Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/13809
Title: Big data analysis of emergency medical service applied to determine the survival rate effective factors and predict the ambulance time variables
Authors: Shieh, JS
Yeh, YT
Sun, YZ
Ma, MH
Dia, CY
Sadrawi, M
Abbod, M
Keywords: Emergency medical service;Response time;On-scene time;Transportation time;Artificial neural network
Issue Date: 2017
Publisher: The IIER (International Institute of Engineers and Researchers)
Citation: ISER- 105th International Conference on Science, Health and Medicine (ICSHM), (2017)
Abstract: Emergency medical service (EMS) takes an important part in out-of-hospital cases, and it takes decisively effect to patients’ mortality rate. There are five factors have been scrutinized in this paper with large database to determine the correlation and effectiveness to survival rate, and also the difference between urban and suburban area. Seven years from 2007 to 2013 emergency record have conducted in study. Via applying analysis of variance (ANOVA), age, gender, response time, on-scene time and transportation time were used to be the analysis condition in survival rate and urban/suburban difference. Furthermore, age, gender, population density and total ambulance number were used as inputs to predict time outputs of response time, on-scene time, transportation time with artificial neural network (ANN). There are significant differences in all five factors of 7 years analysis, with age have the highest correlation (Pearson = -0.059), and on-scene time second highest (Pearson = -0.033) to survival rate. For urban and suburban comparison, each city has the highest correlation with time factors, and transportation time has the highest among other time factors. For time prediction, the best model performs mean absolute error (MAE) of 3.2675 minutes, and response time has the lowest error of 2.2498 minutes. Observing the result, it is suggested that patient with male around or higher 65 years old should be more concern and urgency. Urban and suburban do affect the out-of-hospital internal time in the study because urban patient spend less time on transportation time but more on on-scene time, while suburban has the opposite trend. In experimental prediction, model built with 4 years database could made the prediction within 3.2 minutes in training city but unable to apply to different city as well.
URI: http://bura.brunel.ac.uk/handle/2438/13809
Appears in Collections:Dept of Electronic and Computer Engineering Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.docx151.36 kBUnknownView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.