Brunel University Research Archive (BURA) >
Research Areas >
Mathematical Physics >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/1265

Title: Distributions of individual Dirac eigenvalues for QCD at non-zero chemical potential: RMT predictions and lattice results
Authors: Akemann, G
Bloch, J
Shifrin, L
Wettig, T
Keywords: Random Matrices
Lattice Gauge Theory
Publication Date: 2007
Publisher: Proceedings of Science PoS(LATTICE 2007)224
Citation: http://uk.arxiv.org/abs/0711.0629 , Oct 2007
Abstract: For QCD at non-zero chemical potential $\mu$, the Dirac eigenvalues are scattered in the complex plane. We define a notion of ordering for individual eigenvalues in this case and derive the distributions of individual eigenvalues from random matrix theory (RMT). We distinguish two cases depending on the parameter $\alpha=\mu^2 F^2 V$, where $V$ is the volume and $F$ is the familiar low-energy constant of chiral perturbation theory. For small $\alpha$, we use a Fredholm determinant expansion and observe that already the first few terms give an excellent approximation. For large $\alpha$, all spectral correlations are rotationally invariant, and exact results can be derived. We compare the RMT predictions to lattice data and in both cases find excellent agreement in the topological sectors $\nu=0,1,2$.
URI: http://bura.brunel.ac.uk/handle/2438/1265
Appears in Collections:School of Information Systems, Computing and Mathematics Research Papers
Mathematical Physics
Mathematical Science

Files in This Item:

File Description SizeFormat
PoSLatLeonid.pdf616.71 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan