Please use this identifier to cite or link to this item:

`http://bura.brunel.ac.uk/handle/2438/2972`

Title: | Strongly interacting bumps for the schrodinger-newton equations |

Authors: | Winter, M Wei, J |

Keywords: | Schrodinger-Newton equations;strong interaction;semi-classical limit;dimension of the kernel;multi-bump states;Liapunov-Schmidt reduction |

Issue Date: | 2009 |

Publisher: | American Institute of Physics |

Citation: | Journal of Mathematical Physics. 50 (1) |

Abstract: | We study concentrated bound states of the Schrodinger-Newton equations Moroz, Penrose and Tod proved the existence and uniqueness of ground states. We first prove that the linearized operator around the unique ground state radial solution has a kernel whose dimension is exactly 3 (correspondingto the translational modes). Using this result we further show: If for some positive integer K the points P_i in R^3, i=1,2,...,K$ with P_i\not=P_j for i\not=j are all local minimum or local maximum or nondegenerate critical points of the reduced energy function then forn h small enough there exist solutions of the Schrodinger-Newton equations with K bumps which concentrate at P_i. We also prove that given a local maximum point P_0 of the reduced energy there exists a solution with K bumps which all concentrate at P_0 and whose distances to P_0 are at least O(h^(1/3)) |

URI: | http://bura.brunel.ac.uk/handle/2438/2972 |

ISSN: | 0022-2488 |

Appears in Collections: | Dept of Mathematics Research Papers Mathematical Sciences |

Files in This Item:

File | Description | Size | Format | |
---|---|---|---|---|

45-snun.pdf | 290.27 kB | Adobe PDF | View/Open |

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.