Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/4583
Title: 3D medical volume segmentation using hybrid multiresolution statistical approaches
Authors: Alzubi, S
Amira, A
Issue Date: 2010
Publisher: Hindawi Publishing Corporation
Citation: Advances in Artificial Intelligence, 2010: 520427, 2010
Abstract: 3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations.
Description: This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.
URI: http://bura.brunel.ac.uk/handle/2438/4583
DOI: http:dx.doi.org/10.1155/2010/520427
ISSN: 1687-7470
Appears in Collections:Brunel OA Publishing Fund
Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf6.97 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.