Brunel University Research Archive (BURA) >
College of Engineering, Design and Physical Sciences >
Dept of Mathematics >
Dept of Mathematics Theses >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/4602

Title: New variants of variable neighbourhood search for 0-1 mixed integer programming and clustering
Authors: Lazić, Jasmina
Advisors: Mladenović, N
Mitra, G
Keywords: Heuristics
Metaheuristics
Linear programming
CPLEX
Colour image quantisation
Publication Date: 2010
Publisher: Brunel University, School of Information Systems, Computing and Mathematics
Abstract: Many real-world optimisation problems are discrete in nature. Although recent rapid developments in computer technologies are steadily increasing the speed of computations, the size of an instance of a hard discrete optimisation problem solvable in prescribed time does not increase linearly with the computer speed. This calls for the development of new solution methodologies for solving larger instances in shorter time. Furthermore, large instances of discrete optimisation problems are normally impossible to solve to optimality within a reasonable computational time/space and can only be tackled with a heuristic approach. In this thesis the development of so called matheuristics, the heuristics which are based on the mathematical formulation of the problem, is studied and employed within the variable neighbourhood search framework. Some new variants of the variable neighbourhood searchmetaheuristic itself are suggested, which naturally emerge from exploiting the information from the mathematical programming formulation of the problem. However, those variants may also be applied to problems described by the combinatorial formulation. A unifying perspective on modern advances in local search-based metaheuristics, a so called hyper-reactive approach, is also proposed. Two NP-hard discrete optimisation problems are considered: 0-1 mixed integer programming and clustering with application to colour image quantisation. Several new heuristics for 0-1 mixed integer programming problem are developed, based on the principle of variable neighbourhood search. One set of proposed heuristics consists of improvement heuristics, which attempt to find high-quality near-optimal solutions starting from a given feasible solution. Another set consists of constructive heuristics, which attempt to find initial feasible solutions for 0-1 mixed integer programs. Finally, some variable neighbourhood search based clustering techniques are applied for solving the colour image quantisation problem. All new methods presented are compared to other algorithms recommended in literature and a comprehensive performance analysis is provided. Computational results show that the methods proposed either outperform the existing state-of-the-art methods for the problems observed, or provide comparable results. The theory and algorithms presented in this thesis indicate that hybridisation of the CPLEX MIP solver and the VNS metaheuristic can be very effective for solving large instances of the 0-1 mixed integer programming problem. More generally, the results presented in this thesis suggest that hybridisation of exact (commercial) integer programming solvers and some metaheuristic methods is of high interest and such combinations deserve further practical and theoretical investigation. Results also show that VNS can be successfully applied to solving a colour image quantisation problem.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
Sponsorship: Support from the Mathematical Institute, Serbian Academy of Sciences and Arts, are acknowledged for this research.
URI: http://bura.brunel.ac.uk/handle/2438/4602
Appears in Collections:Brunel University Theses
Mathematical Science
Computer Science
Dept of Mathematics Theses

Files in This Item:

File Description SizeFormat
FulltextThesis.pdf2.09 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan