Brunel University Research Archive (BURA) >
Schools >
School of Engineering and Design >
School of Engineering and Design Research papers >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/2561

Title: FHCF: A simple and efficient scheduling scheme for IEEE 802.11e wireless networks
Authors: Ansel, P
Ni, Q
Turletti, T
Keywords: IEEE 802.11e
WLAN
Medium access control (MAC)
Quality of service (QoS)
Publication Date: 2006
Publisher: Springer
Citation: Springer Journal on Mobile Networks and Applications. 11 (3) 391-403
Abstract: The IEEE 802.11e medium access control (MAC) layer protocol is an emerging standard to support quality of service (QoS) in 802.11 wireless networks. Some recent works show that the 802.11e hybrid coordination function (HCF) can improve signi¯cantly the QoS support in 802.11 networks. A simple HCF referenced scheduler has been proposed in the 802.11e which takes into account the QoS requirements of °ows and allocates time to stations on the basis of the mean sending rate. As we show in this paper, this HCF referenced scheduling algorithm is only e±cient and works well for °ows with strict constant bit rate (CBR) characteristics. However, a lot of real-time applications, such as videoconferencing, have some variations in their packet sizes, sending rates or even have variable bit rate (VBR) characteristics. In this paper we propose FHCF, a simple and e±cient scheduling algorithm for 802.11e that aims to be fair for both CBR and VBR °ows. FHCF uses queue length estimations to tune its time allocation to mobile stations. We present analytical model evaluations and a set of simulations results, and provide performance comparisons with the 802.11e HCF referenced scheduler. Our performance study indicates that FHCF provides good fairness while supporting bandwidth and delay requirements for a large range of network loads.
URI: http://bura.brunel.ac.uk/handle/2438/2561
Appears in Collections:School of Engineering and Design Research papers
Electronic and Computer Engineering

Files in This Item:

File Description SizeFormat
Springer-Qiang.pdf445.32 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan