Brunel University Research Archive (BURA) >
College of Engineering, Design and Physical Sciences >
Dept of Mathematics >
Dept of Mathematics Research Papers >
Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/2075

Title:  Reformulations of mathematical programming problems as linear complementarity problems 
Authors:  Judice, JJ Mitra, G 
Publication Date:  1982 
Publisher:  Brunel University 
Citation:  Maths Technical Papers (Brunel University). July 1982, pp 126 
Abstract:  A family of complementarity problems are defined as extensions of the well known Linear Complementarity Problem (LCP). These are
(i.) Second Linear Complementarity Problem (SLCP) which is an LCP extended by introducing further equality restrictions and unrestricted variables,
(ii.) Minimum Linear Complementarity Problem (MLCP) which is an
LCP with additional variables not required to be complementary and with a linear objective function which is to be minimized,
(iii.) Second Minimum Linear Complementarity Problem (SMLCP) which is an MLCP but the nonnegative restriction on one of each pair of complementary variables is relaxed so that it is allowed to be unrestricted in value.
A number of well known mathematical programming problems, namely quadratic programming (convex, nonconvex, pseudoconvex nonconvex), bilinear programming, game theory, zeroone integer programming, the fixed charge problem, absolute value programming, variable separable programming are reformulated as members of this family of four complementarity problems. 
URI:  http://bura.brunel.ac.uk/handle/2438/2075 
Appears in Collections:  Mathematical Science Dept of Mathematics Research Papers

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.
