Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/10121
Title: Fully-photonic digital radio over fibre for future super-broadband access network applications
Authors: Abdollahi, Seyedreza
Advisors: Nilavalan, R
Owens, T
Keywords: Digital radio over fibre;Fibre networks;Optical communication
Issue Date: 2012
Abstract: In this thesis a Fully-Photonic DRoF (FP-DRoF) system is proposed for deploying of future super-broadband access networks. Digital Radio over Fibre (DRoF) is more independent of the fibre network impairments and the length of fibre than the ARoF link. In order for fully optical deployment of the signal conversion techniques in the FP-DRoF architecture, two key components an Analogue-to-Digital Converter (ADC) and a Digital-to-Analogue Converter (DAC)) for data conversion are designed and their performance are investigated whereas the physical functionality is evaluated. The system simulation results of the proposed pipelined Photonic ADC (PADC) show that the PADC has 10 GHz bandwidth around 60 GHz of sampling rate. Furthermore, by changing the bandwidth of the optical bandpass filter, switching to another band of sampling frequency provides optimised performance condition of the PADC. The PADC has low changes on the Effective Number of Bit (ENOB) response versus analogue RF input from 1 GHz up to 22 GHz for 60 GHz sampling frequency. The proposed 8-Bit pipelined PADC performance in terms of ENOB is evaluated at 60 Gigasample/s which is about 4.1. Recently, different methods have been reported by researchers to implement Photonic DACs (PDACs), but their aim was to convert digital electrical signals to the corresponding analogue signal by assisting the optical techniques. In this thesis, a Binary Weighted PDAC (BW-PDAC) is proposed. In this BW-PDAC, optical digital signals are fully optically converted to an analogue signal. The spurious free dynamic range at the output of the PDAC in a back-to-back deployment of the PADC and the PDAC was 26.6 dBc. For further improvement in the system performance, a 3R (Retiming, Reshaping and Reamplifying) regeneration system is proposed in this thesis. Simulation results show that for an ultrashort RZ pulse with a 5% duty cycle at 65 Gbit/s using the proposed 3R regeneration system on a link reduces rms timing jitter by 90% while the regenerated pulse eye opening height is improved by 65%. Finally, in this thesis the proposed FP-DRoF functionality is evaluated whereas its performance is investigated through a dedicated and shared fibre links. The simulation results show (in the case of low level signal to noise ratio, in comparison with ARoF through a dedicated fibre link) that the FP-DRoF has better BER performance than the ARoF in the order of 10-20. Furthermore, in order to realize a BER about 10-25 for the ARoF, the power penalty is about 4 dBm higher than the FP-DRoF link. The simulation results demonstrate that by considering 0.2 dB/km attenuation of a standard single mode fibre, the dedicated fibre length for the FP-DRoF link can be increased to about 20 km more than the ARoF link. Moreover, for performance assessment of the proposed FP-DRoF in a shared fibre link, the BER of the FP-DRoF link is about 10-10 magnitude less than the ARoF link for -19 dBm launched power into the fibre and the power penalty of the ARoF system is 10 dBm more than the FP-DRoF link. It is significant to increase the fibre link’s length of the FP-DRoF access network using common infrastructure. In addition, the simulation results are demonstrated that the FP-DRoF with non-uniform Wavelength Division Multiplexing (WDM) is more robust against four wave mixing impairment than the conventional WDM technique with uniform wavelength allocation and has better performance in terms of BER. It is clearly verified that the lunched power penalty at CS for DRoF link with uniform WDM techniques is about 2 dB higher than non-uniform WDM technique. Furthermore, uniform WDM method requires more bandwidth than non-uniform scheme which depends on the total number of channels and channels spacing.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University
URI: http://bura.brunel.ac.uk/handle/2438/10121
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Electrical Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf6.14 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.