Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/15087
Title: Mitotic post-translational modifications of histones promote chromatin compaction in vitro
Authors: Vagnarelli, P
Zhiteneva, A
Bonfiglio, J
Makarov, A
Colby, T
Schirmer, E
Matic, I
Earnshaw, W
Issue Date: 2017
Citation: Open Biology
Abstract: How eukaryotic chromosomes are compacted during mitosis has been a leading question in cell biology since the nineteenth century. Non-histone proteins such as condensin complexes contribute to chromosome shaping, but appear not to be necessary for mitotic chromatin compaction. Histone modifications are known to affect chromatin structure. As histones undergo major changes in their post24 translational modifications during mitotic onset, we speculated that the spectrum of cell cycle-specific histone modifications might contribute to chromosome compaction during mitosis. To test this hypothesis, we isolated core histones from interphase and mitotic cells and reconstituted chromatin with them. We used mass spectrometry to show that key post-translational modifications remained intact during our isolation procedure. Light, atomic force and transmission electron microscopy analysis showed that chromatin assembled from mitotic histones has a much greater tendency to aggregate than chromatin assembled from interphase histones even under low magnesium conditions where interphase chromatin remains as separate beads-on-a-string structures. These observations are consistent with the hypothesis that mitotic chromosome formation is a two-stage process with changes in the spectrum of histone posttranslational modifications driving mitotic chromatin compaction, while the action of non-histone proteins such as condensin may then shape the condensed chromosomes into their classic mitotic morphology.
URI: http://bura.brunel.ac.uk/handle/2438/15087
ISSN: 2046-2441
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf71.96 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.