgomeryet al., 1992). The quasi-steady state was first computed for an initially
turbulent run at a Reynolds number above 14000 which showed aslowly varying hy-
perbolic sinusoidal dependence between the vorticity and stream function. Joyce and
Montgomery (1973) and Montgomery and Joyce (1974) first predicted this dependence
in the context of the mean-field treatment of ideal line vortices and it has subsequently
become known as the two-sign Joyce-Montgomery equation (see, for example, Chorin,
1994). An explanation of why an ideal Euler maximum-entropyconfiguration should
describe the long-time Navier–Stokes simulations remainsan open problem.
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An alternative formulation of maximum-entropy configuration has also been in-
troduced (see Robert and Sommeria, 1991, 1992; Milleret al., 1992) and compared
with a Navier–Stokes decay (see Yinet al., 2003). This formulation models vorticity
as finite-area, mutually exclusive convected regions. Two-dimensional high-Reynolds-
number Navier–Stokes simulations with periodic boundary conditions have been inves-
tigated, but originating from initial conditions which consisted of large areas of nearly
flat vorticity patches plus random noise. Quasi-steady states were found which exhib-
ited a vorticity-stream function relationship consistentwith this alternative maximum-
entropy configuration.

For two-dimensional plane Poiseuille flow with constant streamwise pressure gra-
dient, linear instability of the basic flow occurs at a Reynolds number of 5772. The
Reynolds number is defined asR = ρUch/µ , whereh is the channel half-width,µ the
dynamic viscosity,ρ the density andUc is given byUc = Gh2/2µ in which−G is the
constant pressure gradient. The existence of neutral finite-amplitude travelling waves
has been demonstrated numerically for a Reynolds number greater than approximately
2900 and a finite band of wavenumbers (see Herbert, 1976). At subcritical Reynolds
numbers, there are either zero or two finite-amplitude travelling waves on this neutral
surface. If there are two, then the lower-energy branch is unstable while the higher-
energy branch is stable to periodic disturbances. Each initial condition within the basin
of attraction of the stable branch first evolves on the short convective time scale to a
manifold of quasi-steady travelling waves and then approaches the travelling wave on
the slow viscous time scale (see Orszag and Patera, 1981).

Gibsonet al. (2008) reported a novel technique for visualizing low-dimensional
projections of trajectories in the infinite-dimensional phase space of the Navier–Stokes
equations. This projection method is much more widely applicable than the approach
described in this article, but it is numerical and unsuitable for use in an asymptotic
analysis.

The dimensionless initial-boundary-value problem is formulated in Section 2 and
Section 3 summarizes the computational scheme which has been adopted. In Sec-
tion 4, the validity of the proposed parameterization of phase space is analyzed using
the numerical evidence from the computed trajectory. The trajectory in the stable man-
ifold of travelling waves is then visualized using the parameterization of phase space.
In Section 5, the parameterization is shown to be uniformly valid for all quasi-steady
travelling waves, but invalid for Reynolds numbers above the Hopf bifurcation. Finally,
Section 6 gives a brief discussion of the results.

2 Mathematical model

The two-dimensional Navier–Stokes and continuity equations may be written

∂q
∂ t

+(q ·∇)q+∇p =
1
R

[

∇2q+2x̂
]

, ∇ ·q = 0,

in which R is the Reynolds number,(x,y)T are the spatial coordinates,t is time, q is
the velocity vector(u,v)T , p is pressure and ˆx is the unit vector along thex-axis. The
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boundary conditions are

q(x,±1, t) = 0, q(0,y, t) = q(2π/α,y, t),

whereα is a constant streamwise wavenumber. An initial condition is adopted within
the basin of attraction of the quasi-steady travelling waves (see Orszag and Patera,
1981), withR = 4000 andα = 1.25.

3 Numerical method

The two-dimensional incompressible Navier–Stokes equations are discretized on a uni-
form staggered mesh using a fourth-order accurate, kineticenergy conserving dis-
cretization of the convective terms (see Wissink, 2004) combined with a sixth-order-
accurate central discretization of the diffusive terms anda second-order accurate dis-
cretization of the Poisson equation for the pressure. The time integration is performed
using the second-order-accurate Adams-Bashforth method using a non-dimensional
time step ofδ t = 0.0002. The results presented in this article are obtained on a
200×200 point mesh.

As an initial condition, disturbances are added to the Poiseuille flow profile

q = (1− y2)(1,0.1 sin(α x))+(0,v′),

wherev′ are random disturbances with rms(v′) = 0.001. After 100 time units of sim-
ulation, the velocity field is re-initialized by significantly boosting the fluctuations
q = (1−y2,0)+12.5(q− (1−y2,0)) which forced the flow to become turbulent. After
about 1000 time units and every subsequent 100 time units, sets of two instantaneous
flow fields (one time unit apart) are recorded.

4 Results

We now describe the evidence that the vorticity and stream function obey, to a good
approximation, the local relationship

ω = Asinh(B[ψ −Uy]), (4.1)

whereω is the vorticity,ψ is the stream function,U is the slowly varying phase ve-
locity andA andB are slowly varying amplitude parameters. The phase velocity is
evaluated by considering two snapshots of velocity separated by one time unit. The
two parametersA andB are then determined using a least-squares approximation in
the enclosed body of the flow|ψ −Uy| < 0.15 and|y| < 0.6, where a single-valued
function exists between the vorticity and the stream function.

The simulation runs until the vorticity-stream function relationship becomes single-
valued in the body of the flow; this is designatedt = 0 and the first recording of data
takes place. Fig. 1 shows two scatter plots of the computed modified stream function
ψ −Uy versus the computed vorticityω, taken pointwise over space at timet = 2500.
Fig. 1(a) corresponds to|ψ −Uy|< 0.15 and|y|< 0.6 and Fig. 1(b) toψ −Uy > 0.15
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and|y| < 0.6, it being clear that the relationship is not single-valuedin Fig. 1(b). The
solid line is the least-squares fit to (4.1) using the data from |ψ −Uy| < 0.15. Fig. 2
is the associated contour plot of the modified stream function which illustrates that
the enclosed body of the flow (|ψ −Uy|< 0.15 and|y|< 0.6) is between the counter-
rotating eddies. The cross correlation is defined to be

C[a,b] =
〈(a−〈a〉)(b−〈b〉)〉

[〈(a−〈a〉)2〉〈(b−〈b〉)2〉]1/2
, (4.2)

where the angle brackets denote a spatial average over the body of the flow. Ta-
ble 1 shows computed values of the cross correlationsC[ω,sinh(B[ψ −Uy])] at dif-
ferent times; a cross correlation of one would indicate a perfect proportionality. The
cross correlation shows that vorticity-stream function relationship is extremely accu-
rate throughout the simulation.

Every one hundred time units, the least-squares fit is repeated and the results are
recorded. The three parametersA, B andU define the vorticity-stream function rela-
tionship. Fig. 3 illustrates a trajectory in the stable manifold of travelling waves in this
three-dimensional parameter space; the manifold spirals towards its steady state. When
t ≥ 2500, Fig. 4(a) shows thatB≈ 4.67 and the approach to the steady state is projected
onto a two-dimensional parameter space. The evolution ofA andU for t ≥ 0 is shown
in Fig. 4(b) and 5. The parameterization is an extremely appealing visualization of the
phase space of the Navier–Stokes equations.

The accuracy of the results are assessed by performing a gridrefinement study com-
prising two further simulations employing 150×150 and 300×300 point meshes. The
approximations to the travelling wave of the Navier–Stokesequations obtained on the
three meshes are found to be in very good agreement: the coarsest mesh (not illustrated
here) approximation converged to amplitudes ofA = 0.860 andB = 4.70 and a phase
velocity ofU = 0.3344, while the 200×200 and 300×300 point mesh approximations
converged to(A,B,U) = (0.863,4.67,0.3348) and (A,B,U) = (0.865,4.65,0.3352),
respectively (see Fig. 5).

Jones and Montgomery (1994) obtained a travelling wave atR= 4000 andα = 1.25
which is consistent with the simulations in this article. They also reported a travelling
wave atR= 15000 andα = 1.5. In this second case, the body of the flow corresponds to
|ψ −Uy|< 0.05 and the parameterization is given by(A,B,U) = (0.453,14.6,0.2315).

The hyperbolic sinusoidal relationship is derived by assuming a statistical-mechanical
behaviour for the system which only conserves the total kinetic energy,

1
2

∫

Ω
q ·q dxdy,

and the total positive and negative vorticity,
∫

Ω
ω± dxdy.

In this article,Ω is the two-dimensional region defined by|ψ −Uy| < 0.15 and|y| <
0.6. We haveω = ω+−ω−, whereω+ (ω−) is the positive (negative) vorticity. These
integrals are evaluated using one-point Gaussian quadrature for the 200×200 simula-
tion and their values are shown in Fig. 6. On this trajectory,these three integrals are
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not conserved, but vary slowly on a time scale which is approximately proportional to
the Reynolds number. The total positive and negative vorticity are initially not equal,
but their difference diminishes. It would appear that a local maximum of entropy has
been reached at each time on this trajectory corresponding to the constraints of the
slowly varying total kinetic energy, the total positive andnegative vorticity. The stable
manifold may be considered to be a sequence of quasi-steady travelling waves.

5 Asymptotic analysis

5.1 Introduction

We have confirmed numerically that quasi-steady travellingwaves exhibit a statistical-
mechanical behaviour of an information-theoretic kind in amoving frame of reference.
This behaviour is consistent with the leading-order problem on the short time scale
being the Euler equations, where the model is singularly perturbed inε = 1/R ≪ 1.
At larger Reynolds number, the travelling wave becomes unstable and undergoes a
supercritical bifurcation into a limit cycle. At still larger Reynolds number, the solu-
tion bifurcates again into a two-frequency torus (see Jiménez, 1990). In fact, Jiḿenez
(1990) adopted constant volume flux instead of the constant pressure gradient used in
this article. It remains to be established whether or not thebody of the flow for these
cycles and tori exhibit maximum-entropy configurations. Parameterization would be
even more valuable in understanding the phase space and visualizing the different at-
tractors of the Navier–Stokes equations in these cases. In this context, it may appear
reasonable to investigate at higher Reynolds number above the Hopf bifurcation; how-
ever, the following asymptotic analysis will demonstrate that this is incorrect.

5.2 Multi-phased waves

After each bifurcation, the solution acquires a new frequency and phase, therefore
multi-phased waves must be studied. We consider the enclosed body of the flow in
which the leading-order problem is inviscid. We adoptN fast phasesθ( j) defined by
∂θ( j)/∂x = k( j) and∂θ( j)/∂ t = −σ( j)(t̃) and a slow time-scalẽt = εt, wherek( j) is a
constant streamwise wavenumber andσ( j) is a local frequency. We introduce expan-
sions of the form

u ∼ u0(θ(1),θ(2), . . . ,θ(N),y, t̃)+ εu1(θ(1),θ(2), . . . ,θ(N),y, t̃),

v ∼ v0(θ(1),θ(2), . . . ,θ(N),y, t̃)+ εv1(θ(1),θ(2), . . . ,θ(N),y, t̃),

p ∼ p0(θ(1),θ(2), . . . ,θ(N),y, t̃)+ ε p1(θ(1),θ(2), . . . ,θ(N),y, t̃),

ω ∼ ω0(θ(1),θ(2), . . . ,θ(N),y, t̃)+ εω1(θ(1),θ(2), . . . ,θ(N),y, t̃),

asε → 0. At leading order, we obtain

L̄u0+
N

∑
j=1

k( j)
∂ p0

∂θ( j)
= 0, (5.1a)
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L̄v0+
∂ p0

∂y
= 0, (5.1b)

N

∑
j=1

k( j)
∂u0

∂θ( j)
+

∂v0

∂y
= 0, (5.1c)

with the differential operator

L̄ =
N

∑
j=1

(k( j)u0−σ( j))
∂

∂θ( j)
+ v0

∂
∂y

.

We take the curl of (5.1a)-(5.1b) to obtain̄Lω0 = 0 where the leading-order vorticity
ω0 is given by

ω0 =
N

∑
j=1

k( j)
∂v0

∂θ( j)
−

∂u0

∂y
.

A stream functionψ̄ is defined by the equations

u0 =
∂ψ̄
∂y

, v0 =−
N

∑
j=1

k( j)
∂ψ̄

∂θ( j)
,

so that (5.1c) is satisfied and the vorticity equation may be rewritten as

N

∑
j=1

k( j)
∂
∂y

(ψ̄ −U( j)y)
∂ω0

∂θ( j)
−

N

∑
j=1

k( j)
∂

∂θ( j)
(ψ̄ −U( j)y)

∂ω0

∂y
= 0, (5.2)

whereU( j) = σ( j)/k( j).
In the caseN = 1, we have quasi-steady travelling waves. The first integralof (5.2)

is a functional of the form

ω0 =V (ψ̄ −U(1)y;A(t̃),B(t̃), . . .), (5.3)

whereA(t̃),B(t̃), . . . are slowly varying parameters determined by modulation equa-
tions at next order. This functional was anticipated by Orszag and Patera (1983). In a
coordinate system moving with the phase velocity and on the short time scale, (5.3) is
independent of Reynolds number and aspect ratio. Therefore, if a functional holds for
one Reynolds number and aspect ratio, then it holds for all combinations of Reynolds
number and aspect ratio below the Hopf bifurcation. Hence, the parameterization (4.1)
is uniformly valid for all quasi-steady travelling waves.

In the caseN = 2, we have limit cycles. A first integral of the form (5.3) onlyexists
if the problem is degenerate. Thus, the parameterization (4.1) is invalid for Reynolds
numbers above the Hopf bifurcation. Similar comments applyfor N > 2.

6 Conclusions

The parameters for quasi-steady travelling waves in plane Poiseuille flow arise from
three sources, whereR ≫ 1 and the viscous terms are negligible at leading order in
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an enclosed body of the flow. The first source corresponds to the local frequency (or,
equivalently, the phase velocity). The first integral of theEuler equations given by (4.1)
requires two further parameters. The stream function is then determined by solving the
sinh-Poisson equation, which would typically require an infinite number of additional
parameters. We do not seek an exact representation of the stream function, because
this solution of the Navier–Stokes equations is also a maximum-entropy configuration.
The three parametersA, B andU are sufficient to characterize the nature of the solution
because (4.1) defines the maximum-entropy configuration.

There are four principal differences between the two-dimensional decay with pe-
riodic boundary conditions and the one reported here: (i) the phase velocity is an ad-
ditional parameter; (ii) we approach a travelling wave withnon-zero kinetic energy;
(iii) there is no possibility of an alternative maximum-entropy configuration (see Robert
and Sommeria, 1991, 1992; Milleret al., 1992; Yinet al., 2003) as the hyperbolic sinu-
soidal relationship is a property of our travelling wave; and (iv) the total kinetic energy,
positive and negative vorticity are all slowly varying in contrast to the spatially peri-
odic domain where the vorticities were both exactly conserved (see Montgomeryet al.,
1992).

The stable steady state described in this article corresponds to a generalized saddle
for the three-dimensional problem with periodic boundary conditions in the third di-
mension (see Orszag and Patera, 1983). Our two-dimensionalresults have established
that this saddle and its two-dimensional manifold are parameterized by the two-sign
Joyce-Montgomery equation. The intriguing possibility arises that the unstable steady
states in other wall-bounded shear flows (for which a single vorticity and stream func-
tion may be defined) may also possess maximum-entropy configurations. The exam-
ination of the time evolution of kinetic energy, positive and negative vorticity in the
inviscid body of these flows may be employed to flag up the occurrences of these con-
figurations.

In conclusion, ideal Euler maximum-entropy configurationshave been numerically
shown to exist in plane Poiseuille flow. It proved necessary to adopt a coordinate sys-
tem moving with the slowly varying phase velocity in order toreveal the hyperbolic
sinusoidal relationship between the vorticity and stream function. The resulting slowly
varying parameters and phase velocity described the stablemanifold on the viscous
time scale. This finite-dimensional parameterization has not been previously discov-
ered in the description of travelling waves in wall-boundedshear flows.
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Selected times Spatially averaged cross correlation
t C[ω,sinh(B[ψ −Uy])]

0 0.999991
100 0.999995
200 0.999997
300 0.999998
400 0.999999
1000 1.000000
2500 0.999999
4000 0.999999
6200 0.999999

Table 1: The time evolution of the spatially averaged cross correlation (4.2).
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Figure 1: Scatter plots of the modified stream functionψ −Uy versus the vorticityω
at time t = 2500 for (a) |ψ −Uy| < 0.15 and|y| < 0.6 and (b) ψ −Uy > 0.15 and
|y|< 0.6. The curve drawn through the plotted points isω = Asinh(B[ψ −Uy]).
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Figure 2: Three-dimensional contour plot of the modified stream functionψ −Uy as a
function ofx andy at t = 2500. The enclosed body of the flow (|ψ −Uy| < 0.15 and
|y|< 0.6) is between the counter-rotating eddies.
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Figure 3: A trajectory in the stable manifold of travelling waves visualized using the
parameterization of phase space. The steady state corresponds to a generalized focus.
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plane.

0.3336

0.3338

0.334

0.3342

0.3344

0.3346

0.3348

0.335

0.3352

0.3354

0.86 0.861 0.862 0.863 0.864 0.865 0.866 0.867

200x200 mesh
300x300 mesh

A

U

Figure 5: An enlargement of the projection in the (A, U)-plane near the steady state.
The two simulations have different initial conditions and meshes.
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Figure 6: The slow variation of total kinetic energy
∫

Ω q ·q dxdy/2, total positive and
negative vorticity

∫

Ω ω± dxdy with time t for the 200×200 mesh.


