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Abstract 
This pa per suggests a simple valuation method based on Chebyshev approximation at 
Chebyshev nodes to value American put options. It is similar to the approach taken in 
Sullivan (2000), where the option`s continuation region function is estimated by using a 
Chebyshev polynomial. However, in contrast to Sullivan (2000), the functional is fitted by 
using Chebyshev nodes. The suggested method is flexible, easy to program and efficient, 
and can be extended to price other types of derivative instruments. It is also applicable in 
other fields, providing efficient solutions to complex systems of partial differential 
equations. The paper also describes an alternative method based on dynamic 
programming and backward induction to approximate the option value in each time 
period. 
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1. Introduction 
 
American options are difficult to price because they can be exercised at any time during 

their lifetime, and therefore closed-form solutions for their values cannot be obtained. 

The binomial method introduced by Cox, Ross, and Rubinstein (1979) is still the most 

widely used valuation model, because it is easy to implement and produces reasonably 

accurate results. However, it has a major drawback, namely the fact that a high degree of 

accuracy can only be achieved with a high number of time steps, which reduces the 

computational speed and results in considerable efficiency costs. Furthermore, it cannot 

be used to price certain derivatives such as, for example, options on arithmetic average1. 

 Various alternative methods have been suggested to enhance the computational 

efficiency of American option pricing in comparison to the binomial model and 

overcome its drawbacks. For instance, Breen (1991) proposes the accelerated binomial 

model, and shows that a satisfactory degree of accuracy can be achieved using only 150 

steps. However, his model has the limitation that it is based on the extrapolation method 

of Geske and Johnson (1984), which may give rise to non-uniform convergence.  Ju and 

Zhong (1999) derive an approximation formula to price American options along the lines 

of Barone-Adesi and Whaley (1987). They show that their approach produces accurate 

prices and is computationally efficient, though it has the drawback of not achieving 

convergence. More recently, Sullivan (2000) puts forward a method combining Gaussian 

quadrature and Chebyshev polynomial approximation to achieve the best combination of 

accuracy and computational efficiency in pricing options. He presents numerical 

evidence that this technique delivers a price that is as accurate as that generated by finite 

difference methods, and, on average, even faster. Finally, Longstaff and Schwartz (2001) 

suggest to combine Least Squares with Monte Carlo techniques to price American 

options. Their method is very easy to programme and can be extended to price American-

Bermuda-Asian options and many others. However, the computational time it requires for 

achieving an accurate price is considerable. Moreover, very little is known (apart from 
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 Also, in a number of cases it is very difficult if not impossible to use the binomial model to price options 
on geometric average, or options written on more than three assets. The same criticism applies to finite 
difference methods. 
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their Proposition 1) about the asymptotic properties and convergence of the proposed 

Least Square estimator.  

The method suggested in this paper is similar to Sullivan’s (2000) in three 

respects, namely: our model is based on the risk-neutral pricing relation used by the 

binomial method; we consider a continuous (rather than a discrete) process generating 

stock prices; we keep the log-normal density instead of replacing it with the binomial 

one. However, in contrast to Sullivan (2000), we fit the functional at Chebyshev nodes2. 

The advantage of our approach is its flexibility, and the fact that it is easily 

implementable also for pricing options written on multiple assets or other kinds of 

options (i.e. geometric or arithmetic average options), similarly to the Longstaff and 

Schwartz (2001) method. In addition, it is applicable in other fields, providing efficient 

solutions to complex systems of partial differential equations. These features make our 

approach very attractive. One reason why polynomial approximations of this type are 

underutilised (in comparison to direct ad hoc approximation methods) by applied 

researchers might be lack of familiarity. Therefore, in Section 3, we provide some 

guidance on how to use them to solve systems of differential equations. We also describe 

an alternative method based on dynamic programming to approximate the value of the 

option in each time period. 

 The layout of the paper is the following. Section 2 describes the option pricing 

valuation model. Section 3 outlines the approximation method we advocate to obtain the 

solution to the option pricing problem. Section 4 evaluates its empirical performance by 

comparing it to the benchmark and other methods in terms of both accuracy and 

computational efficiency. Section 5 summarises the main findings of this study and offers 

some concluding remarks. 
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 Tzavalis and Wang (2003) use a similar approach based on Chebyshev approximation to approximate the 
optimal exercise boundary in the context of a stochastic volatility model. Their method also relies on 
extrapolation procedures.
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2. The Valuation Model  
 
American options have the feature of allowing the holder to exercise them before the 

expiration date, which gives rise to serious difficulties for valuation models. As already 

mentioned, at present the Cox, Ross, and Rubinstein (1979) binomial model for 

approximating the option value function is still seen as the benchmark technique against 

which alternative approaches should be evaluated. In this section we propose a simple 

and flexible model to evaluate American put options that is similar to the one used in the 

analysis of investment under uncertainty (see Dixit, 1992 and Pindyck, 1991). 

Suppose that the price of a non-dividend-paying asset in period 0 is , and 

denote with 

0P

K  the strike price of a put option written on that asset. Assume that from 

time 1 onwards the price of the asset is  with probability q , and  

with probability

)( 101 tuPP →

)(/ 101 tuPP → q−1 , where )(exp tu ∆= σ , )2

2
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22
1 σ

σ
−
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+= rtq , r is 

the annualised interest rate and σ the annualised volatility of the asset price. The 

following is also assumed: 

Assumption 1: The option can only be exercised today or never. 

Under Assumption 1, and if we denote with the present value from exercising 

the option, then: 

0V
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Therefore if  the option is in the money, and if exercised it generates the 

following  payoff: 

KV <0

 )0,max( 00 VK −=π .     (1) 
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Assumption 2: The holder does not exercise the option but instead waits until the next 

period when new information becomes available. 

Assumption 3: Given the above probability structure of the model, the next period’s asset 

price  will stay the same in periods 2,3… 1P

Under assumptions (2)-(3), discounting back the income stream we have: 
 
 

rrPV /)1(11 +=  
 
For each movement in the price P , the holder will exercise the option if , with the 

following payoff: 

KV <1

 
)0,max( 11 VKF −=       (2) 

 
 
Combining equations (1) and (2) the net present value, in period 0, from exercising the 
option is: 
 
  

))(
1
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r
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Assumption 4: In any period t, the holder observes the state of the system , and takes 

an action , earning a reward . 

ts

tx ),( ttt xsV

Assumption 5:  is a closed set containing all the information on )1/( +tst P  at 

, such that . That is, the probability of next period`s state, 

conditional on current information, depends only on the current state and the investor`s 

actions. 

1+t ),()/( '
1 ttrttr xsPssP =+

Assumption 6: In period 1+t , the state is , the holder takes an action and the 

outcome is defined by . 

1+ts

),( 111 +++ ttt xsV
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 Note that we take the expectation of since future payoffs are unknown.   F
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         Under assumptions (4)-(6), exercising the option in period  results in the following 

payoff

t
4: 
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Therefore the holder will choose an  to maximise: tx
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As shown in Dixit and Pindyck (1994), the Bellman equation for this optimal stopping 

time has a solution in continuous time that takes the following form: 

 

)](1),,([max),( dVE
dt

tsxVtsrV x +=    (6) 

                                                                                                                                          

with 
t
VEtdVE

dt ∆
∆

∆= ∞→
)(lim)()1(     

 
 
Equation (6) represents a “fundamental arbitrage condition” that is interpreted as saying 

that, in order for the holder to keep the option, he must earn at least the risk-free return5.  

The solution of the Bellman equation given by (6) is the value of the option.  

However, as it stands, equation (6) is of little practical use, unless 
dt

dVE 1)(  can be 

evaluated. We propose a method based on approximating this function in order to obtain 

an approximate solution6.  

Suppose the process for  is described by the following geometric Brownian 

motion: 

s
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 The first part of equation (4) is the value of the option if immediately exercised, whilst the second 
describes its continuation value. 
5

 The right-hand side of (6) represents the total return to the holder from holding the option. 
6

  Abadir and Rockinger (2003) advocate a useful technique to fit options data to extrapolate risk-neutral 
densities. 
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sdzsdtds δµ +=                  

 
 
where   is a standard increment of a Wiener process, dz µ  is a drift parameter and δ the 

variance parameter.  

We can expand 
dt

dVE 1)( , using Ito`s Lemma and the stochastic process above to 

obtain: 
 
             

  )]
2
1),,([max),( 22

sstsx VsVrsVtsxVtsrV δ+++=         (7) 

 
 
If we set )()(),( tcstsV φ≈ , where φ  is a suitable basis for an n-dimensional family of 

approximating functions and  is an n-vector of time-varying coefficients, equation (7) 

can be re-written as follows

)(tc
7: 

 

                     )()()()]()(''
2
1)('[)(')( 22 tcstcsrsssrstcs ψφφδφφ ≈−+≈                          (8) 

 
 
To determine , we select n-values of , , and solve (8) for that particular set of 

values. Given the n-dimensional family of basis functions chosen, (8) can now be re-

written in the form of a system as follows: 

)(tc s is

 

)()(' tctc Ψ=Φ                   (9) 
 
 
where Φ and   are two  matrices. Ψ nn×
 
 
Therefore the solution to our option pricing problem is given by: 
 

 
)](')(),,(max[),( 1 tcstsVtsV ΦΦ≈ −   (10) 
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 See Appendix 1 for a proof. 
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3.  Polynomial Approximation       
 
In the previous section we suggested solving the Bellman equation, which describes the 

option pricing problem, by using approximations. In this section we describe in greater 

detail the approximation method adopted in this paper. 

Let  be a function defined on the interval  that is not tractable 

analytically, and assume that 

1+ℜ∈ nV ],[ ba

P  is a polynomial that interpolates V  at the distinct 1+n   

points , with . In order to solve the option pricing problem by 

approximation we need to define: (a) the family of basis functions to approximate the 

function , (b) the interpolation nodes, . In this section we show that Chebyshev 

polynomials in conjunction with Chebyshev nodes offer the best solution to our problem. 

],[ basi ∈ ∑
=

=
n

i
ii scsP

0
)()( φ

V is

 Theorem 1: if , then for all ],[ baV ℜ∈ 0>ε  there exists a polynomial  such 

that 

)(sP

ε≤−∈∀ |)()(|],[ sPsVbas . 

Remark 1. The above theorem is known as the Weierstrass theorem. It states that 

any continuous function can be approximated with a certain degree of accuracy by using 

a polynomial. Although very important theoretically, this theorem is of little practical use 

since it does not give any indication of what polynomial is the most appropriate to use, or 

even what order polynomial is needed to achieve a certain degree of accuracy. 

The error made by using a polynomial of order  to approximate the function 

given in Theorem 1 can be easily calculated as: 

n

 

∏
=

+ −
+

=−
n

i
i

n ssV
n

sPsV
0

)1( )()(
1

1)()( ε  

                                     
 
The objective of using such an efficient polynomial consists in choosing a set of nodes  

so as to make the term ∏ as small as possible (Kenneth, 1998). One possibility is 
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n

i
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to approximate the function V at the n-evenly spaced nodes. However, it is well known 

that in general, even for smooth functions, polynomials of this type do not produce very 

good approximations.8 Therefore, we suggest approximating the function over the 

interval , at the Chebyshev nodes defined as: ],[ ba

 

ni
n
isi ,...,1,0),

22
12cos( =

+
+
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Our approach can be justified by appealing to Rivlin’s theorem, stating that Chebyshev 

node polynomial interpolants are nearly optimal polynomial approximants (Rivlin, 1990), 

and has been shown to perform well empirically (Rivlin, 1990). Chebyshev nodes are 

also known to possess a further convenient property, i.e. equi-oscillation 9(Kenneth, 

1998). 

As important as the choice of the nodes interpolants is that of a family of 

functions from which the approximant P will be drawn. We suggest using a Chebyshev 

polynomial. This is defined as10: 
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 A classic example is Runge`s function (Rivlin, 1990). 
9

 This property states that the maximum error of a cubic function, for example, shall be reached at least five 
times, and the sign of this error should alternate between the interpolation points. 
10

 Note that in this application we use the general formula for the Chebyshev basis, however there exists 
also a recursive formula. 
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 A Chebyshev basis polynomial, in conjunction with Chebyshev interpolation 

nodes, produces an efficient interpolation equation which is very accurate and stable over 

. Furthermore, such a polynomial should be able to replicate, not just the function V at 

, but also its derivatives . Therefore the approximant that solves 

our problem can be defined as follows

n

nsss ,...,, 21
''

2
'
1 ,...,, nsss

11: 
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Once the basis functions (approximants) have been chosen and the approximant 

nodes defined, the basis coefficients  can be obtained. If we define the following 

Chebyshev-Vandermode type matrix 
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then the coefficients ;  of  solve ic )',...,,( 110 −= ncccc )(sV Vc =Τ , with being 

the j basis function evaluated at the i-th interpolation node. When  is allowed to vary 

over some other interval, say 

)( iiij sΓ=Γ

s

]1,1[],[ −≠Tt , we rescale the value of  to where s *s
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2
1* tTstTs ++−= 12. 
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 Note that, although one can also use Hermite polynomials to approximate the functional and the slopes, 
the latter are inefficient (Kenneth, 1998). 
12

 An interesting issue here is the non-singularity of the Vandermode matrix over Chebyshev basis as 
above. In theory, there is no guarantee that the matrix is non-singular. However, in practice, in general 
applications such as ours, we can conjecture that as long as the number of indeterminates exceeds the 
sparsity with respect to Τ , non-singularity should hold. Alternatively, we suggest two ways to overcome 
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 As an example of using different basis functions, consider equation (8) to price a 

European option. In this case, the ordinary differential equation has a known solution and 

one can use it to calculate the approximation error. We use three different basis functions 

(i.e. Chebyshev basis, spline basis, and linear spline basis). The approximation error is 

shown in Figures (1-3). 

 

Insert Figures (1-3) here 

 

 As can be seen, when the approximation is calculated using Chebyshev basis 

functions the error is of the order of 1×10-7 for a polynomial of order 10. Spline and linear 

spline functions do not achieve a comparable degree of accuracy even increasing the 

order of the polynomial to 30.    

 

4. Numerical Results and Comparisons 

 

To evaluate the empirical performance of the proposed method we compare it in this 

section, in terms of both accuracy and efficiency, to the benchmark, i.e. the binomial tree 

model with 10,000 time steps, as well as the analytical approximation of Barone-Adesi 

and Whaley (1987 - BAW henceforth), and a method based on solving equation (3) by 

dynamic programming (DP), which is explained below. We use the root mean squared 

errors (RMSE) as a measure of accuracy. Computational efficiency is measured in CPU 

time (seconds) required to compute the price of the entire set of options.  

Table 1 shows the results for the entire set of options considered. We specify the 

set of parameters as in Ju and Zhong (1999). We also report the results using the Black 

and Scholes method (1973 - B&S henceforth)13.  

 

Insert Table 1 here 

                                                                                                                                       
the problem: (a) simply use the singular value decomposition of Τ ; (b) use the generalised Vandermode 
matrix over Chebyshev. In fact, for this type of matrix Werther (1993) proves that, as long as the 
indeterminates take a value [1, ∞], the generalised Vandermode matrix over Chebyshev basis is non-
singular. 
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As can be seen, the BAW (1987) method is quite accurate, but the method based 

on dynamic programming gives the best results. The latter requires approximating the 

Bellman equation in (3) using backward recursion and specifying a reward function , 

and a transition probability function 

f

Ρ . Once the terminal value function, , has been 

set, one can easily solve equation (3) by recursively calculating at each step the optimal 

value function and the state of the system . will give the price of the option. 

