Brunel University Research Archive (BURA) >
Schools >
School of Information Systems, Computing and Mathematics >
School of Information Systems, Computing and Mathematics Research Papers >

Please use this identifier to cite or link to this item:

Title: Singular stress behavior in a bonded hereditarily-elastic aging wedge. Part I: Problem statement and degenerate case
Authors: Mikhailov, SE
Keywords: Partial differential equations
Volterra integral equations
Operator equation
Holomorphic function
Mellin transform
Viscoelastic medium
Stress analysis
Singular point
Material aging
Publication Date: 1997
Publisher: Wiley
Citation: Mathematical Methods in the Applied Sciences. 20 (1): 13-30
Abstract: Stress singularity is investigated in a plane problem for a bonded isotropic hereditarily elastic (viscoelastic) aging infinite wedge. The general solution of the operator Lamb equations, which are partial differential equations in space co-ordinates and integral equations in time, respectively, is represented in terms of one-parametric holomorphic functions (the Kolosov-Muskhelishvili complex potentials depending on time) in weighted Hardy-type classes. After application of the Mellin transform with respect to the radial variable, the problem is reduced to a system of linear Volterra integral equations in time. By using the residue theory for the inverse Mellin transform, the stress asymptotics and strain estimates near the singular point are presented here for non-hereditary Dundurs parameters. The general case of the hereditary Dundurs operators is considered in Part 11 (see [21]).
ISSN: 0170-4214
Appears in Collections:School of Information Systems, Computing and Mathematics Research Papers
Mathematical Science

Files in This Item:

File Description SizeFormat
Link to the article.txt135 BTextView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan