Please use this identifier to cite or link to this item:
Title: Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish
Authors: Legler, J
Kamstra, JH
Bastos Sales, L
Aleström, P
Keywords: Phthalate;5-azacytidine;Epigenetics;DNA methylation;Transgenerational;Zebrafish;Toxicology;Environmental stress
Issue Date: 2017
Publisher: BioMed Central
Citation: Epigenetics & Chromatin
Abstract: Background: Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP, 30 μM), and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 μM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome wide and locus specific DNA methylation analyses. Results: Following direct exposure in zebrafish embryos from 0 to 6 days post fertilization (dpf), genome wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development, and transgenerational effects on larval body length. Locus specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP consistent changes were found at 2 specific loci in first and second generation larvae. Conclusions: Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.
ISSN: 1756-8935
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf3.5 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.