1+Tv

tv tx 1v

 Table 1 also shows that the DP method produces very similar results to those 

generated by the binomial tree with 10,000 time steps. In other words, it is qualitatively 

equivalent to the accelerated binomial tree method proposed by Breen (1991), but it has 

the advantage that it does not rely on extrapolation techniques14. 

  Figure (4) shows the solution to the option price problem using dynamic 

programming for different values of the underlying stock. 

 

    Insert Figure 4 here 

 

Table 1, column 7 shows the option prices obtained using the least squares Monte Carlo 

approach suggested by Longstaff and Schwartz (2001 – LS henceforth). Clearly, at least 

in this simple case and for this particular parameter specification, their method does not 

outperform the alternative ones previous methods above 15 16. As in Stentoft (2003), we 

                                                                                                                                       
13

 Although the Black and Scholes (1973) method does not apply to American-style options, we decided 
also to report option prices calculated in this way for the sake of completeness. 
14

 Breen (1991) uses a Richardson extrapolation procedure. Such procedures (e.g., Richardson`s or Geske 
and Johnson`s) are known to have a problem of non-uniform convergence which, although it might not 
matter in practice (see Breen, 1991), remains a serious difficulty on a theoretical level. To solve this 
problem, Chang et al (2002) suggest a modified Richardson extrapolation method. 
15

 We have used Laguerre basis as well as exponential basis. The number of replications was set equal to 
100,000 and the number of time steps to 50. Laguerre basis seems to produce a more accurate price. 
Following LS (2001), we report options prices obtained by using Laguerre basis. There have also been 
other applications of the LS (2001) method, as, for example in Moreno and Novas (2001); however, these 
authors only apply it to obtain the option price for one set of parameters. In our opinion, option pricing 
methods should be tested by applying them for various parameter specifications, as in this paper. 
16

 However, we would stress again that the LS (2001) method has the advantage of being applicable also in 
the case of more complex derivative instruments. In practice, in order to achieve high accuracy, one could 
apply it for each option n times (say n = 100), use different seeds in the Monte Carlo simulations, and 
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find non-monotonicity in the convergence of the option price given by this model 

towards the true option price. This limits the usefulness of  Proposition 1 in LS (2001). 

Finally, in the last column of Table 1, we report option prices obtained by using 

our suggested methodology. We use the first three (plus an intercept) Chebyshev basis to 

estimate the parameters in (11)ic 17. We assume 50 time steps and 100,000 Monte Carlo 

replications to generate stock prices. The basis number has been chosen using Theorem 

6.4.2 in Kenneth (1998). We note that, although our proposed method produces less 

accurate prices than the Binomial, the BAW (1997) and the DP methods, its RMSE 

appears to be in the bid-ask spread range for traded stock options. Further, as already 

pointed out, in common with the LS (2001) method, and in contrast to the other methods 

presented above, it is easily implementable to price more complex derivatives. Finally, it 

appears to outperform the LS (2001) method.  

 We also verify that the function we have approximated is smooth across the early 

exercise boundary, that is 1),(( −=− tTts
ds
dP

p , where is the critical value for 

which the value of the option is equal to its exercise price. This can be done by plotting 

)(ts p

ds
dP  against  near the exercise boundary. Figure (5) shows the plot for the case 

. We estimated that, for this value of 

s

5.0=−Tt Tt − , 9985.0−=
ds
dP . 

Next, we assess the computational efficiency of the algorithm we use in 

comparison with other methods. The routines were written in MatLab 6.0 and run on a 

Pentium 4 1.6GHz-M, 256MB. As already pointed out by several researchers (see for 

example Breen, 1991), efficiency depends highly on the particular hardware/software 

used. To partially tackle the problem we decided to calculate the CPU time over the 

entire set of options listed in the Table 1. The results are reported in Table 2. 

 

    Insert Table 2 here 

 

                                                                                                                                       
finally use the average as an estimate for the option price.  This is likely to result in an efficiency loss, 
though. The computer routines used for this method are available from the authors on request. 
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It appears that the BAW method outperforms the DP one. By contrast, the latter 

has a very similar performance to the accelerated binomial method of Ju and Zhong 

(1999) applied to the same set of options. In fact, these authors report a CPU time of 

1.177 compared to our 1.951. This result, once again, suggests that, qualitatively, the DP 

method is equivalent to the accelerated binomial method and slightly more accurate.  

Computational time appears to be a problem for the LS (2001) method, much less 

so for the method proposed in this paper.18

 

5. Conclusions 

 

This study contributes to the literature on American option pricing by suggesting a 

valuation method based on Chebyshev approximation at Chebyshev nodes to estimate the 

log-normal density. This method is employed to price a large set of American put 

options, and is shown to produce reasonably accurate prices for the options considered. 

We also investigate its efficiency, and find that it outperforms alternatives methods such 

as the LS (2001) one. In our view, though, the main advantage of our approach consists 

in providing a simple and reliable framework which can be applied to price more 

complex derivative instruments. Evaluating the hedging performance of our method 

would also be of considerable interest. These issues will be investigated in future papers. 

We also describe an alternative method based on dynamic programming to 

approximate the option value in each time period. This approach appears to be 

qualitatively equivalent to the Accelerated Binomial tree proposed by Breen (1991), but 

has the advantage of not being affected by problems of non-uniform convergence. 

                                                                                                                                       
17

 Note that we estimate these coefficients using Chebyshev basis and Chebyshev nodes. 
18

 We also used our method with only ten time steps, and in most cases the prices we obtained were quite 
similar.  It should be possible to improve accuracy (and computational speed) in the case of ten time steps 
by using variance reduction techniques. However, given the lack of theory on the effects of these 
techniques on the estimates of the American option prices, we have not applied them here. We leave this 
issue for future research. 
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Appendix 1 
 
 
Recall equation (6): 
 
 

)](1),,([max),( dVE
dt

tsxVtsrV x +=  

 
 
The investment in the option does not generate any cashflow up to the time the option is 

exercised. However, we can still express the return on this investment for the holder of 

the option in terms of its capital appreciation. Therefore we can reasonable assume that 

the Bellman equation above takes the following form in the continuation region: 

 
 

)(1 dVE
dt

rV =  

      
)(dVEdtrV =  

 
Using Ito`s-lemma 
 

2

2
1 dsVdtVdsVdtrV ssts ++=   

 
 

where  represents the derivative with respect to the argument in the subscript. (.)V

 By substituting the geometric Brownian motion process of section 1, we obtain19: 

 
2][

2
1)( sdzrsdtVdtVsdzrsdtVdtrV ssts δδ ++++=  

 
After some algebra manipulation, this can be written as: 
 

 

                                              
19

 Note: to ensure the existence of an optimum, we set r=µ . 
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ssts VsVrsVrV 22

2
1 δ++=  

 
Set )()( tcsV φ≈ , then 
 

 

)()(''
2
1)(')()()(')()( 22 tcsstcstcsrstcsr φδφφφ ++≈  

 
 
where )(' sφ and  are derivatives with respect to the argument in parentheses. 

Therefore: 

)(' tc

 
 

)()()()(''
2
1)()(')(')( 22 tcsrtcsstcsrstcs φφδφφ −+≈  

 
 
and finally equation (8) can be written as: 
 
 

                             )()]()(''
2
1)('[)(')( 22 tcsrsssrstcs φφδφφ −+≈  
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Tables and Figures 
 

 
 
Figure 1 
 
Approximation error using (8) and Chebyshev polynomial when volatility is equal to 0.2 
and the interest rate is 0.048. 
 
 

 
 
Figure 2 
 
Approximation error using (8) and splines basis when volatility is equal to 0.2 
and the interest rate is 0.048. 
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Figure 3 
 
Approximation error using (8) and linear splines basis when volatility is equal to 0.2 
and the interest rate is 0.048. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 19



 
K Sigma t (yrs) B&S Binomial BAW (1987) LS (2001) DP CC (2005)

35 0.2 0.0833 0.0062 0.0061 0.0066 0.006 0.0066 0.0062

35 0.2 0.3333 0.196 0.2004 0.2044 0.1975 0.199 0.1998

35 0.2 0.5833 0.417 0.4328 0.4415 0.4276 0.432 0.429

40 0.2 0.0833 0.8403 0.8528 0.8502 0.8414 0.851 0.85

40 0.2 0.3333 1.5221 1.5797 1.577 1.5489 1.574 1.559

40 0.2 0.5833 1.8812 1.9906 1.9888 1.923 1.9887 1.957

45 0.2 0.0833 4.8399 5 5 4.863 5 5

45 0.2 0.3333 4.7804 5.087 5.0661 4.901 5.087 4.901

45 0.2 0.5833 4.84 5.265 5.2364 4.989 5.265 5.221

35 0.3 0.0833 0.196 0.0773 0.0781 0.0771 0.0755 0.078

35 0.3 0.3333 0.6866 0.6976 0.7014 0.693 0.6922 0.693

35 0.3 0.5833 1.1888 1.2199 1.228 1.2048 1.2105 1.209

40 0.3 0.0833 1.2988 1.31 1.3075 1.308 1.3083 1.3102

40 0.3 0.3333 2.4275 2.4822 2.4781 2.4533 2.4799 2.439

40 0.3 0.5833 3.0634 3.1694 3.1666 3.1089 3.1665 3.159

45 0.3 0.0833 4.9796 5.0597 5.047 4.9993 5.0584 5.051

45 0.3 0.3333 5.5288 5.7059 5.6793 5.598 5.7027 5.698

45 0.3 0.5833 5.9723 6.2438 6.215 6.1 6.2399 6.239

35 0.4 0.0833 0.2456 0.2462 0.247 0.246 0.2447 0.247

35 0.4 0.3333 1.3297 1.346 1.3489 1.3353 1.3347 1.347

35 0.4 0.5833 2.1127 2.1549 2.1618 2.153 2.1448 2.153

40 0.4 0.0833 1.7575 1.7667 1.7655 1.7597 1.7658 1.765

40 0.4 0.3333 3.3336 3.3869 3.3824 3.3499 3.3836 3.358

40 0.4 0.5833 4.2473 4.3523 4.3492 4.3047 4.348 4.331

45 0.4 0.0833 5.236 5.2863 5.2733 5.2557 5.2843 5.269

45 0.4 0.3333 6.3767 6.5096 6.4873 6.4389 6.5055 6.493

45 0.4 0.5833 7.1654 7.3829 7.3596 7.294 7.3715 7.329

RMSE   0.0129 0.084 0.00479 0.0408

 
Table 1 
 
Column 4 shows the results using the Black and Scholes (1973) method. The Binomial, in column 5, is based on  
10,000 time steps. 
Column 6 shows the results using the Baroni-Adesi and Whaley (1987) analytical approximation. 
Column 7 shows the option prices using the Longstaff and Schwartz (2001) approach with Laguerre basis. 
Column 8-9 show the results using dynamic programming and our suggested method (Caporale and Cerrato – CC). 
RMSE at the bottom of the table is the root mean square error. 
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Figure 4 
 
Put option value using dynamic programming, with strike price equal to 40, volatility to 0.3 and 
expiration time to 0.5833. The number of time steps was set equal to 150. 
 

 
Figure 5  
 
DP/ds v.s. s for s near  to  with )(ts p 5.0=−Tt . 
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B&S BAW (1987) LS (2001) DP CC (2005)

0.038 0.042 16.65 1.951 6.3958

 
Table 2 

 
Average CPU time (in seconds) over 27 options. 
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