Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/18111
Title: Diffuser performance of centrifugal compressor in supercritical CO <inf>2</inf> power systems
Authors: Sayad Saravi, S
Tassou, SA
Keywords: upercritical CO2;turbomachinary desing;computational fluid dynamics;real gas aerothermodynamics
Issue Date: 18-Mar-2019
Publisher: Elsevier
Citation: Sayad Saravi, S. and Tassou, S.A. (2019) 'Diffuser performance of centrifugal compressor in supercritical CO2 power systems', Energy Procedia, 161 pp. 438 - 445. doi: 10.1016/j.egypro.2019.02.079.
Abstract: This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) The paper focuses on understanding the performance of a vaned diffuser in a supercritical CO 2 compressor using real gas assumptions. The rapidly changing properties of CO 2 in the non-ideal thermodynamic region can have a significant impact on the performance of the diffuser. To account for this, the relationship between the flow properties (i.e. fundamental derivative) and the local geometry (i.e. cross-sectional area of the nozzle) has been discussed theoretically. To examine it analytically, the study has considered the influence of real gas properties on the performance of a vaned diffuser using computational fluid dynamics (CFD) modelling. The selected compressor stage geometry is similar to the compressor impeller tested in the Sandia sCO 2 compression loop facility. The effect of changes in the number of blades and the corresponding changes in the cross throat area on the flow properties such as density and speed of sound were investigated and discussed. The results illustrate that a diffuser with a higher number of blades (smaller throat area) compared to a diffuser with a wider throat area has a higher probability of creating flow instability in the passage stage.
URI: https://bura.brunel.ac.uk/handle/2438/18111
DOI: https://doi.org/10.1016/j.egypro.2019.02.079
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf1.13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons