Brunel University Research Archive (BURA) >
Research Areas >
Mathematical Physics >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/289

Title: Self-organized Model for Modular Complex Networks: Division and Independence
Authors: Kim, DH
Rodgers, GJ
Kahng, B
Kim, D
Publication Date: 2006
Abstract: We introduce a minimal network model which generates a modular structure in a self-organized way. To this end, we modify the Barabasi-Albert model into the one evolving under the principle of division and independence as well as growth and preferential attachment (PA). A newly added vertex chooses one of the modules composed of existing vertices, and attaches edges to vertices belonging to that module following the PA rule. When the module size reaches a proper size, the module is divided into two, and a new module is created. The karate club network studied by Zachary is a prototypical example. We find that the model can reproduce successfully the behavior of the hierarchical clustering coefficient of a vertex with degree k, C(k), in good agreement with empirical measurements of real world networks.
URI: http://bura.brunel.ac.uk/handle/2438/289
Appears in Collections:School of Information Systems, Computing and Mathematics Research Papers
Mathematical Physics
Mathematical Science

Files in This Item:

File Description SizeFormat
Preprint.pdf447.47 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan